Move simple_search_memory to gdbsupport/search.cc
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "gdbsupport/event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include "gdbsupport/search.h"
79 #include <algorithm>
80 #include <unordered_map>
81 #include "async-event.h"
82
83 /* The remote target. */
84
85 static const char remote_doc[] = N_("\
86 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
87 Specify the serial device it is connected to\n\
88 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
89
90 #define OPAQUETHREADBYTES 8
91
92 /* a 64 bit opaque identifier */
93 typedef unsigned char threadref[OPAQUETHREADBYTES];
94
95 struct gdb_ext_thread_info;
96 struct threads_listing_context;
97 typedef int (*rmt_thread_action) (threadref *ref, void *context);
98 struct protocol_feature;
99 struct packet_reg;
100
101 struct stop_reply;
102 typedef std::unique_ptr<stop_reply> stop_reply_up;
103
104 /* Generic configuration support for packets the stub optionally
105 supports. Allows the user to specify the use of the packet as well
106 as allowing GDB to auto-detect support in the remote stub. */
107
108 enum packet_support
109 {
110 PACKET_SUPPORT_UNKNOWN = 0,
111 PACKET_ENABLE,
112 PACKET_DISABLE
113 };
114
115 /* Analyze a packet's return value and update the packet config
116 accordingly. */
117
118 enum packet_result
119 {
120 PACKET_ERROR,
121 PACKET_OK,
122 PACKET_UNKNOWN
123 };
124
125 struct threads_listing_context;
126
127 /* Stub vCont actions support.
128
129 Each field is a boolean flag indicating whether the stub reports
130 support for the corresponding action. */
131
132 struct vCont_action_support
133 {
134 /* vCont;t */
135 bool t = false;
136
137 /* vCont;r */
138 bool r = false;
139
140 /* vCont;s */
141 bool s = false;
142
143 /* vCont;S */
144 bool S = false;
145 };
146
147 /* About this many threadids fit in a packet. */
148
149 #define MAXTHREADLISTRESULTS 32
150
151 /* Data for the vFile:pread readahead cache. */
152
153 struct readahead_cache
154 {
155 /* Invalidate the readahead cache. */
156 void invalidate ();
157
158 /* Invalidate the readahead cache if it is holding data for FD. */
159 void invalidate_fd (int fd);
160
161 /* Serve pread from the readahead cache. Returns number of bytes
162 read, or 0 if the request can't be served from the cache. */
163 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
164
165 /* The file descriptor for the file that is being cached. -1 if the
166 cache is invalid. */
167 int fd = -1;
168
169 /* The offset into the file that the cache buffer corresponds
170 to. */
171 ULONGEST offset = 0;
172
173 /* The buffer holding the cache contents. */
174 gdb_byte *buf = nullptr;
175 /* The buffer's size. We try to read as much as fits into a packet
176 at a time. */
177 size_t bufsize = 0;
178
179 /* Cache hit and miss counters. */
180 ULONGEST hit_count = 0;
181 ULONGEST miss_count = 0;
182 };
183
184 /* Description of the remote protocol for a given architecture. */
185
186 struct packet_reg
187 {
188 long offset; /* Offset into G packet. */
189 long regnum; /* GDB's internal register number. */
190 LONGEST pnum; /* Remote protocol register number. */
191 int in_g_packet; /* Always part of G packet. */
192 /* long size in bytes; == register_size (target_gdbarch (), regnum);
193 at present. */
194 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
195 at present. */
196 };
197
198 struct remote_arch_state
199 {
200 explicit remote_arch_state (struct gdbarch *gdbarch);
201
202 /* Description of the remote protocol registers. */
203 long sizeof_g_packet;
204
205 /* Description of the remote protocol registers indexed by REGNUM
206 (making an array gdbarch_num_regs in size). */
207 std::unique_ptr<packet_reg[]> regs;
208
209 /* This is the size (in chars) of the first response to the ``g''
210 packet. It is used as a heuristic when determining the maximum
211 size of memory-read and memory-write packets. A target will
212 typically only reserve a buffer large enough to hold the ``g''
213 packet. The size does not include packet overhead (headers and
214 trailers). */
215 long actual_register_packet_size;
216
217 /* This is the maximum size (in chars) of a non read/write packet.
218 It is also used as a cap on the size of read/write packets. */
219 long remote_packet_size;
220 };
221
222 /* Description of the remote protocol state for the currently
223 connected target. This is per-target state, and independent of the
224 selected architecture. */
225
226 class remote_state
227 {
228 public:
229
230 remote_state ();
231 ~remote_state ();
232
233 /* Get the remote arch state for GDBARCH. */
234 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
235
236 public: /* data */
237
238 /* A buffer to use for incoming packets, and its current size. The
239 buffer is grown dynamically for larger incoming packets.
240 Outgoing packets may also be constructed in this buffer.
241 The size of the buffer is always at least REMOTE_PACKET_SIZE;
242 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
243 packets. */
244 gdb::char_vector buf;
245
246 /* True if we're going through initial connection setup (finding out
247 about the remote side's threads, relocating symbols, etc.). */
248 bool starting_up = false;
249
250 /* If we negotiated packet size explicitly (and thus can bypass
251 heuristics for the largest packet size that will not overflow
252 a buffer in the stub), this will be set to that packet size.
253 Otherwise zero, meaning to use the guessed size. */
254 long explicit_packet_size = 0;
255
256 /* remote_wait is normally called when the target is running and
257 waits for a stop reply packet. But sometimes we need to call it
258 when the target is already stopped. We can send a "?" packet
259 and have remote_wait read the response. Or, if we already have
260 the response, we can stash it in BUF and tell remote_wait to
261 skip calling getpkt. This flag is set when BUF contains a
262 stop reply packet and the target is not waiting. */
263 int cached_wait_status = 0;
264
265 /* True, if in no ack mode. That is, neither GDB nor the stub will
266 expect acks from each other. The connection is assumed to be
267 reliable. */
268 bool noack_mode = false;
269
270 /* True if we're connected in extended remote mode. */
271 bool extended = false;
272
273 /* True if we resumed the target and we're waiting for the target to
274 stop. In the mean time, we can't start another command/query.
275 The remote server wouldn't be ready to process it, so we'd
276 timeout waiting for a reply that would never come and eventually
277 we'd close the connection. This can happen in asynchronous mode
278 because we allow GDB commands while the target is running. */
279 bool waiting_for_stop_reply = false;
280
281 /* The status of the stub support for the various vCont actions. */
282 vCont_action_support supports_vCont;
283 /* Whether vCont support was probed already. This is a workaround
284 until packet_support is per-connection. */
285 bool supports_vCont_probed;
286
287 /* True if the user has pressed Ctrl-C, but the target hasn't
288 responded to that. */
289 bool ctrlc_pending_p = false;
290
291 /* True if we saw a Ctrl-C while reading or writing from/to the
292 remote descriptor. At that point it is not safe to send a remote
293 interrupt packet, so we instead remember we saw the Ctrl-C and
294 process it once we're done with sending/receiving the current
295 packet, which should be shortly. If however that takes too long,
296 and the user presses Ctrl-C again, we offer to disconnect. */
297 bool got_ctrlc_during_io = false;
298
299 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
300 remote_open knows that we don't have a file open when the program
301 starts. */
302 struct serial *remote_desc = nullptr;
303
304 /* These are the threads which we last sent to the remote system. The
305 TID member will be -1 for all or -2 for not sent yet. */
306 ptid_t general_thread = null_ptid;
307 ptid_t continue_thread = null_ptid;
308
309 /* This is the traceframe which we last selected on the remote system.
310 It will be -1 if no traceframe is selected. */
311 int remote_traceframe_number = -1;
312
313 char *last_pass_packet = nullptr;
314
315 /* The last QProgramSignals packet sent to the target. We bypass
316 sending a new program signals list down to the target if the new
317 packet is exactly the same as the last we sent. IOW, we only let
318 the target know about program signals list changes. */
319 char *last_program_signals_packet = nullptr;
320
321 gdb_signal last_sent_signal = GDB_SIGNAL_0;
322
323 bool last_sent_step = false;
324
325 /* The execution direction of the last resume we got. */
326 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
327
328 char *finished_object = nullptr;
329 char *finished_annex = nullptr;
330 ULONGEST finished_offset = 0;
331
332 /* Should we try the 'ThreadInfo' query packet?
333
334 This variable (NOT available to the user: auto-detect only!)
335 determines whether GDB will use the new, simpler "ThreadInfo"
336 query or the older, more complex syntax for thread queries.
337 This is an auto-detect variable (set to true at each connect,
338 and set to false when the target fails to recognize it). */
339 bool use_threadinfo_query = false;
340 bool use_threadextra_query = false;
341
342 threadref echo_nextthread {};
343 threadref nextthread {};
344 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
345
346 /* The state of remote notification. */
347 struct remote_notif_state *notif_state = nullptr;
348
349 /* The branch trace configuration. */
350 struct btrace_config btrace_config {};
351
352 /* The argument to the last "vFile:setfs:" packet we sent, used
353 to avoid sending repeated unnecessary "vFile:setfs:" packets.
354 Initialized to -1 to indicate that no "vFile:setfs:" packet
355 has yet been sent. */
356 int fs_pid = -1;
357
358 /* A readahead cache for vFile:pread. Often, reading a binary
359 involves a sequence of small reads. E.g., when parsing an ELF
360 file. A readahead cache helps mostly the case of remote
361 debugging on a connection with higher latency, due to the
362 request/reply nature of the RSP. We only cache data for a single
363 file descriptor at a time. */
364 struct readahead_cache readahead_cache;
365
366 /* The list of already fetched and acknowledged stop events. This
367 queue is used for notification Stop, and other notifications
368 don't need queue for their events, because the notification
369 events of Stop can't be consumed immediately, so that events
370 should be queued first, and be consumed by remote_wait_{ns,as}
371 one per time. Other notifications can consume their events
372 immediately, so queue is not needed for them. */
373 std::vector<stop_reply_up> stop_reply_queue;
374
375 /* Asynchronous signal handle registered as event loop source for
376 when we have pending events ready to be passed to the core. */
377 struct async_event_handler *remote_async_inferior_event_token = nullptr;
378
379 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
380 ``forever'' still use the normal timeout mechanism. This is
381 currently used by the ASYNC code to guarentee that target reads
382 during the initial connect always time-out. Once getpkt has been
383 modified to return a timeout indication and, in turn
384 remote_wait()/wait_for_inferior() have gained a timeout parameter
385 this can go away. */
386 int wait_forever_enabled_p = 1;
387
388 private:
389 /* Mapping of remote protocol data for each gdbarch. Usually there
390 is only one entry here, though we may see more with stubs that
391 support multi-process. */
392 std::unordered_map<struct gdbarch *, remote_arch_state>
393 m_arch_states;
394 };
395
396 static const target_info remote_target_info = {
397 "remote",
398 N_("Remote serial target in gdb-specific protocol"),
399 remote_doc
400 };
401
402 class remote_target : public process_stratum_target
403 {
404 public:
405 remote_target () = default;
406 ~remote_target () override;
407
408 const target_info &info () const override
409 { return remote_target_info; }
410
411 const char *connection_string () override;
412
413 thread_control_capabilities get_thread_control_capabilities () override
414 { return tc_schedlock; }
415
416 /* Open a remote connection. */
417 static void open (const char *, int);
418
419 void close () override;
420
421 void detach (inferior *, int) override;
422 void disconnect (const char *, int) override;
423
424 void commit_resume () override;
425 void resume (ptid_t, int, enum gdb_signal) override;
426 ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
427
428 void fetch_registers (struct regcache *, int) override;
429 void store_registers (struct regcache *, int) override;
430 void prepare_to_store (struct regcache *) override;
431
432 void files_info () override;
433
434 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
435
436 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
437 enum remove_bp_reason) override;
438
439
440 bool stopped_by_sw_breakpoint () override;
441 bool supports_stopped_by_sw_breakpoint () override;
442
443 bool stopped_by_hw_breakpoint () override;
444
445 bool supports_stopped_by_hw_breakpoint () override;
446
447 bool stopped_by_watchpoint () override;
448
449 bool stopped_data_address (CORE_ADDR *) override;
450
451 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
452
453 int can_use_hw_breakpoint (enum bptype, int, int) override;
454
455 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
456
457 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
458
459 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
460
461 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
462 struct expression *) override;
463
464 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
465 struct expression *) override;
466
467 void kill () override;
468
469 void load (const char *, int) override;
470
471 void mourn_inferior () override;
472
473 void pass_signals (gdb::array_view<const unsigned char>) override;
474
475 int set_syscall_catchpoint (int, bool, int,
476 gdb::array_view<const int>) override;
477
478 void program_signals (gdb::array_view<const unsigned char>) override;
479
480 bool thread_alive (ptid_t ptid) override;
481
482 const char *thread_name (struct thread_info *) override;
483
484 void update_thread_list () override;
485
486 std::string pid_to_str (ptid_t) override;
487
488 const char *extra_thread_info (struct thread_info *) override;
489
490 ptid_t get_ada_task_ptid (long lwp, long thread) override;
491
492 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
493 int handle_len,
494 inferior *inf) override;
495
496 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
497 override;
498
499 void stop (ptid_t) override;
500
501 void interrupt () override;
502
503 void pass_ctrlc () override;
504
505 enum target_xfer_status xfer_partial (enum target_object object,
506 const char *annex,
507 gdb_byte *readbuf,
508 const gdb_byte *writebuf,
509 ULONGEST offset, ULONGEST len,
510 ULONGEST *xfered_len) override;
511
512 ULONGEST get_memory_xfer_limit () override;
513
514 void rcmd (const char *command, struct ui_file *output) override;
515
516 char *pid_to_exec_file (int pid) override;
517
518 void log_command (const char *cmd) override
519 {
520 serial_log_command (this, cmd);
521 }
522
523 CORE_ADDR get_thread_local_address (ptid_t ptid,
524 CORE_ADDR load_module_addr,
525 CORE_ADDR offset) override;
526
527 bool can_execute_reverse () override;
528
529 std::vector<mem_region> memory_map () override;
530
531 void flash_erase (ULONGEST address, LONGEST length) override;
532
533 void flash_done () override;
534
535 const struct target_desc *read_description () override;
536
537 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
538 const gdb_byte *pattern, ULONGEST pattern_len,
539 CORE_ADDR *found_addrp) override;
540
541 bool can_async_p () override;
542
543 bool is_async_p () override;
544
545 void async (int) override;
546
547 int async_wait_fd () override;
548
549 void thread_events (int) override;
550
551 int can_do_single_step () override;
552
553 void terminal_inferior () override;
554
555 void terminal_ours () override;
556
557 bool supports_non_stop () override;
558
559 bool supports_multi_process () override;
560
561 bool supports_disable_randomization () override;
562
563 bool filesystem_is_local () override;
564
565
566 int fileio_open (struct inferior *inf, const char *filename,
567 int flags, int mode, int warn_if_slow,
568 int *target_errno) override;
569
570 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
571 ULONGEST offset, int *target_errno) override;
572
573 int fileio_pread (int fd, gdb_byte *read_buf, int len,
574 ULONGEST offset, int *target_errno) override;
575
576 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
577
578 int fileio_close (int fd, int *target_errno) override;
579
580 int fileio_unlink (struct inferior *inf,
581 const char *filename,
582 int *target_errno) override;
583
584 gdb::optional<std::string>
585 fileio_readlink (struct inferior *inf,
586 const char *filename,
587 int *target_errno) override;
588
589 bool supports_enable_disable_tracepoint () override;
590
591 bool supports_string_tracing () override;
592
593 bool supports_evaluation_of_breakpoint_conditions () override;
594
595 bool can_run_breakpoint_commands () override;
596
597 void trace_init () override;
598
599 void download_tracepoint (struct bp_location *location) override;
600
601 bool can_download_tracepoint () override;
602
603 void download_trace_state_variable (const trace_state_variable &tsv) override;
604
605 void enable_tracepoint (struct bp_location *location) override;
606
607 void disable_tracepoint (struct bp_location *location) override;
608
609 void trace_set_readonly_regions () override;
610
611 void trace_start () override;
612
613 int get_trace_status (struct trace_status *ts) override;
614
615 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
616 override;
617
618 void trace_stop () override;
619
620 int trace_find (enum trace_find_type type, int num,
621 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
622
623 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
624
625 int save_trace_data (const char *filename) override;
626
627 int upload_tracepoints (struct uploaded_tp **utpp) override;
628
629 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
630
631 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
632
633 int get_min_fast_tracepoint_insn_len () override;
634
635 void set_disconnected_tracing (int val) override;
636
637 void set_circular_trace_buffer (int val) override;
638
639 void set_trace_buffer_size (LONGEST val) override;
640
641 bool set_trace_notes (const char *user, const char *notes,
642 const char *stopnotes) override;
643
644 int core_of_thread (ptid_t ptid) override;
645
646 int verify_memory (const gdb_byte *data,
647 CORE_ADDR memaddr, ULONGEST size) override;
648
649
650 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
651
652 void set_permissions () override;
653
654 bool static_tracepoint_marker_at (CORE_ADDR,
655 struct static_tracepoint_marker *marker)
656 override;
657
658 std::vector<static_tracepoint_marker>
659 static_tracepoint_markers_by_strid (const char *id) override;
660
661 traceframe_info_up traceframe_info () override;
662
663 bool use_agent (bool use) override;
664 bool can_use_agent () override;
665
666 struct btrace_target_info *enable_btrace (ptid_t ptid,
667 const struct btrace_config *conf) override;
668
669 void disable_btrace (struct btrace_target_info *tinfo) override;
670
671 void teardown_btrace (struct btrace_target_info *tinfo) override;
672
673 enum btrace_error read_btrace (struct btrace_data *data,
674 struct btrace_target_info *btinfo,
675 enum btrace_read_type type) override;
676
677 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
678 bool augmented_libraries_svr4_read () override;
679 bool follow_fork (bool, bool) override;
680 void follow_exec (struct inferior *, const char *) override;
681 int insert_fork_catchpoint (int) override;
682 int remove_fork_catchpoint (int) override;
683 int insert_vfork_catchpoint (int) override;
684 int remove_vfork_catchpoint (int) override;
685 int insert_exec_catchpoint (int) override;
686 int remove_exec_catchpoint (int) override;
687 enum exec_direction_kind execution_direction () override;
688
689 public: /* Remote specific methods. */
690
691 void remote_download_command_source (int num, ULONGEST addr,
692 struct command_line *cmds);
693
694 void remote_file_put (const char *local_file, const char *remote_file,
695 int from_tty);
696 void remote_file_get (const char *remote_file, const char *local_file,
697 int from_tty);
698 void remote_file_delete (const char *remote_file, int from_tty);
699
700 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
701 ULONGEST offset, int *remote_errno);
702 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
703 ULONGEST offset, int *remote_errno);
704 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
705 ULONGEST offset, int *remote_errno);
706
707 int remote_hostio_send_command (int command_bytes, int which_packet,
708 int *remote_errno, char **attachment,
709 int *attachment_len);
710 int remote_hostio_set_filesystem (struct inferior *inf,
711 int *remote_errno);
712 /* We should get rid of this and use fileio_open directly. */
713 int remote_hostio_open (struct inferior *inf, const char *filename,
714 int flags, int mode, int warn_if_slow,
715 int *remote_errno);
716 int remote_hostio_close (int fd, int *remote_errno);
717
718 int remote_hostio_unlink (inferior *inf, const char *filename,
719 int *remote_errno);
720
721 struct remote_state *get_remote_state ();
722
723 long get_remote_packet_size (void);
724 long get_memory_packet_size (struct memory_packet_config *config);
725
726 long get_memory_write_packet_size ();
727 long get_memory_read_packet_size ();
728
729 char *append_pending_thread_resumptions (char *p, char *endp,
730 ptid_t ptid);
731 static void open_1 (const char *name, int from_tty, int extended_p);
732 void start_remote (int from_tty, int extended_p);
733 void remote_detach_1 (struct inferior *inf, int from_tty);
734
735 char *append_resumption (char *p, char *endp,
736 ptid_t ptid, int step, gdb_signal siggnal);
737 int remote_resume_with_vcont (ptid_t ptid, int step,
738 gdb_signal siggnal);
739
740 void add_current_inferior_and_thread (char *wait_status);
741
742 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
743 target_wait_flags options);
744 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
745 target_wait_flags options);
746
747 ptid_t process_stop_reply (struct stop_reply *stop_reply,
748 target_waitstatus *status);
749
750 void remote_notice_new_inferior (ptid_t currthread, int executing);
751
752 void process_initial_stop_replies (int from_tty);
753
754 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
755
756 void btrace_sync_conf (const btrace_config *conf);
757
758 void remote_btrace_maybe_reopen ();
759
760 void remove_new_fork_children (threads_listing_context *context);
761 void kill_new_fork_children (int pid);
762 void discard_pending_stop_replies (struct inferior *inf);
763 int stop_reply_queue_length ();
764
765 void check_pending_events_prevent_wildcard_vcont
766 (int *may_global_wildcard_vcont);
767
768 void discard_pending_stop_replies_in_queue ();
769 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
770 struct stop_reply *queued_stop_reply (ptid_t ptid);
771 int peek_stop_reply (ptid_t ptid);
772 void remote_parse_stop_reply (const char *buf, stop_reply *event);
773
774 void remote_stop_ns (ptid_t ptid);
775 void remote_interrupt_as ();
776 void remote_interrupt_ns ();
777
778 char *remote_get_noisy_reply ();
779 int remote_query_attached (int pid);
780 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
781 int try_open_exec);
782
783 ptid_t remote_current_thread (ptid_t oldpid);
784 ptid_t get_current_thread (char *wait_status);
785
786 void set_thread (ptid_t ptid, int gen);
787 void set_general_thread (ptid_t ptid);
788 void set_continue_thread (ptid_t ptid);
789 void set_general_process ();
790
791 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
792
793 int remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
794 gdb_ext_thread_info *info);
795 int remote_get_threadinfo (threadref *threadid, int fieldset,
796 gdb_ext_thread_info *info);
797
798 int parse_threadlist_response (char *pkt, int result_limit,
799 threadref *original_echo,
800 threadref *resultlist,
801 int *doneflag);
802 int remote_get_threadlist (int startflag, threadref *nextthread,
803 int result_limit, int *done, int *result_count,
804 threadref *threadlist);
805
806 int remote_threadlist_iterator (rmt_thread_action stepfunction,
807 void *context, int looplimit);
808
809 int remote_get_threads_with_ql (threads_listing_context *context);
810 int remote_get_threads_with_qxfer (threads_listing_context *context);
811 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
812
813 void extended_remote_restart ();
814
815 void get_offsets ();
816
817 void remote_check_symbols ();
818
819 void remote_supported_packet (const struct protocol_feature *feature,
820 enum packet_support support,
821 const char *argument);
822
823 void remote_query_supported ();
824
825 void remote_packet_size (const protocol_feature *feature,
826 packet_support support, const char *value);
827
828 void remote_serial_quit_handler ();
829
830 void remote_detach_pid (int pid);
831
832 void remote_vcont_probe ();
833
834 void remote_resume_with_hc (ptid_t ptid, int step,
835 gdb_signal siggnal);
836
837 void send_interrupt_sequence ();
838 void interrupt_query ();
839
840 void remote_notif_get_pending_events (notif_client *nc);
841
842 int fetch_register_using_p (struct regcache *regcache,
843 packet_reg *reg);
844 int send_g_packet ();
845 void process_g_packet (struct regcache *regcache);
846 void fetch_registers_using_g (struct regcache *regcache);
847 int store_register_using_P (const struct regcache *regcache,
848 packet_reg *reg);
849 void store_registers_using_G (const struct regcache *regcache);
850
851 void set_remote_traceframe ();
852
853 void check_binary_download (CORE_ADDR addr);
854
855 target_xfer_status remote_write_bytes_aux (const char *header,
856 CORE_ADDR memaddr,
857 const gdb_byte *myaddr,
858 ULONGEST len_units,
859 int unit_size,
860 ULONGEST *xfered_len_units,
861 char packet_format,
862 int use_length);
863
864 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
865 const gdb_byte *myaddr, ULONGEST len,
866 int unit_size, ULONGEST *xfered_len);
867
868 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
869 ULONGEST len_units,
870 int unit_size, ULONGEST *xfered_len_units);
871
872 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
873 ULONGEST memaddr,
874 ULONGEST len,
875 int unit_size,
876 ULONGEST *xfered_len);
877
878 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
879 gdb_byte *myaddr, ULONGEST len,
880 int unit_size,
881 ULONGEST *xfered_len);
882
883 packet_result remote_send_printf (const char *format, ...)
884 ATTRIBUTE_PRINTF (2, 3);
885
886 target_xfer_status remote_flash_write (ULONGEST address,
887 ULONGEST length, ULONGEST *xfered_len,
888 const gdb_byte *data);
889
890 int readchar (int timeout);
891
892 void remote_serial_write (const char *str, int len);
893
894 int putpkt (const char *buf);
895 int putpkt_binary (const char *buf, int cnt);
896
897 int putpkt (const gdb::char_vector &buf)
898 {
899 return putpkt (buf.data ());
900 }
901
902 void skip_frame ();
903 long read_frame (gdb::char_vector *buf_p);
904 void getpkt (gdb::char_vector *buf, int forever);
905 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
906 int expecting_notif, int *is_notif);
907 int getpkt_sane (gdb::char_vector *buf, int forever);
908 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
909 int *is_notif);
910 int remote_vkill (int pid);
911 void remote_kill_k ();
912
913 void extended_remote_disable_randomization (int val);
914 int extended_remote_run (const std::string &args);
915
916 void send_environment_packet (const char *action,
917 const char *packet,
918 const char *value);
919
920 void extended_remote_environment_support ();
921 void extended_remote_set_inferior_cwd ();
922
923 target_xfer_status remote_write_qxfer (const char *object_name,
924 const char *annex,
925 const gdb_byte *writebuf,
926 ULONGEST offset, LONGEST len,
927 ULONGEST *xfered_len,
928 struct packet_config *packet);
929
930 target_xfer_status remote_read_qxfer (const char *object_name,
931 const char *annex,
932 gdb_byte *readbuf, ULONGEST offset,
933 LONGEST len,
934 ULONGEST *xfered_len,
935 struct packet_config *packet);
936
937 void push_stop_reply (struct stop_reply *new_event);
938
939 bool vcont_r_supported ();
940
941 void packet_command (const char *args, int from_tty);
942
943 private: /* data fields */
944
945 /* The remote state. Don't reference this directly. Use the
946 get_remote_state method instead. */
947 remote_state m_remote_state;
948 };
949
950 static const target_info extended_remote_target_info = {
951 "extended-remote",
952 N_("Extended remote serial target in gdb-specific protocol"),
953 remote_doc
954 };
955
956 /* Set up the extended remote target by extending the standard remote
957 target and adding to it. */
958
959 class extended_remote_target final : public remote_target
960 {
961 public:
962 const target_info &info () const override
963 { return extended_remote_target_info; }
964
965 /* Open an extended-remote connection. */
966 static void open (const char *, int);
967
968 bool can_create_inferior () override { return true; }
969 void create_inferior (const char *, const std::string &,
970 char **, int) override;
971
972 void detach (inferior *, int) override;
973
974 bool can_attach () override { return true; }
975 void attach (const char *, int) override;
976
977 void post_attach (int) override;
978 bool supports_disable_randomization () override;
979 };
980
981 /* Per-program-space data key. */
982 static const struct program_space_key<char, gdb::xfree_deleter<char>>
983 remote_pspace_data;
984
985 /* The variable registered as the control variable used by the
986 remote exec-file commands. While the remote exec-file setting is
987 per-program-space, the set/show machinery uses this as the
988 location of the remote exec-file value. */
989 static char *remote_exec_file_var;
990
991 /* The size to align memory write packets, when practical. The protocol
992 does not guarantee any alignment, and gdb will generate short
993 writes and unaligned writes, but even as a best-effort attempt this
994 can improve bulk transfers. For instance, if a write is misaligned
995 relative to the target's data bus, the stub may need to make an extra
996 round trip fetching data from the target. This doesn't make a
997 huge difference, but it's easy to do, so we try to be helpful.
998
999 The alignment chosen is arbitrary; usually data bus width is
1000 important here, not the possibly larger cache line size. */
1001 enum { REMOTE_ALIGN_WRITES = 16 };
1002
1003 /* Prototypes for local functions. */
1004
1005 static int hexnumlen (ULONGEST num);
1006
1007 static int stubhex (int ch);
1008
1009 static int hexnumstr (char *, ULONGEST);
1010
1011 static int hexnumnstr (char *, ULONGEST, int);
1012
1013 static CORE_ADDR remote_address_masked (CORE_ADDR);
1014
1015 static void print_packet (const char *);
1016
1017 static int stub_unpack_int (char *buff, int fieldlength);
1018
1019 struct packet_config;
1020
1021 static void show_packet_config_cmd (struct packet_config *config);
1022
1023 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1024 int from_tty,
1025 struct cmd_list_element *c,
1026 const char *value);
1027
1028 static ptid_t read_ptid (const char *buf, const char **obuf);
1029
1030 static void remote_async_inferior_event_handler (gdb_client_data);
1031
1032 static bool remote_read_description_p (struct target_ops *target);
1033
1034 static void remote_console_output (const char *msg);
1035
1036 static void remote_btrace_reset (remote_state *rs);
1037
1038 static void remote_unpush_and_throw (remote_target *target);
1039
1040 /* For "remote". */
1041
1042 static struct cmd_list_element *remote_cmdlist;
1043
1044 /* For "set remote" and "show remote". */
1045
1046 static struct cmd_list_element *remote_set_cmdlist;
1047 static struct cmd_list_element *remote_show_cmdlist;
1048
1049 /* Controls whether GDB is willing to use range stepping. */
1050
1051 static bool use_range_stepping = true;
1052
1053 /* Private data that we'll store in (struct thread_info)->priv. */
1054 struct remote_thread_info : public private_thread_info
1055 {
1056 std::string extra;
1057 std::string name;
1058 int core = -1;
1059
1060 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1061 sequence of bytes. */
1062 gdb::byte_vector thread_handle;
1063
1064 /* Whether the target stopped for a breakpoint/watchpoint. */
1065 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1066
1067 /* This is set to the data address of the access causing the target
1068 to stop for a watchpoint. */
1069 CORE_ADDR watch_data_address = 0;
1070
1071 /* Fields used by the vCont action coalescing implemented in
1072 remote_resume / remote_commit_resume. remote_resume stores each
1073 thread's last resume request in these fields, so that a later
1074 remote_commit_resume knows which is the proper action for this
1075 thread to include in the vCont packet. */
1076
1077 /* True if the last target_resume call for this thread was a step
1078 request, false if a continue request. */
1079 int last_resume_step = 0;
1080
1081 /* The signal specified in the last target_resume call for this
1082 thread. */
1083 gdb_signal last_resume_sig = GDB_SIGNAL_0;
1084
1085 /* Whether this thread was already vCont-resumed on the remote
1086 side. */
1087 int vcont_resumed = 0;
1088 };
1089
1090 remote_state::remote_state ()
1091 : buf (400)
1092 {
1093 }
1094
1095 remote_state::~remote_state ()
1096 {
1097 xfree (this->last_pass_packet);
1098 xfree (this->last_program_signals_packet);
1099 xfree (this->finished_object);
1100 xfree (this->finished_annex);
1101 }
1102
1103 /* Utility: generate error from an incoming stub packet. */
1104 static void
1105 trace_error (char *buf)
1106 {
1107 if (*buf++ != 'E')
1108 return; /* not an error msg */
1109 switch (*buf)
1110 {
1111 case '1': /* malformed packet error */
1112 if (*++buf == '0') /* general case: */
1113 error (_("remote.c: error in outgoing packet."));
1114 else
1115 error (_("remote.c: error in outgoing packet at field #%ld."),
1116 strtol (buf, NULL, 16));
1117 default:
1118 error (_("Target returns error code '%s'."), buf);
1119 }
1120 }
1121
1122 /* Utility: wait for reply from stub, while accepting "O" packets. */
1123
1124 char *
1125 remote_target::remote_get_noisy_reply ()
1126 {
1127 struct remote_state *rs = get_remote_state ();
1128
1129 do /* Loop on reply from remote stub. */
1130 {
1131 char *buf;
1132
1133 QUIT; /* Allow user to bail out with ^C. */
1134 getpkt (&rs->buf, 0);
1135 buf = rs->buf.data ();
1136 if (buf[0] == 'E')
1137 trace_error (buf);
1138 else if (startswith (buf, "qRelocInsn:"))
1139 {
1140 ULONGEST ul;
1141 CORE_ADDR from, to, org_to;
1142 const char *p, *pp;
1143 int adjusted_size = 0;
1144 int relocated = 0;
1145
1146 p = buf + strlen ("qRelocInsn:");
1147 pp = unpack_varlen_hex (p, &ul);
1148 if (*pp != ';')
1149 error (_("invalid qRelocInsn packet: %s"), buf);
1150 from = ul;
1151
1152 p = pp + 1;
1153 unpack_varlen_hex (p, &ul);
1154 to = ul;
1155
1156 org_to = to;
1157
1158 try
1159 {
1160 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1161 relocated = 1;
1162 }
1163 catch (const gdb_exception &ex)
1164 {
1165 if (ex.error == MEMORY_ERROR)
1166 {
1167 /* Propagate memory errors silently back to the
1168 target. The stub may have limited the range of
1169 addresses we can write to, for example. */
1170 }
1171 else
1172 {
1173 /* Something unexpectedly bad happened. Be verbose
1174 so we can tell what, and propagate the error back
1175 to the stub, so it doesn't get stuck waiting for
1176 a response. */
1177 exception_fprintf (gdb_stderr, ex,
1178 _("warning: relocating instruction: "));
1179 }
1180 putpkt ("E01");
1181 }
1182
1183 if (relocated)
1184 {
1185 adjusted_size = to - org_to;
1186
1187 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1188 putpkt (buf);
1189 }
1190 }
1191 else if (buf[0] == 'O' && buf[1] != 'K')
1192 remote_console_output (buf + 1); /* 'O' message from stub */
1193 else
1194 return buf; /* Here's the actual reply. */
1195 }
1196 while (1);
1197 }
1198
1199 struct remote_arch_state *
1200 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1201 {
1202 remote_arch_state *rsa;
1203
1204 auto it = this->m_arch_states.find (gdbarch);
1205 if (it == this->m_arch_states.end ())
1206 {
1207 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1208 std::forward_as_tuple (gdbarch),
1209 std::forward_as_tuple (gdbarch));
1210 rsa = &p.first->second;
1211
1212 /* Make sure that the packet buffer is plenty big enough for
1213 this architecture. */
1214 if (this->buf.size () < rsa->remote_packet_size)
1215 this->buf.resize (2 * rsa->remote_packet_size);
1216 }
1217 else
1218 rsa = &it->second;
1219
1220 return rsa;
1221 }
1222
1223 /* Fetch the global remote target state. */
1224
1225 remote_state *
1226 remote_target::get_remote_state ()
1227 {
1228 /* Make sure that the remote architecture state has been
1229 initialized, because doing so might reallocate rs->buf. Any
1230 function which calls getpkt also needs to be mindful of changes
1231 to rs->buf, but this call limits the number of places which run
1232 into trouble. */
1233 m_remote_state.get_remote_arch_state (target_gdbarch ());
1234
1235 return &m_remote_state;
1236 }
1237
1238 /* Fetch the remote exec-file from the current program space. */
1239
1240 static const char *
1241 get_remote_exec_file (void)
1242 {
1243 char *remote_exec_file;
1244
1245 remote_exec_file = remote_pspace_data.get (current_program_space);
1246 if (remote_exec_file == NULL)
1247 return "";
1248
1249 return remote_exec_file;
1250 }
1251
1252 /* Set the remote exec file for PSPACE. */
1253
1254 static void
1255 set_pspace_remote_exec_file (struct program_space *pspace,
1256 const char *remote_exec_file)
1257 {
1258 char *old_file = remote_pspace_data.get (pspace);
1259
1260 xfree (old_file);
1261 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1262 }
1263
1264 /* The "set/show remote exec-file" set command hook. */
1265
1266 static void
1267 set_remote_exec_file (const char *ignored, int from_tty,
1268 struct cmd_list_element *c)
1269 {
1270 gdb_assert (remote_exec_file_var != NULL);
1271 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1272 }
1273
1274 /* The "set/show remote exec-file" show command hook. */
1275
1276 static void
1277 show_remote_exec_file (struct ui_file *file, int from_tty,
1278 struct cmd_list_element *cmd, const char *value)
1279 {
1280 fprintf_filtered (file, "%s\n", get_remote_exec_file ());
1281 }
1282
1283 static int
1284 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1285 {
1286 int regnum, num_remote_regs, offset;
1287 struct packet_reg **remote_regs;
1288
1289 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1290 {
1291 struct packet_reg *r = &regs[regnum];
1292
1293 if (register_size (gdbarch, regnum) == 0)
1294 /* Do not try to fetch zero-sized (placeholder) registers. */
1295 r->pnum = -1;
1296 else
1297 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1298
1299 r->regnum = regnum;
1300 }
1301
1302 /* Define the g/G packet format as the contents of each register
1303 with a remote protocol number, in order of ascending protocol
1304 number. */
1305
1306 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1307 for (num_remote_regs = 0, regnum = 0;
1308 regnum < gdbarch_num_regs (gdbarch);
1309 regnum++)
1310 if (regs[regnum].pnum != -1)
1311 remote_regs[num_remote_regs++] = &regs[regnum];
1312
1313 std::sort (remote_regs, remote_regs + num_remote_regs,
1314 [] (const packet_reg *a, const packet_reg *b)
1315 { return a->pnum < b->pnum; });
1316
1317 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1318 {
1319 remote_regs[regnum]->in_g_packet = 1;
1320 remote_regs[regnum]->offset = offset;
1321 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1322 }
1323
1324 return offset;
1325 }
1326
1327 /* Given the architecture described by GDBARCH, return the remote
1328 protocol register's number and the register's offset in the g/G
1329 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1330 If the target does not have a mapping for REGNUM, return false,
1331 otherwise, return true. */
1332
1333 int
1334 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1335 int *pnum, int *poffset)
1336 {
1337 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1338
1339 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1340
1341 map_regcache_remote_table (gdbarch, regs.data ());
1342
1343 *pnum = regs[regnum].pnum;
1344 *poffset = regs[regnum].offset;
1345
1346 return *pnum != -1;
1347 }
1348
1349 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1350 {
1351 /* Use the architecture to build a regnum<->pnum table, which will be
1352 1:1 unless a feature set specifies otherwise. */
1353 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1354
1355 /* Record the maximum possible size of the g packet - it may turn out
1356 to be smaller. */
1357 this->sizeof_g_packet
1358 = map_regcache_remote_table (gdbarch, this->regs.get ());
1359
1360 /* Default maximum number of characters in a packet body. Many
1361 remote stubs have a hardwired buffer size of 400 bytes
1362 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1363 as the maximum packet-size to ensure that the packet and an extra
1364 NUL character can always fit in the buffer. This stops GDB
1365 trashing stubs that try to squeeze an extra NUL into what is
1366 already a full buffer (As of 1999-12-04 that was most stubs). */
1367 this->remote_packet_size = 400 - 1;
1368
1369 /* This one is filled in when a ``g'' packet is received. */
1370 this->actual_register_packet_size = 0;
1371
1372 /* Should rsa->sizeof_g_packet needs more space than the
1373 default, adjust the size accordingly. Remember that each byte is
1374 encoded as two characters. 32 is the overhead for the packet
1375 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1376 (``$NN:G...#NN'') is a better guess, the below has been padded a
1377 little. */
1378 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1379 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1380 }
1381
1382 /* Get a pointer to the current remote target. If not connected to a
1383 remote target, return NULL. */
1384
1385 static remote_target *
1386 get_current_remote_target ()
1387 {
1388 target_ops *proc_target = current_inferior ()->process_target ();
1389 return dynamic_cast<remote_target *> (proc_target);
1390 }
1391
1392 /* Return the current allowed size of a remote packet. This is
1393 inferred from the current architecture, and should be used to
1394 limit the length of outgoing packets. */
1395 long
1396 remote_target::get_remote_packet_size ()
1397 {
1398 struct remote_state *rs = get_remote_state ();
1399 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1400
1401 if (rs->explicit_packet_size)
1402 return rs->explicit_packet_size;
1403
1404 return rsa->remote_packet_size;
1405 }
1406
1407 static struct packet_reg *
1408 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1409 long regnum)
1410 {
1411 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1412 return NULL;
1413 else
1414 {
1415 struct packet_reg *r = &rsa->regs[regnum];
1416
1417 gdb_assert (r->regnum == regnum);
1418 return r;
1419 }
1420 }
1421
1422 static struct packet_reg *
1423 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1424 LONGEST pnum)
1425 {
1426 int i;
1427
1428 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1429 {
1430 struct packet_reg *r = &rsa->regs[i];
1431
1432 if (r->pnum == pnum)
1433 return r;
1434 }
1435 return NULL;
1436 }
1437
1438 /* Allow the user to specify what sequence to send to the remote
1439 when he requests a program interruption: Although ^C is usually
1440 what remote systems expect (this is the default, here), it is
1441 sometimes preferable to send a break. On other systems such
1442 as the Linux kernel, a break followed by g, which is Magic SysRq g
1443 is required in order to interrupt the execution. */
1444 const char interrupt_sequence_control_c[] = "Ctrl-C";
1445 const char interrupt_sequence_break[] = "BREAK";
1446 const char interrupt_sequence_break_g[] = "BREAK-g";
1447 static const char *const interrupt_sequence_modes[] =
1448 {
1449 interrupt_sequence_control_c,
1450 interrupt_sequence_break,
1451 interrupt_sequence_break_g,
1452 NULL
1453 };
1454 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1455
1456 static void
1457 show_interrupt_sequence (struct ui_file *file, int from_tty,
1458 struct cmd_list_element *c,
1459 const char *value)
1460 {
1461 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1462 fprintf_filtered (file,
1463 _("Send the ASCII ETX character (Ctrl-c) "
1464 "to the remote target to interrupt the "
1465 "execution of the program.\n"));
1466 else if (interrupt_sequence_mode == interrupt_sequence_break)
1467 fprintf_filtered (file,
1468 _("send a break signal to the remote target "
1469 "to interrupt the execution of the program.\n"));
1470 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1471 fprintf_filtered (file,
1472 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1473 "the remote target to interrupt the execution "
1474 "of Linux kernel.\n"));
1475 else
1476 internal_error (__FILE__, __LINE__,
1477 _("Invalid value for interrupt_sequence_mode: %s."),
1478 interrupt_sequence_mode);
1479 }
1480
1481 /* This boolean variable specifies whether interrupt_sequence is sent
1482 to the remote target when gdb connects to it.
1483 This is mostly needed when you debug the Linux kernel: The Linux kernel
1484 expects BREAK g which is Magic SysRq g for connecting gdb. */
1485 static bool interrupt_on_connect = false;
1486
1487 /* This variable is used to implement the "set/show remotebreak" commands.
1488 Since these commands are now deprecated in favor of "set/show remote
1489 interrupt-sequence", it no longer has any effect on the code. */
1490 static bool remote_break;
1491
1492 static void
1493 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1494 {
1495 if (remote_break)
1496 interrupt_sequence_mode = interrupt_sequence_break;
1497 else
1498 interrupt_sequence_mode = interrupt_sequence_control_c;
1499 }
1500
1501 static void
1502 show_remotebreak (struct ui_file *file, int from_tty,
1503 struct cmd_list_element *c,
1504 const char *value)
1505 {
1506 }
1507
1508 /* This variable sets the number of bits in an address that are to be
1509 sent in a memory ("M" or "m") packet. Normally, after stripping
1510 leading zeros, the entire address would be sent. This variable
1511 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1512 initial implementation of remote.c restricted the address sent in
1513 memory packets to ``host::sizeof long'' bytes - (typically 32
1514 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1515 address was never sent. Since fixing this bug may cause a break in
1516 some remote targets this variable is principally provided to
1517 facilitate backward compatibility. */
1518
1519 static unsigned int remote_address_size;
1520
1521 \f
1522 /* User configurable variables for the number of characters in a
1523 memory read/write packet. MIN (rsa->remote_packet_size,
1524 rsa->sizeof_g_packet) is the default. Some targets need smaller
1525 values (fifo overruns, et.al.) and some users need larger values
1526 (speed up transfers). The variables ``preferred_*'' (the user
1527 request), ``current_*'' (what was actually set) and ``forced_*''
1528 (Positive - a soft limit, negative - a hard limit). */
1529
1530 struct memory_packet_config
1531 {
1532 const char *name;
1533 long size;
1534 int fixed_p;
1535 };
1536
1537 /* The default max memory-write-packet-size, when the setting is
1538 "fixed". The 16k is historical. (It came from older GDB's using
1539 alloca for buffers and the knowledge (folklore?) that some hosts
1540 don't cope very well with large alloca calls.) */
1541 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1542
1543 /* The minimum remote packet size for memory transfers. Ensures we
1544 can write at least one byte. */
1545 #define MIN_MEMORY_PACKET_SIZE 20
1546
1547 /* Get the memory packet size, assuming it is fixed. */
1548
1549 static long
1550 get_fixed_memory_packet_size (struct memory_packet_config *config)
1551 {
1552 gdb_assert (config->fixed_p);
1553
1554 if (config->size <= 0)
1555 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1556 else
1557 return config->size;
1558 }
1559
1560 /* Compute the current size of a read/write packet. Since this makes
1561 use of ``actual_register_packet_size'' the computation is dynamic. */
1562
1563 long
1564 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1565 {
1566 struct remote_state *rs = get_remote_state ();
1567 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1568
1569 long what_they_get;
1570 if (config->fixed_p)
1571 what_they_get = get_fixed_memory_packet_size (config);
1572 else
1573 {
1574 what_they_get = get_remote_packet_size ();
1575 /* Limit the packet to the size specified by the user. */
1576 if (config->size > 0
1577 && what_they_get > config->size)
1578 what_they_get = config->size;
1579
1580 /* Limit it to the size of the targets ``g'' response unless we have
1581 permission from the stub to use a larger packet size. */
1582 if (rs->explicit_packet_size == 0
1583 && rsa->actual_register_packet_size > 0
1584 && what_they_get > rsa->actual_register_packet_size)
1585 what_they_get = rsa->actual_register_packet_size;
1586 }
1587 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1588 what_they_get = MIN_MEMORY_PACKET_SIZE;
1589
1590 /* Make sure there is room in the global buffer for this packet
1591 (including its trailing NUL byte). */
1592 if (rs->buf.size () < what_they_get + 1)
1593 rs->buf.resize (2 * what_they_get);
1594
1595 return what_they_get;
1596 }
1597
1598 /* Update the size of a read/write packet. If they user wants
1599 something really big then do a sanity check. */
1600
1601 static void
1602 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1603 {
1604 int fixed_p = config->fixed_p;
1605 long size = config->size;
1606
1607 if (args == NULL)
1608 error (_("Argument required (integer, `fixed' or `limited')."));
1609 else if (strcmp (args, "hard") == 0
1610 || strcmp (args, "fixed") == 0)
1611 fixed_p = 1;
1612 else if (strcmp (args, "soft") == 0
1613 || strcmp (args, "limit") == 0)
1614 fixed_p = 0;
1615 else
1616 {
1617 char *end;
1618
1619 size = strtoul (args, &end, 0);
1620 if (args == end)
1621 error (_("Invalid %s (bad syntax)."), config->name);
1622
1623 /* Instead of explicitly capping the size of a packet to or
1624 disallowing it, the user is allowed to set the size to
1625 something arbitrarily large. */
1626 }
1627
1628 /* Extra checks? */
1629 if (fixed_p && !config->fixed_p)
1630 {
1631 /* So that the query shows the correct value. */
1632 long query_size = (size <= 0
1633 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1634 : size);
1635
1636 if (! query (_("The target may not be able to correctly handle a %s\n"
1637 "of %ld bytes. Change the packet size? "),
1638 config->name, query_size))
1639 error (_("Packet size not changed."));
1640 }
1641 /* Update the config. */
1642 config->fixed_p = fixed_p;
1643 config->size = size;
1644 }
1645
1646 static void
1647 show_memory_packet_size (struct memory_packet_config *config)
1648 {
1649 if (config->size == 0)
1650 printf_filtered (_("The %s is 0 (default). "), config->name);
1651 else
1652 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1653 if (config->fixed_p)
1654 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1655 get_fixed_memory_packet_size (config));
1656 else
1657 {
1658 remote_target *remote = get_current_remote_target ();
1659
1660 if (remote != NULL)
1661 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1662 remote->get_memory_packet_size (config));
1663 else
1664 puts_filtered ("The actual limit will be further reduced "
1665 "dependent on the target.\n");
1666 }
1667 }
1668
1669 /* FIXME: needs to be per-remote-target. */
1670 static struct memory_packet_config memory_write_packet_config =
1671 {
1672 "memory-write-packet-size",
1673 };
1674
1675 static void
1676 set_memory_write_packet_size (const char *args, int from_tty)
1677 {
1678 set_memory_packet_size (args, &memory_write_packet_config);
1679 }
1680
1681 static void
1682 show_memory_write_packet_size (const char *args, int from_tty)
1683 {
1684 show_memory_packet_size (&memory_write_packet_config);
1685 }
1686
1687 /* Show the number of hardware watchpoints that can be used. */
1688
1689 static void
1690 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1691 struct cmd_list_element *c,
1692 const char *value)
1693 {
1694 fprintf_filtered (file, _("The maximum number of target hardware "
1695 "watchpoints is %s.\n"), value);
1696 }
1697
1698 /* Show the length limit (in bytes) for hardware watchpoints. */
1699
1700 static void
1701 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1702 struct cmd_list_element *c,
1703 const char *value)
1704 {
1705 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1706 "hardware watchpoint is %s.\n"), value);
1707 }
1708
1709 /* Show the number of hardware breakpoints that can be used. */
1710
1711 static void
1712 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1713 struct cmd_list_element *c,
1714 const char *value)
1715 {
1716 fprintf_filtered (file, _("The maximum number of target hardware "
1717 "breakpoints is %s.\n"), value);
1718 }
1719
1720 /* Controls the maximum number of characters to display in the debug output
1721 for each remote packet. The remaining characters are omitted. */
1722
1723 static int remote_packet_max_chars = 512;
1724
1725 /* Show the maximum number of characters to display for each remote packet
1726 when remote debugging is enabled. */
1727
1728 static void
1729 show_remote_packet_max_chars (struct ui_file *file, int from_tty,
1730 struct cmd_list_element *c,
1731 const char *value)
1732 {
1733 fprintf_filtered (file, _("Number of remote packet characters to "
1734 "display is %s.\n"), value);
1735 }
1736
1737 long
1738 remote_target::get_memory_write_packet_size ()
1739 {
1740 return get_memory_packet_size (&memory_write_packet_config);
1741 }
1742
1743 /* FIXME: needs to be per-remote-target. */
1744 static struct memory_packet_config memory_read_packet_config =
1745 {
1746 "memory-read-packet-size",
1747 };
1748
1749 static void
1750 set_memory_read_packet_size (const char *args, int from_tty)
1751 {
1752 set_memory_packet_size (args, &memory_read_packet_config);
1753 }
1754
1755 static void
1756 show_memory_read_packet_size (const char *args, int from_tty)
1757 {
1758 show_memory_packet_size (&memory_read_packet_config);
1759 }
1760
1761 long
1762 remote_target::get_memory_read_packet_size ()
1763 {
1764 long size = get_memory_packet_size (&memory_read_packet_config);
1765
1766 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1767 extra buffer size argument before the memory read size can be
1768 increased beyond this. */
1769 if (size > get_remote_packet_size ())
1770 size = get_remote_packet_size ();
1771 return size;
1772 }
1773
1774 \f
1775
1776 struct packet_config
1777 {
1778 const char *name;
1779 const char *title;
1780
1781 /* If auto, GDB auto-detects support for this packet or feature,
1782 either through qSupported, or by trying the packet and looking
1783 at the response. If true, GDB assumes the target supports this
1784 packet. If false, the packet is disabled. Configs that don't
1785 have an associated command always have this set to auto. */
1786 enum auto_boolean detect;
1787
1788 /* Does the target support this packet? */
1789 enum packet_support support;
1790 };
1791
1792 static enum packet_support packet_config_support (struct packet_config *config);
1793 static enum packet_support packet_support (int packet);
1794
1795 static void
1796 show_packet_config_cmd (struct packet_config *config)
1797 {
1798 const char *support = "internal-error";
1799
1800 switch (packet_config_support (config))
1801 {
1802 case PACKET_ENABLE:
1803 support = "enabled";
1804 break;
1805 case PACKET_DISABLE:
1806 support = "disabled";
1807 break;
1808 case PACKET_SUPPORT_UNKNOWN:
1809 support = "unknown";
1810 break;
1811 }
1812 switch (config->detect)
1813 {
1814 case AUTO_BOOLEAN_AUTO:
1815 printf_filtered (_("Support for the `%s' packet "
1816 "is auto-detected, currently %s.\n"),
1817 config->name, support);
1818 break;
1819 case AUTO_BOOLEAN_TRUE:
1820 case AUTO_BOOLEAN_FALSE:
1821 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1822 config->name, support);
1823 break;
1824 }
1825 }
1826
1827 static void
1828 add_packet_config_cmd (struct packet_config *config, const char *name,
1829 const char *title, int legacy)
1830 {
1831 char *set_doc;
1832 char *show_doc;
1833 char *cmd_name;
1834
1835 config->name = name;
1836 config->title = title;
1837 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1838 name, title);
1839 show_doc = xstrprintf ("Show current use of remote "
1840 "protocol `%s' (%s) packet.",
1841 name, title);
1842 /* set/show TITLE-packet {auto,on,off} */
1843 cmd_name = xstrprintf ("%s-packet", title);
1844 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1845 &config->detect, set_doc,
1846 show_doc, NULL, /* help_doc */
1847 NULL,
1848 show_remote_protocol_packet_cmd,
1849 &remote_set_cmdlist, &remote_show_cmdlist);
1850 /* The command code copies the documentation strings. */
1851 xfree (set_doc);
1852 xfree (show_doc);
1853 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1854 if (legacy)
1855 {
1856 char *legacy_name;
1857
1858 legacy_name = xstrprintf ("%s-packet", name);
1859 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1860 &remote_set_cmdlist);
1861 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1862 &remote_show_cmdlist);
1863 }
1864 }
1865
1866 static enum packet_result
1867 packet_check_result (const char *buf)
1868 {
1869 if (buf[0] != '\0')
1870 {
1871 /* The stub recognized the packet request. Check that the
1872 operation succeeded. */
1873 if (buf[0] == 'E'
1874 && isxdigit (buf[1]) && isxdigit (buf[2])
1875 && buf[3] == '\0')
1876 /* "Enn" - definitely an error. */
1877 return PACKET_ERROR;
1878
1879 /* Always treat "E." as an error. This will be used for
1880 more verbose error messages, such as E.memtypes. */
1881 if (buf[0] == 'E' && buf[1] == '.')
1882 return PACKET_ERROR;
1883
1884 /* The packet may or may not be OK. Just assume it is. */
1885 return PACKET_OK;
1886 }
1887 else
1888 /* The stub does not support the packet. */
1889 return PACKET_UNKNOWN;
1890 }
1891
1892 static enum packet_result
1893 packet_check_result (const gdb::char_vector &buf)
1894 {
1895 return packet_check_result (buf.data ());
1896 }
1897
1898 static enum packet_result
1899 packet_ok (const char *buf, struct packet_config *config)
1900 {
1901 enum packet_result result;
1902
1903 if (config->detect != AUTO_BOOLEAN_TRUE
1904 && config->support == PACKET_DISABLE)
1905 internal_error (__FILE__, __LINE__,
1906 _("packet_ok: attempt to use a disabled packet"));
1907
1908 result = packet_check_result (buf);
1909 switch (result)
1910 {
1911 case PACKET_OK:
1912 case PACKET_ERROR:
1913 /* The stub recognized the packet request. */
1914 if (config->support == PACKET_SUPPORT_UNKNOWN)
1915 {
1916 if (remote_debug)
1917 fprintf_unfiltered (gdb_stdlog,
1918 "Packet %s (%s) is supported\n",
1919 config->name, config->title);
1920 config->support = PACKET_ENABLE;
1921 }
1922 break;
1923 case PACKET_UNKNOWN:
1924 /* The stub does not support the packet. */
1925 if (config->detect == AUTO_BOOLEAN_AUTO
1926 && config->support == PACKET_ENABLE)
1927 {
1928 /* If the stub previously indicated that the packet was
1929 supported then there is a protocol error. */
1930 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1931 config->name, config->title);
1932 }
1933 else if (config->detect == AUTO_BOOLEAN_TRUE)
1934 {
1935 /* The user set it wrong. */
1936 error (_("Enabled packet %s (%s) not recognized by stub"),
1937 config->name, config->title);
1938 }
1939
1940 if (remote_debug)
1941 fprintf_unfiltered (gdb_stdlog,
1942 "Packet %s (%s) is NOT supported\n",
1943 config->name, config->title);
1944 config->support = PACKET_DISABLE;
1945 break;
1946 }
1947
1948 return result;
1949 }
1950
1951 static enum packet_result
1952 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
1953 {
1954 return packet_ok (buf.data (), config);
1955 }
1956
1957 enum {
1958 PACKET_vCont = 0,
1959 PACKET_X,
1960 PACKET_qSymbol,
1961 PACKET_P,
1962 PACKET_p,
1963 PACKET_Z0,
1964 PACKET_Z1,
1965 PACKET_Z2,
1966 PACKET_Z3,
1967 PACKET_Z4,
1968 PACKET_vFile_setfs,
1969 PACKET_vFile_open,
1970 PACKET_vFile_pread,
1971 PACKET_vFile_pwrite,
1972 PACKET_vFile_close,
1973 PACKET_vFile_unlink,
1974 PACKET_vFile_readlink,
1975 PACKET_vFile_fstat,
1976 PACKET_qXfer_auxv,
1977 PACKET_qXfer_features,
1978 PACKET_qXfer_exec_file,
1979 PACKET_qXfer_libraries,
1980 PACKET_qXfer_libraries_svr4,
1981 PACKET_qXfer_memory_map,
1982 PACKET_qXfer_osdata,
1983 PACKET_qXfer_threads,
1984 PACKET_qXfer_statictrace_read,
1985 PACKET_qXfer_traceframe_info,
1986 PACKET_qXfer_uib,
1987 PACKET_qGetTIBAddr,
1988 PACKET_qGetTLSAddr,
1989 PACKET_qSupported,
1990 PACKET_qTStatus,
1991 PACKET_QPassSignals,
1992 PACKET_QCatchSyscalls,
1993 PACKET_QProgramSignals,
1994 PACKET_QSetWorkingDir,
1995 PACKET_QStartupWithShell,
1996 PACKET_QEnvironmentHexEncoded,
1997 PACKET_QEnvironmentReset,
1998 PACKET_QEnvironmentUnset,
1999 PACKET_qCRC,
2000 PACKET_qSearch_memory,
2001 PACKET_vAttach,
2002 PACKET_vRun,
2003 PACKET_QStartNoAckMode,
2004 PACKET_vKill,
2005 PACKET_qXfer_siginfo_read,
2006 PACKET_qXfer_siginfo_write,
2007 PACKET_qAttached,
2008
2009 /* Support for conditional tracepoints. */
2010 PACKET_ConditionalTracepoints,
2011
2012 /* Support for target-side breakpoint conditions. */
2013 PACKET_ConditionalBreakpoints,
2014
2015 /* Support for target-side breakpoint commands. */
2016 PACKET_BreakpointCommands,
2017
2018 /* Support for fast tracepoints. */
2019 PACKET_FastTracepoints,
2020
2021 /* Support for static tracepoints. */
2022 PACKET_StaticTracepoints,
2023
2024 /* Support for installing tracepoints while a trace experiment is
2025 running. */
2026 PACKET_InstallInTrace,
2027
2028 PACKET_bc,
2029 PACKET_bs,
2030 PACKET_TracepointSource,
2031 PACKET_QAllow,
2032 PACKET_qXfer_fdpic,
2033 PACKET_QDisableRandomization,
2034 PACKET_QAgent,
2035 PACKET_QTBuffer_size,
2036 PACKET_Qbtrace_off,
2037 PACKET_Qbtrace_bts,
2038 PACKET_Qbtrace_pt,
2039 PACKET_qXfer_btrace,
2040
2041 /* Support for the QNonStop packet. */
2042 PACKET_QNonStop,
2043
2044 /* Support for the QThreadEvents packet. */
2045 PACKET_QThreadEvents,
2046
2047 /* Support for multi-process extensions. */
2048 PACKET_multiprocess_feature,
2049
2050 /* Support for enabling and disabling tracepoints while a trace
2051 experiment is running. */
2052 PACKET_EnableDisableTracepoints_feature,
2053
2054 /* Support for collecting strings using the tracenz bytecode. */
2055 PACKET_tracenz_feature,
2056
2057 /* Support for continuing to run a trace experiment while GDB is
2058 disconnected. */
2059 PACKET_DisconnectedTracing_feature,
2060
2061 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2062 PACKET_augmented_libraries_svr4_read_feature,
2063
2064 /* Support for the qXfer:btrace-conf:read packet. */
2065 PACKET_qXfer_btrace_conf,
2066
2067 /* Support for the Qbtrace-conf:bts:size packet. */
2068 PACKET_Qbtrace_conf_bts_size,
2069
2070 /* Support for swbreak+ feature. */
2071 PACKET_swbreak_feature,
2072
2073 /* Support for hwbreak+ feature. */
2074 PACKET_hwbreak_feature,
2075
2076 /* Support for fork events. */
2077 PACKET_fork_event_feature,
2078
2079 /* Support for vfork events. */
2080 PACKET_vfork_event_feature,
2081
2082 /* Support for the Qbtrace-conf:pt:size packet. */
2083 PACKET_Qbtrace_conf_pt_size,
2084
2085 /* Support for exec events. */
2086 PACKET_exec_event_feature,
2087
2088 /* Support for query supported vCont actions. */
2089 PACKET_vContSupported,
2090
2091 /* Support remote CTRL-C. */
2092 PACKET_vCtrlC,
2093
2094 /* Support TARGET_WAITKIND_NO_RESUMED. */
2095 PACKET_no_resumed,
2096
2097 PACKET_MAX
2098 };
2099
2100 /* FIXME: needs to be per-remote-target. Ignoring this for now,
2101 assuming all remote targets are the same server (thus all support
2102 the same packets). */
2103 static struct packet_config remote_protocol_packets[PACKET_MAX];
2104
2105 /* Returns the packet's corresponding "set remote foo-packet" command
2106 state. See struct packet_config for more details. */
2107
2108 static enum auto_boolean
2109 packet_set_cmd_state (int packet)
2110 {
2111 return remote_protocol_packets[packet].detect;
2112 }
2113
2114 /* Returns whether a given packet or feature is supported. This takes
2115 into account the state of the corresponding "set remote foo-packet"
2116 command, which may be used to bypass auto-detection. */
2117
2118 static enum packet_support
2119 packet_config_support (struct packet_config *config)
2120 {
2121 switch (config->detect)
2122 {
2123 case AUTO_BOOLEAN_TRUE:
2124 return PACKET_ENABLE;
2125 case AUTO_BOOLEAN_FALSE:
2126 return PACKET_DISABLE;
2127 case AUTO_BOOLEAN_AUTO:
2128 return config->support;
2129 default:
2130 gdb_assert_not_reached (_("bad switch"));
2131 }
2132 }
2133
2134 /* Same as packet_config_support, but takes the packet's enum value as
2135 argument. */
2136
2137 static enum packet_support
2138 packet_support (int packet)
2139 {
2140 struct packet_config *config = &remote_protocol_packets[packet];
2141
2142 return packet_config_support (config);
2143 }
2144
2145 static void
2146 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2147 struct cmd_list_element *c,
2148 const char *value)
2149 {
2150 struct packet_config *packet;
2151
2152 for (packet = remote_protocol_packets;
2153 packet < &remote_protocol_packets[PACKET_MAX];
2154 packet++)
2155 {
2156 if (&packet->detect == c->var)
2157 {
2158 show_packet_config_cmd (packet);
2159 return;
2160 }
2161 }
2162 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2163 c->name);
2164 }
2165
2166 /* Should we try one of the 'Z' requests? */
2167
2168 enum Z_packet_type
2169 {
2170 Z_PACKET_SOFTWARE_BP,
2171 Z_PACKET_HARDWARE_BP,
2172 Z_PACKET_WRITE_WP,
2173 Z_PACKET_READ_WP,
2174 Z_PACKET_ACCESS_WP,
2175 NR_Z_PACKET_TYPES
2176 };
2177
2178 /* For compatibility with older distributions. Provide a ``set remote
2179 Z-packet ...'' command that updates all the Z packet types. */
2180
2181 static enum auto_boolean remote_Z_packet_detect;
2182
2183 static void
2184 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2185 struct cmd_list_element *c)
2186 {
2187 int i;
2188
2189 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2190 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2191 }
2192
2193 static void
2194 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2195 struct cmd_list_element *c,
2196 const char *value)
2197 {
2198 int i;
2199
2200 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2201 {
2202 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2203 }
2204 }
2205
2206 /* Returns true if the multi-process extensions are in effect. */
2207
2208 static int
2209 remote_multi_process_p (struct remote_state *rs)
2210 {
2211 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2212 }
2213
2214 /* Returns true if fork events are supported. */
2215
2216 static int
2217 remote_fork_event_p (struct remote_state *rs)
2218 {
2219 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2220 }
2221
2222 /* Returns true if vfork events are supported. */
2223
2224 static int
2225 remote_vfork_event_p (struct remote_state *rs)
2226 {
2227 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2228 }
2229
2230 /* Returns true if exec events are supported. */
2231
2232 static int
2233 remote_exec_event_p (struct remote_state *rs)
2234 {
2235 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2236 }
2237
2238 /* Insert fork catchpoint target routine. If fork events are enabled
2239 then return success, nothing more to do. */
2240
2241 int
2242 remote_target::insert_fork_catchpoint (int pid)
2243 {
2244 struct remote_state *rs = get_remote_state ();
2245
2246 return !remote_fork_event_p (rs);
2247 }
2248
2249 /* Remove fork catchpoint target routine. Nothing to do, just
2250 return success. */
2251
2252 int
2253 remote_target::remove_fork_catchpoint (int pid)
2254 {
2255 return 0;
2256 }
2257
2258 /* Insert vfork catchpoint target routine. If vfork events are enabled
2259 then return success, nothing more to do. */
2260
2261 int
2262 remote_target::insert_vfork_catchpoint (int pid)
2263 {
2264 struct remote_state *rs = get_remote_state ();
2265
2266 return !remote_vfork_event_p (rs);
2267 }
2268
2269 /* Remove vfork catchpoint target routine. Nothing to do, just
2270 return success. */
2271
2272 int
2273 remote_target::remove_vfork_catchpoint (int pid)
2274 {
2275 return 0;
2276 }
2277
2278 /* Insert exec catchpoint target routine. If exec events are
2279 enabled, just return success. */
2280
2281 int
2282 remote_target::insert_exec_catchpoint (int pid)
2283 {
2284 struct remote_state *rs = get_remote_state ();
2285
2286 return !remote_exec_event_p (rs);
2287 }
2288
2289 /* Remove exec catchpoint target routine. Nothing to do, just
2290 return success. */
2291
2292 int
2293 remote_target::remove_exec_catchpoint (int pid)
2294 {
2295 return 0;
2296 }
2297
2298 \f
2299
2300 /* Take advantage of the fact that the TID field is not used, to tag
2301 special ptids with it set to != 0. */
2302 static const ptid_t magic_null_ptid (42000, -1, 1);
2303 static const ptid_t not_sent_ptid (42000, -2, 1);
2304 static const ptid_t any_thread_ptid (42000, 0, 1);
2305
2306 /* Find out if the stub attached to PID (and hence GDB should offer to
2307 detach instead of killing it when bailing out). */
2308
2309 int
2310 remote_target::remote_query_attached (int pid)
2311 {
2312 struct remote_state *rs = get_remote_state ();
2313 size_t size = get_remote_packet_size ();
2314
2315 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2316 return 0;
2317
2318 if (remote_multi_process_p (rs))
2319 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2320 else
2321 xsnprintf (rs->buf.data (), size, "qAttached");
2322
2323 putpkt (rs->buf);
2324 getpkt (&rs->buf, 0);
2325
2326 switch (packet_ok (rs->buf,
2327 &remote_protocol_packets[PACKET_qAttached]))
2328 {
2329 case PACKET_OK:
2330 if (strcmp (rs->buf.data (), "1") == 0)
2331 return 1;
2332 break;
2333 case PACKET_ERROR:
2334 warning (_("Remote failure reply: %s"), rs->buf.data ());
2335 break;
2336 case PACKET_UNKNOWN:
2337 break;
2338 }
2339
2340 return 0;
2341 }
2342
2343 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2344 has been invented by GDB, instead of reported by the target. Since
2345 we can be connected to a remote system before before knowing about
2346 any inferior, mark the target with execution when we find the first
2347 inferior. If ATTACHED is 1, then we had just attached to this
2348 inferior. If it is 0, then we just created this inferior. If it
2349 is -1, then try querying the remote stub to find out if it had
2350 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2351 attempt to open this inferior's executable as the main executable
2352 if no main executable is open already. */
2353
2354 inferior *
2355 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2356 int try_open_exec)
2357 {
2358 struct inferior *inf;
2359
2360 /* Check whether this process we're learning about is to be
2361 considered attached, or if is to be considered to have been
2362 spawned by the stub. */
2363 if (attached == -1)
2364 attached = remote_query_attached (pid);
2365
2366 if (gdbarch_has_global_solist (target_gdbarch ()))
2367 {
2368 /* If the target shares code across all inferiors, then every
2369 attach adds a new inferior. */
2370 inf = add_inferior (pid);
2371
2372 /* ... and every inferior is bound to the same program space.
2373 However, each inferior may still have its own address
2374 space. */
2375 inf->aspace = maybe_new_address_space ();
2376 inf->pspace = current_program_space;
2377 }
2378 else
2379 {
2380 /* In the traditional debugging scenario, there's a 1-1 match
2381 between program/address spaces. We simply bind the inferior
2382 to the program space's address space. */
2383 inf = current_inferior ();
2384
2385 /* However, if the current inferior is already bound to a
2386 process, find some other empty inferior. */
2387 if (inf->pid != 0)
2388 {
2389 inf = nullptr;
2390 for (inferior *it : all_inferiors ())
2391 if (it->pid == 0)
2392 {
2393 inf = it;
2394 break;
2395 }
2396 }
2397 if (inf == nullptr)
2398 {
2399 /* Since all inferiors were already bound to a process, add
2400 a new inferior. */
2401 inf = add_inferior_with_spaces ();
2402 }
2403 switch_to_inferior_no_thread (inf);
2404 push_target (this);
2405 inferior_appeared (inf, pid);
2406 }
2407
2408 inf->attach_flag = attached;
2409 inf->fake_pid_p = fake_pid_p;
2410
2411 /* If no main executable is currently open then attempt to
2412 open the file that was executed to create this inferior. */
2413 if (try_open_exec && get_exec_file (0) == NULL)
2414 exec_file_locate_attach (pid, 0, 1);
2415
2416 /* Check for exec file mismatch, and let the user solve it. */
2417 validate_exec_file (1);
2418
2419 return inf;
2420 }
2421
2422 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2423 static remote_thread_info *get_remote_thread_info (remote_target *target,
2424 ptid_t ptid);
2425
2426 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2427 according to RUNNING. */
2428
2429 thread_info *
2430 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2431 {
2432 struct remote_state *rs = get_remote_state ();
2433 struct thread_info *thread;
2434
2435 /* GDB historically didn't pull threads in the initial connection
2436 setup. If the remote target doesn't even have a concept of
2437 threads (e.g., a bare-metal target), even if internally we
2438 consider that a single-threaded target, mentioning a new thread
2439 might be confusing to the user. Be silent then, preserving the
2440 age old behavior. */
2441 if (rs->starting_up)
2442 thread = add_thread_silent (this, ptid);
2443 else
2444 thread = add_thread (this, ptid);
2445
2446 get_remote_thread_info (thread)->vcont_resumed = executing;
2447 set_executing (this, ptid, executing);
2448 set_running (this, ptid, running);
2449
2450 return thread;
2451 }
2452
2453 /* Come here when we learn about a thread id from the remote target.
2454 It may be the first time we hear about such thread, so take the
2455 opportunity to add it to GDB's thread list. In case this is the
2456 first time we're noticing its corresponding inferior, add it to
2457 GDB's inferior list as well. EXECUTING indicates whether the
2458 thread is (internally) executing or stopped. */
2459
2460 void
2461 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2462 {
2463 /* In non-stop mode, we assume new found threads are (externally)
2464 running until proven otherwise with a stop reply. In all-stop,
2465 we can only get here if all threads are stopped. */
2466 int running = target_is_non_stop_p () ? 1 : 0;
2467
2468 /* If this is a new thread, add it to GDB's thread list.
2469 If we leave it up to WFI to do this, bad things will happen. */
2470
2471 thread_info *tp = find_thread_ptid (this, currthread);
2472 if (tp != NULL && tp->state == THREAD_EXITED)
2473 {
2474 /* We're seeing an event on a thread id we knew had exited.
2475 This has to be a new thread reusing the old id. Add it. */
2476 remote_add_thread (currthread, running, executing);
2477 return;
2478 }
2479
2480 if (!in_thread_list (this, currthread))
2481 {
2482 struct inferior *inf = NULL;
2483 int pid = currthread.pid ();
2484
2485 if (inferior_ptid.is_pid ()
2486 && pid == inferior_ptid.pid ())
2487 {
2488 /* inferior_ptid has no thread member yet. This can happen
2489 with the vAttach -> remote_wait,"TAAthread:" path if the
2490 stub doesn't support qC. This is the first stop reported
2491 after an attach, so this is the main thread. Update the
2492 ptid in the thread list. */
2493 if (in_thread_list (this, ptid_t (pid)))
2494 thread_change_ptid (this, inferior_ptid, currthread);
2495 else
2496 {
2497 thread_info *thr
2498 = remote_add_thread (currthread, running, executing);
2499 switch_to_thread (thr);
2500 }
2501 return;
2502 }
2503
2504 if (magic_null_ptid == inferior_ptid)
2505 {
2506 /* inferior_ptid is not set yet. This can happen with the
2507 vRun -> remote_wait,"TAAthread:" path if the stub
2508 doesn't support qC. This is the first stop reported
2509 after an attach, so this is the main thread. Update the
2510 ptid in the thread list. */
2511 thread_change_ptid (this, inferior_ptid, currthread);
2512 return;
2513 }
2514
2515 /* When connecting to a target remote, or to a target
2516 extended-remote which already was debugging an inferior, we
2517 may not know about it yet. Add it before adding its child
2518 thread, so notifications are emitted in a sensible order. */
2519 if (find_inferior_pid (this, currthread.pid ()) == NULL)
2520 {
2521 struct remote_state *rs = get_remote_state ();
2522 bool fake_pid_p = !remote_multi_process_p (rs);
2523
2524 inf = remote_add_inferior (fake_pid_p,
2525 currthread.pid (), -1, 1);
2526 }
2527
2528 /* This is really a new thread. Add it. */
2529 thread_info *new_thr
2530 = remote_add_thread (currthread, running, executing);
2531
2532 /* If we found a new inferior, let the common code do whatever
2533 it needs to with it (e.g., read shared libraries, insert
2534 breakpoints), unless we're just setting up an all-stop
2535 connection. */
2536 if (inf != NULL)
2537 {
2538 struct remote_state *rs = get_remote_state ();
2539
2540 if (!rs->starting_up)
2541 notice_new_inferior (new_thr, executing, 0);
2542 }
2543 }
2544 }
2545
2546 /* Return THREAD's private thread data, creating it if necessary. */
2547
2548 static remote_thread_info *
2549 get_remote_thread_info (thread_info *thread)
2550 {
2551 gdb_assert (thread != NULL);
2552
2553 if (thread->priv == NULL)
2554 thread->priv.reset (new remote_thread_info);
2555
2556 return static_cast<remote_thread_info *> (thread->priv.get ());
2557 }
2558
2559 /* Return PTID's private thread data, creating it if necessary. */
2560
2561 static remote_thread_info *
2562 get_remote_thread_info (remote_target *target, ptid_t ptid)
2563 {
2564 thread_info *thr = find_thread_ptid (target, ptid);
2565 return get_remote_thread_info (thr);
2566 }
2567
2568 /* Call this function as a result of
2569 1) A halt indication (T packet) containing a thread id
2570 2) A direct query of currthread
2571 3) Successful execution of set thread */
2572
2573 static void
2574 record_currthread (struct remote_state *rs, ptid_t currthread)
2575 {
2576 rs->general_thread = currthread;
2577 }
2578
2579 /* If 'QPassSignals' is supported, tell the remote stub what signals
2580 it can simply pass through to the inferior without reporting. */
2581
2582 void
2583 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2584 {
2585 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2586 {
2587 char *pass_packet, *p;
2588 int count = 0;
2589 struct remote_state *rs = get_remote_state ();
2590
2591 gdb_assert (pass_signals.size () < 256);
2592 for (size_t i = 0; i < pass_signals.size (); i++)
2593 {
2594 if (pass_signals[i])
2595 count++;
2596 }
2597 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2598 strcpy (pass_packet, "QPassSignals:");
2599 p = pass_packet + strlen (pass_packet);
2600 for (size_t i = 0; i < pass_signals.size (); i++)
2601 {
2602 if (pass_signals[i])
2603 {
2604 if (i >= 16)
2605 *p++ = tohex (i >> 4);
2606 *p++ = tohex (i & 15);
2607 if (count)
2608 *p++ = ';';
2609 else
2610 break;
2611 count--;
2612 }
2613 }
2614 *p = 0;
2615 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2616 {
2617 putpkt (pass_packet);
2618 getpkt (&rs->buf, 0);
2619 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2620 xfree (rs->last_pass_packet);
2621 rs->last_pass_packet = pass_packet;
2622 }
2623 else
2624 xfree (pass_packet);
2625 }
2626 }
2627
2628 /* If 'QCatchSyscalls' is supported, tell the remote stub
2629 to report syscalls to GDB. */
2630
2631 int
2632 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2633 gdb::array_view<const int> syscall_counts)
2634 {
2635 const char *catch_packet;
2636 enum packet_result result;
2637 int n_sysno = 0;
2638
2639 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2640 {
2641 /* Not supported. */
2642 return 1;
2643 }
2644
2645 if (needed && any_count == 0)
2646 {
2647 /* Count how many syscalls are to be caught. */
2648 for (size_t i = 0; i < syscall_counts.size (); i++)
2649 {
2650 if (syscall_counts[i] != 0)
2651 n_sysno++;
2652 }
2653 }
2654
2655 if (remote_debug)
2656 {
2657 fprintf_unfiltered (gdb_stdlog,
2658 "remote_set_syscall_catchpoint "
2659 "pid %d needed %d any_count %d n_sysno %d\n",
2660 pid, needed, any_count, n_sysno);
2661 }
2662
2663 std::string built_packet;
2664 if (needed)
2665 {
2666 /* Prepare a packet with the sysno list, assuming max 8+1
2667 characters for a sysno. If the resulting packet size is too
2668 big, fallback on the non-selective packet. */
2669 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2670 built_packet.reserve (maxpktsz);
2671 built_packet = "QCatchSyscalls:1";
2672 if (any_count == 0)
2673 {
2674 /* Add in each syscall to be caught. */
2675 for (size_t i = 0; i < syscall_counts.size (); i++)
2676 {
2677 if (syscall_counts[i] != 0)
2678 string_appendf (built_packet, ";%zx", i);
2679 }
2680 }
2681 if (built_packet.size () > get_remote_packet_size ())
2682 {
2683 /* catch_packet too big. Fallback to less efficient
2684 non selective mode, with GDB doing the filtering. */
2685 catch_packet = "QCatchSyscalls:1";
2686 }
2687 else
2688 catch_packet = built_packet.c_str ();
2689 }
2690 else
2691 catch_packet = "QCatchSyscalls:0";
2692
2693 struct remote_state *rs = get_remote_state ();
2694
2695 putpkt (catch_packet);
2696 getpkt (&rs->buf, 0);
2697 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2698 if (result == PACKET_OK)
2699 return 0;
2700 else
2701 return -1;
2702 }
2703
2704 /* If 'QProgramSignals' is supported, tell the remote stub what
2705 signals it should pass through to the inferior when detaching. */
2706
2707 void
2708 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2709 {
2710 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2711 {
2712 char *packet, *p;
2713 int count = 0;
2714 struct remote_state *rs = get_remote_state ();
2715
2716 gdb_assert (signals.size () < 256);
2717 for (size_t i = 0; i < signals.size (); i++)
2718 {
2719 if (signals[i])
2720 count++;
2721 }
2722 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2723 strcpy (packet, "QProgramSignals:");
2724 p = packet + strlen (packet);
2725 for (size_t i = 0; i < signals.size (); i++)
2726 {
2727 if (signal_pass_state (i))
2728 {
2729 if (i >= 16)
2730 *p++ = tohex (i >> 4);
2731 *p++ = tohex (i & 15);
2732 if (count)
2733 *p++ = ';';
2734 else
2735 break;
2736 count--;
2737 }
2738 }
2739 *p = 0;
2740 if (!rs->last_program_signals_packet
2741 || strcmp (rs->last_program_signals_packet, packet) != 0)
2742 {
2743 putpkt (packet);
2744 getpkt (&rs->buf, 0);
2745 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2746 xfree (rs->last_program_signals_packet);
2747 rs->last_program_signals_packet = packet;
2748 }
2749 else
2750 xfree (packet);
2751 }
2752 }
2753
2754 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2755 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2756 thread. If GEN is set, set the general thread, if not, then set
2757 the step/continue thread. */
2758 void
2759 remote_target::set_thread (ptid_t ptid, int gen)
2760 {
2761 struct remote_state *rs = get_remote_state ();
2762 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2763 char *buf = rs->buf.data ();
2764 char *endbuf = buf + get_remote_packet_size ();
2765
2766 if (state == ptid)
2767 return;
2768
2769 *buf++ = 'H';
2770 *buf++ = gen ? 'g' : 'c';
2771 if (ptid == magic_null_ptid)
2772 xsnprintf (buf, endbuf - buf, "0");
2773 else if (ptid == any_thread_ptid)
2774 xsnprintf (buf, endbuf - buf, "0");
2775 else if (ptid == minus_one_ptid)
2776 xsnprintf (buf, endbuf - buf, "-1");
2777 else
2778 write_ptid (buf, endbuf, ptid);
2779 putpkt (rs->buf);
2780 getpkt (&rs->buf, 0);
2781 if (gen)
2782 rs->general_thread = ptid;
2783 else
2784 rs->continue_thread = ptid;
2785 }
2786
2787 void
2788 remote_target::set_general_thread (ptid_t ptid)
2789 {
2790 set_thread (ptid, 1);
2791 }
2792
2793 void
2794 remote_target::set_continue_thread (ptid_t ptid)
2795 {
2796 set_thread (ptid, 0);
2797 }
2798
2799 /* Change the remote current process. Which thread within the process
2800 ends up selected isn't important, as long as it is the same process
2801 as what INFERIOR_PTID points to.
2802
2803 This comes from that fact that there is no explicit notion of
2804 "selected process" in the protocol. The selected process for
2805 general operations is the process the selected general thread
2806 belongs to. */
2807
2808 void
2809 remote_target::set_general_process ()
2810 {
2811 struct remote_state *rs = get_remote_state ();
2812
2813 /* If the remote can't handle multiple processes, don't bother. */
2814 if (!remote_multi_process_p (rs))
2815 return;
2816
2817 /* We only need to change the remote current thread if it's pointing
2818 at some other process. */
2819 if (rs->general_thread.pid () != inferior_ptid.pid ())
2820 set_general_thread (inferior_ptid);
2821 }
2822
2823 \f
2824 /* Return nonzero if this is the main thread that we made up ourselves
2825 to model non-threaded targets as single-threaded. */
2826
2827 static int
2828 remote_thread_always_alive (ptid_t ptid)
2829 {
2830 if (ptid == magic_null_ptid)
2831 /* The main thread is always alive. */
2832 return 1;
2833
2834 if (ptid.pid () != 0 && ptid.lwp () == 0)
2835 /* The main thread is always alive. This can happen after a
2836 vAttach, if the remote side doesn't support
2837 multi-threading. */
2838 return 1;
2839
2840 return 0;
2841 }
2842
2843 /* Return nonzero if the thread PTID is still alive on the remote
2844 system. */
2845
2846 bool
2847 remote_target::thread_alive (ptid_t ptid)
2848 {
2849 struct remote_state *rs = get_remote_state ();
2850 char *p, *endp;
2851
2852 /* Check if this is a thread that we made up ourselves to model
2853 non-threaded targets as single-threaded. */
2854 if (remote_thread_always_alive (ptid))
2855 return 1;
2856
2857 p = rs->buf.data ();
2858 endp = p + get_remote_packet_size ();
2859
2860 *p++ = 'T';
2861 write_ptid (p, endp, ptid);
2862
2863 putpkt (rs->buf);
2864 getpkt (&rs->buf, 0);
2865 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2866 }
2867
2868 /* Return a pointer to a thread name if we know it and NULL otherwise.
2869 The thread_info object owns the memory for the name. */
2870
2871 const char *
2872 remote_target::thread_name (struct thread_info *info)
2873 {
2874 if (info->priv != NULL)
2875 {
2876 const std::string &name = get_remote_thread_info (info)->name;
2877 return !name.empty () ? name.c_str () : NULL;
2878 }
2879
2880 return NULL;
2881 }
2882
2883 /* About these extended threadlist and threadinfo packets. They are
2884 variable length packets but, the fields within them are often fixed
2885 length. They are redundant enough to send over UDP as is the
2886 remote protocol in general. There is a matching unit test module
2887 in libstub. */
2888
2889 /* WARNING: This threadref data structure comes from the remote O.S.,
2890 libstub protocol encoding, and remote.c. It is not particularly
2891 changable. */
2892
2893 /* Right now, the internal structure is int. We want it to be bigger.
2894 Plan to fix this. */
2895
2896 typedef int gdb_threadref; /* Internal GDB thread reference. */
2897
2898 /* gdb_ext_thread_info is an internal GDB data structure which is
2899 equivalent to the reply of the remote threadinfo packet. */
2900
2901 struct gdb_ext_thread_info
2902 {
2903 threadref threadid; /* External form of thread reference. */
2904 int active; /* Has state interesting to GDB?
2905 regs, stack. */
2906 char display[256]; /* Brief state display, name,
2907 blocked/suspended. */
2908 char shortname[32]; /* To be used to name threads. */
2909 char more_display[256]; /* Long info, statistics, queue depth,
2910 whatever. */
2911 };
2912
2913 /* The volume of remote transfers can be limited by submitting
2914 a mask containing bits specifying the desired information.
2915 Use a union of these values as the 'selection' parameter to
2916 get_thread_info. FIXME: Make these TAG names more thread specific. */
2917
2918 #define TAG_THREADID 1
2919 #define TAG_EXISTS 2
2920 #define TAG_DISPLAY 4
2921 #define TAG_THREADNAME 8
2922 #define TAG_MOREDISPLAY 16
2923
2924 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2925
2926 static char *unpack_nibble (char *buf, int *val);
2927
2928 static char *unpack_byte (char *buf, int *value);
2929
2930 static char *pack_int (char *buf, int value);
2931
2932 static char *unpack_int (char *buf, int *value);
2933
2934 static char *unpack_string (char *src, char *dest, int length);
2935
2936 static char *pack_threadid (char *pkt, threadref *id);
2937
2938 static char *unpack_threadid (char *inbuf, threadref *id);
2939
2940 void int_to_threadref (threadref *id, int value);
2941
2942 static int threadref_to_int (threadref *ref);
2943
2944 static void copy_threadref (threadref *dest, threadref *src);
2945
2946 static int threadmatch (threadref *dest, threadref *src);
2947
2948 static char *pack_threadinfo_request (char *pkt, int mode,
2949 threadref *id);
2950
2951 static char *pack_threadlist_request (char *pkt, int startflag,
2952 int threadcount,
2953 threadref *nextthread);
2954
2955 static int remote_newthread_step (threadref *ref, void *context);
2956
2957
2958 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2959 buffer we're allowed to write to. Returns
2960 BUF+CHARACTERS_WRITTEN. */
2961
2962 char *
2963 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2964 {
2965 int pid, tid;
2966 struct remote_state *rs = get_remote_state ();
2967
2968 if (remote_multi_process_p (rs))
2969 {
2970 pid = ptid.pid ();
2971 if (pid < 0)
2972 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2973 else
2974 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2975 }
2976 tid = ptid.lwp ();
2977 if (tid < 0)
2978 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2979 else
2980 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2981
2982 return buf;
2983 }
2984
2985 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2986 last parsed char. Returns null_ptid if no thread id is found, and
2987 throws an error if the thread id has an invalid format. */
2988
2989 static ptid_t
2990 read_ptid (const char *buf, const char **obuf)
2991 {
2992 const char *p = buf;
2993 const char *pp;
2994 ULONGEST pid = 0, tid = 0;
2995
2996 if (*p == 'p')
2997 {
2998 /* Multi-process ptid. */
2999 pp = unpack_varlen_hex (p + 1, &pid);
3000 if (*pp != '.')
3001 error (_("invalid remote ptid: %s"), p);
3002
3003 p = pp;
3004 pp = unpack_varlen_hex (p + 1, &tid);
3005 if (obuf)
3006 *obuf = pp;
3007 return ptid_t (pid, tid, 0);
3008 }
3009
3010 /* No multi-process. Just a tid. */
3011 pp = unpack_varlen_hex (p, &tid);
3012
3013 /* Return null_ptid when no thread id is found. */
3014 if (p == pp)
3015 {
3016 if (obuf)
3017 *obuf = pp;
3018 return null_ptid;
3019 }
3020
3021 /* Since the stub is not sending a process id, then default to
3022 what's in inferior_ptid, unless it's null at this point. If so,
3023 then since there's no way to know the pid of the reported
3024 threads, use the magic number. */
3025 if (inferior_ptid == null_ptid)
3026 pid = magic_null_ptid.pid ();
3027 else
3028 pid = inferior_ptid.pid ();
3029
3030 if (obuf)
3031 *obuf = pp;
3032 return ptid_t (pid, tid, 0);
3033 }
3034
3035 static int
3036 stubhex (int ch)
3037 {
3038 if (ch >= 'a' && ch <= 'f')
3039 return ch - 'a' + 10;
3040 if (ch >= '0' && ch <= '9')
3041 return ch - '0';
3042 if (ch >= 'A' && ch <= 'F')
3043 return ch - 'A' + 10;
3044 return -1;
3045 }
3046
3047 static int
3048 stub_unpack_int (char *buff, int fieldlength)
3049 {
3050 int nibble;
3051 int retval = 0;
3052
3053 while (fieldlength)
3054 {
3055 nibble = stubhex (*buff++);
3056 retval |= nibble;
3057 fieldlength--;
3058 if (fieldlength)
3059 retval = retval << 4;
3060 }
3061 return retval;
3062 }
3063
3064 static char *
3065 unpack_nibble (char *buf, int *val)
3066 {
3067 *val = fromhex (*buf++);
3068 return buf;
3069 }
3070
3071 static char *
3072 unpack_byte (char *buf, int *value)
3073 {
3074 *value = stub_unpack_int (buf, 2);
3075 return buf + 2;
3076 }
3077
3078 static char *
3079 pack_int (char *buf, int value)
3080 {
3081 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3082 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3083 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3084 buf = pack_hex_byte (buf, (value & 0xff));
3085 return buf;
3086 }
3087
3088 static char *
3089 unpack_int (char *buf, int *value)
3090 {
3091 *value = stub_unpack_int (buf, 8);
3092 return buf + 8;
3093 }
3094
3095 #if 0 /* Currently unused, uncomment when needed. */
3096 static char *pack_string (char *pkt, char *string);
3097
3098 static char *
3099 pack_string (char *pkt, char *string)
3100 {
3101 char ch;
3102 int len;
3103
3104 len = strlen (string);
3105 if (len > 200)
3106 len = 200; /* Bigger than most GDB packets, junk??? */
3107 pkt = pack_hex_byte (pkt, len);
3108 while (len-- > 0)
3109 {
3110 ch = *string++;
3111 if ((ch == '\0') || (ch == '#'))
3112 ch = '*'; /* Protect encapsulation. */
3113 *pkt++ = ch;
3114 }
3115 return pkt;
3116 }
3117 #endif /* 0 (unused) */
3118
3119 static char *
3120 unpack_string (char *src, char *dest, int length)
3121 {
3122 while (length--)
3123 *dest++ = *src++;
3124 *dest = '\0';
3125 return src;
3126 }
3127
3128 static char *
3129 pack_threadid (char *pkt, threadref *id)
3130 {
3131 char *limit;
3132 unsigned char *altid;
3133
3134 altid = (unsigned char *) id;
3135 limit = pkt + BUF_THREAD_ID_SIZE;
3136 while (pkt < limit)
3137 pkt = pack_hex_byte (pkt, *altid++);
3138 return pkt;
3139 }
3140
3141
3142 static char *
3143 unpack_threadid (char *inbuf, threadref *id)
3144 {
3145 char *altref;
3146 char *limit = inbuf + BUF_THREAD_ID_SIZE;
3147 int x, y;
3148
3149 altref = (char *) id;
3150
3151 while (inbuf < limit)
3152 {
3153 x = stubhex (*inbuf++);
3154 y = stubhex (*inbuf++);
3155 *altref++ = (x << 4) | y;
3156 }
3157 return inbuf;
3158 }
3159
3160 /* Externally, threadrefs are 64 bits but internally, they are still
3161 ints. This is due to a mismatch of specifications. We would like
3162 to use 64bit thread references internally. This is an adapter
3163 function. */
3164
3165 void
3166 int_to_threadref (threadref *id, int value)
3167 {
3168 unsigned char *scan;
3169
3170 scan = (unsigned char *) id;
3171 {
3172 int i = 4;
3173 while (i--)
3174 *scan++ = 0;
3175 }
3176 *scan++ = (value >> 24) & 0xff;
3177 *scan++ = (value >> 16) & 0xff;
3178 *scan++ = (value >> 8) & 0xff;
3179 *scan++ = (value & 0xff);
3180 }
3181
3182 static int
3183 threadref_to_int (threadref *ref)
3184 {
3185 int i, value = 0;
3186 unsigned char *scan;
3187
3188 scan = *ref;
3189 scan += 4;
3190 i = 4;
3191 while (i-- > 0)
3192 value = (value << 8) | ((*scan++) & 0xff);
3193 return value;
3194 }
3195
3196 static void
3197 copy_threadref (threadref *dest, threadref *src)
3198 {
3199 int i;
3200 unsigned char *csrc, *cdest;
3201
3202 csrc = (unsigned char *) src;
3203 cdest = (unsigned char *) dest;
3204 i = 8;
3205 while (i--)
3206 *cdest++ = *csrc++;
3207 }
3208
3209 static int
3210 threadmatch (threadref *dest, threadref *src)
3211 {
3212 /* Things are broken right now, so just assume we got a match. */
3213 #if 0
3214 unsigned char *srcp, *destp;
3215 int i, result;
3216 srcp = (char *) src;
3217 destp = (char *) dest;
3218
3219 result = 1;
3220 while (i-- > 0)
3221 result &= (*srcp++ == *destp++) ? 1 : 0;
3222 return result;
3223 #endif
3224 return 1;
3225 }
3226
3227 /*
3228 threadid:1, # always request threadid
3229 context_exists:2,
3230 display:4,
3231 unique_name:8,
3232 more_display:16
3233 */
3234
3235 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3236
3237 static char *
3238 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3239 {
3240 *pkt++ = 'q'; /* Info Query */
3241 *pkt++ = 'P'; /* process or thread info */
3242 pkt = pack_int (pkt, mode); /* mode */
3243 pkt = pack_threadid (pkt, id); /* threadid */
3244 *pkt = '\0'; /* terminate */
3245 return pkt;
3246 }
3247
3248 /* These values tag the fields in a thread info response packet. */
3249 /* Tagging the fields allows us to request specific fields and to
3250 add more fields as time goes by. */
3251
3252 #define TAG_THREADID 1 /* Echo the thread identifier. */
3253 #define TAG_EXISTS 2 /* Is this process defined enough to
3254 fetch registers and its stack? */
3255 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3256 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3257 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3258 the process. */
3259
3260 int
3261 remote_target::remote_unpack_thread_info_response (char *pkt,
3262 threadref *expectedref,
3263 gdb_ext_thread_info *info)
3264 {
3265 struct remote_state *rs = get_remote_state ();
3266 int mask, length;
3267 int tag;
3268 threadref ref;
3269 char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3270 int retval = 1;
3271
3272 /* info->threadid = 0; FIXME: implement zero_threadref. */
3273 info->active = 0;
3274 info->display[0] = '\0';
3275 info->shortname[0] = '\0';
3276 info->more_display[0] = '\0';
3277
3278 /* Assume the characters indicating the packet type have been
3279 stripped. */
3280 pkt = unpack_int (pkt, &mask); /* arg mask */
3281 pkt = unpack_threadid (pkt, &ref);
3282
3283 if (mask == 0)
3284 warning (_("Incomplete response to threadinfo request."));
3285 if (!threadmatch (&ref, expectedref))
3286 { /* This is an answer to a different request. */
3287 warning (_("ERROR RMT Thread info mismatch."));
3288 return 0;
3289 }
3290 copy_threadref (&info->threadid, &ref);
3291
3292 /* Loop on tagged fields , try to bail if something goes wrong. */
3293
3294 /* Packets are terminated with nulls. */
3295 while ((pkt < limit) && mask && *pkt)
3296 {
3297 pkt = unpack_int (pkt, &tag); /* tag */
3298 pkt = unpack_byte (pkt, &length); /* length */
3299 if (!(tag & mask)) /* Tags out of synch with mask. */
3300 {
3301 warning (_("ERROR RMT: threadinfo tag mismatch."));
3302 retval = 0;
3303 break;
3304 }
3305 if (tag == TAG_THREADID)
3306 {
3307 if (length != 16)
3308 {
3309 warning (_("ERROR RMT: length of threadid is not 16."));
3310 retval = 0;
3311 break;
3312 }
3313 pkt = unpack_threadid (pkt, &ref);
3314 mask = mask & ~TAG_THREADID;
3315 continue;
3316 }
3317 if (tag == TAG_EXISTS)
3318 {
3319 info->active = stub_unpack_int (pkt, length);
3320 pkt += length;
3321 mask = mask & ~(TAG_EXISTS);
3322 if (length > 8)
3323 {
3324 warning (_("ERROR RMT: 'exists' length too long."));
3325 retval = 0;
3326 break;
3327 }
3328 continue;
3329 }
3330 if (tag == TAG_THREADNAME)
3331 {
3332 pkt = unpack_string (pkt, &info->shortname[0], length);
3333 mask = mask & ~TAG_THREADNAME;
3334 continue;
3335 }
3336 if (tag == TAG_DISPLAY)
3337 {
3338 pkt = unpack_string (pkt, &info->display[0], length);
3339 mask = mask & ~TAG_DISPLAY;
3340 continue;
3341 }
3342 if (tag == TAG_MOREDISPLAY)
3343 {
3344 pkt = unpack_string (pkt, &info->more_display[0], length);
3345 mask = mask & ~TAG_MOREDISPLAY;
3346 continue;
3347 }
3348 warning (_("ERROR RMT: unknown thread info tag."));
3349 break; /* Not a tag we know about. */
3350 }
3351 return retval;
3352 }
3353
3354 int
3355 remote_target::remote_get_threadinfo (threadref *threadid,
3356 int fieldset,
3357 gdb_ext_thread_info *info)
3358 {
3359 struct remote_state *rs = get_remote_state ();
3360 int result;
3361
3362 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3363 putpkt (rs->buf);
3364 getpkt (&rs->buf, 0);
3365
3366 if (rs->buf[0] == '\0')
3367 return 0;
3368
3369 result = remote_unpack_thread_info_response (&rs->buf[2],
3370 threadid, info);
3371 return result;
3372 }
3373
3374 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3375
3376 static char *
3377 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3378 threadref *nextthread)
3379 {
3380 *pkt++ = 'q'; /* info query packet */
3381 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3382 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3383 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3384 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3385 *pkt = '\0';
3386 return pkt;
3387 }
3388
3389 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3390
3391 int
3392 remote_target::parse_threadlist_response (char *pkt, int result_limit,
3393 threadref *original_echo,
3394 threadref *resultlist,
3395 int *doneflag)
3396 {
3397 struct remote_state *rs = get_remote_state ();
3398 char *limit;
3399 int count, resultcount, done;
3400
3401 resultcount = 0;
3402 /* Assume the 'q' and 'M chars have been stripped. */
3403 limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3404 /* done parse past here */
3405 pkt = unpack_byte (pkt, &count); /* count field */
3406 pkt = unpack_nibble (pkt, &done);
3407 /* The first threadid is the argument threadid. */
3408 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3409 while ((count-- > 0) && (pkt < limit))
3410 {
3411 pkt = unpack_threadid (pkt, resultlist++);
3412 if (resultcount++ >= result_limit)
3413 break;
3414 }
3415 if (doneflag)
3416 *doneflag = done;
3417 return resultcount;
3418 }
3419
3420 /* Fetch the next batch of threads from the remote. Returns -1 if the
3421 qL packet is not supported, 0 on error and 1 on success. */
3422
3423 int
3424 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3425 int result_limit, int *done, int *result_count,
3426 threadref *threadlist)
3427 {
3428 struct remote_state *rs = get_remote_state ();
3429 int result = 1;
3430
3431 /* Truncate result limit to be smaller than the packet size. */
3432 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3433 >= get_remote_packet_size ())
3434 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3435
3436 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3437 nextthread);
3438 putpkt (rs->buf);
3439 getpkt (&rs->buf, 0);
3440 if (rs->buf[0] == '\0')
3441 {
3442 /* Packet not supported. */
3443 return -1;
3444 }
3445
3446 *result_count =
3447 parse_threadlist_response (&rs->buf[2], result_limit,
3448 &rs->echo_nextthread, threadlist, done);
3449
3450 if (!threadmatch (&rs->echo_nextthread, nextthread))
3451 {
3452 /* FIXME: This is a good reason to drop the packet. */
3453 /* Possibly, there is a duplicate response. */
3454 /* Possibilities :
3455 retransmit immediatly - race conditions
3456 retransmit after timeout - yes
3457 exit
3458 wait for packet, then exit
3459 */
3460 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3461 return 0; /* I choose simply exiting. */
3462 }
3463 if (*result_count <= 0)
3464 {
3465 if (*done != 1)
3466 {
3467 warning (_("RMT ERROR : failed to get remote thread list."));
3468 result = 0;
3469 }
3470 return result; /* break; */
3471 }
3472 if (*result_count > result_limit)
3473 {
3474 *result_count = 0;
3475 warning (_("RMT ERROR: threadlist response longer than requested."));
3476 return 0;
3477 }
3478 return result;
3479 }
3480
3481 /* Fetch the list of remote threads, with the qL packet, and call
3482 STEPFUNCTION for each thread found. Stops iterating and returns 1
3483 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3484 STEPFUNCTION returns false. If the packet is not supported,
3485 returns -1. */
3486
3487 int
3488 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3489 void *context, int looplimit)
3490 {
3491 struct remote_state *rs = get_remote_state ();
3492 int done, i, result_count;
3493 int startflag = 1;
3494 int result = 1;
3495 int loopcount = 0;
3496
3497 done = 0;
3498 while (!done)
3499 {
3500 if (loopcount++ > looplimit)
3501 {
3502 result = 0;
3503 warning (_("Remote fetch threadlist -infinite loop-."));
3504 break;
3505 }
3506 result = remote_get_threadlist (startflag, &rs->nextthread,
3507 MAXTHREADLISTRESULTS,
3508 &done, &result_count,
3509 rs->resultthreadlist);
3510 if (result <= 0)
3511 break;
3512 /* Clear for later iterations. */
3513 startflag = 0;
3514 /* Setup to resume next batch of thread references, set nextthread. */
3515 if (result_count >= 1)
3516 copy_threadref (&rs->nextthread,
3517 &rs->resultthreadlist[result_count - 1]);
3518 i = 0;
3519 while (result_count--)
3520 {
3521 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3522 {
3523 result = 0;
3524 break;
3525 }
3526 }
3527 }
3528 return result;
3529 }
3530
3531 /* A thread found on the remote target. */
3532
3533 struct thread_item
3534 {
3535 explicit thread_item (ptid_t ptid_)
3536 : ptid (ptid_)
3537 {}
3538
3539 thread_item (thread_item &&other) = default;
3540 thread_item &operator= (thread_item &&other) = default;
3541
3542 DISABLE_COPY_AND_ASSIGN (thread_item);
3543
3544 /* The thread's PTID. */
3545 ptid_t ptid;
3546
3547 /* The thread's extra info. */
3548 std::string extra;
3549
3550 /* The thread's name. */
3551 std::string name;
3552
3553 /* The core the thread was running on. -1 if not known. */
3554 int core = -1;
3555
3556 /* The thread handle associated with the thread. */
3557 gdb::byte_vector thread_handle;
3558 };
3559
3560 /* Context passed around to the various methods listing remote
3561 threads. As new threads are found, they're added to the ITEMS
3562 vector. */
3563
3564 struct threads_listing_context
3565 {
3566 /* Return true if this object contains an entry for a thread with ptid
3567 PTID. */
3568
3569 bool contains_thread (ptid_t ptid) const
3570 {
3571 auto match_ptid = [&] (const thread_item &item)
3572 {
3573 return item.ptid == ptid;
3574 };
3575
3576 auto it = std::find_if (this->items.begin (),
3577 this->items.end (),
3578 match_ptid);
3579
3580 return it != this->items.end ();
3581 }
3582
3583 /* Remove the thread with ptid PTID. */
3584
3585 void remove_thread (ptid_t ptid)
3586 {
3587 auto match_ptid = [&] (const thread_item &item)
3588 {
3589 return item.ptid == ptid;
3590 };
3591
3592 auto it = std::remove_if (this->items.begin (),
3593 this->items.end (),
3594 match_ptid);
3595
3596 if (it != this->items.end ())
3597 this->items.erase (it);
3598 }
3599
3600 /* The threads found on the remote target. */
3601 std::vector<thread_item> items;
3602 };
3603
3604 static int
3605 remote_newthread_step (threadref *ref, void *data)
3606 {
3607 struct threads_listing_context *context
3608 = (struct threads_listing_context *) data;
3609 int pid = inferior_ptid.pid ();
3610 int lwp = threadref_to_int (ref);
3611 ptid_t ptid (pid, lwp);
3612
3613 context->items.emplace_back (ptid);
3614
3615 return 1; /* continue iterator */
3616 }
3617
3618 #define CRAZY_MAX_THREADS 1000
3619
3620 ptid_t
3621 remote_target::remote_current_thread (ptid_t oldpid)
3622 {
3623 struct remote_state *rs = get_remote_state ();
3624
3625 putpkt ("qC");
3626 getpkt (&rs->buf, 0);
3627 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3628 {
3629 const char *obuf;
3630 ptid_t result;
3631
3632 result = read_ptid (&rs->buf[2], &obuf);
3633 if (*obuf != '\0' && remote_debug)
3634 fprintf_unfiltered (gdb_stdlog,
3635 "warning: garbage in qC reply\n");
3636
3637 return result;
3638 }
3639 else
3640 return oldpid;
3641 }
3642
3643 /* List remote threads using the deprecated qL packet. */
3644
3645 int
3646 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3647 {
3648 if (remote_threadlist_iterator (remote_newthread_step, context,
3649 CRAZY_MAX_THREADS) >= 0)
3650 return 1;
3651
3652 return 0;
3653 }
3654
3655 #if defined(HAVE_LIBEXPAT)
3656
3657 static void
3658 start_thread (struct gdb_xml_parser *parser,
3659 const struct gdb_xml_element *element,
3660 void *user_data,
3661 std::vector<gdb_xml_value> &attributes)
3662 {
3663 struct threads_listing_context *data
3664 = (struct threads_listing_context *) user_data;
3665 struct gdb_xml_value *attr;
3666
3667 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3668 ptid_t ptid = read_ptid (id, NULL);
3669
3670 data->items.emplace_back (ptid);
3671 thread_item &item = data->items.back ();
3672
3673 attr = xml_find_attribute (attributes, "core");
3674 if (attr != NULL)
3675 item.core = *(ULONGEST *) attr->value.get ();
3676
3677 attr = xml_find_attribute (attributes, "name");
3678 if (attr != NULL)
3679 item.name = (const char *) attr->value.get ();
3680
3681 attr = xml_find_attribute (attributes, "handle");
3682 if (attr != NULL)
3683 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3684 }
3685
3686 static void
3687 end_thread (struct gdb_xml_parser *parser,
3688 const struct gdb_xml_element *element,
3689 void *user_data, const char *body_text)
3690 {
3691 struct threads_listing_context *data
3692 = (struct threads_listing_context *) user_data;
3693
3694 if (body_text != NULL && *body_text != '\0')
3695 data->items.back ().extra = body_text;
3696 }
3697
3698 const struct gdb_xml_attribute thread_attributes[] = {
3699 { "id", GDB_XML_AF_NONE, NULL, NULL },
3700 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3701 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3702 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3703 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3704 };
3705
3706 const struct gdb_xml_element thread_children[] = {
3707 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3708 };
3709
3710 const struct gdb_xml_element threads_children[] = {
3711 { "thread", thread_attributes, thread_children,
3712 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3713 start_thread, end_thread },
3714 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3715 };
3716
3717 const struct gdb_xml_element threads_elements[] = {
3718 { "threads", NULL, threads_children,
3719 GDB_XML_EF_NONE, NULL, NULL },
3720 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3721 };
3722
3723 #endif
3724
3725 /* List remote threads using qXfer:threads:read. */
3726
3727 int
3728 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3729 {
3730 #if defined(HAVE_LIBEXPAT)
3731 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3732 {
3733 gdb::optional<gdb::char_vector> xml
3734 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3735
3736 if (xml && (*xml)[0] != '\0')
3737 {
3738 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3739 threads_elements, xml->data (), context);
3740 }
3741
3742 return 1;
3743 }
3744 #endif
3745
3746 return 0;
3747 }
3748
3749 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3750
3751 int
3752 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3753 {
3754 struct remote_state *rs = get_remote_state ();
3755
3756 if (rs->use_threadinfo_query)
3757 {
3758 const char *bufp;
3759
3760 putpkt ("qfThreadInfo");
3761 getpkt (&rs->buf, 0);
3762 bufp = rs->buf.data ();
3763 if (bufp[0] != '\0') /* q packet recognized */
3764 {
3765 while (*bufp++ == 'm') /* reply contains one or more TID */
3766 {
3767 do
3768 {
3769 ptid_t ptid = read_ptid (bufp, &bufp);
3770 context->items.emplace_back (ptid);
3771 }
3772 while (*bufp++ == ','); /* comma-separated list */
3773 putpkt ("qsThreadInfo");
3774 getpkt (&rs->buf, 0);
3775 bufp = rs->buf.data ();
3776 }
3777 return 1;
3778 }
3779 else
3780 {
3781 /* Packet not recognized. */
3782 rs->use_threadinfo_query = 0;
3783 }
3784 }
3785
3786 return 0;
3787 }
3788
3789 /* Return true if INF only has one non-exited thread. */
3790
3791 static bool
3792 has_single_non_exited_thread (inferior *inf)
3793 {
3794 int count = 0;
3795 for (thread_info *tp ATTRIBUTE_UNUSED : inf->non_exited_threads ())
3796 if (++count > 1)
3797 break;
3798 return count == 1;
3799 }
3800
3801 /* Implement the to_update_thread_list function for the remote
3802 targets. */
3803
3804 void
3805 remote_target::update_thread_list ()
3806 {
3807 struct threads_listing_context context;
3808 int got_list = 0;
3809
3810 /* We have a few different mechanisms to fetch the thread list. Try
3811 them all, starting with the most preferred one first, falling
3812 back to older methods. */
3813 if (remote_get_threads_with_qxfer (&context)
3814 || remote_get_threads_with_qthreadinfo (&context)
3815 || remote_get_threads_with_ql (&context))
3816 {
3817 got_list = 1;
3818
3819 if (context.items.empty ()
3820 && remote_thread_always_alive (inferior_ptid))
3821 {
3822 /* Some targets don't really support threads, but still
3823 reply an (empty) thread list in response to the thread
3824 listing packets, instead of replying "packet not
3825 supported". Exit early so we don't delete the main
3826 thread. */
3827 return;
3828 }
3829
3830 /* CONTEXT now holds the current thread list on the remote
3831 target end. Delete GDB-side threads no longer found on the
3832 target. */
3833 for (thread_info *tp : all_threads_safe ())
3834 {
3835 if (tp->inf->process_target () != this)
3836 continue;
3837
3838 if (!context.contains_thread (tp->ptid))
3839 {
3840 /* Do not remove the thread if it is the last thread in
3841 the inferior. This situation happens when we have a
3842 pending exit process status to process. Otherwise we
3843 may end up with a seemingly live inferior (i.e. pid
3844 != 0) that has no threads. */
3845 if (has_single_non_exited_thread (tp->inf))
3846 continue;
3847
3848 /* Not found. */
3849 delete_thread (tp);
3850 }
3851 }
3852
3853 /* Remove any unreported fork child threads from CONTEXT so
3854 that we don't interfere with follow fork, which is where
3855 creation of such threads is handled. */
3856 remove_new_fork_children (&context);
3857
3858 /* And now add threads we don't know about yet to our list. */
3859 for (thread_item &item : context.items)
3860 {
3861 if (item.ptid != null_ptid)
3862 {
3863 /* In non-stop mode, we assume new found threads are
3864 executing until proven otherwise with a stop reply.
3865 In all-stop, we can only get here if all threads are
3866 stopped. */
3867 int executing = target_is_non_stop_p () ? 1 : 0;
3868
3869 remote_notice_new_inferior (item.ptid, executing);
3870
3871 thread_info *tp = find_thread_ptid (this, item.ptid);
3872 remote_thread_info *info = get_remote_thread_info (tp);
3873 info->core = item.core;
3874 info->extra = std::move (item.extra);
3875 info->name = std::move (item.name);
3876 info->thread_handle = std::move (item.thread_handle);
3877 }
3878 }
3879 }
3880
3881 if (!got_list)
3882 {
3883 /* If no thread listing method is supported, then query whether
3884 each known thread is alive, one by one, with the T packet.
3885 If the target doesn't support threads at all, then this is a
3886 no-op. See remote_thread_alive. */
3887 prune_threads ();
3888 }
3889 }
3890
3891 /*
3892 * Collect a descriptive string about the given thread.
3893 * The target may say anything it wants to about the thread
3894 * (typically info about its blocked / runnable state, name, etc.).
3895 * This string will appear in the info threads display.
3896 *
3897 * Optional: targets are not required to implement this function.
3898 */
3899
3900 const char *
3901 remote_target::extra_thread_info (thread_info *tp)
3902 {
3903 struct remote_state *rs = get_remote_state ();
3904 int set;
3905 threadref id;
3906 struct gdb_ext_thread_info threadinfo;
3907
3908 if (rs->remote_desc == 0) /* paranoia */
3909 internal_error (__FILE__, __LINE__,
3910 _("remote_threads_extra_info"));
3911
3912 if (tp->ptid == magic_null_ptid
3913 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
3914 /* This is the main thread which was added by GDB. The remote
3915 server doesn't know about it. */
3916 return NULL;
3917
3918 std::string &extra = get_remote_thread_info (tp)->extra;
3919
3920 /* If already have cached info, use it. */
3921 if (!extra.empty ())
3922 return extra.c_str ();
3923
3924 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3925 {
3926 /* If we're using qXfer:threads:read, then the extra info is
3927 included in the XML. So if we didn't have anything cached,
3928 it's because there's really no extra info. */
3929 return NULL;
3930 }
3931
3932 if (rs->use_threadextra_query)
3933 {
3934 char *b = rs->buf.data ();
3935 char *endb = b + get_remote_packet_size ();
3936
3937 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3938 b += strlen (b);
3939 write_ptid (b, endb, tp->ptid);
3940
3941 putpkt (rs->buf);
3942 getpkt (&rs->buf, 0);
3943 if (rs->buf[0] != 0)
3944 {
3945 extra.resize (strlen (rs->buf.data ()) / 2);
3946 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
3947 return extra.c_str ();
3948 }
3949 }
3950
3951 /* If the above query fails, fall back to the old method. */
3952 rs->use_threadextra_query = 0;
3953 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3954 | TAG_MOREDISPLAY | TAG_DISPLAY;
3955 int_to_threadref (&id, tp->ptid.lwp ());
3956 if (remote_get_threadinfo (&id, set, &threadinfo))
3957 if (threadinfo.active)
3958 {
3959 if (*threadinfo.shortname)
3960 string_appendf (extra, " Name: %s", threadinfo.shortname);
3961 if (*threadinfo.display)
3962 {
3963 if (!extra.empty ())
3964 extra += ',';
3965 string_appendf (extra, " State: %s", threadinfo.display);
3966 }
3967 if (*threadinfo.more_display)
3968 {
3969 if (!extra.empty ())
3970 extra += ',';
3971 string_appendf (extra, " Priority: %s", threadinfo.more_display);
3972 }
3973 return extra.c_str ();
3974 }
3975 return NULL;
3976 }
3977 \f
3978
3979 bool
3980 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
3981 struct static_tracepoint_marker *marker)
3982 {
3983 struct remote_state *rs = get_remote_state ();
3984 char *p = rs->buf.data ();
3985
3986 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3987 p += strlen (p);
3988 p += hexnumstr (p, addr);
3989 putpkt (rs->buf);
3990 getpkt (&rs->buf, 0);
3991 p = rs->buf.data ();
3992
3993 if (*p == 'E')
3994 error (_("Remote failure reply: %s"), p);
3995
3996 if (*p++ == 'm')
3997 {
3998 parse_static_tracepoint_marker_definition (p, NULL, marker);
3999 return true;
4000 }
4001
4002 return false;
4003 }
4004
4005 std::vector<static_tracepoint_marker>
4006 remote_target::static_tracepoint_markers_by_strid (const char *strid)
4007 {
4008 struct remote_state *rs = get_remote_state ();
4009 std::vector<static_tracepoint_marker> markers;
4010 const char *p;
4011 static_tracepoint_marker marker;
4012
4013 /* Ask for a first packet of static tracepoint marker
4014 definition. */
4015 putpkt ("qTfSTM");
4016 getpkt (&rs->buf, 0);
4017 p = rs->buf.data ();
4018 if (*p == 'E')
4019 error (_("Remote failure reply: %s"), p);
4020
4021 while (*p++ == 'm')
4022 {
4023 do
4024 {
4025 parse_static_tracepoint_marker_definition (p, &p, &marker);
4026
4027 if (strid == NULL || marker.str_id == strid)
4028 markers.push_back (std::move (marker));
4029 }
4030 while (*p++ == ','); /* comma-separated list */
4031 /* Ask for another packet of static tracepoint definition. */
4032 putpkt ("qTsSTM");
4033 getpkt (&rs->buf, 0);
4034 p = rs->buf.data ();
4035 }
4036
4037 return markers;
4038 }
4039
4040 \f
4041 /* Implement the to_get_ada_task_ptid function for the remote targets. */
4042
4043 ptid_t
4044 remote_target::get_ada_task_ptid (long lwp, long thread)
4045 {
4046 return ptid_t (inferior_ptid.pid (), lwp, 0);
4047 }
4048 \f
4049
4050 /* Restart the remote side; this is an extended protocol operation. */
4051
4052 void
4053 remote_target::extended_remote_restart ()
4054 {
4055 struct remote_state *rs = get_remote_state ();
4056
4057 /* Send the restart command; for reasons I don't understand the
4058 remote side really expects a number after the "R". */
4059 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4060 putpkt (rs->buf);
4061
4062 remote_fileio_reset ();
4063 }
4064 \f
4065 /* Clean up connection to a remote debugger. */
4066
4067 void
4068 remote_target::close ()
4069 {
4070 /* Make sure we leave stdin registered in the event loop. */
4071 terminal_ours ();
4072
4073 trace_reset_local_state ();
4074
4075 delete this;
4076 }
4077
4078 remote_target::~remote_target ()
4079 {
4080 struct remote_state *rs = get_remote_state ();
4081
4082 /* Check for NULL because we may get here with a partially
4083 constructed target/connection. */
4084 if (rs->remote_desc == nullptr)
4085 return;
4086
4087 serial_close (rs->remote_desc);
4088
4089 /* We are destroying the remote target, so we should discard
4090 everything of this target. */
4091 discard_pending_stop_replies_in_queue ();
4092
4093 if (rs->remote_async_inferior_event_token)
4094 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4095
4096 delete rs->notif_state;
4097 }
4098
4099 /* Query the remote side for the text, data and bss offsets. */
4100
4101 void
4102 remote_target::get_offsets ()
4103 {
4104 struct remote_state *rs = get_remote_state ();
4105 char *buf;
4106 char *ptr;
4107 int lose, num_segments = 0, do_sections, do_segments;
4108 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4109
4110 if (symfile_objfile == NULL)
4111 return;
4112
4113 putpkt ("qOffsets");
4114 getpkt (&rs->buf, 0);
4115 buf = rs->buf.data ();
4116
4117 if (buf[0] == '\000')
4118 return; /* Return silently. Stub doesn't support
4119 this command. */
4120 if (buf[0] == 'E')
4121 {
4122 warning (_("Remote failure reply: %s"), buf);
4123 return;
4124 }
4125
4126 /* Pick up each field in turn. This used to be done with scanf, but
4127 scanf will make trouble if CORE_ADDR size doesn't match
4128 conversion directives correctly. The following code will work
4129 with any size of CORE_ADDR. */
4130 text_addr = data_addr = bss_addr = 0;
4131 ptr = buf;
4132 lose = 0;
4133
4134 if (startswith (ptr, "Text="))
4135 {
4136 ptr += 5;
4137 /* Don't use strtol, could lose on big values. */
4138 while (*ptr && *ptr != ';')
4139 text_addr = (text_addr << 4) + fromhex (*ptr++);
4140
4141 if (startswith (ptr, ";Data="))
4142 {
4143 ptr += 6;
4144 while (*ptr && *ptr != ';')
4145 data_addr = (data_addr << 4) + fromhex (*ptr++);
4146 }
4147 else
4148 lose = 1;
4149
4150 if (!lose && startswith (ptr, ";Bss="))
4151 {
4152 ptr += 5;
4153 while (*ptr && *ptr != ';')
4154 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4155
4156 if (bss_addr != data_addr)
4157 warning (_("Target reported unsupported offsets: %s"), buf);
4158 }
4159 else
4160 lose = 1;
4161 }
4162 else if (startswith (ptr, "TextSeg="))
4163 {
4164 ptr += 8;
4165 /* Don't use strtol, could lose on big values. */
4166 while (*ptr && *ptr != ';')
4167 text_addr = (text_addr << 4) + fromhex (*ptr++);
4168 num_segments = 1;
4169
4170 if (startswith (ptr, ";DataSeg="))
4171 {
4172 ptr += 9;
4173 while (*ptr && *ptr != ';')
4174 data_addr = (data_addr << 4) + fromhex (*ptr++);
4175 num_segments++;
4176 }
4177 }
4178 else
4179 lose = 1;
4180
4181 if (lose)
4182 error (_("Malformed response to offset query, %s"), buf);
4183 else if (*ptr != '\0')
4184 warning (_("Target reported unsupported offsets: %s"), buf);
4185
4186 section_offsets offs = symfile_objfile->section_offsets;
4187
4188 symfile_segment_data_up data
4189 = get_symfile_segment_data (symfile_objfile->obfd);
4190 do_segments = (data != NULL);
4191 do_sections = num_segments == 0;
4192
4193 if (num_segments > 0)
4194 {
4195 segments[0] = text_addr;
4196 segments[1] = data_addr;
4197 }
4198 /* If we have two segments, we can still try to relocate everything
4199 by assuming that the .text and .data offsets apply to the whole
4200 text and data segments. Convert the offsets given in the packet
4201 to base addresses for symfile_map_offsets_to_segments. */
4202 else if (data != nullptr && data->segments.size () == 2)
4203 {
4204 segments[0] = data->segments[0].base + text_addr;
4205 segments[1] = data->segments[1].base + data_addr;
4206 num_segments = 2;
4207 }
4208 /* If the object file has only one segment, assume that it is text
4209 rather than data; main programs with no writable data are rare,
4210 but programs with no code are useless. Of course the code might
4211 have ended up in the data segment... to detect that we would need
4212 the permissions here. */
4213 else if (data && data->segments.size () == 1)
4214 {
4215 segments[0] = data->segments[0].base + text_addr;
4216 num_segments = 1;
4217 }
4218 /* There's no way to relocate by segment. */
4219 else
4220 do_segments = 0;
4221
4222 if (do_segments)
4223 {
4224 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd,
4225 data.get (), offs,
4226 num_segments, segments);
4227
4228 if (ret == 0 && !do_sections)
4229 error (_("Can not handle qOffsets TextSeg "
4230 "response with this symbol file"));
4231
4232 if (ret > 0)
4233 do_sections = 0;
4234 }
4235
4236 if (do_sections)
4237 {
4238 offs[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
4239
4240 /* This is a temporary kludge to force data and bss to use the
4241 same offsets because that's what nlmconv does now. The real
4242 solution requires changes to the stub and remote.c that I
4243 don't have time to do right now. */
4244
4245 offs[SECT_OFF_DATA (symfile_objfile)] = data_addr;
4246 offs[SECT_OFF_BSS (symfile_objfile)] = data_addr;
4247 }
4248
4249 objfile_relocate (symfile_objfile, offs);
4250 }
4251
4252 /* Send interrupt_sequence to remote target. */
4253
4254 void
4255 remote_target::send_interrupt_sequence ()
4256 {
4257 struct remote_state *rs = get_remote_state ();
4258
4259 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4260 remote_serial_write ("\x03", 1);
4261 else if (interrupt_sequence_mode == interrupt_sequence_break)
4262 serial_send_break (rs->remote_desc);
4263 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4264 {
4265 serial_send_break (rs->remote_desc);
4266 remote_serial_write ("g", 1);
4267 }
4268 else
4269 internal_error (__FILE__, __LINE__,
4270 _("Invalid value for interrupt_sequence_mode: %s."),
4271 interrupt_sequence_mode);
4272 }
4273
4274
4275 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4276 and extract the PTID. Returns NULL_PTID if not found. */
4277
4278 static ptid_t
4279 stop_reply_extract_thread (char *stop_reply)
4280 {
4281 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4282 {
4283 const char *p;
4284
4285 /* Txx r:val ; r:val (...) */
4286 p = &stop_reply[3];
4287
4288 /* Look for "register" named "thread". */
4289 while (*p != '\0')
4290 {
4291 const char *p1;
4292
4293 p1 = strchr (p, ':');
4294 if (p1 == NULL)
4295 return null_ptid;
4296
4297 if (strncmp (p, "thread", p1 - p) == 0)
4298 return read_ptid (++p1, &p);
4299
4300 p1 = strchr (p, ';');
4301 if (p1 == NULL)
4302 return null_ptid;
4303 p1++;
4304
4305 p = p1;
4306 }
4307 }
4308
4309 return null_ptid;
4310 }
4311
4312 /* Determine the remote side's current thread. If we have a stop
4313 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4314 "thread" register we can extract the current thread from. If not,
4315 ask the remote which is the current thread with qC. The former
4316 method avoids a roundtrip. */
4317
4318 ptid_t
4319 remote_target::get_current_thread (char *wait_status)
4320 {
4321 ptid_t ptid = null_ptid;
4322
4323 /* Note we don't use remote_parse_stop_reply as that makes use of
4324 the target architecture, which we haven't yet fully determined at
4325 this point. */
4326 if (wait_status != NULL)
4327 ptid = stop_reply_extract_thread (wait_status);
4328 if (ptid == null_ptid)
4329 ptid = remote_current_thread (inferior_ptid);
4330
4331 return ptid;
4332 }
4333
4334 /* Query the remote target for which is the current thread/process,
4335 add it to our tables, and update INFERIOR_PTID. The caller is
4336 responsible for setting the state such that the remote end is ready
4337 to return the current thread.
4338
4339 This function is called after handling the '?' or 'vRun' packets,
4340 whose response is a stop reply from which we can also try
4341 extracting the thread. If the target doesn't support the explicit
4342 qC query, we infer the current thread from that stop reply, passed
4343 in in WAIT_STATUS, which may be NULL. */
4344
4345 void
4346 remote_target::add_current_inferior_and_thread (char *wait_status)
4347 {
4348 struct remote_state *rs = get_remote_state ();
4349 bool fake_pid_p = false;
4350
4351 switch_to_no_thread ();
4352
4353 /* Now, if we have thread information, update the current thread's
4354 ptid. */
4355 ptid_t curr_ptid = get_current_thread (wait_status);
4356
4357 if (curr_ptid != null_ptid)
4358 {
4359 if (!remote_multi_process_p (rs))
4360 fake_pid_p = true;
4361 }
4362 else
4363 {
4364 /* Without this, some commands which require an active target
4365 (such as kill) won't work. This variable serves (at least)
4366 double duty as both the pid of the target process (if it has
4367 such), and as a flag indicating that a target is active. */
4368 curr_ptid = magic_null_ptid;
4369 fake_pid_p = true;
4370 }
4371
4372 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4373
4374 /* Add the main thread and switch to it. Don't try reading
4375 registers yet, since we haven't fetched the target description
4376 yet. */
4377 thread_info *tp = add_thread_silent (this, curr_ptid);
4378 switch_to_thread_no_regs (tp);
4379 }
4380
4381 /* Print info about a thread that was found already stopped on
4382 connection. */
4383
4384 static void
4385 print_one_stopped_thread (struct thread_info *thread)
4386 {
4387 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4388
4389 switch_to_thread (thread);
4390 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4391 set_current_sal_from_frame (get_current_frame ());
4392
4393 thread->suspend.waitstatus_pending_p = 0;
4394
4395 if (ws->kind == TARGET_WAITKIND_STOPPED)
4396 {
4397 enum gdb_signal sig = ws->value.sig;
4398
4399 if (signal_print_state (sig))
4400 gdb::observers::signal_received.notify (sig);
4401 }
4402 gdb::observers::normal_stop.notify (NULL, 1);
4403 }
4404
4405 /* Process all initial stop replies the remote side sent in response
4406 to the ? packet. These indicate threads that were already stopped
4407 on initial connection. We mark these threads as stopped and print
4408 their current frame before giving the user the prompt. */
4409
4410 void
4411 remote_target::process_initial_stop_replies (int from_tty)
4412 {
4413 int pending_stop_replies = stop_reply_queue_length ();
4414 struct thread_info *selected = NULL;
4415 struct thread_info *lowest_stopped = NULL;
4416 struct thread_info *first = NULL;
4417
4418 /* Consume the initial pending events. */
4419 while (pending_stop_replies-- > 0)
4420 {
4421 ptid_t waiton_ptid = minus_one_ptid;
4422 ptid_t event_ptid;
4423 struct target_waitstatus ws;
4424 int ignore_event = 0;
4425
4426 memset (&ws, 0, sizeof (ws));
4427 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4428 if (remote_debug)
4429 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4430
4431 switch (ws.kind)
4432 {
4433 case TARGET_WAITKIND_IGNORE:
4434 case TARGET_WAITKIND_NO_RESUMED:
4435 case TARGET_WAITKIND_SIGNALLED:
4436 case TARGET_WAITKIND_EXITED:
4437 /* We shouldn't see these, but if we do, just ignore. */
4438 if (remote_debug)
4439 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4440 ignore_event = 1;
4441 break;
4442
4443 case TARGET_WAITKIND_EXECD:
4444 xfree (ws.value.execd_pathname);
4445 break;
4446 default:
4447 break;
4448 }
4449
4450 if (ignore_event)
4451 continue;
4452
4453 thread_info *evthread = find_thread_ptid (this, event_ptid);
4454
4455 if (ws.kind == TARGET_WAITKIND_STOPPED)
4456 {
4457 enum gdb_signal sig = ws.value.sig;
4458
4459 /* Stubs traditionally report SIGTRAP as initial signal,
4460 instead of signal 0. Suppress it. */
4461 if (sig == GDB_SIGNAL_TRAP)
4462 sig = GDB_SIGNAL_0;
4463 evthread->suspend.stop_signal = sig;
4464 ws.value.sig = sig;
4465 }
4466
4467 evthread->suspend.waitstatus = ws;
4468
4469 if (ws.kind != TARGET_WAITKIND_STOPPED
4470 || ws.value.sig != GDB_SIGNAL_0)
4471 evthread->suspend.waitstatus_pending_p = 1;
4472
4473 set_executing (this, event_ptid, false);
4474 set_running (this, event_ptid, false);
4475 get_remote_thread_info (evthread)->vcont_resumed = 0;
4476 }
4477
4478 /* "Notice" the new inferiors before anything related to
4479 registers/memory. */
4480 for (inferior *inf : all_non_exited_inferiors (this))
4481 {
4482 inf->needs_setup = 1;
4483
4484 if (non_stop)
4485 {
4486 thread_info *thread = any_live_thread_of_inferior (inf);
4487 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4488 from_tty);
4489 }
4490 }
4491
4492 /* If all-stop on top of non-stop, pause all threads. Note this
4493 records the threads' stop pc, so must be done after "noticing"
4494 the inferiors. */
4495 if (!non_stop)
4496 {
4497 stop_all_threads ();
4498
4499 /* If all threads of an inferior were already stopped, we
4500 haven't setup the inferior yet. */
4501 for (inferior *inf : all_non_exited_inferiors (this))
4502 {
4503 if (inf->needs_setup)
4504 {
4505 thread_info *thread = any_live_thread_of_inferior (inf);
4506 switch_to_thread_no_regs (thread);
4507 setup_inferior (0);
4508 }
4509 }
4510 }
4511
4512 /* Now go over all threads that are stopped, and print their current
4513 frame. If all-stop, then if there's a signalled thread, pick
4514 that as current. */
4515 for (thread_info *thread : all_non_exited_threads (this))
4516 {
4517 if (first == NULL)
4518 first = thread;
4519
4520 if (!non_stop)
4521 thread->set_running (false);
4522 else if (thread->state != THREAD_STOPPED)
4523 continue;
4524
4525 if (selected == NULL
4526 && thread->suspend.waitstatus_pending_p)
4527 selected = thread;
4528
4529 if (lowest_stopped == NULL
4530 || thread->inf->num < lowest_stopped->inf->num
4531 || thread->per_inf_num < lowest_stopped->per_inf_num)
4532 lowest_stopped = thread;
4533
4534 if (non_stop)
4535 print_one_stopped_thread (thread);
4536 }
4537
4538 /* In all-stop, we only print the status of one thread, and leave
4539 others with their status pending. */
4540 if (!non_stop)
4541 {
4542 thread_info *thread = selected;
4543 if (thread == NULL)
4544 thread = lowest_stopped;
4545 if (thread == NULL)
4546 thread = first;
4547
4548 print_one_stopped_thread (thread);
4549 }
4550
4551 /* For "info program". */
4552 thread_info *thread = inferior_thread ();
4553 if (thread->state == THREAD_STOPPED)
4554 set_last_target_status (this, inferior_ptid, thread->suspend.waitstatus);
4555 }
4556
4557 /* Start the remote connection and sync state. */
4558
4559 void
4560 remote_target::start_remote (int from_tty, int extended_p)
4561 {
4562 struct remote_state *rs = get_remote_state ();
4563 struct packet_config *noack_config;
4564 char *wait_status = NULL;
4565
4566 /* Signal other parts that we're going through the initial setup,
4567 and so things may not be stable yet. E.g., we don't try to
4568 install tracepoints until we've relocated symbols. Also, a
4569 Ctrl-C before we're connected and synced up can't interrupt the
4570 target. Instead, it offers to drop the (potentially wedged)
4571 connection. */
4572 rs->starting_up = 1;
4573
4574 QUIT;
4575
4576 if (interrupt_on_connect)
4577 send_interrupt_sequence ();
4578
4579 /* Ack any packet which the remote side has already sent. */
4580 remote_serial_write ("+", 1);
4581
4582 /* The first packet we send to the target is the optional "supported
4583 packets" request. If the target can answer this, it will tell us
4584 which later probes to skip. */
4585 remote_query_supported ();
4586
4587 /* If the stub wants to get a QAllow, compose one and send it. */
4588 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4589 set_permissions ();
4590
4591 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4592 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4593 as a reply to known packet. For packet "vFile:setfs:" it is an
4594 invalid reply and GDB would return error in
4595 remote_hostio_set_filesystem, making remote files access impossible.
4596 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4597 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4598 {
4599 const char v_mustreplyempty[] = "vMustReplyEmpty";
4600
4601 putpkt (v_mustreplyempty);
4602 getpkt (&rs->buf, 0);
4603 if (strcmp (rs->buf.data (), "OK") == 0)
4604 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4605 else if (strcmp (rs->buf.data (), "") != 0)
4606 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4607 rs->buf.data ());
4608 }
4609
4610 /* Next, we possibly activate noack mode.
4611
4612 If the QStartNoAckMode packet configuration is set to AUTO,
4613 enable noack mode if the stub reported a wish for it with
4614 qSupported.
4615
4616 If set to TRUE, then enable noack mode even if the stub didn't
4617 report it in qSupported. If the stub doesn't reply OK, the
4618 session ends with an error.
4619
4620 If FALSE, then don't activate noack mode, regardless of what the
4621 stub claimed should be the default with qSupported. */
4622
4623 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4624 if (packet_config_support (noack_config) != PACKET_DISABLE)
4625 {
4626 putpkt ("QStartNoAckMode");
4627 getpkt (&rs->buf, 0);
4628 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4629 rs->noack_mode = 1;
4630 }
4631
4632 if (extended_p)
4633 {
4634 /* Tell the remote that we are using the extended protocol. */
4635 putpkt ("!");
4636 getpkt (&rs->buf, 0);
4637 }
4638
4639 /* Let the target know which signals it is allowed to pass down to
4640 the program. */
4641 update_signals_program_target ();
4642
4643 /* Next, if the target can specify a description, read it. We do
4644 this before anything involving memory or registers. */
4645 target_find_description ();
4646
4647 /* Next, now that we know something about the target, update the
4648 address spaces in the program spaces. */
4649 update_address_spaces ();
4650
4651 /* On OSs where the list of libraries is global to all
4652 processes, we fetch them early. */
4653 if (gdbarch_has_global_solist (target_gdbarch ()))
4654 solib_add (NULL, from_tty, auto_solib_add);
4655
4656 if (target_is_non_stop_p ())
4657 {
4658 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4659 error (_("Non-stop mode requested, but remote "
4660 "does not support non-stop"));
4661
4662 putpkt ("QNonStop:1");
4663 getpkt (&rs->buf, 0);
4664
4665 if (strcmp (rs->buf.data (), "OK") != 0)
4666 error (_("Remote refused setting non-stop mode with: %s"),
4667 rs->buf.data ());
4668
4669 /* Find about threads and processes the stub is already
4670 controlling. We default to adding them in the running state.
4671 The '?' query below will then tell us about which threads are
4672 stopped. */
4673 this->update_thread_list ();
4674 }
4675 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4676 {
4677 /* Don't assume that the stub can operate in all-stop mode.
4678 Request it explicitly. */
4679 putpkt ("QNonStop:0");
4680 getpkt (&rs->buf, 0);
4681
4682 if (strcmp (rs->buf.data (), "OK") != 0)
4683 error (_("Remote refused setting all-stop mode with: %s"),
4684 rs->buf.data ());
4685 }
4686
4687 /* Upload TSVs regardless of whether the target is running or not. The
4688 remote stub, such as GDBserver, may have some predefined or builtin
4689 TSVs, even if the target is not running. */
4690 if (get_trace_status (current_trace_status ()) != -1)
4691 {
4692 struct uploaded_tsv *uploaded_tsvs = NULL;
4693
4694 upload_trace_state_variables (&uploaded_tsvs);
4695 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4696 }
4697
4698 /* Check whether the target is running now. */
4699 putpkt ("?");
4700 getpkt (&rs->buf, 0);
4701
4702 if (!target_is_non_stop_p ())
4703 {
4704 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4705 {
4706 if (!extended_p)
4707 error (_("The target is not running (try extended-remote?)"));
4708
4709 /* We're connected, but not running. Drop out before we
4710 call start_remote. */
4711 rs->starting_up = 0;
4712 return;
4713 }
4714 else
4715 {
4716 /* Save the reply for later. */
4717 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4718 strcpy (wait_status, rs->buf.data ());
4719 }
4720
4721 /* Fetch thread list. */
4722 target_update_thread_list ();
4723
4724 /* Let the stub know that we want it to return the thread. */
4725 set_continue_thread (minus_one_ptid);
4726
4727 if (thread_count (this) == 0)
4728 {
4729 /* Target has no concept of threads at all. GDB treats
4730 non-threaded target as single-threaded; add a main
4731 thread. */
4732 add_current_inferior_and_thread (wait_status);
4733 }
4734 else
4735 {
4736 /* We have thread information; select the thread the target
4737 says should be current. If we're reconnecting to a
4738 multi-threaded program, this will ideally be the thread
4739 that last reported an event before GDB disconnected. */
4740 ptid_t curr_thread = get_current_thread (wait_status);
4741 if (curr_thread == null_ptid)
4742 {
4743 /* Odd... The target was able to list threads, but not
4744 tell us which thread was current (no "thread"
4745 register in T stop reply?). Just pick the first
4746 thread in the thread list then. */
4747
4748 if (remote_debug)
4749 fprintf_unfiltered (gdb_stdlog,
4750 "warning: couldn't determine remote "
4751 "current thread; picking first in list.\n");
4752
4753 for (thread_info *tp : all_non_exited_threads (this,
4754 minus_one_ptid))
4755 {
4756 switch_to_thread (tp);
4757 break;
4758 }
4759 }
4760 else
4761 switch_to_thread (find_thread_ptid (this, curr_thread));
4762 }
4763
4764 /* init_wait_for_inferior should be called before get_offsets in order
4765 to manage `inserted' flag in bp loc in a correct state.
4766 breakpoint_init_inferior, called from init_wait_for_inferior, set
4767 `inserted' flag to 0, while before breakpoint_re_set, called from
4768 start_remote, set `inserted' flag to 1. In the initialization of
4769 inferior, breakpoint_init_inferior should be called first, and then
4770 breakpoint_re_set can be called. If this order is broken, state of
4771 `inserted' flag is wrong, and cause some problems on breakpoint
4772 manipulation. */
4773 init_wait_for_inferior ();
4774
4775 get_offsets (); /* Get text, data & bss offsets. */
4776
4777 /* If we could not find a description using qXfer, and we know
4778 how to do it some other way, try again. This is not
4779 supported for non-stop; it could be, but it is tricky if
4780 there are no stopped threads when we connect. */
4781 if (remote_read_description_p (this)
4782 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4783 {
4784 target_clear_description ();
4785 target_find_description ();
4786 }
4787
4788 /* Use the previously fetched status. */
4789 gdb_assert (wait_status != NULL);
4790 strcpy (rs->buf.data (), wait_status);
4791 rs->cached_wait_status = 1;
4792
4793 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4794 }
4795 else
4796 {
4797 /* Clear WFI global state. Do this before finding about new
4798 threads and inferiors, and setting the current inferior.
4799 Otherwise we would clear the proceed status of the current
4800 inferior when we want its stop_soon state to be preserved
4801 (see notice_new_inferior). */
4802 init_wait_for_inferior ();
4803
4804 /* In non-stop, we will either get an "OK", meaning that there
4805 are no stopped threads at this time; or, a regular stop
4806 reply. In the latter case, there may be more than one thread
4807 stopped --- we pull them all out using the vStopped
4808 mechanism. */
4809 if (strcmp (rs->buf.data (), "OK") != 0)
4810 {
4811 struct notif_client *notif = &notif_client_stop;
4812
4813 /* remote_notif_get_pending_replies acks this one, and gets
4814 the rest out. */
4815 rs->notif_state->pending_event[notif_client_stop.id]
4816 = remote_notif_parse (this, notif, rs->buf.data ());
4817 remote_notif_get_pending_events (notif);
4818 }
4819
4820 if (thread_count (this) == 0)
4821 {
4822 if (!extended_p)
4823 error (_("The target is not running (try extended-remote?)"));
4824
4825 /* We're connected, but not running. Drop out before we
4826 call start_remote. */
4827 rs->starting_up = 0;
4828 return;
4829 }
4830
4831 /* In non-stop mode, any cached wait status will be stored in
4832 the stop reply queue. */
4833 gdb_assert (wait_status == NULL);
4834
4835 /* Report all signals during attach/startup. */
4836 pass_signals ({});
4837
4838 /* If there are already stopped threads, mark them stopped and
4839 report their stops before giving the prompt to the user. */
4840 process_initial_stop_replies (from_tty);
4841
4842 if (target_can_async_p ())
4843 target_async (1);
4844 }
4845
4846 /* If we connected to a live target, do some additional setup. */
4847 if (target_has_execution ())
4848 {
4849 if (symfile_objfile) /* No use without a symbol-file. */
4850 remote_check_symbols ();
4851 }
4852
4853 /* Possibly the target has been engaged in a trace run started
4854 previously; find out where things are at. */
4855 if (get_trace_status (current_trace_status ()) != -1)
4856 {
4857 struct uploaded_tp *uploaded_tps = NULL;
4858
4859 if (current_trace_status ()->running)
4860 printf_filtered (_("Trace is already running on the target.\n"));
4861
4862 upload_tracepoints (&uploaded_tps);
4863
4864 merge_uploaded_tracepoints (&uploaded_tps);
4865 }
4866
4867 /* Possibly the target has been engaged in a btrace record started
4868 previously; find out where things are at. */
4869 remote_btrace_maybe_reopen ();
4870
4871 /* The thread and inferior lists are now synchronized with the
4872 target, our symbols have been relocated, and we're merged the
4873 target's tracepoints with ours. We're done with basic start
4874 up. */
4875 rs->starting_up = 0;
4876
4877 /* Maybe breakpoints are global and need to be inserted now. */
4878 if (breakpoints_should_be_inserted_now ())
4879 insert_breakpoints ();
4880 }
4881
4882 const char *
4883 remote_target::connection_string ()
4884 {
4885 remote_state *rs = get_remote_state ();
4886
4887 if (rs->remote_desc->name != NULL)
4888 return rs->remote_desc->name;
4889 else
4890 return NULL;
4891 }
4892
4893 /* Open a connection to a remote debugger.
4894 NAME is the filename used for communication. */
4895
4896 void
4897 remote_target::open (const char *name, int from_tty)
4898 {
4899 open_1 (name, from_tty, 0);
4900 }
4901
4902 /* Open a connection to a remote debugger using the extended
4903 remote gdb protocol. NAME is the filename used for communication. */
4904
4905 void
4906 extended_remote_target::open (const char *name, int from_tty)
4907 {
4908 open_1 (name, from_tty, 1 /*extended_p */);
4909 }
4910
4911 /* Reset all packets back to "unknown support". Called when opening a
4912 new connection to a remote target. */
4913
4914 static void
4915 reset_all_packet_configs_support (void)
4916 {
4917 int i;
4918
4919 for (i = 0; i < PACKET_MAX; i++)
4920 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4921 }
4922
4923 /* Initialize all packet configs. */
4924
4925 static void
4926 init_all_packet_configs (void)
4927 {
4928 int i;
4929
4930 for (i = 0; i < PACKET_MAX; i++)
4931 {
4932 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4933 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4934 }
4935 }
4936
4937 /* Symbol look-up. */
4938
4939 void
4940 remote_target::remote_check_symbols ()
4941 {
4942 char *tmp;
4943 int end;
4944
4945 /* The remote side has no concept of inferiors that aren't running
4946 yet, it only knows about running processes. If we're connected
4947 but our current inferior is not running, we should not invite the
4948 remote target to request symbol lookups related to its
4949 (unrelated) current process. */
4950 if (!target_has_execution ())
4951 return;
4952
4953 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4954 return;
4955
4956 /* Make sure the remote is pointing at the right process. Note
4957 there's no way to select "no process". */
4958 set_general_process ();
4959
4960 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4961 because we need both at the same time. */
4962 gdb::char_vector msg (get_remote_packet_size ());
4963 gdb::char_vector reply (get_remote_packet_size ());
4964
4965 /* Invite target to request symbol lookups. */
4966
4967 putpkt ("qSymbol::");
4968 getpkt (&reply, 0);
4969 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4970
4971 while (startswith (reply.data (), "qSymbol:"))
4972 {
4973 struct bound_minimal_symbol sym;
4974
4975 tmp = &reply[8];
4976 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
4977 strlen (tmp) / 2);
4978 msg[end] = '\0';
4979 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
4980 if (sym.minsym == NULL)
4981 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
4982 &reply[8]);
4983 else
4984 {
4985 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4986 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4987
4988 /* If this is a function address, return the start of code
4989 instead of any data function descriptor. */
4990 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4991 sym_addr,
4992 current_top_target ());
4993
4994 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
4995 phex_nz (sym_addr, addr_size), &reply[8]);
4996 }
4997
4998 putpkt (msg.data ());
4999 getpkt (&reply, 0);
5000 }
5001 }
5002
5003 static struct serial *
5004 remote_serial_open (const char *name)
5005 {
5006 static int udp_warning = 0;
5007
5008 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
5009 of in ser-tcp.c, because it is the remote protocol assuming that the
5010 serial connection is reliable and not the serial connection promising
5011 to be. */
5012 if (!udp_warning && startswith (name, "udp:"))
5013 {
5014 warning (_("The remote protocol may be unreliable over UDP.\n"
5015 "Some events may be lost, rendering further debugging "
5016 "impossible."));
5017 udp_warning = 1;
5018 }
5019
5020 return serial_open (name);
5021 }
5022
5023 /* Inform the target of our permission settings. The permission flags
5024 work without this, but if the target knows the settings, it can do
5025 a couple things. First, it can add its own check, to catch cases
5026 that somehow manage to get by the permissions checks in target
5027 methods. Second, if the target is wired to disallow particular
5028 settings (for instance, a system in the field that is not set up to
5029 be able to stop at a breakpoint), it can object to any unavailable
5030 permissions. */
5031
5032 void
5033 remote_target::set_permissions ()
5034 {
5035 struct remote_state *rs = get_remote_state ();
5036
5037 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
5038 "WriteReg:%x;WriteMem:%x;"
5039 "InsertBreak:%x;InsertTrace:%x;"
5040 "InsertFastTrace:%x;Stop:%x",
5041 may_write_registers, may_write_memory,
5042 may_insert_breakpoints, may_insert_tracepoints,
5043 may_insert_fast_tracepoints, may_stop);
5044 putpkt (rs->buf);
5045 getpkt (&rs->buf, 0);
5046
5047 /* If the target didn't like the packet, warn the user. Do not try
5048 to undo the user's settings, that would just be maddening. */
5049 if (strcmp (rs->buf.data (), "OK") != 0)
5050 warning (_("Remote refused setting permissions with: %s"),
5051 rs->buf.data ());
5052 }
5053
5054 /* This type describes each known response to the qSupported
5055 packet. */
5056 struct protocol_feature
5057 {
5058 /* The name of this protocol feature. */
5059 const char *name;
5060
5061 /* The default for this protocol feature. */
5062 enum packet_support default_support;
5063
5064 /* The function to call when this feature is reported, or after
5065 qSupported processing if the feature is not supported.
5066 The first argument points to this structure. The second
5067 argument indicates whether the packet requested support be
5068 enabled, disabled, or probed (or the default, if this function
5069 is being called at the end of processing and this feature was
5070 not reported). The third argument may be NULL; if not NULL, it
5071 is a NUL-terminated string taken from the packet following
5072 this feature's name and an equals sign. */
5073 void (*func) (remote_target *remote, const struct protocol_feature *,
5074 enum packet_support, const char *);
5075
5076 /* The corresponding packet for this feature. Only used if
5077 FUNC is remote_supported_packet. */
5078 int packet;
5079 };
5080
5081 static void
5082 remote_supported_packet (remote_target *remote,
5083 const struct protocol_feature *feature,
5084 enum packet_support support,
5085 const char *argument)
5086 {
5087 if (argument)
5088 {
5089 warning (_("Remote qSupported response supplied an unexpected value for"
5090 " \"%s\"."), feature->name);
5091 return;
5092 }
5093
5094 remote_protocol_packets[feature->packet].support = support;
5095 }
5096
5097 void
5098 remote_target::remote_packet_size (const protocol_feature *feature,
5099 enum packet_support support, const char *value)
5100 {
5101 struct remote_state *rs = get_remote_state ();
5102
5103 int packet_size;
5104 char *value_end;
5105
5106 if (support != PACKET_ENABLE)
5107 return;
5108
5109 if (value == NULL || *value == '\0')
5110 {
5111 warning (_("Remote target reported \"%s\" without a size."),
5112 feature->name);
5113 return;
5114 }
5115
5116 errno = 0;
5117 packet_size = strtol (value, &value_end, 16);
5118 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5119 {
5120 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5121 feature->name, value);
5122 return;
5123 }
5124
5125 /* Record the new maximum packet size. */
5126 rs->explicit_packet_size = packet_size;
5127 }
5128
5129 static void
5130 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5131 enum packet_support support, const char *value)
5132 {
5133 remote->remote_packet_size (feature, support, value);
5134 }
5135
5136 static const struct protocol_feature remote_protocol_features[] = {
5137 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5138 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5139 PACKET_qXfer_auxv },
5140 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5141 PACKET_qXfer_exec_file },
5142 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5143 PACKET_qXfer_features },
5144 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5145 PACKET_qXfer_libraries },
5146 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5147 PACKET_qXfer_libraries_svr4 },
5148 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5149 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5150 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5151 PACKET_qXfer_memory_map },
5152 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5153 PACKET_qXfer_osdata },
5154 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5155 PACKET_qXfer_threads },
5156 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5157 PACKET_qXfer_traceframe_info },
5158 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5159 PACKET_QPassSignals },
5160 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5161 PACKET_QCatchSyscalls },
5162 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5163 PACKET_QProgramSignals },
5164 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5165 PACKET_QSetWorkingDir },
5166 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5167 PACKET_QStartupWithShell },
5168 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5169 PACKET_QEnvironmentHexEncoded },
5170 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5171 PACKET_QEnvironmentReset },
5172 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5173 PACKET_QEnvironmentUnset },
5174 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5175 PACKET_QStartNoAckMode },
5176 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5177 PACKET_multiprocess_feature },
5178 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5179 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5180 PACKET_qXfer_siginfo_read },
5181 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5182 PACKET_qXfer_siginfo_write },
5183 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5184 PACKET_ConditionalTracepoints },
5185 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5186 PACKET_ConditionalBreakpoints },
5187 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5188 PACKET_BreakpointCommands },
5189 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5190 PACKET_FastTracepoints },
5191 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5192 PACKET_StaticTracepoints },
5193 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5194 PACKET_InstallInTrace},
5195 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5196 PACKET_DisconnectedTracing_feature },
5197 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5198 PACKET_bc },
5199 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5200 PACKET_bs },
5201 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5202 PACKET_TracepointSource },
5203 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5204 PACKET_QAllow },
5205 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5206 PACKET_EnableDisableTracepoints_feature },
5207 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5208 PACKET_qXfer_fdpic },
5209 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5210 PACKET_qXfer_uib },
5211 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5212 PACKET_QDisableRandomization },
5213 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5214 { "QTBuffer:size", PACKET_DISABLE,
5215 remote_supported_packet, PACKET_QTBuffer_size},
5216 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5217 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5218 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5219 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5220 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5221 PACKET_qXfer_btrace },
5222 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5223 PACKET_qXfer_btrace_conf },
5224 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5225 PACKET_Qbtrace_conf_bts_size },
5226 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5227 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5228 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5229 PACKET_fork_event_feature },
5230 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5231 PACKET_vfork_event_feature },
5232 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5233 PACKET_exec_event_feature },
5234 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5235 PACKET_Qbtrace_conf_pt_size },
5236 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5237 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5238 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5239 };
5240
5241 static char *remote_support_xml;
5242
5243 /* Register string appended to "xmlRegisters=" in qSupported query. */
5244
5245 void
5246 register_remote_support_xml (const char *xml)
5247 {
5248 #if defined(HAVE_LIBEXPAT)
5249 if (remote_support_xml == NULL)
5250 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5251 else
5252 {
5253 char *copy = xstrdup (remote_support_xml + 13);
5254 char *saveptr;
5255 char *p = strtok_r (copy, ",", &saveptr);
5256
5257 do
5258 {
5259 if (strcmp (p, xml) == 0)
5260 {
5261 /* already there */
5262 xfree (copy);
5263 return;
5264 }
5265 }
5266 while ((p = strtok_r (NULL, ",", &saveptr)) != NULL);
5267 xfree (copy);
5268
5269 remote_support_xml = reconcat (remote_support_xml,
5270 remote_support_xml, ",", xml,
5271 (char *) NULL);
5272 }
5273 #endif
5274 }
5275
5276 static void
5277 remote_query_supported_append (std::string *msg, const char *append)
5278 {
5279 if (!msg->empty ())
5280 msg->append (";");
5281 msg->append (append);
5282 }
5283
5284 void
5285 remote_target::remote_query_supported ()
5286 {
5287 struct remote_state *rs = get_remote_state ();
5288 char *next;
5289 int i;
5290 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5291
5292 /* The packet support flags are handled differently for this packet
5293 than for most others. We treat an error, a disabled packet, and
5294 an empty response identically: any features which must be reported
5295 to be used will be automatically disabled. An empty buffer
5296 accomplishes this, since that is also the representation for a list
5297 containing no features. */
5298
5299 rs->buf[0] = 0;
5300 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5301 {
5302 std::string q;
5303
5304 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5305 remote_query_supported_append (&q, "multiprocess+");
5306
5307 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5308 remote_query_supported_append (&q, "swbreak+");
5309 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5310 remote_query_supported_append (&q, "hwbreak+");
5311
5312 remote_query_supported_append (&q, "qRelocInsn+");
5313
5314 if (packet_set_cmd_state (PACKET_fork_event_feature)
5315 != AUTO_BOOLEAN_FALSE)
5316 remote_query_supported_append (&q, "fork-events+");
5317 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5318 != AUTO_BOOLEAN_FALSE)
5319 remote_query_supported_append (&q, "vfork-events+");
5320 if (packet_set_cmd_state (PACKET_exec_event_feature)
5321 != AUTO_BOOLEAN_FALSE)
5322 remote_query_supported_append (&q, "exec-events+");
5323
5324 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5325 remote_query_supported_append (&q, "vContSupported+");
5326
5327 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5328 remote_query_supported_append (&q, "QThreadEvents+");
5329
5330 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5331 remote_query_supported_append (&q, "no-resumed+");
5332
5333 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5334 the qSupported:xmlRegisters=i386 handling. */
5335 if (remote_support_xml != NULL
5336 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5337 remote_query_supported_append (&q, remote_support_xml);
5338
5339 q = "qSupported:" + q;
5340 putpkt (q.c_str ());
5341
5342 getpkt (&rs->buf, 0);
5343
5344 /* If an error occured, warn, but do not return - just reset the
5345 buffer to empty and go on to disable features. */
5346 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5347 == PACKET_ERROR)
5348 {
5349 warning (_("Remote failure reply: %s"), rs->buf.data ());
5350 rs->buf[0] = 0;
5351 }
5352 }
5353
5354 memset (seen, 0, sizeof (seen));
5355
5356 next = rs->buf.data ();
5357 while (*next)
5358 {
5359 enum packet_support is_supported;
5360 char *p, *end, *name_end, *value;
5361
5362 /* First separate out this item from the rest of the packet. If
5363 there's another item after this, we overwrite the separator
5364 (terminated strings are much easier to work with). */
5365 p = next;
5366 end = strchr (p, ';');
5367 if (end == NULL)
5368 {
5369 end = p + strlen (p);
5370 next = end;
5371 }
5372 else
5373 {
5374 *end = '\0';
5375 next = end + 1;
5376
5377 if (end == p)
5378 {
5379 warning (_("empty item in \"qSupported\" response"));
5380 continue;
5381 }
5382 }
5383
5384 name_end = strchr (p, '=');
5385 if (name_end)
5386 {
5387 /* This is a name=value entry. */
5388 is_supported = PACKET_ENABLE;
5389 value = name_end + 1;
5390 *name_end = '\0';
5391 }
5392 else
5393 {
5394 value = NULL;
5395 switch (end[-1])
5396 {
5397 case '+':
5398 is_supported = PACKET_ENABLE;
5399 break;
5400
5401 case '-':
5402 is_supported = PACKET_DISABLE;
5403 break;
5404
5405 case '?':
5406 is_supported = PACKET_SUPPORT_UNKNOWN;
5407 break;
5408
5409 default:
5410 warning (_("unrecognized item \"%s\" "
5411 "in \"qSupported\" response"), p);
5412 continue;
5413 }
5414 end[-1] = '\0';
5415 }
5416
5417 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5418 if (strcmp (remote_protocol_features[i].name, p) == 0)
5419 {
5420 const struct protocol_feature *feature;
5421
5422 seen[i] = 1;
5423 feature = &remote_protocol_features[i];
5424 feature->func (this, feature, is_supported, value);
5425 break;
5426 }
5427 }
5428
5429 /* If we increased the packet size, make sure to increase the global
5430 buffer size also. We delay this until after parsing the entire
5431 qSupported packet, because this is the same buffer we were
5432 parsing. */
5433 if (rs->buf.size () < rs->explicit_packet_size)
5434 rs->buf.resize (rs->explicit_packet_size);
5435
5436 /* Handle the defaults for unmentioned features. */
5437 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5438 if (!seen[i])
5439 {
5440 const struct protocol_feature *feature;
5441
5442 feature = &remote_protocol_features[i];
5443 feature->func (this, feature, feature->default_support, NULL);
5444 }
5445 }
5446
5447 /* Serial QUIT handler for the remote serial descriptor.
5448
5449 Defers handling a Ctrl-C until we're done with the current
5450 command/response packet sequence, unless:
5451
5452 - We're setting up the connection. Don't send a remote interrupt
5453 request, as we're not fully synced yet. Quit immediately
5454 instead.
5455
5456 - The target has been resumed in the foreground
5457 (target_terminal::is_ours is false) with a synchronous resume
5458 packet, and we're blocked waiting for the stop reply, thus a
5459 Ctrl-C should be immediately sent to the target.
5460
5461 - We get a second Ctrl-C while still within the same serial read or
5462 write. In that case the serial is seemingly wedged --- offer to
5463 quit/disconnect.
5464
5465 - We see a second Ctrl-C without target response, after having
5466 previously interrupted the target. In that case the target/stub
5467 is probably wedged --- offer to quit/disconnect.
5468 */
5469
5470 void
5471 remote_target::remote_serial_quit_handler ()
5472 {
5473 struct remote_state *rs = get_remote_state ();
5474
5475 if (check_quit_flag ())
5476 {
5477 /* If we're starting up, we're not fully synced yet. Quit
5478 immediately. */
5479 if (rs->starting_up)
5480 quit ();
5481 else if (rs->got_ctrlc_during_io)
5482 {
5483 if (query (_("The target is not responding to GDB commands.\n"
5484 "Stop debugging it? ")))
5485 remote_unpush_and_throw (this);
5486 }
5487 /* If ^C has already been sent once, offer to disconnect. */
5488 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5489 interrupt_query ();
5490 /* All-stop protocol, and blocked waiting for stop reply. Send
5491 an interrupt request. */
5492 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5493 target_interrupt ();
5494 else
5495 rs->got_ctrlc_during_io = 1;
5496 }
5497 }
5498
5499 /* The remote_target that is current while the quit handler is
5500 overridden with remote_serial_quit_handler. */
5501 static remote_target *curr_quit_handler_target;
5502
5503 static void
5504 remote_serial_quit_handler ()
5505 {
5506 curr_quit_handler_target->remote_serial_quit_handler ();
5507 }
5508
5509 /* Remove the remote target from the target stack of each inferior
5510 that is using it. Upper targets depend on it so remove them
5511 first. */
5512
5513 static void
5514 remote_unpush_target (remote_target *target)
5515 {
5516 /* We have to unpush the target from all inferiors, even those that
5517 aren't running. */
5518 scoped_restore_current_inferior restore_current_inferior;
5519
5520 for (inferior *inf : all_inferiors (target))
5521 {
5522 switch_to_inferior_no_thread (inf);
5523 pop_all_targets_at_and_above (process_stratum);
5524 generic_mourn_inferior ();
5525 }
5526 }
5527
5528 static void
5529 remote_unpush_and_throw (remote_target *target)
5530 {
5531 remote_unpush_target (target);
5532 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5533 }
5534
5535 void
5536 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5537 {
5538 remote_target *curr_remote = get_current_remote_target ();
5539
5540 if (name == 0)
5541 error (_("To open a remote debug connection, you need to specify what\n"
5542 "serial device is attached to the remote system\n"
5543 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5544
5545 /* If we're connected to a running target, target_preopen will kill it.
5546 Ask this question first, before target_preopen has a chance to kill
5547 anything. */
5548 if (curr_remote != NULL && !target_has_execution ())
5549 {
5550 if (from_tty
5551 && !query (_("Already connected to a remote target. Disconnect? ")))
5552 error (_("Still connected."));
5553 }
5554
5555 /* Here the possibly existing remote target gets unpushed. */
5556 target_preopen (from_tty);
5557
5558 remote_fileio_reset ();
5559 reopen_exec_file ();
5560 reread_symbols ();
5561
5562 remote_target *remote
5563 = (extended_p ? new extended_remote_target () : new remote_target ());
5564 target_ops_up target_holder (remote);
5565
5566 remote_state *rs = remote->get_remote_state ();
5567
5568 /* See FIXME above. */
5569 if (!target_async_permitted)
5570 rs->wait_forever_enabled_p = 1;
5571
5572 rs->remote_desc = remote_serial_open (name);
5573 if (!rs->remote_desc)
5574 perror_with_name (name);
5575
5576 if (baud_rate != -1)
5577 {
5578 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5579 {
5580 /* The requested speed could not be set. Error out to
5581 top level after closing remote_desc. Take care to
5582 set remote_desc to NULL to avoid closing remote_desc
5583 more than once. */
5584 serial_close (rs->remote_desc);
5585 rs->remote_desc = NULL;
5586 perror_with_name (name);
5587 }
5588 }
5589
5590 serial_setparity (rs->remote_desc, serial_parity);
5591 serial_raw (rs->remote_desc);
5592
5593 /* If there is something sitting in the buffer we might take it as a
5594 response to a command, which would be bad. */
5595 serial_flush_input (rs->remote_desc);
5596
5597 if (from_tty)
5598 {
5599 puts_filtered ("Remote debugging using ");
5600 puts_filtered (name);
5601 puts_filtered ("\n");
5602 }
5603
5604 /* Switch to using the remote target now. */
5605 push_target (std::move (target_holder));
5606
5607 /* Register extra event sources in the event loop. */
5608 rs->remote_async_inferior_event_token
5609 = create_async_event_handler (remote_async_inferior_event_handler, remote,
5610 "remote");
5611 rs->notif_state = remote_notif_state_allocate (remote);
5612
5613 /* Reset the target state; these things will be queried either by
5614 remote_query_supported or as they are needed. */
5615 reset_all_packet_configs_support ();
5616 rs->cached_wait_status = 0;
5617 rs->explicit_packet_size = 0;
5618 rs->noack_mode = 0;
5619 rs->extended = extended_p;
5620 rs->waiting_for_stop_reply = 0;
5621 rs->ctrlc_pending_p = 0;
5622 rs->got_ctrlc_during_io = 0;
5623
5624 rs->general_thread = not_sent_ptid;
5625 rs->continue_thread = not_sent_ptid;
5626 rs->remote_traceframe_number = -1;
5627
5628 rs->last_resume_exec_dir = EXEC_FORWARD;
5629
5630 /* Probe for ability to use "ThreadInfo" query, as required. */
5631 rs->use_threadinfo_query = 1;
5632 rs->use_threadextra_query = 1;
5633
5634 rs->readahead_cache.invalidate ();
5635
5636 if (target_async_permitted)
5637 {
5638 /* FIXME: cagney/1999-09-23: During the initial connection it is
5639 assumed that the target is already ready and able to respond to
5640 requests. Unfortunately remote_start_remote() eventually calls
5641 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5642 around this. Eventually a mechanism that allows
5643 wait_for_inferior() to expect/get timeouts will be
5644 implemented. */
5645 rs->wait_forever_enabled_p = 0;
5646 }
5647
5648 /* First delete any symbols previously loaded from shared libraries. */
5649 no_shared_libraries (NULL, 0);
5650
5651 /* Start the remote connection. If error() or QUIT, discard this
5652 target (we'd otherwise be in an inconsistent state) and then
5653 propogate the error on up the exception chain. This ensures that
5654 the caller doesn't stumble along blindly assuming that the
5655 function succeeded. The CLI doesn't have this problem but other
5656 UI's, such as MI do.
5657
5658 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5659 this function should return an error indication letting the
5660 caller restore the previous state. Unfortunately the command
5661 ``target remote'' is directly wired to this function making that
5662 impossible. On a positive note, the CLI side of this problem has
5663 been fixed - the function set_cmd_context() makes it possible for
5664 all the ``target ....'' commands to share a common callback
5665 function. See cli-dump.c. */
5666 {
5667
5668 try
5669 {
5670 remote->start_remote (from_tty, extended_p);
5671 }
5672 catch (const gdb_exception &ex)
5673 {
5674 /* Pop the partially set up target - unless something else did
5675 already before throwing the exception. */
5676 if (ex.error != TARGET_CLOSE_ERROR)
5677 remote_unpush_target (remote);
5678 throw;
5679 }
5680 }
5681
5682 remote_btrace_reset (rs);
5683
5684 if (target_async_permitted)
5685 rs->wait_forever_enabled_p = 1;
5686 }
5687
5688 /* Detach the specified process. */
5689
5690 void
5691 remote_target::remote_detach_pid (int pid)
5692 {
5693 struct remote_state *rs = get_remote_state ();
5694
5695 /* This should not be necessary, but the handling for D;PID in
5696 GDBserver versions prior to 8.2 incorrectly assumes that the
5697 selected process points to the same process we're detaching,
5698 leading to misbehavior (and possibly GDBserver crashing) when it
5699 does not. Since it's easy and cheap, work around it by forcing
5700 GDBserver to select GDB's current process. */
5701 set_general_process ();
5702
5703 if (remote_multi_process_p (rs))
5704 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5705 else
5706 strcpy (rs->buf.data (), "D");
5707
5708 putpkt (rs->buf);
5709 getpkt (&rs->buf, 0);
5710
5711 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5712 ;
5713 else if (rs->buf[0] == '\0')
5714 error (_("Remote doesn't know how to detach"));
5715 else
5716 error (_("Can't detach process."));
5717 }
5718
5719 /* This detaches a program to which we previously attached, using
5720 inferior_ptid to identify the process. After this is done, GDB
5721 can be used to debug some other program. We better not have left
5722 any breakpoints in the target program or it'll die when it hits
5723 one. */
5724
5725 void
5726 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5727 {
5728 int pid = inferior_ptid.pid ();
5729 struct remote_state *rs = get_remote_state ();
5730 int is_fork_parent;
5731
5732 if (!target_has_execution ())
5733 error (_("No process to detach from."));
5734
5735 target_announce_detach (from_tty);
5736
5737 /* Tell the remote target to detach. */
5738 remote_detach_pid (pid);
5739
5740 /* Exit only if this is the only active inferior. */
5741 if (from_tty && !rs->extended && number_of_live_inferiors (this) == 1)
5742 puts_filtered (_("Ending remote debugging.\n"));
5743
5744 thread_info *tp = find_thread_ptid (this, inferior_ptid);
5745
5746 /* Check to see if we are detaching a fork parent. Note that if we
5747 are detaching a fork child, tp == NULL. */
5748 is_fork_parent = (tp != NULL
5749 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5750
5751 /* If doing detach-on-fork, we don't mourn, because that will delete
5752 breakpoints that should be available for the followed inferior. */
5753 if (!is_fork_parent)
5754 {
5755 /* Save the pid as a string before mourning, since that will
5756 unpush the remote target, and we need the string after. */
5757 std::string infpid = target_pid_to_str (ptid_t (pid));
5758
5759 target_mourn_inferior (inferior_ptid);
5760 if (print_inferior_events)
5761 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5762 inf->num, infpid.c_str ());
5763 }
5764 else
5765 {
5766 switch_to_no_thread ();
5767 detach_inferior (current_inferior ());
5768 }
5769 }
5770
5771 void
5772 remote_target::detach (inferior *inf, int from_tty)
5773 {
5774 remote_detach_1 (inf, from_tty);
5775 }
5776
5777 void
5778 extended_remote_target::detach (inferior *inf, int from_tty)
5779 {
5780 remote_detach_1 (inf, from_tty);
5781 }
5782
5783 /* Target follow-fork function for remote targets. On entry, and
5784 at return, the current inferior is the fork parent.
5785
5786 Note that although this is currently only used for extended-remote,
5787 it is named remote_follow_fork in anticipation of using it for the
5788 remote target as well. */
5789
5790 bool
5791 remote_target::follow_fork (bool follow_child, bool detach_fork)
5792 {
5793 struct remote_state *rs = get_remote_state ();
5794 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5795
5796 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5797 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5798 {
5799 /* When following the parent and detaching the child, we detach
5800 the child here. For the case of following the child and
5801 detaching the parent, the detach is done in the target-
5802 independent follow fork code in infrun.c. We can't use
5803 target_detach when detaching an unfollowed child because
5804 the client side doesn't know anything about the child. */
5805 if (detach_fork && !follow_child)
5806 {
5807 /* Detach the fork child. */
5808 ptid_t child_ptid;
5809 pid_t child_pid;
5810
5811 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5812 child_pid = child_ptid.pid ();
5813
5814 remote_detach_pid (child_pid);
5815 }
5816 }
5817
5818 return false;
5819 }
5820
5821 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5822 in the program space of the new inferior. On entry and at return the
5823 current inferior is the exec'ing inferior. INF is the new exec'd
5824 inferior, which may be the same as the exec'ing inferior unless
5825 follow-exec-mode is "new". */
5826
5827 void
5828 remote_target::follow_exec (struct inferior *inf, const char *execd_pathname)
5829 {
5830 /* We know that this is a target file name, so if it has the "target:"
5831 prefix we strip it off before saving it in the program space. */
5832 if (is_target_filename (execd_pathname))
5833 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5834
5835 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5836 }
5837
5838 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5839
5840 void
5841 remote_target::disconnect (const char *args, int from_tty)
5842 {
5843 if (args)
5844 error (_("Argument given to \"disconnect\" when remotely debugging."));
5845
5846 /* Make sure we unpush even the extended remote targets. Calling
5847 target_mourn_inferior won't unpush, and
5848 remote_target::mourn_inferior won't unpush if there is more than
5849 one inferior left. */
5850 remote_unpush_target (this);
5851
5852 if (from_tty)
5853 puts_filtered ("Ending remote debugging.\n");
5854 }
5855
5856 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5857 be chatty about it. */
5858
5859 void
5860 extended_remote_target::attach (const char *args, int from_tty)
5861 {
5862 struct remote_state *rs = get_remote_state ();
5863 int pid;
5864 char *wait_status = NULL;
5865
5866 pid = parse_pid_to_attach (args);
5867
5868 /* Remote PID can be freely equal to getpid, do not check it here the same
5869 way as in other targets. */
5870
5871 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5872 error (_("This target does not support attaching to a process"));
5873
5874 if (from_tty)
5875 {
5876 const char *exec_file = get_exec_file (0);
5877
5878 if (exec_file)
5879 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5880 target_pid_to_str (ptid_t (pid)).c_str ());
5881 else
5882 printf_unfiltered (_("Attaching to %s\n"),
5883 target_pid_to_str (ptid_t (pid)).c_str ());
5884 }
5885
5886 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
5887 putpkt (rs->buf);
5888 getpkt (&rs->buf, 0);
5889
5890 switch (packet_ok (rs->buf,
5891 &remote_protocol_packets[PACKET_vAttach]))
5892 {
5893 case PACKET_OK:
5894 if (!target_is_non_stop_p ())
5895 {
5896 /* Save the reply for later. */
5897 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
5898 strcpy (wait_status, rs->buf.data ());
5899 }
5900 else if (strcmp (rs->buf.data (), "OK") != 0)
5901 error (_("Attaching to %s failed with: %s"),
5902 target_pid_to_str (ptid_t (pid)).c_str (),
5903 rs->buf.data ());
5904 break;
5905 case PACKET_UNKNOWN:
5906 error (_("This target does not support attaching to a process"));
5907 default:
5908 error (_("Attaching to %s failed"),
5909 target_pid_to_str (ptid_t (pid)).c_str ());
5910 }
5911
5912 switch_to_inferior_no_thread (remote_add_inferior (false, pid, 1, 0));
5913
5914 inferior_ptid = ptid_t (pid);
5915
5916 if (target_is_non_stop_p ())
5917 {
5918 /* Get list of threads. */
5919 update_thread_list ();
5920
5921 thread_info *thread = first_thread_of_inferior (current_inferior ());
5922 if (thread != nullptr)
5923 switch_to_thread (thread);
5924
5925 /* Invalidate our notion of the remote current thread. */
5926 record_currthread (rs, minus_one_ptid);
5927 }
5928 else
5929 {
5930 /* Now, if we have thread information, update the main thread's
5931 ptid. */
5932 ptid_t curr_ptid = remote_current_thread (ptid_t (pid));
5933
5934 /* Add the main thread to the thread list. */
5935 thread_info *thr = add_thread_silent (this, curr_ptid);
5936
5937 switch_to_thread (thr);
5938
5939 /* Don't consider the thread stopped until we've processed the
5940 saved stop reply. */
5941 set_executing (this, thr->ptid, true);
5942 }
5943
5944 /* Next, if the target can specify a description, read it. We do
5945 this before anything involving memory or registers. */
5946 target_find_description ();
5947
5948 if (!target_is_non_stop_p ())
5949 {
5950 /* Use the previously fetched status. */
5951 gdb_assert (wait_status != NULL);
5952
5953 if (target_can_async_p ())
5954 {
5955 struct notif_event *reply
5956 = remote_notif_parse (this, &notif_client_stop, wait_status);
5957
5958 push_stop_reply ((struct stop_reply *) reply);
5959
5960 target_async (1);
5961 }
5962 else
5963 {
5964 gdb_assert (wait_status != NULL);
5965 strcpy (rs->buf.data (), wait_status);
5966 rs->cached_wait_status = 1;
5967 }
5968 }
5969 else
5970 gdb_assert (wait_status == NULL);
5971 }
5972
5973 /* Implementation of the to_post_attach method. */
5974
5975 void
5976 extended_remote_target::post_attach (int pid)
5977 {
5978 /* Get text, data & bss offsets. */
5979 get_offsets ();
5980
5981 /* In certain cases GDB might not have had the chance to start
5982 symbol lookup up until now. This could happen if the debugged
5983 binary is not using shared libraries, the vsyscall page is not
5984 present (on Linux) and the binary itself hadn't changed since the
5985 debugging process was started. */
5986 if (symfile_objfile != NULL)
5987 remote_check_symbols();
5988 }
5989
5990 \f
5991 /* Check for the availability of vCont. This function should also check
5992 the response. */
5993
5994 void
5995 remote_target::remote_vcont_probe ()
5996 {
5997 remote_state *rs = get_remote_state ();
5998 char *buf;
5999
6000 strcpy (rs->buf.data (), "vCont?");
6001 putpkt (rs->buf);
6002 getpkt (&rs->buf, 0);
6003 buf = rs->buf.data ();
6004
6005 /* Make sure that the features we assume are supported. */
6006 if (startswith (buf, "vCont"))
6007 {
6008 char *p = &buf[5];
6009 int support_c, support_C;
6010
6011 rs->supports_vCont.s = 0;
6012 rs->supports_vCont.S = 0;
6013 support_c = 0;
6014 support_C = 0;
6015 rs->supports_vCont.t = 0;
6016 rs->supports_vCont.r = 0;
6017 while (p && *p == ';')
6018 {
6019 p++;
6020 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
6021 rs->supports_vCont.s = 1;
6022 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
6023 rs->supports_vCont.S = 1;
6024 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
6025 support_c = 1;
6026 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
6027 support_C = 1;
6028 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
6029 rs->supports_vCont.t = 1;
6030 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
6031 rs->supports_vCont.r = 1;
6032
6033 p = strchr (p, ';');
6034 }
6035
6036 /* If c, and C are not all supported, we can't use vCont. Clearing
6037 BUF will make packet_ok disable the packet. */
6038 if (!support_c || !support_C)
6039 buf[0] = 0;
6040 }
6041
6042 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
6043 rs->supports_vCont_probed = true;
6044 }
6045
6046 /* Helper function for building "vCont" resumptions. Write a
6047 resumption to P. ENDP points to one-passed-the-end of the buffer
6048 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
6049 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
6050 resumed thread should be single-stepped and/or signalled. If PTID
6051 equals minus_one_ptid, then all threads are resumed; if PTID
6052 represents a process, then all threads of the process are resumed;
6053 the thread to be stepped and/or signalled is given in the global
6054 INFERIOR_PTID. */
6055
6056 char *
6057 remote_target::append_resumption (char *p, char *endp,
6058 ptid_t ptid, int step, gdb_signal siggnal)
6059 {
6060 struct remote_state *rs = get_remote_state ();
6061
6062 if (step && siggnal != GDB_SIGNAL_0)
6063 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6064 else if (step
6065 /* GDB is willing to range step. */
6066 && use_range_stepping
6067 /* Target supports range stepping. */
6068 && rs->supports_vCont.r
6069 /* We don't currently support range stepping multiple
6070 threads with a wildcard (though the protocol allows it,
6071 so stubs shouldn't make an active effort to forbid
6072 it). */
6073 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6074 {
6075 struct thread_info *tp;
6076
6077 if (ptid == minus_one_ptid)
6078 {
6079 /* If we don't know about the target thread's tid, then
6080 we're resuming magic_null_ptid (see caller). */
6081 tp = find_thread_ptid (this, magic_null_ptid);
6082 }
6083 else
6084 tp = find_thread_ptid (this, ptid);
6085 gdb_assert (tp != NULL);
6086
6087 if (tp->control.may_range_step)
6088 {
6089 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6090
6091 p += xsnprintf (p, endp - p, ";r%s,%s",
6092 phex_nz (tp->control.step_range_start,
6093 addr_size),
6094 phex_nz (tp->control.step_range_end,
6095 addr_size));
6096 }
6097 else
6098 p += xsnprintf (p, endp - p, ";s");
6099 }
6100 else if (step)
6101 p += xsnprintf (p, endp - p, ";s");
6102 else if (siggnal != GDB_SIGNAL_0)
6103 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6104 else
6105 p += xsnprintf (p, endp - p, ";c");
6106
6107 if (remote_multi_process_p (rs) && ptid.is_pid ())
6108 {
6109 ptid_t nptid;
6110
6111 /* All (-1) threads of process. */
6112 nptid = ptid_t (ptid.pid (), -1, 0);
6113
6114 p += xsnprintf (p, endp - p, ":");
6115 p = write_ptid (p, endp, nptid);
6116 }
6117 else if (ptid != minus_one_ptid)
6118 {
6119 p += xsnprintf (p, endp - p, ":");
6120 p = write_ptid (p, endp, ptid);
6121 }
6122
6123 return p;
6124 }
6125
6126 /* Clear the thread's private info on resume. */
6127
6128 static void
6129 resume_clear_thread_private_info (struct thread_info *thread)
6130 {
6131 if (thread->priv != NULL)
6132 {
6133 remote_thread_info *priv = get_remote_thread_info (thread);
6134
6135 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6136 priv->watch_data_address = 0;
6137 }
6138 }
6139
6140 /* Append a vCont continue-with-signal action for threads that have a
6141 non-zero stop signal. */
6142
6143 char *
6144 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6145 ptid_t ptid)
6146 {
6147 for (thread_info *thread : all_non_exited_threads (this, ptid))
6148 if (inferior_ptid != thread->ptid
6149 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6150 {
6151 p = append_resumption (p, endp, thread->ptid,
6152 0, thread->suspend.stop_signal);
6153 thread->suspend.stop_signal = GDB_SIGNAL_0;
6154 resume_clear_thread_private_info (thread);
6155 }
6156
6157 return p;
6158 }
6159
6160 /* Set the target running, using the packets that use Hc
6161 (c/s/C/S). */
6162
6163 void
6164 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6165 gdb_signal siggnal)
6166 {
6167 struct remote_state *rs = get_remote_state ();
6168 char *buf;
6169
6170 rs->last_sent_signal = siggnal;
6171 rs->last_sent_step = step;
6172
6173 /* The c/s/C/S resume packets use Hc, so set the continue
6174 thread. */
6175 if (ptid == minus_one_ptid)
6176 set_continue_thread (any_thread_ptid);
6177 else
6178 set_continue_thread (ptid);
6179
6180 for (thread_info *thread : all_non_exited_threads (this))
6181 resume_clear_thread_private_info (thread);
6182
6183 buf = rs->buf.data ();
6184 if (::execution_direction == EXEC_REVERSE)
6185 {
6186 /* We don't pass signals to the target in reverse exec mode. */
6187 if (info_verbose && siggnal != GDB_SIGNAL_0)
6188 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6189 siggnal);
6190
6191 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6192 error (_("Remote reverse-step not supported."));
6193 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6194 error (_("Remote reverse-continue not supported."));
6195
6196 strcpy (buf, step ? "bs" : "bc");
6197 }
6198 else if (siggnal != GDB_SIGNAL_0)
6199 {
6200 buf[0] = step ? 'S' : 'C';
6201 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6202 buf[2] = tohex (((int) siggnal) & 0xf);
6203 buf[3] = '\0';
6204 }
6205 else
6206 strcpy (buf, step ? "s" : "c");
6207
6208 putpkt (buf);
6209 }
6210
6211 /* Resume the remote inferior by using a "vCont" packet. The thread
6212 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6213 resumed thread should be single-stepped and/or signalled. If PTID
6214 equals minus_one_ptid, then all threads are resumed; the thread to
6215 be stepped and/or signalled is given in the global INFERIOR_PTID.
6216 This function returns non-zero iff it resumes the inferior.
6217
6218 This function issues a strict subset of all possible vCont commands
6219 at the moment. */
6220
6221 int
6222 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6223 enum gdb_signal siggnal)
6224 {
6225 struct remote_state *rs = get_remote_state ();
6226 char *p;
6227 char *endp;
6228
6229 /* No reverse execution actions defined for vCont. */
6230 if (::execution_direction == EXEC_REVERSE)
6231 return 0;
6232
6233 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6234 remote_vcont_probe ();
6235
6236 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6237 return 0;
6238
6239 p = rs->buf.data ();
6240 endp = p + get_remote_packet_size ();
6241
6242 /* If we could generate a wider range of packets, we'd have to worry
6243 about overflowing BUF. Should there be a generic
6244 "multi-part-packet" packet? */
6245
6246 p += xsnprintf (p, endp - p, "vCont");
6247
6248 if (ptid == magic_null_ptid)
6249 {
6250 /* MAGIC_NULL_PTID means that we don't have any active threads,
6251 so we don't have any TID numbers the inferior will
6252 understand. Make sure to only send forms that do not specify
6253 a TID. */
6254 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6255 }
6256 else if (ptid == minus_one_ptid || ptid.is_pid ())
6257 {
6258 /* Resume all threads (of all processes, or of a single
6259 process), with preference for INFERIOR_PTID. This assumes
6260 inferior_ptid belongs to the set of all threads we are about
6261 to resume. */
6262 if (step || siggnal != GDB_SIGNAL_0)
6263 {
6264 /* Step inferior_ptid, with or without signal. */
6265 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6266 }
6267
6268 /* Also pass down any pending signaled resumption for other
6269 threads not the current. */
6270 p = append_pending_thread_resumptions (p, endp, ptid);
6271
6272 /* And continue others without a signal. */
6273 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6274 }
6275 else
6276 {
6277 /* Scheduler locking; resume only PTID. */
6278 append_resumption (p, endp, ptid, step, siggnal);
6279 }
6280
6281 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6282 putpkt (rs->buf);
6283
6284 if (target_is_non_stop_p ())
6285 {
6286 /* In non-stop, the stub replies to vCont with "OK". The stop
6287 reply will be reported asynchronously by means of a `%Stop'
6288 notification. */
6289 getpkt (&rs->buf, 0);
6290 if (strcmp (rs->buf.data (), "OK") != 0)
6291 error (_("Unexpected vCont reply in non-stop mode: %s"),
6292 rs->buf.data ());
6293 }
6294
6295 return 1;
6296 }
6297
6298 /* Tell the remote machine to resume. */
6299
6300 void
6301 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6302 {
6303 struct remote_state *rs = get_remote_state ();
6304
6305 /* When connected in non-stop mode, the core resumes threads
6306 individually. Resuming remote threads directly in target_resume
6307 would thus result in sending one packet per thread. Instead, to
6308 minimize roundtrip latency, here we just store the resume
6309 request; the actual remote resumption will be done in
6310 target_commit_resume / remote_commit_resume, where we'll be able
6311 to do vCont action coalescing. */
6312 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6313 {
6314 remote_thread_info *remote_thr;
6315
6316 if (minus_one_ptid == ptid || ptid.is_pid ())
6317 remote_thr = get_remote_thread_info (this, inferior_ptid);
6318 else
6319 remote_thr = get_remote_thread_info (this, ptid);
6320
6321 remote_thr->last_resume_step = step;
6322 remote_thr->last_resume_sig = siggnal;
6323 return;
6324 }
6325
6326 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6327 (explained in remote-notif.c:handle_notification) so
6328 remote_notif_process is not called. We need find a place where
6329 it is safe to start a 'vNotif' sequence. It is good to do it
6330 before resuming inferior, because inferior was stopped and no RSP
6331 traffic at that moment. */
6332 if (!target_is_non_stop_p ())
6333 remote_notif_process (rs->notif_state, &notif_client_stop);
6334
6335 rs->last_resume_exec_dir = ::execution_direction;
6336
6337 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6338 if (!remote_resume_with_vcont (ptid, step, siggnal))
6339 remote_resume_with_hc (ptid, step, siggnal);
6340
6341 /* We are about to start executing the inferior, let's register it
6342 with the event loop. NOTE: this is the one place where all the
6343 execution commands end up. We could alternatively do this in each
6344 of the execution commands in infcmd.c. */
6345 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6346 into infcmd.c in order to allow inferior function calls to work
6347 NOT asynchronously. */
6348 if (target_can_async_p ())
6349 target_async (1);
6350
6351 /* We've just told the target to resume. The remote server will
6352 wait for the inferior to stop, and then send a stop reply. In
6353 the mean time, we can't start another command/query ourselves
6354 because the stub wouldn't be ready to process it. This applies
6355 only to the base all-stop protocol, however. In non-stop (which
6356 only supports vCont), the stub replies with an "OK", and is
6357 immediate able to process further serial input. */
6358 if (!target_is_non_stop_p ())
6359 rs->waiting_for_stop_reply = 1;
6360 }
6361
6362 static int is_pending_fork_parent_thread (struct thread_info *thread);
6363
6364 /* Private per-inferior info for target remote processes. */
6365
6366 struct remote_inferior : public private_inferior
6367 {
6368 /* Whether we can send a wildcard vCont for this process. */
6369 bool may_wildcard_vcont = true;
6370 };
6371
6372 /* Get the remote private inferior data associated to INF. */
6373
6374 static remote_inferior *
6375 get_remote_inferior (inferior *inf)
6376 {
6377 if (inf->priv == NULL)
6378 inf->priv.reset (new remote_inferior);
6379
6380 return static_cast<remote_inferior *> (inf->priv.get ());
6381 }
6382
6383 /* Class used to track the construction of a vCont packet in the
6384 outgoing packet buffer. This is used to send multiple vCont
6385 packets if we have more actions than would fit a single packet. */
6386
6387 class vcont_builder
6388 {
6389 public:
6390 explicit vcont_builder (remote_target *remote)
6391 : m_remote (remote)
6392 {
6393 restart ();
6394 }
6395
6396 void flush ();
6397 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6398
6399 private:
6400 void restart ();
6401
6402 /* The remote target. */
6403 remote_target *m_remote;
6404
6405 /* Pointer to the first action. P points here if no action has been
6406 appended yet. */
6407 char *m_first_action;
6408
6409 /* Where the next action will be appended. */
6410 char *m_p;
6411
6412 /* The end of the buffer. Must never write past this. */
6413 char *m_endp;
6414 };
6415
6416 /* Prepare the outgoing buffer for a new vCont packet. */
6417
6418 void
6419 vcont_builder::restart ()
6420 {
6421 struct remote_state *rs = m_remote->get_remote_state ();
6422
6423 m_p = rs->buf.data ();
6424 m_endp = m_p + m_remote->get_remote_packet_size ();
6425 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6426 m_first_action = m_p;
6427 }
6428
6429 /* If the vCont packet being built has any action, send it to the
6430 remote end. */
6431
6432 void
6433 vcont_builder::flush ()
6434 {
6435 struct remote_state *rs;
6436
6437 if (m_p == m_first_action)
6438 return;
6439
6440 rs = m_remote->get_remote_state ();
6441 m_remote->putpkt (rs->buf);
6442 m_remote->getpkt (&rs->buf, 0);
6443 if (strcmp (rs->buf.data (), "OK") != 0)
6444 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6445 }
6446
6447 /* The largest action is range-stepping, with its two addresses. This
6448 is more than sufficient. If a new, bigger action is created, it'll
6449 quickly trigger a failed assertion in append_resumption (and we'll
6450 just bump this). */
6451 #define MAX_ACTION_SIZE 200
6452
6453 /* Append a new vCont action in the outgoing packet being built. If
6454 the action doesn't fit the packet along with previous actions, push
6455 what we've got so far to the remote end and start over a new vCont
6456 packet (with the new action). */
6457
6458 void
6459 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6460 {
6461 char buf[MAX_ACTION_SIZE + 1];
6462
6463 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6464 ptid, step, siggnal);
6465
6466 /* Check whether this new action would fit in the vCont packet along
6467 with previous actions. If not, send what we've got so far and
6468 start a new vCont packet. */
6469 size_t rsize = endp - buf;
6470 if (rsize > m_endp - m_p)
6471 {
6472 flush ();
6473 restart ();
6474
6475 /* Should now fit. */
6476 gdb_assert (rsize <= m_endp - m_p);
6477 }
6478
6479 memcpy (m_p, buf, rsize);
6480 m_p += rsize;
6481 *m_p = '\0';
6482 }
6483
6484 /* to_commit_resume implementation. */
6485
6486 void
6487 remote_target::commit_resume ()
6488 {
6489 int any_process_wildcard;
6490 int may_global_wildcard_vcont;
6491
6492 /* If connected in all-stop mode, we'd send the remote resume
6493 request directly from remote_resume. Likewise if
6494 reverse-debugging, as there are no defined vCont actions for
6495 reverse execution. */
6496 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6497 return;
6498
6499 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6500 instead of resuming all threads of each process individually.
6501 However, if any thread of a process must remain halted, we can't
6502 send wildcard resumes and must send one action per thread.
6503
6504 Care must be taken to not resume threads/processes the server
6505 side already told us are stopped, but the core doesn't know about
6506 yet, because the events are still in the vStopped notification
6507 queue. For example:
6508
6509 #1 => vCont s:p1.1;c
6510 #2 <= OK
6511 #3 <= %Stopped T05 p1.1
6512 #4 => vStopped
6513 #5 <= T05 p1.2
6514 #6 => vStopped
6515 #7 <= OK
6516 #8 (infrun handles the stop for p1.1 and continues stepping)
6517 #9 => vCont s:p1.1;c
6518
6519 The last vCont above would resume thread p1.2 by mistake, because
6520 the server has no idea that the event for p1.2 had not been
6521 handled yet.
6522
6523 The server side must similarly ignore resume actions for the
6524 thread that has a pending %Stopped notification (and any other
6525 threads with events pending), until GDB acks the notification
6526 with vStopped. Otherwise, e.g., the following case is
6527 mishandled:
6528
6529 #1 => g (or any other packet)
6530 #2 <= [registers]
6531 #3 <= %Stopped T05 p1.2
6532 #4 => vCont s:p1.1;c
6533 #5 <= OK
6534
6535 Above, the server must not resume thread p1.2. GDB can't know
6536 that p1.2 stopped until it acks the %Stopped notification, and
6537 since from GDB's perspective all threads should be running, it
6538 sends a "c" action.
6539
6540 Finally, special care must also be given to handling fork/vfork
6541 events. A (v)fork event actually tells us that two processes
6542 stopped -- the parent and the child. Until we follow the fork,
6543 we must not resume the child. Therefore, if we have a pending
6544 fork follow, we must not send a global wildcard resume action
6545 (vCont;c). We can still send process-wide wildcards though. */
6546
6547 /* Start by assuming a global wildcard (vCont;c) is possible. */
6548 may_global_wildcard_vcont = 1;
6549
6550 /* And assume every process is individually wildcard-able too. */
6551 for (inferior *inf : all_non_exited_inferiors (this))
6552 {
6553 remote_inferior *priv = get_remote_inferior (inf);
6554
6555 priv->may_wildcard_vcont = true;
6556 }
6557
6558 /* Check for any pending events (not reported or processed yet) and
6559 disable process and global wildcard resumes appropriately. */
6560 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6561
6562 for (thread_info *tp : all_non_exited_threads (this))
6563 {
6564 /* If a thread of a process is not meant to be resumed, then we
6565 can't wildcard that process. */
6566 if (!tp->executing)
6567 {
6568 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6569
6570 /* And if we can't wildcard a process, we can't wildcard
6571 everything either. */
6572 may_global_wildcard_vcont = 0;
6573 continue;
6574 }
6575
6576 /* If a thread is the parent of an unfollowed fork, then we
6577 can't do a global wildcard, as that would resume the fork
6578 child. */
6579 if (is_pending_fork_parent_thread (tp))
6580 may_global_wildcard_vcont = 0;
6581 }
6582
6583 /* Now let's build the vCont packet(s). Actions must be appended
6584 from narrower to wider scopes (thread -> process -> global). If
6585 we end up with too many actions for a single packet vcont_builder
6586 flushes the current vCont packet to the remote side and starts a
6587 new one. */
6588 struct vcont_builder vcont_builder (this);
6589
6590 /* Threads first. */
6591 for (thread_info *tp : all_non_exited_threads (this))
6592 {
6593 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6594
6595 if (!tp->executing || remote_thr->vcont_resumed)
6596 continue;
6597
6598 gdb_assert (!thread_is_in_step_over_chain (tp));
6599
6600 if (!remote_thr->last_resume_step
6601 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6602 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6603 {
6604 /* We'll send a wildcard resume instead. */
6605 remote_thr->vcont_resumed = 1;
6606 continue;
6607 }
6608
6609 vcont_builder.push_action (tp->ptid,
6610 remote_thr->last_resume_step,
6611 remote_thr->last_resume_sig);
6612 remote_thr->vcont_resumed = 1;
6613 }
6614
6615 /* Now check whether we can send any process-wide wildcard. This is
6616 to avoid sending a global wildcard in the case nothing is
6617 supposed to be resumed. */
6618 any_process_wildcard = 0;
6619
6620 for (inferior *inf : all_non_exited_inferiors (this))
6621 {
6622 if (get_remote_inferior (inf)->may_wildcard_vcont)
6623 {
6624 any_process_wildcard = 1;
6625 break;
6626 }
6627 }
6628
6629 if (any_process_wildcard)
6630 {
6631 /* If all processes are wildcard-able, then send a single "c"
6632 action, otherwise, send an "all (-1) threads of process"
6633 continue action for each running process, if any. */
6634 if (may_global_wildcard_vcont)
6635 {
6636 vcont_builder.push_action (minus_one_ptid,
6637 false, GDB_SIGNAL_0);
6638 }
6639 else
6640 {
6641 for (inferior *inf : all_non_exited_inferiors (this))
6642 {
6643 if (get_remote_inferior (inf)->may_wildcard_vcont)
6644 {
6645 vcont_builder.push_action (ptid_t (inf->pid),
6646 false, GDB_SIGNAL_0);
6647 }
6648 }
6649 }
6650 }
6651
6652 vcont_builder.flush ();
6653 }
6654
6655 \f
6656
6657 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6658 thread, all threads of a remote process, or all threads of all
6659 processes. */
6660
6661 void
6662 remote_target::remote_stop_ns (ptid_t ptid)
6663 {
6664 struct remote_state *rs = get_remote_state ();
6665 char *p = rs->buf.data ();
6666 char *endp = p + get_remote_packet_size ();
6667
6668 /* FIXME: This supports_vCont_probed check is a workaround until
6669 packet_support is per-connection. */
6670 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN
6671 || !rs->supports_vCont_probed)
6672 remote_vcont_probe ();
6673
6674 if (!rs->supports_vCont.t)
6675 error (_("Remote server does not support stopping threads"));
6676
6677 if (ptid == minus_one_ptid
6678 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6679 p += xsnprintf (p, endp - p, "vCont;t");
6680 else
6681 {
6682 ptid_t nptid;
6683
6684 p += xsnprintf (p, endp - p, "vCont;t:");
6685
6686 if (ptid.is_pid ())
6687 /* All (-1) threads of process. */
6688 nptid = ptid_t (ptid.pid (), -1, 0);
6689 else
6690 {
6691 /* Small optimization: if we already have a stop reply for
6692 this thread, no use in telling the stub we want this
6693 stopped. */
6694 if (peek_stop_reply (ptid))
6695 return;
6696
6697 nptid = ptid;
6698 }
6699
6700 write_ptid (p, endp, nptid);
6701 }
6702
6703 /* In non-stop, we get an immediate OK reply. The stop reply will
6704 come in asynchronously by notification. */
6705 putpkt (rs->buf);
6706 getpkt (&rs->buf, 0);
6707 if (strcmp (rs->buf.data (), "OK") != 0)
6708 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6709 rs->buf.data ());
6710 }
6711
6712 /* All-stop version of target_interrupt. Sends a break or a ^C to
6713 interrupt the remote target. It is undefined which thread of which
6714 process reports the interrupt. */
6715
6716 void
6717 remote_target::remote_interrupt_as ()
6718 {
6719 struct remote_state *rs = get_remote_state ();
6720
6721 rs->ctrlc_pending_p = 1;
6722
6723 /* If the inferior is stopped already, but the core didn't know
6724 about it yet, just ignore the request. The cached wait status
6725 will be collected in remote_wait. */
6726 if (rs->cached_wait_status)
6727 return;
6728
6729 /* Send interrupt_sequence to remote target. */
6730 send_interrupt_sequence ();
6731 }
6732
6733 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6734 the remote target. It is undefined which thread of which process
6735 reports the interrupt. Throws an error if the packet is not
6736 supported by the server. */
6737
6738 void
6739 remote_target::remote_interrupt_ns ()
6740 {
6741 struct remote_state *rs = get_remote_state ();
6742 char *p = rs->buf.data ();
6743 char *endp = p + get_remote_packet_size ();
6744
6745 xsnprintf (p, endp - p, "vCtrlC");
6746
6747 /* In non-stop, we get an immediate OK reply. The stop reply will
6748 come in asynchronously by notification. */
6749 putpkt (rs->buf);
6750 getpkt (&rs->buf, 0);
6751
6752 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6753 {
6754 case PACKET_OK:
6755 break;
6756 case PACKET_UNKNOWN:
6757 error (_("No support for interrupting the remote target."));
6758 case PACKET_ERROR:
6759 error (_("Interrupting target failed: %s"), rs->buf.data ());
6760 }
6761 }
6762
6763 /* Implement the to_stop function for the remote targets. */
6764
6765 void
6766 remote_target::stop (ptid_t ptid)
6767 {
6768 if (remote_debug)
6769 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6770
6771 if (target_is_non_stop_p ())
6772 remote_stop_ns (ptid);
6773 else
6774 {
6775 /* We don't currently have a way to transparently pause the
6776 remote target in all-stop mode. Interrupt it instead. */
6777 remote_interrupt_as ();
6778 }
6779 }
6780
6781 /* Implement the to_interrupt function for the remote targets. */
6782
6783 void
6784 remote_target::interrupt ()
6785 {
6786 if (remote_debug)
6787 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6788
6789 if (target_is_non_stop_p ())
6790 remote_interrupt_ns ();
6791 else
6792 remote_interrupt_as ();
6793 }
6794
6795 /* Implement the to_pass_ctrlc function for the remote targets. */
6796
6797 void
6798 remote_target::pass_ctrlc ()
6799 {
6800 struct remote_state *rs = get_remote_state ();
6801
6802 if (remote_debug)
6803 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6804
6805 /* If we're starting up, we're not fully synced yet. Quit
6806 immediately. */
6807 if (rs->starting_up)
6808 quit ();
6809 /* If ^C has already been sent once, offer to disconnect. */
6810 else if (rs->ctrlc_pending_p)
6811 interrupt_query ();
6812 else
6813 target_interrupt ();
6814 }
6815
6816 /* Ask the user what to do when an interrupt is received. */
6817
6818 void
6819 remote_target::interrupt_query ()
6820 {
6821 struct remote_state *rs = get_remote_state ();
6822
6823 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6824 {
6825 if (query (_("The target is not responding to interrupt requests.\n"
6826 "Stop debugging it? ")))
6827 {
6828 remote_unpush_target (this);
6829 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6830 }
6831 }
6832 else
6833 {
6834 if (query (_("Interrupted while waiting for the program.\n"
6835 "Give up waiting? ")))
6836 quit ();
6837 }
6838 }
6839
6840 /* Enable/disable target terminal ownership. Most targets can use
6841 terminal groups to control terminal ownership. Remote targets are
6842 different in that explicit transfer of ownership to/from GDB/target
6843 is required. */
6844
6845 void
6846 remote_target::terminal_inferior ()
6847 {
6848 /* NOTE: At this point we could also register our selves as the
6849 recipient of all input. Any characters typed could then be
6850 passed on down to the target. */
6851 }
6852
6853 void
6854 remote_target::terminal_ours ()
6855 {
6856 }
6857
6858 static void
6859 remote_console_output (const char *msg)
6860 {
6861 const char *p;
6862
6863 for (p = msg; p[0] && p[1]; p += 2)
6864 {
6865 char tb[2];
6866 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6867
6868 tb[0] = c;
6869 tb[1] = 0;
6870 gdb_stdtarg->puts (tb);
6871 }
6872 gdb_stdtarg->flush ();
6873 }
6874
6875 struct stop_reply : public notif_event
6876 {
6877 ~stop_reply ();
6878
6879 /* The identifier of the thread about this event */
6880 ptid_t ptid;
6881
6882 /* The remote state this event is associated with. When the remote
6883 connection, represented by a remote_state object, is closed,
6884 all the associated stop_reply events should be released. */
6885 struct remote_state *rs;
6886
6887 struct target_waitstatus ws;
6888
6889 /* The architecture associated with the expedited registers. */
6890 gdbarch *arch;
6891
6892 /* Expedited registers. This makes remote debugging a bit more
6893 efficient for those targets that provide critical registers as
6894 part of their normal status mechanism (as another roundtrip to
6895 fetch them is avoided). */
6896 std::vector<cached_reg_t> regcache;
6897
6898 enum target_stop_reason stop_reason;
6899
6900 CORE_ADDR watch_data_address;
6901
6902 int core;
6903 };
6904
6905 /* Return the length of the stop reply queue. */
6906
6907 int
6908 remote_target::stop_reply_queue_length ()
6909 {
6910 remote_state *rs = get_remote_state ();
6911 return rs->stop_reply_queue.size ();
6912 }
6913
6914 static void
6915 remote_notif_stop_parse (remote_target *remote,
6916 struct notif_client *self, const char *buf,
6917 struct notif_event *event)
6918 {
6919 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
6920 }
6921
6922 static void
6923 remote_notif_stop_ack (remote_target *remote,
6924 struct notif_client *self, const char *buf,
6925 struct notif_event *event)
6926 {
6927 struct stop_reply *stop_reply = (struct stop_reply *) event;
6928
6929 /* acknowledge */
6930 putpkt (remote, self->ack_command);
6931
6932 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6933 {
6934 /* We got an unknown stop reply. */
6935 error (_("Unknown stop reply"));
6936 }
6937
6938 remote->push_stop_reply (stop_reply);
6939 }
6940
6941 static int
6942 remote_notif_stop_can_get_pending_events (remote_target *remote,
6943 struct notif_client *self)
6944 {
6945 /* We can't get pending events in remote_notif_process for
6946 notification stop, and we have to do this in remote_wait_ns
6947 instead. If we fetch all queued events from stub, remote stub
6948 may exit and we have no chance to process them back in
6949 remote_wait_ns. */
6950 remote_state *rs = remote->get_remote_state ();
6951 mark_async_event_handler (rs->remote_async_inferior_event_token);
6952 return 0;
6953 }
6954
6955 stop_reply::~stop_reply ()
6956 {
6957 for (cached_reg_t &reg : regcache)
6958 xfree (reg.data);
6959 }
6960
6961 static notif_event_up
6962 remote_notif_stop_alloc_reply ()
6963 {
6964 return notif_event_up (new struct stop_reply ());
6965 }
6966
6967 /* A client of notification Stop. */
6968
6969 struct notif_client notif_client_stop =
6970 {
6971 "Stop",
6972 "vStopped",
6973 remote_notif_stop_parse,
6974 remote_notif_stop_ack,
6975 remote_notif_stop_can_get_pending_events,
6976 remote_notif_stop_alloc_reply,
6977 REMOTE_NOTIF_STOP,
6978 };
6979
6980 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6981 the pid of the process that owns the threads we want to check, or
6982 -1 if we want to check all threads. */
6983
6984 static int
6985 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6986 ptid_t thread_ptid)
6987 {
6988 if (ws->kind == TARGET_WAITKIND_FORKED
6989 || ws->kind == TARGET_WAITKIND_VFORKED)
6990 {
6991 if (event_pid == -1 || event_pid == thread_ptid.pid ())
6992 return 1;
6993 }
6994
6995 return 0;
6996 }
6997
6998 /* Return the thread's pending status used to determine whether the
6999 thread is a fork parent stopped at a fork event. */
7000
7001 static struct target_waitstatus *
7002 thread_pending_fork_status (struct thread_info *thread)
7003 {
7004 if (thread->suspend.waitstatus_pending_p)
7005 return &thread->suspend.waitstatus;
7006 else
7007 return &thread->pending_follow;
7008 }
7009
7010 /* Determine if THREAD is a pending fork parent thread. */
7011
7012 static int
7013 is_pending_fork_parent_thread (struct thread_info *thread)
7014 {
7015 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7016 int pid = -1;
7017
7018 return is_pending_fork_parent (ws, pid, thread->ptid);
7019 }
7020
7021 /* If CONTEXT contains any fork child threads that have not been
7022 reported yet, remove them from the CONTEXT list. If such a
7023 thread exists it is because we are stopped at a fork catchpoint
7024 and have not yet called follow_fork, which will set up the
7025 host-side data structures for the new process. */
7026
7027 void
7028 remote_target::remove_new_fork_children (threads_listing_context *context)
7029 {
7030 int pid = -1;
7031 struct notif_client *notif = &notif_client_stop;
7032
7033 /* For any threads stopped at a fork event, remove the corresponding
7034 fork child threads from the CONTEXT list. */
7035 for (thread_info *thread : all_non_exited_threads (this))
7036 {
7037 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7038
7039 if (is_pending_fork_parent (ws, pid, thread->ptid))
7040 context->remove_thread (ws->value.related_pid);
7041 }
7042
7043 /* Check for any pending fork events (not reported or processed yet)
7044 in process PID and remove those fork child threads from the
7045 CONTEXT list as well. */
7046 remote_notif_get_pending_events (notif);
7047 for (auto &event : get_remote_state ()->stop_reply_queue)
7048 if (event->ws.kind == TARGET_WAITKIND_FORKED
7049 || event->ws.kind == TARGET_WAITKIND_VFORKED
7050 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
7051 context->remove_thread (event->ws.value.related_pid);
7052 }
7053
7054 /* Check whether any event pending in the vStopped queue would prevent
7055 a global or process wildcard vCont action. Clear
7056 *may_global_wildcard if we can't do a global wildcard (vCont;c),
7057 and clear the event inferior's may_wildcard_vcont flag if we can't
7058 do a process-wide wildcard resume (vCont;c:pPID.-1). */
7059
7060 void
7061 remote_target::check_pending_events_prevent_wildcard_vcont
7062 (int *may_global_wildcard)
7063 {
7064 struct notif_client *notif = &notif_client_stop;
7065
7066 remote_notif_get_pending_events (notif);
7067 for (auto &event : get_remote_state ()->stop_reply_queue)
7068 {
7069 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7070 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7071 continue;
7072
7073 if (event->ws.kind == TARGET_WAITKIND_FORKED
7074 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7075 *may_global_wildcard = 0;
7076
7077 struct inferior *inf = find_inferior_ptid (this, event->ptid);
7078
7079 /* This may be the first time we heard about this process.
7080 Regardless, we must not do a global wildcard resume, otherwise
7081 we'd resume this process too. */
7082 *may_global_wildcard = 0;
7083 if (inf != NULL)
7084 get_remote_inferior (inf)->may_wildcard_vcont = false;
7085 }
7086 }
7087
7088 /* Discard all pending stop replies of inferior INF. */
7089
7090 void
7091 remote_target::discard_pending_stop_replies (struct inferior *inf)
7092 {
7093 struct stop_reply *reply;
7094 struct remote_state *rs = get_remote_state ();
7095 struct remote_notif_state *rns = rs->notif_state;
7096
7097 /* This function can be notified when an inferior exists. When the
7098 target is not remote, the notification state is NULL. */
7099 if (rs->remote_desc == NULL)
7100 return;
7101
7102 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7103
7104 /* Discard the in-flight notification. */
7105 if (reply != NULL && reply->ptid.pid () == inf->pid)
7106 {
7107 delete reply;
7108 rns->pending_event[notif_client_stop.id] = NULL;
7109 }
7110
7111 /* Discard the stop replies we have already pulled with
7112 vStopped. */
7113 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7114 rs->stop_reply_queue.end (),
7115 [=] (const stop_reply_up &event)
7116 {
7117 return event->ptid.pid () == inf->pid;
7118 });
7119 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7120 }
7121
7122 /* Discard the stop replies for RS in stop_reply_queue. */
7123
7124 void
7125 remote_target::discard_pending_stop_replies_in_queue ()
7126 {
7127 remote_state *rs = get_remote_state ();
7128
7129 /* Discard the stop replies we have already pulled with
7130 vStopped. */
7131 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7132 rs->stop_reply_queue.end (),
7133 [=] (const stop_reply_up &event)
7134 {
7135 return event->rs == rs;
7136 });
7137 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7138 }
7139
7140 /* Remove the first reply in 'stop_reply_queue' which matches
7141 PTID. */
7142
7143 struct stop_reply *
7144 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7145 {
7146 remote_state *rs = get_remote_state ();
7147
7148 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7149 rs->stop_reply_queue.end (),
7150 [=] (const stop_reply_up &event)
7151 {
7152 return event->ptid.matches (ptid);
7153 });
7154 struct stop_reply *result;
7155 if (iter == rs->stop_reply_queue.end ())
7156 result = nullptr;
7157 else
7158 {
7159 result = iter->release ();
7160 rs->stop_reply_queue.erase (iter);
7161 }
7162
7163 if (notif_debug)
7164 fprintf_unfiltered (gdb_stdlog,
7165 "notif: discard queued event: 'Stop' in %s\n",
7166 target_pid_to_str (ptid).c_str ());
7167
7168 return result;
7169 }
7170
7171 /* Look for a queued stop reply belonging to PTID. If one is found,
7172 remove it from the queue, and return it. Returns NULL if none is
7173 found. If there are still queued events left to process, tell the
7174 event loop to get back to target_wait soon. */
7175
7176 struct stop_reply *
7177 remote_target::queued_stop_reply (ptid_t ptid)
7178 {
7179 remote_state *rs = get_remote_state ();
7180 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7181
7182 if (!rs->stop_reply_queue.empty ())
7183 {
7184 /* There's still at least an event left. */
7185 mark_async_event_handler (rs->remote_async_inferior_event_token);
7186 }
7187
7188 return r;
7189 }
7190
7191 /* Push a fully parsed stop reply in the stop reply queue. Since we
7192 know that we now have at least one queued event left to pass to the
7193 core side, tell the event loop to get back to target_wait soon. */
7194
7195 void
7196 remote_target::push_stop_reply (struct stop_reply *new_event)
7197 {
7198 remote_state *rs = get_remote_state ();
7199 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7200
7201 if (notif_debug)
7202 fprintf_unfiltered (gdb_stdlog,
7203 "notif: push 'Stop' %s to queue %d\n",
7204 target_pid_to_str (new_event->ptid).c_str (),
7205 int (rs->stop_reply_queue.size ()));
7206
7207 mark_async_event_handler (rs->remote_async_inferior_event_token);
7208 }
7209
7210 /* Returns true if we have a stop reply for PTID. */
7211
7212 int
7213 remote_target::peek_stop_reply (ptid_t ptid)
7214 {
7215 remote_state *rs = get_remote_state ();
7216 for (auto &event : rs->stop_reply_queue)
7217 if (ptid == event->ptid
7218 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7219 return 1;
7220 return 0;
7221 }
7222
7223 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7224 starting with P and ending with PEND matches PREFIX. */
7225
7226 static int
7227 strprefix (const char *p, const char *pend, const char *prefix)
7228 {
7229 for ( ; p < pend; p++, prefix++)
7230 if (*p != *prefix)
7231 return 0;
7232 return *prefix == '\0';
7233 }
7234
7235 /* Parse the stop reply in BUF. Either the function succeeds, and the
7236 result is stored in EVENT, or throws an error. */
7237
7238 void
7239 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7240 {
7241 remote_arch_state *rsa = NULL;
7242 ULONGEST addr;
7243 const char *p;
7244 int skipregs = 0;
7245
7246 event->ptid = null_ptid;
7247 event->rs = get_remote_state ();
7248 event->ws.kind = TARGET_WAITKIND_IGNORE;
7249 event->ws.value.integer = 0;
7250 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7251 event->regcache.clear ();
7252 event->core = -1;
7253
7254 switch (buf[0])
7255 {
7256 case 'T': /* Status with PC, SP, FP, ... */
7257 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7258 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7259 ss = signal number
7260 n... = register number
7261 r... = register contents
7262 */
7263
7264 p = &buf[3]; /* after Txx */
7265 while (*p)
7266 {
7267 const char *p1;
7268 int fieldsize;
7269
7270 p1 = strchr (p, ':');
7271 if (p1 == NULL)
7272 error (_("Malformed packet(a) (missing colon): %s\n\
7273 Packet: '%s'\n"),
7274 p, buf);
7275 if (p == p1)
7276 error (_("Malformed packet(a) (missing register number): %s\n\
7277 Packet: '%s'\n"),
7278 p, buf);
7279
7280 /* Some "registers" are actually extended stop information.
7281 Note if you're adding a new entry here: GDB 7.9 and
7282 earlier assume that all register "numbers" that start
7283 with an hex digit are real register numbers. Make sure
7284 the server only sends such a packet if it knows the
7285 client understands it. */
7286
7287 if (strprefix (p, p1, "thread"))
7288 event->ptid = read_ptid (++p1, &p);
7289 else if (strprefix (p, p1, "syscall_entry"))
7290 {
7291 ULONGEST sysno;
7292
7293 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7294 p = unpack_varlen_hex (++p1, &sysno);
7295 event->ws.value.syscall_number = (int) sysno;
7296 }
7297 else if (strprefix (p, p1, "syscall_return"))
7298 {
7299 ULONGEST sysno;
7300
7301 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7302 p = unpack_varlen_hex (++p1, &sysno);
7303 event->ws.value.syscall_number = (int) sysno;
7304 }
7305 else if (strprefix (p, p1, "watch")
7306 || strprefix (p, p1, "rwatch")
7307 || strprefix (p, p1, "awatch"))
7308 {
7309 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7310 p = unpack_varlen_hex (++p1, &addr);
7311 event->watch_data_address = (CORE_ADDR) addr;
7312 }
7313 else if (strprefix (p, p1, "swbreak"))
7314 {
7315 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7316
7317 /* Make sure the stub doesn't forget to indicate support
7318 with qSupported. */
7319 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7320 error (_("Unexpected swbreak stop reason"));
7321
7322 /* The value part is documented as "must be empty",
7323 though we ignore it, in case we ever decide to make
7324 use of it in a backward compatible way. */
7325 p = strchrnul (p1 + 1, ';');
7326 }
7327 else if (strprefix (p, p1, "hwbreak"))
7328 {
7329 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7330
7331 /* Make sure the stub doesn't forget to indicate support
7332 with qSupported. */
7333 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7334 error (_("Unexpected hwbreak stop reason"));
7335
7336 /* See above. */
7337 p = strchrnul (p1 + 1, ';');
7338 }
7339 else if (strprefix (p, p1, "library"))
7340 {
7341 event->ws.kind = TARGET_WAITKIND_LOADED;
7342 p = strchrnul (p1 + 1, ';');
7343 }
7344 else if (strprefix (p, p1, "replaylog"))
7345 {
7346 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7347 /* p1 will indicate "begin" or "end", but it makes
7348 no difference for now, so ignore it. */
7349 p = strchrnul (p1 + 1, ';');
7350 }
7351 else if (strprefix (p, p1, "core"))
7352 {
7353 ULONGEST c;
7354
7355 p = unpack_varlen_hex (++p1, &c);
7356 event->core = c;
7357 }
7358 else if (strprefix (p, p1, "fork"))
7359 {
7360 event->ws.value.related_pid = read_ptid (++p1, &p);
7361 event->ws.kind = TARGET_WAITKIND_FORKED;
7362 }
7363 else if (strprefix (p, p1, "vfork"))
7364 {
7365 event->ws.value.related_pid = read_ptid (++p1, &p);
7366 event->ws.kind = TARGET_WAITKIND_VFORKED;
7367 }
7368 else if (strprefix (p, p1, "vforkdone"))
7369 {
7370 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7371 p = strchrnul (p1 + 1, ';');
7372 }
7373 else if (strprefix (p, p1, "exec"))
7374 {
7375 ULONGEST ignored;
7376 int pathlen;
7377
7378 /* Determine the length of the execd pathname. */
7379 p = unpack_varlen_hex (++p1, &ignored);
7380 pathlen = (p - p1) / 2;
7381
7382 /* Save the pathname for event reporting and for
7383 the next run command. */
7384 gdb::unique_xmalloc_ptr<char[]> pathname
7385 ((char *) xmalloc (pathlen + 1));
7386 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7387 pathname[pathlen] = '\0';
7388
7389 /* This is freed during event handling. */
7390 event->ws.value.execd_pathname = pathname.release ();
7391 event->ws.kind = TARGET_WAITKIND_EXECD;
7392
7393 /* Skip the registers included in this packet, since
7394 they may be for an architecture different from the
7395 one used by the original program. */
7396 skipregs = 1;
7397 }
7398 else if (strprefix (p, p1, "create"))
7399 {
7400 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7401 p = strchrnul (p1 + 1, ';');
7402 }
7403 else
7404 {
7405 ULONGEST pnum;
7406 const char *p_temp;
7407
7408 if (skipregs)
7409 {
7410 p = strchrnul (p1 + 1, ';');
7411 p++;
7412 continue;
7413 }
7414
7415 /* Maybe a real ``P'' register number. */
7416 p_temp = unpack_varlen_hex (p, &pnum);
7417 /* If the first invalid character is the colon, we got a
7418 register number. Otherwise, it's an unknown stop
7419 reason. */
7420 if (p_temp == p1)
7421 {
7422 /* If we haven't parsed the event's thread yet, find
7423 it now, in order to find the architecture of the
7424 reported expedited registers. */
7425 if (event->ptid == null_ptid)
7426 {
7427 /* If there is no thread-id information then leave
7428 the event->ptid as null_ptid. Later in
7429 process_stop_reply we will pick a suitable
7430 thread. */
7431 const char *thr = strstr (p1 + 1, ";thread:");
7432 if (thr != NULL)
7433 event->ptid = read_ptid (thr + strlen (";thread:"),
7434 NULL);
7435 }
7436
7437 if (rsa == NULL)
7438 {
7439 inferior *inf
7440 = (event->ptid == null_ptid
7441 ? NULL
7442 : find_inferior_ptid (this, event->ptid));
7443 /* If this is the first time we learn anything
7444 about this process, skip the registers
7445 included in this packet, since we don't yet
7446 know which architecture to use to parse them.
7447 We'll determine the architecture later when
7448 we process the stop reply and retrieve the
7449 target description, via
7450 remote_notice_new_inferior ->
7451 post_create_inferior. */
7452 if (inf == NULL)
7453 {
7454 p = strchrnul (p1 + 1, ';');
7455 p++;
7456 continue;
7457 }
7458
7459 event->arch = inf->gdbarch;
7460 rsa = event->rs->get_remote_arch_state (event->arch);
7461 }
7462
7463 packet_reg *reg
7464 = packet_reg_from_pnum (event->arch, rsa, pnum);
7465 cached_reg_t cached_reg;
7466
7467 if (reg == NULL)
7468 error (_("Remote sent bad register number %s: %s\n\
7469 Packet: '%s'\n"),
7470 hex_string (pnum), p, buf);
7471
7472 cached_reg.num = reg->regnum;
7473 cached_reg.data = (gdb_byte *)
7474 xmalloc (register_size (event->arch, reg->regnum));
7475
7476 p = p1 + 1;
7477 fieldsize = hex2bin (p, cached_reg.data,
7478 register_size (event->arch, reg->regnum));
7479 p += 2 * fieldsize;
7480 if (fieldsize < register_size (event->arch, reg->regnum))
7481 warning (_("Remote reply is too short: %s"), buf);
7482
7483 event->regcache.push_back (cached_reg);
7484 }
7485 else
7486 {
7487 /* Not a number. Silently skip unknown optional
7488 info. */
7489 p = strchrnul (p1 + 1, ';');
7490 }
7491 }
7492
7493 if (*p != ';')
7494 error (_("Remote register badly formatted: %s\nhere: %s"),
7495 buf, p);
7496 ++p;
7497 }
7498
7499 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7500 break;
7501
7502 /* fall through */
7503 case 'S': /* Old style status, just signal only. */
7504 {
7505 int sig;
7506
7507 event->ws.kind = TARGET_WAITKIND_STOPPED;
7508 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7509 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7510 event->ws.value.sig = (enum gdb_signal) sig;
7511 else
7512 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7513 }
7514 break;
7515 case 'w': /* Thread exited. */
7516 {
7517 ULONGEST value;
7518
7519 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7520 p = unpack_varlen_hex (&buf[1], &value);
7521 event->ws.value.integer = value;
7522 if (*p != ';')
7523 error (_("stop reply packet badly formatted: %s"), buf);
7524 event->ptid = read_ptid (++p, NULL);
7525 break;
7526 }
7527 case 'W': /* Target exited. */
7528 case 'X':
7529 {
7530 ULONGEST value;
7531
7532 /* GDB used to accept only 2 hex chars here. Stubs should
7533 only send more if they detect GDB supports multi-process
7534 support. */
7535 p = unpack_varlen_hex (&buf[1], &value);
7536
7537 if (buf[0] == 'W')
7538 {
7539 /* The remote process exited. */
7540 event->ws.kind = TARGET_WAITKIND_EXITED;
7541 event->ws.value.integer = value;
7542 }
7543 else
7544 {
7545 /* The remote process exited with a signal. */
7546 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7547 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7548 event->ws.value.sig = (enum gdb_signal) value;
7549 else
7550 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7551 }
7552
7553 /* If no process is specified, return null_ptid, and let the
7554 caller figure out the right process to use. */
7555 int pid = 0;
7556 if (*p == '\0')
7557 ;
7558 else if (*p == ';')
7559 {
7560 p++;
7561
7562 if (*p == '\0')
7563 ;
7564 else if (startswith (p, "process:"))
7565 {
7566 ULONGEST upid;
7567
7568 p += sizeof ("process:") - 1;
7569 unpack_varlen_hex (p, &upid);
7570 pid = upid;
7571 }
7572 else
7573 error (_("unknown stop reply packet: %s"), buf);
7574 }
7575 else
7576 error (_("unknown stop reply packet: %s"), buf);
7577 event->ptid = ptid_t (pid);
7578 }
7579 break;
7580 case 'N':
7581 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7582 event->ptid = minus_one_ptid;
7583 break;
7584 }
7585 }
7586
7587 /* When the stub wants to tell GDB about a new notification reply, it
7588 sends a notification (%Stop, for example). Those can come it at
7589 any time, hence, we have to make sure that any pending
7590 putpkt/getpkt sequence we're making is finished, before querying
7591 the stub for more events with the corresponding ack command
7592 (vStopped, for example). E.g., if we started a vStopped sequence
7593 immediately upon receiving the notification, something like this
7594 could happen:
7595
7596 1.1) --> Hg 1
7597 1.2) <-- OK
7598 1.3) --> g
7599 1.4) <-- %Stop
7600 1.5) --> vStopped
7601 1.6) <-- (registers reply to step #1.3)
7602
7603 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7604 query.
7605
7606 To solve this, whenever we parse a %Stop notification successfully,
7607 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7608 doing whatever we were doing:
7609
7610 2.1) --> Hg 1
7611 2.2) <-- OK
7612 2.3) --> g
7613 2.4) <-- %Stop
7614 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7615 2.5) <-- (registers reply to step #2.3)
7616
7617 Eventually after step #2.5, we return to the event loop, which
7618 notices there's an event on the
7619 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7620 associated callback --- the function below. At this point, we're
7621 always safe to start a vStopped sequence. :
7622
7623 2.6) --> vStopped
7624 2.7) <-- T05 thread:2
7625 2.8) --> vStopped
7626 2.9) --> OK
7627 */
7628
7629 void
7630 remote_target::remote_notif_get_pending_events (notif_client *nc)
7631 {
7632 struct remote_state *rs = get_remote_state ();
7633
7634 if (rs->notif_state->pending_event[nc->id] != NULL)
7635 {
7636 if (notif_debug)
7637 fprintf_unfiltered (gdb_stdlog,
7638 "notif: process: '%s' ack pending event\n",
7639 nc->name);
7640
7641 /* acknowledge */
7642 nc->ack (this, nc, rs->buf.data (),
7643 rs->notif_state->pending_event[nc->id]);
7644 rs->notif_state->pending_event[nc->id] = NULL;
7645
7646 while (1)
7647 {
7648 getpkt (&rs->buf, 0);
7649 if (strcmp (rs->buf.data (), "OK") == 0)
7650 break;
7651 else
7652 remote_notif_ack (this, nc, rs->buf.data ());
7653 }
7654 }
7655 else
7656 {
7657 if (notif_debug)
7658 fprintf_unfiltered (gdb_stdlog,
7659 "notif: process: '%s' no pending reply\n",
7660 nc->name);
7661 }
7662 }
7663
7664 /* Wrapper around remote_target::remote_notif_get_pending_events to
7665 avoid having to export the whole remote_target class. */
7666
7667 void
7668 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7669 {
7670 remote->remote_notif_get_pending_events (nc);
7671 }
7672
7673 /* Called when it is decided that STOP_REPLY holds the info of the
7674 event that is to be returned to the core. This function always
7675 destroys STOP_REPLY. */
7676
7677 ptid_t
7678 remote_target::process_stop_reply (struct stop_reply *stop_reply,
7679 struct target_waitstatus *status)
7680 {
7681 ptid_t ptid;
7682
7683 *status = stop_reply->ws;
7684 ptid = stop_reply->ptid;
7685
7686 /* If no thread/process was reported by the stub then use the first
7687 non-exited thread in the current target. */
7688 if (ptid == null_ptid)
7689 {
7690 /* Some stop events apply to all threads in an inferior, while others
7691 only apply to a single thread. */
7692 bool is_stop_for_all_threads
7693 = (status->kind == TARGET_WAITKIND_EXITED
7694 || status->kind == TARGET_WAITKIND_SIGNALLED);
7695
7696 for (thread_info *thr : all_non_exited_threads (this))
7697 {
7698 if (ptid != null_ptid
7699 && (!is_stop_for_all_threads
7700 || ptid.pid () != thr->ptid.pid ()))
7701 {
7702 static bool warned = false;
7703
7704 if (!warned)
7705 {
7706 /* If you are seeing this warning then the remote target
7707 has stopped without specifying a thread-id, but the
7708 target does have multiple threads (or inferiors), and
7709 so GDB is having to guess which thread stopped.
7710
7711 Examples of what might cause this are the target
7712 sending and 'S' stop packet, or a 'T' stop packet and
7713 not including a thread-id.
7714
7715 Additionally, the target might send a 'W' or 'X
7716 packet without including a process-id, when the target
7717 has multiple running inferiors. */
7718 if (is_stop_for_all_threads)
7719 warning (_("multi-inferior target stopped without "
7720 "sending a process-id, using first "
7721 "non-exited inferior"));
7722 else
7723 warning (_("multi-threaded target stopped without "
7724 "sending a thread-id, using first "
7725 "non-exited thread"));
7726 warned = true;
7727 }
7728 break;
7729 }
7730
7731 /* If this is a stop for all threads then don't use a particular
7732 threads ptid, instead create a new ptid where only the pid
7733 field is set. */
7734 if (is_stop_for_all_threads)
7735 ptid = ptid_t (thr->ptid.pid ());
7736 else
7737 ptid = thr->ptid;
7738 }
7739 gdb_assert (ptid != null_ptid);
7740 }
7741
7742 if (status->kind != TARGET_WAITKIND_EXITED
7743 && status->kind != TARGET_WAITKIND_SIGNALLED
7744 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7745 {
7746 /* Expedited registers. */
7747 if (!stop_reply->regcache.empty ())
7748 {
7749 struct regcache *regcache
7750 = get_thread_arch_regcache (this, ptid, stop_reply->arch);
7751
7752 for (cached_reg_t &reg : stop_reply->regcache)
7753 {
7754 regcache->raw_supply (reg.num, reg.data);
7755 xfree (reg.data);
7756 }
7757
7758 stop_reply->regcache.clear ();
7759 }
7760
7761 remote_notice_new_inferior (ptid, 0);
7762 remote_thread_info *remote_thr = get_remote_thread_info (this, ptid);
7763 remote_thr->core = stop_reply->core;
7764 remote_thr->stop_reason = stop_reply->stop_reason;
7765 remote_thr->watch_data_address = stop_reply->watch_data_address;
7766 remote_thr->vcont_resumed = 0;
7767 }
7768
7769 delete stop_reply;
7770 return ptid;
7771 }
7772
7773 /* The non-stop mode version of target_wait. */
7774
7775 ptid_t
7776 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status,
7777 target_wait_flags options)
7778 {
7779 struct remote_state *rs = get_remote_state ();
7780 struct stop_reply *stop_reply;
7781 int ret;
7782 int is_notif = 0;
7783
7784 /* If in non-stop mode, get out of getpkt even if a
7785 notification is received. */
7786
7787 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
7788 while (1)
7789 {
7790 if (ret != -1 && !is_notif)
7791 switch (rs->buf[0])
7792 {
7793 case 'E': /* Error of some sort. */
7794 /* We're out of sync with the target now. Did it continue
7795 or not? We can't tell which thread it was in non-stop,
7796 so just ignore this. */
7797 warning (_("Remote failure reply: %s"), rs->buf.data ());
7798 break;
7799 case 'O': /* Console output. */
7800 remote_console_output (&rs->buf[1]);
7801 break;
7802 default:
7803 warning (_("Invalid remote reply: %s"), rs->buf.data ());
7804 break;
7805 }
7806
7807 /* Acknowledge a pending stop reply that may have arrived in the
7808 mean time. */
7809 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7810 remote_notif_get_pending_events (&notif_client_stop);
7811
7812 /* If indeed we noticed a stop reply, we're done. */
7813 stop_reply = queued_stop_reply (ptid);
7814 if (stop_reply != NULL)
7815 return process_stop_reply (stop_reply, status);
7816
7817 /* Still no event. If we're just polling for an event, then
7818 return to the event loop. */
7819 if (options & TARGET_WNOHANG)
7820 {
7821 status->kind = TARGET_WAITKIND_IGNORE;
7822 return minus_one_ptid;
7823 }
7824
7825 /* Otherwise do a blocking wait. */
7826 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
7827 }
7828 }
7829
7830 /* Return the first resumed thread. */
7831
7832 static ptid_t
7833 first_remote_resumed_thread (remote_target *target)
7834 {
7835 for (thread_info *tp : all_non_exited_threads (target, minus_one_ptid))
7836 if (tp->resumed)
7837 return tp->ptid;
7838 return null_ptid;
7839 }
7840
7841 /* Wait until the remote machine stops, then return, storing status in
7842 STATUS just as `wait' would. */
7843
7844 ptid_t
7845 remote_target::wait_as (ptid_t ptid, target_waitstatus *status,
7846 target_wait_flags options)
7847 {
7848 struct remote_state *rs = get_remote_state ();
7849 ptid_t event_ptid = null_ptid;
7850 char *buf;
7851 struct stop_reply *stop_reply;
7852
7853 again:
7854
7855 status->kind = TARGET_WAITKIND_IGNORE;
7856 status->value.integer = 0;
7857
7858 stop_reply = queued_stop_reply (ptid);
7859 if (stop_reply != NULL)
7860 return process_stop_reply (stop_reply, status);
7861
7862 if (rs->cached_wait_status)
7863 /* Use the cached wait status, but only once. */
7864 rs->cached_wait_status = 0;
7865 else
7866 {
7867 int ret;
7868 int is_notif;
7869 int forever = ((options & TARGET_WNOHANG) == 0
7870 && rs->wait_forever_enabled_p);
7871
7872 if (!rs->waiting_for_stop_reply)
7873 {
7874 status->kind = TARGET_WAITKIND_NO_RESUMED;
7875 return minus_one_ptid;
7876 }
7877
7878 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7879 _never_ wait for ever -> test on target_is_async_p().
7880 However, before we do that we need to ensure that the caller
7881 knows how to take the target into/out of async mode. */
7882 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
7883
7884 /* GDB gets a notification. Return to core as this event is
7885 not interesting. */
7886 if (ret != -1 && is_notif)
7887 return minus_one_ptid;
7888
7889 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7890 return minus_one_ptid;
7891 }
7892
7893 buf = rs->buf.data ();
7894
7895 /* Assume that the target has acknowledged Ctrl-C unless we receive
7896 an 'F' or 'O' packet. */
7897 if (buf[0] != 'F' && buf[0] != 'O')
7898 rs->ctrlc_pending_p = 0;
7899
7900 switch (buf[0])
7901 {
7902 case 'E': /* Error of some sort. */
7903 /* We're out of sync with the target now. Did it continue or
7904 not? Not is more likely, so report a stop. */
7905 rs->waiting_for_stop_reply = 0;
7906
7907 warning (_("Remote failure reply: %s"), buf);
7908 status->kind = TARGET_WAITKIND_STOPPED;
7909 status->value.sig = GDB_SIGNAL_0;
7910 break;
7911 case 'F': /* File-I/O request. */
7912 /* GDB may access the inferior memory while handling the File-I/O
7913 request, but we don't want GDB accessing memory while waiting
7914 for a stop reply. See the comments in putpkt_binary. Set
7915 waiting_for_stop_reply to 0 temporarily. */
7916 rs->waiting_for_stop_reply = 0;
7917 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
7918 rs->ctrlc_pending_p = 0;
7919 /* GDB handled the File-I/O request, and the target is running
7920 again. Keep waiting for events. */
7921 rs->waiting_for_stop_reply = 1;
7922 break;
7923 case 'N': case 'T': case 'S': case 'X': case 'W':
7924 {
7925 /* There is a stop reply to handle. */
7926 rs->waiting_for_stop_reply = 0;
7927
7928 stop_reply
7929 = (struct stop_reply *) remote_notif_parse (this,
7930 &notif_client_stop,
7931 rs->buf.data ());
7932
7933 event_ptid = process_stop_reply (stop_reply, status);
7934 break;
7935 }
7936 case 'O': /* Console output. */
7937 remote_console_output (buf + 1);
7938 break;
7939 case '\0':
7940 if (rs->last_sent_signal != GDB_SIGNAL_0)
7941 {
7942 /* Zero length reply means that we tried 'S' or 'C' and the
7943 remote system doesn't support it. */
7944 target_terminal::ours_for_output ();
7945 printf_filtered
7946 ("Can't send signals to this remote system. %s not sent.\n",
7947 gdb_signal_to_name (rs->last_sent_signal));
7948 rs->last_sent_signal = GDB_SIGNAL_0;
7949 target_terminal::inferior ();
7950
7951 strcpy (buf, rs->last_sent_step ? "s" : "c");
7952 putpkt (buf);
7953 break;
7954 }
7955 /* fallthrough */
7956 default:
7957 warning (_("Invalid remote reply: %s"), buf);
7958 break;
7959 }
7960
7961 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7962 return minus_one_ptid;
7963 else if (status->kind == TARGET_WAITKIND_IGNORE)
7964 {
7965 /* Nothing interesting happened. If we're doing a non-blocking
7966 poll, we're done. Otherwise, go back to waiting. */
7967 if (options & TARGET_WNOHANG)
7968 return minus_one_ptid;
7969 else
7970 goto again;
7971 }
7972 else if (status->kind != TARGET_WAITKIND_EXITED
7973 && status->kind != TARGET_WAITKIND_SIGNALLED)
7974 {
7975 if (event_ptid != null_ptid)
7976 record_currthread (rs, event_ptid);
7977 else
7978 event_ptid = first_remote_resumed_thread (this);
7979 }
7980 else
7981 {
7982 /* A process exit. Invalidate our notion of current thread. */
7983 record_currthread (rs, minus_one_ptid);
7984 /* It's possible that the packet did not include a pid. */
7985 if (event_ptid == null_ptid)
7986 event_ptid = first_remote_resumed_thread (this);
7987 /* EVENT_PTID could still be NULL_PTID. Double-check. */
7988 if (event_ptid == null_ptid)
7989 event_ptid = magic_null_ptid;
7990 }
7991
7992 return event_ptid;
7993 }
7994
7995 /* Wait until the remote machine stops, then return, storing status in
7996 STATUS just as `wait' would. */
7997
7998 ptid_t
7999 remote_target::wait (ptid_t ptid, struct target_waitstatus *status,
8000 target_wait_flags options)
8001 {
8002 ptid_t event_ptid;
8003
8004 if (target_is_non_stop_p ())
8005 event_ptid = wait_ns (ptid, status, options);
8006 else
8007 event_ptid = wait_as (ptid, status, options);
8008
8009 if (target_is_async_p ())
8010 {
8011 remote_state *rs = get_remote_state ();
8012
8013 /* If there are are events left in the queue tell the event loop
8014 to return here. */
8015 if (!rs->stop_reply_queue.empty ())
8016 mark_async_event_handler (rs->remote_async_inferior_event_token);
8017 }
8018
8019 return event_ptid;
8020 }
8021
8022 /* Fetch a single register using a 'p' packet. */
8023
8024 int
8025 remote_target::fetch_register_using_p (struct regcache *regcache,
8026 packet_reg *reg)
8027 {
8028 struct gdbarch *gdbarch = regcache->arch ();
8029 struct remote_state *rs = get_remote_state ();
8030 char *buf, *p;
8031 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8032 int i;
8033
8034 if (packet_support (PACKET_p) == PACKET_DISABLE)
8035 return 0;
8036
8037 if (reg->pnum == -1)
8038 return 0;
8039
8040 p = rs->buf.data ();
8041 *p++ = 'p';
8042 p += hexnumstr (p, reg->pnum);
8043 *p++ = '\0';
8044 putpkt (rs->buf);
8045 getpkt (&rs->buf, 0);
8046
8047 buf = rs->buf.data ();
8048
8049 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
8050 {
8051 case PACKET_OK:
8052 break;
8053 case PACKET_UNKNOWN:
8054 return 0;
8055 case PACKET_ERROR:
8056 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
8057 gdbarch_register_name (regcache->arch (),
8058 reg->regnum),
8059 buf);
8060 }
8061
8062 /* If this register is unfetchable, tell the regcache. */
8063 if (buf[0] == 'x')
8064 {
8065 regcache->raw_supply (reg->regnum, NULL);
8066 return 1;
8067 }
8068
8069 /* Otherwise, parse and supply the value. */
8070 p = buf;
8071 i = 0;
8072 while (p[0] != 0)
8073 {
8074 if (p[1] == 0)
8075 error (_("fetch_register_using_p: early buf termination"));
8076
8077 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
8078 p += 2;
8079 }
8080 regcache->raw_supply (reg->regnum, regp);
8081 return 1;
8082 }
8083
8084 /* Fetch the registers included in the target's 'g' packet. */
8085
8086 int
8087 remote_target::send_g_packet ()
8088 {
8089 struct remote_state *rs = get_remote_state ();
8090 int buf_len;
8091
8092 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
8093 putpkt (rs->buf);
8094 getpkt (&rs->buf, 0);
8095 if (packet_check_result (rs->buf) == PACKET_ERROR)
8096 error (_("Could not read registers; remote failure reply '%s'"),
8097 rs->buf.data ());
8098
8099 /* We can get out of synch in various cases. If the first character
8100 in the buffer is not a hex character, assume that has happened
8101 and try to fetch another packet to read. */
8102 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8103 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8104 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8105 && rs->buf[0] != 'x') /* New: unavailable register value. */
8106 {
8107 if (remote_debug)
8108 fprintf_unfiltered (gdb_stdlog,
8109 "Bad register packet; fetching a new packet\n");
8110 getpkt (&rs->buf, 0);
8111 }
8112
8113 buf_len = strlen (rs->buf.data ());
8114
8115 /* Sanity check the received packet. */
8116 if (buf_len % 2 != 0)
8117 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
8118
8119 return buf_len / 2;
8120 }
8121
8122 void
8123 remote_target::process_g_packet (struct regcache *regcache)
8124 {
8125 struct gdbarch *gdbarch = regcache->arch ();
8126 struct remote_state *rs = get_remote_state ();
8127 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8128 int i, buf_len;
8129 char *p;
8130 char *regs;
8131
8132 buf_len = strlen (rs->buf.data ());
8133
8134 /* Further sanity checks, with knowledge of the architecture. */
8135 if (buf_len > 2 * rsa->sizeof_g_packet)
8136 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8137 "bytes): %s"),
8138 rsa->sizeof_g_packet, buf_len / 2,
8139 rs->buf.data ());
8140
8141 /* Save the size of the packet sent to us by the target. It is used
8142 as a heuristic when determining the max size of packets that the
8143 target can safely receive. */
8144 if (rsa->actual_register_packet_size == 0)
8145 rsa->actual_register_packet_size = buf_len;
8146
8147 /* If this is smaller than we guessed the 'g' packet would be,
8148 update our records. A 'g' reply that doesn't include a register's
8149 value implies either that the register is not available, or that
8150 the 'p' packet must be used. */
8151 if (buf_len < 2 * rsa->sizeof_g_packet)
8152 {
8153 long sizeof_g_packet = buf_len / 2;
8154
8155 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8156 {
8157 long offset = rsa->regs[i].offset;
8158 long reg_size = register_size (gdbarch, i);
8159
8160 if (rsa->regs[i].pnum == -1)
8161 continue;
8162
8163 if (offset >= sizeof_g_packet)
8164 rsa->regs[i].in_g_packet = 0;
8165 else if (offset + reg_size > sizeof_g_packet)
8166 error (_("Truncated register %d in remote 'g' packet"), i);
8167 else
8168 rsa->regs[i].in_g_packet = 1;
8169 }
8170
8171 /* Looks valid enough, we can assume this is the correct length
8172 for a 'g' packet. It's important not to adjust
8173 rsa->sizeof_g_packet if we have truncated registers otherwise
8174 this "if" won't be run the next time the method is called
8175 with a packet of the same size and one of the internal errors
8176 below will trigger instead. */
8177 rsa->sizeof_g_packet = sizeof_g_packet;
8178 }
8179
8180 regs = (char *) alloca (rsa->sizeof_g_packet);
8181
8182 /* Unimplemented registers read as all bits zero. */
8183 memset (regs, 0, rsa->sizeof_g_packet);
8184
8185 /* Reply describes registers byte by byte, each byte encoded as two
8186 hex characters. Suck them all up, then supply them to the
8187 register cacheing/storage mechanism. */
8188
8189 p = rs->buf.data ();
8190 for (i = 0; i < rsa->sizeof_g_packet; i++)
8191 {
8192 if (p[0] == 0 || p[1] == 0)
8193 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8194 internal_error (__FILE__, __LINE__,
8195 _("unexpected end of 'g' packet reply"));
8196
8197 if (p[0] == 'x' && p[1] == 'x')
8198 regs[i] = 0; /* 'x' */
8199 else
8200 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8201 p += 2;
8202 }
8203
8204 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8205 {
8206 struct packet_reg *r = &rsa->regs[i];
8207 long reg_size = register_size (gdbarch, i);
8208
8209 if (r->in_g_packet)
8210 {
8211 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8212 /* This shouldn't happen - we adjusted in_g_packet above. */
8213 internal_error (__FILE__, __LINE__,
8214 _("unexpected end of 'g' packet reply"));
8215 else if (rs->buf[r->offset * 2] == 'x')
8216 {
8217 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8218 /* The register isn't available, mark it as such (at
8219 the same time setting the value to zero). */
8220 regcache->raw_supply (r->regnum, NULL);
8221 }
8222 else
8223 regcache->raw_supply (r->regnum, regs + r->offset);
8224 }
8225 }
8226 }
8227
8228 void
8229 remote_target::fetch_registers_using_g (struct regcache *regcache)
8230 {
8231 send_g_packet ();
8232 process_g_packet (regcache);
8233 }
8234
8235 /* Make the remote selected traceframe match GDB's selected
8236 traceframe. */
8237
8238 void
8239 remote_target::set_remote_traceframe ()
8240 {
8241 int newnum;
8242 struct remote_state *rs = get_remote_state ();
8243
8244 if (rs->remote_traceframe_number == get_traceframe_number ())
8245 return;
8246
8247 /* Avoid recursion, remote_trace_find calls us again. */
8248 rs->remote_traceframe_number = get_traceframe_number ();
8249
8250 newnum = target_trace_find (tfind_number,
8251 get_traceframe_number (), 0, 0, NULL);
8252
8253 /* Should not happen. If it does, all bets are off. */
8254 if (newnum != get_traceframe_number ())
8255 warning (_("could not set remote traceframe"));
8256 }
8257
8258 void
8259 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8260 {
8261 struct gdbarch *gdbarch = regcache->arch ();
8262 struct remote_state *rs = get_remote_state ();
8263 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8264 int i;
8265
8266 set_remote_traceframe ();
8267 set_general_thread (regcache->ptid ());
8268
8269 if (regnum >= 0)
8270 {
8271 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8272
8273 gdb_assert (reg != NULL);
8274
8275 /* If this register might be in the 'g' packet, try that first -
8276 we are likely to read more than one register. If this is the
8277 first 'g' packet, we might be overly optimistic about its
8278 contents, so fall back to 'p'. */
8279 if (reg->in_g_packet)
8280 {
8281 fetch_registers_using_g (regcache);
8282 if (reg->in_g_packet)
8283 return;
8284 }
8285
8286 if (fetch_register_using_p (regcache, reg))
8287 return;
8288
8289 /* This register is not available. */
8290 regcache->raw_supply (reg->regnum, NULL);
8291
8292 return;
8293 }
8294
8295 fetch_registers_using_g (regcache);
8296
8297 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8298 if (!rsa->regs[i].in_g_packet)
8299 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8300 {
8301 /* This register is not available. */
8302 regcache->raw_supply (i, NULL);
8303 }
8304 }
8305
8306 /* Prepare to store registers. Since we may send them all (using a
8307 'G' request), we have to read out the ones we don't want to change
8308 first. */
8309
8310 void
8311 remote_target::prepare_to_store (struct regcache *regcache)
8312 {
8313 struct remote_state *rs = get_remote_state ();
8314 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8315 int i;
8316
8317 /* Make sure the entire registers array is valid. */
8318 switch (packet_support (PACKET_P))
8319 {
8320 case PACKET_DISABLE:
8321 case PACKET_SUPPORT_UNKNOWN:
8322 /* Make sure all the necessary registers are cached. */
8323 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8324 if (rsa->regs[i].in_g_packet)
8325 regcache->raw_update (rsa->regs[i].regnum);
8326 break;
8327 case PACKET_ENABLE:
8328 break;
8329 }
8330 }
8331
8332 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8333 packet was not recognized. */
8334
8335 int
8336 remote_target::store_register_using_P (const struct regcache *regcache,
8337 packet_reg *reg)
8338 {
8339 struct gdbarch *gdbarch = regcache->arch ();
8340 struct remote_state *rs = get_remote_state ();
8341 /* Try storing a single register. */
8342 char *buf = rs->buf.data ();
8343 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8344 char *p;
8345
8346 if (packet_support (PACKET_P) == PACKET_DISABLE)
8347 return 0;
8348
8349 if (reg->pnum == -1)
8350 return 0;
8351
8352 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8353 p = buf + strlen (buf);
8354 regcache->raw_collect (reg->regnum, regp);
8355 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8356 putpkt (rs->buf);
8357 getpkt (&rs->buf, 0);
8358
8359 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8360 {
8361 case PACKET_OK:
8362 return 1;
8363 case PACKET_ERROR:
8364 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8365 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8366 case PACKET_UNKNOWN:
8367 return 0;
8368 default:
8369 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8370 }
8371 }
8372
8373 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8374 contents of the register cache buffer. FIXME: ignores errors. */
8375
8376 void
8377 remote_target::store_registers_using_G (const struct regcache *regcache)
8378 {
8379 struct remote_state *rs = get_remote_state ();
8380 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8381 gdb_byte *regs;
8382 char *p;
8383
8384 /* Extract all the registers in the regcache copying them into a
8385 local buffer. */
8386 {
8387 int i;
8388
8389 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8390 memset (regs, 0, rsa->sizeof_g_packet);
8391 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8392 {
8393 struct packet_reg *r = &rsa->regs[i];
8394
8395 if (r->in_g_packet)
8396 regcache->raw_collect (r->regnum, regs + r->offset);
8397 }
8398 }
8399
8400 /* Command describes registers byte by byte,
8401 each byte encoded as two hex characters. */
8402 p = rs->buf.data ();
8403 *p++ = 'G';
8404 bin2hex (regs, p, rsa->sizeof_g_packet);
8405 putpkt (rs->buf);
8406 getpkt (&rs->buf, 0);
8407 if (packet_check_result (rs->buf) == PACKET_ERROR)
8408 error (_("Could not write registers; remote failure reply '%s'"),
8409 rs->buf.data ());
8410 }
8411
8412 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8413 of the register cache buffer. FIXME: ignores errors. */
8414
8415 void
8416 remote_target::store_registers (struct regcache *regcache, int regnum)
8417 {
8418 struct gdbarch *gdbarch = regcache->arch ();
8419 struct remote_state *rs = get_remote_state ();
8420 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8421 int i;
8422
8423 set_remote_traceframe ();
8424 set_general_thread (regcache->ptid ());
8425
8426 if (regnum >= 0)
8427 {
8428 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8429
8430 gdb_assert (reg != NULL);
8431
8432 /* Always prefer to store registers using the 'P' packet if
8433 possible; we often change only a small number of registers.
8434 Sometimes we change a larger number; we'd need help from a
8435 higher layer to know to use 'G'. */
8436 if (store_register_using_P (regcache, reg))
8437 return;
8438
8439 /* For now, don't complain if we have no way to write the
8440 register. GDB loses track of unavailable registers too
8441 easily. Some day, this may be an error. We don't have
8442 any way to read the register, either... */
8443 if (!reg->in_g_packet)
8444 return;
8445
8446 store_registers_using_G (regcache);
8447 return;
8448 }
8449
8450 store_registers_using_G (regcache);
8451
8452 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8453 if (!rsa->regs[i].in_g_packet)
8454 if (!store_register_using_P (regcache, &rsa->regs[i]))
8455 /* See above for why we do not issue an error here. */
8456 continue;
8457 }
8458 \f
8459
8460 /* Return the number of hex digits in num. */
8461
8462 static int
8463 hexnumlen (ULONGEST num)
8464 {
8465 int i;
8466
8467 for (i = 0; num != 0; i++)
8468 num >>= 4;
8469
8470 return std::max (i, 1);
8471 }
8472
8473 /* Set BUF to the minimum number of hex digits representing NUM. */
8474
8475 static int
8476 hexnumstr (char *buf, ULONGEST num)
8477 {
8478 int len = hexnumlen (num);
8479
8480 return hexnumnstr (buf, num, len);
8481 }
8482
8483
8484 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8485
8486 static int
8487 hexnumnstr (char *buf, ULONGEST num, int width)
8488 {
8489 int i;
8490
8491 buf[width] = '\0';
8492
8493 for (i = width - 1; i >= 0; i--)
8494 {
8495 buf[i] = "0123456789abcdef"[(num & 0xf)];
8496 num >>= 4;
8497 }
8498
8499 return width;
8500 }
8501
8502 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8503
8504 static CORE_ADDR
8505 remote_address_masked (CORE_ADDR addr)
8506 {
8507 unsigned int address_size = remote_address_size;
8508
8509 /* If "remoteaddresssize" was not set, default to target address size. */
8510 if (!address_size)
8511 address_size = gdbarch_addr_bit (target_gdbarch ());
8512
8513 if (address_size > 0
8514 && address_size < (sizeof (ULONGEST) * 8))
8515 {
8516 /* Only create a mask when that mask can safely be constructed
8517 in a ULONGEST variable. */
8518 ULONGEST mask = 1;
8519
8520 mask = (mask << address_size) - 1;
8521 addr &= mask;
8522 }
8523 return addr;
8524 }
8525
8526 /* Determine whether the remote target supports binary downloading.
8527 This is accomplished by sending a no-op memory write of zero length
8528 to the target at the specified address. It does not suffice to send
8529 the whole packet, since many stubs strip the eighth bit and
8530 subsequently compute a wrong checksum, which causes real havoc with
8531 remote_write_bytes.
8532
8533 NOTE: This can still lose if the serial line is not eight-bit
8534 clean. In cases like this, the user should clear "remote
8535 X-packet". */
8536
8537 void
8538 remote_target::check_binary_download (CORE_ADDR addr)
8539 {
8540 struct remote_state *rs = get_remote_state ();
8541
8542 switch (packet_support (PACKET_X))
8543 {
8544 case PACKET_DISABLE:
8545 break;
8546 case PACKET_ENABLE:
8547 break;
8548 case PACKET_SUPPORT_UNKNOWN:
8549 {
8550 char *p;
8551
8552 p = rs->buf.data ();
8553 *p++ = 'X';
8554 p += hexnumstr (p, (ULONGEST) addr);
8555 *p++ = ',';
8556 p += hexnumstr (p, (ULONGEST) 0);
8557 *p++ = ':';
8558 *p = '\0';
8559
8560 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8561 getpkt (&rs->buf, 0);
8562
8563 if (rs->buf[0] == '\0')
8564 {
8565 if (remote_debug)
8566 fprintf_unfiltered (gdb_stdlog,
8567 "binary downloading NOT "
8568 "supported by target\n");
8569 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8570 }
8571 else
8572 {
8573 if (remote_debug)
8574 fprintf_unfiltered (gdb_stdlog,
8575 "binary downloading supported by target\n");
8576 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8577 }
8578 break;
8579 }
8580 }
8581 }
8582
8583 /* Helper function to resize the payload in order to try to get a good
8584 alignment. We try to write an amount of data such that the next write will
8585 start on an address aligned on REMOTE_ALIGN_WRITES. */
8586
8587 static int
8588 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8589 {
8590 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8591 }
8592
8593 /* Write memory data directly to the remote machine.
8594 This does not inform the data cache; the data cache uses this.
8595 HEADER is the starting part of the packet.
8596 MEMADDR is the address in the remote memory space.
8597 MYADDR is the address of the buffer in our space.
8598 LEN_UNITS is the number of addressable units to write.
8599 UNIT_SIZE is the length in bytes of an addressable unit.
8600 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8601 should send data as binary ('X'), or hex-encoded ('M').
8602
8603 The function creates packet of the form
8604 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8605
8606 where encoding of <DATA> is terminated by PACKET_FORMAT.
8607
8608 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8609 are omitted.
8610
8611 Return the transferred status, error or OK (an
8612 'enum target_xfer_status' value). Save the number of addressable units
8613 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8614
8615 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8616 exchange between gdb and the stub could look like (?? in place of the
8617 checksum):
8618
8619 -> $m1000,4#??
8620 <- aaaabbbbccccdddd
8621
8622 -> $M1000,3:eeeeffffeeee#??
8623 <- OK
8624
8625 -> $m1000,4#??
8626 <- eeeeffffeeeedddd */
8627
8628 target_xfer_status
8629 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8630 const gdb_byte *myaddr,
8631 ULONGEST len_units,
8632 int unit_size,
8633 ULONGEST *xfered_len_units,
8634 char packet_format, int use_length)
8635 {
8636 struct remote_state *rs = get_remote_state ();
8637 char *p;
8638 char *plen = NULL;
8639 int plenlen = 0;
8640 int todo_units;
8641 int units_written;
8642 int payload_capacity_bytes;
8643 int payload_length_bytes;
8644
8645 if (packet_format != 'X' && packet_format != 'M')
8646 internal_error (__FILE__, __LINE__,
8647 _("remote_write_bytes_aux: bad packet format"));
8648
8649 if (len_units == 0)
8650 return TARGET_XFER_EOF;
8651
8652 payload_capacity_bytes = get_memory_write_packet_size ();
8653
8654 /* The packet buffer will be large enough for the payload;
8655 get_memory_packet_size ensures this. */
8656 rs->buf[0] = '\0';
8657
8658 /* Compute the size of the actual payload by subtracting out the
8659 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8660
8661 payload_capacity_bytes -= strlen ("$,:#NN");
8662 if (!use_length)
8663 /* The comma won't be used. */
8664 payload_capacity_bytes += 1;
8665 payload_capacity_bytes -= strlen (header);
8666 payload_capacity_bytes -= hexnumlen (memaddr);
8667
8668 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8669
8670 strcat (rs->buf.data (), header);
8671 p = rs->buf.data () + strlen (header);
8672
8673 /* Compute a best guess of the number of bytes actually transfered. */
8674 if (packet_format == 'X')
8675 {
8676 /* Best guess at number of bytes that will fit. */
8677 todo_units = std::min (len_units,
8678 (ULONGEST) payload_capacity_bytes / unit_size);
8679 if (use_length)
8680 payload_capacity_bytes -= hexnumlen (todo_units);
8681 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8682 }
8683 else
8684 {
8685 /* Number of bytes that will fit. */
8686 todo_units
8687 = std::min (len_units,
8688 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8689 if (use_length)
8690 payload_capacity_bytes -= hexnumlen (todo_units);
8691 todo_units = std::min (todo_units,
8692 (payload_capacity_bytes / unit_size) / 2);
8693 }
8694
8695 if (todo_units <= 0)
8696 internal_error (__FILE__, __LINE__,
8697 _("minimum packet size too small to write data"));
8698
8699 /* If we already need another packet, then try to align the end
8700 of this packet to a useful boundary. */
8701 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8702 todo_units = align_for_efficient_write (todo_units, memaddr);
8703
8704 /* Append "<memaddr>". */
8705 memaddr = remote_address_masked (memaddr);
8706 p += hexnumstr (p, (ULONGEST) memaddr);
8707
8708 if (use_length)
8709 {
8710 /* Append ",". */
8711 *p++ = ',';
8712
8713 /* Append the length and retain its location and size. It may need to be
8714 adjusted once the packet body has been created. */
8715 plen = p;
8716 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8717 p += plenlen;
8718 }
8719
8720 /* Append ":". */
8721 *p++ = ':';
8722 *p = '\0';
8723
8724 /* Append the packet body. */
8725 if (packet_format == 'X')
8726 {
8727 /* Binary mode. Send target system values byte by byte, in
8728 increasing byte addresses. Only escape certain critical
8729 characters. */
8730 payload_length_bytes =
8731 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8732 &units_written, payload_capacity_bytes);
8733
8734 /* If not all TODO units fit, then we'll need another packet. Make
8735 a second try to keep the end of the packet aligned. Don't do
8736 this if the packet is tiny. */
8737 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8738 {
8739 int new_todo_units;
8740
8741 new_todo_units = align_for_efficient_write (units_written, memaddr);
8742
8743 if (new_todo_units != units_written)
8744 payload_length_bytes =
8745 remote_escape_output (myaddr, new_todo_units, unit_size,
8746 (gdb_byte *) p, &units_written,
8747 payload_capacity_bytes);
8748 }
8749
8750 p += payload_length_bytes;
8751 if (use_length && units_written < todo_units)
8752 {
8753 /* Escape chars have filled up the buffer prematurely,
8754 and we have actually sent fewer units than planned.
8755 Fix-up the length field of the packet. Use the same
8756 number of characters as before. */
8757 plen += hexnumnstr (plen, (ULONGEST) units_written,
8758 plenlen);
8759 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8760 }
8761 }
8762 else
8763 {
8764 /* Normal mode: Send target system values byte by byte, in
8765 increasing byte addresses. Each byte is encoded as a two hex
8766 value. */
8767 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8768 units_written = todo_units;
8769 }
8770
8771 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8772 getpkt (&rs->buf, 0);
8773
8774 if (rs->buf[0] == 'E')
8775 return TARGET_XFER_E_IO;
8776
8777 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8778 send fewer units than we'd planned. */
8779 *xfered_len_units = (ULONGEST) units_written;
8780 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8781 }
8782
8783 /* Write memory data directly to the remote machine.
8784 This does not inform the data cache; the data cache uses this.
8785 MEMADDR is the address in the remote memory space.
8786 MYADDR is the address of the buffer in our space.
8787 LEN is the number of bytes.
8788
8789 Return the transferred status, error or OK (an
8790 'enum target_xfer_status' value). Save the number of bytes
8791 transferred in *XFERED_LEN. Only transfer a single packet. */
8792
8793 target_xfer_status
8794 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8795 ULONGEST len, int unit_size,
8796 ULONGEST *xfered_len)
8797 {
8798 const char *packet_format = NULL;
8799
8800 /* Check whether the target supports binary download. */
8801 check_binary_download (memaddr);
8802
8803 switch (packet_support (PACKET_X))
8804 {
8805 case PACKET_ENABLE:
8806 packet_format = "X";
8807 break;
8808 case PACKET_DISABLE:
8809 packet_format = "M";
8810 break;
8811 case PACKET_SUPPORT_UNKNOWN:
8812 internal_error (__FILE__, __LINE__,
8813 _("remote_write_bytes: bad internal state"));
8814 default:
8815 internal_error (__FILE__, __LINE__, _("bad switch"));
8816 }
8817
8818 return remote_write_bytes_aux (packet_format,
8819 memaddr, myaddr, len, unit_size, xfered_len,
8820 packet_format[0], 1);
8821 }
8822
8823 /* Read memory data directly from the remote machine.
8824 This does not use the data cache; the data cache uses this.
8825 MEMADDR is the address in the remote memory space.
8826 MYADDR is the address of the buffer in our space.
8827 LEN_UNITS is the number of addressable memory units to read..
8828 UNIT_SIZE is the length in bytes of an addressable unit.
8829
8830 Return the transferred status, error or OK (an
8831 'enum target_xfer_status' value). Save the number of bytes
8832 transferred in *XFERED_LEN_UNITS.
8833
8834 See the comment of remote_write_bytes_aux for an example of
8835 memory read/write exchange between gdb and the stub. */
8836
8837 target_xfer_status
8838 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
8839 ULONGEST len_units,
8840 int unit_size, ULONGEST *xfered_len_units)
8841 {
8842 struct remote_state *rs = get_remote_state ();
8843 int buf_size_bytes; /* Max size of packet output buffer. */
8844 char *p;
8845 int todo_units;
8846 int decoded_bytes;
8847
8848 buf_size_bytes = get_memory_read_packet_size ();
8849 /* The packet buffer will be large enough for the payload;
8850 get_memory_packet_size ensures this. */
8851
8852 /* Number of units that will fit. */
8853 todo_units = std::min (len_units,
8854 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8855
8856 /* Construct "m"<memaddr>","<len>". */
8857 memaddr = remote_address_masked (memaddr);
8858 p = rs->buf.data ();
8859 *p++ = 'm';
8860 p += hexnumstr (p, (ULONGEST) memaddr);
8861 *p++ = ',';
8862 p += hexnumstr (p, (ULONGEST) todo_units);
8863 *p = '\0';
8864 putpkt (rs->buf);
8865 getpkt (&rs->buf, 0);
8866 if (rs->buf[0] == 'E'
8867 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8868 && rs->buf[3] == '\0')
8869 return TARGET_XFER_E_IO;
8870 /* Reply describes memory byte by byte, each byte encoded as two hex
8871 characters. */
8872 p = rs->buf.data ();
8873 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8874 /* Return what we have. Let higher layers handle partial reads. */
8875 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8876 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8877 }
8878
8879 /* Using the set of read-only target sections of remote, read live
8880 read-only memory.
8881
8882 For interface/parameters/return description see target.h,
8883 to_xfer_partial. */
8884
8885 target_xfer_status
8886 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
8887 ULONGEST memaddr,
8888 ULONGEST len,
8889 int unit_size,
8890 ULONGEST *xfered_len)
8891 {
8892 struct target_section *secp;
8893 struct target_section_table *table;
8894
8895 secp = target_section_by_addr (this, memaddr);
8896 if (secp != NULL
8897 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
8898 {
8899 struct target_section *p;
8900 ULONGEST memend = memaddr + len;
8901
8902 table = target_get_section_table (this);
8903
8904 for (p = table->sections; p < table->sections_end; p++)
8905 {
8906 if (memaddr >= p->addr)
8907 {
8908 if (memend <= p->endaddr)
8909 {
8910 /* Entire transfer is within this section. */
8911 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8912 xfered_len);
8913 }
8914 else if (memaddr >= p->endaddr)
8915 {
8916 /* This section ends before the transfer starts. */
8917 continue;
8918 }
8919 else
8920 {
8921 /* This section overlaps the transfer. Just do half. */
8922 len = p->endaddr - memaddr;
8923 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8924 xfered_len);
8925 }
8926 }
8927 }
8928 }
8929
8930 return TARGET_XFER_EOF;
8931 }
8932
8933 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8934 first if the requested memory is unavailable in traceframe.
8935 Otherwise, fall back to remote_read_bytes_1. */
8936
8937 target_xfer_status
8938 remote_target::remote_read_bytes (CORE_ADDR memaddr,
8939 gdb_byte *myaddr, ULONGEST len, int unit_size,
8940 ULONGEST *xfered_len)
8941 {
8942 if (len == 0)
8943 return TARGET_XFER_EOF;
8944
8945 if (get_traceframe_number () != -1)
8946 {
8947 std::vector<mem_range> available;
8948
8949 /* If we fail to get the set of available memory, then the
8950 target does not support querying traceframe info, and so we
8951 attempt reading from the traceframe anyway (assuming the
8952 target implements the old QTro packet then). */
8953 if (traceframe_available_memory (&available, memaddr, len))
8954 {
8955 if (available.empty () || available[0].start != memaddr)
8956 {
8957 enum target_xfer_status res;
8958
8959 /* Don't read into the traceframe's available
8960 memory. */
8961 if (!available.empty ())
8962 {
8963 LONGEST oldlen = len;
8964
8965 len = available[0].start - memaddr;
8966 gdb_assert (len <= oldlen);
8967 }
8968
8969 /* This goes through the topmost target again. */
8970 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
8971 len, unit_size, xfered_len);
8972 if (res == TARGET_XFER_OK)
8973 return TARGET_XFER_OK;
8974 else
8975 {
8976 /* No use trying further, we know some memory starting
8977 at MEMADDR isn't available. */
8978 *xfered_len = len;
8979 return (*xfered_len != 0) ?
8980 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8981 }
8982 }
8983
8984 /* Don't try to read more than how much is available, in
8985 case the target implements the deprecated QTro packet to
8986 cater for older GDBs (the target's knowledge of read-only
8987 sections may be outdated by now). */
8988 len = available[0].length;
8989 }
8990 }
8991
8992 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8993 }
8994
8995 \f
8996
8997 /* Sends a packet with content determined by the printf format string
8998 FORMAT and the remaining arguments, then gets the reply. Returns
8999 whether the packet was a success, a failure, or unknown. */
9000
9001 packet_result
9002 remote_target::remote_send_printf (const char *format, ...)
9003 {
9004 struct remote_state *rs = get_remote_state ();
9005 int max_size = get_remote_packet_size ();
9006 va_list ap;
9007
9008 va_start (ap, format);
9009
9010 rs->buf[0] = '\0';
9011 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
9012
9013 va_end (ap);
9014
9015 if (size >= max_size)
9016 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
9017
9018 if (putpkt (rs->buf) < 0)
9019 error (_("Communication problem with target."));
9020
9021 rs->buf[0] = '\0';
9022 getpkt (&rs->buf, 0);
9023
9024 return packet_check_result (rs->buf);
9025 }
9026
9027 /* Flash writing can take quite some time. We'll set
9028 effectively infinite timeout for flash operations.
9029 In future, we'll need to decide on a better approach. */
9030 static const int remote_flash_timeout = 1000;
9031
9032 void
9033 remote_target::flash_erase (ULONGEST address, LONGEST length)
9034 {
9035 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
9036 enum packet_result ret;
9037 scoped_restore restore_timeout
9038 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9039
9040 ret = remote_send_printf ("vFlashErase:%s,%s",
9041 phex (address, addr_size),
9042 phex (length, 4));
9043 switch (ret)
9044 {
9045 case PACKET_UNKNOWN:
9046 error (_("Remote target does not support flash erase"));
9047 case PACKET_ERROR:
9048 error (_("Error erasing flash with vFlashErase packet"));
9049 default:
9050 break;
9051 }
9052 }
9053
9054 target_xfer_status
9055 remote_target::remote_flash_write (ULONGEST address,
9056 ULONGEST length, ULONGEST *xfered_len,
9057 const gdb_byte *data)
9058 {
9059 scoped_restore restore_timeout
9060 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9061 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
9062 xfered_len,'X', 0);
9063 }
9064
9065 void
9066 remote_target::flash_done ()
9067 {
9068 int ret;
9069
9070 scoped_restore restore_timeout
9071 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9072
9073 ret = remote_send_printf ("vFlashDone");
9074
9075 switch (ret)
9076 {
9077 case PACKET_UNKNOWN:
9078 error (_("Remote target does not support vFlashDone"));
9079 case PACKET_ERROR:
9080 error (_("Error finishing flash operation"));
9081 default:
9082 break;
9083 }
9084 }
9085
9086 void
9087 remote_target::files_info ()
9088 {
9089 puts_filtered ("Debugging a target over a serial line.\n");
9090 }
9091 \f
9092 /* Stuff for dealing with the packets which are part of this protocol.
9093 See comment at top of file for details. */
9094
9095 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
9096 error to higher layers. Called when a serial error is detected.
9097 The exception message is STRING, followed by a colon and a blank,
9098 the system error message for errno at function entry and final dot
9099 for output compatibility with throw_perror_with_name. */
9100
9101 static void
9102 unpush_and_perror (remote_target *target, const char *string)
9103 {
9104 int saved_errno = errno;
9105
9106 remote_unpush_target (target);
9107 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9108 safe_strerror (saved_errno));
9109 }
9110
9111 /* Read a single character from the remote end. The current quit
9112 handler is overridden to avoid quitting in the middle of packet
9113 sequence, as that would break communication with the remote server.
9114 See remote_serial_quit_handler for more detail. */
9115
9116 int
9117 remote_target::readchar (int timeout)
9118 {
9119 int ch;
9120 struct remote_state *rs = get_remote_state ();
9121
9122 {
9123 scoped_restore restore_quit_target
9124 = make_scoped_restore (&curr_quit_handler_target, this);
9125 scoped_restore restore_quit
9126 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9127
9128 rs->got_ctrlc_during_io = 0;
9129
9130 ch = serial_readchar (rs->remote_desc, timeout);
9131
9132 if (rs->got_ctrlc_during_io)
9133 set_quit_flag ();
9134 }
9135
9136 if (ch >= 0)
9137 return ch;
9138
9139 switch ((enum serial_rc) ch)
9140 {
9141 case SERIAL_EOF:
9142 remote_unpush_target (this);
9143 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9144 /* no return */
9145 case SERIAL_ERROR:
9146 unpush_and_perror (this, _("Remote communication error. "
9147 "Target disconnected."));
9148 /* no return */
9149 case SERIAL_TIMEOUT:
9150 break;
9151 }
9152 return ch;
9153 }
9154
9155 /* Wrapper for serial_write that closes the target and throws if
9156 writing fails. The current quit handler is overridden to avoid
9157 quitting in the middle of packet sequence, as that would break
9158 communication with the remote server. See
9159 remote_serial_quit_handler for more detail. */
9160
9161 void
9162 remote_target::remote_serial_write (const char *str, int len)
9163 {
9164 struct remote_state *rs = get_remote_state ();
9165
9166 scoped_restore restore_quit_target
9167 = make_scoped_restore (&curr_quit_handler_target, this);
9168 scoped_restore restore_quit
9169 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9170
9171 rs->got_ctrlc_during_io = 0;
9172
9173 if (serial_write (rs->remote_desc, str, len))
9174 {
9175 unpush_and_perror (this, _("Remote communication error. "
9176 "Target disconnected."));
9177 }
9178
9179 if (rs->got_ctrlc_during_io)
9180 set_quit_flag ();
9181 }
9182
9183 /* Return a string representing an escaped version of BUF, of len N.
9184 E.g. \n is converted to \\n, \t to \\t, etc. */
9185
9186 static std::string
9187 escape_buffer (const char *buf, int n)
9188 {
9189 string_file stb;
9190
9191 stb.putstrn (buf, n, '\\');
9192 return std::move (stb.string ());
9193 }
9194
9195 /* Display a null-terminated packet on stdout, for debugging, using C
9196 string notation. */
9197
9198 static void
9199 print_packet (const char *buf)
9200 {
9201 puts_filtered ("\"");
9202 fputstr_filtered (buf, '"', gdb_stdout);
9203 puts_filtered ("\"");
9204 }
9205
9206 int
9207 remote_target::putpkt (const char *buf)
9208 {
9209 return putpkt_binary (buf, strlen (buf));
9210 }
9211
9212 /* Wrapper around remote_target::putpkt to avoid exporting
9213 remote_target. */
9214
9215 int
9216 putpkt (remote_target *remote, const char *buf)
9217 {
9218 return remote->putpkt (buf);
9219 }
9220
9221 /* Send a packet to the remote machine, with error checking. The data
9222 of the packet is in BUF. The string in BUF can be at most
9223 get_remote_packet_size () - 5 to account for the $, # and checksum,
9224 and for a possible /0 if we are debugging (remote_debug) and want
9225 to print the sent packet as a string. */
9226
9227 int
9228 remote_target::putpkt_binary (const char *buf, int cnt)
9229 {
9230 struct remote_state *rs = get_remote_state ();
9231 int i;
9232 unsigned char csum = 0;
9233 gdb::def_vector<char> data (cnt + 6);
9234 char *buf2 = data.data ();
9235
9236 int ch;
9237 int tcount = 0;
9238 char *p;
9239
9240 /* Catch cases like trying to read memory or listing threads while
9241 we're waiting for a stop reply. The remote server wouldn't be
9242 ready to handle this request, so we'd hang and timeout. We don't
9243 have to worry about this in synchronous mode, because in that
9244 case it's not possible to issue a command while the target is
9245 running. This is not a problem in non-stop mode, because in that
9246 case, the stub is always ready to process serial input. */
9247 if (!target_is_non_stop_p ()
9248 && target_is_async_p ()
9249 && rs->waiting_for_stop_reply)
9250 {
9251 error (_("Cannot execute this command while the target is running.\n"
9252 "Use the \"interrupt\" command to stop the target\n"
9253 "and then try again."));
9254 }
9255
9256 /* We're sending out a new packet. Make sure we don't look at a
9257 stale cached response. */
9258 rs->cached_wait_status = 0;
9259
9260 /* Copy the packet into buffer BUF2, encapsulating it
9261 and giving it a checksum. */
9262
9263 p = buf2;
9264 *p++ = '$';
9265
9266 for (i = 0; i < cnt; i++)
9267 {
9268 csum += buf[i];
9269 *p++ = buf[i];
9270 }
9271 *p++ = '#';
9272 *p++ = tohex ((csum >> 4) & 0xf);
9273 *p++ = tohex (csum & 0xf);
9274
9275 /* Send it over and over until we get a positive ack. */
9276
9277 while (1)
9278 {
9279 int started_error_output = 0;
9280
9281 if (remote_debug)
9282 {
9283 *p = '\0';
9284
9285 int len = (int) (p - buf2);
9286 int max_chars;
9287
9288 if (remote_packet_max_chars < 0)
9289 max_chars = len;
9290 else
9291 max_chars = remote_packet_max_chars;
9292
9293 std::string str
9294 = escape_buffer (buf2, std::min (len, max_chars));
9295
9296 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
9297
9298 if (len > max_chars)
9299 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9300 len - max_chars);
9301
9302 fprintf_unfiltered (gdb_stdlog, "...");
9303
9304 gdb_flush (gdb_stdlog);
9305 }
9306 remote_serial_write (buf2, p - buf2);
9307
9308 /* If this is a no acks version of the remote protocol, send the
9309 packet and move on. */
9310 if (rs->noack_mode)
9311 break;
9312
9313 /* Read until either a timeout occurs (-2) or '+' is read.
9314 Handle any notification that arrives in the mean time. */
9315 while (1)
9316 {
9317 ch = readchar (remote_timeout);
9318
9319 if (remote_debug)
9320 {
9321 switch (ch)
9322 {
9323 case '+':
9324 case '-':
9325 case SERIAL_TIMEOUT:
9326 case '$':
9327 case '%':
9328 if (started_error_output)
9329 {
9330 putchar_unfiltered ('\n');
9331 started_error_output = 0;
9332 }
9333 }
9334 }
9335
9336 switch (ch)
9337 {
9338 case '+':
9339 if (remote_debug)
9340 fprintf_unfiltered (gdb_stdlog, "Ack\n");
9341 return 1;
9342 case '-':
9343 if (remote_debug)
9344 fprintf_unfiltered (gdb_stdlog, "Nak\n");
9345 /* FALLTHROUGH */
9346 case SERIAL_TIMEOUT:
9347 tcount++;
9348 if (tcount > 3)
9349 return 0;
9350 break; /* Retransmit buffer. */
9351 case '$':
9352 {
9353 if (remote_debug)
9354 fprintf_unfiltered (gdb_stdlog,
9355 "Packet instead of Ack, ignoring it\n");
9356 /* It's probably an old response sent because an ACK
9357 was lost. Gobble up the packet and ack it so it
9358 doesn't get retransmitted when we resend this
9359 packet. */
9360 skip_frame ();
9361 remote_serial_write ("+", 1);
9362 continue; /* Now, go look for +. */
9363 }
9364
9365 case '%':
9366 {
9367 int val;
9368
9369 /* If we got a notification, handle it, and go back to looking
9370 for an ack. */
9371 /* We've found the start of a notification. Now
9372 collect the data. */
9373 val = read_frame (&rs->buf);
9374 if (val >= 0)
9375 {
9376 if (remote_debug)
9377 {
9378 std::string str = escape_buffer (rs->buf.data (), val);
9379
9380 fprintf_unfiltered (gdb_stdlog,
9381 " Notification received: %s\n",
9382 str.c_str ());
9383 }
9384 handle_notification (rs->notif_state, rs->buf.data ());
9385 /* We're in sync now, rewait for the ack. */
9386 tcount = 0;
9387 }
9388 else
9389 {
9390 if (remote_debug)
9391 {
9392 if (!started_error_output)
9393 {
9394 started_error_output = 1;
9395 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9396 }
9397 fputc_unfiltered (ch & 0177, gdb_stdlog);
9398 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf.data ());
9399 }
9400 }
9401 continue;
9402 }
9403 /* fall-through */
9404 default:
9405 if (remote_debug)
9406 {
9407 if (!started_error_output)
9408 {
9409 started_error_output = 1;
9410 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9411 }
9412 fputc_unfiltered (ch & 0177, gdb_stdlog);
9413 }
9414 continue;
9415 }
9416 break; /* Here to retransmit. */
9417 }
9418
9419 #if 0
9420 /* This is wrong. If doing a long backtrace, the user should be
9421 able to get out next time we call QUIT, without anything as
9422 violent as interrupt_query. If we want to provide a way out of
9423 here without getting to the next QUIT, it should be based on
9424 hitting ^C twice as in remote_wait. */
9425 if (quit_flag)
9426 {
9427 quit_flag = 0;
9428 interrupt_query ();
9429 }
9430 #endif
9431 }
9432
9433 return 0;
9434 }
9435
9436 /* Come here after finding the start of a frame when we expected an
9437 ack. Do our best to discard the rest of this packet. */
9438
9439 void
9440 remote_target::skip_frame ()
9441 {
9442 int c;
9443
9444 while (1)
9445 {
9446 c = readchar (remote_timeout);
9447 switch (c)
9448 {
9449 case SERIAL_TIMEOUT:
9450 /* Nothing we can do. */
9451 return;
9452 case '#':
9453 /* Discard the two bytes of checksum and stop. */
9454 c = readchar (remote_timeout);
9455 if (c >= 0)
9456 c = readchar (remote_timeout);
9457
9458 return;
9459 case '*': /* Run length encoding. */
9460 /* Discard the repeat count. */
9461 c = readchar (remote_timeout);
9462 if (c < 0)
9463 return;
9464 break;
9465 default:
9466 /* A regular character. */
9467 break;
9468 }
9469 }
9470 }
9471
9472 /* Come here after finding the start of the frame. Collect the rest
9473 into *BUF, verifying the checksum, length, and handling run-length
9474 compression. NUL terminate the buffer. If there is not enough room,
9475 expand *BUF.
9476
9477 Returns -1 on error, number of characters in buffer (ignoring the
9478 trailing NULL) on success. (could be extended to return one of the
9479 SERIAL status indications). */
9480
9481 long
9482 remote_target::read_frame (gdb::char_vector *buf_p)
9483 {
9484 unsigned char csum;
9485 long bc;
9486 int c;
9487 char *buf = buf_p->data ();
9488 struct remote_state *rs = get_remote_state ();
9489
9490 csum = 0;
9491 bc = 0;
9492
9493 while (1)
9494 {
9495 c = readchar (remote_timeout);
9496 switch (c)
9497 {
9498 case SERIAL_TIMEOUT:
9499 if (remote_debug)
9500 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9501 return -1;
9502 case '$':
9503 if (remote_debug)
9504 fputs_filtered ("Saw new packet start in middle of old one\n",
9505 gdb_stdlog);
9506 return -1; /* Start a new packet, count retries. */
9507 case '#':
9508 {
9509 unsigned char pktcsum;
9510 int check_0 = 0;
9511 int check_1 = 0;
9512
9513 buf[bc] = '\0';
9514
9515 check_0 = readchar (remote_timeout);
9516 if (check_0 >= 0)
9517 check_1 = readchar (remote_timeout);
9518
9519 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9520 {
9521 if (remote_debug)
9522 fputs_filtered ("Timeout in checksum, retrying\n",
9523 gdb_stdlog);
9524 return -1;
9525 }
9526 else if (check_0 < 0 || check_1 < 0)
9527 {
9528 if (remote_debug)
9529 fputs_filtered ("Communication error in checksum\n",
9530 gdb_stdlog);
9531 return -1;
9532 }
9533
9534 /* Don't recompute the checksum; with no ack packets we
9535 don't have any way to indicate a packet retransmission
9536 is necessary. */
9537 if (rs->noack_mode)
9538 return bc;
9539
9540 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9541 if (csum == pktcsum)
9542 return bc;
9543
9544 if (remote_debug)
9545 {
9546 std::string str = escape_buffer (buf, bc);
9547
9548 fprintf_unfiltered (gdb_stdlog,
9549 "Bad checksum, sentsum=0x%x, "
9550 "csum=0x%x, buf=%s\n",
9551 pktcsum, csum, str.c_str ());
9552 }
9553 /* Number of characters in buffer ignoring trailing
9554 NULL. */
9555 return -1;
9556 }
9557 case '*': /* Run length encoding. */
9558 {
9559 int repeat;
9560
9561 csum += c;
9562 c = readchar (remote_timeout);
9563 csum += c;
9564 repeat = c - ' ' + 3; /* Compute repeat count. */
9565
9566 /* The character before ``*'' is repeated. */
9567
9568 if (repeat > 0 && repeat <= 255 && bc > 0)
9569 {
9570 if (bc + repeat - 1 >= buf_p->size () - 1)
9571 {
9572 /* Make some more room in the buffer. */
9573 buf_p->resize (buf_p->size () + repeat);
9574 buf = buf_p->data ();
9575 }
9576
9577 memset (&buf[bc], buf[bc - 1], repeat);
9578 bc += repeat;
9579 continue;
9580 }
9581
9582 buf[bc] = '\0';
9583 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9584 return -1;
9585 }
9586 default:
9587 if (bc >= buf_p->size () - 1)
9588 {
9589 /* Make some more room in the buffer. */
9590 buf_p->resize (buf_p->size () * 2);
9591 buf = buf_p->data ();
9592 }
9593
9594 buf[bc++] = c;
9595 csum += c;
9596 continue;
9597 }
9598 }
9599 }
9600
9601 /* Set this to the maximum number of seconds to wait instead of waiting forever
9602 in target_wait(). If this timer times out, then it generates an error and
9603 the command is aborted. This replaces most of the need for timeouts in the
9604 GDB test suite, and makes it possible to distinguish between a hung target
9605 and one with slow communications. */
9606
9607 static int watchdog = 0;
9608 static void
9609 show_watchdog (struct ui_file *file, int from_tty,
9610 struct cmd_list_element *c, const char *value)
9611 {
9612 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9613 }
9614
9615 /* Read a packet from the remote machine, with error checking, and
9616 store it in *BUF. Resize *BUF if necessary to hold the result. If
9617 FOREVER, wait forever rather than timing out; this is used (in
9618 synchronous mode) to wait for a target that is is executing user
9619 code to stop. */
9620 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9621 don't have to change all the calls to getpkt to deal with the
9622 return value, because at the moment I don't know what the right
9623 thing to do it for those. */
9624
9625 void
9626 remote_target::getpkt (gdb::char_vector *buf, int forever)
9627 {
9628 getpkt_sane (buf, forever);
9629 }
9630
9631
9632 /* Read a packet from the remote machine, with error checking, and
9633 store it in *BUF. Resize *BUF if necessary to hold the result. If
9634 FOREVER, wait forever rather than timing out; this is used (in
9635 synchronous mode) to wait for a target that is is executing user
9636 code to stop. If FOREVER == 0, this function is allowed to time
9637 out gracefully and return an indication of this to the caller.
9638 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9639 consider receiving a notification enough reason to return to the
9640 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9641 holds a notification or not (a regular packet). */
9642
9643 int
9644 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9645 int forever, int expecting_notif,
9646 int *is_notif)
9647 {
9648 struct remote_state *rs = get_remote_state ();
9649 int c;
9650 int tries;
9651 int timeout;
9652 int val = -1;
9653
9654 /* We're reading a new response. Make sure we don't look at a
9655 previously cached response. */
9656 rs->cached_wait_status = 0;
9657
9658 strcpy (buf->data (), "timeout");
9659
9660 if (forever)
9661 timeout = watchdog > 0 ? watchdog : -1;
9662 else if (expecting_notif)
9663 timeout = 0; /* There should already be a char in the buffer. If
9664 not, bail out. */
9665 else
9666 timeout = remote_timeout;
9667
9668 #define MAX_TRIES 3
9669
9670 /* Process any number of notifications, and then return when
9671 we get a packet. */
9672 for (;;)
9673 {
9674 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9675 times. */
9676 for (tries = 1; tries <= MAX_TRIES; tries++)
9677 {
9678 /* This can loop forever if the remote side sends us
9679 characters continuously, but if it pauses, we'll get
9680 SERIAL_TIMEOUT from readchar because of timeout. Then
9681 we'll count that as a retry.
9682
9683 Note that even when forever is set, we will only wait
9684 forever prior to the start of a packet. After that, we
9685 expect characters to arrive at a brisk pace. They should
9686 show up within remote_timeout intervals. */
9687 do
9688 c = readchar (timeout);
9689 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9690
9691 if (c == SERIAL_TIMEOUT)
9692 {
9693 if (expecting_notif)
9694 return -1; /* Don't complain, it's normal to not get
9695 anything in this case. */
9696
9697 if (forever) /* Watchdog went off? Kill the target. */
9698 {
9699 remote_unpush_target (this);
9700 throw_error (TARGET_CLOSE_ERROR,
9701 _("Watchdog timeout has expired. "
9702 "Target detached."));
9703 }
9704 if (remote_debug)
9705 fputs_filtered ("Timed out.\n", gdb_stdlog);
9706 }
9707 else
9708 {
9709 /* We've found the start of a packet or notification.
9710 Now collect the data. */
9711 val = read_frame (buf);
9712 if (val >= 0)
9713 break;
9714 }
9715
9716 remote_serial_write ("-", 1);
9717 }
9718
9719 if (tries > MAX_TRIES)
9720 {
9721 /* We have tried hard enough, and just can't receive the
9722 packet/notification. Give up. */
9723 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9724
9725 /* Skip the ack char if we're in no-ack mode. */
9726 if (!rs->noack_mode)
9727 remote_serial_write ("+", 1);
9728 return -1;
9729 }
9730
9731 /* If we got an ordinary packet, return that to our caller. */
9732 if (c == '$')
9733 {
9734 if (remote_debug)
9735 {
9736 int max_chars;
9737
9738 if (remote_packet_max_chars < 0)
9739 max_chars = val;
9740 else
9741 max_chars = remote_packet_max_chars;
9742
9743 std::string str
9744 = escape_buffer (buf->data (),
9745 std::min (val, max_chars));
9746
9747 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9748 str.c_str ());
9749
9750 if (val > max_chars)
9751 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9752 val - max_chars);
9753
9754 fprintf_unfiltered (gdb_stdlog, "\n");
9755 }
9756
9757 /* Skip the ack char if we're in no-ack mode. */
9758 if (!rs->noack_mode)
9759 remote_serial_write ("+", 1);
9760 if (is_notif != NULL)
9761 *is_notif = 0;
9762 return val;
9763 }
9764
9765 /* If we got a notification, handle it, and go back to looking
9766 for a packet. */
9767 else
9768 {
9769 gdb_assert (c == '%');
9770
9771 if (remote_debug)
9772 {
9773 std::string str = escape_buffer (buf->data (), val);
9774
9775 fprintf_unfiltered (gdb_stdlog,
9776 " Notification received: %s\n",
9777 str.c_str ());
9778 }
9779 if (is_notif != NULL)
9780 *is_notif = 1;
9781
9782 handle_notification (rs->notif_state, buf->data ());
9783
9784 /* Notifications require no acknowledgement. */
9785
9786 if (expecting_notif)
9787 return val;
9788 }
9789 }
9790 }
9791
9792 int
9793 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
9794 {
9795 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
9796 }
9797
9798 int
9799 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
9800 int *is_notif)
9801 {
9802 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
9803 }
9804
9805 /* Kill any new fork children of process PID that haven't been
9806 processed by follow_fork. */
9807
9808 void
9809 remote_target::kill_new_fork_children (int pid)
9810 {
9811 remote_state *rs = get_remote_state ();
9812 struct notif_client *notif = &notif_client_stop;
9813
9814 /* Kill the fork child threads of any threads in process PID
9815 that are stopped at a fork event. */
9816 for (thread_info *thread : all_non_exited_threads (this))
9817 {
9818 struct target_waitstatus *ws = &thread->pending_follow;
9819
9820 if (is_pending_fork_parent (ws, pid, thread->ptid))
9821 {
9822 int child_pid = ws->value.related_pid.pid ();
9823 int res;
9824
9825 res = remote_vkill (child_pid);
9826 if (res != 0)
9827 error (_("Can't kill fork child process %d"), child_pid);
9828 }
9829 }
9830
9831 /* Check for any pending fork events (not reported or processed yet)
9832 in process PID and kill those fork child threads as well. */
9833 remote_notif_get_pending_events (notif);
9834 for (auto &event : rs->stop_reply_queue)
9835 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
9836 {
9837 int child_pid = event->ws.value.related_pid.pid ();
9838 int res;
9839
9840 res = remote_vkill (child_pid);
9841 if (res != 0)
9842 error (_("Can't kill fork child process %d"), child_pid);
9843 }
9844 }
9845
9846 \f
9847 /* Target hook to kill the current inferior. */
9848
9849 void
9850 remote_target::kill ()
9851 {
9852 int res = -1;
9853 int pid = inferior_ptid.pid ();
9854 struct remote_state *rs = get_remote_state ();
9855
9856 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9857 {
9858 /* If we're stopped while forking and we haven't followed yet,
9859 kill the child task. We need to do this before killing the
9860 parent task because if this is a vfork then the parent will
9861 be sleeping. */
9862 kill_new_fork_children (pid);
9863
9864 res = remote_vkill (pid);
9865 if (res == 0)
9866 {
9867 target_mourn_inferior (inferior_ptid);
9868 return;
9869 }
9870 }
9871
9872 /* If we are in 'target remote' mode and we are killing the only
9873 inferior, then we will tell gdbserver to exit and unpush the
9874 target. */
9875 if (res == -1 && !remote_multi_process_p (rs)
9876 && number_of_live_inferiors (this) == 1)
9877 {
9878 remote_kill_k ();
9879
9880 /* We've killed the remote end, we get to mourn it. If we are
9881 not in extended mode, mourning the inferior also unpushes
9882 remote_ops from the target stack, which closes the remote
9883 connection. */
9884 target_mourn_inferior (inferior_ptid);
9885
9886 return;
9887 }
9888
9889 error (_("Can't kill process"));
9890 }
9891
9892 /* Send a kill request to the target using the 'vKill' packet. */
9893
9894 int
9895 remote_target::remote_vkill (int pid)
9896 {
9897 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9898 return -1;
9899
9900 remote_state *rs = get_remote_state ();
9901
9902 /* Tell the remote target to detach. */
9903 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
9904 putpkt (rs->buf);
9905 getpkt (&rs->buf, 0);
9906
9907 switch (packet_ok (rs->buf,
9908 &remote_protocol_packets[PACKET_vKill]))
9909 {
9910 case PACKET_OK:
9911 return 0;
9912 case PACKET_ERROR:
9913 return 1;
9914 case PACKET_UNKNOWN:
9915 return -1;
9916 default:
9917 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9918 }
9919 }
9920
9921 /* Send a kill request to the target using the 'k' packet. */
9922
9923 void
9924 remote_target::remote_kill_k ()
9925 {
9926 /* Catch errors so the user can quit from gdb even when we
9927 aren't on speaking terms with the remote system. */
9928 try
9929 {
9930 putpkt ("k");
9931 }
9932 catch (const gdb_exception_error &ex)
9933 {
9934 if (ex.error == TARGET_CLOSE_ERROR)
9935 {
9936 /* If we got an (EOF) error that caused the target
9937 to go away, then we're done, that's what we wanted.
9938 "k" is susceptible to cause a premature EOF, given
9939 that the remote server isn't actually required to
9940 reply to "k", and it can happen that it doesn't
9941 even get to reply ACK to the "k". */
9942 return;
9943 }
9944
9945 /* Otherwise, something went wrong. We didn't actually kill
9946 the target. Just propagate the exception, and let the
9947 user or higher layers decide what to do. */
9948 throw;
9949 }
9950 }
9951
9952 void
9953 remote_target::mourn_inferior ()
9954 {
9955 struct remote_state *rs = get_remote_state ();
9956
9957 /* We're no longer interested in notification events of an inferior
9958 that exited or was killed/detached. */
9959 discard_pending_stop_replies (current_inferior ());
9960
9961 /* In 'target remote' mode with one inferior, we close the connection. */
9962 if (!rs->extended && number_of_live_inferiors (this) <= 1)
9963 {
9964 remote_unpush_target (this);
9965 return;
9966 }
9967
9968 /* In case we got here due to an error, but we're going to stay
9969 connected. */
9970 rs->waiting_for_stop_reply = 0;
9971
9972 /* If the current general thread belonged to the process we just
9973 detached from or has exited, the remote side current general
9974 thread becomes undefined. Considering a case like this:
9975
9976 - We just got here due to a detach.
9977 - The process that we're detaching from happens to immediately
9978 report a global breakpoint being hit in non-stop mode, in the
9979 same thread we had selected before.
9980 - GDB attaches to this process again.
9981 - This event happens to be the next event we handle.
9982
9983 GDB would consider that the current general thread didn't need to
9984 be set on the stub side (with Hg), since for all it knew,
9985 GENERAL_THREAD hadn't changed.
9986
9987 Notice that although in all-stop mode, the remote server always
9988 sets the current thread to the thread reporting the stop event,
9989 that doesn't happen in non-stop mode; in non-stop, the stub *must
9990 not* change the current thread when reporting a breakpoint hit,
9991 due to the decoupling of event reporting and event handling.
9992
9993 To keep things simple, we always invalidate our notion of the
9994 current thread. */
9995 record_currthread (rs, minus_one_ptid);
9996
9997 /* Call common code to mark the inferior as not running. */
9998 generic_mourn_inferior ();
9999 }
10000
10001 bool
10002 extended_remote_target::supports_disable_randomization ()
10003 {
10004 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
10005 }
10006
10007 void
10008 remote_target::extended_remote_disable_randomization (int val)
10009 {
10010 struct remote_state *rs = get_remote_state ();
10011 char *reply;
10012
10013 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10014 "QDisableRandomization:%x", val);
10015 putpkt (rs->buf);
10016 reply = remote_get_noisy_reply ();
10017 if (*reply == '\0')
10018 error (_("Target does not support QDisableRandomization."));
10019 if (strcmp (reply, "OK") != 0)
10020 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
10021 }
10022
10023 int
10024 remote_target::extended_remote_run (const std::string &args)
10025 {
10026 struct remote_state *rs = get_remote_state ();
10027 int len;
10028 const char *remote_exec_file = get_remote_exec_file ();
10029
10030 /* If the user has disabled vRun support, or we have detected that
10031 support is not available, do not try it. */
10032 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
10033 return -1;
10034
10035 strcpy (rs->buf.data (), "vRun;");
10036 len = strlen (rs->buf.data ());
10037
10038 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
10039 error (_("Remote file name too long for run packet"));
10040 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
10041 strlen (remote_exec_file));
10042
10043 if (!args.empty ())
10044 {
10045 int i;
10046
10047 gdb_argv argv (args.c_str ());
10048 for (i = 0; argv[i] != NULL; i++)
10049 {
10050 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
10051 error (_("Argument list too long for run packet"));
10052 rs->buf[len++] = ';';
10053 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
10054 strlen (argv[i]));
10055 }
10056 }
10057
10058 rs->buf[len++] = '\0';
10059
10060 putpkt (rs->buf);
10061 getpkt (&rs->buf, 0);
10062
10063 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
10064 {
10065 case PACKET_OK:
10066 /* We have a wait response. All is well. */
10067 return 0;
10068 case PACKET_UNKNOWN:
10069 return -1;
10070 case PACKET_ERROR:
10071 if (remote_exec_file[0] == '\0')
10072 error (_("Running the default executable on the remote target failed; "
10073 "try \"set remote exec-file\"?"));
10074 else
10075 error (_("Running \"%s\" on the remote target failed"),
10076 remote_exec_file);
10077 default:
10078 gdb_assert_not_reached (_("bad switch"));
10079 }
10080 }
10081
10082 /* Helper function to send set/unset environment packets. ACTION is
10083 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
10084 or "QEnvironmentUnsetVariable". VALUE is the variable to be
10085 sent. */
10086
10087 void
10088 remote_target::send_environment_packet (const char *action,
10089 const char *packet,
10090 const char *value)
10091 {
10092 remote_state *rs = get_remote_state ();
10093
10094 /* Convert the environment variable to an hex string, which
10095 is the best format to be transmitted over the wire. */
10096 std::string encoded_value = bin2hex ((const gdb_byte *) value,
10097 strlen (value));
10098
10099 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10100 "%s:%s", packet, encoded_value.c_str ());
10101
10102 putpkt (rs->buf);
10103 getpkt (&rs->buf, 0);
10104 if (strcmp (rs->buf.data (), "OK") != 0)
10105 warning (_("Unable to %s environment variable '%s' on remote."),
10106 action, value);
10107 }
10108
10109 /* Helper function to handle the QEnvironment* packets. */
10110
10111 void
10112 remote_target::extended_remote_environment_support ()
10113 {
10114 remote_state *rs = get_remote_state ();
10115
10116 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10117 {
10118 putpkt ("QEnvironmentReset");
10119 getpkt (&rs->buf, 0);
10120 if (strcmp (rs->buf.data (), "OK") != 0)
10121 warning (_("Unable to reset environment on remote."));
10122 }
10123
10124 gdb_environ *e = &current_inferior ()->environment;
10125
10126 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10127 for (const std::string &el : e->user_set_env ())
10128 send_environment_packet ("set", "QEnvironmentHexEncoded",
10129 el.c_str ());
10130
10131 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10132 for (const std::string &el : e->user_unset_env ())
10133 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10134 }
10135
10136 /* Helper function to set the current working directory for the
10137 inferior in the remote target. */
10138
10139 void
10140 remote_target::extended_remote_set_inferior_cwd ()
10141 {
10142 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10143 {
10144 const char *inferior_cwd = get_inferior_cwd ();
10145 remote_state *rs = get_remote_state ();
10146
10147 if (inferior_cwd != NULL)
10148 {
10149 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10150 strlen (inferior_cwd));
10151
10152 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10153 "QSetWorkingDir:%s", hexpath.c_str ());
10154 }
10155 else
10156 {
10157 /* An empty inferior_cwd means that the user wants us to
10158 reset the remote server's inferior's cwd. */
10159 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10160 "QSetWorkingDir:");
10161 }
10162
10163 putpkt (rs->buf);
10164 getpkt (&rs->buf, 0);
10165 if (packet_ok (rs->buf,
10166 &remote_protocol_packets[PACKET_QSetWorkingDir])
10167 != PACKET_OK)
10168 error (_("\
10169 Remote replied unexpectedly while setting the inferior's working\n\
10170 directory: %s"),
10171 rs->buf.data ());
10172
10173 }
10174 }
10175
10176 /* In the extended protocol we want to be able to do things like
10177 "run" and have them basically work as expected. So we need
10178 a special create_inferior function. We support changing the
10179 executable file and the command line arguments, but not the
10180 environment. */
10181
10182 void
10183 extended_remote_target::create_inferior (const char *exec_file,
10184 const std::string &args,
10185 char **env, int from_tty)
10186 {
10187 int run_worked;
10188 char *stop_reply;
10189 struct remote_state *rs = get_remote_state ();
10190 const char *remote_exec_file = get_remote_exec_file ();
10191
10192 /* If running asynchronously, register the target file descriptor
10193 with the event loop. */
10194 if (target_can_async_p ())
10195 target_async (1);
10196
10197 /* Disable address space randomization if requested (and supported). */
10198 if (supports_disable_randomization ())
10199 extended_remote_disable_randomization (disable_randomization);
10200
10201 /* If startup-with-shell is on, we inform gdbserver to start the
10202 remote inferior using a shell. */
10203 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10204 {
10205 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10206 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10207 putpkt (rs->buf);
10208 getpkt (&rs->buf, 0);
10209 if (strcmp (rs->buf.data (), "OK") != 0)
10210 error (_("\
10211 Remote replied unexpectedly while setting startup-with-shell: %s"),
10212 rs->buf.data ());
10213 }
10214
10215 extended_remote_environment_support ();
10216
10217 extended_remote_set_inferior_cwd ();
10218
10219 /* Now restart the remote server. */
10220 run_worked = extended_remote_run (args) != -1;
10221 if (!run_worked)
10222 {
10223 /* vRun was not supported. Fail if we need it to do what the
10224 user requested. */
10225 if (remote_exec_file[0])
10226 error (_("Remote target does not support \"set remote exec-file\""));
10227 if (!args.empty ())
10228 error (_("Remote target does not support \"set args\" or run ARGS"));
10229
10230 /* Fall back to "R". */
10231 extended_remote_restart ();
10232 }
10233
10234 /* vRun's success return is a stop reply. */
10235 stop_reply = run_worked ? rs->buf.data () : NULL;
10236 add_current_inferior_and_thread (stop_reply);
10237
10238 /* Get updated offsets, if the stub uses qOffsets. */
10239 get_offsets ();
10240 }
10241 \f
10242
10243 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10244 the list of conditions (in agent expression bytecode format), if any, the
10245 target needs to evaluate. The output is placed into the packet buffer
10246 started from BUF and ended at BUF_END. */
10247
10248 static int
10249 remote_add_target_side_condition (struct gdbarch *gdbarch,
10250 struct bp_target_info *bp_tgt, char *buf,
10251 char *buf_end)
10252 {
10253 if (bp_tgt->conditions.empty ())
10254 return 0;
10255
10256 buf += strlen (buf);
10257 xsnprintf (buf, buf_end - buf, "%s", ";");
10258 buf++;
10259
10260 /* Send conditions to the target. */
10261 for (agent_expr *aexpr : bp_tgt->conditions)
10262 {
10263 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10264 buf += strlen (buf);
10265 for (int i = 0; i < aexpr->len; ++i)
10266 buf = pack_hex_byte (buf, aexpr->buf[i]);
10267 *buf = '\0';
10268 }
10269 return 0;
10270 }
10271
10272 static void
10273 remote_add_target_side_commands (struct gdbarch *gdbarch,
10274 struct bp_target_info *bp_tgt, char *buf)
10275 {
10276 if (bp_tgt->tcommands.empty ())
10277 return;
10278
10279 buf += strlen (buf);
10280
10281 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10282 buf += strlen (buf);
10283
10284 /* Concatenate all the agent expressions that are commands into the
10285 cmds parameter. */
10286 for (agent_expr *aexpr : bp_tgt->tcommands)
10287 {
10288 sprintf (buf, "X%x,", aexpr->len);
10289 buf += strlen (buf);
10290 for (int i = 0; i < aexpr->len; ++i)
10291 buf = pack_hex_byte (buf, aexpr->buf[i]);
10292 *buf = '\0';
10293 }
10294 }
10295
10296 /* Insert a breakpoint. On targets that have software breakpoint
10297 support, we ask the remote target to do the work; on targets
10298 which don't, we insert a traditional memory breakpoint. */
10299
10300 int
10301 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10302 struct bp_target_info *bp_tgt)
10303 {
10304 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10305 If it succeeds, then set the support to PACKET_ENABLE. If it
10306 fails, and the user has explicitly requested the Z support then
10307 report an error, otherwise, mark it disabled and go on. */
10308
10309 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10310 {
10311 CORE_ADDR addr = bp_tgt->reqstd_address;
10312 struct remote_state *rs;
10313 char *p, *endbuf;
10314
10315 /* Make sure the remote is pointing at the right process, if
10316 necessary. */
10317 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10318 set_general_process ();
10319
10320 rs = get_remote_state ();
10321 p = rs->buf.data ();
10322 endbuf = p + get_remote_packet_size ();
10323
10324 *(p++) = 'Z';
10325 *(p++) = '0';
10326 *(p++) = ',';
10327 addr = (ULONGEST) remote_address_masked (addr);
10328 p += hexnumstr (p, addr);
10329 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10330
10331 if (supports_evaluation_of_breakpoint_conditions ())
10332 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10333
10334 if (can_run_breakpoint_commands ())
10335 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10336
10337 putpkt (rs->buf);
10338 getpkt (&rs->buf, 0);
10339
10340 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10341 {
10342 case PACKET_ERROR:
10343 return -1;
10344 case PACKET_OK:
10345 return 0;
10346 case PACKET_UNKNOWN:
10347 break;
10348 }
10349 }
10350
10351 /* If this breakpoint has target-side commands but this stub doesn't
10352 support Z0 packets, throw error. */
10353 if (!bp_tgt->tcommands.empty ())
10354 throw_error (NOT_SUPPORTED_ERROR, _("\
10355 Target doesn't support breakpoints that have target side commands."));
10356
10357 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10358 }
10359
10360 int
10361 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10362 struct bp_target_info *bp_tgt,
10363 enum remove_bp_reason reason)
10364 {
10365 CORE_ADDR addr = bp_tgt->placed_address;
10366 struct remote_state *rs = get_remote_state ();
10367
10368 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10369 {
10370 char *p = rs->buf.data ();
10371 char *endbuf = p + get_remote_packet_size ();
10372
10373 /* Make sure the remote is pointing at the right process, if
10374 necessary. */
10375 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10376 set_general_process ();
10377
10378 *(p++) = 'z';
10379 *(p++) = '0';
10380 *(p++) = ',';
10381
10382 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10383 p += hexnumstr (p, addr);
10384 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10385
10386 putpkt (rs->buf);
10387 getpkt (&rs->buf, 0);
10388
10389 return (rs->buf[0] == 'E');
10390 }
10391
10392 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10393 }
10394
10395 static enum Z_packet_type
10396 watchpoint_to_Z_packet (int type)
10397 {
10398 switch (type)
10399 {
10400 case hw_write:
10401 return Z_PACKET_WRITE_WP;
10402 break;
10403 case hw_read:
10404 return Z_PACKET_READ_WP;
10405 break;
10406 case hw_access:
10407 return Z_PACKET_ACCESS_WP;
10408 break;
10409 default:
10410 internal_error (__FILE__, __LINE__,
10411 _("hw_bp_to_z: bad watchpoint type %d"), type);
10412 }
10413 }
10414
10415 int
10416 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10417 enum target_hw_bp_type type, struct expression *cond)
10418 {
10419 struct remote_state *rs = get_remote_state ();
10420 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10421 char *p;
10422 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10423
10424 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10425 return 1;
10426
10427 /* Make sure the remote is pointing at the right process, if
10428 necessary. */
10429 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10430 set_general_process ();
10431
10432 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10433 p = strchr (rs->buf.data (), '\0');
10434 addr = remote_address_masked (addr);
10435 p += hexnumstr (p, (ULONGEST) addr);
10436 xsnprintf (p, endbuf - p, ",%x", len);
10437
10438 putpkt (rs->buf);
10439 getpkt (&rs->buf, 0);
10440
10441 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10442 {
10443 case PACKET_ERROR:
10444 return -1;
10445 case PACKET_UNKNOWN:
10446 return 1;
10447 case PACKET_OK:
10448 return 0;
10449 }
10450 internal_error (__FILE__, __LINE__,
10451 _("remote_insert_watchpoint: reached end of function"));
10452 }
10453
10454 bool
10455 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10456 CORE_ADDR start, int length)
10457 {
10458 CORE_ADDR diff = remote_address_masked (addr - start);
10459
10460 return diff < length;
10461 }
10462
10463
10464 int
10465 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10466 enum target_hw_bp_type type, struct expression *cond)
10467 {
10468 struct remote_state *rs = get_remote_state ();
10469 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10470 char *p;
10471 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10472
10473 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10474 return -1;
10475
10476 /* Make sure the remote is pointing at the right process, if
10477 necessary. */
10478 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10479 set_general_process ();
10480
10481 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10482 p = strchr (rs->buf.data (), '\0');
10483 addr = remote_address_masked (addr);
10484 p += hexnumstr (p, (ULONGEST) addr);
10485 xsnprintf (p, endbuf - p, ",%x", len);
10486 putpkt (rs->buf);
10487 getpkt (&rs->buf, 0);
10488
10489 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10490 {
10491 case PACKET_ERROR:
10492 case PACKET_UNKNOWN:
10493 return -1;
10494 case PACKET_OK:
10495 return 0;
10496 }
10497 internal_error (__FILE__, __LINE__,
10498 _("remote_remove_watchpoint: reached end of function"));
10499 }
10500
10501
10502 static int remote_hw_watchpoint_limit = -1;
10503 static int remote_hw_watchpoint_length_limit = -1;
10504 static int remote_hw_breakpoint_limit = -1;
10505
10506 int
10507 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10508 {
10509 if (remote_hw_watchpoint_length_limit == 0)
10510 return 0;
10511 else if (remote_hw_watchpoint_length_limit < 0)
10512 return 1;
10513 else if (len <= remote_hw_watchpoint_length_limit)
10514 return 1;
10515 else
10516 return 0;
10517 }
10518
10519 int
10520 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10521 {
10522 if (type == bp_hardware_breakpoint)
10523 {
10524 if (remote_hw_breakpoint_limit == 0)
10525 return 0;
10526 else if (remote_hw_breakpoint_limit < 0)
10527 return 1;
10528 else if (cnt <= remote_hw_breakpoint_limit)
10529 return 1;
10530 }
10531 else
10532 {
10533 if (remote_hw_watchpoint_limit == 0)
10534 return 0;
10535 else if (remote_hw_watchpoint_limit < 0)
10536 return 1;
10537 else if (ot)
10538 return -1;
10539 else if (cnt <= remote_hw_watchpoint_limit)
10540 return 1;
10541 }
10542 return -1;
10543 }
10544
10545 /* The to_stopped_by_sw_breakpoint method of target remote. */
10546
10547 bool
10548 remote_target::stopped_by_sw_breakpoint ()
10549 {
10550 struct thread_info *thread = inferior_thread ();
10551
10552 return (thread->priv != NULL
10553 && (get_remote_thread_info (thread)->stop_reason
10554 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10555 }
10556
10557 /* The to_supports_stopped_by_sw_breakpoint method of target
10558 remote. */
10559
10560 bool
10561 remote_target::supports_stopped_by_sw_breakpoint ()
10562 {
10563 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10564 }
10565
10566 /* The to_stopped_by_hw_breakpoint method of target remote. */
10567
10568 bool
10569 remote_target::stopped_by_hw_breakpoint ()
10570 {
10571 struct thread_info *thread = inferior_thread ();
10572
10573 return (thread->priv != NULL
10574 && (get_remote_thread_info (thread)->stop_reason
10575 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10576 }
10577
10578 /* The to_supports_stopped_by_hw_breakpoint method of target
10579 remote. */
10580
10581 bool
10582 remote_target::supports_stopped_by_hw_breakpoint ()
10583 {
10584 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10585 }
10586
10587 bool
10588 remote_target::stopped_by_watchpoint ()
10589 {
10590 struct thread_info *thread = inferior_thread ();
10591
10592 return (thread->priv != NULL
10593 && (get_remote_thread_info (thread)->stop_reason
10594 == TARGET_STOPPED_BY_WATCHPOINT));
10595 }
10596
10597 bool
10598 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10599 {
10600 struct thread_info *thread = inferior_thread ();
10601
10602 if (thread->priv != NULL
10603 && (get_remote_thread_info (thread)->stop_reason
10604 == TARGET_STOPPED_BY_WATCHPOINT))
10605 {
10606 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10607 return true;
10608 }
10609
10610 return false;
10611 }
10612
10613
10614 int
10615 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10616 struct bp_target_info *bp_tgt)
10617 {
10618 CORE_ADDR addr = bp_tgt->reqstd_address;
10619 struct remote_state *rs;
10620 char *p, *endbuf;
10621 char *message;
10622
10623 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10624 return -1;
10625
10626 /* Make sure the remote is pointing at the right process, if
10627 necessary. */
10628 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10629 set_general_process ();
10630
10631 rs = get_remote_state ();
10632 p = rs->buf.data ();
10633 endbuf = p + get_remote_packet_size ();
10634
10635 *(p++) = 'Z';
10636 *(p++) = '1';
10637 *(p++) = ',';
10638
10639 addr = remote_address_masked (addr);
10640 p += hexnumstr (p, (ULONGEST) addr);
10641 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10642
10643 if (supports_evaluation_of_breakpoint_conditions ())
10644 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10645
10646 if (can_run_breakpoint_commands ())
10647 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10648
10649 putpkt (rs->buf);
10650 getpkt (&rs->buf, 0);
10651
10652 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10653 {
10654 case PACKET_ERROR:
10655 if (rs->buf[1] == '.')
10656 {
10657 message = strchr (&rs->buf[2], '.');
10658 if (message)
10659 error (_("Remote failure reply: %s"), message + 1);
10660 }
10661 return -1;
10662 case PACKET_UNKNOWN:
10663 return -1;
10664 case PACKET_OK:
10665 return 0;
10666 }
10667 internal_error (__FILE__, __LINE__,
10668 _("remote_insert_hw_breakpoint: reached end of function"));
10669 }
10670
10671
10672 int
10673 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10674 struct bp_target_info *bp_tgt)
10675 {
10676 CORE_ADDR addr;
10677 struct remote_state *rs = get_remote_state ();
10678 char *p = rs->buf.data ();
10679 char *endbuf = p + get_remote_packet_size ();
10680
10681 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10682 return -1;
10683
10684 /* Make sure the remote is pointing at the right process, if
10685 necessary. */
10686 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10687 set_general_process ();
10688
10689 *(p++) = 'z';
10690 *(p++) = '1';
10691 *(p++) = ',';
10692
10693 addr = remote_address_masked (bp_tgt->placed_address);
10694 p += hexnumstr (p, (ULONGEST) addr);
10695 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10696
10697 putpkt (rs->buf);
10698 getpkt (&rs->buf, 0);
10699
10700 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10701 {
10702 case PACKET_ERROR:
10703 case PACKET_UNKNOWN:
10704 return -1;
10705 case PACKET_OK:
10706 return 0;
10707 }
10708 internal_error (__FILE__, __LINE__,
10709 _("remote_remove_hw_breakpoint: reached end of function"));
10710 }
10711
10712 /* Verify memory using the "qCRC:" request. */
10713
10714 int
10715 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10716 {
10717 struct remote_state *rs = get_remote_state ();
10718 unsigned long host_crc, target_crc;
10719 char *tmp;
10720
10721 /* It doesn't make sense to use qCRC if the remote target is
10722 connected but not running. */
10723 if (target_has_execution ()
10724 && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10725 {
10726 enum packet_result result;
10727
10728 /* Make sure the remote is pointing at the right process. */
10729 set_general_process ();
10730
10731 /* FIXME: assumes lma can fit into long. */
10732 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10733 (long) lma, (long) size);
10734 putpkt (rs->buf);
10735
10736 /* Be clever; compute the host_crc before waiting for target
10737 reply. */
10738 host_crc = xcrc32 (data, size, 0xffffffff);
10739
10740 getpkt (&rs->buf, 0);
10741
10742 result = packet_ok (rs->buf,
10743 &remote_protocol_packets[PACKET_qCRC]);
10744 if (result == PACKET_ERROR)
10745 return -1;
10746 else if (result == PACKET_OK)
10747 {
10748 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10749 target_crc = target_crc * 16 + fromhex (*tmp);
10750
10751 return (host_crc == target_crc);
10752 }
10753 }
10754
10755 return simple_verify_memory (this, data, lma, size);
10756 }
10757
10758 /* compare-sections command
10759
10760 With no arguments, compares each loadable section in the exec bfd
10761 with the same memory range on the target, and reports mismatches.
10762 Useful for verifying the image on the target against the exec file. */
10763
10764 static void
10765 compare_sections_command (const char *args, int from_tty)
10766 {
10767 asection *s;
10768 const char *sectname;
10769 bfd_size_type size;
10770 bfd_vma lma;
10771 int matched = 0;
10772 int mismatched = 0;
10773 int res;
10774 int read_only = 0;
10775
10776 if (!exec_bfd)
10777 error (_("command cannot be used without an exec file"));
10778
10779 if (args != NULL && strcmp (args, "-r") == 0)
10780 {
10781 read_only = 1;
10782 args = NULL;
10783 }
10784
10785 for (s = exec_bfd->sections; s; s = s->next)
10786 {
10787 if (!(s->flags & SEC_LOAD))
10788 continue; /* Skip non-loadable section. */
10789
10790 if (read_only && (s->flags & SEC_READONLY) == 0)
10791 continue; /* Skip writeable sections */
10792
10793 size = bfd_section_size (s);
10794 if (size == 0)
10795 continue; /* Skip zero-length section. */
10796
10797 sectname = bfd_section_name (s);
10798 if (args && strcmp (args, sectname) != 0)
10799 continue; /* Not the section selected by user. */
10800
10801 matched = 1; /* Do this section. */
10802 lma = s->lma;
10803
10804 gdb::byte_vector sectdata (size);
10805 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10806
10807 res = target_verify_memory (sectdata.data (), lma, size);
10808
10809 if (res == -1)
10810 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10811 paddress (target_gdbarch (), lma),
10812 paddress (target_gdbarch (), lma + size));
10813
10814 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10815 paddress (target_gdbarch (), lma),
10816 paddress (target_gdbarch (), lma + size));
10817 if (res)
10818 printf_filtered ("matched.\n");
10819 else
10820 {
10821 printf_filtered ("MIS-MATCHED!\n");
10822 mismatched++;
10823 }
10824 }
10825 if (mismatched > 0)
10826 warning (_("One or more sections of the target image does not match\n\
10827 the loaded file\n"));
10828 if (args && !matched)
10829 printf_filtered (_("No loaded section named '%s'.\n"), args);
10830 }
10831
10832 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10833 into remote target. The number of bytes written to the remote
10834 target is returned, or -1 for error. */
10835
10836 target_xfer_status
10837 remote_target::remote_write_qxfer (const char *object_name,
10838 const char *annex, const gdb_byte *writebuf,
10839 ULONGEST offset, LONGEST len,
10840 ULONGEST *xfered_len,
10841 struct packet_config *packet)
10842 {
10843 int i, buf_len;
10844 ULONGEST n;
10845 struct remote_state *rs = get_remote_state ();
10846 int max_size = get_memory_write_packet_size ();
10847
10848 if (packet_config_support (packet) == PACKET_DISABLE)
10849 return TARGET_XFER_E_IO;
10850
10851 /* Insert header. */
10852 i = snprintf (rs->buf.data (), max_size,
10853 "qXfer:%s:write:%s:%s:",
10854 object_name, annex ? annex : "",
10855 phex_nz (offset, sizeof offset));
10856 max_size -= (i + 1);
10857
10858 /* Escape as much data as fits into rs->buf. */
10859 buf_len = remote_escape_output
10860 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
10861
10862 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
10863 || getpkt_sane (&rs->buf, 0) < 0
10864 || packet_ok (rs->buf, packet) != PACKET_OK)
10865 return TARGET_XFER_E_IO;
10866
10867 unpack_varlen_hex (rs->buf.data (), &n);
10868
10869 *xfered_len = n;
10870 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10871 }
10872
10873 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10874 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10875 number of bytes read is returned, or 0 for EOF, or -1 for error.
10876 The number of bytes read may be less than LEN without indicating an
10877 EOF. PACKET is checked and updated to indicate whether the remote
10878 target supports this object. */
10879
10880 target_xfer_status
10881 remote_target::remote_read_qxfer (const char *object_name,
10882 const char *annex,
10883 gdb_byte *readbuf, ULONGEST offset,
10884 LONGEST len,
10885 ULONGEST *xfered_len,
10886 struct packet_config *packet)
10887 {
10888 struct remote_state *rs = get_remote_state ();
10889 LONGEST i, n, packet_len;
10890
10891 if (packet_config_support (packet) == PACKET_DISABLE)
10892 return TARGET_XFER_E_IO;
10893
10894 /* Check whether we've cached an end-of-object packet that matches
10895 this request. */
10896 if (rs->finished_object)
10897 {
10898 if (strcmp (object_name, rs->finished_object) == 0
10899 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10900 && offset == rs->finished_offset)
10901 return TARGET_XFER_EOF;
10902
10903
10904 /* Otherwise, we're now reading something different. Discard
10905 the cache. */
10906 xfree (rs->finished_object);
10907 xfree (rs->finished_annex);
10908 rs->finished_object = NULL;
10909 rs->finished_annex = NULL;
10910 }
10911
10912 /* Request only enough to fit in a single packet. The actual data
10913 may not, since we don't know how much of it will need to be escaped;
10914 the target is free to respond with slightly less data. We subtract
10915 five to account for the response type and the protocol frame. */
10916 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10917 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
10918 "qXfer:%s:read:%s:%s,%s",
10919 object_name, annex ? annex : "",
10920 phex_nz (offset, sizeof offset),
10921 phex_nz (n, sizeof n));
10922 i = putpkt (rs->buf);
10923 if (i < 0)
10924 return TARGET_XFER_E_IO;
10925
10926 rs->buf[0] = '\0';
10927 packet_len = getpkt_sane (&rs->buf, 0);
10928 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10929 return TARGET_XFER_E_IO;
10930
10931 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10932 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
10933
10934 /* 'm' means there is (or at least might be) more data after this
10935 batch. That does not make sense unless there's at least one byte
10936 of data in this reply. */
10937 if (rs->buf[0] == 'm' && packet_len == 1)
10938 error (_("Remote qXfer reply contained no data."));
10939
10940 /* Got some data. */
10941 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
10942 packet_len - 1, readbuf, n);
10943
10944 /* 'l' is an EOF marker, possibly including a final block of data,
10945 or possibly empty. If we have the final block of a non-empty
10946 object, record this fact to bypass a subsequent partial read. */
10947 if (rs->buf[0] == 'l' && offset + i > 0)
10948 {
10949 rs->finished_object = xstrdup (object_name);
10950 rs->finished_annex = xstrdup (annex ? annex : "");
10951 rs->finished_offset = offset + i;
10952 }
10953
10954 if (i == 0)
10955 return TARGET_XFER_EOF;
10956 else
10957 {
10958 *xfered_len = i;
10959 return TARGET_XFER_OK;
10960 }
10961 }
10962
10963 enum target_xfer_status
10964 remote_target::xfer_partial (enum target_object object,
10965 const char *annex, gdb_byte *readbuf,
10966 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10967 ULONGEST *xfered_len)
10968 {
10969 struct remote_state *rs;
10970 int i;
10971 char *p2;
10972 char query_type;
10973 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10974
10975 set_remote_traceframe ();
10976 set_general_thread (inferior_ptid);
10977
10978 rs = get_remote_state ();
10979
10980 /* Handle memory using the standard memory routines. */
10981 if (object == TARGET_OBJECT_MEMORY)
10982 {
10983 /* If the remote target is connected but not running, we should
10984 pass this request down to a lower stratum (e.g. the executable
10985 file). */
10986 if (!target_has_execution ())
10987 return TARGET_XFER_EOF;
10988
10989 if (writebuf != NULL)
10990 return remote_write_bytes (offset, writebuf, len, unit_size,
10991 xfered_len);
10992 else
10993 return remote_read_bytes (offset, readbuf, len, unit_size,
10994 xfered_len);
10995 }
10996
10997 /* Handle extra signal info using qxfer packets. */
10998 if (object == TARGET_OBJECT_SIGNAL_INFO)
10999 {
11000 if (readbuf)
11001 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
11002 xfered_len, &remote_protocol_packets
11003 [PACKET_qXfer_siginfo_read]);
11004 else
11005 return remote_write_qxfer ("siginfo", annex,
11006 writebuf, offset, len, xfered_len,
11007 &remote_protocol_packets
11008 [PACKET_qXfer_siginfo_write]);
11009 }
11010
11011 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
11012 {
11013 if (readbuf)
11014 return remote_read_qxfer ("statictrace", annex,
11015 readbuf, offset, len, xfered_len,
11016 &remote_protocol_packets
11017 [PACKET_qXfer_statictrace_read]);
11018 else
11019 return TARGET_XFER_E_IO;
11020 }
11021
11022 /* Only handle flash writes. */
11023 if (writebuf != NULL)
11024 {
11025 switch (object)
11026 {
11027 case TARGET_OBJECT_FLASH:
11028 return remote_flash_write (offset, len, xfered_len,
11029 writebuf);
11030
11031 default:
11032 return TARGET_XFER_E_IO;
11033 }
11034 }
11035
11036 /* Map pre-existing objects onto letters. DO NOT do this for new
11037 objects!!! Instead specify new query packets. */
11038 switch (object)
11039 {
11040 case TARGET_OBJECT_AVR:
11041 query_type = 'R';
11042 break;
11043
11044 case TARGET_OBJECT_AUXV:
11045 gdb_assert (annex == NULL);
11046 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
11047 xfered_len,
11048 &remote_protocol_packets[PACKET_qXfer_auxv]);
11049
11050 case TARGET_OBJECT_AVAILABLE_FEATURES:
11051 return remote_read_qxfer
11052 ("features", annex, readbuf, offset, len, xfered_len,
11053 &remote_protocol_packets[PACKET_qXfer_features]);
11054
11055 case TARGET_OBJECT_LIBRARIES:
11056 return remote_read_qxfer
11057 ("libraries", annex, readbuf, offset, len, xfered_len,
11058 &remote_protocol_packets[PACKET_qXfer_libraries]);
11059
11060 case TARGET_OBJECT_LIBRARIES_SVR4:
11061 return remote_read_qxfer
11062 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
11063 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
11064
11065 case TARGET_OBJECT_MEMORY_MAP:
11066 gdb_assert (annex == NULL);
11067 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
11068 xfered_len,
11069 &remote_protocol_packets[PACKET_qXfer_memory_map]);
11070
11071 case TARGET_OBJECT_OSDATA:
11072 /* Should only get here if we're connected. */
11073 gdb_assert (rs->remote_desc);
11074 return remote_read_qxfer
11075 ("osdata", annex, readbuf, offset, len, xfered_len,
11076 &remote_protocol_packets[PACKET_qXfer_osdata]);
11077
11078 case TARGET_OBJECT_THREADS:
11079 gdb_assert (annex == NULL);
11080 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
11081 xfered_len,
11082 &remote_protocol_packets[PACKET_qXfer_threads]);
11083
11084 case TARGET_OBJECT_TRACEFRAME_INFO:
11085 gdb_assert (annex == NULL);
11086 return remote_read_qxfer
11087 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11088 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11089
11090 case TARGET_OBJECT_FDPIC:
11091 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11092 xfered_len,
11093 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11094
11095 case TARGET_OBJECT_OPENVMS_UIB:
11096 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11097 xfered_len,
11098 &remote_protocol_packets[PACKET_qXfer_uib]);
11099
11100 case TARGET_OBJECT_BTRACE:
11101 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11102 xfered_len,
11103 &remote_protocol_packets[PACKET_qXfer_btrace]);
11104
11105 case TARGET_OBJECT_BTRACE_CONF:
11106 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11107 len, xfered_len,
11108 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11109
11110 case TARGET_OBJECT_EXEC_FILE:
11111 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11112 len, xfered_len,
11113 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11114
11115 default:
11116 return TARGET_XFER_E_IO;
11117 }
11118
11119 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11120 large enough let the caller deal with it. */
11121 if (len < get_remote_packet_size ())
11122 return TARGET_XFER_E_IO;
11123 len = get_remote_packet_size ();
11124
11125 /* Except for querying the minimum buffer size, target must be open. */
11126 if (!rs->remote_desc)
11127 error (_("remote query is only available after target open"));
11128
11129 gdb_assert (annex != NULL);
11130 gdb_assert (readbuf != NULL);
11131
11132 p2 = rs->buf.data ();
11133 *p2++ = 'q';
11134 *p2++ = query_type;
11135
11136 /* We used one buffer char for the remote protocol q command and
11137 another for the query type. As the remote protocol encapsulation
11138 uses 4 chars plus one extra in case we are debugging
11139 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11140 string. */
11141 i = 0;
11142 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11143 {
11144 /* Bad caller may have sent forbidden characters. */
11145 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11146 *p2++ = annex[i];
11147 i++;
11148 }
11149 *p2 = '\0';
11150 gdb_assert (annex[i] == '\0');
11151
11152 i = putpkt (rs->buf);
11153 if (i < 0)
11154 return TARGET_XFER_E_IO;
11155
11156 getpkt (&rs->buf, 0);
11157 strcpy ((char *) readbuf, rs->buf.data ());
11158
11159 *xfered_len = strlen ((char *) readbuf);
11160 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11161 }
11162
11163 /* Implementation of to_get_memory_xfer_limit. */
11164
11165 ULONGEST
11166 remote_target::get_memory_xfer_limit ()
11167 {
11168 return get_memory_write_packet_size ();
11169 }
11170
11171 int
11172 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11173 const gdb_byte *pattern, ULONGEST pattern_len,
11174 CORE_ADDR *found_addrp)
11175 {
11176 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11177 struct remote_state *rs = get_remote_state ();
11178 int max_size = get_memory_write_packet_size ();
11179 struct packet_config *packet =
11180 &remote_protocol_packets[PACKET_qSearch_memory];
11181 /* Number of packet bytes used to encode the pattern;
11182 this could be more than PATTERN_LEN due to escape characters. */
11183 int escaped_pattern_len;
11184 /* Amount of pattern that was encodable in the packet. */
11185 int used_pattern_len;
11186 int i;
11187 int found;
11188 ULONGEST found_addr;
11189
11190 auto read_memory = [=] (CORE_ADDR addr, gdb_byte *result, size_t len)
11191 {
11192 return (target_read (this, TARGET_OBJECT_MEMORY, NULL, result, addr, len)
11193 == len);
11194 };
11195
11196 /* Don't go to the target if we don't have to. This is done before
11197 checking packet_config_support to avoid the possibility that a
11198 success for this edge case means the facility works in
11199 general. */
11200 if (pattern_len > search_space_len)
11201 return 0;
11202 if (pattern_len == 0)
11203 {
11204 *found_addrp = start_addr;
11205 return 1;
11206 }
11207
11208 /* If we already know the packet isn't supported, fall back to the simple
11209 way of searching memory. */
11210
11211 if (packet_config_support (packet) == PACKET_DISABLE)
11212 {
11213 /* Target doesn't provided special support, fall back and use the
11214 standard support (copy memory and do the search here). */
11215 return simple_search_memory (read_memory, start_addr, search_space_len,
11216 pattern, pattern_len, found_addrp);
11217 }
11218
11219 /* Make sure the remote is pointing at the right process. */
11220 set_general_process ();
11221
11222 /* Insert header. */
11223 i = snprintf (rs->buf.data (), max_size,
11224 "qSearch:memory:%s;%s;",
11225 phex_nz (start_addr, addr_size),
11226 phex_nz (search_space_len, sizeof (search_space_len)));
11227 max_size -= (i + 1);
11228
11229 /* Escape as much data as fits into rs->buf. */
11230 escaped_pattern_len =
11231 remote_escape_output (pattern, pattern_len, 1,
11232 (gdb_byte *) rs->buf.data () + i,
11233 &used_pattern_len, max_size);
11234
11235 /* Bail if the pattern is too large. */
11236 if (used_pattern_len != pattern_len)
11237 error (_("Pattern is too large to transmit to remote target."));
11238
11239 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11240 || getpkt_sane (&rs->buf, 0) < 0
11241 || packet_ok (rs->buf, packet) != PACKET_OK)
11242 {
11243 /* The request may not have worked because the command is not
11244 supported. If so, fall back to the simple way. */
11245 if (packet_config_support (packet) == PACKET_DISABLE)
11246 {
11247 return simple_search_memory (read_memory, start_addr, search_space_len,
11248 pattern, pattern_len, found_addrp);
11249 }
11250 return -1;
11251 }
11252
11253 if (rs->buf[0] == '0')
11254 found = 0;
11255 else if (rs->buf[0] == '1')
11256 {
11257 found = 1;
11258 if (rs->buf[1] != ',')
11259 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11260 unpack_varlen_hex (&rs->buf[2], &found_addr);
11261 *found_addrp = found_addr;
11262 }
11263 else
11264 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11265
11266 return found;
11267 }
11268
11269 void
11270 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11271 {
11272 struct remote_state *rs = get_remote_state ();
11273 char *p = rs->buf.data ();
11274
11275 if (!rs->remote_desc)
11276 error (_("remote rcmd is only available after target open"));
11277
11278 /* Send a NULL command across as an empty command. */
11279 if (command == NULL)
11280 command = "";
11281
11282 /* The query prefix. */
11283 strcpy (rs->buf.data (), "qRcmd,");
11284 p = strchr (rs->buf.data (), '\0');
11285
11286 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11287 > get_remote_packet_size ())
11288 error (_("\"monitor\" command ``%s'' is too long."), command);
11289
11290 /* Encode the actual command. */
11291 bin2hex ((const gdb_byte *) command, p, strlen (command));
11292
11293 if (putpkt (rs->buf) < 0)
11294 error (_("Communication problem with target."));
11295
11296 /* get/display the response */
11297 while (1)
11298 {
11299 char *buf;
11300
11301 /* XXX - see also remote_get_noisy_reply(). */
11302 QUIT; /* Allow user to bail out with ^C. */
11303 rs->buf[0] = '\0';
11304 if (getpkt_sane (&rs->buf, 0) == -1)
11305 {
11306 /* Timeout. Continue to (try to) read responses.
11307 This is better than stopping with an error, assuming the stub
11308 is still executing the (long) monitor command.
11309 If needed, the user can interrupt gdb using C-c, obtaining
11310 an effect similar to stop on timeout. */
11311 continue;
11312 }
11313 buf = rs->buf.data ();
11314 if (buf[0] == '\0')
11315 error (_("Target does not support this command."));
11316 if (buf[0] == 'O' && buf[1] != 'K')
11317 {
11318 remote_console_output (buf + 1); /* 'O' message from stub. */
11319 continue;
11320 }
11321 if (strcmp (buf, "OK") == 0)
11322 break;
11323 if (strlen (buf) == 3 && buf[0] == 'E'
11324 && isdigit (buf[1]) && isdigit (buf[2]))
11325 {
11326 error (_("Protocol error with Rcmd"));
11327 }
11328 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11329 {
11330 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11331
11332 fputc_unfiltered (c, outbuf);
11333 }
11334 break;
11335 }
11336 }
11337
11338 std::vector<mem_region>
11339 remote_target::memory_map ()
11340 {
11341 std::vector<mem_region> result;
11342 gdb::optional<gdb::char_vector> text
11343 = target_read_stralloc (current_top_target (), TARGET_OBJECT_MEMORY_MAP, NULL);
11344
11345 if (text)
11346 result = parse_memory_map (text->data ());
11347
11348 return result;
11349 }
11350
11351 static void
11352 packet_command (const char *args, int from_tty)
11353 {
11354 remote_target *remote = get_current_remote_target ();
11355
11356 if (remote == nullptr)
11357 error (_("command can only be used with remote target"));
11358
11359 remote->packet_command (args, from_tty);
11360 }
11361
11362 void
11363 remote_target::packet_command (const char *args, int from_tty)
11364 {
11365 if (!args)
11366 error (_("remote-packet command requires packet text as argument"));
11367
11368 puts_filtered ("sending: ");
11369 print_packet (args);
11370 puts_filtered ("\n");
11371 putpkt (args);
11372
11373 remote_state *rs = get_remote_state ();
11374
11375 getpkt (&rs->buf, 0);
11376 puts_filtered ("received: ");
11377 print_packet (rs->buf.data ());
11378 puts_filtered ("\n");
11379 }
11380
11381 #if 0
11382 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11383
11384 static void display_thread_info (struct gdb_ext_thread_info *info);
11385
11386 static void threadset_test_cmd (char *cmd, int tty);
11387
11388 static void threadalive_test (char *cmd, int tty);
11389
11390 static void threadlist_test_cmd (char *cmd, int tty);
11391
11392 int get_and_display_threadinfo (threadref *ref);
11393
11394 static void threadinfo_test_cmd (char *cmd, int tty);
11395
11396 static int thread_display_step (threadref *ref, void *context);
11397
11398 static void threadlist_update_test_cmd (char *cmd, int tty);
11399
11400 static void init_remote_threadtests (void);
11401
11402 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11403
11404 static void
11405 threadset_test_cmd (const char *cmd, int tty)
11406 {
11407 int sample_thread = SAMPLE_THREAD;
11408
11409 printf_filtered (_("Remote threadset test\n"));
11410 set_general_thread (sample_thread);
11411 }
11412
11413
11414 static void
11415 threadalive_test (const char *cmd, int tty)
11416 {
11417 int sample_thread = SAMPLE_THREAD;
11418 int pid = inferior_ptid.pid ();
11419 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11420
11421 if (remote_thread_alive (ptid))
11422 printf_filtered ("PASS: Thread alive test\n");
11423 else
11424 printf_filtered ("FAIL: Thread alive test\n");
11425 }
11426
11427 void output_threadid (char *title, threadref *ref);
11428
11429 void
11430 output_threadid (char *title, threadref *ref)
11431 {
11432 char hexid[20];
11433
11434 pack_threadid (&hexid[0], ref); /* Convert thread id into hex. */
11435 hexid[16] = 0;
11436 printf_filtered ("%s %s\n", title, (&hexid[0]));
11437 }
11438
11439 static void
11440 threadlist_test_cmd (const char *cmd, int tty)
11441 {
11442 int startflag = 1;
11443 threadref nextthread;
11444 int done, result_count;
11445 threadref threadlist[3];
11446
11447 printf_filtered ("Remote Threadlist test\n");
11448 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11449 &result_count, &threadlist[0]))
11450 printf_filtered ("FAIL: threadlist test\n");
11451 else
11452 {
11453 threadref *scan = threadlist;
11454 threadref *limit = scan + result_count;
11455
11456 while (scan < limit)
11457 output_threadid (" thread ", scan++);
11458 }
11459 }
11460
11461 void
11462 display_thread_info (struct gdb_ext_thread_info *info)
11463 {
11464 output_threadid ("Threadid: ", &info->threadid);
11465 printf_filtered ("Name: %s\n ", info->shortname);
11466 printf_filtered ("State: %s\n", info->display);
11467 printf_filtered ("other: %s\n\n", info->more_display);
11468 }
11469
11470 int
11471 get_and_display_threadinfo (threadref *ref)
11472 {
11473 int result;
11474 int set;
11475 struct gdb_ext_thread_info threadinfo;
11476
11477 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11478 | TAG_MOREDISPLAY | TAG_DISPLAY;
11479 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11480 display_thread_info (&threadinfo);
11481 return result;
11482 }
11483
11484 static void
11485 threadinfo_test_cmd (const char *cmd, int tty)
11486 {
11487 int athread = SAMPLE_THREAD;
11488 threadref thread;
11489 int set;
11490
11491 int_to_threadref (&thread, athread);
11492 printf_filtered ("Remote Threadinfo test\n");
11493 if (!get_and_display_threadinfo (&thread))
11494 printf_filtered ("FAIL cannot get thread info\n");
11495 }
11496
11497 static int
11498 thread_display_step (threadref *ref, void *context)
11499 {
11500 /* output_threadid(" threadstep ",ref); *//* simple test */
11501 return get_and_display_threadinfo (ref);
11502 }
11503
11504 static void
11505 threadlist_update_test_cmd (const char *cmd, int tty)
11506 {
11507 printf_filtered ("Remote Threadlist update test\n");
11508 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11509 }
11510
11511 static void
11512 init_remote_threadtests (void)
11513 {
11514 add_com ("tlist", class_obscure, threadlist_test_cmd,
11515 _("Fetch and print the remote list of "
11516 "thread identifiers, one pkt only."));
11517 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11518 _("Fetch and display info about one thread."));
11519 add_com ("tset", class_obscure, threadset_test_cmd,
11520 _("Test setting to a different thread."));
11521 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11522 _("Iterate through updating all remote thread info."));
11523 add_com ("talive", class_obscure, threadalive_test,
11524 _("Remote thread alive test."));
11525 }
11526
11527 #endif /* 0 */
11528
11529 /* Convert a thread ID to a string. */
11530
11531 std::string
11532 remote_target::pid_to_str (ptid_t ptid)
11533 {
11534 struct remote_state *rs = get_remote_state ();
11535
11536 if (ptid == null_ptid)
11537 return normal_pid_to_str (ptid);
11538 else if (ptid.is_pid ())
11539 {
11540 /* Printing an inferior target id. */
11541
11542 /* When multi-process extensions are off, there's no way in the
11543 remote protocol to know the remote process id, if there's any
11544 at all. There's one exception --- when we're connected with
11545 target extended-remote, and we manually attached to a process
11546 with "attach PID". We don't record anywhere a flag that
11547 allows us to distinguish that case from the case of
11548 connecting with extended-remote and the stub already being
11549 attached to a process, and reporting yes to qAttached, hence
11550 no smart special casing here. */
11551 if (!remote_multi_process_p (rs))
11552 return "Remote target";
11553
11554 return normal_pid_to_str (ptid);
11555 }
11556 else
11557 {
11558 if (magic_null_ptid == ptid)
11559 return "Thread <main>";
11560 else if (remote_multi_process_p (rs))
11561 if (ptid.lwp () == 0)
11562 return normal_pid_to_str (ptid);
11563 else
11564 return string_printf ("Thread %d.%ld",
11565 ptid.pid (), ptid.lwp ());
11566 else
11567 return string_printf ("Thread %ld", ptid.lwp ());
11568 }
11569 }
11570
11571 /* Get the address of the thread local variable in OBJFILE which is
11572 stored at OFFSET within the thread local storage for thread PTID. */
11573
11574 CORE_ADDR
11575 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11576 CORE_ADDR offset)
11577 {
11578 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11579 {
11580 struct remote_state *rs = get_remote_state ();
11581 char *p = rs->buf.data ();
11582 char *endp = p + get_remote_packet_size ();
11583 enum packet_result result;
11584
11585 strcpy (p, "qGetTLSAddr:");
11586 p += strlen (p);
11587 p = write_ptid (p, endp, ptid);
11588 *p++ = ',';
11589 p += hexnumstr (p, offset);
11590 *p++ = ',';
11591 p += hexnumstr (p, lm);
11592 *p++ = '\0';
11593
11594 putpkt (rs->buf);
11595 getpkt (&rs->buf, 0);
11596 result = packet_ok (rs->buf,
11597 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11598 if (result == PACKET_OK)
11599 {
11600 ULONGEST addr;
11601
11602 unpack_varlen_hex (rs->buf.data (), &addr);
11603 return addr;
11604 }
11605 else if (result == PACKET_UNKNOWN)
11606 throw_error (TLS_GENERIC_ERROR,
11607 _("Remote target doesn't support qGetTLSAddr packet"));
11608 else
11609 throw_error (TLS_GENERIC_ERROR,
11610 _("Remote target failed to process qGetTLSAddr request"));
11611 }
11612 else
11613 throw_error (TLS_GENERIC_ERROR,
11614 _("TLS not supported or disabled on this target"));
11615 /* Not reached. */
11616 return 0;
11617 }
11618
11619 /* Provide thread local base, i.e. Thread Information Block address.
11620 Returns 1 if ptid is found and thread_local_base is non zero. */
11621
11622 bool
11623 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11624 {
11625 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11626 {
11627 struct remote_state *rs = get_remote_state ();
11628 char *p = rs->buf.data ();
11629 char *endp = p + get_remote_packet_size ();
11630 enum packet_result result;
11631
11632 strcpy (p, "qGetTIBAddr:");
11633 p += strlen (p);
11634 p = write_ptid (p, endp, ptid);
11635 *p++ = '\0';
11636
11637 putpkt (rs->buf);
11638 getpkt (&rs->buf, 0);
11639 result = packet_ok (rs->buf,
11640 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11641 if (result == PACKET_OK)
11642 {
11643 ULONGEST val;
11644 unpack_varlen_hex (rs->buf.data (), &val);
11645 if (addr)
11646 *addr = (CORE_ADDR) val;
11647 return true;
11648 }
11649 else if (result == PACKET_UNKNOWN)
11650 error (_("Remote target doesn't support qGetTIBAddr packet"));
11651 else
11652 error (_("Remote target failed to process qGetTIBAddr request"));
11653 }
11654 else
11655 error (_("qGetTIBAddr not supported or disabled on this target"));
11656 /* Not reached. */
11657 return false;
11658 }
11659
11660 /* Support for inferring a target description based on the current
11661 architecture and the size of a 'g' packet. While the 'g' packet
11662 can have any size (since optional registers can be left off the
11663 end), some sizes are easily recognizable given knowledge of the
11664 approximate architecture. */
11665
11666 struct remote_g_packet_guess
11667 {
11668 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11669 : bytes (bytes_),
11670 tdesc (tdesc_)
11671 {
11672 }
11673
11674 int bytes;
11675 const struct target_desc *tdesc;
11676 };
11677
11678 struct remote_g_packet_data : public allocate_on_obstack
11679 {
11680 std::vector<remote_g_packet_guess> guesses;
11681 };
11682
11683 static struct gdbarch_data *remote_g_packet_data_handle;
11684
11685 static void *
11686 remote_g_packet_data_init (struct obstack *obstack)
11687 {
11688 return new (obstack) remote_g_packet_data;
11689 }
11690
11691 void
11692 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11693 const struct target_desc *tdesc)
11694 {
11695 struct remote_g_packet_data *data
11696 = ((struct remote_g_packet_data *)
11697 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11698
11699 gdb_assert (tdesc != NULL);
11700
11701 for (const remote_g_packet_guess &guess : data->guesses)
11702 if (guess.bytes == bytes)
11703 internal_error (__FILE__, __LINE__,
11704 _("Duplicate g packet description added for size %d"),
11705 bytes);
11706
11707 data->guesses.emplace_back (bytes, tdesc);
11708 }
11709
11710 /* Return true if remote_read_description would do anything on this target
11711 and architecture, false otherwise. */
11712
11713 static bool
11714 remote_read_description_p (struct target_ops *target)
11715 {
11716 struct remote_g_packet_data *data
11717 = ((struct remote_g_packet_data *)
11718 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11719
11720 return !data->guesses.empty ();
11721 }
11722
11723 const struct target_desc *
11724 remote_target::read_description ()
11725 {
11726 struct remote_g_packet_data *data
11727 = ((struct remote_g_packet_data *)
11728 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11729
11730 /* Do not try this during initial connection, when we do not know
11731 whether there is a running but stopped thread. */
11732 if (!target_has_execution () || inferior_ptid == null_ptid)
11733 return beneath ()->read_description ();
11734
11735 if (!data->guesses.empty ())
11736 {
11737 int bytes = send_g_packet ();
11738
11739 for (const remote_g_packet_guess &guess : data->guesses)
11740 if (guess.bytes == bytes)
11741 return guess.tdesc;
11742
11743 /* We discard the g packet. A minor optimization would be to
11744 hold on to it, and fill the register cache once we have selected
11745 an architecture, but it's too tricky to do safely. */
11746 }
11747
11748 return beneath ()->read_description ();
11749 }
11750
11751 /* Remote file transfer support. This is host-initiated I/O, not
11752 target-initiated; for target-initiated, see remote-fileio.c. */
11753
11754 /* If *LEFT is at least the length of STRING, copy STRING to
11755 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11756 decrease *LEFT. Otherwise raise an error. */
11757
11758 static void
11759 remote_buffer_add_string (char **buffer, int *left, const char *string)
11760 {
11761 int len = strlen (string);
11762
11763 if (len > *left)
11764 error (_("Packet too long for target."));
11765
11766 memcpy (*buffer, string, len);
11767 *buffer += len;
11768 *left -= len;
11769
11770 /* NUL-terminate the buffer as a convenience, if there is
11771 room. */
11772 if (*left)
11773 **buffer = '\0';
11774 }
11775
11776 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11777 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11778 decrease *LEFT. Otherwise raise an error. */
11779
11780 static void
11781 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11782 int len)
11783 {
11784 if (2 * len > *left)
11785 error (_("Packet too long for target."));
11786
11787 bin2hex (bytes, *buffer, len);
11788 *buffer += 2 * len;
11789 *left -= 2 * len;
11790
11791 /* NUL-terminate the buffer as a convenience, if there is
11792 room. */
11793 if (*left)
11794 **buffer = '\0';
11795 }
11796
11797 /* If *LEFT is large enough, convert VALUE to hex and add it to
11798 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11799 decrease *LEFT. Otherwise raise an error. */
11800
11801 static void
11802 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11803 {
11804 int len = hexnumlen (value);
11805
11806 if (len > *left)
11807 error (_("Packet too long for target."));
11808
11809 hexnumstr (*buffer, value);
11810 *buffer += len;
11811 *left -= len;
11812
11813 /* NUL-terminate the buffer as a convenience, if there is
11814 room. */
11815 if (*left)
11816 **buffer = '\0';
11817 }
11818
11819 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11820 value, *REMOTE_ERRNO to the remote error number or zero if none
11821 was included, and *ATTACHMENT to point to the start of the annex
11822 if any. The length of the packet isn't needed here; there may
11823 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11824
11825 Return 0 if the packet could be parsed, -1 if it could not. If
11826 -1 is returned, the other variables may not be initialized. */
11827
11828 static int
11829 remote_hostio_parse_result (char *buffer, int *retcode,
11830 int *remote_errno, char **attachment)
11831 {
11832 char *p, *p2;
11833
11834 *remote_errno = 0;
11835 *attachment = NULL;
11836
11837 if (buffer[0] != 'F')
11838 return -1;
11839
11840 errno = 0;
11841 *retcode = strtol (&buffer[1], &p, 16);
11842 if (errno != 0 || p == &buffer[1])
11843 return -1;
11844
11845 /* Check for ",errno". */
11846 if (*p == ',')
11847 {
11848 errno = 0;
11849 *remote_errno = strtol (p + 1, &p2, 16);
11850 if (errno != 0 || p + 1 == p2)
11851 return -1;
11852 p = p2;
11853 }
11854
11855 /* Check for ";attachment". If there is no attachment, the
11856 packet should end here. */
11857 if (*p == ';')
11858 {
11859 *attachment = p + 1;
11860 return 0;
11861 }
11862 else if (*p == '\0')
11863 return 0;
11864 else
11865 return -1;
11866 }
11867
11868 /* Send a prepared I/O packet to the target and read its response.
11869 The prepared packet is in the global RS->BUF before this function
11870 is called, and the answer is there when we return.
11871
11872 COMMAND_BYTES is the length of the request to send, which may include
11873 binary data. WHICH_PACKET is the packet configuration to check
11874 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11875 is set to the error number and -1 is returned. Otherwise the value
11876 returned by the function is returned.
11877
11878 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11879 attachment is expected; an error will be reported if there's a
11880 mismatch. If one is found, *ATTACHMENT will be set to point into
11881 the packet buffer and *ATTACHMENT_LEN will be set to the
11882 attachment's length. */
11883
11884 int
11885 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
11886 int *remote_errno, char **attachment,
11887 int *attachment_len)
11888 {
11889 struct remote_state *rs = get_remote_state ();
11890 int ret, bytes_read;
11891 char *attachment_tmp;
11892
11893 if (packet_support (which_packet) == PACKET_DISABLE)
11894 {
11895 *remote_errno = FILEIO_ENOSYS;
11896 return -1;
11897 }
11898
11899 putpkt_binary (rs->buf.data (), command_bytes);
11900 bytes_read = getpkt_sane (&rs->buf, 0);
11901
11902 /* If it timed out, something is wrong. Don't try to parse the
11903 buffer. */
11904 if (bytes_read < 0)
11905 {
11906 *remote_errno = FILEIO_EINVAL;
11907 return -1;
11908 }
11909
11910 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11911 {
11912 case PACKET_ERROR:
11913 *remote_errno = FILEIO_EINVAL;
11914 return -1;
11915 case PACKET_UNKNOWN:
11916 *remote_errno = FILEIO_ENOSYS;
11917 return -1;
11918 case PACKET_OK:
11919 break;
11920 }
11921
11922 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
11923 &attachment_tmp))
11924 {
11925 *remote_errno = FILEIO_EINVAL;
11926 return -1;
11927 }
11928
11929 /* Make sure we saw an attachment if and only if we expected one. */
11930 if ((attachment_tmp == NULL && attachment != NULL)
11931 || (attachment_tmp != NULL && attachment == NULL))
11932 {
11933 *remote_errno = FILEIO_EINVAL;
11934 return -1;
11935 }
11936
11937 /* If an attachment was found, it must point into the packet buffer;
11938 work out how many bytes there were. */
11939 if (attachment_tmp != NULL)
11940 {
11941 *attachment = attachment_tmp;
11942 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
11943 }
11944
11945 return ret;
11946 }
11947
11948 /* See declaration.h. */
11949
11950 void
11951 readahead_cache::invalidate ()
11952 {
11953 this->fd = -1;
11954 }
11955
11956 /* See declaration.h. */
11957
11958 void
11959 readahead_cache::invalidate_fd (int fd)
11960 {
11961 if (this->fd == fd)
11962 this->fd = -1;
11963 }
11964
11965 /* Set the filesystem remote_hostio functions that take FILENAME
11966 arguments will use. Return 0 on success, or -1 if an error
11967 occurs (and set *REMOTE_ERRNO). */
11968
11969 int
11970 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
11971 int *remote_errno)
11972 {
11973 struct remote_state *rs = get_remote_state ();
11974 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11975 char *p = rs->buf.data ();
11976 int left = get_remote_packet_size () - 1;
11977 char arg[9];
11978 int ret;
11979
11980 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11981 return 0;
11982
11983 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11984 return 0;
11985
11986 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11987
11988 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11989 remote_buffer_add_string (&p, &left, arg);
11990
11991 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
11992 remote_errno, NULL, NULL);
11993
11994 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11995 return 0;
11996
11997 if (ret == 0)
11998 rs->fs_pid = required_pid;
11999
12000 return ret;
12001 }
12002
12003 /* Implementation of to_fileio_open. */
12004
12005 int
12006 remote_target::remote_hostio_open (inferior *inf, const char *filename,
12007 int flags, int mode, int warn_if_slow,
12008 int *remote_errno)
12009 {
12010 struct remote_state *rs = get_remote_state ();
12011 char *p = rs->buf.data ();
12012 int left = get_remote_packet_size () - 1;
12013
12014 if (warn_if_slow)
12015 {
12016 static int warning_issued = 0;
12017
12018 printf_unfiltered (_("Reading %s from remote target...\n"),
12019 filename);
12020
12021 if (!warning_issued)
12022 {
12023 warning (_("File transfers from remote targets can be slow."
12024 " Use \"set sysroot\" to access files locally"
12025 " instead."));
12026 warning_issued = 1;
12027 }
12028 }
12029
12030 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12031 return -1;
12032
12033 remote_buffer_add_string (&p, &left, "vFile:open:");
12034
12035 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12036 strlen (filename));
12037 remote_buffer_add_string (&p, &left, ",");
12038
12039 remote_buffer_add_int (&p, &left, flags);
12040 remote_buffer_add_string (&p, &left, ",");
12041
12042 remote_buffer_add_int (&p, &left, mode);
12043
12044 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
12045 remote_errno, NULL, NULL);
12046 }
12047
12048 int
12049 remote_target::fileio_open (struct inferior *inf, const char *filename,
12050 int flags, int mode, int warn_if_slow,
12051 int *remote_errno)
12052 {
12053 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
12054 remote_errno);
12055 }
12056
12057 /* Implementation of to_fileio_pwrite. */
12058
12059 int
12060 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
12061 ULONGEST offset, int *remote_errno)
12062 {
12063 struct remote_state *rs = get_remote_state ();
12064 char *p = rs->buf.data ();
12065 int left = get_remote_packet_size ();
12066 int out_len;
12067
12068 rs->readahead_cache.invalidate_fd (fd);
12069
12070 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
12071
12072 remote_buffer_add_int (&p, &left, fd);
12073 remote_buffer_add_string (&p, &left, ",");
12074
12075 remote_buffer_add_int (&p, &left, offset);
12076 remote_buffer_add_string (&p, &left, ",");
12077
12078 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
12079 (get_remote_packet_size ()
12080 - (p - rs->buf.data ())));
12081
12082 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
12083 remote_errno, NULL, NULL);
12084 }
12085
12086 int
12087 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12088 ULONGEST offset, int *remote_errno)
12089 {
12090 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12091 }
12092
12093 /* Helper for the implementation of to_fileio_pread. Read the file
12094 from the remote side with vFile:pread. */
12095
12096 int
12097 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12098 ULONGEST offset, int *remote_errno)
12099 {
12100 struct remote_state *rs = get_remote_state ();
12101 char *p = rs->buf.data ();
12102 char *attachment;
12103 int left = get_remote_packet_size ();
12104 int ret, attachment_len;
12105 int read_len;
12106
12107 remote_buffer_add_string (&p, &left, "vFile:pread:");
12108
12109 remote_buffer_add_int (&p, &left, fd);
12110 remote_buffer_add_string (&p, &left, ",");
12111
12112 remote_buffer_add_int (&p, &left, len);
12113 remote_buffer_add_string (&p, &left, ",");
12114
12115 remote_buffer_add_int (&p, &left, offset);
12116
12117 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
12118 remote_errno, &attachment,
12119 &attachment_len);
12120
12121 if (ret < 0)
12122 return ret;
12123
12124 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12125 read_buf, len);
12126 if (read_len != ret)
12127 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12128
12129 return ret;
12130 }
12131
12132 /* See declaration.h. */
12133
12134 int
12135 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12136 ULONGEST offset)
12137 {
12138 if (this->fd == fd
12139 && this->offset <= offset
12140 && offset < this->offset + this->bufsize)
12141 {
12142 ULONGEST max = this->offset + this->bufsize;
12143
12144 if (offset + len > max)
12145 len = max - offset;
12146
12147 memcpy (read_buf, this->buf + offset - this->offset, len);
12148 return len;
12149 }
12150
12151 return 0;
12152 }
12153
12154 /* Implementation of to_fileio_pread. */
12155
12156 int
12157 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12158 ULONGEST offset, int *remote_errno)
12159 {
12160 int ret;
12161 struct remote_state *rs = get_remote_state ();
12162 readahead_cache *cache = &rs->readahead_cache;
12163
12164 ret = cache->pread (fd, read_buf, len, offset);
12165 if (ret > 0)
12166 {
12167 cache->hit_count++;
12168
12169 if (remote_debug)
12170 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
12171 pulongest (cache->hit_count));
12172 return ret;
12173 }
12174
12175 cache->miss_count++;
12176 if (remote_debug)
12177 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
12178 pulongest (cache->miss_count));
12179
12180 cache->fd = fd;
12181 cache->offset = offset;
12182 cache->bufsize = get_remote_packet_size ();
12183 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12184
12185 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12186 cache->offset, remote_errno);
12187 if (ret <= 0)
12188 {
12189 cache->invalidate_fd (fd);
12190 return ret;
12191 }
12192
12193 cache->bufsize = ret;
12194 return cache->pread (fd, read_buf, len, offset);
12195 }
12196
12197 int
12198 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12199 ULONGEST offset, int *remote_errno)
12200 {
12201 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12202 }
12203
12204 /* Implementation of to_fileio_close. */
12205
12206 int
12207 remote_target::remote_hostio_close (int fd, int *remote_errno)
12208 {
12209 struct remote_state *rs = get_remote_state ();
12210 char *p = rs->buf.data ();
12211 int left = get_remote_packet_size () - 1;
12212
12213 rs->readahead_cache.invalidate_fd (fd);
12214
12215 remote_buffer_add_string (&p, &left, "vFile:close:");
12216
12217 remote_buffer_add_int (&p, &left, fd);
12218
12219 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12220 remote_errno, NULL, NULL);
12221 }
12222
12223 int
12224 remote_target::fileio_close (int fd, int *remote_errno)
12225 {
12226 return remote_hostio_close (fd, remote_errno);
12227 }
12228
12229 /* Implementation of to_fileio_unlink. */
12230
12231 int
12232 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12233 int *remote_errno)
12234 {
12235 struct remote_state *rs = get_remote_state ();
12236 char *p = rs->buf.data ();
12237 int left = get_remote_packet_size () - 1;
12238
12239 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12240 return -1;
12241
12242 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12243
12244 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12245 strlen (filename));
12246
12247 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12248 remote_errno, NULL, NULL);
12249 }
12250
12251 int
12252 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12253 int *remote_errno)
12254 {
12255 return remote_hostio_unlink (inf, filename, remote_errno);
12256 }
12257
12258 /* Implementation of to_fileio_readlink. */
12259
12260 gdb::optional<std::string>
12261 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12262 int *remote_errno)
12263 {
12264 struct remote_state *rs = get_remote_state ();
12265 char *p = rs->buf.data ();
12266 char *attachment;
12267 int left = get_remote_packet_size ();
12268 int len, attachment_len;
12269 int read_len;
12270
12271 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12272 return {};
12273
12274 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12275
12276 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12277 strlen (filename));
12278
12279 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12280 remote_errno, &attachment,
12281 &attachment_len);
12282
12283 if (len < 0)
12284 return {};
12285
12286 std::string ret (len, '\0');
12287
12288 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12289 (gdb_byte *) &ret[0], len);
12290 if (read_len != len)
12291 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12292
12293 return ret;
12294 }
12295
12296 /* Implementation of to_fileio_fstat. */
12297
12298 int
12299 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12300 {
12301 struct remote_state *rs = get_remote_state ();
12302 char *p = rs->buf.data ();
12303 int left = get_remote_packet_size ();
12304 int attachment_len, ret;
12305 char *attachment;
12306 struct fio_stat fst;
12307 int read_len;
12308
12309 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12310
12311 remote_buffer_add_int (&p, &left, fd);
12312
12313 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12314 remote_errno, &attachment,
12315 &attachment_len);
12316 if (ret < 0)
12317 {
12318 if (*remote_errno != FILEIO_ENOSYS)
12319 return ret;
12320
12321 /* Strictly we should return -1, ENOSYS here, but when
12322 "set sysroot remote:" was implemented in August 2008
12323 BFD's need for a stat function was sidestepped with
12324 this hack. This was not remedied until March 2015
12325 so we retain the previous behavior to avoid breaking
12326 compatibility.
12327
12328 Note that the memset is a March 2015 addition; older
12329 GDBs set st_size *and nothing else* so the structure
12330 would have garbage in all other fields. This might
12331 break something but retaining the previous behavior
12332 here would be just too wrong. */
12333
12334 memset (st, 0, sizeof (struct stat));
12335 st->st_size = INT_MAX;
12336 return 0;
12337 }
12338
12339 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12340 (gdb_byte *) &fst, sizeof (fst));
12341
12342 if (read_len != ret)
12343 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12344
12345 if (read_len != sizeof (fst))
12346 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12347 read_len, (int) sizeof (fst));
12348
12349 remote_fileio_to_host_stat (&fst, st);
12350
12351 return 0;
12352 }
12353
12354 /* Implementation of to_filesystem_is_local. */
12355
12356 bool
12357 remote_target::filesystem_is_local ()
12358 {
12359 /* Valgrind GDB presents itself as a remote target but works
12360 on the local filesystem: it does not implement remote get
12361 and users are not expected to set a sysroot. To handle
12362 this case we treat the remote filesystem as local if the
12363 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12364 does not support vFile:open. */
12365 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12366 {
12367 enum packet_support ps = packet_support (PACKET_vFile_open);
12368
12369 if (ps == PACKET_SUPPORT_UNKNOWN)
12370 {
12371 int fd, remote_errno;
12372
12373 /* Try opening a file to probe support. The supplied
12374 filename is irrelevant, we only care about whether
12375 the stub recognizes the packet or not. */
12376 fd = remote_hostio_open (NULL, "just probing",
12377 FILEIO_O_RDONLY, 0700, 0,
12378 &remote_errno);
12379
12380 if (fd >= 0)
12381 remote_hostio_close (fd, &remote_errno);
12382
12383 ps = packet_support (PACKET_vFile_open);
12384 }
12385
12386 if (ps == PACKET_DISABLE)
12387 {
12388 static int warning_issued = 0;
12389
12390 if (!warning_issued)
12391 {
12392 warning (_("remote target does not support file"
12393 " transfer, attempting to access files"
12394 " from local filesystem."));
12395 warning_issued = 1;
12396 }
12397
12398 return true;
12399 }
12400 }
12401
12402 return false;
12403 }
12404
12405 static int
12406 remote_fileio_errno_to_host (int errnum)
12407 {
12408 switch (errnum)
12409 {
12410 case FILEIO_EPERM:
12411 return EPERM;
12412 case FILEIO_ENOENT:
12413 return ENOENT;
12414 case FILEIO_EINTR:
12415 return EINTR;
12416 case FILEIO_EIO:
12417 return EIO;
12418 case FILEIO_EBADF:
12419 return EBADF;
12420 case FILEIO_EACCES:
12421 return EACCES;
12422 case FILEIO_EFAULT:
12423 return EFAULT;
12424 case FILEIO_EBUSY:
12425 return EBUSY;
12426 case FILEIO_EEXIST:
12427 return EEXIST;
12428 case FILEIO_ENODEV:
12429 return ENODEV;
12430 case FILEIO_ENOTDIR:
12431 return ENOTDIR;
12432 case FILEIO_EISDIR:
12433 return EISDIR;
12434 case FILEIO_EINVAL:
12435 return EINVAL;
12436 case FILEIO_ENFILE:
12437 return ENFILE;
12438 case FILEIO_EMFILE:
12439 return EMFILE;
12440 case FILEIO_EFBIG:
12441 return EFBIG;
12442 case FILEIO_ENOSPC:
12443 return ENOSPC;
12444 case FILEIO_ESPIPE:
12445 return ESPIPE;
12446 case FILEIO_EROFS:
12447 return EROFS;
12448 case FILEIO_ENOSYS:
12449 return ENOSYS;
12450 case FILEIO_ENAMETOOLONG:
12451 return ENAMETOOLONG;
12452 }
12453 return -1;
12454 }
12455
12456 static char *
12457 remote_hostio_error (int errnum)
12458 {
12459 int host_error = remote_fileio_errno_to_host (errnum);
12460
12461 if (host_error == -1)
12462 error (_("Unknown remote I/O error %d"), errnum);
12463 else
12464 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12465 }
12466
12467 /* A RAII wrapper around a remote file descriptor. */
12468
12469 class scoped_remote_fd
12470 {
12471 public:
12472 scoped_remote_fd (remote_target *remote, int fd)
12473 : m_remote (remote), m_fd (fd)
12474 {
12475 }
12476
12477 ~scoped_remote_fd ()
12478 {
12479 if (m_fd != -1)
12480 {
12481 try
12482 {
12483 int remote_errno;
12484 m_remote->remote_hostio_close (m_fd, &remote_errno);
12485 }
12486 catch (...)
12487 {
12488 /* Swallow exception before it escapes the dtor. If
12489 something goes wrong, likely the connection is gone,
12490 and there's nothing else that can be done. */
12491 }
12492 }
12493 }
12494
12495 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12496
12497 /* Release ownership of the file descriptor, and return it. */
12498 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12499 {
12500 int fd = m_fd;
12501 m_fd = -1;
12502 return fd;
12503 }
12504
12505 /* Return the owned file descriptor. */
12506 int get () const noexcept
12507 {
12508 return m_fd;
12509 }
12510
12511 private:
12512 /* The remote target. */
12513 remote_target *m_remote;
12514
12515 /* The owned remote I/O file descriptor. */
12516 int m_fd;
12517 };
12518
12519 void
12520 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12521 {
12522 remote_target *remote = get_current_remote_target ();
12523
12524 if (remote == nullptr)
12525 error (_("command can only be used with remote target"));
12526
12527 remote->remote_file_put (local_file, remote_file, from_tty);
12528 }
12529
12530 void
12531 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12532 int from_tty)
12533 {
12534 int retcode, remote_errno, bytes, io_size;
12535 int bytes_in_buffer;
12536 int saw_eof;
12537 ULONGEST offset;
12538
12539 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12540 if (file == NULL)
12541 perror_with_name (local_file);
12542
12543 scoped_remote_fd fd
12544 (this, remote_hostio_open (NULL,
12545 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12546 | FILEIO_O_TRUNC),
12547 0700, 0, &remote_errno));
12548 if (fd.get () == -1)
12549 remote_hostio_error (remote_errno);
12550
12551 /* Send up to this many bytes at once. They won't all fit in the
12552 remote packet limit, so we'll transfer slightly fewer. */
12553 io_size = get_remote_packet_size ();
12554 gdb::byte_vector buffer (io_size);
12555
12556 bytes_in_buffer = 0;
12557 saw_eof = 0;
12558 offset = 0;
12559 while (bytes_in_buffer || !saw_eof)
12560 {
12561 if (!saw_eof)
12562 {
12563 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12564 io_size - bytes_in_buffer,
12565 file.get ());
12566 if (bytes == 0)
12567 {
12568 if (ferror (file.get ()))
12569 error (_("Error reading %s."), local_file);
12570 else
12571 {
12572 /* EOF. Unless there is something still in the
12573 buffer from the last iteration, we are done. */
12574 saw_eof = 1;
12575 if (bytes_in_buffer == 0)
12576 break;
12577 }
12578 }
12579 }
12580 else
12581 bytes = 0;
12582
12583 bytes += bytes_in_buffer;
12584 bytes_in_buffer = 0;
12585
12586 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12587 offset, &remote_errno);
12588
12589 if (retcode < 0)
12590 remote_hostio_error (remote_errno);
12591 else if (retcode == 0)
12592 error (_("Remote write of %d bytes returned 0!"), bytes);
12593 else if (retcode < bytes)
12594 {
12595 /* Short write. Save the rest of the read data for the next
12596 write. */
12597 bytes_in_buffer = bytes - retcode;
12598 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12599 }
12600
12601 offset += retcode;
12602 }
12603
12604 if (remote_hostio_close (fd.release (), &remote_errno))
12605 remote_hostio_error (remote_errno);
12606
12607 if (from_tty)
12608 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12609 }
12610
12611 void
12612 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12613 {
12614 remote_target *remote = get_current_remote_target ();
12615
12616 if (remote == nullptr)
12617 error (_("command can only be used with remote target"));
12618
12619 remote->remote_file_get (remote_file, local_file, from_tty);
12620 }
12621
12622 void
12623 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12624 int from_tty)
12625 {
12626 int remote_errno, bytes, io_size;
12627 ULONGEST offset;
12628
12629 scoped_remote_fd fd
12630 (this, remote_hostio_open (NULL,
12631 remote_file, FILEIO_O_RDONLY, 0, 0,
12632 &remote_errno));
12633 if (fd.get () == -1)
12634 remote_hostio_error (remote_errno);
12635
12636 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12637 if (file == NULL)
12638 perror_with_name (local_file);
12639
12640 /* Send up to this many bytes at once. They won't all fit in the
12641 remote packet limit, so we'll transfer slightly fewer. */
12642 io_size = get_remote_packet_size ();
12643 gdb::byte_vector buffer (io_size);
12644
12645 offset = 0;
12646 while (1)
12647 {
12648 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12649 &remote_errno);
12650 if (bytes == 0)
12651 /* Success, but no bytes, means end-of-file. */
12652 break;
12653 if (bytes == -1)
12654 remote_hostio_error (remote_errno);
12655
12656 offset += bytes;
12657
12658 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12659 if (bytes == 0)
12660 perror_with_name (local_file);
12661 }
12662
12663 if (remote_hostio_close (fd.release (), &remote_errno))
12664 remote_hostio_error (remote_errno);
12665
12666 if (from_tty)
12667 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12668 }
12669
12670 void
12671 remote_file_delete (const char *remote_file, int from_tty)
12672 {
12673 remote_target *remote = get_current_remote_target ();
12674
12675 if (remote == nullptr)
12676 error (_("command can only be used with remote target"));
12677
12678 remote->remote_file_delete (remote_file, from_tty);
12679 }
12680
12681 void
12682 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12683 {
12684 int retcode, remote_errno;
12685
12686 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12687 if (retcode == -1)
12688 remote_hostio_error (remote_errno);
12689
12690 if (from_tty)
12691 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12692 }
12693
12694 static void
12695 remote_put_command (const char *args, int from_tty)
12696 {
12697 if (args == NULL)
12698 error_no_arg (_("file to put"));
12699
12700 gdb_argv argv (args);
12701 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12702 error (_("Invalid parameters to remote put"));
12703
12704 remote_file_put (argv[0], argv[1], from_tty);
12705 }
12706
12707 static void
12708 remote_get_command (const char *args, int from_tty)
12709 {
12710 if (args == NULL)
12711 error_no_arg (_("file to get"));
12712
12713 gdb_argv argv (args);
12714 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12715 error (_("Invalid parameters to remote get"));
12716
12717 remote_file_get (argv[0], argv[1], from_tty);
12718 }
12719
12720 static void
12721 remote_delete_command (const char *args, int from_tty)
12722 {
12723 if (args == NULL)
12724 error_no_arg (_("file to delete"));
12725
12726 gdb_argv argv (args);
12727 if (argv[0] == NULL || argv[1] != NULL)
12728 error (_("Invalid parameters to remote delete"));
12729
12730 remote_file_delete (argv[0], from_tty);
12731 }
12732
12733 bool
12734 remote_target::can_execute_reverse ()
12735 {
12736 if (packet_support (PACKET_bs) == PACKET_ENABLE
12737 || packet_support (PACKET_bc) == PACKET_ENABLE)
12738 return true;
12739 else
12740 return false;
12741 }
12742
12743 bool
12744 remote_target::supports_non_stop ()
12745 {
12746 return true;
12747 }
12748
12749 bool
12750 remote_target::supports_disable_randomization ()
12751 {
12752 /* Only supported in extended mode. */
12753 return false;
12754 }
12755
12756 bool
12757 remote_target::supports_multi_process ()
12758 {
12759 struct remote_state *rs = get_remote_state ();
12760
12761 return remote_multi_process_p (rs);
12762 }
12763
12764 static int
12765 remote_supports_cond_tracepoints ()
12766 {
12767 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12768 }
12769
12770 bool
12771 remote_target::supports_evaluation_of_breakpoint_conditions ()
12772 {
12773 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12774 }
12775
12776 static int
12777 remote_supports_fast_tracepoints ()
12778 {
12779 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12780 }
12781
12782 static int
12783 remote_supports_static_tracepoints ()
12784 {
12785 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12786 }
12787
12788 static int
12789 remote_supports_install_in_trace ()
12790 {
12791 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12792 }
12793
12794 bool
12795 remote_target::supports_enable_disable_tracepoint ()
12796 {
12797 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12798 == PACKET_ENABLE);
12799 }
12800
12801 bool
12802 remote_target::supports_string_tracing ()
12803 {
12804 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12805 }
12806
12807 bool
12808 remote_target::can_run_breakpoint_commands ()
12809 {
12810 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12811 }
12812
12813 void
12814 remote_target::trace_init ()
12815 {
12816 struct remote_state *rs = get_remote_state ();
12817
12818 putpkt ("QTinit");
12819 remote_get_noisy_reply ();
12820 if (strcmp (rs->buf.data (), "OK") != 0)
12821 error (_("Target does not support this command."));
12822 }
12823
12824 /* Recursive routine to walk through command list including loops, and
12825 download packets for each command. */
12826
12827 void
12828 remote_target::remote_download_command_source (int num, ULONGEST addr,
12829 struct command_line *cmds)
12830 {
12831 struct remote_state *rs = get_remote_state ();
12832 struct command_line *cmd;
12833
12834 for (cmd = cmds; cmd; cmd = cmd->next)
12835 {
12836 QUIT; /* Allow user to bail out with ^C. */
12837 strcpy (rs->buf.data (), "QTDPsrc:");
12838 encode_source_string (num, addr, "cmd", cmd->line,
12839 rs->buf.data () + strlen (rs->buf.data ()),
12840 rs->buf.size () - strlen (rs->buf.data ()));
12841 putpkt (rs->buf);
12842 remote_get_noisy_reply ();
12843 if (strcmp (rs->buf.data (), "OK"))
12844 warning (_("Target does not support source download."));
12845
12846 if (cmd->control_type == while_control
12847 || cmd->control_type == while_stepping_control)
12848 {
12849 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12850
12851 QUIT; /* Allow user to bail out with ^C. */
12852 strcpy (rs->buf.data (), "QTDPsrc:");
12853 encode_source_string (num, addr, "cmd", "end",
12854 rs->buf.data () + strlen (rs->buf.data ()),
12855 rs->buf.size () - strlen (rs->buf.data ()));
12856 putpkt (rs->buf);
12857 remote_get_noisy_reply ();
12858 if (strcmp (rs->buf.data (), "OK"))
12859 warning (_("Target does not support source download."));
12860 }
12861 }
12862 }
12863
12864 void
12865 remote_target::download_tracepoint (struct bp_location *loc)
12866 {
12867 CORE_ADDR tpaddr;
12868 char addrbuf[40];
12869 std::vector<std::string> tdp_actions;
12870 std::vector<std::string> stepping_actions;
12871 char *pkt;
12872 struct breakpoint *b = loc->owner;
12873 struct tracepoint *t = (struct tracepoint *) b;
12874 struct remote_state *rs = get_remote_state ();
12875 int ret;
12876 const char *err_msg = _("Tracepoint packet too large for target.");
12877 size_t size_left;
12878
12879 /* We use a buffer other than rs->buf because we'll build strings
12880 across multiple statements, and other statements in between could
12881 modify rs->buf. */
12882 gdb::char_vector buf (get_remote_packet_size ());
12883
12884 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12885
12886 tpaddr = loc->address;
12887 strcpy (addrbuf, phex (tpaddr, sizeof (CORE_ADDR)));
12888 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
12889 b->number, addrbuf, /* address */
12890 (b->enable_state == bp_enabled ? 'E' : 'D'),
12891 t->step_count, t->pass_count);
12892
12893 if (ret < 0 || ret >= buf.size ())
12894 error ("%s", err_msg);
12895
12896 /* Fast tracepoints are mostly handled by the target, but we can
12897 tell the target how big of an instruction block should be moved
12898 around. */
12899 if (b->type == bp_fast_tracepoint)
12900 {
12901 /* Only test for support at download time; we may not know
12902 target capabilities at definition time. */
12903 if (remote_supports_fast_tracepoints ())
12904 {
12905 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12906 NULL))
12907 {
12908 size_left = buf.size () - strlen (buf.data ());
12909 ret = snprintf (buf.data () + strlen (buf.data ()),
12910 size_left, ":F%x",
12911 gdb_insn_length (loc->gdbarch, tpaddr));
12912
12913 if (ret < 0 || ret >= size_left)
12914 error ("%s", err_msg);
12915 }
12916 else
12917 /* If it passed validation at definition but fails now,
12918 something is very wrong. */
12919 internal_error (__FILE__, __LINE__,
12920 _("Fast tracepoint not "
12921 "valid during download"));
12922 }
12923 else
12924 /* Fast tracepoints are functionally identical to regular
12925 tracepoints, so don't take lack of support as a reason to
12926 give up on the trace run. */
12927 warning (_("Target does not support fast tracepoints, "
12928 "downloading %d as regular tracepoint"), b->number);
12929 }
12930 else if (b->type == bp_static_tracepoint)
12931 {
12932 /* Only test for support at download time; we may not know
12933 target capabilities at definition time. */
12934 if (remote_supports_static_tracepoints ())
12935 {
12936 struct static_tracepoint_marker marker;
12937
12938 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12939 {
12940 size_left = buf.size () - strlen (buf.data ());
12941 ret = snprintf (buf.data () + strlen (buf.data ()),
12942 size_left, ":S");
12943
12944 if (ret < 0 || ret >= size_left)
12945 error ("%s", err_msg);
12946 }
12947 else
12948 error (_("Static tracepoint not valid during download"));
12949 }
12950 else
12951 /* Fast tracepoints are functionally identical to regular
12952 tracepoints, so don't take lack of support as a reason
12953 to give up on the trace run. */
12954 error (_("Target does not support static tracepoints"));
12955 }
12956 /* If the tracepoint has a conditional, make it into an agent
12957 expression and append to the definition. */
12958 if (loc->cond)
12959 {
12960 /* Only test support at download time, we may not know target
12961 capabilities at definition time. */
12962 if (remote_supports_cond_tracepoints ())
12963 {
12964 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
12965 loc->cond.get ());
12966
12967 size_left = buf.size () - strlen (buf.data ());
12968
12969 ret = snprintf (buf.data () + strlen (buf.data ()),
12970 size_left, ":X%x,", aexpr->len);
12971
12972 if (ret < 0 || ret >= size_left)
12973 error ("%s", err_msg);
12974
12975 size_left = buf.size () - strlen (buf.data ());
12976
12977 /* Two bytes to encode each aexpr byte, plus the terminating
12978 null byte. */
12979 if (aexpr->len * 2 + 1 > size_left)
12980 error ("%s", err_msg);
12981
12982 pkt = buf.data () + strlen (buf.data ());
12983
12984 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12985 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12986 *pkt = '\0';
12987 }
12988 else
12989 warning (_("Target does not support conditional tracepoints, "
12990 "ignoring tp %d cond"), b->number);
12991 }
12992
12993 if (b->commands || *default_collect)
12994 {
12995 size_left = buf.size () - strlen (buf.data ());
12996
12997 ret = snprintf (buf.data () + strlen (buf.data ()),
12998 size_left, "-");
12999
13000 if (ret < 0 || ret >= size_left)
13001 error ("%s", err_msg);
13002 }
13003
13004 putpkt (buf.data ());
13005 remote_get_noisy_reply ();
13006 if (strcmp (rs->buf.data (), "OK"))
13007 error (_("Target does not support tracepoints."));
13008
13009 /* do_single_steps (t); */
13010 for (auto action_it = tdp_actions.begin ();
13011 action_it != tdp_actions.end (); action_it++)
13012 {
13013 QUIT; /* Allow user to bail out with ^C. */
13014
13015 bool has_more = ((action_it + 1) != tdp_actions.end ()
13016 || !stepping_actions.empty ());
13017
13018 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
13019 b->number, addrbuf, /* address */
13020 action_it->c_str (),
13021 has_more ? '-' : 0);
13022
13023 if (ret < 0 || ret >= buf.size ())
13024 error ("%s", err_msg);
13025
13026 putpkt (buf.data ());
13027 remote_get_noisy_reply ();
13028 if (strcmp (rs->buf.data (), "OK"))
13029 error (_("Error on target while setting tracepoints."));
13030 }
13031
13032 for (auto action_it = stepping_actions.begin ();
13033 action_it != stepping_actions.end (); action_it++)
13034 {
13035 QUIT; /* Allow user to bail out with ^C. */
13036
13037 bool is_first = action_it == stepping_actions.begin ();
13038 bool has_more = (action_it + 1) != stepping_actions.end ();
13039
13040 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
13041 b->number, addrbuf, /* address */
13042 is_first ? "S" : "",
13043 action_it->c_str (),
13044 has_more ? "-" : "");
13045
13046 if (ret < 0 || ret >= buf.size ())
13047 error ("%s", err_msg);
13048
13049 putpkt (buf.data ());
13050 remote_get_noisy_reply ();
13051 if (strcmp (rs->buf.data (), "OK"))
13052 error (_("Error on target while setting tracepoints."));
13053 }
13054
13055 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
13056 {
13057 if (b->location != NULL)
13058 {
13059 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13060
13061 if (ret < 0 || ret >= buf.size ())
13062 error ("%s", err_msg);
13063
13064 encode_source_string (b->number, loc->address, "at",
13065 event_location_to_string (b->location.get ()),
13066 buf.data () + strlen (buf.data ()),
13067 buf.size () - strlen (buf.data ()));
13068 putpkt (buf.data ());
13069 remote_get_noisy_reply ();
13070 if (strcmp (rs->buf.data (), "OK"))
13071 warning (_("Target does not support source download."));
13072 }
13073 if (b->cond_string)
13074 {
13075 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13076
13077 if (ret < 0 || ret >= buf.size ())
13078 error ("%s", err_msg);
13079
13080 encode_source_string (b->number, loc->address,
13081 "cond", b->cond_string,
13082 buf.data () + strlen (buf.data ()),
13083 buf.size () - strlen (buf.data ()));
13084 putpkt (buf.data ());
13085 remote_get_noisy_reply ();
13086 if (strcmp (rs->buf.data (), "OK"))
13087 warning (_("Target does not support source download."));
13088 }
13089 remote_download_command_source (b->number, loc->address,
13090 breakpoint_commands (b));
13091 }
13092 }
13093
13094 bool
13095 remote_target::can_download_tracepoint ()
13096 {
13097 struct remote_state *rs = get_remote_state ();
13098 struct trace_status *ts;
13099 int status;
13100
13101 /* Don't try to install tracepoints until we've relocated our
13102 symbols, and fetched and merged the target's tracepoint list with
13103 ours. */
13104 if (rs->starting_up)
13105 return false;
13106
13107 ts = current_trace_status ();
13108 status = get_trace_status (ts);
13109
13110 if (status == -1 || !ts->running_known || !ts->running)
13111 return false;
13112
13113 /* If we are in a tracing experiment, but remote stub doesn't support
13114 installing tracepoint in trace, we have to return. */
13115 if (!remote_supports_install_in_trace ())
13116 return false;
13117
13118 return true;
13119 }
13120
13121
13122 void
13123 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13124 {
13125 struct remote_state *rs = get_remote_state ();
13126 char *p;
13127
13128 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13129 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13130 tsv.builtin);
13131 p = rs->buf.data () + strlen (rs->buf.data ());
13132 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13133 >= get_remote_packet_size ())
13134 error (_("Trace state variable name too long for tsv definition packet"));
13135 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13136 *p++ = '\0';
13137 putpkt (rs->buf);
13138 remote_get_noisy_reply ();
13139 if (rs->buf[0] == '\0')
13140 error (_("Target does not support this command."));
13141 if (strcmp (rs->buf.data (), "OK") != 0)
13142 error (_("Error on target while downloading trace state variable."));
13143 }
13144
13145 void
13146 remote_target::enable_tracepoint (struct bp_location *location)
13147 {
13148 struct remote_state *rs = get_remote_state ();
13149
13150 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13151 location->owner->number,
13152 phex (location->address, sizeof (CORE_ADDR)));
13153 putpkt (rs->buf);
13154 remote_get_noisy_reply ();
13155 if (rs->buf[0] == '\0')
13156 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13157 if (strcmp (rs->buf.data (), "OK") != 0)
13158 error (_("Error on target while enabling tracepoint."));
13159 }
13160
13161 void
13162 remote_target::disable_tracepoint (struct bp_location *location)
13163 {
13164 struct remote_state *rs = get_remote_state ();
13165
13166 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13167 location->owner->number,
13168 phex (location->address, sizeof (CORE_ADDR)));
13169 putpkt (rs->buf);
13170 remote_get_noisy_reply ();
13171 if (rs->buf[0] == '\0')
13172 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13173 if (strcmp (rs->buf.data (), "OK") != 0)
13174 error (_("Error on target while disabling tracepoint."));
13175 }
13176
13177 void
13178 remote_target::trace_set_readonly_regions ()
13179 {
13180 asection *s;
13181 bfd_size_type size;
13182 bfd_vma vma;
13183 int anysecs = 0;
13184 int offset = 0;
13185
13186 if (!exec_bfd)
13187 return; /* No information to give. */
13188
13189 struct remote_state *rs = get_remote_state ();
13190
13191 strcpy (rs->buf.data (), "QTro");
13192 offset = strlen (rs->buf.data ());
13193 for (s = exec_bfd->sections; s; s = s->next)
13194 {
13195 char tmp1[40], tmp2[40];
13196 int sec_length;
13197
13198 if ((s->flags & SEC_LOAD) == 0 ||
13199 /* (s->flags & SEC_CODE) == 0 || */
13200 (s->flags & SEC_READONLY) == 0)
13201 continue;
13202
13203 anysecs = 1;
13204 vma = bfd_section_vma (s);
13205 size = bfd_section_size (s);
13206 sprintf_vma (tmp1, vma);
13207 sprintf_vma (tmp2, vma + size);
13208 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13209 if (offset + sec_length + 1 > rs->buf.size ())
13210 {
13211 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13212 warning (_("\
13213 Too many sections for read-only sections definition packet."));
13214 break;
13215 }
13216 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13217 tmp1, tmp2);
13218 offset += sec_length;
13219 }
13220 if (anysecs)
13221 {
13222 putpkt (rs->buf);
13223 getpkt (&rs->buf, 0);
13224 }
13225 }
13226
13227 void
13228 remote_target::trace_start ()
13229 {
13230 struct remote_state *rs = get_remote_state ();
13231
13232 putpkt ("QTStart");
13233 remote_get_noisy_reply ();
13234 if (rs->buf[0] == '\0')
13235 error (_("Target does not support this command."));
13236 if (strcmp (rs->buf.data (), "OK") != 0)
13237 error (_("Bogus reply from target: %s"), rs->buf.data ());
13238 }
13239
13240 int
13241 remote_target::get_trace_status (struct trace_status *ts)
13242 {
13243 /* Initialize it just to avoid a GCC false warning. */
13244 char *p = NULL;
13245 enum packet_result result;
13246 struct remote_state *rs = get_remote_state ();
13247
13248 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13249 return -1;
13250
13251 /* FIXME we need to get register block size some other way. */
13252 trace_regblock_size
13253 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13254
13255 putpkt ("qTStatus");
13256
13257 try
13258 {
13259 p = remote_get_noisy_reply ();
13260 }
13261 catch (const gdb_exception_error &ex)
13262 {
13263 if (ex.error != TARGET_CLOSE_ERROR)
13264 {
13265 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13266 return -1;
13267 }
13268 throw;
13269 }
13270
13271 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13272
13273 /* If the remote target doesn't do tracing, flag it. */
13274 if (result == PACKET_UNKNOWN)
13275 return -1;
13276
13277 /* We're working with a live target. */
13278 ts->filename = NULL;
13279
13280 if (*p++ != 'T')
13281 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13282
13283 /* Function 'parse_trace_status' sets default value of each field of
13284 'ts' at first, so we don't have to do it here. */
13285 parse_trace_status (p, ts);
13286
13287 return ts->running;
13288 }
13289
13290 void
13291 remote_target::get_tracepoint_status (struct breakpoint *bp,
13292 struct uploaded_tp *utp)
13293 {
13294 struct remote_state *rs = get_remote_state ();
13295 char *reply;
13296 struct bp_location *loc;
13297 struct tracepoint *tp = (struct tracepoint *) bp;
13298 size_t size = get_remote_packet_size ();
13299
13300 if (tp)
13301 {
13302 tp->hit_count = 0;
13303 tp->traceframe_usage = 0;
13304 for (loc = tp->loc; loc; loc = loc->next)
13305 {
13306 /* If the tracepoint was never downloaded, don't go asking for
13307 any status. */
13308 if (tp->number_on_target == 0)
13309 continue;
13310 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13311 phex_nz (loc->address, 0));
13312 putpkt (rs->buf);
13313 reply = remote_get_noisy_reply ();
13314 if (reply && *reply)
13315 {
13316 if (*reply == 'V')
13317 parse_tracepoint_status (reply + 1, bp, utp);
13318 }
13319 }
13320 }
13321 else if (utp)
13322 {
13323 utp->hit_count = 0;
13324 utp->traceframe_usage = 0;
13325 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13326 phex_nz (utp->addr, 0));
13327 putpkt (rs->buf);
13328 reply = remote_get_noisy_reply ();
13329 if (reply && *reply)
13330 {
13331 if (*reply == 'V')
13332 parse_tracepoint_status (reply + 1, bp, utp);
13333 }
13334 }
13335 }
13336
13337 void
13338 remote_target::trace_stop ()
13339 {
13340 struct remote_state *rs = get_remote_state ();
13341
13342 putpkt ("QTStop");
13343 remote_get_noisy_reply ();
13344 if (rs->buf[0] == '\0')
13345 error (_("Target does not support this command."));
13346 if (strcmp (rs->buf.data (), "OK") != 0)
13347 error (_("Bogus reply from target: %s"), rs->buf.data ());
13348 }
13349
13350 int
13351 remote_target::trace_find (enum trace_find_type type, int num,
13352 CORE_ADDR addr1, CORE_ADDR addr2,
13353 int *tpp)
13354 {
13355 struct remote_state *rs = get_remote_state ();
13356 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13357 char *p, *reply;
13358 int target_frameno = -1, target_tracept = -1;
13359
13360 /* Lookups other than by absolute frame number depend on the current
13361 trace selected, so make sure it is correct on the remote end
13362 first. */
13363 if (type != tfind_number)
13364 set_remote_traceframe ();
13365
13366 p = rs->buf.data ();
13367 strcpy (p, "QTFrame:");
13368 p = strchr (p, '\0');
13369 switch (type)
13370 {
13371 case tfind_number:
13372 xsnprintf (p, endbuf - p, "%x", num);
13373 break;
13374 case tfind_pc:
13375 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13376 break;
13377 case tfind_tp:
13378 xsnprintf (p, endbuf - p, "tdp:%x", num);
13379 break;
13380 case tfind_range:
13381 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13382 phex_nz (addr2, 0));
13383 break;
13384 case tfind_outside:
13385 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13386 phex_nz (addr2, 0));
13387 break;
13388 default:
13389 error (_("Unknown trace find type %d"), type);
13390 }
13391
13392 putpkt (rs->buf);
13393 reply = remote_get_noisy_reply ();
13394 if (*reply == '\0')
13395 error (_("Target does not support this command."));
13396
13397 while (reply && *reply)
13398 switch (*reply)
13399 {
13400 case 'F':
13401 p = ++reply;
13402 target_frameno = (int) strtol (p, &reply, 16);
13403 if (reply == p)
13404 error (_("Unable to parse trace frame number"));
13405 /* Don't update our remote traceframe number cache on failure
13406 to select a remote traceframe. */
13407 if (target_frameno == -1)
13408 return -1;
13409 break;
13410 case 'T':
13411 p = ++reply;
13412 target_tracept = (int) strtol (p, &reply, 16);
13413 if (reply == p)
13414 error (_("Unable to parse tracepoint number"));
13415 break;
13416 case 'O': /* "OK"? */
13417 if (reply[1] == 'K' && reply[2] == '\0')
13418 reply += 2;
13419 else
13420 error (_("Bogus reply from target: %s"), reply);
13421 break;
13422 default:
13423 error (_("Bogus reply from target: %s"), reply);
13424 }
13425 if (tpp)
13426 *tpp = target_tracept;
13427
13428 rs->remote_traceframe_number = target_frameno;
13429 return target_frameno;
13430 }
13431
13432 bool
13433 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13434 {
13435 struct remote_state *rs = get_remote_state ();
13436 char *reply;
13437 ULONGEST uval;
13438
13439 set_remote_traceframe ();
13440
13441 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13442 putpkt (rs->buf);
13443 reply = remote_get_noisy_reply ();
13444 if (reply && *reply)
13445 {
13446 if (*reply == 'V')
13447 {
13448 unpack_varlen_hex (reply + 1, &uval);
13449 *val = (LONGEST) uval;
13450 return true;
13451 }
13452 }
13453 return false;
13454 }
13455
13456 int
13457 remote_target::save_trace_data (const char *filename)
13458 {
13459 struct remote_state *rs = get_remote_state ();
13460 char *p, *reply;
13461
13462 p = rs->buf.data ();
13463 strcpy (p, "QTSave:");
13464 p += strlen (p);
13465 if ((p - rs->buf.data ()) + strlen (filename) * 2
13466 >= get_remote_packet_size ())
13467 error (_("Remote file name too long for trace save packet"));
13468 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13469 *p++ = '\0';
13470 putpkt (rs->buf);
13471 reply = remote_get_noisy_reply ();
13472 if (*reply == '\0')
13473 error (_("Target does not support this command."));
13474 if (strcmp (reply, "OK") != 0)
13475 error (_("Bogus reply from target: %s"), reply);
13476 return 0;
13477 }
13478
13479 /* This is basically a memory transfer, but needs to be its own packet
13480 because we don't know how the target actually organizes its trace
13481 memory, plus we want to be able to ask for as much as possible, but
13482 not be unhappy if we don't get as much as we ask for. */
13483
13484 LONGEST
13485 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13486 {
13487 struct remote_state *rs = get_remote_state ();
13488 char *reply;
13489 char *p;
13490 int rslt;
13491
13492 p = rs->buf.data ();
13493 strcpy (p, "qTBuffer:");
13494 p += strlen (p);
13495 p += hexnumstr (p, offset);
13496 *p++ = ',';
13497 p += hexnumstr (p, len);
13498 *p++ = '\0';
13499
13500 putpkt (rs->buf);
13501 reply = remote_get_noisy_reply ();
13502 if (reply && *reply)
13503 {
13504 /* 'l' by itself means we're at the end of the buffer and
13505 there is nothing more to get. */
13506 if (*reply == 'l')
13507 return 0;
13508
13509 /* Convert the reply into binary. Limit the number of bytes to
13510 convert according to our passed-in buffer size, rather than
13511 what was returned in the packet; if the target is
13512 unexpectedly generous and gives us a bigger reply than we
13513 asked for, we don't want to crash. */
13514 rslt = hex2bin (reply, buf, len);
13515 return rslt;
13516 }
13517
13518 /* Something went wrong, flag as an error. */
13519 return -1;
13520 }
13521
13522 void
13523 remote_target::set_disconnected_tracing (int val)
13524 {
13525 struct remote_state *rs = get_remote_state ();
13526
13527 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13528 {
13529 char *reply;
13530
13531 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13532 "QTDisconnected:%x", val);
13533 putpkt (rs->buf);
13534 reply = remote_get_noisy_reply ();
13535 if (*reply == '\0')
13536 error (_("Target does not support this command."));
13537 if (strcmp (reply, "OK") != 0)
13538 error (_("Bogus reply from target: %s"), reply);
13539 }
13540 else if (val)
13541 warning (_("Target does not support disconnected tracing."));
13542 }
13543
13544 int
13545 remote_target::core_of_thread (ptid_t ptid)
13546 {
13547 thread_info *info = find_thread_ptid (this, ptid);
13548
13549 if (info != NULL && info->priv != NULL)
13550 return get_remote_thread_info (info)->core;
13551
13552 return -1;
13553 }
13554
13555 void
13556 remote_target::set_circular_trace_buffer (int val)
13557 {
13558 struct remote_state *rs = get_remote_state ();
13559 char *reply;
13560
13561 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13562 "QTBuffer:circular:%x", val);
13563 putpkt (rs->buf);
13564 reply = remote_get_noisy_reply ();
13565 if (*reply == '\0')
13566 error (_("Target does not support this command."));
13567 if (strcmp (reply, "OK") != 0)
13568 error (_("Bogus reply from target: %s"), reply);
13569 }
13570
13571 traceframe_info_up
13572 remote_target::traceframe_info ()
13573 {
13574 gdb::optional<gdb::char_vector> text
13575 = target_read_stralloc (current_top_target (), TARGET_OBJECT_TRACEFRAME_INFO,
13576 NULL);
13577 if (text)
13578 return parse_traceframe_info (text->data ());
13579
13580 return NULL;
13581 }
13582
13583 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13584 instruction on which a fast tracepoint may be placed. Returns -1
13585 if the packet is not supported, and 0 if the minimum instruction
13586 length is unknown. */
13587
13588 int
13589 remote_target::get_min_fast_tracepoint_insn_len ()
13590 {
13591 struct remote_state *rs = get_remote_state ();
13592 char *reply;
13593
13594 /* If we're not debugging a process yet, the IPA can't be
13595 loaded. */
13596 if (!target_has_execution ())
13597 return 0;
13598
13599 /* Make sure the remote is pointing at the right process. */
13600 set_general_process ();
13601
13602 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13603 putpkt (rs->buf);
13604 reply = remote_get_noisy_reply ();
13605 if (*reply == '\0')
13606 return -1;
13607 else
13608 {
13609 ULONGEST min_insn_len;
13610
13611 unpack_varlen_hex (reply, &min_insn_len);
13612
13613 return (int) min_insn_len;
13614 }
13615 }
13616
13617 void
13618 remote_target::set_trace_buffer_size (LONGEST val)
13619 {
13620 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13621 {
13622 struct remote_state *rs = get_remote_state ();
13623 char *buf = rs->buf.data ();
13624 char *endbuf = buf + get_remote_packet_size ();
13625 enum packet_result result;
13626
13627 gdb_assert (val >= 0 || val == -1);
13628 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13629 /* Send -1 as literal "-1" to avoid host size dependency. */
13630 if (val < 0)
13631 {
13632 *buf++ = '-';
13633 buf += hexnumstr (buf, (ULONGEST) -val);
13634 }
13635 else
13636 buf += hexnumstr (buf, (ULONGEST) val);
13637
13638 putpkt (rs->buf);
13639 remote_get_noisy_reply ();
13640 result = packet_ok (rs->buf,
13641 &remote_protocol_packets[PACKET_QTBuffer_size]);
13642
13643 if (result != PACKET_OK)
13644 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13645 }
13646 }
13647
13648 bool
13649 remote_target::set_trace_notes (const char *user, const char *notes,
13650 const char *stop_notes)
13651 {
13652 struct remote_state *rs = get_remote_state ();
13653 char *reply;
13654 char *buf = rs->buf.data ();
13655 char *endbuf = buf + get_remote_packet_size ();
13656 int nbytes;
13657
13658 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13659 if (user)
13660 {
13661 buf += xsnprintf (buf, endbuf - buf, "user:");
13662 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13663 buf += 2 * nbytes;
13664 *buf++ = ';';
13665 }
13666 if (notes)
13667 {
13668 buf += xsnprintf (buf, endbuf - buf, "notes:");
13669 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13670 buf += 2 * nbytes;
13671 *buf++ = ';';
13672 }
13673 if (stop_notes)
13674 {
13675 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13676 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13677 buf += 2 * nbytes;
13678 *buf++ = ';';
13679 }
13680 /* Ensure the buffer is terminated. */
13681 *buf = '\0';
13682
13683 putpkt (rs->buf);
13684 reply = remote_get_noisy_reply ();
13685 if (*reply == '\0')
13686 return false;
13687
13688 if (strcmp (reply, "OK") != 0)
13689 error (_("Bogus reply from target: %s"), reply);
13690
13691 return true;
13692 }
13693
13694 bool
13695 remote_target::use_agent (bool use)
13696 {
13697 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13698 {
13699 struct remote_state *rs = get_remote_state ();
13700
13701 /* If the stub supports QAgent. */
13702 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13703 putpkt (rs->buf);
13704 getpkt (&rs->buf, 0);
13705
13706 if (strcmp (rs->buf.data (), "OK") == 0)
13707 {
13708 ::use_agent = use;
13709 return true;
13710 }
13711 }
13712
13713 return false;
13714 }
13715
13716 bool
13717 remote_target::can_use_agent ()
13718 {
13719 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13720 }
13721
13722 struct btrace_target_info
13723 {
13724 /* The ptid of the traced thread. */
13725 ptid_t ptid;
13726
13727 /* The obtained branch trace configuration. */
13728 struct btrace_config conf;
13729 };
13730
13731 /* Reset our idea of our target's btrace configuration. */
13732
13733 static void
13734 remote_btrace_reset (remote_state *rs)
13735 {
13736 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13737 }
13738
13739 /* Synchronize the configuration with the target. */
13740
13741 void
13742 remote_target::btrace_sync_conf (const btrace_config *conf)
13743 {
13744 struct packet_config *packet;
13745 struct remote_state *rs;
13746 char *buf, *pos, *endbuf;
13747
13748 rs = get_remote_state ();
13749 buf = rs->buf.data ();
13750 endbuf = buf + get_remote_packet_size ();
13751
13752 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13753 if (packet_config_support (packet) == PACKET_ENABLE
13754 && conf->bts.size != rs->btrace_config.bts.size)
13755 {
13756 pos = buf;
13757 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13758 conf->bts.size);
13759
13760 putpkt (buf);
13761 getpkt (&rs->buf, 0);
13762
13763 if (packet_ok (buf, packet) == PACKET_ERROR)
13764 {
13765 if (buf[0] == 'E' && buf[1] == '.')
13766 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13767 else
13768 error (_("Failed to configure the BTS buffer size."));
13769 }
13770
13771 rs->btrace_config.bts.size = conf->bts.size;
13772 }
13773
13774 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13775 if (packet_config_support (packet) == PACKET_ENABLE
13776 && conf->pt.size != rs->btrace_config.pt.size)
13777 {
13778 pos = buf;
13779 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13780 conf->pt.size);
13781
13782 putpkt (buf);
13783 getpkt (&rs->buf, 0);
13784
13785 if (packet_ok (buf, packet) == PACKET_ERROR)
13786 {
13787 if (buf[0] == 'E' && buf[1] == '.')
13788 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13789 else
13790 error (_("Failed to configure the trace buffer size."));
13791 }
13792
13793 rs->btrace_config.pt.size = conf->pt.size;
13794 }
13795 }
13796
13797 /* Read the current thread's btrace configuration from the target and
13798 store it into CONF. */
13799
13800 static void
13801 btrace_read_config (struct btrace_config *conf)
13802 {
13803 gdb::optional<gdb::char_vector> xml
13804 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE_CONF, "");
13805 if (xml)
13806 parse_xml_btrace_conf (conf, xml->data ());
13807 }
13808
13809 /* Maybe reopen target btrace. */
13810
13811 void
13812 remote_target::remote_btrace_maybe_reopen ()
13813 {
13814 struct remote_state *rs = get_remote_state ();
13815 int btrace_target_pushed = 0;
13816 #if !defined (HAVE_LIBIPT)
13817 int warned = 0;
13818 #endif
13819
13820 /* Don't bother walking the entirety of the remote thread list when
13821 we know the feature isn't supported by the remote. */
13822 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
13823 return;
13824
13825 scoped_restore_current_thread restore_thread;
13826
13827 for (thread_info *tp : all_non_exited_threads (this))
13828 {
13829 set_general_thread (tp->ptid);
13830
13831 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13832 btrace_read_config (&rs->btrace_config);
13833
13834 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13835 continue;
13836
13837 #if !defined (HAVE_LIBIPT)
13838 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13839 {
13840 if (!warned)
13841 {
13842 warned = 1;
13843 warning (_("Target is recording using Intel Processor Trace "
13844 "but support was disabled at compile time."));
13845 }
13846
13847 continue;
13848 }
13849 #endif /* !defined (HAVE_LIBIPT) */
13850
13851 /* Push target, once, but before anything else happens. This way our
13852 changes to the threads will be cleaned up by unpushing the target
13853 in case btrace_read_config () throws. */
13854 if (!btrace_target_pushed)
13855 {
13856 btrace_target_pushed = 1;
13857 record_btrace_push_target ();
13858 printf_filtered (_("Target is recording using %s.\n"),
13859 btrace_format_string (rs->btrace_config.format));
13860 }
13861
13862 tp->btrace.target = XCNEW (struct btrace_target_info);
13863 tp->btrace.target->ptid = tp->ptid;
13864 tp->btrace.target->conf = rs->btrace_config;
13865 }
13866 }
13867
13868 /* Enable branch tracing. */
13869
13870 struct btrace_target_info *
13871 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13872 {
13873 struct btrace_target_info *tinfo = NULL;
13874 struct packet_config *packet = NULL;
13875 struct remote_state *rs = get_remote_state ();
13876 char *buf = rs->buf.data ();
13877 char *endbuf = buf + get_remote_packet_size ();
13878
13879 switch (conf->format)
13880 {
13881 case BTRACE_FORMAT_BTS:
13882 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13883 break;
13884
13885 case BTRACE_FORMAT_PT:
13886 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13887 break;
13888 }
13889
13890 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13891 error (_("Target does not support branch tracing."));
13892
13893 btrace_sync_conf (conf);
13894
13895 set_general_thread (ptid);
13896
13897 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13898 putpkt (rs->buf);
13899 getpkt (&rs->buf, 0);
13900
13901 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13902 {
13903 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13904 error (_("Could not enable branch tracing for %s: %s"),
13905 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
13906 else
13907 error (_("Could not enable branch tracing for %s."),
13908 target_pid_to_str (ptid).c_str ());
13909 }
13910
13911 tinfo = XCNEW (struct btrace_target_info);
13912 tinfo->ptid = ptid;
13913
13914 /* If we fail to read the configuration, we lose some information, but the
13915 tracing itself is not impacted. */
13916 try
13917 {
13918 btrace_read_config (&tinfo->conf);
13919 }
13920 catch (const gdb_exception_error &err)
13921 {
13922 if (err.message != NULL)
13923 warning ("%s", err.what ());
13924 }
13925
13926 return tinfo;
13927 }
13928
13929 /* Disable branch tracing. */
13930
13931 void
13932 remote_target::disable_btrace (struct btrace_target_info *tinfo)
13933 {
13934 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13935 struct remote_state *rs = get_remote_state ();
13936 char *buf = rs->buf.data ();
13937 char *endbuf = buf + get_remote_packet_size ();
13938
13939 if (packet_config_support (packet) != PACKET_ENABLE)
13940 error (_("Target does not support branch tracing."));
13941
13942 set_general_thread (tinfo->ptid);
13943
13944 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13945 putpkt (rs->buf);
13946 getpkt (&rs->buf, 0);
13947
13948 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13949 {
13950 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13951 error (_("Could not disable branch tracing for %s: %s"),
13952 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
13953 else
13954 error (_("Could not disable branch tracing for %s."),
13955 target_pid_to_str (tinfo->ptid).c_str ());
13956 }
13957
13958 xfree (tinfo);
13959 }
13960
13961 /* Teardown branch tracing. */
13962
13963 void
13964 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
13965 {
13966 /* We must not talk to the target during teardown. */
13967 xfree (tinfo);
13968 }
13969
13970 /* Read the branch trace. */
13971
13972 enum btrace_error
13973 remote_target::read_btrace (struct btrace_data *btrace,
13974 struct btrace_target_info *tinfo,
13975 enum btrace_read_type type)
13976 {
13977 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13978 const char *annex;
13979
13980 if (packet_config_support (packet) != PACKET_ENABLE)
13981 error (_("Target does not support branch tracing."));
13982
13983 #if !defined(HAVE_LIBEXPAT)
13984 error (_("Cannot process branch tracing result. XML parsing not supported."));
13985 #endif
13986
13987 switch (type)
13988 {
13989 case BTRACE_READ_ALL:
13990 annex = "all";
13991 break;
13992 case BTRACE_READ_NEW:
13993 annex = "new";
13994 break;
13995 case BTRACE_READ_DELTA:
13996 annex = "delta";
13997 break;
13998 default:
13999 internal_error (__FILE__, __LINE__,
14000 _("Bad branch tracing read type: %u."),
14001 (unsigned int) type);
14002 }
14003
14004 gdb::optional<gdb::char_vector> xml
14005 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE, annex);
14006 if (!xml)
14007 return BTRACE_ERR_UNKNOWN;
14008
14009 parse_xml_btrace (btrace, xml->data ());
14010
14011 return BTRACE_ERR_NONE;
14012 }
14013
14014 const struct btrace_config *
14015 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
14016 {
14017 return &tinfo->conf;
14018 }
14019
14020 bool
14021 remote_target::augmented_libraries_svr4_read ()
14022 {
14023 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
14024 == PACKET_ENABLE);
14025 }
14026
14027 /* Implementation of to_load. */
14028
14029 void
14030 remote_target::load (const char *name, int from_tty)
14031 {
14032 generic_load (name, from_tty);
14033 }
14034
14035 /* Accepts an integer PID; returns a string representing a file that
14036 can be opened on the remote side to get the symbols for the child
14037 process. Returns NULL if the operation is not supported. */
14038
14039 char *
14040 remote_target::pid_to_exec_file (int pid)
14041 {
14042 static gdb::optional<gdb::char_vector> filename;
14043 char *annex = NULL;
14044
14045 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
14046 return NULL;
14047
14048 inferior *inf = find_inferior_pid (this, pid);
14049 if (inf == NULL)
14050 internal_error (__FILE__, __LINE__,
14051 _("not currently attached to process %d"), pid);
14052
14053 if (!inf->fake_pid_p)
14054 {
14055 const int annex_size = 9;
14056
14057 annex = (char *) alloca (annex_size);
14058 xsnprintf (annex, annex_size, "%x", pid);
14059 }
14060
14061 filename = target_read_stralloc (current_top_target (),
14062 TARGET_OBJECT_EXEC_FILE, annex);
14063
14064 return filename ? filename->data () : nullptr;
14065 }
14066
14067 /* Implement the to_can_do_single_step target_ops method. */
14068
14069 int
14070 remote_target::can_do_single_step ()
14071 {
14072 /* We can only tell whether target supports single step or not by
14073 supported s and S vCont actions if the stub supports vContSupported
14074 feature. If the stub doesn't support vContSupported feature,
14075 we have conservatively to think target doesn't supports single
14076 step. */
14077 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
14078 {
14079 struct remote_state *rs = get_remote_state ();
14080
14081 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14082 remote_vcont_probe ();
14083
14084 return rs->supports_vCont.s && rs->supports_vCont.S;
14085 }
14086 else
14087 return 0;
14088 }
14089
14090 /* Implementation of the to_execution_direction method for the remote
14091 target. */
14092
14093 enum exec_direction_kind
14094 remote_target::execution_direction ()
14095 {
14096 struct remote_state *rs = get_remote_state ();
14097
14098 return rs->last_resume_exec_dir;
14099 }
14100
14101 /* Return pointer to the thread_info struct which corresponds to
14102 THREAD_HANDLE (having length HANDLE_LEN). */
14103
14104 thread_info *
14105 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14106 int handle_len,
14107 inferior *inf)
14108 {
14109 for (thread_info *tp : all_non_exited_threads (this))
14110 {
14111 remote_thread_info *priv = get_remote_thread_info (tp);
14112
14113 if (tp->inf == inf && priv != NULL)
14114 {
14115 if (handle_len != priv->thread_handle.size ())
14116 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14117 handle_len, priv->thread_handle.size ());
14118 if (memcmp (thread_handle, priv->thread_handle.data (),
14119 handle_len) == 0)
14120 return tp;
14121 }
14122 }
14123
14124 return NULL;
14125 }
14126
14127 gdb::byte_vector
14128 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
14129 {
14130 remote_thread_info *priv = get_remote_thread_info (tp);
14131 return priv->thread_handle;
14132 }
14133
14134 bool
14135 remote_target::can_async_p ()
14136 {
14137 struct remote_state *rs = get_remote_state ();
14138
14139 /* We don't go async if the user has explicitly prevented it with the
14140 "maint set target-async" command. */
14141 if (!target_async_permitted)
14142 return false;
14143
14144 /* We're async whenever the serial device is. */
14145 return serial_can_async_p (rs->remote_desc);
14146 }
14147
14148 bool
14149 remote_target::is_async_p ()
14150 {
14151 struct remote_state *rs = get_remote_state ();
14152
14153 if (!target_async_permitted)
14154 /* We only enable async when the user specifically asks for it. */
14155 return false;
14156
14157 /* We're async whenever the serial device is. */
14158 return serial_is_async_p (rs->remote_desc);
14159 }
14160
14161 /* Pass the SERIAL event on and up to the client. One day this code
14162 will be able to delay notifying the client of an event until the
14163 point where an entire packet has been received. */
14164
14165 static serial_event_ftype remote_async_serial_handler;
14166
14167 static void
14168 remote_async_serial_handler (struct serial *scb, void *context)
14169 {
14170 /* Don't propogate error information up to the client. Instead let
14171 the client find out about the error by querying the target. */
14172 inferior_event_handler (INF_REG_EVENT);
14173 }
14174
14175 static void
14176 remote_async_inferior_event_handler (gdb_client_data data)
14177 {
14178 inferior_event_handler (INF_REG_EVENT);
14179
14180 remote_target *remote = (remote_target *) data;
14181 remote_state *rs = remote->get_remote_state ();
14182
14183 /* inferior_event_handler may have consumed an event pending on the
14184 infrun side without calling target_wait on the REMOTE target, or
14185 may have pulled an event out of a different target. Keep trying
14186 for this remote target as long it still has either pending events
14187 or unacknowledged notifications. */
14188
14189 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL
14190 || !rs->stop_reply_queue.empty ())
14191 mark_async_event_handler (rs->remote_async_inferior_event_token);
14192 }
14193
14194 int
14195 remote_target::async_wait_fd ()
14196 {
14197 struct remote_state *rs = get_remote_state ();
14198 return rs->remote_desc->fd;
14199 }
14200
14201 void
14202 remote_target::async (int enable)
14203 {
14204 struct remote_state *rs = get_remote_state ();
14205
14206 if (enable)
14207 {
14208 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14209
14210 /* If there are pending events in the stop reply queue tell the
14211 event loop to process them. */
14212 if (!rs->stop_reply_queue.empty ())
14213 mark_async_event_handler (rs->remote_async_inferior_event_token);
14214 /* For simplicity, below we clear the pending events token
14215 without remembering whether it is marked, so here we always
14216 mark it. If there's actually no pending notification to
14217 process, this ends up being a no-op (other than a spurious
14218 event-loop wakeup). */
14219 if (target_is_non_stop_p ())
14220 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14221 }
14222 else
14223 {
14224 serial_async (rs->remote_desc, NULL, NULL);
14225 /* If the core is disabling async, it doesn't want to be
14226 disturbed with target events. Clear all async event sources
14227 too. */
14228 clear_async_event_handler (rs->remote_async_inferior_event_token);
14229 if (target_is_non_stop_p ())
14230 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14231 }
14232 }
14233
14234 /* Implementation of the to_thread_events method. */
14235
14236 void
14237 remote_target::thread_events (int enable)
14238 {
14239 struct remote_state *rs = get_remote_state ();
14240 size_t size = get_remote_packet_size ();
14241
14242 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14243 return;
14244
14245 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14246 putpkt (rs->buf);
14247 getpkt (&rs->buf, 0);
14248
14249 switch (packet_ok (rs->buf,
14250 &remote_protocol_packets[PACKET_QThreadEvents]))
14251 {
14252 case PACKET_OK:
14253 if (strcmp (rs->buf.data (), "OK") != 0)
14254 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14255 break;
14256 case PACKET_ERROR:
14257 warning (_("Remote failure reply: %s"), rs->buf.data ());
14258 break;
14259 case PACKET_UNKNOWN:
14260 break;
14261 }
14262 }
14263
14264 static void
14265 show_remote_cmd (const char *args, int from_tty)
14266 {
14267 /* We can't just use cmd_show_list here, because we want to skip
14268 the redundant "show remote Z-packet" and the legacy aliases. */
14269 struct cmd_list_element *list = remote_show_cmdlist;
14270 struct ui_out *uiout = current_uiout;
14271
14272 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14273 for (; list != NULL; list = list->next)
14274 if (strcmp (list->name, "Z-packet") == 0)
14275 continue;
14276 else if (list->type == not_set_cmd)
14277 /* Alias commands are exactly like the original, except they
14278 don't have the normal type. */
14279 continue;
14280 else
14281 {
14282 ui_out_emit_tuple option_emitter (uiout, "option");
14283
14284 uiout->field_string ("name", list->name);
14285 uiout->text (": ");
14286 if (list->type == show_cmd)
14287 do_show_command (NULL, from_tty, list);
14288 else
14289 cmd_func (list, NULL, from_tty);
14290 }
14291 }
14292
14293
14294 /* Function to be called whenever a new objfile (shlib) is detected. */
14295 static void
14296 remote_new_objfile (struct objfile *objfile)
14297 {
14298 remote_target *remote = get_current_remote_target ();
14299
14300 if (remote != NULL) /* Have a remote connection. */
14301 remote->remote_check_symbols ();
14302 }
14303
14304 /* Pull all the tracepoints defined on the target and create local
14305 data structures representing them. We don't want to create real
14306 tracepoints yet, we don't want to mess up the user's existing
14307 collection. */
14308
14309 int
14310 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14311 {
14312 struct remote_state *rs = get_remote_state ();
14313 char *p;
14314
14315 /* Ask for a first packet of tracepoint definition. */
14316 putpkt ("qTfP");
14317 getpkt (&rs->buf, 0);
14318 p = rs->buf.data ();
14319 while (*p && *p != 'l')
14320 {
14321 parse_tracepoint_definition (p, utpp);
14322 /* Ask for another packet of tracepoint definition. */
14323 putpkt ("qTsP");
14324 getpkt (&rs->buf, 0);
14325 p = rs->buf.data ();
14326 }
14327 return 0;
14328 }
14329
14330 int
14331 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14332 {
14333 struct remote_state *rs = get_remote_state ();
14334 char *p;
14335
14336 /* Ask for a first packet of variable definition. */
14337 putpkt ("qTfV");
14338 getpkt (&rs->buf, 0);
14339 p = rs->buf.data ();
14340 while (*p && *p != 'l')
14341 {
14342 parse_tsv_definition (p, utsvp);
14343 /* Ask for another packet of variable definition. */
14344 putpkt ("qTsV");
14345 getpkt (&rs->buf, 0);
14346 p = rs->buf.data ();
14347 }
14348 return 0;
14349 }
14350
14351 /* The "set/show range-stepping" show hook. */
14352
14353 static void
14354 show_range_stepping (struct ui_file *file, int from_tty,
14355 struct cmd_list_element *c,
14356 const char *value)
14357 {
14358 fprintf_filtered (file,
14359 _("Debugger's willingness to use range stepping "
14360 "is %s.\n"), value);
14361 }
14362
14363 /* Return true if the vCont;r action is supported by the remote
14364 stub. */
14365
14366 bool
14367 remote_target::vcont_r_supported ()
14368 {
14369 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14370 remote_vcont_probe ();
14371
14372 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14373 && get_remote_state ()->supports_vCont.r);
14374 }
14375
14376 /* The "set/show range-stepping" set hook. */
14377
14378 static void
14379 set_range_stepping (const char *ignore_args, int from_tty,
14380 struct cmd_list_element *c)
14381 {
14382 /* When enabling, check whether range stepping is actually supported
14383 by the target, and warn if not. */
14384 if (use_range_stepping)
14385 {
14386 remote_target *remote = get_current_remote_target ();
14387 if (remote == NULL
14388 || !remote->vcont_r_supported ())
14389 warning (_("Range stepping is not supported by the current target"));
14390 }
14391 }
14392
14393 void _initialize_remote ();
14394 void
14395 _initialize_remote ()
14396 {
14397 struct cmd_list_element *cmd;
14398 const char *cmd_name;
14399
14400 /* architecture specific data */
14401 remote_g_packet_data_handle =
14402 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14403
14404 add_target (remote_target_info, remote_target::open);
14405 add_target (extended_remote_target_info, extended_remote_target::open);
14406
14407 /* Hook into new objfile notification. */
14408 gdb::observers::new_objfile.attach (remote_new_objfile);
14409
14410 #if 0
14411 init_remote_threadtests ();
14412 #endif
14413
14414 /* set/show remote ... */
14415
14416 add_basic_prefix_cmd ("remote", class_maintenance, _("\
14417 Remote protocol specific variables.\n\
14418 Configure various remote-protocol specific variables such as\n\
14419 the packets being used."),
14420 &remote_set_cmdlist, "set remote ",
14421 0 /* allow-unknown */, &setlist);
14422 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14423 Remote protocol specific variables.\n\
14424 Configure various remote-protocol specific variables such as\n\
14425 the packets being used."),
14426 &remote_show_cmdlist, "show remote ",
14427 0 /* allow-unknown */, &showlist);
14428
14429 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14430 Compare section data on target to the exec file.\n\
14431 Argument is a single section name (default: all loaded sections).\n\
14432 To compare only read-only loaded sections, specify the -r option."),
14433 &cmdlist);
14434
14435 add_cmd ("packet", class_maintenance, packet_command, _("\
14436 Send an arbitrary packet to a remote target.\n\
14437 maintenance packet TEXT\n\
14438 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14439 this command sends the string TEXT to the inferior, and displays the\n\
14440 response packet. GDB supplies the initial `$' character, and the\n\
14441 terminating `#' character and checksum."),
14442 &maintenancelist);
14443
14444 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14445 Set whether to send break if interrupted."), _("\
14446 Show whether to send break if interrupted."), _("\
14447 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14448 set_remotebreak, show_remotebreak,
14449 &setlist, &showlist);
14450 cmd_name = "remotebreak";
14451 cmd = lookup_cmd (&cmd_name, setlist, "", NULL, -1, 1);
14452 deprecate_cmd (cmd, "set remote interrupt-sequence");
14453 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14454 cmd = lookup_cmd (&cmd_name, showlist, "", NULL, -1, 1);
14455 deprecate_cmd (cmd, "show remote interrupt-sequence");
14456
14457 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14458 interrupt_sequence_modes, &interrupt_sequence_mode,
14459 _("\
14460 Set interrupt sequence to remote target."), _("\
14461 Show interrupt sequence to remote target."), _("\
14462 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14463 NULL, show_interrupt_sequence,
14464 &remote_set_cmdlist,
14465 &remote_show_cmdlist);
14466
14467 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14468 &interrupt_on_connect, _("\
14469 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14470 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14471 If set, interrupt sequence is sent to remote target."),
14472 NULL, NULL,
14473 &remote_set_cmdlist, &remote_show_cmdlist);
14474
14475 /* Install commands for configuring memory read/write packets. */
14476
14477 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14478 Set the maximum number of bytes per memory write packet (deprecated)."),
14479 &setlist);
14480 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14481 Show the maximum number of bytes per memory write packet (deprecated)."),
14482 &showlist);
14483 add_cmd ("memory-write-packet-size", no_class,
14484 set_memory_write_packet_size, _("\
14485 Set the maximum number of bytes per memory-write packet.\n\
14486 Specify the number of bytes in a packet or 0 (zero) for the\n\
14487 default packet size. The actual limit is further reduced\n\
14488 dependent on the target. Specify ``fixed'' to disable the\n\
14489 further restriction and ``limit'' to enable that restriction."),
14490 &remote_set_cmdlist);
14491 add_cmd ("memory-read-packet-size", no_class,
14492 set_memory_read_packet_size, _("\
14493 Set the maximum number of bytes per memory-read packet.\n\
14494 Specify the number of bytes in a packet or 0 (zero) for the\n\
14495 default packet size. The actual limit is further reduced\n\
14496 dependent on the target. Specify ``fixed'' to disable the\n\
14497 further restriction and ``limit'' to enable that restriction."),
14498 &remote_set_cmdlist);
14499 add_cmd ("memory-write-packet-size", no_class,
14500 show_memory_write_packet_size,
14501 _("Show the maximum number of bytes per memory-write packet."),
14502 &remote_show_cmdlist);
14503 add_cmd ("memory-read-packet-size", no_class,
14504 show_memory_read_packet_size,
14505 _("Show the maximum number of bytes per memory-read packet."),
14506 &remote_show_cmdlist);
14507
14508 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14509 &remote_hw_watchpoint_limit, _("\
14510 Set the maximum number of target hardware watchpoints."), _("\
14511 Show the maximum number of target hardware watchpoints."), _("\
14512 Specify \"unlimited\" for unlimited hardware watchpoints."),
14513 NULL, show_hardware_watchpoint_limit,
14514 &remote_set_cmdlist,
14515 &remote_show_cmdlist);
14516 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14517 no_class,
14518 &remote_hw_watchpoint_length_limit, _("\
14519 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14520 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14521 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14522 NULL, show_hardware_watchpoint_length_limit,
14523 &remote_set_cmdlist, &remote_show_cmdlist);
14524 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14525 &remote_hw_breakpoint_limit, _("\
14526 Set the maximum number of target hardware breakpoints."), _("\
14527 Show the maximum number of target hardware breakpoints."), _("\
14528 Specify \"unlimited\" for unlimited hardware breakpoints."),
14529 NULL, show_hardware_breakpoint_limit,
14530 &remote_set_cmdlist, &remote_show_cmdlist);
14531
14532 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14533 &remote_address_size, _("\
14534 Set the maximum size of the address (in bits) in a memory packet."), _("\
14535 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14536 NULL,
14537 NULL, /* FIXME: i18n: */
14538 &setlist, &showlist);
14539
14540 init_all_packet_configs ();
14541
14542 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14543 "X", "binary-download", 1);
14544
14545 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14546 "vCont", "verbose-resume", 0);
14547
14548 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14549 "QPassSignals", "pass-signals", 0);
14550
14551 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14552 "QCatchSyscalls", "catch-syscalls", 0);
14553
14554 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14555 "QProgramSignals", "program-signals", 0);
14556
14557 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14558 "QSetWorkingDir", "set-working-dir", 0);
14559
14560 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14561 "QStartupWithShell", "startup-with-shell", 0);
14562
14563 add_packet_config_cmd (&remote_protocol_packets
14564 [PACKET_QEnvironmentHexEncoded],
14565 "QEnvironmentHexEncoded", "environment-hex-encoded",
14566 0);
14567
14568 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14569 "QEnvironmentReset", "environment-reset",
14570 0);
14571
14572 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14573 "QEnvironmentUnset", "environment-unset",
14574 0);
14575
14576 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14577 "qSymbol", "symbol-lookup", 0);
14578
14579 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14580 "P", "set-register", 1);
14581
14582 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14583 "p", "fetch-register", 1);
14584
14585 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14586 "Z0", "software-breakpoint", 0);
14587
14588 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14589 "Z1", "hardware-breakpoint", 0);
14590
14591 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14592 "Z2", "write-watchpoint", 0);
14593
14594 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14595 "Z3", "read-watchpoint", 0);
14596
14597 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14598 "Z4", "access-watchpoint", 0);
14599
14600 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14601 "qXfer:auxv:read", "read-aux-vector", 0);
14602
14603 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14604 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14605
14606 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14607 "qXfer:features:read", "target-features", 0);
14608
14609 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14610 "qXfer:libraries:read", "library-info", 0);
14611
14612 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14613 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14614
14615 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14616 "qXfer:memory-map:read", "memory-map", 0);
14617
14618 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14619 "qXfer:osdata:read", "osdata", 0);
14620
14621 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14622 "qXfer:threads:read", "threads", 0);
14623
14624 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14625 "qXfer:siginfo:read", "read-siginfo-object", 0);
14626
14627 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14628 "qXfer:siginfo:write", "write-siginfo-object", 0);
14629
14630 add_packet_config_cmd
14631 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14632 "qXfer:traceframe-info:read", "traceframe-info", 0);
14633
14634 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14635 "qXfer:uib:read", "unwind-info-block", 0);
14636
14637 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14638 "qGetTLSAddr", "get-thread-local-storage-address",
14639 0);
14640
14641 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14642 "qGetTIBAddr", "get-thread-information-block-address",
14643 0);
14644
14645 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14646 "bc", "reverse-continue", 0);
14647
14648 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14649 "bs", "reverse-step", 0);
14650
14651 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14652 "qSupported", "supported-packets", 0);
14653
14654 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14655 "qSearch:memory", "search-memory", 0);
14656
14657 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14658 "qTStatus", "trace-status", 0);
14659
14660 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14661 "vFile:setfs", "hostio-setfs", 0);
14662
14663 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14664 "vFile:open", "hostio-open", 0);
14665
14666 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14667 "vFile:pread", "hostio-pread", 0);
14668
14669 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14670 "vFile:pwrite", "hostio-pwrite", 0);
14671
14672 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14673 "vFile:close", "hostio-close", 0);
14674
14675 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14676 "vFile:unlink", "hostio-unlink", 0);
14677
14678 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14679 "vFile:readlink", "hostio-readlink", 0);
14680
14681 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14682 "vFile:fstat", "hostio-fstat", 0);
14683
14684 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14685 "vAttach", "attach", 0);
14686
14687 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14688 "vRun", "run", 0);
14689
14690 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14691 "QStartNoAckMode", "noack", 0);
14692
14693 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14694 "vKill", "kill", 0);
14695
14696 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14697 "qAttached", "query-attached", 0);
14698
14699 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14700 "ConditionalTracepoints",
14701 "conditional-tracepoints", 0);
14702
14703 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14704 "ConditionalBreakpoints",
14705 "conditional-breakpoints", 0);
14706
14707 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14708 "BreakpointCommands",
14709 "breakpoint-commands", 0);
14710
14711 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14712 "FastTracepoints", "fast-tracepoints", 0);
14713
14714 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14715 "TracepointSource", "TracepointSource", 0);
14716
14717 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14718 "QAllow", "allow", 0);
14719
14720 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14721 "StaticTracepoints", "static-tracepoints", 0);
14722
14723 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14724 "InstallInTrace", "install-in-trace", 0);
14725
14726 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14727 "qXfer:statictrace:read", "read-sdata-object", 0);
14728
14729 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14730 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14731
14732 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14733 "QDisableRandomization", "disable-randomization", 0);
14734
14735 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14736 "QAgent", "agent", 0);
14737
14738 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14739 "QTBuffer:size", "trace-buffer-size", 0);
14740
14741 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14742 "Qbtrace:off", "disable-btrace", 0);
14743
14744 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14745 "Qbtrace:bts", "enable-btrace-bts", 0);
14746
14747 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14748 "Qbtrace:pt", "enable-btrace-pt", 0);
14749
14750 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14751 "qXfer:btrace", "read-btrace", 0);
14752
14753 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14754 "qXfer:btrace-conf", "read-btrace-conf", 0);
14755
14756 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14757 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14758
14759 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14760 "multiprocess-feature", "multiprocess-feature", 0);
14761
14762 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14763 "swbreak-feature", "swbreak-feature", 0);
14764
14765 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14766 "hwbreak-feature", "hwbreak-feature", 0);
14767
14768 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14769 "fork-event-feature", "fork-event-feature", 0);
14770
14771 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14772 "vfork-event-feature", "vfork-event-feature", 0);
14773
14774 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14775 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14776
14777 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14778 "vContSupported", "verbose-resume-supported", 0);
14779
14780 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14781 "exec-event-feature", "exec-event-feature", 0);
14782
14783 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14784 "vCtrlC", "ctrl-c", 0);
14785
14786 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14787 "QThreadEvents", "thread-events", 0);
14788
14789 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14790 "N stop reply", "no-resumed-stop-reply", 0);
14791
14792 /* Assert that we've registered "set remote foo-packet" commands
14793 for all packet configs. */
14794 {
14795 int i;
14796
14797 for (i = 0; i < PACKET_MAX; i++)
14798 {
14799 /* Ideally all configs would have a command associated. Some
14800 still don't though. */
14801 int excepted;
14802
14803 switch (i)
14804 {
14805 case PACKET_QNonStop:
14806 case PACKET_EnableDisableTracepoints_feature:
14807 case PACKET_tracenz_feature:
14808 case PACKET_DisconnectedTracing_feature:
14809 case PACKET_augmented_libraries_svr4_read_feature:
14810 case PACKET_qCRC:
14811 /* Additions to this list need to be well justified:
14812 pre-existing packets are OK; new packets are not. */
14813 excepted = 1;
14814 break;
14815 default:
14816 excepted = 0;
14817 break;
14818 }
14819
14820 /* This catches both forgetting to add a config command, and
14821 forgetting to remove a packet from the exception list. */
14822 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14823 }
14824 }
14825
14826 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14827 Z sub-packet has its own set and show commands, but users may
14828 have sets to this variable in their .gdbinit files (or in their
14829 documentation). */
14830 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14831 &remote_Z_packet_detect, _("\
14832 Set use of remote protocol `Z' packets."), _("\
14833 Show use of remote protocol `Z' packets."), _("\
14834 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14835 packets."),
14836 set_remote_protocol_Z_packet_cmd,
14837 show_remote_protocol_Z_packet_cmd,
14838 /* FIXME: i18n: Use of remote protocol
14839 `Z' packets is %s. */
14840 &remote_set_cmdlist, &remote_show_cmdlist);
14841
14842 add_basic_prefix_cmd ("remote", class_files, _("\
14843 Manipulate files on the remote system.\n\
14844 Transfer files to and from the remote target system."),
14845 &remote_cmdlist, "remote ",
14846 0 /* allow-unknown */, &cmdlist);
14847
14848 add_cmd ("put", class_files, remote_put_command,
14849 _("Copy a local file to the remote system."),
14850 &remote_cmdlist);
14851
14852 add_cmd ("get", class_files, remote_get_command,
14853 _("Copy a remote file to the local system."),
14854 &remote_cmdlist);
14855
14856 add_cmd ("delete", class_files, remote_delete_command,
14857 _("Delete a remote file."),
14858 &remote_cmdlist);
14859
14860 add_setshow_string_noescape_cmd ("exec-file", class_files,
14861 &remote_exec_file_var, _("\
14862 Set the remote pathname for \"run\"."), _("\
14863 Show the remote pathname for \"run\"."), NULL,
14864 set_remote_exec_file,
14865 show_remote_exec_file,
14866 &remote_set_cmdlist,
14867 &remote_show_cmdlist);
14868
14869 add_setshow_boolean_cmd ("range-stepping", class_run,
14870 &use_range_stepping, _("\
14871 Enable or disable range stepping."), _("\
14872 Show whether target-assisted range stepping is enabled."), _("\
14873 If on, and the target supports it, when stepping a source line, GDB\n\
14874 tells the target to step the corresponding range of addresses itself instead\n\
14875 of issuing multiple single-steps. This speeds up source level\n\
14876 stepping. If off, GDB always issues single-steps, even if range\n\
14877 stepping is supported by the target. The default is on."),
14878 set_range_stepping,
14879 show_range_stepping,
14880 &setlist,
14881 &showlist);
14882
14883 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
14884 Set watchdog timer."), _("\
14885 Show watchdog timer."), _("\
14886 When non-zero, this timeout is used instead of waiting forever for a target\n\
14887 to finish a low-level step or continue operation. If the specified amount\n\
14888 of time passes without a response from the target, an error occurs."),
14889 NULL,
14890 show_watchdog,
14891 &setlist, &showlist);
14892
14893 add_setshow_zuinteger_unlimited_cmd ("remote-packet-max-chars", no_class,
14894 &remote_packet_max_chars, _("\
14895 Set the maximum number of characters to display for each remote packet."), _("\
14896 Show the maximum number of characters to display for each remote packet."), _("\
14897 Specify \"unlimited\" to display all the characters."),
14898 NULL, show_remote_packet_max_chars,
14899 &setdebuglist, &showdebuglist);
14900
14901 /* Eventually initialize fileio. See fileio.c */
14902 initialize_remote_fileio (&remote_set_cmdlist, &remote_show_cmdlist);
14903 }
This page took 0.345067 seconds and 5 git commands to generate.