* remote.c (getpkt_sane): Fix error message. No animals were
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61
62 #include "memory-map.h"
63
64 /* The size to align memory write packets, when practical. The protocol
65 does not guarantee any alignment, and gdb will generate short
66 writes and unaligned writes, but even as a best-effort attempt this
67 can improve bulk transfers. For instance, if a write is misaligned
68 relative to the target's data bus, the stub may need to make an extra
69 round trip fetching data from the target. This doesn't make a
70 huge difference, but it's easy to do, so we try to be helpful.
71
72 The alignment chosen is arbitrary; usually data bus width is
73 important here, not the possibly larger cache line size. */
74 enum { REMOTE_ALIGN_WRITES = 16 };
75
76 /* Prototypes for local functions. */
77 static void cleanup_sigint_signal_handler (void *dummy);
78 static void initialize_sigint_signal_handler (void);
79 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
80
81 static void handle_remote_sigint (int);
82 static void handle_remote_sigint_twice (int);
83 static void async_remote_interrupt (gdb_client_data);
84 void async_remote_interrupt_twice (gdb_client_data);
85
86 static void remote_files_info (struct target_ops *ignore);
87
88 static void remote_prepare_to_store (struct regcache *regcache);
89
90 static void remote_fetch_registers (struct regcache *regcache, int regno);
91
92 static void remote_resume (ptid_t ptid, int step,
93 enum target_signal siggnal);
94 static void remote_async_resume (ptid_t ptid, int step,
95 enum target_signal siggnal);
96 static void remote_open (char *name, int from_tty);
97 static void remote_async_open (char *name, int from_tty);
98
99 static void extended_remote_open (char *name, int from_tty);
100 static void extended_remote_async_open (char *name, int from_tty);
101
102 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
103 int async_p);
104
105 static void remote_close (int quitting);
106
107 static void remote_store_registers (struct regcache *regcache, int regno);
108
109 static void remote_mourn (void);
110 static void remote_async_mourn (void);
111
112 static void extended_remote_restart (void);
113
114 static void extended_remote_mourn (void);
115
116 static void remote_mourn_1 (struct target_ops *);
117
118 static void remote_send (char **buf, long *sizeof_buf_p);
119
120 static int readchar (int timeout);
121
122 static ptid_t remote_wait (ptid_t ptid,
123 struct target_waitstatus *status);
124 static ptid_t remote_async_wait (ptid_t ptid,
125 struct target_waitstatus *status);
126
127 static void remote_kill (void);
128 static void remote_async_kill (void);
129
130 static int tohex (int nib);
131
132 static void remote_detach (char *args, int from_tty);
133
134 static void remote_interrupt (int signo);
135
136 static void remote_interrupt_twice (int signo);
137
138 static void interrupt_query (void);
139
140 static void set_thread (int, int);
141
142 static int remote_thread_alive (ptid_t);
143
144 static void get_offsets (void);
145
146 static void skip_frame (void);
147
148 static long read_frame (char **buf_p, long *sizeof_buf);
149
150 static int hexnumlen (ULONGEST num);
151
152 static void init_remote_ops (void);
153
154 static void init_extended_remote_ops (void);
155
156 static void remote_stop (void);
157
158 static int ishex (int ch, int *val);
159
160 static int stubhex (int ch);
161
162 static int hexnumstr (char *, ULONGEST);
163
164 static int hexnumnstr (char *, ULONGEST, int);
165
166 static CORE_ADDR remote_address_masked (CORE_ADDR);
167
168 static void print_packet (char *);
169
170 static unsigned long crc32 (unsigned char *, int, unsigned int);
171
172 static void compare_sections_command (char *, int);
173
174 static void packet_command (char *, int);
175
176 static int stub_unpack_int (char *buff, int fieldlength);
177
178 static ptid_t remote_current_thread (ptid_t oldptid);
179
180 static void remote_find_new_threads (void);
181
182 static void record_currthread (int currthread);
183
184 static int fromhex (int a);
185
186 static int hex2bin (const char *hex, gdb_byte *bin, int count);
187
188 static int bin2hex (const gdb_byte *bin, char *hex, int count);
189
190 static int putpkt_binary (char *buf, int cnt);
191
192 static void check_binary_download (CORE_ADDR addr);
193
194 struct packet_config;
195
196 static void show_packet_config_cmd (struct packet_config *config);
197
198 static void update_packet_config (struct packet_config *config);
199
200 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
201 struct cmd_list_element *c);
202
203 static void show_remote_protocol_packet_cmd (struct ui_file *file,
204 int from_tty,
205 struct cmd_list_element *c,
206 const char *value);
207
208 void _initialize_remote (void);
209
210 /* For "set remote" and "show remote". */
211
212 static struct cmd_list_element *remote_set_cmdlist;
213 static struct cmd_list_element *remote_show_cmdlist;
214
215 /* Description of the remote protocol state for the currently
216 connected target. This is per-target state, and independent of the
217 selected architecture. */
218
219 struct remote_state
220 {
221 /* A buffer to use for incoming packets, and its current size. The
222 buffer is grown dynamically for larger incoming packets.
223 Outgoing packets may also be constructed in this buffer.
224 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
225 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
226 packets. */
227 char *buf;
228 long buf_size;
229
230 /* If we negotiated packet size explicitly (and thus can bypass
231 heuristics for the largest packet size that will not overflow
232 a buffer in the stub), this will be set to that packet size.
233 Otherwise zero, meaning to use the guessed size. */
234 long explicit_packet_size;
235 };
236
237 /* This data could be associated with a target, but we do not always
238 have access to the current target when we need it, so for now it is
239 static. This will be fine for as long as only one target is in use
240 at a time. */
241 static struct remote_state remote_state;
242
243 static struct remote_state *
244 get_remote_state_raw (void)
245 {
246 return &remote_state;
247 }
248
249 /* Description of the remote protocol for a given architecture. */
250
251 struct packet_reg
252 {
253 long offset; /* Offset into G packet. */
254 long regnum; /* GDB's internal register number. */
255 LONGEST pnum; /* Remote protocol register number. */
256 int in_g_packet; /* Always part of G packet. */
257 /* long size in bytes; == register_size (current_gdbarch, regnum);
258 at present. */
259 /* char *name; == gdbarch_register_name (current_gdbarch, regnum);
260 at present. */
261 };
262
263 struct remote_arch_state
264 {
265 /* Description of the remote protocol registers. */
266 long sizeof_g_packet;
267
268 /* Description of the remote protocol registers indexed by REGNUM
269 (making an array gdbarch_num_regs in size). */
270 struct packet_reg *regs;
271
272 /* This is the size (in chars) of the first response to the ``g''
273 packet. It is used as a heuristic when determining the maximum
274 size of memory-read and memory-write packets. A target will
275 typically only reserve a buffer large enough to hold the ``g''
276 packet. The size does not include packet overhead (headers and
277 trailers). */
278 long actual_register_packet_size;
279
280 /* This is the maximum size (in chars) of a non read/write packet.
281 It is also used as a cap on the size of read/write packets. */
282 long remote_packet_size;
283 };
284
285
286 /* Handle for retreving the remote protocol data from gdbarch. */
287 static struct gdbarch_data *remote_gdbarch_data_handle;
288
289 static struct remote_arch_state *
290 get_remote_arch_state (void)
291 {
292 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
293 }
294
295 /* Fetch the global remote target state. */
296
297 static struct remote_state *
298 get_remote_state (void)
299 {
300 /* Make sure that the remote architecture state has been
301 initialized, because doing so might reallocate rs->buf. Any
302 function which calls getpkt also needs to be mindful of changes
303 to rs->buf, but this call limits the number of places which run
304 into trouble. */
305 get_remote_arch_state ();
306
307 return get_remote_state_raw ();
308 }
309
310 static int
311 compare_pnums (const void *lhs_, const void *rhs_)
312 {
313 const struct packet_reg * const *lhs = lhs_;
314 const struct packet_reg * const *rhs = rhs_;
315
316 if ((*lhs)->pnum < (*rhs)->pnum)
317 return -1;
318 else if ((*lhs)->pnum == (*rhs)->pnum)
319 return 0;
320 else
321 return 1;
322 }
323
324 static void *
325 init_remote_state (struct gdbarch *gdbarch)
326 {
327 int regnum, num_remote_regs, offset;
328 struct remote_state *rs = get_remote_state_raw ();
329 struct remote_arch_state *rsa;
330 struct packet_reg **remote_regs;
331
332 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
333
334 /* Use the architecture to build a regnum<->pnum table, which will be
335 1:1 unless a feature set specifies otherwise. */
336 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
337 gdbarch_num_regs (current_gdbarch),
338 struct packet_reg);
339 for (regnum = 0; regnum < gdbarch_num_regs (current_gdbarch); regnum++)
340 {
341 struct packet_reg *r = &rsa->regs[regnum];
342
343 if (register_size (current_gdbarch, regnum) == 0)
344 /* Do not try to fetch zero-sized (placeholder) registers. */
345 r->pnum = -1;
346 else
347 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
348
349 r->regnum = regnum;
350 }
351
352 /* Define the g/G packet format as the contents of each register
353 with a remote protocol number, in order of ascending protocol
354 number. */
355
356 remote_regs = alloca (gdbarch_num_regs (current_gdbarch)
357 * sizeof (struct packet_reg *));
358 for (num_remote_regs = 0, regnum = 0;
359 regnum < gdbarch_num_regs (current_gdbarch);
360 regnum++)
361 if (rsa->regs[regnum].pnum != -1)
362 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
363
364 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
365 compare_pnums);
366
367 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
368 {
369 remote_regs[regnum]->in_g_packet = 1;
370 remote_regs[regnum]->offset = offset;
371 offset += register_size (current_gdbarch, remote_regs[regnum]->regnum);
372 }
373
374 /* Record the maximum possible size of the g packet - it may turn out
375 to be smaller. */
376 rsa->sizeof_g_packet = offset;
377
378 /* Default maximum number of characters in a packet body. Many
379 remote stubs have a hardwired buffer size of 400 bytes
380 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
381 as the maximum packet-size to ensure that the packet and an extra
382 NUL character can always fit in the buffer. This stops GDB
383 trashing stubs that try to squeeze an extra NUL into what is
384 already a full buffer (As of 1999-12-04 that was most stubs). */
385 rsa->remote_packet_size = 400 - 1;
386
387 /* This one is filled in when a ``g'' packet is received. */
388 rsa->actual_register_packet_size = 0;
389
390 /* Should rsa->sizeof_g_packet needs more space than the
391 default, adjust the size accordingly. Remember that each byte is
392 encoded as two characters. 32 is the overhead for the packet
393 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
394 (``$NN:G...#NN'') is a better guess, the below has been padded a
395 little. */
396 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
397 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
398
399 /* Make sure that the packet buffer is plenty big enough for
400 this architecture. */
401 if (rs->buf_size < rsa->remote_packet_size)
402 {
403 rs->buf_size = 2 * rsa->remote_packet_size;
404 rs->buf = xrealloc (rs->buf, rs->buf_size);
405 }
406
407 return rsa;
408 }
409
410 /* Return the current allowed size of a remote packet. This is
411 inferred from the current architecture, and should be used to
412 limit the length of outgoing packets. */
413 static long
414 get_remote_packet_size (void)
415 {
416 struct remote_state *rs = get_remote_state ();
417 struct remote_arch_state *rsa = get_remote_arch_state ();
418
419 if (rs->explicit_packet_size)
420 return rs->explicit_packet_size;
421
422 return rsa->remote_packet_size;
423 }
424
425 static struct packet_reg *
426 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
427 {
428 if (regnum < 0 && regnum >= gdbarch_num_regs (current_gdbarch))
429 return NULL;
430 else
431 {
432 struct packet_reg *r = &rsa->regs[regnum];
433 gdb_assert (r->regnum == regnum);
434 return r;
435 }
436 }
437
438 static struct packet_reg *
439 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
440 {
441 int i;
442 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
443 {
444 struct packet_reg *r = &rsa->regs[i];
445 if (r->pnum == pnum)
446 return r;
447 }
448 return NULL;
449 }
450
451 /* FIXME: graces/2002-08-08: These variables should eventually be
452 bound to an instance of the target object (as in gdbarch-tdep()),
453 when such a thing exists. */
454
455 /* This is set to the data address of the access causing the target
456 to stop for a watchpoint. */
457 static CORE_ADDR remote_watch_data_address;
458
459 /* This is non-zero if target stopped for a watchpoint. */
460 static int remote_stopped_by_watchpoint_p;
461
462 static struct target_ops remote_ops;
463
464 static struct target_ops extended_remote_ops;
465
466 /* Temporary target ops. Just like the remote_ops and
467 extended_remote_ops, but with asynchronous support. */
468 static struct target_ops remote_async_ops;
469
470 static struct target_ops extended_async_remote_ops;
471
472 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
473 ``forever'' still use the normal timeout mechanism. This is
474 currently used by the ASYNC code to guarentee that target reads
475 during the initial connect always time-out. Once getpkt has been
476 modified to return a timeout indication and, in turn
477 remote_wait()/wait_for_inferior() have gained a timeout parameter
478 this can go away. */
479 static int wait_forever_enabled_p = 1;
480
481
482 /* This variable chooses whether to send a ^C or a break when the user
483 requests program interruption. Although ^C is usually what remote
484 systems expect, and that is the default here, sometimes a break is
485 preferable instead. */
486
487 static int remote_break;
488
489 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
490 remote_open knows that we don't have a file open when the program
491 starts. */
492 static struct serial *remote_desc = NULL;
493
494 /* This variable sets the number of bits in an address that are to be
495 sent in a memory ("M" or "m") packet. Normally, after stripping
496 leading zeros, the entire address would be sent. This variable
497 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
498 initial implementation of remote.c restricted the address sent in
499 memory packets to ``host::sizeof long'' bytes - (typically 32
500 bits). Consequently, for 64 bit targets, the upper 32 bits of an
501 address was never sent. Since fixing this bug may cause a break in
502 some remote targets this variable is principly provided to
503 facilitate backward compatibility. */
504
505 static int remote_address_size;
506
507 /* Tempoary to track who currently owns the terminal. See
508 target_async_terminal_* for more details. */
509
510 static int remote_async_terminal_ours_p;
511
512 \f
513 /* User configurable variables for the number of characters in a
514 memory read/write packet. MIN (rsa->remote_packet_size,
515 rsa->sizeof_g_packet) is the default. Some targets need smaller
516 values (fifo overruns, et.al.) and some users need larger values
517 (speed up transfers). The variables ``preferred_*'' (the user
518 request), ``current_*'' (what was actually set) and ``forced_*''
519 (Positive - a soft limit, negative - a hard limit). */
520
521 struct memory_packet_config
522 {
523 char *name;
524 long size;
525 int fixed_p;
526 };
527
528 /* Compute the current size of a read/write packet. Since this makes
529 use of ``actual_register_packet_size'' the computation is dynamic. */
530
531 static long
532 get_memory_packet_size (struct memory_packet_config *config)
533 {
534 struct remote_state *rs = get_remote_state ();
535 struct remote_arch_state *rsa = get_remote_arch_state ();
536
537 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
538 law?) that some hosts don't cope very well with large alloca()
539 calls. Eventually the alloca() code will be replaced by calls to
540 xmalloc() and make_cleanups() allowing this restriction to either
541 be lifted or removed. */
542 #ifndef MAX_REMOTE_PACKET_SIZE
543 #define MAX_REMOTE_PACKET_SIZE 16384
544 #endif
545 /* NOTE: 20 ensures we can write at least one byte. */
546 #ifndef MIN_REMOTE_PACKET_SIZE
547 #define MIN_REMOTE_PACKET_SIZE 20
548 #endif
549 long what_they_get;
550 if (config->fixed_p)
551 {
552 if (config->size <= 0)
553 what_they_get = MAX_REMOTE_PACKET_SIZE;
554 else
555 what_they_get = config->size;
556 }
557 else
558 {
559 what_they_get = get_remote_packet_size ();
560 /* Limit the packet to the size specified by the user. */
561 if (config->size > 0
562 && what_they_get > config->size)
563 what_they_get = config->size;
564
565 /* Limit it to the size of the targets ``g'' response unless we have
566 permission from the stub to use a larger packet size. */
567 if (rs->explicit_packet_size == 0
568 && rsa->actual_register_packet_size > 0
569 && what_they_get > rsa->actual_register_packet_size)
570 what_they_get = rsa->actual_register_packet_size;
571 }
572 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
573 what_they_get = MAX_REMOTE_PACKET_SIZE;
574 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
575 what_they_get = MIN_REMOTE_PACKET_SIZE;
576
577 /* Make sure there is room in the global buffer for this packet
578 (including its trailing NUL byte). */
579 if (rs->buf_size < what_they_get + 1)
580 {
581 rs->buf_size = 2 * what_they_get;
582 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
583 }
584
585 return what_they_get;
586 }
587
588 /* Update the size of a read/write packet. If they user wants
589 something really big then do a sanity check. */
590
591 static void
592 set_memory_packet_size (char *args, struct memory_packet_config *config)
593 {
594 int fixed_p = config->fixed_p;
595 long size = config->size;
596 if (args == NULL)
597 error (_("Argument required (integer, `fixed' or `limited')."));
598 else if (strcmp (args, "hard") == 0
599 || strcmp (args, "fixed") == 0)
600 fixed_p = 1;
601 else if (strcmp (args, "soft") == 0
602 || strcmp (args, "limit") == 0)
603 fixed_p = 0;
604 else
605 {
606 char *end;
607 size = strtoul (args, &end, 0);
608 if (args == end)
609 error (_("Invalid %s (bad syntax)."), config->name);
610 #if 0
611 /* Instead of explicitly capping the size of a packet to
612 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
613 instead allowed to set the size to something arbitrarily
614 large. */
615 if (size > MAX_REMOTE_PACKET_SIZE)
616 error (_("Invalid %s (too large)."), config->name);
617 #endif
618 }
619 /* Extra checks? */
620 if (fixed_p && !config->fixed_p)
621 {
622 if (! query (_("The target may not be able to correctly handle a %s\n"
623 "of %ld bytes. Change the packet size? "),
624 config->name, size))
625 error (_("Packet size not changed."));
626 }
627 /* Update the config. */
628 config->fixed_p = fixed_p;
629 config->size = size;
630 }
631
632 static void
633 show_memory_packet_size (struct memory_packet_config *config)
634 {
635 printf_filtered (_("The %s is %ld. "), config->name, config->size);
636 if (config->fixed_p)
637 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
638 get_memory_packet_size (config));
639 else
640 printf_filtered (_("Packets are limited to %ld bytes.\n"),
641 get_memory_packet_size (config));
642 }
643
644 static struct memory_packet_config memory_write_packet_config =
645 {
646 "memory-write-packet-size",
647 };
648
649 static void
650 set_memory_write_packet_size (char *args, int from_tty)
651 {
652 set_memory_packet_size (args, &memory_write_packet_config);
653 }
654
655 static void
656 show_memory_write_packet_size (char *args, int from_tty)
657 {
658 show_memory_packet_size (&memory_write_packet_config);
659 }
660
661 static long
662 get_memory_write_packet_size (void)
663 {
664 return get_memory_packet_size (&memory_write_packet_config);
665 }
666
667 static struct memory_packet_config memory_read_packet_config =
668 {
669 "memory-read-packet-size",
670 };
671
672 static void
673 set_memory_read_packet_size (char *args, int from_tty)
674 {
675 set_memory_packet_size (args, &memory_read_packet_config);
676 }
677
678 static void
679 show_memory_read_packet_size (char *args, int from_tty)
680 {
681 show_memory_packet_size (&memory_read_packet_config);
682 }
683
684 static long
685 get_memory_read_packet_size (void)
686 {
687 long size = get_memory_packet_size (&memory_read_packet_config);
688 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
689 extra buffer size argument before the memory read size can be
690 increased beyond this. */
691 if (size > get_remote_packet_size ())
692 size = get_remote_packet_size ();
693 return size;
694 }
695
696 \f
697 /* Generic configuration support for packets the stub optionally
698 supports. Allows the user to specify the use of the packet as well
699 as allowing GDB to auto-detect support in the remote stub. */
700
701 enum packet_support
702 {
703 PACKET_SUPPORT_UNKNOWN = 0,
704 PACKET_ENABLE,
705 PACKET_DISABLE
706 };
707
708 struct packet_config
709 {
710 const char *name;
711 const char *title;
712 enum auto_boolean detect;
713 enum packet_support support;
714 };
715
716 /* Analyze a packet's return value and update the packet config
717 accordingly. */
718
719 enum packet_result
720 {
721 PACKET_ERROR,
722 PACKET_OK,
723 PACKET_UNKNOWN
724 };
725
726 static void
727 update_packet_config (struct packet_config *config)
728 {
729 switch (config->detect)
730 {
731 case AUTO_BOOLEAN_TRUE:
732 config->support = PACKET_ENABLE;
733 break;
734 case AUTO_BOOLEAN_FALSE:
735 config->support = PACKET_DISABLE;
736 break;
737 case AUTO_BOOLEAN_AUTO:
738 config->support = PACKET_SUPPORT_UNKNOWN;
739 break;
740 }
741 }
742
743 static void
744 show_packet_config_cmd (struct packet_config *config)
745 {
746 char *support = "internal-error";
747 switch (config->support)
748 {
749 case PACKET_ENABLE:
750 support = "enabled";
751 break;
752 case PACKET_DISABLE:
753 support = "disabled";
754 break;
755 case PACKET_SUPPORT_UNKNOWN:
756 support = "unknown";
757 break;
758 }
759 switch (config->detect)
760 {
761 case AUTO_BOOLEAN_AUTO:
762 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
763 config->name, support);
764 break;
765 case AUTO_BOOLEAN_TRUE:
766 case AUTO_BOOLEAN_FALSE:
767 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
768 config->name, support);
769 break;
770 }
771 }
772
773 static void
774 add_packet_config_cmd (struct packet_config *config, const char *name,
775 const char *title, int legacy)
776 {
777 char *set_doc;
778 char *show_doc;
779 char *cmd_name;
780
781 config->name = name;
782 config->title = title;
783 config->detect = AUTO_BOOLEAN_AUTO;
784 config->support = PACKET_SUPPORT_UNKNOWN;
785 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
786 name, title);
787 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
788 name, title);
789 /* set/show TITLE-packet {auto,on,off} */
790 cmd_name = xstrprintf ("%s-packet", title);
791 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
792 &config->detect, set_doc, show_doc, NULL, /* help_doc */
793 set_remote_protocol_packet_cmd,
794 show_remote_protocol_packet_cmd,
795 &remote_set_cmdlist, &remote_show_cmdlist);
796 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
797 if (legacy)
798 {
799 char *legacy_name;
800 legacy_name = xstrprintf ("%s-packet", name);
801 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
802 &remote_set_cmdlist);
803 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
804 &remote_show_cmdlist);
805 }
806 }
807
808 static enum packet_result
809 packet_check_result (const char *buf)
810 {
811 if (buf[0] != '\0')
812 {
813 /* The stub recognized the packet request. Check that the
814 operation succeeded. */
815 if (buf[0] == 'E'
816 && isxdigit (buf[1]) && isxdigit (buf[2])
817 && buf[3] == '\0')
818 /* "Enn" - definitly an error. */
819 return PACKET_ERROR;
820
821 /* Always treat "E." as an error. This will be used for
822 more verbose error messages, such as E.memtypes. */
823 if (buf[0] == 'E' && buf[1] == '.')
824 return PACKET_ERROR;
825
826 /* The packet may or may not be OK. Just assume it is. */
827 return PACKET_OK;
828 }
829 else
830 /* The stub does not support the packet. */
831 return PACKET_UNKNOWN;
832 }
833
834 static enum packet_result
835 packet_ok (const char *buf, struct packet_config *config)
836 {
837 enum packet_result result;
838
839 result = packet_check_result (buf);
840 switch (result)
841 {
842 case PACKET_OK:
843 case PACKET_ERROR:
844 /* The stub recognized the packet request. */
845 switch (config->support)
846 {
847 case PACKET_SUPPORT_UNKNOWN:
848 if (remote_debug)
849 fprintf_unfiltered (gdb_stdlog,
850 "Packet %s (%s) is supported\n",
851 config->name, config->title);
852 config->support = PACKET_ENABLE;
853 break;
854 case PACKET_DISABLE:
855 internal_error (__FILE__, __LINE__,
856 _("packet_ok: attempt to use a disabled packet"));
857 break;
858 case PACKET_ENABLE:
859 break;
860 }
861 break;
862 case PACKET_UNKNOWN:
863 /* The stub does not support the packet. */
864 switch (config->support)
865 {
866 case PACKET_ENABLE:
867 if (config->detect == AUTO_BOOLEAN_AUTO)
868 /* If the stub previously indicated that the packet was
869 supported then there is a protocol error.. */
870 error (_("Protocol error: %s (%s) conflicting enabled responses."),
871 config->name, config->title);
872 else
873 /* The user set it wrong. */
874 error (_("Enabled packet %s (%s) not recognized by stub"),
875 config->name, config->title);
876 break;
877 case PACKET_SUPPORT_UNKNOWN:
878 if (remote_debug)
879 fprintf_unfiltered (gdb_stdlog,
880 "Packet %s (%s) is NOT supported\n",
881 config->name, config->title);
882 config->support = PACKET_DISABLE;
883 break;
884 case PACKET_DISABLE:
885 break;
886 }
887 break;
888 }
889
890 return result;
891 }
892
893 enum {
894 PACKET_vCont = 0,
895 PACKET_X,
896 PACKET_qSymbol,
897 PACKET_P,
898 PACKET_p,
899 PACKET_Z0,
900 PACKET_Z1,
901 PACKET_Z2,
902 PACKET_Z3,
903 PACKET_Z4,
904 PACKET_qXfer_auxv,
905 PACKET_qXfer_features,
906 PACKET_qXfer_libraries,
907 PACKET_qXfer_memory_map,
908 PACKET_qXfer_spu_read,
909 PACKET_qXfer_spu_write,
910 PACKET_qGetTLSAddr,
911 PACKET_qSupported,
912 PACKET_QPassSignals,
913 PACKET_MAX
914 };
915
916 static struct packet_config remote_protocol_packets[PACKET_MAX];
917
918 static void
919 set_remote_protocol_packet_cmd (char *args, int from_tty,
920 struct cmd_list_element *c)
921 {
922 struct packet_config *packet;
923
924 for (packet = remote_protocol_packets;
925 packet < &remote_protocol_packets[PACKET_MAX];
926 packet++)
927 {
928 if (&packet->detect == c->var)
929 {
930 update_packet_config (packet);
931 return;
932 }
933 }
934 internal_error (__FILE__, __LINE__, "Could not find config for %s",
935 c->name);
936 }
937
938 static void
939 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
940 struct cmd_list_element *c,
941 const char *value)
942 {
943 struct packet_config *packet;
944
945 for (packet = remote_protocol_packets;
946 packet < &remote_protocol_packets[PACKET_MAX];
947 packet++)
948 {
949 if (&packet->detect == c->var)
950 {
951 show_packet_config_cmd (packet);
952 return;
953 }
954 }
955 internal_error (__FILE__, __LINE__, "Could not find config for %s",
956 c->name);
957 }
958
959 /* Should we try one of the 'Z' requests? */
960
961 enum Z_packet_type
962 {
963 Z_PACKET_SOFTWARE_BP,
964 Z_PACKET_HARDWARE_BP,
965 Z_PACKET_WRITE_WP,
966 Z_PACKET_READ_WP,
967 Z_PACKET_ACCESS_WP,
968 NR_Z_PACKET_TYPES
969 };
970
971 /* For compatibility with older distributions. Provide a ``set remote
972 Z-packet ...'' command that updates all the Z packet types. */
973
974 static enum auto_boolean remote_Z_packet_detect;
975
976 static void
977 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
978 struct cmd_list_element *c)
979 {
980 int i;
981 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
982 {
983 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
984 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
985 }
986 }
987
988 static void
989 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
990 struct cmd_list_element *c,
991 const char *value)
992 {
993 int i;
994 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
995 {
996 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
997 }
998 }
999
1000 /* Should we try the 'ThreadInfo' query packet?
1001
1002 This variable (NOT available to the user: auto-detect only!)
1003 determines whether GDB will use the new, simpler "ThreadInfo"
1004 query or the older, more complex syntax for thread queries.
1005 This is an auto-detect variable (set to true at each connect,
1006 and set to false when the target fails to recognize it). */
1007
1008 static int use_threadinfo_query;
1009 static int use_threadextra_query;
1010
1011 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1012 static struct async_signal_handler *sigint_remote_twice_token;
1013 static struct async_signal_handler *sigint_remote_token;
1014
1015 /* These are pointers to hook functions that may be set in order to
1016 modify resume/wait behavior for a particular architecture. */
1017
1018 void (*deprecated_target_resume_hook) (void);
1019 void (*deprecated_target_wait_loop_hook) (void);
1020 \f
1021
1022
1023 /* These are the threads which we last sent to the remote system.
1024 -1 for all or -2 for not sent yet. */
1025 static int general_thread;
1026 static int continue_thread;
1027
1028 /* Call this function as a result of
1029 1) A halt indication (T packet) containing a thread id
1030 2) A direct query of currthread
1031 3) Successful execution of set thread
1032 */
1033
1034 static void
1035 record_currthread (int currthread)
1036 {
1037 general_thread = currthread;
1038
1039 /* If this is a new thread, add it to GDB's thread list.
1040 If we leave it up to WFI to do this, bad things will happen. */
1041 if (!in_thread_list (pid_to_ptid (currthread)))
1042 {
1043 add_thread (pid_to_ptid (currthread));
1044 ui_out_text (uiout, "[New ");
1045 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1046 ui_out_text (uiout, "]\n");
1047 }
1048 }
1049
1050 static char *last_pass_packet;
1051
1052 /* If 'QPassSignals' is supported, tell the remote stub what signals
1053 it can simply pass through to the inferior without reporting. */
1054
1055 static void
1056 remote_pass_signals (void)
1057 {
1058 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1059 {
1060 char *pass_packet, *p;
1061 int numsigs = (int) TARGET_SIGNAL_LAST;
1062 int count = 0, i;
1063
1064 gdb_assert (numsigs < 256);
1065 for (i = 0; i < numsigs; i++)
1066 {
1067 if (signal_stop_state (i) == 0
1068 && signal_print_state (i) == 0
1069 && signal_pass_state (i) == 1)
1070 count++;
1071 }
1072 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1073 strcpy (pass_packet, "QPassSignals:");
1074 p = pass_packet + strlen (pass_packet);
1075 for (i = 0; i < numsigs; i++)
1076 {
1077 if (signal_stop_state (i) == 0
1078 && signal_print_state (i) == 0
1079 && signal_pass_state (i) == 1)
1080 {
1081 if (i >= 16)
1082 *p++ = tohex (i >> 4);
1083 *p++ = tohex (i & 15);
1084 if (count)
1085 *p++ = ';';
1086 else
1087 break;
1088 count--;
1089 }
1090 }
1091 *p = 0;
1092 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1093 {
1094 struct remote_state *rs = get_remote_state ();
1095 char *buf = rs->buf;
1096
1097 putpkt (pass_packet);
1098 getpkt (&rs->buf, &rs->buf_size, 0);
1099 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1100 if (last_pass_packet)
1101 xfree (last_pass_packet);
1102 last_pass_packet = pass_packet;
1103 }
1104 else
1105 xfree (pass_packet);
1106 }
1107 }
1108
1109 #define MAGIC_NULL_PID 42000
1110
1111 static void
1112 set_thread (int th, int gen)
1113 {
1114 struct remote_state *rs = get_remote_state ();
1115 char *buf = rs->buf;
1116 int state = gen ? general_thread : continue_thread;
1117
1118 if (state == th)
1119 return;
1120
1121 buf[0] = 'H';
1122 buf[1] = gen ? 'g' : 'c';
1123 if (th == MAGIC_NULL_PID)
1124 {
1125 buf[2] = '0';
1126 buf[3] = '\0';
1127 }
1128 else if (th < 0)
1129 xsnprintf (&buf[2], get_remote_packet_size () - 2, "-%x", -th);
1130 else
1131 xsnprintf (&buf[2], get_remote_packet_size () - 2, "%x", th);
1132 putpkt (buf);
1133 getpkt (&rs->buf, &rs->buf_size, 0);
1134 if (gen)
1135 general_thread = th;
1136 else
1137 continue_thread = th;
1138 }
1139 \f
1140 /* Return nonzero if the thread TH is still alive on the remote system. */
1141
1142 static int
1143 remote_thread_alive (ptid_t ptid)
1144 {
1145 struct remote_state *rs = get_remote_state ();
1146 int tid = PIDGET (ptid);
1147
1148 if (tid < 0)
1149 xsnprintf (rs->buf, get_remote_packet_size (), "T-%08x", -tid);
1150 else
1151 xsnprintf (rs->buf, get_remote_packet_size (), "T%08x", tid);
1152 putpkt (rs->buf);
1153 getpkt (&rs->buf, &rs->buf_size, 0);
1154 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1155 }
1156
1157 /* About these extended threadlist and threadinfo packets. They are
1158 variable length packets but, the fields within them are often fixed
1159 length. They are redundent enough to send over UDP as is the
1160 remote protocol in general. There is a matching unit test module
1161 in libstub. */
1162
1163 #define OPAQUETHREADBYTES 8
1164
1165 /* a 64 bit opaque identifier */
1166 typedef unsigned char threadref[OPAQUETHREADBYTES];
1167
1168 /* WARNING: This threadref data structure comes from the remote O.S.,
1169 libstub protocol encoding, and remote.c. it is not particularly
1170 changable. */
1171
1172 /* Right now, the internal structure is int. We want it to be bigger.
1173 Plan to fix this.
1174 */
1175
1176 typedef int gdb_threadref; /* Internal GDB thread reference. */
1177
1178 /* gdb_ext_thread_info is an internal GDB data structure which is
1179 equivalent to the reply of the remote threadinfo packet. */
1180
1181 struct gdb_ext_thread_info
1182 {
1183 threadref threadid; /* External form of thread reference. */
1184 int active; /* Has state interesting to GDB?
1185 regs, stack. */
1186 char display[256]; /* Brief state display, name,
1187 blocked/suspended. */
1188 char shortname[32]; /* To be used to name threads. */
1189 char more_display[256]; /* Long info, statistics, queue depth,
1190 whatever. */
1191 };
1192
1193 /* The volume of remote transfers can be limited by submitting
1194 a mask containing bits specifying the desired information.
1195 Use a union of these values as the 'selection' parameter to
1196 get_thread_info. FIXME: Make these TAG names more thread specific.
1197 */
1198
1199 #define TAG_THREADID 1
1200 #define TAG_EXISTS 2
1201 #define TAG_DISPLAY 4
1202 #define TAG_THREADNAME 8
1203 #define TAG_MOREDISPLAY 16
1204
1205 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1206
1207 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1208
1209 static char *unpack_nibble (char *buf, int *val);
1210
1211 static char *pack_nibble (char *buf, int nibble);
1212
1213 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1214
1215 static char *unpack_byte (char *buf, int *value);
1216
1217 static char *pack_int (char *buf, int value);
1218
1219 static char *unpack_int (char *buf, int *value);
1220
1221 static char *unpack_string (char *src, char *dest, int length);
1222
1223 static char *pack_threadid (char *pkt, threadref *id);
1224
1225 static char *unpack_threadid (char *inbuf, threadref *id);
1226
1227 void int_to_threadref (threadref *id, int value);
1228
1229 static int threadref_to_int (threadref *ref);
1230
1231 static void copy_threadref (threadref *dest, threadref *src);
1232
1233 static int threadmatch (threadref *dest, threadref *src);
1234
1235 static char *pack_threadinfo_request (char *pkt, int mode,
1236 threadref *id);
1237
1238 static int remote_unpack_thread_info_response (char *pkt,
1239 threadref *expectedref,
1240 struct gdb_ext_thread_info
1241 *info);
1242
1243
1244 static int remote_get_threadinfo (threadref *threadid,
1245 int fieldset, /*TAG mask */
1246 struct gdb_ext_thread_info *info);
1247
1248 static char *pack_threadlist_request (char *pkt, int startflag,
1249 int threadcount,
1250 threadref *nextthread);
1251
1252 static int parse_threadlist_response (char *pkt,
1253 int result_limit,
1254 threadref *original_echo,
1255 threadref *resultlist,
1256 int *doneflag);
1257
1258 static int remote_get_threadlist (int startflag,
1259 threadref *nextthread,
1260 int result_limit,
1261 int *done,
1262 int *result_count,
1263 threadref *threadlist);
1264
1265 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1266
1267 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1268 void *context, int looplimit);
1269
1270 static int remote_newthread_step (threadref *ref, void *context);
1271
1272 /* Encode 64 bits in 16 chars of hex. */
1273
1274 static const char hexchars[] = "0123456789abcdef";
1275
1276 static int
1277 ishex (int ch, int *val)
1278 {
1279 if ((ch >= 'a') && (ch <= 'f'))
1280 {
1281 *val = ch - 'a' + 10;
1282 return 1;
1283 }
1284 if ((ch >= 'A') && (ch <= 'F'))
1285 {
1286 *val = ch - 'A' + 10;
1287 return 1;
1288 }
1289 if ((ch >= '0') && (ch <= '9'))
1290 {
1291 *val = ch - '0';
1292 return 1;
1293 }
1294 return 0;
1295 }
1296
1297 static int
1298 stubhex (int ch)
1299 {
1300 if (ch >= 'a' && ch <= 'f')
1301 return ch - 'a' + 10;
1302 if (ch >= '0' && ch <= '9')
1303 return ch - '0';
1304 if (ch >= 'A' && ch <= 'F')
1305 return ch - 'A' + 10;
1306 return -1;
1307 }
1308
1309 static int
1310 stub_unpack_int (char *buff, int fieldlength)
1311 {
1312 int nibble;
1313 int retval = 0;
1314
1315 while (fieldlength)
1316 {
1317 nibble = stubhex (*buff++);
1318 retval |= nibble;
1319 fieldlength--;
1320 if (fieldlength)
1321 retval = retval << 4;
1322 }
1323 return retval;
1324 }
1325
1326 char *
1327 unpack_varlen_hex (char *buff, /* packet to parse */
1328 ULONGEST *result)
1329 {
1330 int nibble;
1331 ULONGEST retval = 0;
1332
1333 while (ishex (*buff, &nibble))
1334 {
1335 buff++;
1336 retval = retval << 4;
1337 retval |= nibble & 0x0f;
1338 }
1339 *result = retval;
1340 return buff;
1341 }
1342
1343 static char *
1344 unpack_nibble (char *buf, int *val)
1345 {
1346 ishex (*buf++, val);
1347 return buf;
1348 }
1349
1350 static char *
1351 pack_nibble (char *buf, int nibble)
1352 {
1353 *buf++ = hexchars[(nibble & 0x0f)];
1354 return buf;
1355 }
1356
1357 static char *
1358 pack_hex_byte (char *pkt, int byte)
1359 {
1360 *pkt++ = hexchars[(byte >> 4) & 0xf];
1361 *pkt++ = hexchars[(byte & 0xf)];
1362 return pkt;
1363 }
1364
1365 static char *
1366 unpack_byte (char *buf, int *value)
1367 {
1368 *value = stub_unpack_int (buf, 2);
1369 return buf + 2;
1370 }
1371
1372 static char *
1373 pack_int (char *buf, int value)
1374 {
1375 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1376 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1377 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1378 buf = pack_hex_byte (buf, (value & 0xff));
1379 return buf;
1380 }
1381
1382 static char *
1383 unpack_int (char *buf, int *value)
1384 {
1385 *value = stub_unpack_int (buf, 8);
1386 return buf + 8;
1387 }
1388
1389 #if 0 /* Currently unused, uncomment when needed. */
1390 static char *pack_string (char *pkt, char *string);
1391
1392 static char *
1393 pack_string (char *pkt, char *string)
1394 {
1395 char ch;
1396 int len;
1397
1398 len = strlen (string);
1399 if (len > 200)
1400 len = 200; /* Bigger than most GDB packets, junk??? */
1401 pkt = pack_hex_byte (pkt, len);
1402 while (len-- > 0)
1403 {
1404 ch = *string++;
1405 if ((ch == '\0') || (ch == '#'))
1406 ch = '*'; /* Protect encapsulation. */
1407 *pkt++ = ch;
1408 }
1409 return pkt;
1410 }
1411 #endif /* 0 (unused) */
1412
1413 static char *
1414 unpack_string (char *src, char *dest, int length)
1415 {
1416 while (length--)
1417 *dest++ = *src++;
1418 *dest = '\0';
1419 return src;
1420 }
1421
1422 static char *
1423 pack_threadid (char *pkt, threadref *id)
1424 {
1425 char *limit;
1426 unsigned char *altid;
1427
1428 altid = (unsigned char *) id;
1429 limit = pkt + BUF_THREAD_ID_SIZE;
1430 while (pkt < limit)
1431 pkt = pack_hex_byte (pkt, *altid++);
1432 return pkt;
1433 }
1434
1435
1436 static char *
1437 unpack_threadid (char *inbuf, threadref *id)
1438 {
1439 char *altref;
1440 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1441 int x, y;
1442
1443 altref = (char *) id;
1444
1445 while (inbuf < limit)
1446 {
1447 x = stubhex (*inbuf++);
1448 y = stubhex (*inbuf++);
1449 *altref++ = (x << 4) | y;
1450 }
1451 return inbuf;
1452 }
1453
1454 /* Externally, threadrefs are 64 bits but internally, they are still
1455 ints. This is due to a mismatch of specifications. We would like
1456 to use 64bit thread references internally. This is an adapter
1457 function. */
1458
1459 void
1460 int_to_threadref (threadref *id, int value)
1461 {
1462 unsigned char *scan;
1463
1464 scan = (unsigned char *) id;
1465 {
1466 int i = 4;
1467 while (i--)
1468 *scan++ = 0;
1469 }
1470 *scan++ = (value >> 24) & 0xff;
1471 *scan++ = (value >> 16) & 0xff;
1472 *scan++ = (value >> 8) & 0xff;
1473 *scan++ = (value & 0xff);
1474 }
1475
1476 static int
1477 threadref_to_int (threadref *ref)
1478 {
1479 int i, value = 0;
1480 unsigned char *scan;
1481
1482 scan = *ref;
1483 scan += 4;
1484 i = 4;
1485 while (i-- > 0)
1486 value = (value << 8) | ((*scan++) & 0xff);
1487 return value;
1488 }
1489
1490 static void
1491 copy_threadref (threadref *dest, threadref *src)
1492 {
1493 int i;
1494 unsigned char *csrc, *cdest;
1495
1496 csrc = (unsigned char *) src;
1497 cdest = (unsigned char *) dest;
1498 i = 8;
1499 while (i--)
1500 *cdest++ = *csrc++;
1501 }
1502
1503 static int
1504 threadmatch (threadref *dest, threadref *src)
1505 {
1506 /* Things are broken right now, so just assume we got a match. */
1507 #if 0
1508 unsigned char *srcp, *destp;
1509 int i, result;
1510 srcp = (char *) src;
1511 destp = (char *) dest;
1512
1513 result = 1;
1514 while (i-- > 0)
1515 result &= (*srcp++ == *destp++) ? 1 : 0;
1516 return result;
1517 #endif
1518 return 1;
1519 }
1520
1521 /*
1522 threadid:1, # always request threadid
1523 context_exists:2,
1524 display:4,
1525 unique_name:8,
1526 more_display:16
1527 */
1528
1529 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1530
1531 static char *
1532 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1533 {
1534 *pkt++ = 'q'; /* Info Query */
1535 *pkt++ = 'P'; /* process or thread info */
1536 pkt = pack_int (pkt, mode); /* mode */
1537 pkt = pack_threadid (pkt, id); /* threadid */
1538 *pkt = '\0'; /* terminate */
1539 return pkt;
1540 }
1541
1542 /* These values tag the fields in a thread info response packet. */
1543 /* Tagging the fields allows us to request specific fields and to
1544 add more fields as time goes by. */
1545
1546 #define TAG_THREADID 1 /* Echo the thread identifier. */
1547 #define TAG_EXISTS 2 /* Is this process defined enough to
1548 fetch registers and its stack? */
1549 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1550 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1551 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1552 the process. */
1553
1554 static int
1555 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1556 struct gdb_ext_thread_info *info)
1557 {
1558 struct remote_state *rs = get_remote_state ();
1559 int mask, length;
1560 int tag;
1561 threadref ref;
1562 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1563 int retval = 1;
1564
1565 /* info->threadid = 0; FIXME: implement zero_threadref. */
1566 info->active = 0;
1567 info->display[0] = '\0';
1568 info->shortname[0] = '\0';
1569 info->more_display[0] = '\0';
1570
1571 /* Assume the characters indicating the packet type have been
1572 stripped. */
1573 pkt = unpack_int (pkt, &mask); /* arg mask */
1574 pkt = unpack_threadid (pkt, &ref);
1575
1576 if (mask == 0)
1577 warning (_("Incomplete response to threadinfo request."));
1578 if (!threadmatch (&ref, expectedref))
1579 { /* This is an answer to a different request. */
1580 warning (_("ERROR RMT Thread info mismatch."));
1581 return 0;
1582 }
1583 copy_threadref (&info->threadid, &ref);
1584
1585 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1586
1587 /* Packets are terminated with nulls. */
1588 while ((pkt < limit) && mask && *pkt)
1589 {
1590 pkt = unpack_int (pkt, &tag); /* tag */
1591 pkt = unpack_byte (pkt, &length); /* length */
1592 if (!(tag & mask)) /* Tags out of synch with mask. */
1593 {
1594 warning (_("ERROR RMT: threadinfo tag mismatch."));
1595 retval = 0;
1596 break;
1597 }
1598 if (tag == TAG_THREADID)
1599 {
1600 if (length != 16)
1601 {
1602 warning (_("ERROR RMT: length of threadid is not 16."));
1603 retval = 0;
1604 break;
1605 }
1606 pkt = unpack_threadid (pkt, &ref);
1607 mask = mask & ~TAG_THREADID;
1608 continue;
1609 }
1610 if (tag == TAG_EXISTS)
1611 {
1612 info->active = stub_unpack_int (pkt, length);
1613 pkt += length;
1614 mask = mask & ~(TAG_EXISTS);
1615 if (length > 8)
1616 {
1617 warning (_("ERROR RMT: 'exists' length too long."));
1618 retval = 0;
1619 break;
1620 }
1621 continue;
1622 }
1623 if (tag == TAG_THREADNAME)
1624 {
1625 pkt = unpack_string (pkt, &info->shortname[0], length);
1626 mask = mask & ~TAG_THREADNAME;
1627 continue;
1628 }
1629 if (tag == TAG_DISPLAY)
1630 {
1631 pkt = unpack_string (pkt, &info->display[0], length);
1632 mask = mask & ~TAG_DISPLAY;
1633 continue;
1634 }
1635 if (tag == TAG_MOREDISPLAY)
1636 {
1637 pkt = unpack_string (pkt, &info->more_display[0], length);
1638 mask = mask & ~TAG_MOREDISPLAY;
1639 continue;
1640 }
1641 warning (_("ERROR RMT: unknown thread info tag."));
1642 break; /* Not a tag we know about. */
1643 }
1644 return retval;
1645 }
1646
1647 static int
1648 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1649 struct gdb_ext_thread_info *info)
1650 {
1651 struct remote_state *rs = get_remote_state ();
1652 int result;
1653
1654 pack_threadinfo_request (rs->buf, fieldset, threadid);
1655 putpkt (rs->buf);
1656 getpkt (&rs->buf, &rs->buf_size, 0);
1657 result = remote_unpack_thread_info_response (rs->buf + 2,
1658 threadid, info);
1659 return result;
1660 }
1661
1662 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1663
1664 static char *
1665 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1666 threadref *nextthread)
1667 {
1668 *pkt++ = 'q'; /* info query packet */
1669 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1670 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1671 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1672 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1673 *pkt = '\0';
1674 return pkt;
1675 }
1676
1677 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1678
1679 static int
1680 parse_threadlist_response (char *pkt, int result_limit,
1681 threadref *original_echo, threadref *resultlist,
1682 int *doneflag)
1683 {
1684 struct remote_state *rs = get_remote_state ();
1685 char *limit;
1686 int count, resultcount, done;
1687
1688 resultcount = 0;
1689 /* Assume the 'q' and 'M chars have been stripped. */
1690 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1691 /* done parse past here */
1692 pkt = unpack_byte (pkt, &count); /* count field */
1693 pkt = unpack_nibble (pkt, &done);
1694 /* The first threadid is the argument threadid. */
1695 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1696 while ((count-- > 0) && (pkt < limit))
1697 {
1698 pkt = unpack_threadid (pkt, resultlist++);
1699 if (resultcount++ >= result_limit)
1700 break;
1701 }
1702 if (doneflag)
1703 *doneflag = done;
1704 return resultcount;
1705 }
1706
1707 static int
1708 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1709 int *done, int *result_count, threadref *threadlist)
1710 {
1711 struct remote_state *rs = get_remote_state ();
1712 static threadref echo_nextthread;
1713 int result = 1;
1714
1715 /* Trancate result limit to be smaller than the packet size. */
1716 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1717 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1718
1719 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1720 putpkt (rs->buf);
1721 getpkt (&rs->buf, &rs->buf_size, 0);
1722
1723 *result_count =
1724 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1725 threadlist, done);
1726
1727 if (!threadmatch (&echo_nextthread, nextthread))
1728 {
1729 /* FIXME: This is a good reason to drop the packet. */
1730 /* Possably, there is a duplicate response. */
1731 /* Possabilities :
1732 retransmit immediatly - race conditions
1733 retransmit after timeout - yes
1734 exit
1735 wait for packet, then exit
1736 */
1737 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1738 return 0; /* I choose simply exiting. */
1739 }
1740 if (*result_count <= 0)
1741 {
1742 if (*done != 1)
1743 {
1744 warning (_("RMT ERROR : failed to get remote thread list."));
1745 result = 0;
1746 }
1747 return result; /* break; */
1748 }
1749 if (*result_count > result_limit)
1750 {
1751 *result_count = 0;
1752 warning (_("RMT ERROR: threadlist response longer than requested."));
1753 return 0;
1754 }
1755 return result;
1756 }
1757
1758 /* This is the interface between remote and threads, remotes upper
1759 interface. */
1760
1761 /* remote_find_new_threads retrieves the thread list and for each
1762 thread in the list, looks up the thread in GDB's internal list,
1763 ading the thread if it does not already exist. This involves
1764 getting partial thread lists from the remote target so, polling the
1765 quit_flag is required. */
1766
1767
1768 /* About this many threadisds fit in a packet. */
1769
1770 #define MAXTHREADLISTRESULTS 32
1771
1772 static int
1773 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1774 int looplimit)
1775 {
1776 int done, i, result_count;
1777 int startflag = 1;
1778 int result = 1;
1779 int loopcount = 0;
1780 static threadref nextthread;
1781 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1782
1783 done = 0;
1784 while (!done)
1785 {
1786 if (loopcount++ > looplimit)
1787 {
1788 result = 0;
1789 warning (_("Remote fetch threadlist -infinite loop-."));
1790 break;
1791 }
1792 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1793 &done, &result_count, resultthreadlist))
1794 {
1795 result = 0;
1796 break;
1797 }
1798 /* Clear for later iterations. */
1799 startflag = 0;
1800 /* Setup to resume next batch of thread references, set nextthread. */
1801 if (result_count >= 1)
1802 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1803 i = 0;
1804 while (result_count--)
1805 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1806 break;
1807 }
1808 return result;
1809 }
1810
1811 static int
1812 remote_newthread_step (threadref *ref, void *context)
1813 {
1814 ptid_t ptid;
1815
1816 ptid = pid_to_ptid (threadref_to_int (ref));
1817
1818 if (!in_thread_list (ptid))
1819 add_thread (ptid);
1820 return 1; /* continue iterator */
1821 }
1822
1823 #define CRAZY_MAX_THREADS 1000
1824
1825 static ptid_t
1826 remote_current_thread (ptid_t oldpid)
1827 {
1828 struct remote_state *rs = get_remote_state ();
1829
1830 putpkt ("qC");
1831 getpkt (&rs->buf, &rs->buf_size, 0);
1832 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
1833 /* Use strtoul here, so we'll correctly parse values whose highest
1834 bit is set. The protocol carries them as a simple series of
1835 hex digits; in the absence of a sign, strtol will see such
1836 values as positive numbers out of range for signed 'long', and
1837 return LONG_MAX to indicate an overflow. */
1838 return pid_to_ptid (strtoul (&rs->buf[2], NULL, 16));
1839 else
1840 return oldpid;
1841 }
1842
1843 /* Find new threads for info threads command.
1844 * Original version, using John Metzler's thread protocol.
1845 */
1846
1847 static void
1848 remote_find_new_threads (void)
1849 {
1850 remote_threadlist_iterator (remote_newthread_step, 0,
1851 CRAZY_MAX_THREADS);
1852 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1853 inferior_ptid = remote_current_thread (inferior_ptid);
1854 }
1855
1856 /*
1857 * Find all threads for info threads command.
1858 * Uses new thread protocol contributed by Cisco.
1859 * Falls back and attempts to use the older method (above)
1860 * if the target doesn't respond to the new method.
1861 */
1862
1863 static void
1864 remote_threads_info (void)
1865 {
1866 struct remote_state *rs = get_remote_state ();
1867 char *bufp;
1868 int tid;
1869
1870 if (remote_desc == 0) /* paranoia */
1871 error (_("Command can only be used when connected to the remote target."));
1872
1873 if (use_threadinfo_query)
1874 {
1875 putpkt ("qfThreadInfo");
1876 getpkt (&rs->buf, &rs->buf_size, 0);
1877 bufp = rs->buf;
1878 if (bufp[0] != '\0') /* q packet recognized */
1879 {
1880 while (*bufp++ == 'm') /* reply contains one or more TID */
1881 {
1882 do
1883 {
1884 /* Use strtoul here, so we'll correctly parse values
1885 whose highest bit is set. The protocol carries
1886 them as a simple series of hex digits; in the
1887 absence of a sign, strtol will see such values as
1888 positive numbers out of range for signed 'long',
1889 and return LONG_MAX to indicate an overflow. */
1890 tid = strtoul (bufp, &bufp, 16);
1891 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1892 add_thread (pid_to_ptid (tid));
1893 }
1894 while (*bufp++ == ','); /* comma-separated list */
1895 putpkt ("qsThreadInfo");
1896 getpkt (&rs->buf, &rs->buf_size, 0);
1897 bufp = rs->buf;
1898 }
1899 return; /* done */
1900 }
1901 }
1902
1903 /* Else fall back to old method based on jmetzler protocol. */
1904 use_threadinfo_query = 0;
1905 remote_find_new_threads ();
1906 return;
1907 }
1908
1909 /*
1910 * Collect a descriptive string about the given thread.
1911 * The target may say anything it wants to about the thread
1912 * (typically info about its blocked / runnable state, name, etc.).
1913 * This string will appear in the info threads display.
1914 *
1915 * Optional: targets are not required to implement this function.
1916 */
1917
1918 static char *
1919 remote_threads_extra_info (struct thread_info *tp)
1920 {
1921 struct remote_state *rs = get_remote_state ();
1922 int result;
1923 int set;
1924 threadref id;
1925 struct gdb_ext_thread_info threadinfo;
1926 static char display_buf[100]; /* arbitrary... */
1927 int n = 0; /* position in display_buf */
1928
1929 if (remote_desc == 0) /* paranoia */
1930 internal_error (__FILE__, __LINE__,
1931 _("remote_threads_extra_info"));
1932
1933 if (use_threadextra_query)
1934 {
1935 xsnprintf (rs->buf, get_remote_packet_size (), "qThreadExtraInfo,%x",
1936 PIDGET (tp->ptid));
1937 putpkt (rs->buf);
1938 getpkt (&rs->buf, &rs->buf_size, 0);
1939 if (rs->buf[0] != 0)
1940 {
1941 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
1942 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
1943 display_buf [result] = '\0';
1944 return display_buf;
1945 }
1946 }
1947
1948 /* If the above query fails, fall back to the old method. */
1949 use_threadextra_query = 0;
1950 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1951 | TAG_MOREDISPLAY | TAG_DISPLAY;
1952 int_to_threadref (&id, PIDGET (tp->ptid));
1953 if (remote_get_threadinfo (&id, set, &threadinfo))
1954 if (threadinfo.active)
1955 {
1956 if (*threadinfo.shortname)
1957 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
1958 " Name: %s,", threadinfo.shortname);
1959 if (*threadinfo.display)
1960 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1961 " State: %s,", threadinfo.display);
1962 if (*threadinfo.more_display)
1963 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1964 " Priority: %s", threadinfo.more_display);
1965
1966 if (n > 0)
1967 {
1968 /* For purely cosmetic reasons, clear up trailing commas. */
1969 if (',' == display_buf[n-1])
1970 display_buf[n-1] = ' ';
1971 return display_buf;
1972 }
1973 }
1974 return NULL;
1975 }
1976 \f
1977
1978 /* Restart the remote side; this is an extended protocol operation. */
1979
1980 static void
1981 extended_remote_restart (void)
1982 {
1983 struct remote_state *rs = get_remote_state ();
1984
1985 /* Send the restart command; for reasons I don't understand the
1986 remote side really expects a number after the "R". */
1987 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
1988 putpkt (rs->buf);
1989
1990 remote_fileio_reset ();
1991
1992 /* Now query for status so this looks just like we restarted
1993 gdbserver from scratch. */
1994 putpkt ("?");
1995 getpkt (&rs->buf, &rs->buf_size, 0);
1996 }
1997 \f
1998 /* Clean up connection to a remote debugger. */
1999
2000 static void
2001 remote_close (int quitting)
2002 {
2003 if (remote_desc)
2004 serial_close (remote_desc);
2005 remote_desc = NULL;
2006 }
2007
2008 /* Query the remote side for the text, data and bss offsets. */
2009
2010 static void
2011 get_offsets (void)
2012 {
2013 struct remote_state *rs = get_remote_state ();
2014 char *buf;
2015 char *ptr;
2016 int lose, num_segments = 0, do_sections, do_segments;
2017 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2018 struct section_offsets *offs;
2019 struct symfile_segment_data *data;
2020
2021 if (symfile_objfile == NULL)
2022 return;
2023
2024 putpkt ("qOffsets");
2025 getpkt (&rs->buf, &rs->buf_size, 0);
2026 buf = rs->buf;
2027
2028 if (buf[0] == '\000')
2029 return; /* Return silently. Stub doesn't support
2030 this command. */
2031 if (buf[0] == 'E')
2032 {
2033 warning (_("Remote failure reply: %s"), buf);
2034 return;
2035 }
2036
2037 /* Pick up each field in turn. This used to be done with scanf, but
2038 scanf will make trouble if CORE_ADDR size doesn't match
2039 conversion directives correctly. The following code will work
2040 with any size of CORE_ADDR. */
2041 text_addr = data_addr = bss_addr = 0;
2042 ptr = buf;
2043 lose = 0;
2044
2045 if (strncmp (ptr, "Text=", 5) == 0)
2046 {
2047 ptr += 5;
2048 /* Don't use strtol, could lose on big values. */
2049 while (*ptr && *ptr != ';')
2050 text_addr = (text_addr << 4) + fromhex (*ptr++);
2051
2052 if (strncmp (ptr, ";Data=", 6) == 0)
2053 {
2054 ptr += 6;
2055 while (*ptr && *ptr != ';')
2056 data_addr = (data_addr << 4) + fromhex (*ptr++);
2057 }
2058 else
2059 lose = 1;
2060
2061 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2062 {
2063 ptr += 5;
2064 while (*ptr && *ptr != ';')
2065 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2066
2067 if (bss_addr != data_addr)
2068 warning (_("Target reported unsupported offsets: %s"), buf);
2069 }
2070 else
2071 lose = 1;
2072 }
2073 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2074 {
2075 ptr += 8;
2076 /* Don't use strtol, could lose on big values. */
2077 while (*ptr && *ptr != ';')
2078 text_addr = (text_addr << 4) + fromhex (*ptr++);
2079 num_segments = 1;
2080
2081 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2082 {
2083 ptr += 9;
2084 while (*ptr && *ptr != ';')
2085 data_addr = (data_addr << 4) + fromhex (*ptr++);
2086 num_segments++;
2087 }
2088 }
2089 else
2090 lose = 1;
2091
2092 if (lose)
2093 error (_("Malformed response to offset query, %s"), buf);
2094 else if (*ptr != '\0')
2095 warning (_("Target reported unsupported offsets: %s"), buf);
2096
2097 offs = ((struct section_offsets *)
2098 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2099 memcpy (offs, symfile_objfile->section_offsets,
2100 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2101
2102 data = get_symfile_segment_data (symfile_objfile->obfd);
2103 do_segments = (data != NULL);
2104 do_sections = num_segments == 0;
2105
2106 if (num_segments > 0)
2107 {
2108 segments[0] = text_addr;
2109 segments[1] = data_addr;
2110 }
2111 /* If we have two segments, we can still try to relocate everything
2112 by assuming that the .text and .data offsets apply to the whole
2113 text and data segments. Convert the offsets given in the packet
2114 to base addresses for symfile_map_offsets_to_segments. */
2115 else if (data && data->num_segments == 2)
2116 {
2117 segments[0] = data->segment_bases[0] + text_addr;
2118 segments[1] = data->segment_bases[1] + data_addr;
2119 num_segments = 2;
2120 }
2121 /* There's no way to relocate by segment. */
2122 else
2123 do_segments = 0;
2124
2125 if (do_segments)
2126 {
2127 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2128 offs, num_segments, segments);
2129
2130 if (ret == 0 && !do_sections)
2131 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2132
2133 if (ret > 0)
2134 do_sections = 0;
2135 }
2136
2137 free_symfile_segment_data (data);
2138
2139 if (do_sections)
2140 {
2141 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2142
2143 /* This is a temporary kludge to force data and bss to use the same offsets
2144 because that's what nlmconv does now. The real solution requires changes
2145 to the stub and remote.c that I don't have time to do right now. */
2146
2147 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2148 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2149 }
2150
2151 objfile_relocate (symfile_objfile, offs);
2152 }
2153
2154 /* Stub for catch_exception. */
2155
2156 static void
2157 remote_start_remote (struct ui_out *uiout, void *from_tty_p)
2158 {
2159 int from_tty = * (int *) from_tty_p;
2160
2161 immediate_quit++; /* Allow user to interrupt it. */
2162
2163 /* Ack any packet which the remote side has already sent. */
2164 serial_write (remote_desc, "+", 1);
2165
2166 /* Let the stub know that we want it to return the thread. */
2167 set_thread (-1, 0);
2168
2169 inferior_ptid = remote_current_thread (inferior_ptid);
2170
2171 get_offsets (); /* Get text, data & bss offsets. */
2172
2173 putpkt ("?"); /* Initiate a query from remote machine. */
2174 immediate_quit--;
2175
2176 start_remote (from_tty); /* Initialize gdb process mechanisms. */
2177 }
2178
2179 /* Open a connection to a remote debugger.
2180 NAME is the filename used for communication. */
2181
2182 static void
2183 remote_open (char *name, int from_tty)
2184 {
2185 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2186 }
2187
2188 /* Just like remote_open, but with asynchronous support. */
2189 static void
2190 remote_async_open (char *name, int from_tty)
2191 {
2192 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2193 }
2194
2195 /* Open a connection to a remote debugger using the extended
2196 remote gdb protocol. NAME is the filename used for communication. */
2197
2198 static void
2199 extended_remote_open (char *name, int from_tty)
2200 {
2201 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2202 0 /* async_p */);
2203 }
2204
2205 /* Just like extended_remote_open, but with asynchronous support. */
2206 static void
2207 extended_remote_async_open (char *name, int from_tty)
2208 {
2209 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2210 1 /*extended_p */, 1 /* async_p */);
2211 }
2212
2213 /* Generic code for opening a connection to a remote target. */
2214
2215 static void
2216 init_all_packet_configs (void)
2217 {
2218 int i;
2219 for (i = 0; i < PACKET_MAX; i++)
2220 update_packet_config (&remote_protocol_packets[i]);
2221 }
2222
2223 /* Symbol look-up. */
2224
2225 static void
2226 remote_check_symbols (struct objfile *objfile)
2227 {
2228 struct remote_state *rs = get_remote_state ();
2229 char *msg, *reply, *tmp;
2230 struct minimal_symbol *sym;
2231 int end;
2232
2233 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2234 return;
2235
2236 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2237 because we need both at the same time. */
2238 msg = alloca (get_remote_packet_size ());
2239
2240 /* Invite target to request symbol lookups. */
2241
2242 putpkt ("qSymbol::");
2243 getpkt (&rs->buf, &rs->buf_size, 0);
2244 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2245 reply = rs->buf;
2246
2247 while (strncmp (reply, "qSymbol:", 8) == 0)
2248 {
2249 tmp = &reply[8];
2250 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2251 msg[end] = '\0';
2252 sym = lookup_minimal_symbol (msg, NULL, NULL);
2253 if (sym == NULL)
2254 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2255 else
2256 {
2257 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
2258
2259 /* If this is a function address, return the start of code
2260 instead of any data function descriptor. */
2261 sym_addr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
2262 sym_addr,
2263 &current_target);
2264
2265 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2266 paddr_nz (sym_addr), &reply[8]);
2267 }
2268
2269 putpkt (msg);
2270 getpkt (&rs->buf, &rs->buf_size, 0);
2271 reply = rs->buf;
2272 }
2273 }
2274
2275 static struct serial *
2276 remote_serial_open (char *name)
2277 {
2278 static int udp_warning = 0;
2279
2280 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2281 of in ser-tcp.c, because it is the remote protocol assuming that the
2282 serial connection is reliable and not the serial connection promising
2283 to be. */
2284 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2285 {
2286 warning (_("\
2287 The remote protocol may be unreliable over UDP.\n\
2288 Some events may be lost, rendering further debugging impossible."));
2289 udp_warning = 1;
2290 }
2291
2292 return serial_open (name);
2293 }
2294
2295 /* This type describes each known response to the qSupported
2296 packet. */
2297 struct protocol_feature
2298 {
2299 /* The name of this protocol feature. */
2300 const char *name;
2301
2302 /* The default for this protocol feature. */
2303 enum packet_support default_support;
2304
2305 /* The function to call when this feature is reported, or after
2306 qSupported processing if the feature is not supported.
2307 The first argument points to this structure. The second
2308 argument indicates whether the packet requested support be
2309 enabled, disabled, or probed (or the default, if this function
2310 is being called at the end of processing and this feature was
2311 not reported). The third argument may be NULL; if not NULL, it
2312 is a NUL-terminated string taken from the packet following
2313 this feature's name and an equals sign. */
2314 void (*func) (const struct protocol_feature *, enum packet_support,
2315 const char *);
2316
2317 /* The corresponding packet for this feature. Only used if
2318 FUNC is remote_supported_packet. */
2319 int packet;
2320 };
2321
2322 static void
2323 remote_supported_packet (const struct protocol_feature *feature,
2324 enum packet_support support,
2325 const char *argument)
2326 {
2327 if (argument)
2328 {
2329 warning (_("Remote qSupported response supplied an unexpected value for"
2330 " \"%s\"."), feature->name);
2331 return;
2332 }
2333
2334 if (remote_protocol_packets[feature->packet].support
2335 == PACKET_SUPPORT_UNKNOWN)
2336 remote_protocol_packets[feature->packet].support = support;
2337 }
2338
2339 static void
2340 remote_packet_size (const struct protocol_feature *feature,
2341 enum packet_support support, const char *value)
2342 {
2343 struct remote_state *rs = get_remote_state ();
2344
2345 int packet_size;
2346 char *value_end;
2347
2348 if (support != PACKET_ENABLE)
2349 return;
2350
2351 if (value == NULL || *value == '\0')
2352 {
2353 warning (_("Remote target reported \"%s\" without a size."),
2354 feature->name);
2355 return;
2356 }
2357
2358 errno = 0;
2359 packet_size = strtol (value, &value_end, 16);
2360 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2361 {
2362 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2363 feature->name, value);
2364 return;
2365 }
2366
2367 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2368 {
2369 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2370 packet_size, MAX_REMOTE_PACKET_SIZE);
2371 packet_size = MAX_REMOTE_PACKET_SIZE;
2372 }
2373
2374 /* Record the new maximum packet size. */
2375 rs->explicit_packet_size = packet_size;
2376 }
2377
2378 static struct protocol_feature remote_protocol_features[] = {
2379 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2380 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2381 PACKET_qXfer_auxv },
2382 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
2383 PACKET_qXfer_features },
2384 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
2385 PACKET_qXfer_libraries },
2386 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2387 PACKET_qXfer_memory_map },
2388 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
2389 PACKET_qXfer_spu_read },
2390 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
2391 PACKET_qXfer_spu_write },
2392 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2393 PACKET_QPassSignals },
2394 };
2395
2396 static void
2397 remote_query_supported (void)
2398 {
2399 struct remote_state *rs = get_remote_state ();
2400 char *next;
2401 int i;
2402 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2403
2404 /* The packet support flags are handled differently for this packet
2405 than for most others. We treat an error, a disabled packet, and
2406 an empty response identically: any features which must be reported
2407 to be used will be automatically disabled. An empty buffer
2408 accomplishes this, since that is also the representation for a list
2409 containing no features. */
2410
2411 rs->buf[0] = 0;
2412 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2413 {
2414 putpkt ("qSupported");
2415 getpkt (&rs->buf, &rs->buf_size, 0);
2416
2417 /* If an error occured, warn, but do not return - just reset the
2418 buffer to empty and go on to disable features. */
2419 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2420 == PACKET_ERROR)
2421 {
2422 warning (_("Remote failure reply: %s"), rs->buf);
2423 rs->buf[0] = 0;
2424 }
2425 }
2426
2427 memset (seen, 0, sizeof (seen));
2428
2429 next = rs->buf;
2430 while (*next)
2431 {
2432 enum packet_support is_supported;
2433 char *p, *end, *name_end, *value;
2434
2435 /* First separate out this item from the rest of the packet. If
2436 there's another item after this, we overwrite the separator
2437 (terminated strings are much easier to work with). */
2438 p = next;
2439 end = strchr (p, ';');
2440 if (end == NULL)
2441 {
2442 end = p + strlen (p);
2443 next = end;
2444 }
2445 else
2446 {
2447 *end = '\0';
2448 next = end + 1;
2449
2450 if (end == p)
2451 {
2452 warning (_("empty item in \"qSupported\" response"));
2453 continue;
2454 }
2455 }
2456
2457 name_end = strchr (p, '=');
2458 if (name_end)
2459 {
2460 /* This is a name=value entry. */
2461 is_supported = PACKET_ENABLE;
2462 value = name_end + 1;
2463 *name_end = '\0';
2464 }
2465 else
2466 {
2467 value = NULL;
2468 switch (end[-1])
2469 {
2470 case '+':
2471 is_supported = PACKET_ENABLE;
2472 break;
2473
2474 case '-':
2475 is_supported = PACKET_DISABLE;
2476 break;
2477
2478 case '?':
2479 is_supported = PACKET_SUPPORT_UNKNOWN;
2480 break;
2481
2482 default:
2483 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
2484 continue;
2485 }
2486 end[-1] = '\0';
2487 }
2488
2489 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2490 if (strcmp (remote_protocol_features[i].name, p) == 0)
2491 {
2492 const struct protocol_feature *feature;
2493
2494 seen[i] = 1;
2495 feature = &remote_protocol_features[i];
2496 feature->func (feature, is_supported, value);
2497 break;
2498 }
2499 }
2500
2501 /* If we increased the packet size, make sure to increase the global
2502 buffer size also. We delay this until after parsing the entire
2503 qSupported packet, because this is the same buffer we were
2504 parsing. */
2505 if (rs->buf_size < rs->explicit_packet_size)
2506 {
2507 rs->buf_size = rs->explicit_packet_size;
2508 rs->buf = xrealloc (rs->buf, rs->buf_size);
2509 }
2510
2511 /* Handle the defaults for unmentioned features. */
2512 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2513 if (!seen[i])
2514 {
2515 const struct protocol_feature *feature;
2516
2517 feature = &remote_protocol_features[i];
2518 feature->func (feature, feature->default_support, NULL);
2519 }
2520 }
2521
2522
2523 static void
2524 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2525 int extended_p, int async_p)
2526 {
2527 struct remote_state *rs = get_remote_state ();
2528 if (name == 0)
2529 error (_("To open a remote debug connection, you need to specify what\n"
2530 "serial device is attached to the remote system\n"
2531 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2532
2533 /* See FIXME above. */
2534 if (!async_p)
2535 wait_forever_enabled_p = 1;
2536
2537 target_preopen (from_tty);
2538
2539 unpush_target (target);
2540
2541 /* Make sure we send the passed signals list the next time we resume. */
2542 xfree (last_pass_packet);
2543 last_pass_packet = NULL;
2544
2545 remote_fileio_reset ();
2546 reopen_exec_file ();
2547 reread_symbols ();
2548
2549 remote_desc = remote_serial_open (name);
2550 if (!remote_desc)
2551 perror_with_name (name);
2552
2553 if (baud_rate != -1)
2554 {
2555 if (serial_setbaudrate (remote_desc, baud_rate))
2556 {
2557 /* The requested speed could not be set. Error out to
2558 top level after closing remote_desc. Take care to
2559 set remote_desc to NULL to avoid closing remote_desc
2560 more than once. */
2561 serial_close (remote_desc);
2562 remote_desc = NULL;
2563 perror_with_name (name);
2564 }
2565 }
2566
2567 serial_raw (remote_desc);
2568
2569 /* If there is something sitting in the buffer we might take it as a
2570 response to a command, which would be bad. */
2571 serial_flush_input (remote_desc);
2572
2573 if (from_tty)
2574 {
2575 puts_filtered ("Remote debugging using ");
2576 puts_filtered (name);
2577 puts_filtered ("\n");
2578 }
2579 push_target (target); /* Switch to using remote target now. */
2580
2581 /* Reset the target state; these things will be queried either by
2582 remote_query_supported or as they are needed. */
2583 init_all_packet_configs ();
2584 rs->explicit_packet_size = 0;
2585
2586 general_thread = -2;
2587 continue_thread = -2;
2588
2589 /* Probe for ability to use "ThreadInfo" query, as required. */
2590 use_threadinfo_query = 1;
2591 use_threadextra_query = 1;
2592
2593 /* The first packet we send to the target is the optional "supported
2594 packets" request. If the target can answer this, it will tell us
2595 which later probes to skip. */
2596 remote_query_supported ();
2597
2598 /* Next, if the target can specify a description, read it. We do
2599 this before anything involving memory or registers. */
2600 target_find_description ();
2601
2602 /* Without this, some commands which require an active target (such
2603 as kill) won't work. This variable serves (at least) double duty
2604 as both the pid of the target process (if it has such), and as a
2605 flag indicating that a target is active. These functions should
2606 be split out into seperate variables, especially since GDB will
2607 someday have a notion of debugging several processes. */
2608
2609 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2610
2611 if (async_p)
2612 {
2613 /* With this target we start out by owning the terminal. */
2614 remote_async_terminal_ours_p = 1;
2615
2616 /* FIXME: cagney/1999-09-23: During the initial connection it is
2617 assumed that the target is already ready and able to respond to
2618 requests. Unfortunately remote_start_remote() eventually calls
2619 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2620 around this. Eventually a mechanism that allows
2621 wait_for_inferior() to expect/get timeouts will be
2622 implemented. */
2623 wait_forever_enabled_p = 0;
2624 }
2625
2626 /* First delete any symbols previously loaded from shared libraries. */
2627 no_shared_libraries (NULL, 0);
2628
2629 /* Start the remote connection. If error() or QUIT, discard this
2630 target (we'd otherwise be in an inconsistent state) and then
2631 propogate the error on up the exception chain. This ensures that
2632 the caller doesn't stumble along blindly assuming that the
2633 function succeeded. The CLI doesn't have this problem but other
2634 UI's, such as MI do.
2635
2636 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2637 this function should return an error indication letting the
2638 caller restore the previous state. Unfortunately the command
2639 ``target remote'' is directly wired to this function making that
2640 impossible. On a positive note, the CLI side of this problem has
2641 been fixed - the function set_cmd_context() makes it possible for
2642 all the ``target ....'' commands to share a common callback
2643 function. See cli-dump.c. */
2644 {
2645 struct gdb_exception ex
2646 = catch_exception (uiout, remote_start_remote, &from_tty,
2647 RETURN_MASK_ALL);
2648 if (ex.reason < 0)
2649 {
2650 pop_target ();
2651 if (async_p)
2652 wait_forever_enabled_p = 1;
2653 throw_exception (ex);
2654 }
2655 }
2656
2657 if (async_p)
2658 wait_forever_enabled_p = 1;
2659
2660 if (extended_p)
2661 {
2662 /* Tell the remote that we are using the extended protocol. */
2663 putpkt ("!");
2664 getpkt (&rs->buf, &rs->buf_size, 0);
2665 }
2666
2667 if (exec_bfd) /* No use without an exec file. */
2668 remote_check_symbols (symfile_objfile);
2669 }
2670
2671 /* This takes a program previously attached to and detaches it. After
2672 this is done, GDB can be used to debug some other program. We
2673 better not have left any breakpoints in the target program or it'll
2674 die when it hits one. */
2675
2676 static void
2677 remote_detach (char *args, int from_tty)
2678 {
2679 struct remote_state *rs = get_remote_state ();
2680
2681 if (args)
2682 error (_("Argument given to \"detach\" when remotely debugging."));
2683
2684 /* Tell the remote target to detach. */
2685 strcpy (rs->buf, "D");
2686 putpkt (rs->buf);
2687 getpkt (&rs->buf, &rs->buf_size, 0);
2688
2689 if (rs->buf[0] == 'E')
2690 error (_("Can't detach process."));
2691
2692 /* Unregister the file descriptor from the event loop. */
2693 if (target_is_async_p ())
2694 serial_async (remote_desc, NULL, 0);
2695
2696 target_mourn_inferior ();
2697 if (from_tty)
2698 puts_filtered ("Ending remote debugging.\n");
2699 }
2700
2701 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2702
2703 static void
2704 remote_disconnect (struct target_ops *target, char *args, int from_tty)
2705 {
2706 if (args)
2707 error (_("Argument given to \"detach\" when remotely debugging."));
2708
2709 /* Unregister the file descriptor from the event loop. */
2710 if (target_is_async_p ())
2711 serial_async (remote_desc, NULL, 0);
2712
2713 target_mourn_inferior ();
2714 if (from_tty)
2715 puts_filtered ("Ending remote debugging.\n");
2716 }
2717
2718 /* Convert hex digit A to a number. */
2719
2720 static int
2721 fromhex (int a)
2722 {
2723 if (a >= '0' && a <= '9')
2724 return a - '0';
2725 else if (a >= 'a' && a <= 'f')
2726 return a - 'a' + 10;
2727 else if (a >= 'A' && a <= 'F')
2728 return a - 'A' + 10;
2729 else
2730 error (_("Reply contains invalid hex digit %d"), a);
2731 }
2732
2733 static int
2734 hex2bin (const char *hex, gdb_byte *bin, int count)
2735 {
2736 int i;
2737
2738 for (i = 0; i < count; i++)
2739 {
2740 if (hex[0] == 0 || hex[1] == 0)
2741 {
2742 /* Hex string is short, or of uneven length.
2743 Return the count that has been converted so far. */
2744 return i;
2745 }
2746 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2747 hex += 2;
2748 }
2749 return i;
2750 }
2751
2752 /* Convert number NIB to a hex digit. */
2753
2754 static int
2755 tohex (int nib)
2756 {
2757 if (nib < 10)
2758 return '0' + nib;
2759 else
2760 return 'a' + nib - 10;
2761 }
2762
2763 static int
2764 bin2hex (const gdb_byte *bin, char *hex, int count)
2765 {
2766 int i;
2767 /* May use a length, or a nul-terminated string as input. */
2768 if (count == 0)
2769 count = strlen ((char *) bin);
2770
2771 for (i = 0; i < count; i++)
2772 {
2773 *hex++ = tohex ((*bin >> 4) & 0xf);
2774 *hex++ = tohex (*bin++ & 0xf);
2775 }
2776 *hex = 0;
2777 return i;
2778 }
2779 \f
2780 /* Check for the availability of vCont. This function should also check
2781 the response. */
2782
2783 static void
2784 remote_vcont_probe (struct remote_state *rs)
2785 {
2786 char *buf;
2787
2788 strcpy (rs->buf, "vCont?");
2789 putpkt (rs->buf);
2790 getpkt (&rs->buf, &rs->buf_size, 0);
2791 buf = rs->buf;
2792
2793 /* Make sure that the features we assume are supported. */
2794 if (strncmp (buf, "vCont", 5) == 0)
2795 {
2796 char *p = &buf[5];
2797 int support_s, support_S, support_c, support_C;
2798
2799 support_s = 0;
2800 support_S = 0;
2801 support_c = 0;
2802 support_C = 0;
2803 while (p && *p == ';')
2804 {
2805 p++;
2806 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2807 support_s = 1;
2808 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2809 support_S = 1;
2810 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2811 support_c = 1;
2812 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2813 support_C = 1;
2814
2815 p = strchr (p, ';');
2816 }
2817
2818 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2819 BUF will make packet_ok disable the packet. */
2820 if (!support_s || !support_S || !support_c || !support_C)
2821 buf[0] = 0;
2822 }
2823
2824 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
2825 }
2826
2827 /* Resume the remote inferior by using a "vCont" packet. The thread
2828 to be resumed is PTID; STEP and SIGGNAL indicate whether the
2829 resumed thread should be single-stepped and/or signalled. If PTID's
2830 PID is -1, then all threads are resumed; the thread to be stepped and/or
2831 signalled is given in the global INFERIOR_PTID. This function returns
2832 non-zero iff it resumes the inferior.
2833
2834 This function issues a strict subset of all possible vCont commands at the
2835 moment. */
2836
2837 static int
2838 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
2839 {
2840 struct remote_state *rs = get_remote_state ();
2841 int pid = PIDGET (ptid);
2842 char *buf = NULL, *outbuf;
2843 struct cleanup *old_cleanup;
2844
2845 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
2846 remote_vcont_probe (rs);
2847
2848 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
2849 return 0;
2850
2851 /* If we could generate a wider range of packets, we'd have to worry
2852 about overflowing BUF. Should there be a generic
2853 "multi-part-packet" packet? */
2854
2855 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
2856 {
2857 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
2858 don't have any PID numbers the inferior will understand. Make sure
2859 to only send forms that do not specify a PID. */
2860 if (step && siggnal != TARGET_SIGNAL_0)
2861 outbuf = xstrprintf ("vCont;S%02x", siggnal);
2862 else if (step)
2863 outbuf = xstrprintf ("vCont;s");
2864 else if (siggnal != TARGET_SIGNAL_0)
2865 outbuf = xstrprintf ("vCont;C%02x", siggnal);
2866 else
2867 outbuf = xstrprintf ("vCont;c");
2868 }
2869 else if (pid == -1)
2870 {
2871 /* Resume all threads, with preference for INFERIOR_PTID. */
2872 if (step && siggnal != TARGET_SIGNAL_0)
2873 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
2874 PIDGET (inferior_ptid));
2875 else if (step)
2876 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
2877 else if (siggnal != TARGET_SIGNAL_0)
2878 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
2879 PIDGET (inferior_ptid));
2880 else
2881 outbuf = xstrprintf ("vCont;c");
2882 }
2883 else
2884 {
2885 /* Scheduler locking; resume only PTID. */
2886 if (step && siggnal != TARGET_SIGNAL_0)
2887 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
2888 else if (step)
2889 outbuf = xstrprintf ("vCont;s:%x", pid);
2890 else if (siggnal != TARGET_SIGNAL_0)
2891 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
2892 else
2893 outbuf = xstrprintf ("vCont;c:%x", pid);
2894 }
2895
2896 gdb_assert (outbuf && strlen (outbuf) < get_remote_packet_size ());
2897 old_cleanup = make_cleanup (xfree, outbuf);
2898
2899 putpkt (outbuf);
2900
2901 do_cleanups (old_cleanup);
2902
2903 return 1;
2904 }
2905
2906 /* Tell the remote machine to resume. */
2907
2908 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2909
2910 static int last_sent_step;
2911
2912 static void
2913 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2914 {
2915 struct remote_state *rs = get_remote_state ();
2916 char *buf;
2917 int pid = PIDGET (ptid);
2918
2919 last_sent_signal = siggnal;
2920 last_sent_step = step;
2921
2922 /* A hook for when we need to do something at the last moment before
2923 resumption. */
2924 if (deprecated_target_resume_hook)
2925 (*deprecated_target_resume_hook) ();
2926
2927 /* Update the inferior on signals to silently pass, if they've changed. */
2928 remote_pass_signals ();
2929
2930 /* The vCont packet doesn't need to specify threads via Hc. */
2931 if (remote_vcont_resume (ptid, step, siggnal))
2932 return;
2933
2934 /* All other supported resume packets do use Hc, so call set_thread. */
2935 if (pid == -1)
2936 set_thread (0, 0); /* Run any thread. */
2937 else
2938 set_thread (pid, 0); /* Run this thread. */
2939
2940 buf = rs->buf;
2941 if (siggnal != TARGET_SIGNAL_0)
2942 {
2943 buf[0] = step ? 'S' : 'C';
2944 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2945 buf[2] = tohex (((int) siggnal) & 0xf);
2946 buf[3] = '\0';
2947 }
2948 else
2949 strcpy (buf, step ? "s" : "c");
2950
2951 putpkt (buf);
2952 }
2953
2954 /* Same as remote_resume, but with async support. */
2955 static void
2956 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2957 {
2958 remote_resume (ptid, step, siggnal);
2959
2960 /* We are about to start executing the inferior, let's register it
2961 with the event loop. NOTE: this is the one place where all the
2962 execution commands end up. We could alternatively do this in each
2963 of the execution commands in infcmd.c. */
2964 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2965 into infcmd.c in order to allow inferior function calls to work
2966 NOT asynchronously. */
2967 if (target_can_async_p ())
2968 target_async (inferior_event_handler, 0);
2969 /* Tell the world that the target is now executing. */
2970 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2971 this? Instead, should the client of target just assume (for
2972 async targets) that the target is going to start executing? Is
2973 this information already found in the continuation block? */
2974 if (target_is_async_p ())
2975 target_executing = 1;
2976 }
2977 \f
2978
2979 /* Set up the signal handler for SIGINT, while the target is
2980 executing, ovewriting the 'regular' SIGINT signal handler. */
2981 static void
2982 initialize_sigint_signal_handler (void)
2983 {
2984 sigint_remote_token =
2985 create_async_signal_handler (async_remote_interrupt, NULL);
2986 signal (SIGINT, handle_remote_sigint);
2987 }
2988
2989 /* Signal handler for SIGINT, while the target is executing. */
2990 static void
2991 handle_remote_sigint (int sig)
2992 {
2993 signal (sig, handle_remote_sigint_twice);
2994 sigint_remote_twice_token =
2995 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2996 mark_async_signal_handler_wrapper (sigint_remote_token);
2997 }
2998
2999 /* Signal handler for SIGINT, installed after SIGINT has already been
3000 sent once. It will take effect the second time that the user sends
3001 a ^C. */
3002 static void
3003 handle_remote_sigint_twice (int sig)
3004 {
3005 signal (sig, handle_sigint);
3006 sigint_remote_twice_token =
3007 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
3008 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3009 }
3010
3011 /* Perform the real interruption of the target execution, in response
3012 to a ^C. */
3013 static void
3014 async_remote_interrupt (gdb_client_data arg)
3015 {
3016 if (remote_debug)
3017 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3018
3019 target_stop ();
3020 }
3021
3022 /* Perform interrupt, if the first attempt did not succeed. Just give
3023 up on the target alltogether. */
3024 void
3025 async_remote_interrupt_twice (gdb_client_data arg)
3026 {
3027 if (remote_debug)
3028 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3029 /* Do something only if the target was not killed by the previous
3030 cntl-C. */
3031 if (target_executing)
3032 {
3033 interrupt_query ();
3034 signal (SIGINT, handle_remote_sigint);
3035 }
3036 }
3037
3038 /* Reinstall the usual SIGINT handlers, after the target has
3039 stopped. */
3040 static void
3041 cleanup_sigint_signal_handler (void *dummy)
3042 {
3043 signal (SIGINT, handle_sigint);
3044 if (sigint_remote_twice_token)
3045 delete_async_signal_handler (&sigint_remote_twice_token);
3046 if (sigint_remote_token)
3047 delete_async_signal_handler (&sigint_remote_token);
3048 }
3049
3050 /* Send ^C to target to halt it. Target will respond, and send us a
3051 packet. */
3052 static void (*ofunc) (int);
3053
3054 /* The command line interface's stop routine. This function is installed
3055 as a signal handler for SIGINT. The first time a user requests a
3056 stop, we call remote_stop to send a break or ^C. If there is no
3057 response from the target (it didn't stop when the user requested it),
3058 we ask the user if he'd like to detach from the target. */
3059 static void
3060 remote_interrupt (int signo)
3061 {
3062 /* If this doesn't work, try more severe steps. */
3063 signal (signo, remote_interrupt_twice);
3064
3065 if (remote_debug)
3066 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3067
3068 target_stop ();
3069 }
3070
3071 /* The user typed ^C twice. */
3072
3073 static void
3074 remote_interrupt_twice (int signo)
3075 {
3076 signal (signo, ofunc);
3077 interrupt_query ();
3078 signal (signo, remote_interrupt);
3079 }
3080
3081 /* This is the generic stop called via the target vector. When a target
3082 interrupt is requested, either by the command line or the GUI, we
3083 will eventually end up here. */
3084 static void
3085 remote_stop (void)
3086 {
3087 /* Send a break or a ^C, depending on user preference. */
3088 if (remote_debug)
3089 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
3090
3091 if (remote_break)
3092 serial_send_break (remote_desc);
3093 else
3094 serial_write (remote_desc, "\003", 1);
3095 }
3096
3097 /* Ask the user what to do when an interrupt is received. */
3098
3099 static void
3100 interrupt_query (void)
3101 {
3102 target_terminal_ours ();
3103
3104 if (query ("Interrupted while waiting for the program.\n\
3105 Give up (and stop debugging it)? "))
3106 {
3107 target_mourn_inferior ();
3108 deprecated_throw_reason (RETURN_QUIT);
3109 }
3110
3111 target_terminal_inferior ();
3112 }
3113
3114 /* Enable/disable target terminal ownership. Most targets can use
3115 terminal groups to control terminal ownership. Remote targets are
3116 different in that explicit transfer of ownership to/from GDB/target
3117 is required. */
3118
3119 static void
3120 remote_async_terminal_inferior (void)
3121 {
3122 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3123 sync_execution here. This function should only be called when
3124 GDB is resuming the inferior in the forground. A background
3125 resume (``run&'') should leave GDB in control of the terminal and
3126 consequently should not call this code. */
3127 if (!sync_execution)
3128 return;
3129 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3130 calls target_terminal_*() idenpotent. The event-loop GDB talking
3131 to an asynchronous target with a synchronous command calls this
3132 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3133 stops trying to transfer the terminal to the target when it
3134 shouldn't this guard can go away. */
3135 if (!remote_async_terminal_ours_p)
3136 return;
3137 delete_file_handler (input_fd);
3138 remote_async_terminal_ours_p = 0;
3139 initialize_sigint_signal_handler ();
3140 /* NOTE: At this point we could also register our selves as the
3141 recipient of all input. Any characters typed could then be
3142 passed on down to the target. */
3143 }
3144
3145 static void
3146 remote_async_terminal_ours (void)
3147 {
3148 /* See FIXME in remote_async_terminal_inferior. */
3149 if (!sync_execution)
3150 return;
3151 /* See FIXME in remote_async_terminal_inferior. */
3152 if (remote_async_terminal_ours_p)
3153 return;
3154 cleanup_sigint_signal_handler (NULL);
3155 add_file_handler (input_fd, stdin_event_handler, 0);
3156 remote_async_terminal_ours_p = 1;
3157 }
3158
3159 /* If nonzero, ignore the next kill. */
3160
3161 int kill_kludge;
3162
3163 void
3164 remote_console_output (char *msg)
3165 {
3166 char *p;
3167
3168 for (p = msg; p[0] && p[1]; p += 2)
3169 {
3170 char tb[2];
3171 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
3172 tb[0] = c;
3173 tb[1] = 0;
3174 fputs_unfiltered (tb, gdb_stdtarg);
3175 }
3176 gdb_flush (gdb_stdtarg);
3177 }
3178
3179 /* Wait until the remote machine stops, then return,
3180 storing status in STATUS just as `wait' would.
3181 Returns "pid", which in the case of a multi-threaded
3182 remote OS, is the thread-id. */
3183
3184 static ptid_t
3185 remote_wait (ptid_t ptid, struct target_waitstatus *status)
3186 {
3187 struct remote_state *rs = get_remote_state ();
3188 struct remote_arch_state *rsa = get_remote_arch_state ();
3189 ULONGEST thread_num = -1;
3190 ULONGEST addr;
3191 int solibs_changed = 0;
3192
3193 status->kind = TARGET_WAITKIND_EXITED;
3194 status->value.integer = 0;
3195
3196 while (1)
3197 {
3198 char *buf, *p;
3199
3200 ofunc = signal (SIGINT, remote_interrupt);
3201 getpkt (&rs->buf, &rs->buf_size, 1);
3202 signal (SIGINT, ofunc);
3203
3204 buf = rs->buf;
3205
3206 /* This is a hook for when we need to do something (perhaps the
3207 collection of trace data) every time the target stops. */
3208 if (deprecated_target_wait_loop_hook)
3209 (*deprecated_target_wait_loop_hook) ();
3210
3211 remote_stopped_by_watchpoint_p = 0;
3212
3213 switch (buf[0])
3214 {
3215 case 'E': /* Error of some sort. */
3216 warning (_("Remote failure reply: %s"), buf);
3217 continue;
3218 case 'F': /* File-I/O request. */
3219 remote_fileio_request (buf);
3220 continue;
3221 case 'T': /* Status with PC, SP, FP, ... */
3222 {
3223 gdb_byte regs[MAX_REGISTER_SIZE];
3224
3225 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3226 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3227 ss = signal number
3228 n... = register number
3229 r... = register contents
3230 */
3231 p = &buf[3]; /* after Txx */
3232
3233 while (*p)
3234 {
3235 char *p1;
3236 char *p_temp;
3237 int fieldsize;
3238 LONGEST pnum = 0;
3239
3240 /* If the packet contains a register number save it in
3241 pnum and set p1 to point to the character following
3242 it. Otherwise p1 points to p. */
3243
3244 /* If this packet is an awatch packet, don't parse the
3245 'a' as a register number. */
3246
3247 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3248 {
3249 /* Read the ``P'' register number. */
3250 pnum = strtol (p, &p_temp, 16);
3251 p1 = p_temp;
3252 }
3253 else
3254 p1 = p;
3255
3256 if (p1 == p) /* No register number present here. */
3257 {
3258 p1 = strchr (p, ':');
3259 if (p1 == NULL)
3260 error (_("Malformed packet(a) (missing colon): %s\n\
3261 Packet: '%s'\n"),
3262 p, buf);
3263 if (strncmp (p, "thread", p1 - p) == 0)
3264 {
3265 p_temp = unpack_varlen_hex (++p1, &thread_num);
3266 record_currthread (thread_num);
3267 p = p_temp;
3268 }
3269 else if ((strncmp (p, "watch", p1 - p) == 0)
3270 || (strncmp (p, "rwatch", p1 - p) == 0)
3271 || (strncmp (p, "awatch", p1 - p) == 0))
3272 {
3273 remote_stopped_by_watchpoint_p = 1;
3274 p = unpack_varlen_hex (++p1, &addr);
3275 remote_watch_data_address = (CORE_ADDR)addr;
3276 }
3277 else if (strncmp (p, "library", p1 - p) == 0)
3278 {
3279 p1++;
3280 p_temp = p1;
3281 while (*p_temp && *p_temp != ';')
3282 p_temp++;
3283
3284 solibs_changed = 1;
3285 p = p_temp;
3286 }
3287 else
3288 {
3289 /* Silently skip unknown optional info. */
3290 p_temp = strchr (p1 + 1, ';');
3291 if (p_temp)
3292 p = p_temp;
3293 }
3294 }
3295 else
3296 {
3297 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3298 p = p1;
3299
3300 if (*p++ != ':')
3301 error (_("Malformed packet(b) (missing colon): %s\n\
3302 Packet: '%s'\n"),
3303 p, buf);
3304
3305 if (reg == NULL)
3306 error (_("Remote sent bad register number %s: %s\n\
3307 Packet: '%s'\n"),
3308 phex_nz (pnum, 0), p, buf);
3309
3310 fieldsize = hex2bin (p, regs,
3311 register_size (current_gdbarch,
3312 reg->regnum));
3313 p += 2 * fieldsize;
3314 if (fieldsize < register_size (current_gdbarch,
3315 reg->regnum))
3316 warning (_("Remote reply is too short: %s"), buf);
3317 regcache_raw_supply (get_current_regcache (),
3318 reg->regnum, regs);
3319 }
3320
3321 if (*p++ != ';')
3322 error (_("Remote register badly formatted: %s\nhere: %s"),
3323 buf, p);
3324 }
3325 }
3326 /* fall through */
3327 case 'S': /* Old style status, just signal only. */
3328 if (solibs_changed)
3329 status->kind = TARGET_WAITKIND_LOADED;
3330 else
3331 {
3332 status->kind = TARGET_WAITKIND_STOPPED;
3333 status->value.sig = (enum target_signal)
3334 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3335 }
3336
3337 if (buf[3] == 'p')
3338 {
3339 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3340 record_currthread (thread_num);
3341 }
3342 goto got_status;
3343 case 'W': /* Target exited. */
3344 {
3345 /* The remote process exited. */
3346 status->kind = TARGET_WAITKIND_EXITED;
3347 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3348 goto got_status;
3349 }
3350 case 'X':
3351 status->kind = TARGET_WAITKIND_SIGNALLED;
3352 status->value.sig = (enum target_signal)
3353 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3354 kill_kludge = 1;
3355
3356 goto got_status;
3357 case 'O': /* Console output. */
3358 remote_console_output (buf + 1);
3359 continue;
3360 case '\0':
3361 if (last_sent_signal != TARGET_SIGNAL_0)
3362 {
3363 /* Zero length reply means that we tried 'S' or 'C' and
3364 the remote system doesn't support it. */
3365 target_terminal_ours_for_output ();
3366 printf_filtered
3367 ("Can't send signals to this remote system. %s not sent.\n",
3368 target_signal_to_name (last_sent_signal));
3369 last_sent_signal = TARGET_SIGNAL_0;
3370 target_terminal_inferior ();
3371
3372 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3373 putpkt ((char *) buf);
3374 continue;
3375 }
3376 /* else fallthrough */
3377 default:
3378 warning (_("Invalid remote reply: %s"), buf);
3379 continue;
3380 }
3381 }
3382 got_status:
3383 if (thread_num != -1)
3384 {
3385 return pid_to_ptid (thread_num);
3386 }
3387 return inferior_ptid;
3388 }
3389
3390 /* Async version of remote_wait. */
3391 static ptid_t
3392 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3393 {
3394 struct remote_state *rs = get_remote_state ();
3395 struct remote_arch_state *rsa = get_remote_arch_state ();
3396 ULONGEST thread_num = -1;
3397 ULONGEST addr;
3398 int solibs_changed = 0;
3399
3400 status->kind = TARGET_WAITKIND_EXITED;
3401 status->value.integer = 0;
3402
3403 remote_stopped_by_watchpoint_p = 0;
3404
3405 while (1)
3406 {
3407 char *buf, *p;
3408
3409 if (!target_is_async_p ())
3410 ofunc = signal (SIGINT, remote_interrupt);
3411 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3412 _never_ wait for ever -> test on target_is_async_p().
3413 However, before we do that we need to ensure that the caller
3414 knows how to take the target into/out of async mode. */
3415 getpkt (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
3416 if (!target_is_async_p ())
3417 signal (SIGINT, ofunc);
3418
3419 buf = rs->buf;
3420
3421 /* This is a hook for when we need to do something (perhaps the
3422 collection of trace data) every time the target stops. */
3423 if (deprecated_target_wait_loop_hook)
3424 (*deprecated_target_wait_loop_hook) ();
3425
3426 switch (buf[0])
3427 {
3428 case 'E': /* Error of some sort. */
3429 warning (_("Remote failure reply: %s"), buf);
3430 continue;
3431 case 'F': /* File-I/O request. */
3432 remote_fileio_request (buf);
3433 continue;
3434 case 'T': /* Status with PC, SP, FP, ... */
3435 {
3436 gdb_byte regs[MAX_REGISTER_SIZE];
3437
3438 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3439 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3440 ss = signal number
3441 n... = register number
3442 r... = register contents
3443 */
3444 p = &buf[3]; /* after Txx */
3445
3446 while (*p)
3447 {
3448 char *p1;
3449 char *p_temp;
3450 int fieldsize;
3451 long pnum = 0;
3452
3453 /* If the packet contains a register number, save it
3454 in pnum and set p1 to point to the character
3455 following it. Otherwise p1 points to p. */
3456
3457 /* If this packet is an awatch packet, don't parse the 'a'
3458 as a register number. */
3459
3460 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3461 {
3462 /* Read the register number. */
3463 pnum = strtol (p, &p_temp, 16);
3464 p1 = p_temp;
3465 }
3466 else
3467 p1 = p;
3468
3469 if (p1 == p) /* No register number present here. */
3470 {
3471 p1 = strchr (p, ':');
3472 if (p1 == NULL)
3473 error (_("Malformed packet(a) (missing colon): %s\n\
3474 Packet: '%s'\n"),
3475 p, buf);
3476 if (strncmp (p, "thread", p1 - p) == 0)
3477 {
3478 p_temp = unpack_varlen_hex (++p1, &thread_num);
3479 record_currthread (thread_num);
3480 p = p_temp;
3481 }
3482 else if ((strncmp (p, "watch", p1 - p) == 0)
3483 || (strncmp (p, "rwatch", p1 - p) == 0)
3484 || (strncmp (p, "awatch", p1 - p) == 0))
3485 {
3486 remote_stopped_by_watchpoint_p = 1;
3487 p = unpack_varlen_hex (++p1, &addr);
3488 remote_watch_data_address = (CORE_ADDR)addr;
3489 }
3490 else if (strncmp (p, "library", p1 - p) == 0)
3491 {
3492 p1++;
3493 p_temp = p1;
3494 while (*p_temp && *p_temp != ';')
3495 p_temp++;
3496
3497 solibs_changed = 1;
3498 p = p_temp;
3499 }
3500 else
3501 {
3502 /* Silently skip unknown optional info. */
3503 p_temp = strchr (p1 + 1, ';');
3504 if (p_temp)
3505 p = p_temp;
3506 }
3507 }
3508
3509 else
3510 {
3511 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3512 p = p1;
3513 if (*p++ != ':')
3514 error (_("Malformed packet(b) (missing colon): %s\n\
3515 Packet: '%s'\n"),
3516 p, buf);
3517
3518 if (reg == NULL)
3519 error (_("Remote sent bad register number %ld: %s\n\
3520 Packet: '%s'\n"),
3521 pnum, p, buf);
3522
3523 fieldsize = hex2bin (p, regs,
3524 register_size (current_gdbarch,
3525 reg->regnum));
3526 p += 2 * fieldsize;
3527 if (fieldsize < register_size (current_gdbarch,
3528 reg->regnum))
3529 warning (_("Remote reply is too short: %s"), buf);
3530 regcache_raw_supply (get_current_regcache (),
3531 reg->regnum, regs);
3532 }
3533
3534 if (*p++ != ';')
3535 error (_("Remote register badly formatted: %s\nhere: %s"),
3536 buf, p);
3537 }
3538 }
3539 /* fall through */
3540 case 'S': /* Old style status, just signal only. */
3541 if (solibs_changed)
3542 status->kind = TARGET_WAITKIND_LOADED;
3543 else
3544 {
3545 status->kind = TARGET_WAITKIND_STOPPED;
3546 status->value.sig = (enum target_signal)
3547 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3548 }
3549
3550 if (buf[3] == 'p')
3551 {
3552 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3553 record_currthread (thread_num);
3554 }
3555 goto got_status;
3556 case 'W': /* Target exited. */
3557 {
3558 /* The remote process exited. */
3559 status->kind = TARGET_WAITKIND_EXITED;
3560 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3561 goto got_status;
3562 }
3563 case 'X':
3564 status->kind = TARGET_WAITKIND_SIGNALLED;
3565 status->value.sig = (enum target_signal)
3566 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3567 kill_kludge = 1;
3568
3569 goto got_status;
3570 case 'O': /* Console output. */
3571 remote_console_output (buf + 1);
3572 /* Return immediately to the event loop. The event loop will
3573 still be waiting on the inferior afterwards. */
3574 status->kind = TARGET_WAITKIND_IGNORE;
3575 goto got_status;
3576 case '\0':
3577 if (last_sent_signal != TARGET_SIGNAL_0)
3578 {
3579 /* Zero length reply means that we tried 'S' or 'C' and
3580 the remote system doesn't support it. */
3581 target_terminal_ours_for_output ();
3582 printf_filtered
3583 ("Can't send signals to this remote system. %s not sent.\n",
3584 target_signal_to_name (last_sent_signal));
3585 last_sent_signal = TARGET_SIGNAL_0;
3586 target_terminal_inferior ();
3587
3588 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3589 putpkt ((char *) buf);
3590 continue;
3591 }
3592 /* else fallthrough */
3593 default:
3594 warning (_("Invalid remote reply: %s"), buf);
3595 continue;
3596 }
3597 }
3598 got_status:
3599 if (thread_num != -1)
3600 {
3601 return pid_to_ptid (thread_num);
3602 }
3603 return inferior_ptid;
3604 }
3605
3606 /* Fetch a single register using a 'p' packet. */
3607
3608 static int
3609 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
3610 {
3611 struct remote_state *rs = get_remote_state ();
3612 char *buf, *p;
3613 char regp[MAX_REGISTER_SIZE];
3614 int i;
3615
3616 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
3617 return 0;
3618
3619 if (reg->pnum == -1)
3620 return 0;
3621
3622 p = rs->buf;
3623 *p++ = 'p';
3624 p += hexnumstr (p, reg->pnum);
3625 *p++ = '\0';
3626 remote_send (&rs->buf, &rs->buf_size);
3627
3628 buf = rs->buf;
3629
3630 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
3631 {
3632 case PACKET_OK:
3633 break;
3634 case PACKET_UNKNOWN:
3635 return 0;
3636 case PACKET_ERROR:
3637 error (_("Could not fetch register \"%s\""),
3638 gdbarch_register_name (current_gdbarch, reg->regnum));
3639 }
3640
3641 /* If this register is unfetchable, tell the regcache. */
3642 if (buf[0] == 'x')
3643 {
3644 regcache_raw_supply (regcache, reg->regnum, NULL);
3645 return 1;
3646 }
3647
3648 /* Otherwise, parse and supply the value. */
3649 p = buf;
3650 i = 0;
3651 while (p[0] != 0)
3652 {
3653 if (p[1] == 0)
3654 error (_("fetch_register_using_p: early buf termination"));
3655
3656 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3657 p += 2;
3658 }
3659 regcache_raw_supply (regcache, reg->regnum, regp);
3660 return 1;
3661 }
3662
3663 /* Fetch the registers included in the target's 'g' packet. */
3664
3665 static int
3666 send_g_packet (void)
3667 {
3668 struct remote_state *rs = get_remote_state ();
3669 int i, buf_len;
3670 char *p;
3671 char *regs;
3672
3673 sprintf (rs->buf, "g");
3674 remote_send (&rs->buf, &rs->buf_size);
3675
3676 /* We can get out of synch in various cases. If the first character
3677 in the buffer is not a hex character, assume that has happened
3678 and try to fetch another packet to read. */
3679 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
3680 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
3681 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
3682 && rs->buf[0] != 'x') /* New: unavailable register value. */
3683 {
3684 if (remote_debug)
3685 fprintf_unfiltered (gdb_stdlog,
3686 "Bad register packet; fetching a new packet\n");
3687 getpkt (&rs->buf, &rs->buf_size, 0);
3688 }
3689
3690 buf_len = strlen (rs->buf);
3691
3692 /* Sanity check the received packet. */
3693 if (buf_len % 2 != 0)
3694 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
3695
3696 return buf_len / 2;
3697 }
3698
3699 static void
3700 process_g_packet (struct regcache *regcache)
3701 {
3702 struct remote_state *rs = get_remote_state ();
3703 struct remote_arch_state *rsa = get_remote_arch_state ();
3704 int i, buf_len;
3705 char *p;
3706 char *regs;
3707
3708 buf_len = strlen (rs->buf);
3709
3710 /* Further sanity checks, with knowledge of the architecture. */
3711 if (buf_len > 2 * rsa->sizeof_g_packet)
3712 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
3713
3714 /* Save the size of the packet sent to us by the target. It is used
3715 as a heuristic when determining the max size of packets that the
3716 target can safely receive. */
3717 if (rsa->actual_register_packet_size == 0)
3718 rsa->actual_register_packet_size = buf_len;
3719
3720 /* If this is smaller than we guessed the 'g' packet would be,
3721 update our records. A 'g' reply that doesn't include a register's
3722 value implies either that the register is not available, or that
3723 the 'p' packet must be used. */
3724 if (buf_len < 2 * rsa->sizeof_g_packet)
3725 {
3726 rsa->sizeof_g_packet = buf_len / 2;
3727
3728 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3729 {
3730 if (rsa->regs[i].pnum == -1)
3731 continue;
3732
3733 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
3734 rsa->regs[i].in_g_packet = 0;
3735 else
3736 rsa->regs[i].in_g_packet = 1;
3737 }
3738 }
3739
3740 regs = alloca (rsa->sizeof_g_packet);
3741
3742 /* Unimplemented registers read as all bits zero. */
3743 memset (regs, 0, rsa->sizeof_g_packet);
3744
3745 /* Reply describes registers byte by byte, each byte encoded as two
3746 hex characters. Suck them all up, then supply them to the
3747 register cacheing/storage mechanism. */
3748
3749 p = rs->buf;
3750 for (i = 0; i < rsa->sizeof_g_packet; i++)
3751 {
3752 if (p[0] == 0 || p[1] == 0)
3753 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
3754 internal_error (__FILE__, __LINE__,
3755 "unexpected end of 'g' packet reply");
3756
3757 if (p[0] == 'x' && p[1] == 'x')
3758 regs[i] = 0; /* 'x' */
3759 else
3760 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3761 p += 2;
3762 }
3763
3764 {
3765 int i;
3766 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3767 {
3768 struct packet_reg *r = &rsa->regs[i];
3769 if (r->in_g_packet)
3770 {
3771 if (r->offset * 2 >= strlen (rs->buf))
3772 /* This shouldn't happen - we adjusted in_g_packet above. */
3773 internal_error (__FILE__, __LINE__,
3774 "unexpected end of 'g' packet reply");
3775 else if (rs->buf[r->offset * 2] == 'x')
3776 {
3777 gdb_assert (r->offset * 2 < strlen (rs->buf));
3778 /* The register isn't available, mark it as such (at
3779 the same time setting the value to zero). */
3780 regcache_raw_supply (regcache, r->regnum, NULL);
3781 }
3782 else
3783 regcache_raw_supply (regcache, r->regnum,
3784 regs + r->offset);
3785 }
3786 }
3787 }
3788 }
3789
3790 static void
3791 fetch_registers_using_g (struct regcache *regcache)
3792 {
3793 send_g_packet ();
3794 process_g_packet (regcache);
3795 }
3796
3797 static void
3798 remote_fetch_registers (struct regcache *regcache, int regnum)
3799 {
3800 struct remote_state *rs = get_remote_state ();
3801 struct remote_arch_state *rsa = get_remote_arch_state ();
3802 int i;
3803
3804 set_thread (PIDGET (inferior_ptid), 1);
3805
3806 if (regnum >= 0)
3807 {
3808 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3809 gdb_assert (reg != NULL);
3810
3811 /* If this register might be in the 'g' packet, try that first -
3812 we are likely to read more than one register. If this is the
3813 first 'g' packet, we might be overly optimistic about its
3814 contents, so fall back to 'p'. */
3815 if (reg->in_g_packet)
3816 {
3817 fetch_registers_using_g (regcache);
3818 if (reg->in_g_packet)
3819 return;
3820 }
3821
3822 if (fetch_register_using_p (regcache, reg))
3823 return;
3824
3825 /* This register is not available. */
3826 regcache_raw_supply (regcache, reg->regnum, NULL);
3827
3828 return;
3829 }
3830
3831 fetch_registers_using_g (regcache);
3832
3833 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3834 if (!rsa->regs[i].in_g_packet)
3835 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
3836 {
3837 /* This register is not available. */
3838 regcache_raw_supply (regcache, i, NULL);
3839 }
3840 }
3841
3842 /* Prepare to store registers. Since we may send them all (using a
3843 'G' request), we have to read out the ones we don't want to change
3844 first. */
3845
3846 static void
3847 remote_prepare_to_store (struct regcache *regcache)
3848 {
3849 struct remote_arch_state *rsa = get_remote_arch_state ();
3850 int i;
3851 gdb_byte buf[MAX_REGISTER_SIZE];
3852
3853 /* Make sure the entire registers array is valid. */
3854 switch (remote_protocol_packets[PACKET_P].support)
3855 {
3856 case PACKET_DISABLE:
3857 case PACKET_SUPPORT_UNKNOWN:
3858 /* Make sure all the necessary registers are cached. */
3859 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3860 if (rsa->regs[i].in_g_packet)
3861 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
3862 break;
3863 case PACKET_ENABLE:
3864 break;
3865 }
3866 }
3867
3868 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3869 packet was not recognized. */
3870
3871 static int
3872 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
3873 {
3874 struct remote_state *rs = get_remote_state ();
3875 struct remote_arch_state *rsa = get_remote_arch_state ();
3876 /* Try storing a single register. */
3877 char *buf = rs->buf;
3878 gdb_byte regp[MAX_REGISTER_SIZE];
3879 char *p;
3880
3881 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
3882 return 0;
3883
3884 if (reg->pnum == -1)
3885 return 0;
3886
3887 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
3888 p = buf + strlen (buf);
3889 regcache_raw_collect (regcache, reg->regnum, regp);
3890 bin2hex (regp, p, register_size (current_gdbarch, reg->regnum));
3891 remote_send (&rs->buf, &rs->buf_size);
3892
3893 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
3894 {
3895 case PACKET_OK:
3896 return 1;
3897 case PACKET_ERROR:
3898 error (_("Could not write register \"%s\""),
3899 gdbarch_register_name (current_gdbarch, reg->regnum));
3900 case PACKET_UNKNOWN:
3901 return 0;
3902 default:
3903 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
3904 }
3905 }
3906
3907 /* Store register REGNUM, or all registers if REGNUM == -1, from the
3908 contents of the register cache buffer. FIXME: ignores errors. */
3909
3910 static void
3911 store_registers_using_G (const struct regcache *regcache)
3912 {
3913 struct remote_state *rs = get_remote_state ();
3914 struct remote_arch_state *rsa = get_remote_arch_state ();
3915 gdb_byte *regs;
3916 char *p;
3917
3918 /* Extract all the registers in the regcache copying them into a
3919 local buffer. */
3920 {
3921 int i;
3922 regs = alloca (rsa->sizeof_g_packet);
3923 memset (regs, 0, rsa->sizeof_g_packet);
3924 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3925 {
3926 struct packet_reg *r = &rsa->regs[i];
3927 if (r->in_g_packet)
3928 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
3929 }
3930 }
3931
3932 /* Command describes registers byte by byte,
3933 each byte encoded as two hex characters. */
3934 p = rs->buf;
3935 *p++ = 'G';
3936 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
3937 updated. */
3938 bin2hex (regs, p, rsa->sizeof_g_packet);
3939 remote_send (&rs->buf, &rs->buf_size);
3940 }
3941
3942 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3943 of the register cache buffer. FIXME: ignores errors. */
3944
3945 static void
3946 remote_store_registers (struct regcache *regcache, int regnum)
3947 {
3948 struct remote_state *rs = get_remote_state ();
3949 struct remote_arch_state *rsa = get_remote_arch_state ();
3950 int i;
3951
3952 set_thread (PIDGET (inferior_ptid), 1);
3953
3954 if (regnum >= 0)
3955 {
3956 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3957 gdb_assert (reg != NULL);
3958
3959 /* Always prefer to store registers using the 'P' packet if
3960 possible; we often change only a small number of registers.
3961 Sometimes we change a larger number; we'd need help from a
3962 higher layer to know to use 'G'. */
3963 if (store_register_using_P (regcache, reg))
3964 return;
3965
3966 /* For now, don't complain if we have no way to write the
3967 register. GDB loses track of unavailable registers too
3968 easily. Some day, this may be an error. We don't have
3969 any way to read the register, either... */
3970 if (!reg->in_g_packet)
3971 return;
3972
3973 store_registers_using_G (regcache);
3974 return;
3975 }
3976
3977 store_registers_using_G (regcache);
3978
3979 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3980 if (!rsa->regs[i].in_g_packet)
3981 if (!store_register_using_P (regcache, &rsa->regs[i]))
3982 /* See above for why we do not issue an error here. */
3983 continue;
3984 }
3985 \f
3986
3987 /* Return the number of hex digits in num. */
3988
3989 static int
3990 hexnumlen (ULONGEST num)
3991 {
3992 int i;
3993
3994 for (i = 0; num != 0; i++)
3995 num >>= 4;
3996
3997 return max (i, 1);
3998 }
3999
4000 /* Set BUF to the minimum number of hex digits representing NUM. */
4001
4002 static int
4003 hexnumstr (char *buf, ULONGEST num)
4004 {
4005 int len = hexnumlen (num);
4006 return hexnumnstr (buf, num, len);
4007 }
4008
4009
4010 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
4011
4012 static int
4013 hexnumnstr (char *buf, ULONGEST num, int width)
4014 {
4015 int i;
4016
4017 buf[width] = '\0';
4018
4019 for (i = width - 1; i >= 0; i--)
4020 {
4021 buf[i] = "0123456789abcdef"[(num & 0xf)];
4022 num >>= 4;
4023 }
4024
4025 return width;
4026 }
4027
4028 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
4029
4030 static CORE_ADDR
4031 remote_address_masked (CORE_ADDR addr)
4032 {
4033 int address_size = remote_address_size;
4034 /* If "remoteaddresssize" was not set, default to target address size. */
4035 if (!address_size)
4036 address_size = gdbarch_addr_bit (current_gdbarch);
4037
4038 if (address_size > 0
4039 && address_size < (sizeof (ULONGEST) * 8))
4040 {
4041 /* Only create a mask when that mask can safely be constructed
4042 in a ULONGEST variable. */
4043 ULONGEST mask = 1;
4044 mask = (mask << address_size) - 1;
4045 addr &= mask;
4046 }
4047 return addr;
4048 }
4049
4050 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
4051 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
4052 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
4053 (which may be more than *OUT_LEN due to escape characters). The
4054 total number of bytes in the output buffer will be at most
4055 OUT_MAXLEN. */
4056
4057 static int
4058 remote_escape_output (const gdb_byte *buffer, int len,
4059 gdb_byte *out_buf, int *out_len,
4060 int out_maxlen)
4061 {
4062 int input_index, output_index;
4063
4064 output_index = 0;
4065 for (input_index = 0; input_index < len; input_index++)
4066 {
4067 gdb_byte b = buffer[input_index];
4068
4069 if (b == '$' || b == '#' || b == '}')
4070 {
4071 /* These must be escaped. */
4072 if (output_index + 2 > out_maxlen)
4073 break;
4074 out_buf[output_index++] = '}';
4075 out_buf[output_index++] = b ^ 0x20;
4076 }
4077 else
4078 {
4079 if (output_index + 1 > out_maxlen)
4080 break;
4081 out_buf[output_index++] = b;
4082 }
4083 }
4084
4085 *out_len = input_index;
4086 return output_index;
4087 }
4088
4089 /* Convert BUFFER, escaped data LEN bytes long, into binary data
4090 in OUT_BUF. Return the number of bytes written to OUT_BUF.
4091 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
4092
4093 This function reverses remote_escape_output. It allows more
4094 escaped characters than that function does, in particular because
4095 '*' must be escaped to avoid the run-length encoding processing
4096 in reading packets. */
4097
4098 static int
4099 remote_unescape_input (const gdb_byte *buffer, int len,
4100 gdb_byte *out_buf, int out_maxlen)
4101 {
4102 int input_index, output_index;
4103 int escaped;
4104
4105 output_index = 0;
4106 escaped = 0;
4107 for (input_index = 0; input_index < len; input_index++)
4108 {
4109 gdb_byte b = buffer[input_index];
4110
4111 if (output_index + 1 > out_maxlen)
4112 {
4113 warning (_("Received too much data from remote target;"
4114 " ignoring overflow."));
4115 return output_index;
4116 }
4117
4118 if (escaped)
4119 {
4120 out_buf[output_index++] = b ^ 0x20;
4121 escaped = 0;
4122 }
4123 else if (b == '}')
4124 escaped = 1;
4125 else
4126 out_buf[output_index++] = b;
4127 }
4128
4129 if (escaped)
4130 error (_("Unmatched escape character in target response."));
4131
4132 return output_index;
4133 }
4134
4135 /* Determine whether the remote target supports binary downloading.
4136 This is accomplished by sending a no-op memory write of zero length
4137 to the target at the specified address. It does not suffice to send
4138 the whole packet, since many stubs strip the eighth bit and
4139 subsequently compute a wrong checksum, which causes real havoc with
4140 remote_write_bytes.
4141
4142 NOTE: This can still lose if the serial line is not eight-bit
4143 clean. In cases like this, the user should clear "remote
4144 X-packet". */
4145
4146 static void
4147 check_binary_download (CORE_ADDR addr)
4148 {
4149 struct remote_state *rs = get_remote_state ();
4150
4151 switch (remote_protocol_packets[PACKET_X].support)
4152 {
4153 case PACKET_DISABLE:
4154 break;
4155 case PACKET_ENABLE:
4156 break;
4157 case PACKET_SUPPORT_UNKNOWN:
4158 {
4159 char *p;
4160
4161 p = rs->buf;
4162 *p++ = 'X';
4163 p += hexnumstr (p, (ULONGEST) addr);
4164 *p++ = ',';
4165 p += hexnumstr (p, (ULONGEST) 0);
4166 *p++ = ':';
4167 *p = '\0';
4168
4169 putpkt_binary (rs->buf, (int) (p - rs->buf));
4170 getpkt (&rs->buf, &rs->buf_size, 0);
4171
4172 if (rs->buf[0] == '\0')
4173 {
4174 if (remote_debug)
4175 fprintf_unfiltered (gdb_stdlog,
4176 "binary downloading NOT suppported by target\n");
4177 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
4178 }
4179 else
4180 {
4181 if (remote_debug)
4182 fprintf_unfiltered (gdb_stdlog,
4183 "binary downloading suppported by target\n");
4184 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
4185 }
4186 break;
4187 }
4188 }
4189 }
4190
4191 /* Write memory data directly to the remote machine.
4192 This does not inform the data cache; the data cache uses this.
4193 HEADER is the starting part of the packet.
4194 MEMADDR is the address in the remote memory space.
4195 MYADDR is the address of the buffer in our space.
4196 LEN is the number of bytes.
4197 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
4198 should send data as binary ('X'), or hex-encoded ('M').
4199
4200 The function creates packet of the form
4201 <HEADER><ADDRESS>,<LENGTH>:<DATA>
4202
4203 where encoding of <DATA> is termined by PACKET_FORMAT.
4204
4205 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
4206 are omitted.
4207
4208 Returns the number of bytes transferred, or 0 (setting errno) for
4209 error. Only transfer a single packet. */
4210
4211 static int
4212 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
4213 const gdb_byte *myaddr, int len,
4214 char packet_format, int use_length)
4215 {
4216 struct remote_state *rs = get_remote_state ();
4217 char *p;
4218 char *plen = NULL;
4219 int plenlen = 0;
4220 int todo;
4221 int nr_bytes;
4222 int payload_size;
4223 int payload_length;
4224 int header_length;
4225
4226 if (packet_format != 'X' && packet_format != 'M')
4227 internal_error (__FILE__, __LINE__,
4228 "remote_write_bytes_aux: bad packet format");
4229
4230 if (len <= 0)
4231 return 0;
4232
4233 payload_size = get_memory_write_packet_size ();
4234
4235 /* The packet buffer will be large enough for the payload;
4236 get_memory_packet_size ensures this. */
4237 rs->buf[0] = '\0';
4238
4239 /* Compute the size of the actual payload by subtracting out the
4240 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
4241 */
4242 payload_size -= strlen ("$,:#NN");
4243 if (!use_length)
4244 /* The comma won't be used. */
4245 payload_size += 1;
4246 header_length = strlen (header);
4247 payload_size -= header_length;
4248 payload_size -= hexnumlen (memaddr);
4249
4250 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
4251
4252 strcat (rs->buf, header);
4253 p = rs->buf + strlen (header);
4254
4255 /* Compute a best guess of the number of bytes actually transfered. */
4256 if (packet_format == 'X')
4257 {
4258 /* Best guess at number of bytes that will fit. */
4259 todo = min (len, payload_size);
4260 if (use_length)
4261 payload_size -= hexnumlen (todo);
4262 todo = min (todo, payload_size);
4263 }
4264 else
4265 {
4266 /* Num bytes that will fit. */
4267 todo = min (len, payload_size / 2);
4268 if (use_length)
4269 payload_size -= hexnumlen (todo);
4270 todo = min (todo, payload_size / 2);
4271 }
4272
4273 if (todo <= 0)
4274 internal_error (__FILE__, __LINE__,
4275 _("minumum packet size too small to write data"));
4276
4277 /* If we already need another packet, then try to align the end
4278 of this packet to a useful boundary. */
4279 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
4280 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
4281
4282 /* Append "<memaddr>". */
4283 memaddr = remote_address_masked (memaddr);
4284 p += hexnumstr (p, (ULONGEST) memaddr);
4285
4286 if (use_length)
4287 {
4288 /* Append ",". */
4289 *p++ = ',';
4290
4291 /* Append <len>. Retain the location/size of <len>. It may need to
4292 be adjusted once the packet body has been created. */
4293 plen = p;
4294 plenlen = hexnumstr (p, (ULONGEST) todo);
4295 p += plenlen;
4296 }
4297
4298 /* Append ":". */
4299 *p++ = ':';
4300 *p = '\0';
4301
4302 /* Append the packet body. */
4303 if (packet_format == 'X')
4304 {
4305 /* Binary mode. Send target system values byte by byte, in
4306 increasing byte addresses. Only escape certain critical
4307 characters. */
4308 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
4309 payload_size);
4310
4311 /* If not all TODO bytes fit, then we'll need another packet. Make
4312 a second try to keep the end of the packet aligned. Don't do
4313 this if the packet is tiny. */
4314 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
4315 {
4316 int new_nr_bytes;
4317
4318 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
4319 - memaddr);
4320 if (new_nr_bytes != nr_bytes)
4321 payload_length = remote_escape_output (myaddr, new_nr_bytes,
4322 p, &nr_bytes,
4323 payload_size);
4324 }
4325
4326 p += payload_length;
4327 if (use_length && nr_bytes < todo)
4328 {
4329 /* Escape chars have filled up the buffer prematurely,
4330 and we have actually sent fewer bytes than planned.
4331 Fix-up the length field of the packet. Use the same
4332 number of characters as before. */
4333 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
4334 *plen = ':'; /* overwrite \0 from hexnumnstr() */
4335 }
4336 }
4337 else
4338 {
4339 /* Normal mode: Send target system values byte by byte, in
4340 increasing byte addresses. Each byte is encoded as a two hex
4341 value. */
4342 nr_bytes = bin2hex (myaddr, p, todo);
4343 p += 2 * nr_bytes;
4344 }
4345
4346 putpkt_binary (rs->buf, (int) (p - rs->buf));
4347 getpkt (&rs->buf, &rs->buf_size, 0);
4348
4349 if (rs->buf[0] == 'E')
4350 {
4351 /* There is no correspondance between what the remote protocol
4352 uses for errors and errno codes. We would like a cleaner way
4353 of representing errors (big enough to include errno codes,
4354 bfd_error codes, and others). But for now just return EIO. */
4355 errno = EIO;
4356 return 0;
4357 }
4358
4359 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
4360 fewer bytes than we'd planned. */
4361 return nr_bytes;
4362 }
4363
4364 /* Write memory data directly to the remote machine.
4365 This does not inform the data cache; the data cache uses this.
4366 MEMADDR is the address in the remote memory space.
4367 MYADDR is the address of the buffer in our space.
4368 LEN is the number of bytes.
4369
4370 Returns number of bytes transferred, or 0 (setting errno) for
4371 error. Only transfer a single packet. */
4372
4373 int
4374 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
4375 {
4376 char *packet_format = 0;
4377
4378 /* Check whether the target supports binary download. */
4379 check_binary_download (memaddr);
4380
4381 switch (remote_protocol_packets[PACKET_X].support)
4382 {
4383 case PACKET_ENABLE:
4384 packet_format = "X";
4385 break;
4386 case PACKET_DISABLE:
4387 packet_format = "M";
4388 break;
4389 case PACKET_SUPPORT_UNKNOWN:
4390 internal_error (__FILE__, __LINE__,
4391 _("remote_write_bytes: bad internal state"));
4392 default:
4393 internal_error (__FILE__, __LINE__, _("bad switch"));
4394 }
4395
4396 return remote_write_bytes_aux (packet_format,
4397 memaddr, myaddr, len, packet_format[0], 1);
4398 }
4399
4400 /* Read memory data directly from the remote machine.
4401 This does not use the data cache; the data cache uses this.
4402 MEMADDR is the address in the remote memory space.
4403 MYADDR is the address of the buffer in our space.
4404 LEN is the number of bytes.
4405
4406 Returns number of bytes transferred, or 0 for error. */
4407
4408 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
4409 remote targets) shouldn't attempt to read the entire buffer.
4410 Instead it should read a single packet worth of data and then
4411 return the byte size of that packet to the caller. The caller (its
4412 caller and its callers caller ;-) already contains code for
4413 handling partial reads. */
4414
4415 int
4416 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
4417 {
4418 struct remote_state *rs = get_remote_state ();
4419 int max_buf_size; /* Max size of packet output buffer. */
4420 int origlen;
4421
4422 if (len <= 0)
4423 return 0;
4424
4425 max_buf_size = get_memory_read_packet_size ();
4426 /* The packet buffer will be large enough for the payload;
4427 get_memory_packet_size ensures this. */
4428
4429 origlen = len;
4430 while (len > 0)
4431 {
4432 char *p;
4433 int todo;
4434 int i;
4435
4436 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
4437
4438 /* construct "m"<memaddr>","<len>" */
4439 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
4440 memaddr = remote_address_masked (memaddr);
4441 p = rs->buf;
4442 *p++ = 'm';
4443 p += hexnumstr (p, (ULONGEST) memaddr);
4444 *p++ = ',';
4445 p += hexnumstr (p, (ULONGEST) todo);
4446 *p = '\0';
4447
4448 putpkt (rs->buf);
4449 getpkt (&rs->buf, &rs->buf_size, 0);
4450
4451 if (rs->buf[0] == 'E'
4452 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
4453 && rs->buf[3] == '\0')
4454 {
4455 /* There is no correspondance between what the remote
4456 protocol uses for errors and errno codes. We would like
4457 a cleaner way of representing errors (big enough to
4458 include errno codes, bfd_error codes, and others). But
4459 for now just return EIO. */
4460 errno = EIO;
4461 return 0;
4462 }
4463
4464 /* Reply describes memory byte by byte,
4465 each byte encoded as two hex characters. */
4466
4467 p = rs->buf;
4468 if ((i = hex2bin (p, myaddr, todo)) < todo)
4469 {
4470 /* Reply is short. This means that we were able to read
4471 only part of what we wanted to. */
4472 return i + (origlen - len);
4473 }
4474 myaddr += todo;
4475 memaddr += todo;
4476 len -= todo;
4477 }
4478 return origlen;
4479 }
4480 \f
4481 /* Read or write LEN bytes from inferior memory at MEMADDR,
4482 transferring to or from debugger address BUFFER. Write to inferior
4483 if SHOULD_WRITE is nonzero. Returns length of data written or
4484 read; 0 for error. TARGET is unused. */
4485
4486 static int
4487 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
4488 int should_write, struct mem_attrib *attrib,
4489 struct target_ops *target)
4490 {
4491 int res;
4492
4493 if (should_write)
4494 res = remote_write_bytes (mem_addr, buffer, mem_len);
4495 else
4496 res = remote_read_bytes (mem_addr, buffer, mem_len);
4497
4498 return res;
4499 }
4500
4501 /* Sends a packet with content determined by the printf format string
4502 FORMAT and the remaining arguments, then gets the reply. Returns
4503 whether the packet was a success, a failure, or unknown. */
4504
4505 enum packet_result
4506 remote_send_printf (const char *format, ...)
4507 {
4508 struct remote_state *rs = get_remote_state ();
4509 int max_size = get_remote_packet_size ();
4510
4511 va_list ap;
4512 va_start (ap, format);
4513
4514 rs->buf[0] = '\0';
4515 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
4516 internal_error (__FILE__, __LINE__, "Too long remote packet.");
4517
4518 if (putpkt (rs->buf) < 0)
4519 error (_("Communication problem with target."));
4520
4521 rs->buf[0] = '\0';
4522 getpkt (&rs->buf, &rs->buf_size, 0);
4523
4524 return packet_check_result (rs->buf);
4525 }
4526
4527 static void
4528 restore_remote_timeout (void *p)
4529 {
4530 int value = *(int *)p;
4531 remote_timeout = value;
4532 }
4533
4534 /* Flash writing can take quite some time. We'll set
4535 effectively infinite timeout for flash operations.
4536 In future, we'll need to decide on a better approach. */
4537 static const int remote_flash_timeout = 1000;
4538
4539 static void
4540 remote_flash_erase (struct target_ops *ops,
4541 ULONGEST address, LONGEST length)
4542 {
4543 int saved_remote_timeout = remote_timeout;
4544 enum packet_result ret;
4545
4546 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4547 &saved_remote_timeout);
4548 remote_timeout = remote_flash_timeout;
4549
4550 ret = remote_send_printf ("vFlashErase:%s,%s",
4551 paddr (address),
4552 phex (length, 4));
4553 switch (ret)
4554 {
4555 case PACKET_UNKNOWN:
4556 error (_("Remote target does not support flash erase"));
4557 case PACKET_ERROR:
4558 error (_("Error erasing flash with vFlashErase packet"));
4559 default:
4560 break;
4561 }
4562
4563 do_cleanups (back_to);
4564 }
4565
4566 static LONGEST
4567 remote_flash_write (struct target_ops *ops,
4568 ULONGEST address, LONGEST length,
4569 const gdb_byte *data)
4570 {
4571 int saved_remote_timeout = remote_timeout;
4572 int ret;
4573 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4574 &saved_remote_timeout);
4575
4576 remote_timeout = remote_flash_timeout;
4577 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
4578 do_cleanups (back_to);
4579
4580 return ret;
4581 }
4582
4583 static void
4584 remote_flash_done (struct target_ops *ops)
4585 {
4586 int saved_remote_timeout = remote_timeout;
4587 int ret;
4588 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4589 &saved_remote_timeout);
4590
4591 remote_timeout = remote_flash_timeout;
4592 ret = remote_send_printf ("vFlashDone");
4593 do_cleanups (back_to);
4594
4595 switch (ret)
4596 {
4597 case PACKET_UNKNOWN:
4598 error (_("Remote target does not support vFlashDone"));
4599 case PACKET_ERROR:
4600 error (_("Error finishing flash operation"));
4601 default:
4602 break;
4603 }
4604 }
4605
4606 static void
4607 remote_files_info (struct target_ops *ignore)
4608 {
4609 puts_filtered ("Debugging a target over a serial line.\n");
4610 }
4611 \f
4612 /* Stuff for dealing with the packets which are part of this protocol.
4613 See comment at top of file for details. */
4614
4615 /* Read a single character from the remote end. */
4616
4617 static int
4618 readchar (int timeout)
4619 {
4620 int ch;
4621
4622 ch = serial_readchar (remote_desc, timeout);
4623
4624 if (ch >= 0)
4625 return ch;
4626
4627 switch ((enum serial_rc) ch)
4628 {
4629 case SERIAL_EOF:
4630 target_mourn_inferior ();
4631 error (_("Remote connection closed"));
4632 /* no return */
4633 case SERIAL_ERROR:
4634 perror_with_name (_("Remote communication error"));
4635 /* no return */
4636 case SERIAL_TIMEOUT:
4637 break;
4638 }
4639 return ch;
4640 }
4641
4642 /* Send the command in *BUF to the remote machine, and read the reply
4643 into *BUF. Report an error if we get an error reply. Resize
4644 *BUF using xrealloc if necessary to hold the result, and update
4645 *SIZEOF_BUF. */
4646
4647 static void
4648 remote_send (char **buf,
4649 long *sizeof_buf)
4650 {
4651 putpkt (*buf);
4652 getpkt (buf, sizeof_buf, 0);
4653
4654 if ((*buf)[0] == 'E')
4655 error (_("Remote failure reply: %s"), *buf);
4656 }
4657
4658 /* Display a null-terminated packet on stdout, for debugging, using C
4659 string notation. */
4660
4661 static void
4662 print_packet (char *buf)
4663 {
4664 puts_filtered ("\"");
4665 fputstr_filtered (buf, '"', gdb_stdout);
4666 puts_filtered ("\"");
4667 }
4668
4669 int
4670 putpkt (char *buf)
4671 {
4672 return putpkt_binary (buf, strlen (buf));
4673 }
4674
4675 /* Send a packet to the remote machine, with error checking. The data
4676 of the packet is in BUF. The string in BUF can be at most
4677 get_remote_packet_size () - 5 to account for the $, # and checksum,
4678 and for a possible /0 if we are debugging (remote_debug) and want
4679 to print the sent packet as a string. */
4680
4681 static int
4682 putpkt_binary (char *buf, int cnt)
4683 {
4684 int i;
4685 unsigned char csum = 0;
4686 char *buf2 = alloca (cnt + 6);
4687
4688 int ch;
4689 int tcount = 0;
4690 char *p;
4691
4692 /* Copy the packet into buffer BUF2, encapsulating it
4693 and giving it a checksum. */
4694
4695 p = buf2;
4696 *p++ = '$';
4697
4698 for (i = 0; i < cnt; i++)
4699 {
4700 csum += buf[i];
4701 *p++ = buf[i];
4702 }
4703 *p++ = '#';
4704 *p++ = tohex ((csum >> 4) & 0xf);
4705 *p++ = tohex (csum & 0xf);
4706
4707 /* Send it over and over until we get a positive ack. */
4708
4709 while (1)
4710 {
4711 int started_error_output = 0;
4712
4713 if (remote_debug)
4714 {
4715 *p = '\0';
4716 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4717 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4718 fprintf_unfiltered (gdb_stdlog, "...");
4719 gdb_flush (gdb_stdlog);
4720 }
4721 if (serial_write (remote_desc, buf2, p - buf2))
4722 perror_with_name (_("putpkt: write failed"));
4723
4724 /* Read until either a timeout occurs (-2) or '+' is read. */
4725 while (1)
4726 {
4727 ch = readchar (remote_timeout);
4728
4729 if (remote_debug)
4730 {
4731 switch (ch)
4732 {
4733 case '+':
4734 case '-':
4735 case SERIAL_TIMEOUT:
4736 case '$':
4737 if (started_error_output)
4738 {
4739 putchar_unfiltered ('\n');
4740 started_error_output = 0;
4741 }
4742 }
4743 }
4744
4745 switch (ch)
4746 {
4747 case '+':
4748 if (remote_debug)
4749 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4750 return 1;
4751 case '-':
4752 if (remote_debug)
4753 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4754 case SERIAL_TIMEOUT:
4755 tcount++;
4756 if (tcount > 3)
4757 return 0;
4758 break; /* Retransmit buffer. */
4759 case '$':
4760 {
4761 if (remote_debug)
4762 fprintf_unfiltered (gdb_stdlog,
4763 "Packet instead of Ack, ignoring it\n");
4764 /* It's probably an old response sent because an ACK
4765 was lost. Gobble up the packet and ack it so it
4766 doesn't get retransmitted when we resend this
4767 packet. */
4768 skip_frame ();
4769 serial_write (remote_desc, "+", 1);
4770 continue; /* Now, go look for +. */
4771 }
4772 default:
4773 if (remote_debug)
4774 {
4775 if (!started_error_output)
4776 {
4777 started_error_output = 1;
4778 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4779 }
4780 fputc_unfiltered (ch & 0177, gdb_stdlog);
4781 }
4782 continue;
4783 }
4784 break; /* Here to retransmit. */
4785 }
4786
4787 #if 0
4788 /* This is wrong. If doing a long backtrace, the user should be
4789 able to get out next time we call QUIT, without anything as
4790 violent as interrupt_query. If we want to provide a way out of
4791 here without getting to the next QUIT, it should be based on
4792 hitting ^C twice as in remote_wait. */
4793 if (quit_flag)
4794 {
4795 quit_flag = 0;
4796 interrupt_query ();
4797 }
4798 #endif
4799 }
4800 }
4801
4802 /* Come here after finding the start of a frame when we expected an
4803 ack. Do our best to discard the rest of this packet. */
4804
4805 static void
4806 skip_frame (void)
4807 {
4808 int c;
4809
4810 while (1)
4811 {
4812 c = readchar (remote_timeout);
4813 switch (c)
4814 {
4815 case SERIAL_TIMEOUT:
4816 /* Nothing we can do. */
4817 return;
4818 case '#':
4819 /* Discard the two bytes of checksum and stop. */
4820 c = readchar (remote_timeout);
4821 if (c >= 0)
4822 c = readchar (remote_timeout);
4823
4824 return;
4825 case '*': /* Run length encoding. */
4826 /* Discard the repeat count. */
4827 c = readchar (remote_timeout);
4828 if (c < 0)
4829 return;
4830 break;
4831 default:
4832 /* A regular character. */
4833 break;
4834 }
4835 }
4836 }
4837
4838 /* Come here after finding the start of the frame. Collect the rest
4839 into *BUF, verifying the checksum, length, and handling run-length
4840 compression. NUL terminate the buffer. If there is not enough room,
4841 expand *BUF using xrealloc.
4842
4843 Returns -1 on error, number of characters in buffer (ignoring the
4844 trailing NULL) on success. (could be extended to return one of the
4845 SERIAL status indications). */
4846
4847 static long
4848 read_frame (char **buf_p,
4849 long *sizeof_buf)
4850 {
4851 unsigned char csum;
4852 long bc;
4853 int c;
4854 char *buf = *buf_p;
4855
4856 csum = 0;
4857 bc = 0;
4858
4859 while (1)
4860 {
4861 c = readchar (remote_timeout);
4862 switch (c)
4863 {
4864 case SERIAL_TIMEOUT:
4865 if (remote_debug)
4866 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4867 return -1;
4868 case '$':
4869 if (remote_debug)
4870 fputs_filtered ("Saw new packet start in middle of old one\n",
4871 gdb_stdlog);
4872 return -1; /* Start a new packet, count retries. */
4873 case '#':
4874 {
4875 unsigned char pktcsum;
4876 int check_0 = 0;
4877 int check_1 = 0;
4878
4879 buf[bc] = '\0';
4880
4881 check_0 = readchar (remote_timeout);
4882 if (check_0 >= 0)
4883 check_1 = readchar (remote_timeout);
4884
4885 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4886 {
4887 if (remote_debug)
4888 fputs_filtered ("Timeout in checksum, retrying\n",
4889 gdb_stdlog);
4890 return -1;
4891 }
4892 else if (check_0 < 0 || check_1 < 0)
4893 {
4894 if (remote_debug)
4895 fputs_filtered ("Communication error in checksum\n",
4896 gdb_stdlog);
4897 return -1;
4898 }
4899
4900 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4901 if (csum == pktcsum)
4902 return bc;
4903
4904 if (remote_debug)
4905 {
4906 fprintf_filtered (gdb_stdlog,
4907 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4908 pktcsum, csum);
4909 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
4910 fputs_filtered ("\n", gdb_stdlog);
4911 }
4912 /* Number of characters in buffer ignoring trailing
4913 NULL. */
4914 return -1;
4915 }
4916 case '*': /* Run length encoding. */
4917 {
4918 int repeat;
4919 csum += c;
4920
4921 c = readchar (remote_timeout);
4922 csum += c;
4923 repeat = c - ' ' + 3; /* Compute repeat count. */
4924
4925 /* The character before ``*'' is repeated. */
4926
4927 if (repeat > 0 && repeat <= 255 && bc > 0)
4928 {
4929 if (bc + repeat - 1 >= *sizeof_buf - 1)
4930 {
4931 /* Make some more room in the buffer. */
4932 *sizeof_buf += repeat;
4933 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4934 buf = *buf_p;
4935 }
4936
4937 memset (&buf[bc], buf[bc - 1], repeat);
4938 bc += repeat;
4939 continue;
4940 }
4941
4942 buf[bc] = '\0';
4943 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
4944 return -1;
4945 }
4946 default:
4947 if (bc >= *sizeof_buf - 1)
4948 {
4949 /* Make some more room in the buffer. */
4950 *sizeof_buf *= 2;
4951 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4952 buf = *buf_p;
4953 }
4954
4955 buf[bc++] = c;
4956 csum += c;
4957 continue;
4958 }
4959 }
4960 }
4961
4962 /* Read a packet from the remote machine, with error checking, and
4963 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4964 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4965 rather than timing out; this is used (in synchronous mode) to wait
4966 for a target that is is executing user code to stop. */
4967 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4968 don't have to change all the calls to getpkt to deal with the
4969 return value, because at the moment I don't know what the right
4970 thing to do it for those. */
4971 void
4972 getpkt (char **buf,
4973 long *sizeof_buf,
4974 int forever)
4975 {
4976 int timed_out;
4977
4978 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4979 }
4980
4981
4982 /* Read a packet from the remote machine, with error checking, and
4983 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4984 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4985 rather than timing out; this is used (in synchronous mode) to wait
4986 for a target that is is executing user code to stop. If FOREVER ==
4987 0, this function is allowed to time out gracefully and return an
4988 indication of this to the caller. Otherwise return the number
4989 of bytes read. */
4990 static int
4991 getpkt_sane (char **buf, long *sizeof_buf, int forever)
4992 {
4993 int c;
4994 int tries;
4995 int timeout;
4996 int val;
4997
4998 strcpy (*buf, "timeout");
4999
5000 if (forever)
5001 {
5002 timeout = watchdog > 0 ? watchdog : -1;
5003 }
5004
5005 else
5006 timeout = remote_timeout;
5007
5008 #define MAX_TRIES 3
5009
5010 for (tries = 1; tries <= MAX_TRIES; tries++)
5011 {
5012 /* This can loop forever if the remote side sends us characters
5013 continuously, but if it pauses, we'll get a zero from
5014 readchar because of timeout. Then we'll count that as a
5015 retry. */
5016
5017 /* Note that we will only wait forever prior to the start of a
5018 packet. After that, we expect characters to arrive at a
5019 brisk pace. They should show up within remote_timeout
5020 intervals. */
5021
5022 do
5023 {
5024 c = readchar (timeout);
5025
5026 if (c == SERIAL_TIMEOUT)
5027 {
5028 if (forever) /* Watchdog went off? Kill the target. */
5029 {
5030 QUIT;
5031 target_mourn_inferior ();
5032 error (_("Watchdog timeout has expired. Target detached."));
5033 }
5034 if (remote_debug)
5035 fputs_filtered ("Timed out.\n", gdb_stdlog);
5036 goto retry;
5037 }
5038 }
5039 while (c != '$');
5040
5041 /* We've found the start of a packet, now collect the data. */
5042
5043 val = read_frame (buf, sizeof_buf);
5044
5045 if (val >= 0)
5046 {
5047 if (remote_debug)
5048 {
5049 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
5050 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
5051 fprintf_unfiltered (gdb_stdlog, "\n");
5052 }
5053 serial_write (remote_desc, "+", 1);
5054 return val;
5055 }
5056
5057 /* Try the whole thing again. */
5058 retry:
5059 serial_write (remote_desc, "-", 1);
5060 }
5061
5062 /* We have tried hard enough, and just can't receive the packet.
5063 Give up. */
5064
5065 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
5066 serial_write (remote_desc, "+", 1);
5067 return -1;
5068 }
5069 \f
5070 static void
5071 remote_kill (void)
5072 {
5073 /* For some mysterious reason, wait_for_inferior calls kill instead of
5074 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
5075 if (kill_kludge)
5076 {
5077 kill_kludge = 0;
5078 target_mourn_inferior ();
5079 return;
5080 }
5081
5082 /* Use catch_errors so the user can quit from gdb even when we aren't on
5083 speaking terms with the remote system. */
5084 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5085
5086 /* Don't wait for it to die. I'm not really sure it matters whether
5087 we do or not. For the existing stubs, kill is a noop. */
5088 target_mourn_inferior ();
5089 }
5090
5091 /* Async version of remote_kill. */
5092 static void
5093 remote_async_kill (void)
5094 {
5095 /* Unregister the file descriptor from the event loop. */
5096 if (target_is_async_p ())
5097 serial_async (remote_desc, NULL, 0);
5098
5099 /* For some mysterious reason, wait_for_inferior calls kill instead of
5100 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
5101 if (kill_kludge)
5102 {
5103 kill_kludge = 0;
5104 target_mourn_inferior ();
5105 return;
5106 }
5107
5108 /* Use catch_errors so the user can quit from gdb even when we
5109 aren't on speaking terms with the remote system. */
5110 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5111
5112 /* Don't wait for it to die. I'm not really sure it matters whether
5113 we do or not. For the existing stubs, kill is a noop. */
5114 target_mourn_inferior ();
5115 }
5116
5117 static void
5118 remote_mourn (void)
5119 {
5120 remote_mourn_1 (&remote_ops);
5121 }
5122
5123 static void
5124 remote_async_mourn (void)
5125 {
5126 remote_mourn_1 (&remote_async_ops);
5127 }
5128
5129 static void
5130 extended_remote_mourn (void)
5131 {
5132 /* We do _not_ want to mourn the target like this; this will
5133 remove the extended remote target from the target stack,
5134 and the next time the user says "run" it'll fail.
5135
5136 FIXME: What is the right thing to do here? */
5137 #if 0
5138 remote_mourn_1 (&extended_remote_ops);
5139 #endif
5140 }
5141
5142 /* Worker function for remote_mourn. */
5143 static void
5144 remote_mourn_1 (struct target_ops *target)
5145 {
5146 unpush_target (target);
5147 generic_mourn_inferior ();
5148 }
5149
5150 /* In the extended protocol we want to be able to do things like
5151 "run" and have them basically work as expected. So we need
5152 a special create_inferior function.
5153
5154 FIXME: One day add support for changing the exec file
5155 we're debugging, arguments and an environment. */
5156
5157 static void
5158 extended_remote_create_inferior (char *exec_file, char *args,
5159 char **env, int from_tty)
5160 {
5161 /* Rip out the breakpoints; we'll reinsert them after restarting
5162 the remote server. */
5163 remove_breakpoints ();
5164
5165 /* Now restart the remote server. */
5166 extended_remote_restart ();
5167
5168 /* NOTE: We don't need to recheck for a target description here; but
5169 if we gain the ability to switch the remote executable we may
5170 need to, if for instance we are running a process which requested
5171 different emulated hardware from the operating system. A
5172 concrete example of this is ARM GNU/Linux, where some binaries
5173 will have a legacy FPA coprocessor emulated and others may have
5174 access to a hardware VFP unit. */
5175
5176 /* Now put the breakpoints back in. This way we're safe if the
5177 restart function works via a unix fork on the remote side. */
5178 insert_breakpoints ();
5179
5180 /* Clean up from the last time we were running. */
5181 clear_proceed_status ();
5182 }
5183
5184 /* Async version of extended_remote_create_inferior. */
5185 static void
5186 extended_remote_async_create_inferior (char *exec_file, char *args,
5187 char **env, int from_tty)
5188 {
5189 /* Rip out the breakpoints; we'll reinsert them after restarting
5190 the remote server. */
5191 remove_breakpoints ();
5192
5193 /* If running asynchronously, register the target file descriptor
5194 with the event loop. */
5195 if (target_can_async_p ())
5196 target_async (inferior_event_handler, 0);
5197
5198 /* Now restart the remote server. */
5199 extended_remote_restart ();
5200
5201 /* NOTE: We don't need to recheck for a target description here; but
5202 if we gain the ability to switch the remote executable we may
5203 need to, if for instance we are running a process which requested
5204 different emulated hardware from the operating system. A
5205 concrete example of this is ARM GNU/Linux, where some binaries
5206 will have a legacy FPA coprocessor emulated and others may have
5207 access to a hardware VFP unit. */
5208
5209 /* Now put the breakpoints back in. This way we're safe if the
5210 restart function works via a unix fork on the remote side. */
5211 insert_breakpoints ();
5212
5213 /* Clean up from the last time we were running. */
5214 clear_proceed_status ();
5215 }
5216 \f
5217
5218 /* Insert a breakpoint. On targets that have software breakpoint
5219 support, we ask the remote target to do the work; on targets
5220 which don't, we insert a traditional memory breakpoint. */
5221
5222 static int
5223 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
5224 {
5225 CORE_ADDR addr = bp_tgt->placed_address;
5226 struct remote_state *rs = get_remote_state ();
5227
5228 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
5229 If it succeeds, then set the support to PACKET_ENABLE. If it
5230 fails, and the user has explicitly requested the Z support then
5231 report an error, otherwise, mark it disabled and go on. */
5232
5233 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5234 {
5235 char *p = rs->buf;
5236
5237 *(p++) = 'Z';
5238 *(p++) = '0';
5239 *(p++) = ',';
5240 gdbarch_breakpoint_from_pc
5241 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5242 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5243 p += hexnumstr (p, addr);
5244 sprintf (p, ",%d", bp_tgt->placed_size);
5245
5246 putpkt (rs->buf);
5247 getpkt (&rs->buf, &rs->buf_size, 0);
5248
5249 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
5250 {
5251 case PACKET_ERROR:
5252 return -1;
5253 case PACKET_OK:
5254 return 0;
5255 case PACKET_UNKNOWN:
5256 break;
5257 }
5258 }
5259
5260 return memory_insert_breakpoint (bp_tgt);
5261 }
5262
5263 static int
5264 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
5265 {
5266 CORE_ADDR addr = bp_tgt->placed_address;
5267 struct remote_state *rs = get_remote_state ();
5268 int bp_size;
5269
5270 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5271 {
5272 char *p = rs->buf;
5273
5274 *(p++) = 'z';
5275 *(p++) = '0';
5276 *(p++) = ',';
5277
5278 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5279 p += hexnumstr (p, addr);
5280 sprintf (p, ",%d", bp_tgt->placed_size);
5281
5282 putpkt (rs->buf);
5283 getpkt (&rs->buf, &rs->buf_size, 0);
5284
5285 return (rs->buf[0] == 'E');
5286 }
5287
5288 return memory_remove_breakpoint (bp_tgt);
5289 }
5290
5291 static int
5292 watchpoint_to_Z_packet (int type)
5293 {
5294 switch (type)
5295 {
5296 case hw_write:
5297 return Z_PACKET_WRITE_WP;
5298 break;
5299 case hw_read:
5300 return Z_PACKET_READ_WP;
5301 break;
5302 case hw_access:
5303 return Z_PACKET_ACCESS_WP;
5304 break;
5305 default:
5306 internal_error (__FILE__, __LINE__,
5307 _("hw_bp_to_z: bad watchpoint type %d"), type);
5308 }
5309 }
5310
5311 static int
5312 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
5313 {
5314 struct remote_state *rs = get_remote_state ();
5315 char *p;
5316 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5317
5318 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5319 return -1;
5320
5321 sprintf (rs->buf, "Z%x,", packet);
5322 p = strchr (rs->buf, '\0');
5323 addr = remote_address_masked (addr);
5324 p += hexnumstr (p, (ULONGEST) addr);
5325 sprintf (p, ",%x", len);
5326
5327 putpkt (rs->buf);
5328 getpkt (&rs->buf, &rs->buf_size, 0);
5329
5330 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5331 {
5332 case PACKET_ERROR:
5333 case PACKET_UNKNOWN:
5334 return -1;
5335 case PACKET_OK:
5336 return 0;
5337 }
5338 internal_error (__FILE__, __LINE__,
5339 _("remote_insert_watchpoint: reached end of function"));
5340 }
5341
5342
5343 static int
5344 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
5345 {
5346 struct remote_state *rs = get_remote_state ();
5347 char *p;
5348 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5349
5350 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5351 return -1;
5352
5353 sprintf (rs->buf, "z%x,", packet);
5354 p = strchr (rs->buf, '\0');
5355 addr = remote_address_masked (addr);
5356 p += hexnumstr (p, (ULONGEST) addr);
5357 sprintf (p, ",%x", len);
5358 putpkt (rs->buf);
5359 getpkt (&rs->buf, &rs->buf_size, 0);
5360
5361 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5362 {
5363 case PACKET_ERROR:
5364 case PACKET_UNKNOWN:
5365 return -1;
5366 case PACKET_OK:
5367 return 0;
5368 }
5369 internal_error (__FILE__, __LINE__,
5370 _("remote_remove_watchpoint: reached end of function"));
5371 }
5372
5373
5374 int remote_hw_watchpoint_limit = -1;
5375 int remote_hw_breakpoint_limit = -1;
5376
5377 static int
5378 remote_check_watch_resources (int type, int cnt, int ot)
5379 {
5380 if (type == bp_hardware_breakpoint)
5381 {
5382 if (remote_hw_breakpoint_limit == 0)
5383 return 0;
5384 else if (remote_hw_breakpoint_limit < 0)
5385 return 1;
5386 else if (cnt <= remote_hw_breakpoint_limit)
5387 return 1;
5388 }
5389 else
5390 {
5391 if (remote_hw_watchpoint_limit == 0)
5392 return 0;
5393 else if (remote_hw_watchpoint_limit < 0)
5394 return 1;
5395 else if (ot)
5396 return -1;
5397 else if (cnt <= remote_hw_watchpoint_limit)
5398 return 1;
5399 }
5400 return -1;
5401 }
5402
5403 static int
5404 remote_stopped_by_watchpoint (void)
5405 {
5406 return remote_stopped_by_watchpoint_p;
5407 }
5408
5409 extern int stepped_after_stopped_by_watchpoint;
5410
5411 static int
5412 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
5413 {
5414 int rc = 0;
5415 if (remote_stopped_by_watchpoint ()
5416 || stepped_after_stopped_by_watchpoint)
5417 {
5418 *addr_p = remote_watch_data_address;
5419 rc = 1;
5420 }
5421
5422 return rc;
5423 }
5424
5425
5426 static int
5427 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
5428 {
5429 CORE_ADDR addr;
5430 struct remote_state *rs = get_remote_state ();
5431 char *p = rs->buf;
5432
5433 /* The length field should be set to the size of a breakpoint
5434 instruction, even though we aren't inserting one ourselves. */
5435
5436 gdbarch_breakpoint_from_pc
5437 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5438
5439 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5440 return -1;
5441
5442 *(p++) = 'Z';
5443 *(p++) = '1';
5444 *(p++) = ',';
5445
5446 addr = remote_address_masked (bp_tgt->placed_address);
5447 p += hexnumstr (p, (ULONGEST) addr);
5448 sprintf (p, ",%x", bp_tgt->placed_size);
5449
5450 putpkt (rs->buf);
5451 getpkt (&rs->buf, &rs->buf_size, 0);
5452
5453 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5454 {
5455 case PACKET_ERROR:
5456 case PACKET_UNKNOWN:
5457 return -1;
5458 case PACKET_OK:
5459 return 0;
5460 }
5461 internal_error (__FILE__, __LINE__,
5462 _("remote_insert_hw_breakpoint: reached end of function"));
5463 }
5464
5465
5466 static int
5467 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
5468 {
5469 CORE_ADDR addr;
5470 struct remote_state *rs = get_remote_state ();
5471 char *p = rs->buf;
5472
5473 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5474 return -1;
5475
5476 *(p++) = 'z';
5477 *(p++) = '1';
5478 *(p++) = ',';
5479
5480 addr = remote_address_masked (bp_tgt->placed_address);
5481 p += hexnumstr (p, (ULONGEST) addr);
5482 sprintf (p, ",%x", bp_tgt->placed_size);
5483
5484 putpkt (rs->buf);
5485 getpkt (&rs->buf, &rs->buf_size, 0);
5486
5487 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5488 {
5489 case PACKET_ERROR:
5490 case PACKET_UNKNOWN:
5491 return -1;
5492 case PACKET_OK:
5493 return 0;
5494 }
5495 internal_error (__FILE__, __LINE__,
5496 _("remote_remove_hw_breakpoint: reached end of function"));
5497 }
5498
5499 /* Some targets are only capable of doing downloads, and afterwards
5500 they switch to the remote serial protocol. This function provides
5501 a clean way to get from the download target to the remote target.
5502 It's basically just a wrapper so that we don't have to expose any
5503 of the internal workings of remote.c.
5504
5505 Prior to calling this routine, you should shutdown the current
5506 target code, else you will get the "A program is being debugged
5507 already..." message. Usually a call to pop_target() suffices. */
5508
5509 void
5510 push_remote_target (char *name, int from_tty)
5511 {
5512 printf_filtered (_("Switching to remote protocol\n"));
5513 remote_open (name, from_tty);
5514 }
5515
5516 /* Table used by the crc32 function to calcuate the checksum. */
5517
5518 static unsigned long crc32_table[256] =
5519 {0, 0};
5520
5521 static unsigned long
5522 crc32 (unsigned char *buf, int len, unsigned int crc)
5523 {
5524 if (!crc32_table[1])
5525 {
5526 /* Initialize the CRC table and the decoding table. */
5527 int i, j;
5528 unsigned int c;
5529
5530 for (i = 0; i < 256; i++)
5531 {
5532 for (c = i << 24, j = 8; j > 0; --j)
5533 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5534 crc32_table[i] = c;
5535 }
5536 }
5537
5538 while (len--)
5539 {
5540 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5541 buf++;
5542 }
5543 return crc;
5544 }
5545
5546 /* compare-sections command
5547
5548 With no arguments, compares each loadable section in the exec bfd
5549 with the same memory range on the target, and reports mismatches.
5550 Useful for verifying the image on the target against the exec file.
5551 Depends on the target understanding the new "qCRC:" request. */
5552
5553 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5554 target method (target verify memory) and generic version of the
5555 actual command. This will allow other high-level code (especially
5556 generic_load()) to make use of this target functionality. */
5557
5558 static void
5559 compare_sections_command (char *args, int from_tty)
5560 {
5561 struct remote_state *rs = get_remote_state ();
5562 asection *s;
5563 unsigned long host_crc, target_crc;
5564 extern bfd *exec_bfd;
5565 struct cleanup *old_chain;
5566 char *tmp;
5567 char *sectdata;
5568 const char *sectname;
5569 bfd_size_type size;
5570 bfd_vma lma;
5571 int matched = 0;
5572 int mismatched = 0;
5573
5574 if (!exec_bfd)
5575 error (_("command cannot be used without an exec file"));
5576 if (!current_target.to_shortname ||
5577 strcmp (current_target.to_shortname, "remote") != 0)
5578 error (_("command can only be used with remote target"));
5579
5580 for (s = exec_bfd->sections; s; s = s->next)
5581 {
5582 if (!(s->flags & SEC_LOAD))
5583 continue; /* skip non-loadable section */
5584
5585 size = bfd_get_section_size (s);
5586 if (size == 0)
5587 continue; /* skip zero-length section */
5588
5589 sectname = bfd_get_section_name (exec_bfd, s);
5590 if (args && strcmp (args, sectname) != 0)
5591 continue; /* not the section selected by user */
5592
5593 matched = 1; /* do this section */
5594 lma = s->lma;
5595 /* FIXME: assumes lma can fit into long. */
5596 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
5597 (long) lma, (long) size);
5598 putpkt (rs->buf);
5599
5600 /* Be clever; compute the host_crc before waiting for target
5601 reply. */
5602 sectdata = xmalloc (size);
5603 old_chain = make_cleanup (xfree, sectdata);
5604 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5605 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5606
5607 getpkt (&rs->buf, &rs->buf_size, 0);
5608 if (rs->buf[0] == 'E')
5609 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
5610 sectname, paddr (lma), paddr (lma + size));
5611 if (rs->buf[0] != 'C')
5612 error (_("remote target does not support this operation"));
5613
5614 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
5615 target_crc = target_crc * 16 + fromhex (*tmp);
5616
5617 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5618 sectname, paddr (lma), paddr (lma + size));
5619 if (host_crc == target_crc)
5620 printf_filtered ("matched.\n");
5621 else
5622 {
5623 printf_filtered ("MIS-MATCHED!\n");
5624 mismatched++;
5625 }
5626
5627 do_cleanups (old_chain);
5628 }
5629 if (mismatched > 0)
5630 warning (_("One or more sections of the remote executable does not match\n\
5631 the loaded file\n"));
5632 if (args && !matched)
5633 printf_filtered (_("No loaded section named '%s'.\n"), args);
5634 }
5635
5636 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
5637 into remote target. The number of bytes written to the remote
5638 target is returned, or -1 for error. */
5639
5640 static LONGEST
5641 remote_write_qxfer (struct target_ops *ops, const char *object_name,
5642 const char *annex, const gdb_byte *writebuf,
5643 ULONGEST offset, LONGEST len,
5644 struct packet_config *packet)
5645 {
5646 int i, buf_len;
5647 ULONGEST n;
5648 gdb_byte *wbuf;
5649 struct remote_state *rs = get_remote_state ();
5650 int max_size = get_memory_write_packet_size ();
5651
5652 if (packet->support == PACKET_DISABLE)
5653 return -1;
5654
5655 /* Insert header. */
5656 i = snprintf (rs->buf, max_size,
5657 "qXfer:%s:write:%s:%s:",
5658 object_name, annex ? annex : "",
5659 phex_nz (offset, sizeof offset));
5660 max_size -= (i + 1);
5661
5662 /* Escape as much data as fits into rs->buf. */
5663 buf_len = remote_escape_output
5664 (writebuf, len, (rs->buf + i), &max_size, max_size);
5665
5666 if (putpkt_binary (rs->buf, i + buf_len) < 0
5667 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
5668 || packet_ok (rs->buf, packet) != PACKET_OK)
5669 return -1;
5670
5671 unpack_varlen_hex (rs->buf, &n);
5672 return n;
5673 }
5674
5675 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
5676 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
5677 number of bytes read is returned, or 0 for EOF, or -1 for error.
5678 The number of bytes read may be less than LEN without indicating an
5679 EOF. PACKET is checked and updated to indicate whether the remote
5680 target supports this object. */
5681
5682 static LONGEST
5683 remote_read_qxfer (struct target_ops *ops, const char *object_name,
5684 const char *annex,
5685 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
5686 struct packet_config *packet)
5687 {
5688 static char *finished_object;
5689 static char *finished_annex;
5690 static ULONGEST finished_offset;
5691
5692 struct remote_state *rs = get_remote_state ();
5693 unsigned int total = 0;
5694 LONGEST i, n, packet_len;
5695
5696 if (packet->support == PACKET_DISABLE)
5697 return -1;
5698
5699 /* Check whether we've cached an end-of-object packet that matches
5700 this request. */
5701 if (finished_object)
5702 {
5703 if (strcmp (object_name, finished_object) == 0
5704 && strcmp (annex ? annex : "", finished_annex) == 0
5705 && offset == finished_offset)
5706 return 0;
5707
5708 /* Otherwise, we're now reading something different. Discard
5709 the cache. */
5710 xfree (finished_object);
5711 xfree (finished_annex);
5712 finished_object = NULL;
5713 finished_annex = NULL;
5714 }
5715
5716 /* Request only enough to fit in a single packet. The actual data
5717 may not, since we don't know how much of it will need to be escaped;
5718 the target is free to respond with slightly less data. We subtract
5719 five to account for the response type and the protocol frame. */
5720 n = min (get_remote_packet_size () - 5, len);
5721 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
5722 object_name, annex ? annex : "",
5723 phex_nz (offset, sizeof offset),
5724 phex_nz (n, sizeof n));
5725 i = putpkt (rs->buf);
5726 if (i < 0)
5727 return -1;
5728
5729 rs->buf[0] = '\0';
5730 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
5731 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
5732 return -1;
5733
5734 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
5735 error (_("Unknown remote qXfer reply: %s"), rs->buf);
5736
5737 /* 'm' means there is (or at least might be) more data after this
5738 batch. That does not make sense unless there's at least one byte
5739 of data in this reply. */
5740 if (rs->buf[0] == 'm' && packet_len == 1)
5741 error (_("Remote qXfer reply contained no data."));
5742
5743 /* Got some data. */
5744 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
5745
5746 /* 'l' is an EOF marker, possibly including a final block of data,
5747 or possibly empty. If we have the final block of a non-empty
5748 object, record this fact to bypass a subsequent partial read. */
5749 if (rs->buf[0] == 'l' && offset + i > 0)
5750 {
5751 finished_object = xstrdup (object_name);
5752 finished_annex = xstrdup (annex ? annex : "");
5753 finished_offset = offset + i;
5754 }
5755
5756 return i;
5757 }
5758
5759 static LONGEST
5760 remote_xfer_partial (struct target_ops *ops, enum target_object object,
5761 const char *annex, gdb_byte *readbuf,
5762 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5763 {
5764 struct remote_state *rs = get_remote_state ();
5765 int i;
5766 char *p2;
5767 char query_type;
5768
5769 /* Handle memory using the standard memory routines. */
5770 if (object == TARGET_OBJECT_MEMORY)
5771 {
5772 int xfered;
5773 errno = 0;
5774
5775 if (writebuf != NULL)
5776 xfered = remote_write_bytes (offset, writebuf, len);
5777 else
5778 xfered = remote_read_bytes (offset, readbuf, len);
5779
5780 if (xfered > 0)
5781 return xfered;
5782 else if (xfered == 0 && errno == 0)
5783 return 0;
5784 else
5785 return -1;
5786 }
5787
5788 /* Handle SPU memory using qxfer packets. */
5789 if (object == TARGET_OBJECT_SPU)
5790 {
5791 if (readbuf)
5792 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
5793 &remote_protocol_packets
5794 [PACKET_qXfer_spu_read]);
5795 else
5796 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
5797 &remote_protocol_packets
5798 [PACKET_qXfer_spu_write]);
5799 }
5800
5801 /* Only handle flash writes. */
5802 if (writebuf != NULL)
5803 {
5804 LONGEST xfered;
5805
5806 switch (object)
5807 {
5808 case TARGET_OBJECT_FLASH:
5809 xfered = remote_flash_write (ops, offset, len, writebuf);
5810
5811 if (xfered > 0)
5812 return xfered;
5813 else if (xfered == 0 && errno == 0)
5814 return 0;
5815 else
5816 return -1;
5817
5818 default:
5819 return -1;
5820 }
5821 }
5822
5823 /* Map pre-existing objects onto letters. DO NOT do this for new
5824 objects!!! Instead specify new query packets. */
5825 switch (object)
5826 {
5827 case TARGET_OBJECT_AVR:
5828 query_type = 'R';
5829 break;
5830
5831 case TARGET_OBJECT_AUXV:
5832 gdb_assert (annex == NULL);
5833 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
5834 &remote_protocol_packets[PACKET_qXfer_auxv]);
5835
5836 case TARGET_OBJECT_AVAILABLE_FEATURES:
5837 return remote_read_qxfer
5838 (ops, "features", annex, readbuf, offset, len,
5839 &remote_protocol_packets[PACKET_qXfer_features]);
5840
5841 case TARGET_OBJECT_LIBRARIES:
5842 return remote_read_qxfer
5843 (ops, "libraries", annex, readbuf, offset, len,
5844 &remote_protocol_packets[PACKET_qXfer_libraries]);
5845
5846 case TARGET_OBJECT_MEMORY_MAP:
5847 gdb_assert (annex == NULL);
5848 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
5849 &remote_protocol_packets[PACKET_qXfer_memory_map]);
5850
5851 default:
5852 return -1;
5853 }
5854
5855 /* Note: a zero OFFSET and LEN can be used to query the minimum
5856 buffer size. */
5857 if (offset == 0 && len == 0)
5858 return (get_remote_packet_size ());
5859 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
5860 large enough let the caller deal with it. */
5861 if (len < get_remote_packet_size ())
5862 return -1;
5863 len = get_remote_packet_size ();
5864
5865 /* Except for querying the minimum buffer size, target must be open. */
5866 if (!remote_desc)
5867 error (_("remote query is only available after target open"));
5868
5869 gdb_assert (annex != NULL);
5870 gdb_assert (readbuf != NULL);
5871
5872 p2 = rs->buf;
5873 *p2++ = 'q';
5874 *p2++ = query_type;
5875
5876 /* We used one buffer char for the remote protocol q command and
5877 another for the query type. As the remote protocol encapsulation
5878 uses 4 chars plus one extra in case we are debugging
5879 (remote_debug), we have PBUFZIZ - 7 left to pack the query
5880 string. */
5881 i = 0;
5882 while (annex[i] && (i < (get_remote_packet_size () - 8)))
5883 {
5884 /* Bad caller may have sent forbidden characters. */
5885 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
5886 *p2++ = annex[i];
5887 i++;
5888 }
5889 *p2 = '\0';
5890 gdb_assert (annex[i] == '\0');
5891
5892 i = putpkt (rs->buf);
5893 if (i < 0)
5894 return i;
5895
5896 getpkt (&rs->buf, &rs->buf_size, 0);
5897 strcpy ((char *) readbuf, rs->buf);
5898
5899 return strlen ((char *) readbuf);
5900 }
5901
5902 static void
5903 remote_rcmd (char *command,
5904 struct ui_file *outbuf)
5905 {
5906 struct remote_state *rs = get_remote_state ();
5907 char *p = rs->buf;
5908
5909 if (!remote_desc)
5910 error (_("remote rcmd is only available after target open"));
5911
5912 /* Send a NULL command across as an empty command. */
5913 if (command == NULL)
5914 command = "";
5915
5916 /* The query prefix. */
5917 strcpy (rs->buf, "qRcmd,");
5918 p = strchr (rs->buf, '\0');
5919
5920 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
5921 error (_("\"monitor\" command ``%s'' is too long."), command);
5922
5923 /* Encode the actual command. */
5924 bin2hex ((gdb_byte *) command, p, 0);
5925
5926 if (putpkt (rs->buf) < 0)
5927 error (_("Communication problem with target."));
5928
5929 /* get/display the response */
5930 while (1)
5931 {
5932 char *buf;
5933
5934 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
5935 rs->buf[0] = '\0';
5936 getpkt (&rs->buf, &rs->buf_size, 0);
5937 buf = rs->buf;
5938 if (buf[0] == '\0')
5939 error (_("Target does not support this command."));
5940 if (buf[0] == 'O' && buf[1] != 'K')
5941 {
5942 remote_console_output (buf + 1); /* 'O' message from stub. */
5943 continue;
5944 }
5945 if (strcmp (buf, "OK") == 0)
5946 break;
5947 if (strlen (buf) == 3 && buf[0] == 'E'
5948 && isdigit (buf[1]) && isdigit (buf[2]))
5949 {
5950 error (_("Protocol error with Rcmd"));
5951 }
5952 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5953 {
5954 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5955 fputc_unfiltered (c, outbuf);
5956 }
5957 break;
5958 }
5959 }
5960
5961 static VEC(mem_region_s) *
5962 remote_memory_map (struct target_ops *ops)
5963 {
5964 VEC(mem_region_s) *result = NULL;
5965 char *text = target_read_stralloc (&current_target,
5966 TARGET_OBJECT_MEMORY_MAP, NULL);
5967
5968 if (text)
5969 {
5970 struct cleanup *back_to = make_cleanup (xfree, text);
5971 result = parse_memory_map (text);
5972 do_cleanups (back_to);
5973 }
5974
5975 return result;
5976 }
5977
5978 static void
5979 packet_command (char *args, int from_tty)
5980 {
5981 struct remote_state *rs = get_remote_state ();
5982
5983 if (!remote_desc)
5984 error (_("command can only be used with remote target"));
5985
5986 if (!args)
5987 error (_("remote-packet command requires packet text as argument"));
5988
5989 puts_filtered ("sending: ");
5990 print_packet (args);
5991 puts_filtered ("\n");
5992 putpkt (args);
5993
5994 getpkt (&rs->buf, &rs->buf_size, 0);
5995 puts_filtered ("received: ");
5996 print_packet (rs->buf);
5997 puts_filtered ("\n");
5998 }
5999
6000 #if 0
6001 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
6002
6003 static void display_thread_info (struct gdb_ext_thread_info *info);
6004
6005 static void threadset_test_cmd (char *cmd, int tty);
6006
6007 static void threadalive_test (char *cmd, int tty);
6008
6009 static void threadlist_test_cmd (char *cmd, int tty);
6010
6011 int get_and_display_threadinfo (threadref *ref);
6012
6013 static void threadinfo_test_cmd (char *cmd, int tty);
6014
6015 static int thread_display_step (threadref *ref, void *context);
6016
6017 static void threadlist_update_test_cmd (char *cmd, int tty);
6018
6019 static void init_remote_threadtests (void);
6020
6021 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
6022
6023 static void
6024 threadset_test_cmd (char *cmd, int tty)
6025 {
6026 int sample_thread = SAMPLE_THREAD;
6027
6028 printf_filtered (_("Remote threadset test\n"));
6029 set_thread (sample_thread, 1);
6030 }
6031
6032
6033 static void
6034 threadalive_test (char *cmd, int tty)
6035 {
6036 int sample_thread = SAMPLE_THREAD;
6037
6038 if (remote_thread_alive (pid_to_ptid (sample_thread)))
6039 printf_filtered ("PASS: Thread alive test\n");
6040 else
6041 printf_filtered ("FAIL: Thread alive test\n");
6042 }
6043
6044 void output_threadid (char *title, threadref *ref);
6045
6046 void
6047 output_threadid (char *title, threadref *ref)
6048 {
6049 char hexid[20];
6050
6051 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
6052 hexid[16] = 0;
6053 printf_filtered ("%s %s\n", title, (&hexid[0]));
6054 }
6055
6056 static void
6057 threadlist_test_cmd (char *cmd, int tty)
6058 {
6059 int startflag = 1;
6060 threadref nextthread;
6061 int done, result_count;
6062 threadref threadlist[3];
6063
6064 printf_filtered ("Remote Threadlist test\n");
6065 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
6066 &result_count, &threadlist[0]))
6067 printf_filtered ("FAIL: threadlist test\n");
6068 else
6069 {
6070 threadref *scan = threadlist;
6071 threadref *limit = scan + result_count;
6072
6073 while (scan < limit)
6074 output_threadid (" thread ", scan++);
6075 }
6076 }
6077
6078 void
6079 display_thread_info (struct gdb_ext_thread_info *info)
6080 {
6081 output_threadid ("Threadid: ", &info->threadid);
6082 printf_filtered ("Name: %s\n ", info->shortname);
6083 printf_filtered ("State: %s\n", info->display);
6084 printf_filtered ("other: %s\n\n", info->more_display);
6085 }
6086
6087 int
6088 get_and_display_threadinfo (threadref *ref)
6089 {
6090 int result;
6091 int set;
6092 struct gdb_ext_thread_info threadinfo;
6093
6094 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
6095 | TAG_MOREDISPLAY | TAG_DISPLAY;
6096 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
6097 display_thread_info (&threadinfo);
6098 return result;
6099 }
6100
6101 static void
6102 threadinfo_test_cmd (char *cmd, int tty)
6103 {
6104 int athread = SAMPLE_THREAD;
6105 threadref thread;
6106 int set;
6107
6108 int_to_threadref (&thread, athread);
6109 printf_filtered ("Remote Threadinfo test\n");
6110 if (!get_and_display_threadinfo (&thread))
6111 printf_filtered ("FAIL cannot get thread info\n");
6112 }
6113
6114 static int
6115 thread_display_step (threadref *ref, void *context)
6116 {
6117 /* output_threadid(" threadstep ",ref); *//* simple test */
6118 return get_and_display_threadinfo (ref);
6119 }
6120
6121 static void
6122 threadlist_update_test_cmd (char *cmd, int tty)
6123 {
6124 printf_filtered ("Remote Threadlist update test\n");
6125 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
6126 }
6127
6128 static void
6129 init_remote_threadtests (void)
6130 {
6131 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
6132 Fetch and print the remote list of thread identifiers, one pkt only"));
6133 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
6134 _("Fetch and display info about one thread"));
6135 add_com ("tset", class_obscure, threadset_test_cmd,
6136 _("Test setting to a different thread"));
6137 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
6138 _("Iterate through updating all remote thread info"));
6139 add_com ("talive", class_obscure, threadalive_test,
6140 _(" Remote thread alive test "));
6141 }
6142
6143 #endif /* 0 */
6144
6145 /* Convert a thread ID to a string. Returns the string in a static
6146 buffer. */
6147
6148 static char *
6149 remote_pid_to_str (ptid_t ptid)
6150 {
6151 static char buf[32];
6152
6153 xsnprintf (buf, sizeof buf, "Thread %d", ptid_get_pid (ptid));
6154 return buf;
6155 }
6156
6157 /* Get the address of the thread local variable in OBJFILE which is
6158 stored at OFFSET within the thread local storage for thread PTID. */
6159
6160 static CORE_ADDR
6161 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
6162 {
6163 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
6164 {
6165 struct remote_state *rs = get_remote_state ();
6166 char *p = rs->buf;
6167 enum packet_result result;
6168
6169 strcpy (p, "qGetTLSAddr:");
6170 p += strlen (p);
6171 p += hexnumstr (p, PIDGET (ptid));
6172 *p++ = ',';
6173 p += hexnumstr (p, offset);
6174 *p++ = ',';
6175 p += hexnumstr (p, lm);
6176 *p++ = '\0';
6177
6178 putpkt (rs->buf);
6179 getpkt (&rs->buf, &rs->buf_size, 0);
6180 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
6181 if (result == PACKET_OK)
6182 {
6183 ULONGEST result;
6184
6185 unpack_varlen_hex (rs->buf, &result);
6186 return result;
6187 }
6188 else if (result == PACKET_UNKNOWN)
6189 throw_error (TLS_GENERIC_ERROR,
6190 _("Remote target doesn't support qGetTLSAddr packet"));
6191 else
6192 throw_error (TLS_GENERIC_ERROR,
6193 _("Remote target failed to process qGetTLSAddr request"));
6194 }
6195 else
6196 throw_error (TLS_GENERIC_ERROR,
6197 _("TLS not supported or disabled on this target"));
6198 /* Not reached. */
6199 return 0;
6200 }
6201
6202 /* Support for inferring a target description based on the current
6203 architecture and the size of a 'g' packet. While the 'g' packet
6204 can have any size (since optional registers can be left off the
6205 end), some sizes are easily recognizable given knowledge of the
6206 approximate architecture. */
6207
6208 struct remote_g_packet_guess
6209 {
6210 int bytes;
6211 const struct target_desc *tdesc;
6212 };
6213 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
6214 DEF_VEC_O(remote_g_packet_guess_s);
6215
6216 struct remote_g_packet_data
6217 {
6218 VEC(remote_g_packet_guess_s) *guesses;
6219 };
6220
6221 static struct gdbarch_data *remote_g_packet_data_handle;
6222
6223 static void *
6224 remote_g_packet_data_init (struct obstack *obstack)
6225 {
6226 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
6227 }
6228
6229 void
6230 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
6231 const struct target_desc *tdesc)
6232 {
6233 struct remote_g_packet_data *data
6234 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
6235 struct remote_g_packet_guess new_guess, *guess;
6236 int ix;
6237
6238 gdb_assert (tdesc != NULL);
6239
6240 for (ix = 0;
6241 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6242 ix++)
6243 if (guess->bytes == bytes)
6244 internal_error (__FILE__, __LINE__,
6245 "Duplicate g packet description added for size %d",
6246 bytes);
6247
6248 new_guess.bytes = bytes;
6249 new_guess.tdesc = tdesc;
6250 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
6251 }
6252
6253 static const struct target_desc *
6254 remote_read_description (struct target_ops *target)
6255 {
6256 struct remote_g_packet_data *data
6257 = gdbarch_data (current_gdbarch, remote_g_packet_data_handle);
6258
6259 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
6260 {
6261 struct remote_g_packet_guess *guess;
6262 int ix;
6263 int bytes = send_g_packet ();
6264
6265 for (ix = 0;
6266 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6267 ix++)
6268 if (guess->bytes == bytes)
6269 return guess->tdesc;
6270
6271 /* We discard the g packet. A minor optimization would be to
6272 hold on to it, and fill the register cache once we have selected
6273 an architecture, but it's too tricky to do safely. */
6274 }
6275
6276 return NULL;
6277 }
6278
6279 static void
6280 init_remote_ops (void)
6281 {
6282 remote_ops.to_shortname = "remote";
6283 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
6284 remote_ops.to_doc =
6285 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6286 Specify the serial device it is connected to\n\
6287 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
6288 remote_ops.to_open = remote_open;
6289 remote_ops.to_close = remote_close;
6290 remote_ops.to_detach = remote_detach;
6291 remote_ops.to_disconnect = remote_disconnect;
6292 remote_ops.to_resume = remote_resume;
6293 remote_ops.to_wait = remote_wait;
6294 remote_ops.to_fetch_registers = remote_fetch_registers;
6295 remote_ops.to_store_registers = remote_store_registers;
6296 remote_ops.to_prepare_to_store = remote_prepare_to_store;
6297 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
6298 remote_ops.to_files_info = remote_files_info;
6299 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
6300 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
6301 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6302 remote_ops.to_stopped_data_address = remote_stopped_data_address;
6303 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6304 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6305 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6306 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
6307 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
6308 remote_ops.to_kill = remote_kill;
6309 remote_ops.to_load = generic_load;
6310 remote_ops.to_mourn_inferior = remote_mourn;
6311 remote_ops.to_thread_alive = remote_thread_alive;
6312 remote_ops.to_find_new_threads = remote_threads_info;
6313 remote_ops.to_pid_to_str = remote_pid_to_str;
6314 remote_ops.to_extra_thread_info = remote_threads_extra_info;
6315 remote_ops.to_stop = remote_stop;
6316 remote_ops.to_xfer_partial = remote_xfer_partial;
6317 remote_ops.to_rcmd = remote_rcmd;
6318 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
6319 remote_ops.to_stratum = process_stratum;
6320 remote_ops.to_has_all_memory = 1;
6321 remote_ops.to_has_memory = 1;
6322 remote_ops.to_has_stack = 1;
6323 remote_ops.to_has_registers = 1;
6324 remote_ops.to_has_execution = 1;
6325 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6326 remote_ops.to_magic = OPS_MAGIC;
6327 remote_ops.to_memory_map = remote_memory_map;
6328 remote_ops.to_flash_erase = remote_flash_erase;
6329 remote_ops.to_flash_done = remote_flash_done;
6330 remote_ops.to_read_description = remote_read_description;
6331 }
6332
6333 /* Set up the extended remote vector by making a copy of the standard
6334 remote vector and adding to it. */
6335
6336 static void
6337 init_extended_remote_ops (void)
6338 {
6339 extended_remote_ops = remote_ops;
6340
6341 extended_remote_ops.to_shortname = "extended-remote";
6342 extended_remote_ops.to_longname =
6343 "Extended remote serial target in gdb-specific protocol";
6344 extended_remote_ops.to_doc =
6345 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6346 Specify the serial device it is connected to (e.g. /dev/ttya).",
6347 extended_remote_ops.to_open = extended_remote_open;
6348 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
6349 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
6350 }
6351
6352 static int
6353 remote_can_async_p (void)
6354 {
6355 /* We're async whenever the serial device is. */
6356 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
6357 }
6358
6359 static int
6360 remote_is_async_p (void)
6361 {
6362 /* We're async whenever the serial device is. */
6363 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
6364 }
6365
6366 /* Pass the SERIAL event on and up to the client. One day this code
6367 will be able to delay notifying the client of an event until the
6368 point where an entire packet has been received. */
6369
6370 static void (*async_client_callback) (enum inferior_event_type event_type,
6371 void *context);
6372 static void *async_client_context;
6373 static serial_event_ftype remote_async_serial_handler;
6374
6375 static void
6376 remote_async_serial_handler (struct serial *scb, void *context)
6377 {
6378 /* Don't propogate error information up to the client. Instead let
6379 the client find out about the error by querying the target. */
6380 async_client_callback (INF_REG_EVENT, async_client_context);
6381 }
6382
6383 static void
6384 remote_async (void (*callback) (enum inferior_event_type event_type,
6385 void *context), void *context)
6386 {
6387 if (current_target.to_async_mask_value == 0)
6388 internal_error (__FILE__, __LINE__,
6389 _("Calling remote_async when async is masked"));
6390
6391 if (callback != NULL)
6392 {
6393 serial_async (remote_desc, remote_async_serial_handler, NULL);
6394 async_client_callback = callback;
6395 async_client_context = context;
6396 }
6397 else
6398 serial_async (remote_desc, NULL, NULL);
6399 }
6400
6401 /* Target async and target extended-async.
6402
6403 This are temporary targets, until it is all tested. Eventually
6404 async support will be incorporated int the usual 'remote'
6405 target. */
6406
6407 static void
6408 init_remote_async_ops (void)
6409 {
6410 remote_async_ops.to_shortname = "async";
6411 remote_async_ops.to_longname =
6412 "Remote serial target in async version of the gdb-specific protocol";
6413 remote_async_ops.to_doc =
6414 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6415 Specify the serial device it is connected to (e.g. /dev/ttya).";
6416 remote_async_ops.to_open = remote_async_open;
6417 remote_async_ops.to_close = remote_close;
6418 remote_async_ops.to_detach = remote_detach;
6419 remote_async_ops.to_disconnect = remote_disconnect;
6420 remote_async_ops.to_resume = remote_async_resume;
6421 remote_async_ops.to_wait = remote_async_wait;
6422 remote_async_ops.to_fetch_registers = remote_fetch_registers;
6423 remote_async_ops.to_store_registers = remote_store_registers;
6424 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
6425 remote_async_ops.deprecated_xfer_memory = remote_xfer_memory;
6426 remote_async_ops.to_files_info = remote_files_info;
6427 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
6428 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
6429 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6430 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6431 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6432 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
6433 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
6434 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6435 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
6436 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
6437 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
6438 remote_async_ops.to_kill = remote_async_kill;
6439 remote_async_ops.to_load = generic_load;
6440 remote_async_ops.to_mourn_inferior = remote_async_mourn;
6441 remote_async_ops.to_thread_alive = remote_thread_alive;
6442 remote_async_ops.to_find_new_threads = remote_threads_info;
6443 remote_async_ops.to_pid_to_str = remote_pid_to_str;
6444 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
6445 remote_async_ops.to_stop = remote_stop;
6446 remote_async_ops.to_xfer_partial = remote_xfer_partial;
6447 remote_async_ops.to_rcmd = remote_rcmd;
6448 remote_async_ops.to_stratum = process_stratum;
6449 remote_async_ops.to_has_all_memory = 1;
6450 remote_async_ops.to_has_memory = 1;
6451 remote_async_ops.to_has_stack = 1;
6452 remote_async_ops.to_has_registers = 1;
6453 remote_async_ops.to_has_execution = 1;
6454 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6455 remote_async_ops.to_can_async_p = remote_can_async_p;
6456 remote_async_ops.to_is_async_p = remote_is_async_p;
6457 remote_async_ops.to_async = remote_async;
6458 remote_async_ops.to_async_mask_value = 1;
6459 remote_async_ops.to_magic = OPS_MAGIC;
6460 remote_async_ops.to_memory_map = remote_memory_map;
6461 remote_async_ops.to_flash_erase = remote_flash_erase;
6462 remote_async_ops.to_flash_done = remote_flash_done;
6463 remote_async_ops.to_read_description = remote_read_description;
6464 }
6465
6466 /* Set up the async extended remote vector by making a copy of the standard
6467 remote vector and adding to it. */
6468
6469 static void
6470 init_extended_async_remote_ops (void)
6471 {
6472 extended_async_remote_ops = remote_async_ops;
6473
6474 extended_async_remote_ops.to_shortname = "extended-async";
6475 extended_async_remote_ops.to_longname =
6476 "Extended remote serial target in async gdb-specific protocol";
6477 extended_async_remote_ops.to_doc =
6478 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
6479 Specify the serial device it is connected to (e.g. /dev/ttya).",
6480 extended_async_remote_ops.to_open = extended_remote_async_open;
6481 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
6482 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
6483 }
6484
6485 static void
6486 set_remote_cmd (char *args, int from_tty)
6487 {
6488 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
6489 }
6490
6491 static void
6492 show_remote_cmd (char *args, int from_tty)
6493 {
6494 /* We can't just use cmd_show_list here, because we want to skip
6495 the redundant "show remote Z-packet" and the legacy aliases. */
6496 struct cleanup *showlist_chain;
6497 struct cmd_list_element *list = remote_show_cmdlist;
6498
6499 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
6500 for (; list != NULL; list = list->next)
6501 if (strcmp (list->name, "Z-packet") == 0)
6502 continue;
6503 else if (list->type == not_set_cmd)
6504 /* Alias commands are exactly like the original, except they
6505 don't have the normal type. */
6506 continue;
6507 else
6508 {
6509 struct cleanup *option_chain
6510 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
6511 ui_out_field_string (uiout, "name", list->name);
6512 ui_out_text (uiout, ": ");
6513 if (list->type == show_cmd)
6514 do_setshow_command ((char *) NULL, from_tty, list);
6515 else
6516 cmd_func (list, NULL, from_tty);
6517 /* Close the tuple. */
6518 do_cleanups (option_chain);
6519 }
6520
6521 /* Close the tuple. */
6522 do_cleanups (showlist_chain);
6523 }
6524
6525
6526 /* Function to be called whenever a new objfile (shlib) is detected. */
6527 static void
6528 remote_new_objfile (struct objfile *objfile)
6529 {
6530 if (remote_desc != 0) /* Have a remote connection. */
6531 remote_check_symbols (objfile);
6532 }
6533
6534 void
6535 _initialize_remote (void)
6536 {
6537 struct remote_state *rs;
6538
6539 /* architecture specific data */
6540 remote_gdbarch_data_handle =
6541 gdbarch_data_register_post_init (init_remote_state);
6542 remote_g_packet_data_handle =
6543 gdbarch_data_register_pre_init (remote_g_packet_data_init);
6544
6545 /* Initialize the per-target state. At the moment there is only one
6546 of these, not one per target. Only one target is active at a
6547 time. The default buffer size is unimportant; it will be expanded
6548 whenever a larger buffer is needed. */
6549 rs = get_remote_state_raw ();
6550 rs->buf_size = 400;
6551 rs->buf = xmalloc (rs->buf_size);
6552
6553 init_remote_ops ();
6554 add_target (&remote_ops);
6555
6556 init_extended_remote_ops ();
6557 add_target (&extended_remote_ops);
6558
6559 init_remote_async_ops ();
6560 add_target (&remote_async_ops);
6561
6562 init_extended_async_remote_ops ();
6563 add_target (&extended_async_remote_ops);
6564
6565 /* Hook into new objfile notification. */
6566 observer_attach_new_objfile (remote_new_objfile);
6567
6568 #if 0
6569 init_remote_threadtests ();
6570 #endif
6571
6572 /* set/show remote ... */
6573
6574 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
6575 Remote protocol specific variables\n\
6576 Configure various remote-protocol specific variables such as\n\
6577 the packets being used"),
6578 &remote_set_cmdlist, "set remote ",
6579 0 /* allow-unknown */, &setlist);
6580 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
6581 Remote protocol specific variables\n\
6582 Configure various remote-protocol specific variables such as\n\
6583 the packets being used"),
6584 &remote_show_cmdlist, "show remote ",
6585 0 /* allow-unknown */, &showlist);
6586
6587 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
6588 Compare section data on target to the exec file.\n\
6589 Argument is a single section name (default: all loaded sections)."),
6590 &cmdlist);
6591
6592 add_cmd ("packet", class_maintenance, packet_command, _("\
6593 Send an arbitrary packet to a remote target.\n\
6594 maintenance packet TEXT\n\
6595 If GDB is talking to an inferior via the GDB serial protocol, then\n\
6596 this command sends the string TEXT to the inferior, and displays the\n\
6597 response packet. GDB supplies the initial `$' character, and the\n\
6598 terminating `#' character and checksum."),
6599 &maintenancelist);
6600
6601 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
6602 Set whether to send break if interrupted."), _("\
6603 Show whether to send break if interrupted."), _("\
6604 If set, a break, instead of a cntrl-c, is sent to the remote target."),
6605 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
6606 &setlist, &showlist);
6607
6608 /* Install commands for configuring memory read/write packets. */
6609
6610 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
6611 Set the maximum number of bytes per memory write packet (deprecated)."),
6612 &setlist);
6613 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
6614 Show the maximum number of bytes per memory write packet (deprecated)."),
6615 &showlist);
6616 add_cmd ("memory-write-packet-size", no_class,
6617 set_memory_write_packet_size, _("\
6618 Set the maximum number of bytes per memory-write packet.\n\
6619 Specify the number of bytes in a packet or 0 (zero) for the\n\
6620 default packet size. The actual limit is further reduced\n\
6621 dependent on the target. Specify ``fixed'' to disable the\n\
6622 further restriction and ``limit'' to enable that restriction."),
6623 &remote_set_cmdlist);
6624 add_cmd ("memory-read-packet-size", no_class,
6625 set_memory_read_packet_size, _("\
6626 Set the maximum number of bytes per memory-read packet.\n\
6627 Specify the number of bytes in a packet or 0 (zero) for the\n\
6628 default packet size. The actual limit is further reduced\n\
6629 dependent on the target. Specify ``fixed'' to disable the\n\
6630 further restriction and ``limit'' to enable that restriction."),
6631 &remote_set_cmdlist);
6632 add_cmd ("memory-write-packet-size", no_class,
6633 show_memory_write_packet_size,
6634 _("Show the maximum number of bytes per memory-write packet."),
6635 &remote_show_cmdlist);
6636 add_cmd ("memory-read-packet-size", no_class,
6637 show_memory_read_packet_size,
6638 _("Show the maximum number of bytes per memory-read packet."),
6639 &remote_show_cmdlist);
6640
6641 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
6642 &remote_hw_watchpoint_limit, _("\
6643 Set the maximum number of target hardware watchpoints."), _("\
6644 Show the maximum number of target hardware watchpoints."), _("\
6645 Specify a negative limit for unlimited."),
6646 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
6647 &remote_set_cmdlist, &remote_show_cmdlist);
6648 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
6649 &remote_hw_breakpoint_limit, _("\
6650 Set the maximum number of target hardware breakpoints."), _("\
6651 Show the maximum number of target hardware breakpoints."), _("\
6652 Specify a negative limit for unlimited."),
6653 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
6654 &remote_set_cmdlist, &remote_show_cmdlist);
6655
6656 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
6657 &remote_address_size, _("\
6658 Set the maximum size of the address (in bits) in a memory packet."), _("\
6659 Show the maximum size of the address (in bits) in a memory packet."), NULL,
6660 NULL,
6661 NULL, /* FIXME: i18n: */
6662 &setlist, &showlist);
6663
6664 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
6665 "X", "binary-download", 1);
6666
6667 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
6668 "vCont", "verbose-resume", 0);
6669
6670 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
6671 "QPassSignals", "pass-signals", 0);
6672
6673 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
6674 "qSymbol", "symbol-lookup", 0);
6675
6676 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
6677 "P", "set-register", 1);
6678
6679 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
6680 "p", "fetch-register", 1);
6681
6682 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
6683 "Z0", "software-breakpoint", 0);
6684
6685 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
6686 "Z1", "hardware-breakpoint", 0);
6687
6688 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
6689 "Z2", "write-watchpoint", 0);
6690
6691 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
6692 "Z3", "read-watchpoint", 0);
6693
6694 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
6695 "Z4", "access-watchpoint", 0);
6696
6697 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
6698 "qXfer:auxv:read", "read-aux-vector", 0);
6699
6700 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
6701 "qXfer:features:read", "target-features", 0);
6702
6703 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
6704 "qXfer:libraries:read", "library-info", 0);
6705
6706 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
6707 "qXfer:memory-map:read", "memory-map", 0);
6708
6709 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
6710 "qXfer:spu:read", "read-spu-object", 0);
6711
6712 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
6713 "qXfer:spu:write", "write-spu-object", 0);
6714
6715 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
6716 "qGetTLSAddr", "get-thread-local-storage-address",
6717 0);
6718
6719 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
6720 "qSupported", "supported-packets", 0);
6721
6722 /* Keep the old ``set remote Z-packet ...'' working. Each individual
6723 Z sub-packet has its own set and show commands, but users may
6724 have sets to this variable in their .gdbinit files (or in their
6725 documentation). */
6726 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
6727 &remote_Z_packet_detect, _("\
6728 Set use of remote protocol `Z' packets"), _("\
6729 Show use of remote protocol `Z' packets "), _("\
6730 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
6731 packets."),
6732 set_remote_protocol_Z_packet_cmd,
6733 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
6734 &remote_set_cmdlist, &remote_show_cmdlist);
6735
6736 /* Eventually initialize fileio. See fileio.c */
6737 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
6738 }
This page took 0.162932 seconds and 5 git commands to generate.