* regcache.c (struct regcache): Add ptid_t member.
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 /* See the GDB User Guide for details of the GDB remote protocol. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include <ctype.h>
29 #include <fcntl.h>
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "exceptions.h"
34 #include "target.h"
35 /*#include "terminal.h" */
36 #include "gdbcmd.h"
37 #include "objfiles.h"
38 #include "gdb-stabs.h"
39 #include "gdbthread.h"
40 #include "remote.h"
41 #include "regcache.h"
42 #include "value.h"
43 #include "gdb_assert.h"
44 #include "observer.h"
45 #include "solib.h"
46 #include "cli/cli-decode.h"
47 #include "cli/cli-setshow.h"
48 #include "target-descriptions.h"
49
50 #include <ctype.h>
51 #include <sys/time.h>
52
53 #include "event-loop.h"
54 #include "event-top.h"
55 #include "inf-loop.h"
56
57 #include <signal.h>
58 #include "serial.h"
59
60 #include "gdbcore.h" /* for exec_bfd */
61
62 #include "remote-fileio.h"
63
64 #include "memory-map.h"
65
66 /* The size to align memory write packets, when practical. The protocol
67 does not guarantee any alignment, and gdb will generate short
68 writes and unaligned writes, but even as a best-effort attempt this
69 can improve bulk transfers. For instance, if a write is misaligned
70 relative to the target's data bus, the stub may need to make an extra
71 round trip fetching data from the target. This doesn't make a
72 huge difference, but it's easy to do, so we try to be helpful.
73
74 The alignment chosen is arbitrary; usually data bus width is
75 important here, not the possibly larger cache line size. */
76 enum { REMOTE_ALIGN_WRITES = 16 };
77
78 /* Prototypes for local functions. */
79 static void cleanup_sigint_signal_handler (void *dummy);
80 static void initialize_sigint_signal_handler (void);
81 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
82
83 static void handle_remote_sigint (int);
84 static void handle_remote_sigint_twice (int);
85 static void async_remote_interrupt (gdb_client_data);
86 void async_remote_interrupt_twice (gdb_client_data);
87
88 static void build_remote_gdbarch_data (void);
89
90 static void remote_files_info (struct target_ops *ignore);
91
92 static void remote_prepare_to_store (struct regcache *regcache);
93
94 static void remote_fetch_registers (struct regcache *regcache, int regno);
95
96 static void remote_resume (ptid_t ptid, int step,
97 enum target_signal siggnal);
98 static void remote_async_resume (ptid_t ptid, int step,
99 enum target_signal siggnal);
100 static void remote_open (char *name, int from_tty);
101 static void remote_async_open (char *name, int from_tty);
102
103 static void extended_remote_open (char *name, int from_tty);
104 static void extended_remote_async_open (char *name, int from_tty);
105
106 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
107 int async_p);
108
109 static void remote_close (int quitting);
110
111 static void remote_store_registers (struct regcache *regcache, int regno);
112
113 static void remote_mourn (void);
114 static void remote_async_mourn (void);
115
116 static void extended_remote_restart (void);
117
118 static void extended_remote_mourn (void);
119
120 static void remote_mourn_1 (struct target_ops *);
121
122 static void remote_send (char **buf, long *sizeof_buf_p);
123
124 static int readchar (int timeout);
125
126 static ptid_t remote_wait (ptid_t ptid,
127 struct target_waitstatus *status);
128 static ptid_t remote_async_wait (ptid_t ptid,
129 struct target_waitstatus *status);
130
131 static void remote_kill (void);
132 static void remote_async_kill (void);
133
134 static int tohex (int nib);
135
136 static void remote_detach (char *args, int from_tty);
137
138 static void remote_interrupt (int signo);
139
140 static void remote_interrupt_twice (int signo);
141
142 static void interrupt_query (void);
143
144 static void set_thread (int, int);
145
146 static int remote_thread_alive (ptid_t);
147
148 static void get_offsets (void);
149
150 static void skip_frame (void);
151
152 static long read_frame (char **buf_p, long *sizeof_buf);
153
154 static int hexnumlen (ULONGEST num);
155
156 static void init_remote_ops (void);
157
158 static void init_extended_remote_ops (void);
159
160 static void remote_stop (void);
161
162 static int ishex (int ch, int *val);
163
164 static int stubhex (int ch);
165
166 static int hexnumstr (char *, ULONGEST);
167
168 static int hexnumnstr (char *, ULONGEST, int);
169
170 static CORE_ADDR remote_address_masked (CORE_ADDR);
171
172 static void print_packet (char *);
173
174 static unsigned long crc32 (unsigned char *, int, unsigned int);
175
176 static void compare_sections_command (char *, int);
177
178 static void packet_command (char *, int);
179
180 static int stub_unpack_int (char *buff, int fieldlength);
181
182 static ptid_t remote_current_thread (ptid_t oldptid);
183
184 static void remote_find_new_threads (void);
185
186 static void record_currthread (int currthread);
187
188 static int fromhex (int a);
189
190 static int hex2bin (const char *hex, gdb_byte *bin, int count);
191
192 static int bin2hex (const gdb_byte *bin, char *hex, int count);
193
194 static int putpkt_binary (char *buf, int cnt);
195
196 static void check_binary_download (CORE_ADDR addr);
197
198 struct packet_config;
199
200 static void show_packet_config_cmd (struct packet_config *config);
201
202 static void update_packet_config (struct packet_config *config);
203
204 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
205 struct cmd_list_element *c);
206
207 static void show_remote_protocol_packet_cmd (struct ui_file *file,
208 int from_tty,
209 struct cmd_list_element *c,
210 const char *value);
211
212 void _initialize_remote (void);
213
214 /* For "set remote" and "show remote". */
215
216 static struct cmd_list_element *remote_set_cmdlist;
217 static struct cmd_list_element *remote_show_cmdlist;
218
219 /* Description of the remote protocol state for the currently
220 connected target. This is per-target state, and independent of the
221 selected architecture. */
222
223 struct remote_state
224 {
225 /* A buffer to use for incoming packets, and its current size. The
226 buffer is grown dynamically for larger incoming packets.
227 Outgoing packets may also be constructed in this buffer.
228 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
229 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
230 packets. */
231 char *buf;
232 long buf_size;
233
234 /* If we negotiated packet size explicitly (and thus can bypass
235 heuristics for the largest packet size that will not overflow
236 a buffer in the stub), this will be set to that packet size.
237 Otherwise zero, meaning to use the guessed size. */
238 long explicit_packet_size;
239 };
240
241 /* This data could be associated with a target, but we do not always
242 have access to the current target when we need it, so for now it is
243 static. This will be fine for as long as only one target is in use
244 at a time. */
245 static struct remote_state remote_state;
246
247 static struct remote_state *
248 get_remote_state_raw (void)
249 {
250 return &remote_state;
251 }
252
253 /* Description of the remote protocol for a given architecture. */
254
255 struct packet_reg
256 {
257 long offset; /* Offset into G packet. */
258 long regnum; /* GDB's internal register number. */
259 LONGEST pnum; /* Remote protocol register number. */
260 int in_g_packet; /* Always part of G packet. */
261 /* long size in bytes; == register_size (current_gdbarch, regnum);
262 at present. */
263 /* char *name; == gdbarch_register_name (current_gdbarch, regnum);
264 at present. */
265 };
266
267 struct remote_arch_state
268 {
269 /* Description of the remote protocol registers. */
270 long sizeof_g_packet;
271
272 /* Description of the remote protocol registers indexed by REGNUM
273 (making an array gdbarch_num_regs in size). */
274 struct packet_reg *regs;
275
276 /* This is the size (in chars) of the first response to the ``g''
277 packet. It is used as a heuristic when determining the maximum
278 size of memory-read and memory-write packets. A target will
279 typically only reserve a buffer large enough to hold the ``g''
280 packet. The size does not include packet overhead (headers and
281 trailers). */
282 long actual_register_packet_size;
283
284 /* This is the maximum size (in chars) of a non read/write packet.
285 It is also used as a cap on the size of read/write packets. */
286 long remote_packet_size;
287 };
288
289
290 /* Handle for retreving the remote protocol data from gdbarch. */
291 static struct gdbarch_data *remote_gdbarch_data_handle;
292
293 static struct remote_arch_state *
294 get_remote_arch_state (void)
295 {
296 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
297 }
298
299 /* Fetch the global remote target state. */
300
301 static struct remote_state *
302 get_remote_state (void)
303 {
304 /* Make sure that the remote architecture state has been
305 initialized, because doing so might reallocate rs->buf. Any
306 function which calls getpkt also needs to be mindful of changes
307 to rs->buf, but this call limits the number of places which run
308 into trouble. */
309 get_remote_arch_state ();
310
311 return get_remote_state_raw ();
312 }
313
314 static int
315 compare_pnums (const void *lhs_, const void *rhs_)
316 {
317 const struct packet_reg * const *lhs = lhs_;
318 const struct packet_reg * const *rhs = rhs_;
319
320 if ((*lhs)->pnum < (*rhs)->pnum)
321 return -1;
322 else if ((*lhs)->pnum == (*rhs)->pnum)
323 return 0;
324 else
325 return 1;
326 }
327
328 static void *
329 init_remote_state (struct gdbarch *gdbarch)
330 {
331 int regnum, num_remote_regs, offset;
332 struct remote_state *rs = get_remote_state_raw ();
333 struct remote_arch_state *rsa;
334 struct packet_reg **remote_regs;
335
336 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
337
338 /* Use the architecture to build a regnum<->pnum table, which will be
339 1:1 unless a feature set specifies otherwise. */
340 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
341 gdbarch_num_regs (current_gdbarch),
342 struct packet_reg);
343 for (regnum = 0; regnum < gdbarch_num_regs (current_gdbarch); regnum++)
344 {
345 struct packet_reg *r = &rsa->regs[regnum];
346
347 if (register_size (current_gdbarch, regnum) == 0)
348 /* Do not try to fetch zero-sized (placeholder) registers. */
349 r->pnum = -1;
350 else
351 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
352
353 r->regnum = regnum;
354 }
355
356 /* Define the g/G packet format as the contents of each register
357 with a remote protocol number, in order of ascending protocol
358 number. */
359
360 remote_regs = alloca (gdbarch_num_regs (current_gdbarch)
361 * sizeof (struct packet_reg *));
362 for (num_remote_regs = 0, regnum = 0;
363 regnum < gdbarch_num_regs (current_gdbarch);
364 regnum++)
365 if (rsa->regs[regnum].pnum != -1)
366 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
367
368 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
369 compare_pnums);
370
371 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
372 {
373 remote_regs[regnum]->in_g_packet = 1;
374 remote_regs[regnum]->offset = offset;
375 offset += register_size (current_gdbarch, remote_regs[regnum]->regnum);
376 }
377
378 /* Record the maximum possible size of the g packet - it may turn out
379 to be smaller. */
380 rsa->sizeof_g_packet = offset;
381
382 /* Default maximum number of characters in a packet body. Many
383 remote stubs have a hardwired buffer size of 400 bytes
384 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
385 as the maximum packet-size to ensure that the packet and an extra
386 NUL character can always fit in the buffer. This stops GDB
387 trashing stubs that try to squeeze an extra NUL into what is
388 already a full buffer (As of 1999-12-04 that was most stubs). */
389 rsa->remote_packet_size = 400 - 1;
390
391 /* This one is filled in when a ``g'' packet is received. */
392 rsa->actual_register_packet_size = 0;
393
394 /* Should rsa->sizeof_g_packet needs more space than the
395 default, adjust the size accordingly. Remember that each byte is
396 encoded as two characters. 32 is the overhead for the packet
397 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
398 (``$NN:G...#NN'') is a better guess, the below has been padded a
399 little. */
400 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
401 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
402
403 /* Make sure that the packet buffer is plenty big enough for
404 this architecture. */
405 if (rs->buf_size < rsa->remote_packet_size)
406 {
407 rs->buf_size = 2 * rsa->remote_packet_size;
408 rs->buf = xrealloc (rs->buf, rs->buf_size);
409 }
410
411 return rsa;
412 }
413
414 /* Return the current allowed size of a remote packet. This is
415 inferred from the current architecture, and should be used to
416 limit the length of outgoing packets. */
417 static long
418 get_remote_packet_size (void)
419 {
420 struct remote_state *rs = get_remote_state ();
421 struct remote_arch_state *rsa = get_remote_arch_state ();
422
423 if (rs->explicit_packet_size)
424 return rs->explicit_packet_size;
425
426 return rsa->remote_packet_size;
427 }
428
429 static struct packet_reg *
430 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
431 {
432 if (regnum < 0 && regnum >= gdbarch_num_regs (current_gdbarch))
433 return NULL;
434 else
435 {
436 struct packet_reg *r = &rsa->regs[regnum];
437 gdb_assert (r->regnum == regnum);
438 return r;
439 }
440 }
441
442 static struct packet_reg *
443 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
444 {
445 int i;
446 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
447 {
448 struct packet_reg *r = &rsa->regs[i];
449 if (r->pnum == pnum)
450 return r;
451 }
452 return NULL;
453 }
454
455 /* FIXME: graces/2002-08-08: These variables should eventually be
456 bound to an instance of the target object (as in gdbarch-tdep()),
457 when such a thing exists. */
458
459 /* This is set to the data address of the access causing the target
460 to stop for a watchpoint. */
461 static CORE_ADDR remote_watch_data_address;
462
463 /* This is non-zero if target stopped for a watchpoint. */
464 static int remote_stopped_by_watchpoint_p;
465
466 static struct target_ops remote_ops;
467
468 static struct target_ops extended_remote_ops;
469
470 /* Temporary target ops. Just like the remote_ops and
471 extended_remote_ops, but with asynchronous support. */
472 static struct target_ops remote_async_ops;
473
474 static struct target_ops extended_async_remote_ops;
475
476 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
477 ``forever'' still use the normal timeout mechanism. This is
478 currently used by the ASYNC code to guarentee that target reads
479 during the initial connect always time-out. Once getpkt has been
480 modified to return a timeout indication and, in turn
481 remote_wait()/wait_for_inferior() have gained a timeout parameter
482 this can go away. */
483 static int wait_forever_enabled_p = 1;
484
485
486 /* This variable chooses whether to send a ^C or a break when the user
487 requests program interruption. Although ^C is usually what remote
488 systems expect, and that is the default here, sometimes a break is
489 preferable instead. */
490
491 static int remote_break;
492
493 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
494 remote_open knows that we don't have a file open when the program
495 starts. */
496 static struct serial *remote_desc = NULL;
497
498 /* This variable sets the number of bits in an address that are to be
499 sent in a memory ("M" or "m") packet. Normally, after stripping
500 leading zeros, the entire address would be sent. This variable
501 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
502 initial implementation of remote.c restricted the address sent in
503 memory packets to ``host::sizeof long'' bytes - (typically 32
504 bits). Consequently, for 64 bit targets, the upper 32 bits of an
505 address was never sent. Since fixing this bug may cause a break in
506 some remote targets this variable is principly provided to
507 facilitate backward compatibility. */
508
509 static int remote_address_size;
510
511 /* Tempoary to track who currently owns the terminal. See
512 target_async_terminal_* for more details. */
513
514 static int remote_async_terminal_ours_p;
515
516 \f
517 /* User configurable variables for the number of characters in a
518 memory read/write packet. MIN (rsa->remote_packet_size,
519 rsa->sizeof_g_packet) is the default. Some targets need smaller
520 values (fifo overruns, et.al.) and some users need larger values
521 (speed up transfers). The variables ``preferred_*'' (the user
522 request), ``current_*'' (what was actually set) and ``forced_*''
523 (Positive - a soft limit, negative - a hard limit). */
524
525 struct memory_packet_config
526 {
527 char *name;
528 long size;
529 int fixed_p;
530 };
531
532 /* Compute the current size of a read/write packet. Since this makes
533 use of ``actual_register_packet_size'' the computation is dynamic. */
534
535 static long
536 get_memory_packet_size (struct memory_packet_config *config)
537 {
538 struct remote_state *rs = get_remote_state ();
539 struct remote_arch_state *rsa = get_remote_arch_state ();
540
541 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
542 law?) that some hosts don't cope very well with large alloca()
543 calls. Eventually the alloca() code will be replaced by calls to
544 xmalloc() and make_cleanups() allowing this restriction to either
545 be lifted or removed. */
546 #ifndef MAX_REMOTE_PACKET_SIZE
547 #define MAX_REMOTE_PACKET_SIZE 16384
548 #endif
549 /* NOTE: 20 ensures we can write at least one byte. */
550 #ifndef MIN_REMOTE_PACKET_SIZE
551 #define MIN_REMOTE_PACKET_SIZE 20
552 #endif
553 long what_they_get;
554 if (config->fixed_p)
555 {
556 if (config->size <= 0)
557 what_they_get = MAX_REMOTE_PACKET_SIZE;
558 else
559 what_they_get = config->size;
560 }
561 else
562 {
563 what_they_get = get_remote_packet_size ();
564 /* Limit the packet to the size specified by the user. */
565 if (config->size > 0
566 && what_they_get > config->size)
567 what_they_get = config->size;
568
569 /* Limit it to the size of the targets ``g'' response unless we have
570 permission from the stub to use a larger packet size. */
571 if (rs->explicit_packet_size == 0
572 && rsa->actual_register_packet_size > 0
573 && what_they_get > rsa->actual_register_packet_size)
574 what_they_get = rsa->actual_register_packet_size;
575 }
576 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
577 what_they_get = MAX_REMOTE_PACKET_SIZE;
578 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
579 what_they_get = MIN_REMOTE_PACKET_SIZE;
580
581 /* Make sure there is room in the global buffer for this packet
582 (including its trailing NUL byte). */
583 if (rs->buf_size < what_they_get + 1)
584 {
585 rs->buf_size = 2 * what_they_get;
586 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
587 }
588
589 return what_they_get;
590 }
591
592 /* Update the size of a read/write packet. If they user wants
593 something really big then do a sanity check. */
594
595 static void
596 set_memory_packet_size (char *args, struct memory_packet_config *config)
597 {
598 int fixed_p = config->fixed_p;
599 long size = config->size;
600 if (args == NULL)
601 error (_("Argument required (integer, `fixed' or `limited')."));
602 else if (strcmp (args, "hard") == 0
603 || strcmp (args, "fixed") == 0)
604 fixed_p = 1;
605 else if (strcmp (args, "soft") == 0
606 || strcmp (args, "limit") == 0)
607 fixed_p = 0;
608 else
609 {
610 char *end;
611 size = strtoul (args, &end, 0);
612 if (args == end)
613 error (_("Invalid %s (bad syntax)."), config->name);
614 #if 0
615 /* Instead of explicitly capping the size of a packet to
616 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
617 instead allowed to set the size to something arbitrarily
618 large. */
619 if (size > MAX_REMOTE_PACKET_SIZE)
620 error (_("Invalid %s (too large)."), config->name);
621 #endif
622 }
623 /* Extra checks? */
624 if (fixed_p && !config->fixed_p)
625 {
626 if (! query (_("The target may not be able to correctly handle a %s\n"
627 "of %ld bytes. Change the packet size? "),
628 config->name, size))
629 error (_("Packet size not changed."));
630 }
631 /* Update the config. */
632 config->fixed_p = fixed_p;
633 config->size = size;
634 }
635
636 static void
637 show_memory_packet_size (struct memory_packet_config *config)
638 {
639 printf_filtered (_("The %s is %ld. "), config->name, config->size);
640 if (config->fixed_p)
641 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
642 get_memory_packet_size (config));
643 else
644 printf_filtered (_("Packets are limited to %ld bytes.\n"),
645 get_memory_packet_size (config));
646 }
647
648 static struct memory_packet_config memory_write_packet_config =
649 {
650 "memory-write-packet-size",
651 };
652
653 static void
654 set_memory_write_packet_size (char *args, int from_tty)
655 {
656 set_memory_packet_size (args, &memory_write_packet_config);
657 }
658
659 static void
660 show_memory_write_packet_size (char *args, int from_tty)
661 {
662 show_memory_packet_size (&memory_write_packet_config);
663 }
664
665 static long
666 get_memory_write_packet_size (void)
667 {
668 return get_memory_packet_size (&memory_write_packet_config);
669 }
670
671 static struct memory_packet_config memory_read_packet_config =
672 {
673 "memory-read-packet-size",
674 };
675
676 static void
677 set_memory_read_packet_size (char *args, int from_tty)
678 {
679 set_memory_packet_size (args, &memory_read_packet_config);
680 }
681
682 static void
683 show_memory_read_packet_size (char *args, int from_tty)
684 {
685 show_memory_packet_size (&memory_read_packet_config);
686 }
687
688 static long
689 get_memory_read_packet_size (void)
690 {
691 long size = get_memory_packet_size (&memory_read_packet_config);
692 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
693 extra buffer size argument before the memory read size can be
694 increased beyond this. */
695 if (size > get_remote_packet_size ())
696 size = get_remote_packet_size ();
697 return size;
698 }
699
700 \f
701 /* Generic configuration support for packets the stub optionally
702 supports. Allows the user to specify the use of the packet as well
703 as allowing GDB to auto-detect support in the remote stub. */
704
705 enum packet_support
706 {
707 PACKET_SUPPORT_UNKNOWN = 0,
708 PACKET_ENABLE,
709 PACKET_DISABLE
710 };
711
712 struct packet_config
713 {
714 const char *name;
715 const char *title;
716 enum auto_boolean detect;
717 enum packet_support support;
718 };
719
720 /* Analyze a packet's return value and update the packet config
721 accordingly. */
722
723 enum packet_result
724 {
725 PACKET_ERROR,
726 PACKET_OK,
727 PACKET_UNKNOWN
728 };
729
730 static void
731 update_packet_config (struct packet_config *config)
732 {
733 switch (config->detect)
734 {
735 case AUTO_BOOLEAN_TRUE:
736 config->support = PACKET_ENABLE;
737 break;
738 case AUTO_BOOLEAN_FALSE:
739 config->support = PACKET_DISABLE;
740 break;
741 case AUTO_BOOLEAN_AUTO:
742 config->support = PACKET_SUPPORT_UNKNOWN;
743 break;
744 }
745 }
746
747 static void
748 show_packet_config_cmd (struct packet_config *config)
749 {
750 char *support = "internal-error";
751 switch (config->support)
752 {
753 case PACKET_ENABLE:
754 support = "enabled";
755 break;
756 case PACKET_DISABLE:
757 support = "disabled";
758 break;
759 case PACKET_SUPPORT_UNKNOWN:
760 support = "unknown";
761 break;
762 }
763 switch (config->detect)
764 {
765 case AUTO_BOOLEAN_AUTO:
766 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
767 config->name, support);
768 break;
769 case AUTO_BOOLEAN_TRUE:
770 case AUTO_BOOLEAN_FALSE:
771 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
772 config->name, support);
773 break;
774 }
775 }
776
777 static void
778 add_packet_config_cmd (struct packet_config *config, const char *name,
779 const char *title, int legacy)
780 {
781 char *set_doc;
782 char *show_doc;
783 char *cmd_name;
784
785 config->name = name;
786 config->title = title;
787 config->detect = AUTO_BOOLEAN_AUTO;
788 config->support = PACKET_SUPPORT_UNKNOWN;
789 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
790 name, title);
791 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
792 name, title);
793 /* set/show TITLE-packet {auto,on,off} */
794 cmd_name = xstrprintf ("%s-packet", title);
795 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
796 &config->detect, set_doc, show_doc, NULL, /* help_doc */
797 set_remote_protocol_packet_cmd,
798 show_remote_protocol_packet_cmd,
799 &remote_set_cmdlist, &remote_show_cmdlist);
800 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
801 if (legacy)
802 {
803 char *legacy_name;
804 legacy_name = xstrprintf ("%s-packet", name);
805 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
806 &remote_set_cmdlist);
807 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
808 &remote_show_cmdlist);
809 }
810 }
811
812 static enum packet_result
813 packet_check_result (const char *buf)
814 {
815 if (buf[0] != '\0')
816 {
817 /* The stub recognized the packet request. Check that the
818 operation succeeded. */
819 if (buf[0] == 'E'
820 && isxdigit (buf[1]) && isxdigit (buf[2])
821 && buf[3] == '\0')
822 /* "Enn" - definitly an error. */
823 return PACKET_ERROR;
824
825 /* Always treat "E." as an error. This will be used for
826 more verbose error messages, such as E.memtypes. */
827 if (buf[0] == 'E' && buf[1] == '.')
828 return PACKET_ERROR;
829
830 /* The packet may or may not be OK. Just assume it is. */
831 return PACKET_OK;
832 }
833 else
834 /* The stub does not support the packet. */
835 return PACKET_UNKNOWN;
836 }
837
838 static enum packet_result
839 packet_ok (const char *buf, struct packet_config *config)
840 {
841 enum packet_result result;
842
843 result = packet_check_result (buf);
844 switch (result)
845 {
846 case PACKET_OK:
847 case PACKET_ERROR:
848 /* The stub recognized the packet request. */
849 switch (config->support)
850 {
851 case PACKET_SUPPORT_UNKNOWN:
852 if (remote_debug)
853 fprintf_unfiltered (gdb_stdlog,
854 "Packet %s (%s) is supported\n",
855 config->name, config->title);
856 config->support = PACKET_ENABLE;
857 break;
858 case PACKET_DISABLE:
859 internal_error (__FILE__, __LINE__,
860 _("packet_ok: attempt to use a disabled packet"));
861 break;
862 case PACKET_ENABLE:
863 break;
864 }
865 break;
866 case PACKET_UNKNOWN:
867 /* The stub does not support the packet. */
868 switch (config->support)
869 {
870 case PACKET_ENABLE:
871 if (config->detect == AUTO_BOOLEAN_AUTO)
872 /* If the stub previously indicated that the packet was
873 supported then there is a protocol error.. */
874 error (_("Protocol error: %s (%s) conflicting enabled responses."),
875 config->name, config->title);
876 else
877 /* The user set it wrong. */
878 error (_("Enabled packet %s (%s) not recognized by stub"),
879 config->name, config->title);
880 break;
881 case PACKET_SUPPORT_UNKNOWN:
882 if (remote_debug)
883 fprintf_unfiltered (gdb_stdlog,
884 "Packet %s (%s) is NOT supported\n",
885 config->name, config->title);
886 config->support = PACKET_DISABLE;
887 break;
888 case PACKET_DISABLE:
889 break;
890 }
891 break;
892 }
893
894 return result;
895 }
896
897 enum {
898 PACKET_vCont = 0,
899 PACKET_X,
900 PACKET_qSymbol,
901 PACKET_P,
902 PACKET_p,
903 PACKET_Z0,
904 PACKET_Z1,
905 PACKET_Z2,
906 PACKET_Z3,
907 PACKET_Z4,
908 PACKET_qXfer_auxv,
909 PACKET_qXfer_features,
910 PACKET_qXfer_memory_map,
911 PACKET_qXfer_spu_read,
912 PACKET_qXfer_spu_write,
913 PACKET_qGetTLSAddr,
914 PACKET_qSupported,
915 PACKET_QPassSignals,
916 PACKET_MAX
917 };
918
919 static struct packet_config remote_protocol_packets[PACKET_MAX];
920
921 static void
922 set_remote_protocol_packet_cmd (char *args, int from_tty,
923 struct cmd_list_element *c)
924 {
925 struct packet_config *packet;
926
927 for (packet = remote_protocol_packets;
928 packet < &remote_protocol_packets[PACKET_MAX];
929 packet++)
930 {
931 if (&packet->detect == c->var)
932 {
933 update_packet_config (packet);
934 return;
935 }
936 }
937 internal_error (__FILE__, __LINE__, "Could not find config for %s",
938 c->name);
939 }
940
941 static void
942 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
943 struct cmd_list_element *c,
944 const char *value)
945 {
946 struct packet_config *packet;
947
948 for (packet = remote_protocol_packets;
949 packet < &remote_protocol_packets[PACKET_MAX];
950 packet++)
951 {
952 if (&packet->detect == c->var)
953 {
954 show_packet_config_cmd (packet);
955 return;
956 }
957 }
958 internal_error (__FILE__, __LINE__, "Could not find config for %s",
959 c->name);
960 }
961
962 /* Should we try one of the 'Z' requests? */
963
964 enum Z_packet_type
965 {
966 Z_PACKET_SOFTWARE_BP,
967 Z_PACKET_HARDWARE_BP,
968 Z_PACKET_WRITE_WP,
969 Z_PACKET_READ_WP,
970 Z_PACKET_ACCESS_WP,
971 NR_Z_PACKET_TYPES
972 };
973
974 /* For compatibility with older distributions. Provide a ``set remote
975 Z-packet ...'' command that updates all the Z packet types. */
976
977 static enum auto_boolean remote_Z_packet_detect;
978
979 static void
980 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
981 struct cmd_list_element *c)
982 {
983 int i;
984 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
985 {
986 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
987 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
988 }
989 }
990
991 static void
992 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
993 struct cmd_list_element *c,
994 const char *value)
995 {
996 int i;
997 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
998 {
999 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1000 }
1001 }
1002
1003 /* Should we try the 'ThreadInfo' query packet?
1004
1005 This variable (NOT available to the user: auto-detect only!)
1006 determines whether GDB will use the new, simpler "ThreadInfo"
1007 query or the older, more complex syntax for thread queries.
1008 This is an auto-detect variable (set to true at each connect,
1009 and set to false when the target fails to recognize it). */
1010
1011 static int use_threadinfo_query;
1012 static int use_threadextra_query;
1013
1014 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1015 static struct async_signal_handler *sigint_remote_twice_token;
1016 static struct async_signal_handler *sigint_remote_token;
1017
1018 /* These are pointers to hook functions that may be set in order to
1019 modify resume/wait behavior for a particular architecture. */
1020
1021 void (*deprecated_target_resume_hook) (void);
1022 void (*deprecated_target_wait_loop_hook) (void);
1023 \f
1024
1025
1026 /* These are the threads which we last sent to the remote system.
1027 -1 for all or -2 for not sent yet. */
1028 static int general_thread;
1029 static int continue_thread;
1030
1031 /* Call this function as a result of
1032 1) A halt indication (T packet) containing a thread id
1033 2) A direct query of currthread
1034 3) Successful execution of set thread
1035 */
1036
1037 static void
1038 record_currthread (int currthread)
1039 {
1040 general_thread = currthread;
1041
1042 /* If this is a new thread, add it to GDB's thread list.
1043 If we leave it up to WFI to do this, bad things will happen. */
1044 if (!in_thread_list (pid_to_ptid (currthread)))
1045 {
1046 add_thread (pid_to_ptid (currthread));
1047 ui_out_text (uiout, "[New ");
1048 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1049 ui_out_text (uiout, "]\n");
1050 }
1051 }
1052
1053 static char *last_pass_packet;
1054
1055 /* If 'QPassSignals' is supported, tell the remote stub what signals
1056 it can simply pass through to the inferior without reporting. */
1057
1058 static void
1059 remote_pass_signals (void)
1060 {
1061 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1062 {
1063 char *pass_packet, *p;
1064 int numsigs = (int) TARGET_SIGNAL_LAST;
1065 int count = 0, i;
1066
1067 gdb_assert (numsigs < 256);
1068 for (i = 0; i < numsigs; i++)
1069 {
1070 if (signal_stop_state (i) == 0
1071 && signal_print_state (i) == 0
1072 && signal_pass_state (i) == 1)
1073 count++;
1074 }
1075 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1076 strcpy (pass_packet, "QPassSignals:");
1077 p = pass_packet + strlen (pass_packet);
1078 for (i = 0; i < numsigs; i++)
1079 {
1080 if (signal_stop_state (i) == 0
1081 && signal_print_state (i) == 0
1082 && signal_pass_state (i) == 1)
1083 {
1084 if (i >= 16)
1085 *p++ = tohex (i >> 4);
1086 *p++ = tohex (i & 15);
1087 if (count)
1088 *p++ = ';';
1089 else
1090 break;
1091 count--;
1092 }
1093 }
1094 *p = 0;
1095 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1096 {
1097 struct remote_state *rs = get_remote_state ();
1098 char *buf = rs->buf;
1099
1100 putpkt (pass_packet);
1101 getpkt (&rs->buf, &rs->buf_size, 0);
1102 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1103 if (last_pass_packet)
1104 xfree (last_pass_packet);
1105 last_pass_packet = pass_packet;
1106 }
1107 else
1108 xfree (pass_packet);
1109 }
1110 }
1111
1112 #define MAGIC_NULL_PID 42000
1113
1114 static void
1115 set_thread (int th, int gen)
1116 {
1117 struct remote_state *rs = get_remote_state ();
1118 char *buf = rs->buf;
1119 int state = gen ? general_thread : continue_thread;
1120
1121 if (state == th)
1122 return;
1123
1124 buf[0] = 'H';
1125 buf[1] = gen ? 'g' : 'c';
1126 if (th == MAGIC_NULL_PID)
1127 {
1128 buf[2] = '0';
1129 buf[3] = '\0';
1130 }
1131 else if (th < 0)
1132 xsnprintf (&buf[2], get_remote_packet_size () - 2, "-%x", -th);
1133 else
1134 xsnprintf (&buf[2], get_remote_packet_size () - 2, "%x", th);
1135 putpkt (buf);
1136 getpkt (&rs->buf, &rs->buf_size, 0);
1137 if (gen)
1138 general_thread = th;
1139 else
1140 continue_thread = th;
1141 }
1142 \f
1143 /* Return nonzero if the thread TH is still alive on the remote system. */
1144
1145 static int
1146 remote_thread_alive (ptid_t ptid)
1147 {
1148 struct remote_state *rs = get_remote_state ();
1149 int tid = PIDGET (ptid);
1150
1151 if (tid < 0)
1152 xsnprintf (rs->buf, get_remote_packet_size (), "T-%08x", -tid);
1153 else
1154 xsnprintf (rs->buf, get_remote_packet_size (), "T%08x", tid);
1155 putpkt (rs->buf);
1156 getpkt (&rs->buf, &rs->buf_size, 0);
1157 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1158 }
1159
1160 /* About these extended threadlist and threadinfo packets. They are
1161 variable length packets but, the fields within them are often fixed
1162 length. They are redundent enough to send over UDP as is the
1163 remote protocol in general. There is a matching unit test module
1164 in libstub. */
1165
1166 #define OPAQUETHREADBYTES 8
1167
1168 /* a 64 bit opaque identifier */
1169 typedef unsigned char threadref[OPAQUETHREADBYTES];
1170
1171 /* WARNING: This threadref data structure comes from the remote O.S.,
1172 libstub protocol encoding, and remote.c. it is not particularly
1173 changable. */
1174
1175 /* Right now, the internal structure is int. We want it to be bigger.
1176 Plan to fix this.
1177 */
1178
1179 typedef int gdb_threadref; /* Internal GDB thread reference. */
1180
1181 /* gdb_ext_thread_info is an internal GDB data structure which is
1182 equivalent to the reply of the remote threadinfo packet. */
1183
1184 struct gdb_ext_thread_info
1185 {
1186 threadref threadid; /* External form of thread reference. */
1187 int active; /* Has state interesting to GDB?
1188 regs, stack. */
1189 char display[256]; /* Brief state display, name,
1190 blocked/suspended. */
1191 char shortname[32]; /* To be used to name threads. */
1192 char more_display[256]; /* Long info, statistics, queue depth,
1193 whatever. */
1194 };
1195
1196 /* The volume of remote transfers can be limited by submitting
1197 a mask containing bits specifying the desired information.
1198 Use a union of these values as the 'selection' parameter to
1199 get_thread_info. FIXME: Make these TAG names more thread specific.
1200 */
1201
1202 #define TAG_THREADID 1
1203 #define TAG_EXISTS 2
1204 #define TAG_DISPLAY 4
1205 #define TAG_THREADNAME 8
1206 #define TAG_MOREDISPLAY 16
1207
1208 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1209
1210 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1211
1212 static char *unpack_nibble (char *buf, int *val);
1213
1214 static char *pack_nibble (char *buf, int nibble);
1215
1216 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1217
1218 static char *unpack_byte (char *buf, int *value);
1219
1220 static char *pack_int (char *buf, int value);
1221
1222 static char *unpack_int (char *buf, int *value);
1223
1224 static char *unpack_string (char *src, char *dest, int length);
1225
1226 static char *pack_threadid (char *pkt, threadref *id);
1227
1228 static char *unpack_threadid (char *inbuf, threadref *id);
1229
1230 void int_to_threadref (threadref *id, int value);
1231
1232 static int threadref_to_int (threadref *ref);
1233
1234 static void copy_threadref (threadref *dest, threadref *src);
1235
1236 static int threadmatch (threadref *dest, threadref *src);
1237
1238 static char *pack_threadinfo_request (char *pkt, int mode,
1239 threadref *id);
1240
1241 static int remote_unpack_thread_info_response (char *pkt,
1242 threadref *expectedref,
1243 struct gdb_ext_thread_info
1244 *info);
1245
1246
1247 static int remote_get_threadinfo (threadref *threadid,
1248 int fieldset, /*TAG mask */
1249 struct gdb_ext_thread_info *info);
1250
1251 static char *pack_threadlist_request (char *pkt, int startflag,
1252 int threadcount,
1253 threadref *nextthread);
1254
1255 static int parse_threadlist_response (char *pkt,
1256 int result_limit,
1257 threadref *original_echo,
1258 threadref *resultlist,
1259 int *doneflag);
1260
1261 static int remote_get_threadlist (int startflag,
1262 threadref *nextthread,
1263 int result_limit,
1264 int *done,
1265 int *result_count,
1266 threadref *threadlist);
1267
1268 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1269
1270 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1271 void *context, int looplimit);
1272
1273 static int remote_newthread_step (threadref *ref, void *context);
1274
1275 /* Encode 64 bits in 16 chars of hex. */
1276
1277 static const char hexchars[] = "0123456789abcdef";
1278
1279 static int
1280 ishex (int ch, int *val)
1281 {
1282 if ((ch >= 'a') && (ch <= 'f'))
1283 {
1284 *val = ch - 'a' + 10;
1285 return 1;
1286 }
1287 if ((ch >= 'A') && (ch <= 'F'))
1288 {
1289 *val = ch - 'A' + 10;
1290 return 1;
1291 }
1292 if ((ch >= '0') && (ch <= '9'))
1293 {
1294 *val = ch - '0';
1295 return 1;
1296 }
1297 return 0;
1298 }
1299
1300 static int
1301 stubhex (int ch)
1302 {
1303 if (ch >= 'a' && ch <= 'f')
1304 return ch - 'a' + 10;
1305 if (ch >= '0' && ch <= '9')
1306 return ch - '0';
1307 if (ch >= 'A' && ch <= 'F')
1308 return ch - 'A' + 10;
1309 return -1;
1310 }
1311
1312 static int
1313 stub_unpack_int (char *buff, int fieldlength)
1314 {
1315 int nibble;
1316 int retval = 0;
1317
1318 while (fieldlength)
1319 {
1320 nibble = stubhex (*buff++);
1321 retval |= nibble;
1322 fieldlength--;
1323 if (fieldlength)
1324 retval = retval << 4;
1325 }
1326 return retval;
1327 }
1328
1329 char *
1330 unpack_varlen_hex (char *buff, /* packet to parse */
1331 ULONGEST *result)
1332 {
1333 int nibble;
1334 ULONGEST retval = 0;
1335
1336 while (ishex (*buff, &nibble))
1337 {
1338 buff++;
1339 retval = retval << 4;
1340 retval |= nibble & 0x0f;
1341 }
1342 *result = retval;
1343 return buff;
1344 }
1345
1346 static char *
1347 unpack_nibble (char *buf, int *val)
1348 {
1349 ishex (*buf++, val);
1350 return buf;
1351 }
1352
1353 static char *
1354 pack_nibble (char *buf, int nibble)
1355 {
1356 *buf++ = hexchars[(nibble & 0x0f)];
1357 return buf;
1358 }
1359
1360 static char *
1361 pack_hex_byte (char *pkt, int byte)
1362 {
1363 *pkt++ = hexchars[(byte >> 4) & 0xf];
1364 *pkt++ = hexchars[(byte & 0xf)];
1365 return pkt;
1366 }
1367
1368 static char *
1369 unpack_byte (char *buf, int *value)
1370 {
1371 *value = stub_unpack_int (buf, 2);
1372 return buf + 2;
1373 }
1374
1375 static char *
1376 pack_int (char *buf, int value)
1377 {
1378 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1379 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1380 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1381 buf = pack_hex_byte (buf, (value & 0xff));
1382 return buf;
1383 }
1384
1385 static char *
1386 unpack_int (char *buf, int *value)
1387 {
1388 *value = stub_unpack_int (buf, 8);
1389 return buf + 8;
1390 }
1391
1392 #if 0 /* Currently unused, uncomment when needed. */
1393 static char *pack_string (char *pkt, char *string);
1394
1395 static char *
1396 pack_string (char *pkt, char *string)
1397 {
1398 char ch;
1399 int len;
1400
1401 len = strlen (string);
1402 if (len > 200)
1403 len = 200; /* Bigger than most GDB packets, junk??? */
1404 pkt = pack_hex_byte (pkt, len);
1405 while (len-- > 0)
1406 {
1407 ch = *string++;
1408 if ((ch == '\0') || (ch == '#'))
1409 ch = '*'; /* Protect encapsulation. */
1410 *pkt++ = ch;
1411 }
1412 return pkt;
1413 }
1414 #endif /* 0 (unused) */
1415
1416 static char *
1417 unpack_string (char *src, char *dest, int length)
1418 {
1419 while (length--)
1420 *dest++ = *src++;
1421 *dest = '\0';
1422 return src;
1423 }
1424
1425 static char *
1426 pack_threadid (char *pkt, threadref *id)
1427 {
1428 char *limit;
1429 unsigned char *altid;
1430
1431 altid = (unsigned char *) id;
1432 limit = pkt + BUF_THREAD_ID_SIZE;
1433 while (pkt < limit)
1434 pkt = pack_hex_byte (pkt, *altid++);
1435 return pkt;
1436 }
1437
1438
1439 static char *
1440 unpack_threadid (char *inbuf, threadref *id)
1441 {
1442 char *altref;
1443 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1444 int x, y;
1445
1446 altref = (char *) id;
1447
1448 while (inbuf < limit)
1449 {
1450 x = stubhex (*inbuf++);
1451 y = stubhex (*inbuf++);
1452 *altref++ = (x << 4) | y;
1453 }
1454 return inbuf;
1455 }
1456
1457 /* Externally, threadrefs are 64 bits but internally, they are still
1458 ints. This is due to a mismatch of specifications. We would like
1459 to use 64bit thread references internally. This is an adapter
1460 function. */
1461
1462 void
1463 int_to_threadref (threadref *id, int value)
1464 {
1465 unsigned char *scan;
1466
1467 scan = (unsigned char *) id;
1468 {
1469 int i = 4;
1470 while (i--)
1471 *scan++ = 0;
1472 }
1473 *scan++ = (value >> 24) & 0xff;
1474 *scan++ = (value >> 16) & 0xff;
1475 *scan++ = (value >> 8) & 0xff;
1476 *scan++ = (value & 0xff);
1477 }
1478
1479 static int
1480 threadref_to_int (threadref *ref)
1481 {
1482 int i, value = 0;
1483 unsigned char *scan;
1484
1485 scan = *ref;
1486 scan += 4;
1487 i = 4;
1488 while (i-- > 0)
1489 value = (value << 8) | ((*scan++) & 0xff);
1490 return value;
1491 }
1492
1493 static void
1494 copy_threadref (threadref *dest, threadref *src)
1495 {
1496 int i;
1497 unsigned char *csrc, *cdest;
1498
1499 csrc = (unsigned char *) src;
1500 cdest = (unsigned char *) dest;
1501 i = 8;
1502 while (i--)
1503 *cdest++ = *csrc++;
1504 }
1505
1506 static int
1507 threadmatch (threadref *dest, threadref *src)
1508 {
1509 /* Things are broken right now, so just assume we got a match. */
1510 #if 0
1511 unsigned char *srcp, *destp;
1512 int i, result;
1513 srcp = (char *) src;
1514 destp = (char *) dest;
1515
1516 result = 1;
1517 while (i-- > 0)
1518 result &= (*srcp++ == *destp++) ? 1 : 0;
1519 return result;
1520 #endif
1521 return 1;
1522 }
1523
1524 /*
1525 threadid:1, # always request threadid
1526 context_exists:2,
1527 display:4,
1528 unique_name:8,
1529 more_display:16
1530 */
1531
1532 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1533
1534 static char *
1535 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1536 {
1537 *pkt++ = 'q'; /* Info Query */
1538 *pkt++ = 'P'; /* process or thread info */
1539 pkt = pack_int (pkt, mode); /* mode */
1540 pkt = pack_threadid (pkt, id); /* threadid */
1541 *pkt = '\0'; /* terminate */
1542 return pkt;
1543 }
1544
1545 /* These values tag the fields in a thread info response packet. */
1546 /* Tagging the fields allows us to request specific fields and to
1547 add more fields as time goes by. */
1548
1549 #define TAG_THREADID 1 /* Echo the thread identifier. */
1550 #define TAG_EXISTS 2 /* Is this process defined enough to
1551 fetch registers and its stack? */
1552 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1553 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1554 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1555 the process. */
1556
1557 static int
1558 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1559 struct gdb_ext_thread_info *info)
1560 {
1561 struct remote_state *rs = get_remote_state ();
1562 int mask, length;
1563 int tag;
1564 threadref ref;
1565 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1566 int retval = 1;
1567
1568 /* info->threadid = 0; FIXME: implement zero_threadref. */
1569 info->active = 0;
1570 info->display[0] = '\0';
1571 info->shortname[0] = '\0';
1572 info->more_display[0] = '\0';
1573
1574 /* Assume the characters indicating the packet type have been
1575 stripped. */
1576 pkt = unpack_int (pkt, &mask); /* arg mask */
1577 pkt = unpack_threadid (pkt, &ref);
1578
1579 if (mask == 0)
1580 warning (_("Incomplete response to threadinfo request."));
1581 if (!threadmatch (&ref, expectedref))
1582 { /* This is an answer to a different request. */
1583 warning (_("ERROR RMT Thread info mismatch."));
1584 return 0;
1585 }
1586 copy_threadref (&info->threadid, &ref);
1587
1588 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1589
1590 /* Packets are terminated with nulls. */
1591 while ((pkt < limit) && mask && *pkt)
1592 {
1593 pkt = unpack_int (pkt, &tag); /* tag */
1594 pkt = unpack_byte (pkt, &length); /* length */
1595 if (!(tag & mask)) /* Tags out of synch with mask. */
1596 {
1597 warning (_("ERROR RMT: threadinfo tag mismatch."));
1598 retval = 0;
1599 break;
1600 }
1601 if (tag == TAG_THREADID)
1602 {
1603 if (length != 16)
1604 {
1605 warning (_("ERROR RMT: length of threadid is not 16."));
1606 retval = 0;
1607 break;
1608 }
1609 pkt = unpack_threadid (pkt, &ref);
1610 mask = mask & ~TAG_THREADID;
1611 continue;
1612 }
1613 if (tag == TAG_EXISTS)
1614 {
1615 info->active = stub_unpack_int (pkt, length);
1616 pkt += length;
1617 mask = mask & ~(TAG_EXISTS);
1618 if (length > 8)
1619 {
1620 warning (_("ERROR RMT: 'exists' length too long."));
1621 retval = 0;
1622 break;
1623 }
1624 continue;
1625 }
1626 if (tag == TAG_THREADNAME)
1627 {
1628 pkt = unpack_string (pkt, &info->shortname[0], length);
1629 mask = mask & ~TAG_THREADNAME;
1630 continue;
1631 }
1632 if (tag == TAG_DISPLAY)
1633 {
1634 pkt = unpack_string (pkt, &info->display[0], length);
1635 mask = mask & ~TAG_DISPLAY;
1636 continue;
1637 }
1638 if (tag == TAG_MOREDISPLAY)
1639 {
1640 pkt = unpack_string (pkt, &info->more_display[0], length);
1641 mask = mask & ~TAG_MOREDISPLAY;
1642 continue;
1643 }
1644 warning (_("ERROR RMT: unknown thread info tag."));
1645 break; /* Not a tag we know about. */
1646 }
1647 return retval;
1648 }
1649
1650 static int
1651 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1652 struct gdb_ext_thread_info *info)
1653 {
1654 struct remote_state *rs = get_remote_state ();
1655 int result;
1656
1657 pack_threadinfo_request (rs->buf, fieldset, threadid);
1658 putpkt (rs->buf);
1659 getpkt (&rs->buf, &rs->buf_size, 0);
1660 result = remote_unpack_thread_info_response (rs->buf + 2,
1661 threadid, info);
1662 return result;
1663 }
1664
1665 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1666
1667 static char *
1668 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1669 threadref *nextthread)
1670 {
1671 *pkt++ = 'q'; /* info query packet */
1672 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1673 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1674 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1675 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1676 *pkt = '\0';
1677 return pkt;
1678 }
1679
1680 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1681
1682 static int
1683 parse_threadlist_response (char *pkt, int result_limit,
1684 threadref *original_echo, threadref *resultlist,
1685 int *doneflag)
1686 {
1687 struct remote_state *rs = get_remote_state ();
1688 char *limit;
1689 int count, resultcount, done;
1690
1691 resultcount = 0;
1692 /* Assume the 'q' and 'M chars have been stripped. */
1693 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1694 /* done parse past here */
1695 pkt = unpack_byte (pkt, &count); /* count field */
1696 pkt = unpack_nibble (pkt, &done);
1697 /* The first threadid is the argument threadid. */
1698 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1699 while ((count-- > 0) && (pkt < limit))
1700 {
1701 pkt = unpack_threadid (pkt, resultlist++);
1702 if (resultcount++ >= result_limit)
1703 break;
1704 }
1705 if (doneflag)
1706 *doneflag = done;
1707 return resultcount;
1708 }
1709
1710 static int
1711 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1712 int *done, int *result_count, threadref *threadlist)
1713 {
1714 struct remote_state *rs = get_remote_state ();
1715 static threadref echo_nextthread;
1716 int result = 1;
1717
1718 /* Trancate result limit to be smaller than the packet size. */
1719 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1720 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1721
1722 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1723 putpkt (rs->buf);
1724 getpkt (&rs->buf, &rs->buf_size, 0);
1725
1726 *result_count =
1727 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1728 threadlist, done);
1729
1730 if (!threadmatch (&echo_nextthread, nextthread))
1731 {
1732 /* FIXME: This is a good reason to drop the packet. */
1733 /* Possably, there is a duplicate response. */
1734 /* Possabilities :
1735 retransmit immediatly - race conditions
1736 retransmit after timeout - yes
1737 exit
1738 wait for packet, then exit
1739 */
1740 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1741 return 0; /* I choose simply exiting. */
1742 }
1743 if (*result_count <= 0)
1744 {
1745 if (*done != 1)
1746 {
1747 warning (_("RMT ERROR : failed to get remote thread list."));
1748 result = 0;
1749 }
1750 return result; /* break; */
1751 }
1752 if (*result_count > result_limit)
1753 {
1754 *result_count = 0;
1755 warning (_("RMT ERROR: threadlist response longer than requested."));
1756 return 0;
1757 }
1758 return result;
1759 }
1760
1761 /* This is the interface between remote and threads, remotes upper
1762 interface. */
1763
1764 /* remote_find_new_threads retrieves the thread list and for each
1765 thread in the list, looks up the thread in GDB's internal list,
1766 ading the thread if it does not already exist. This involves
1767 getting partial thread lists from the remote target so, polling the
1768 quit_flag is required. */
1769
1770
1771 /* About this many threadisds fit in a packet. */
1772
1773 #define MAXTHREADLISTRESULTS 32
1774
1775 static int
1776 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1777 int looplimit)
1778 {
1779 int done, i, result_count;
1780 int startflag = 1;
1781 int result = 1;
1782 int loopcount = 0;
1783 static threadref nextthread;
1784 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1785
1786 done = 0;
1787 while (!done)
1788 {
1789 if (loopcount++ > looplimit)
1790 {
1791 result = 0;
1792 warning (_("Remote fetch threadlist -infinite loop-."));
1793 break;
1794 }
1795 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1796 &done, &result_count, resultthreadlist))
1797 {
1798 result = 0;
1799 break;
1800 }
1801 /* Clear for later iterations. */
1802 startflag = 0;
1803 /* Setup to resume next batch of thread references, set nextthread. */
1804 if (result_count >= 1)
1805 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1806 i = 0;
1807 while (result_count--)
1808 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1809 break;
1810 }
1811 return result;
1812 }
1813
1814 static int
1815 remote_newthread_step (threadref *ref, void *context)
1816 {
1817 ptid_t ptid;
1818
1819 ptid = pid_to_ptid (threadref_to_int (ref));
1820
1821 if (!in_thread_list (ptid))
1822 add_thread (ptid);
1823 return 1; /* continue iterator */
1824 }
1825
1826 #define CRAZY_MAX_THREADS 1000
1827
1828 static ptid_t
1829 remote_current_thread (ptid_t oldpid)
1830 {
1831 struct remote_state *rs = get_remote_state ();
1832
1833 putpkt ("qC");
1834 getpkt (&rs->buf, &rs->buf_size, 0);
1835 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
1836 /* Use strtoul here, so we'll correctly parse values whose highest
1837 bit is set. The protocol carries them as a simple series of
1838 hex digits; in the absence of a sign, strtol will see such
1839 values as positive numbers out of range for signed 'long', and
1840 return LONG_MAX to indicate an overflow. */
1841 return pid_to_ptid (strtoul (&rs->buf[2], NULL, 16));
1842 else
1843 return oldpid;
1844 }
1845
1846 /* Find new threads for info threads command.
1847 * Original version, using John Metzler's thread protocol.
1848 */
1849
1850 static void
1851 remote_find_new_threads (void)
1852 {
1853 remote_threadlist_iterator (remote_newthread_step, 0,
1854 CRAZY_MAX_THREADS);
1855 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1856 inferior_ptid = remote_current_thread (inferior_ptid);
1857 }
1858
1859 /*
1860 * Find all threads for info threads command.
1861 * Uses new thread protocol contributed by Cisco.
1862 * Falls back and attempts to use the older method (above)
1863 * if the target doesn't respond to the new method.
1864 */
1865
1866 static void
1867 remote_threads_info (void)
1868 {
1869 struct remote_state *rs = get_remote_state ();
1870 char *bufp;
1871 int tid;
1872
1873 if (remote_desc == 0) /* paranoia */
1874 error (_("Command can only be used when connected to the remote target."));
1875
1876 if (use_threadinfo_query)
1877 {
1878 putpkt ("qfThreadInfo");
1879 getpkt (&rs->buf, &rs->buf_size, 0);
1880 bufp = rs->buf;
1881 if (bufp[0] != '\0') /* q packet recognized */
1882 {
1883 while (*bufp++ == 'm') /* reply contains one or more TID */
1884 {
1885 do
1886 {
1887 /* Use strtoul here, so we'll correctly parse values
1888 whose highest bit is set. The protocol carries
1889 them as a simple series of hex digits; in the
1890 absence of a sign, strtol will see such values as
1891 positive numbers out of range for signed 'long',
1892 and return LONG_MAX to indicate an overflow. */
1893 tid = strtoul (bufp, &bufp, 16);
1894 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1895 add_thread (pid_to_ptid (tid));
1896 }
1897 while (*bufp++ == ','); /* comma-separated list */
1898 putpkt ("qsThreadInfo");
1899 getpkt (&rs->buf, &rs->buf_size, 0);
1900 bufp = rs->buf;
1901 }
1902 return; /* done */
1903 }
1904 }
1905
1906 /* Else fall back to old method based on jmetzler protocol. */
1907 use_threadinfo_query = 0;
1908 remote_find_new_threads ();
1909 return;
1910 }
1911
1912 /*
1913 * Collect a descriptive string about the given thread.
1914 * The target may say anything it wants to about the thread
1915 * (typically info about its blocked / runnable state, name, etc.).
1916 * This string will appear in the info threads display.
1917 *
1918 * Optional: targets are not required to implement this function.
1919 */
1920
1921 static char *
1922 remote_threads_extra_info (struct thread_info *tp)
1923 {
1924 struct remote_state *rs = get_remote_state ();
1925 int result;
1926 int set;
1927 threadref id;
1928 struct gdb_ext_thread_info threadinfo;
1929 static char display_buf[100]; /* arbitrary... */
1930 int n = 0; /* position in display_buf */
1931
1932 if (remote_desc == 0) /* paranoia */
1933 internal_error (__FILE__, __LINE__,
1934 _("remote_threads_extra_info"));
1935
1936 if (use_threadextra_query)
1937 {
1938 xsnprintf (rs->buf, get_remote_packet_size (), "qThreadExtraInfo,%x",
1939 PIDGET (tp->ptid));
1940 putpkt (rs->buf);
1941 getpkt (&rs->buf, &rs->buf_size, 0);
1942 if (rs->buf[0] != 0)
1943 {
1944 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
1945 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
1946 display_buf [result] = '\0';
1947 return display_buf;
1948 }
1949 }
1950
1951 /* If the above query fails, fall back to the old method. */
1952 use_threadextra_query = 0;
1953 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1954 | TAG_MOREDISPLAY | TAG_DISPLAY;
1955 int_to_threadref (&id, PIDGET (tp->ptid));
1956 if (remote_get_threadinfo (&id, set, &threadinfo))
1957 if (threadinfo.active)
1958 {
1959 if (*threadinfo.shortname)
1960 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
1961 " Name: %s,", threadinfo.shortname);
1962 if (*threadinfo.display)
1963 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1964 " State: %s,", threadinfo.display);
1965 if (*threadinfo.more_display)
1966 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1967 " Priority: %s", threadinfo.more_display);
1968
1969 if (n > 0)
1970 {
1971 /* For purely cosmetic reasons, clear up trailing commas. */
1972 if (',' == display_buf[n-1])
1973 display_buf[n-1] = ' ';
1974 return display_buf;
1975 }
1976 }
1977 return NULL;
1978 }
1979 \f
1980
1981 /* Restart the remote side; this is an extended protocol operation. */
1982
1983 static void
1984 extended_remote_restart (void)
1985 {
1986 struct remote_state *rs = get_remote_state ();
1987
1988 /* Send the restart command; for reasons I don't understand the
1989 remote side really expects a number after the "R". */
1990 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
1991 putpkt (rs->buf);
1992
1993 remote_fileio_reset ();
1994
1995 /* Now query for status so this looks just like we restarted
1996 gdbserver from scratch. */
1997 putpkt ("?");
1998 getpkt (&rs->buf, &rs->buf_size, 0);
1999 }
2000 \f
2001 /* Clean up connection to a remote debugger. */
2002
2003 static void
2004 remote_close (int quitting)
2005 {
2006 if (remote_desc)
2007 serial_close (remote_desc);
2008 remote_desc = NULL;
2009 }
2010
2011 /* Query the remote side for the text, data and bss offsets. */
2012
2013 static void
2014 get_offsets (void)
2015 {
2016 struct remote_state *rs = get_remote_state ();
2017 char *buf;
2018 char *ptr;
2019 int lose;
2020 CORE_ADDR text_addr, data_addr, bss_addr;
2021 struct section_offsets *offs;
2022
2023 putpkt ("qOffsets");
2024 getpkt (&rs->buf, &rs->buf_size, 0);
2025 buf = rs->buf;
2026
2027 if (buf[0] == '\000')
2028 return; /* Return silently. Stub doesn't support
2029 this command. */
2030 if (buf[0] == 'E')
2031 {
2032 warning (_("Remote failure reply: %s"), buf);
2033 return;
2034 }
2035
2036 /* Pick up each field in turn. This used to be done with scanf, but
2037 scanf will make trouble if CORE_ADDR size doesn't match
2038 conversion directives correctly. The following code will work
2039 with any size of CORE_ADDR. */
2040 text_addr = data_addr = bss_addr = 0;
2041 ptr = buf;
2042 lose = 0;
2043
2044 if (strncmp (ptr, "Text=", 5) == 0)
2045 {
2046 ptr += 5;
2047 /* Don't use strtol, could lose on big values. */
2048 while (*ptr && *ptr != ';')
2049 text_addr = (text_addr << 4) + fromhex (*ptr++);
2050 }
2051 else
2052 lose = 1;
2053
2054 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
2055 {
2056 ptr += 6;
2057 while (*ptr && *ptr != ';')
2058 data_addr = (data_addr << 4) + fromhex (*ptr++);
2059 }
2060 else
2061 lose = 1;
2062
2063 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2064 {
2065 ptr += 5;
2066 while (*ptr && *ptr != ';')
2067 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2068 }
2069 else
2070 lose = 1;
2071
2072 if (lose)
2073 error (_("Malformed response to offset query, %s"), buf);
2074
2075 if (symfile_objfile == NULL)
2076 return;
2077
2078 offs = ((struct section_offsets *)
2079 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2080 memcpy (offs, symfile_objfile->section_offsets,
2081 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2082
2083 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2084
2085 /* This is a temporary kludge to force data and bss to use the same offsets
2086 because that's what nlmconv does now. The real solution requires changes
2087 to the stub and remote.c that I don't have time to do right now. */
2088
2089 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2090 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2091
2092 objfile_relocate (symfile_objfile, offs);
2093 }
2094
2095 /* Stub for catch_exception. */
2096
2097 static void
2098 remote_start_remote (struct ui_out *uiout, void *from_tty_p)
2099 {
2100 int from_tty = * (int *) from_tty_p;
2101
2102 immediate_quit++; /* Allow user to interrupt it. */
2103
2104 /* Ack any packet which the remote side has already sent. */
2105 serial_write (remote_desc, "+", 1);
2106
2107 /* Let the stub know that we want it to return the thread. */
2108 set_thread (-1, 0);
2109
2110 inferior_ptid = remote_current_thread (inferior_ptid);
2111
2112 get_offsets (); /* Get text, data & bss offsets. */
2113
2114 putpkt ("?"); /* Initiate a query from remote machine. */
2115 immediate_quit--;
2116
2117 start_remote (from_tty); /* Initialize gdb process mechanisms. */
2118 }
2119
2120 /* Open a connection to a remote debugger.
2121 NAME is the filename used for communication. */
2122
2123 static void
2124 remote_open (char *name, int from_tty)
2125 {
2126 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2127 }
2128
2129 /* Just like remote_open, but with asynchronous support. */
2130 static void
2131 remote_async_open (char *name, int from_tty)
2132 {
2133 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2134 }
2135
2136 /* Open a connection to a remote debugger using the extended
2137 remote gdb protocol. NAME is the filename used for communication. */
2138
2139 static void
2140 extended_remote_open (char *name, int from_tty)
2141 {
2142 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2143 0 /* async_p */);
2144 }
2145
2146 /* Just like extended_remote_open, but with asynchronous support. */
2147 static void
2148 extended_remote_async_open (char *name, int from_tty)
2149 {
2150 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2151 1 /*extended_p */, 1 /* async_p */);
2152 }
2153
2154 /* Generic code for opening a connection to a remote target. */
2155
2156 static void
2157 init_all_packet_configs (void)
2158 {
2159 int i;
2160 for (i = 0; i < PACKET_MAX; i++)
2161 update_packet_config (&remote_protocol_packets[i]);
2162 }
2163
2164 /* Symbol look-up. */
2165
2166 static void
2167 remote_check_symbols (struct objfile *objfile)
2168 {
2169 struct remote_state *rs = get_remote_state ();
2170 char *msg, *reply, *tmp;
2171 struct minimal_symbol *sym;
2172 int end;
2173
2174 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2175 return;
2176
2177 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2178 because we need both at the same time. */
2179 msg = alloca (get_remote_packet_size ());
2180
2181 /* Invite target to request symbol lookups. */
2182
2183 putpkt ("qSymbol::");
2184 getpkt (&rs->buf, &rs->buf_size, 0);
2185 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2186 reply = rs->buf;
2187
2188 while (strncmp (reply, "qSymbol:", 8) == 0)
2189 {
2190 tmp = &reply[8];
2191 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2192 msg[end] = '\0';
2193 sym = lookup_minimal_symbol (msg, NULL, NULL);
2194 if (sym == NULL)
2195 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2196 else
2197 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2198 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2199 &reply[8]);
2200 putpkt (msg);
2201 getpkt (&rs->buf, &rs->buf_size, 0);
2202 reply = rs->buf;
2203 }
2204 }
2205
2206 static struct serial *
2207 remote_serial_open (char *name)
2208 {
2209 static int udp_warning = 0;
2210
2211 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2212 of in ser-tcp.c, because it is the remote protocol assuming that the
2213 serial connection is reliable and not the serial connection promising
2214 to be. */
2215 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2216 {
2217 warning (_("\
2218 The remote protocol may be unreliable over UDP.\n\
2219 Some events may be lost, rendering further debugging impossible."));
2220 udp_warning = 1;
2221 }
2222
2223 return serial_open (name);
2224 }
2225
2226 /* This type describes each known response to the qSupported
2227 packet. */
2228 struct protocol_feature
2229 {
2230 /* The name of this protocol feature. */
2231 const char *name;
2232
2233 /* The default for this protocol feature. */
2234 enum packet_support default_support;
2235
2236 /* The function to call when this feature is reported, or after
2237 qSupported processing if the feature is not supported.
2238 The first argument points to this structure. The second
2239 argument indicates whether the packet requested support be
2240 enabled, disabled, or probed (or the default, if this function
2241 is being called at the end of processing and this feature was
2242 not reported). The third argument may be NULL; if not NULL, it
2243 is a NUL-terminated string taken from the packet following
2244 this feature's name and an equals sign. */
2245 void (*func) (const struct protocol_feature *, enum packet_support,
2246 const char *);
2247
2248 /* The corresponding packet for this feature. Only used if
2249 FUNC is remote_supported_packet. */
2250 int packet;
2251 };
2252
2253 static void
2254 remote_supported_packet (const struct protocol_feature *feature,
2255 enum packet_support support,
2256 const char *argument)
2257 {
2258 if (argument)
2259 {
2260 warning (_("Remote qSupported response supplied an unexpected value for"
2261 " \"%s\"."), feature->name);
2262 return;
2263 }
2264
2265 if (remote_protocol_packets[feature->packet].support
2266 == PACKET_SUPPORT_UNKNOWN)
2267 remote_protocol_packets[feature->packet].support = support;
2268 }
2269
2270 static void
2271 remote_packet_size (const struct protocol_feature *feature,
2272 enum packet_support support, const char *value)
2273 {
2274 struct remote_state *rs = get_remote_state ();
2275
2276 int packet_size;
2277 char *value_end;
2278
2279 if (support != PACKET_ENABLE)
2280 return;
2281
2282 if (value == NULL || *value == '\0')
2283 {
2284 warning (_("Remote target reported \"%s\" without a size."),
2285 feature->name);
2286 return;
2287 }
2288
2289 errno = 0;
2290 packet_size = strtol (value, &value_end, 16);
2291 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2292 {
2293 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2294 feature->name, value);
2295 return;
2296 }
2297
2298 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2299 {
2300 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2301 packet_size, MAX_REMOTE_PACKET_SIZE);
2302 packet_size = MAX_REMOTE_PACKET_SIZE;
2303 }
2304
2305 /* Record the new maximum packet size. */
2306 rs->explicit_packet_size = packet_size;
2307 }
2308
2309 static struct protocol_feature remote_protocol_features[] = {
2310 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2311 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2312 PACKET_qXfer_auxv },
2313 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
2314 PACKET_qXfer_features },
2315 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2316 PACKET_qXfer_memory_map },
2317 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
2318 PACKET_qXfer_spu_read },
2319 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
2320 PACKET_qXfer_spu_write },
2321 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2322 PACKET_QPassSignals },
2323 };
2324
2325 static void
2326 remote_query_supported (void)
2327 {
2328 struct remote_state *rs = get_remote_state ();
2329 char *next;
2330 int i;
2331 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2332
2333 /* The packet support flags are handled differently for this packet
2334 than for most others. We treat an error, a disabled packet, and
2335 an empty response identically: any features which must be reported
2336 to be used will be automatically disabled. An empty buffer
2337 accomplishes this, since that is also the representation for a list
2338 containing no features. */
2339
2340 rs->buf[0] = 0;
2341 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2342 {
2343 putpkt ("qSupported");
2344 getpkt (&rs->buf, &rs->buf_size, 0);
2345
2346 /* If an error occured, warn, but do not return - just reset the
2347 buffer to empty and go on to disable features. */
2348 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2349 == PACKET_ERROR)
2350 {
2351 warning (_("Remote failure reply: %s"), rs->buf);
2352 rs->buf[0] = 0;
2353 }
2354 }
2355
2356 memset (seen, 0, sizeof (seen));
2357
2358 next = rs->buf;
2359 while (*next)
2360 {
2361 enum packet_support is_supported;
2362 char *p, *end, *name_end, *value;
2363
2364 /* First separate out this item from the rest of the packet. If
2365 there's another item after this, we overwrite the separator
2366 (terminated strings are much easier to work with). */
2367 p = next;
2368 end = strchr (p, ';');
2369 if (end == NULL)
2370 {
2371 end = p + strlen (p);
2372 next = end;
2373 }
2374 else
2375 {
2376 *end = '\0';
2377 next = end + 1;
2378
2379 if (end == p)
2380 {
2381 warning (_("empty item in \"qSupported\" response"));
2382 continue;
2383 }
2384 }
2385
2386 name_end = strchr (p, '=');
2387 if (name_end)
2388 {
2389 /* This is a name=value entry. */
2390 is_supported = PACKET_ENABLE;
2391 value = name_end + 1;
2392 *name_end = '\0';
2393 }
2394 else
2395 {
2396 value = NULL;
2397 switch (end[-1])
2398 {
2399 case '+':
2400 is_supported = PACKET_ENABLE;
2401 break;
2402
2403 case '-':
2404 is_supported = PACKET_DISABLE;
2405 break;
2406
2407 case '?':
2408 is_supported = PACKET_SUPPORT_UNKNOWN;
2409 break;
2410
2411 default:
2412 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
2413 continue;
2414 }
2415 end[-1] = '\0';
2416 }
2417
2418 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2419 if (strcmp (remote_protocol_features[i].name, p) == 0)
2420 {
2421 const struct protocol_feature *feature;
2422
2423 seen[i] = 1;
2424 feature = &remote_protocol_features[i];
2425 feature->func (feature, is_supported, value);
2426 break;
2427 }
2428 }
2429
2430 /* If we increased the packet size, make sure to increase the global
2431 buffer size also. We delay this until after parsing the entire
2432 qSupported packet, because this is the same buffer we were
2433 parsing. */
2434 if (rs->buf_size < rs->explicit_packet_size)
2435 {
2436 rs->buf_size = rs->explicit_packet_size;
2437 rs->buf = xrealloc (rs->buf, rs->buf_size);
2438 }
2439
2440 /* Handle the defaults for unmentioned features. */
2441 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2442 if (!seen[i])
2443 {
2444 const struct protocol_feature *feature;
2445
2446 feature = &remote_protocol_features[i];
2447 feature->func (feature, feature->default_support, NULL);
2448 }
2449 }
2450
2451
2452 static void
2453 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2454 int extended_p, int async_p)
2455 {
2456 struct remote_state *rs = get_remote_state ();
2457 if (name == 0)
2458 error (_("To open a remote debug connection, you need to specify what\n"
2459 "serial device is attached to the remote system\n"
2460 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2461
2462 /* See FIXME above. */
2463 if (!async_p)
2464 wait_forever_enabled_p = 1;
2465
2466 target_preopen (from_tty);
2467
2468 unpush_target (target);
2469
2470 /* Make sure we send the passed signals list the next time we resume. */
2471 xfree (last_pass_packet);
2472 last_pass_packet = NULL;
2473
2474 remote_fileio_reset ();
2475 reopen_exec_file ();
2476 reread_symbols ();
2477
2478 remote_desc = remote_serial_open (name);
2479 if (!remote_desc)
2480 perror_with_name (name);
2481
2482 if (baud_rate != -1)
2483 {
2484 if (serial_setbaudrate (remote_desc, baud_rate))
2485 {
2486 /* The requested speed could not be set. Error out to
2487 top level after closing remote_desc. Take care to
2488 set remote_desc to NULL to avoid closing remote_desc
2489 more than once. */
2490 serial_close (remote_desc);
2491 remote_desc = NULL;
2492 perror_with_name (name);
2493 }
2494 }
2495
2496 serial_raw (remote_desc);
2497
2498 /* If there is something sitting in the buffer we might take it as a
2499 response to a command, which would be bad. */
2500 serial_flush_input (remote_desc);
2501
2502 if (from_tty)
2503 {
2504 puts_filtered ("Remote debugging using ");
2505 puts_filtered (name);
2506 puts_filtered ("\n");
2507 }
2508 push_target (target); /* Switch to using remote target now. */
2509
2510 /* Reset the target state; these things will be queried either by
2511 remote_query_supported or as they are needed. */
2512 init_all_packet_configs ();
2513 rs->explicit_packet_size = 0;
2514
2515 general_thread = -2;
2516 continue_thread = -2;
2517
2518 /* Probe for ability to use "ThreadInfo" query, as required. */
2519 use_threadinfo_query = 1;
2520 use_threadextra_query = 1;
2521
2522 /* The first packet we send to the target is the optional "supported
2523 packets" request. If the target can answer this, it will tell us
2524 which later probes to skip. */
2525 remote_query_supported ();
2526
2527 /* Next, if the target can specify a description, read it. We do
2528 this before anything involving memory or registers. */
2529 target_find_description ();
2530
2531 /* Without this, some commands which require an active target (such
2532 as kill) won't work. This variable serves (at least) double duty
2533 as both the pid of the target process (if it has such), and as a
2534 flag indicating that a target is active. These functions should
2535 be split out into seperate variables, especially since GDB will
2536 someday have a notion of debugging several processes. */
2537
2538 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2539
2540 if (async_p)
2541 {
2542 /* With this target we start out by owning the terminal. */
2543 remote_async_terminal_ours_p = 1;
2544
2545 /* FIXME: cagney/1999-09-23: During the initial connection it is
2546 assumed that the target is already ready and able to respond to
2547 requests. Unfortunately remote_start_remote() eventually calls
2548 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2549 around this. Eventually a mechanism that allows
2550 wait_for_inferior() to expect/get timeouts will be
2551 implemented. */
2552 wait_forever_enabled_p = 0;
2553 }
2554
2555 /* First delete any symbols previously loaded from shared libraries. */
2556 no_shared_libraries (NULL, 0);
2557
2558 /* Start the remote connection. If error() or QUIT, discard this
2559 target (we'd otherwise be in an inconsistent state) and then
2560 propogate the error on up the exception chain. This ensures that
2561 the caller doesn't stumble along blindly assuming that the
2562 function succeeded. The CLI doesn't have this problem but other
2563 UI's, such as MI do.
2564
2565 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2566 this function should return an error indication letting the
2567 caller restore the previous state. Unfortunately the command
2568 ``target remote'' is directly wired to this function making that
2569 impossible. On a positive note, the CLI side of this problem has
2570 been fixed - the function set_cmd_context() makes it possible for
2571 all the ``target ....'' commands to share a common callback
2572 function. See cli-dump.c. */
2573 {
2574 struct gdb_exception ex
2575 = catch_exception (uiout, remote_start_remote, &from_tty,
2576 RETURN_MASK_ALL);
2577 if (ex.reason < 0)
2578 {
2579 pop_target ();
2580 if (async_p)
2581 wait_forever_enabled_p = 1;
2582 throw_exception (ex);
2583 }
2584 }
2585
2586 if (async_p)
2587 wait_forever_enabled_p = 1;
2588
2589 if (extended_p)
2590 {
2591 /* Tell the remote that we are using the extended protocol. */
2592 putpkt ("!");
2593 getpkt (&rs->buf, &rs->buf_size, 0);
2594 }
2595
2596 if (exec_bfd) /* No use without an exec file. */
2597 remote_check_symbols (symfile_objfile);
2598 }
2599
2600 /* This takes a program previously attached to and detaches it. After
2601 this is done, GDB can be used to debug some other program. We
2602 better not have left any breakpoints in the target program or it'll
2603 die when it hits one. */
2604
2605 static void
2606 remote_detach (char *args, int from_tty)
2607 {
2608 struct remote_state *rs = get_remote_state ();
2609
2610 if (args)
2611 error (_("Argument given to \"detach\" when remotely debugging."));
2612
2613 /* Tell the remote target to detach. */
2614 strcpy (rs->buf, "D");
2615 putpkt (rs->buf);
2616 getpkt (&rs->buf, &rs->buf_size, 0);
2617
2618 if (rs->buf[0] == 'E')
2619 error (_("Can't detach process."));
2620
2621 /* Unregister the file descriptor from the event loop. */
2622 if (target_is_async_p ())
2623 serial_async (remote_desc, NULL, 0);
2624
2625 target_mourn_inferior ();
2626 if (from_tty)
2627 puts_filtered ("Ending remote debugging.\n");
2628 }
2629
2630 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2631
2632 static void
2633 remote_disconnect (struct target_ops *target, char *args, int from_tty)
2634 {
2635 if (args)
2636 error (_("Argument given to \"detach\" when remotely debugging."));
2637
2638 /* Unregister the file descriptor from the event loop. */
2639 if (target_is_async_p ())
2640 serial_async (remote_desc, NULL, 0);
2641
2642 target_mourn_inferior ();
2643 if (from_tty)
2644 puts_filtered ("Ending remote debugging.\n");
2645 }
2646
2647 /* Convert hex digit A to a number. */
2648
2649 static int
2650 fromhex (int a)
2651 {
2652 if (a >= '0' && a <= '9')
2653 return a - '0';
2654 else if (a >= 'a' && a <= 'f')
2655 return a - 'a' + 10;
2656 else if (a >= 'A' && a <= 'F')
2657 return a - 'A' + 10;
2658 else
2659 error (_("Reply contains invalid hex digit %d"), a);
2660 }
2661
2662 static int
2663 hex2bin (const char *hex, gdb_byte *bin, int count)
2664 {
2665 int i;
2666
2667 for (i = 0; i < count; i++)
2668 {
2669 if (hex[0] == 0 || hex[1] == 0)
2670 {
2671 /* Hex string is short, or of uneven length.
2672 Return the count that has been converted so far. */
2673 return i;
2674 }
2675 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2676 hex += 2;
2677 }
2678 return i;
2679 }
2680
2681 /* Convert number NIB to a hex digit. */
2682
2683 static int
2684 tohex (int nib)
2685 {
2686 if (nib < 10)
2687 return '0' + nib;
2688 else
2689 return 'a' + nib - 10;
2690 }
2691
2692 static int
2693 bin2hex (const gdb_byte *bin, char *hex, int count)
2694 {
2695 int i;
2696 /* May use a length, or a nul-terminated string as input. */
2697 if (count == 0)
2698 count = strlen ((char *) bin);
2699
2700 for (i = 0; i < count; i++)
2701 {
2702 *hex++ = tohex ((*bin >> 4) & 0xf);
2703 *hex++ = tohex (*bin++ & 0xf);
2704 }
2705 *hex = 0;
2706 return i;
2707 }
2708 \f
2709 /* Check for the availability of vCont. This function should also check
2710 the response. */
2711
2712 static void
2713 remote_vcont_probe (struct remote_state *rs)
2714 {
2715 char *buf;
2716
2717 strcpy (rs->buf, "vCont?");
2718 putpkt (rs->buf);
2719 getpkt (&rs->buf, &rs->buf_size, 0);
2720 buf = rs->buf;
2721
2722 /* Make sure that the features we assume are supported. */
2723 if (strncmp (buf, "vCont", 5) == 0)
2724 {
2725 char *p = &buf[5];
2726 int support_s, support_S, support_c, support_C;
2727
2728 support_s = 0;
2729 support_S = 0;
2730 support_c = 0;
2731 support_C = 0;
2732 while (p && *p == ';')
2733 {
2734 p++;
2735 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2736 support_s = 1;
2737 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2738 support_S = 1;
2739 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2740 support_c = 1;
2741 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2742 support_C = 1;
2743
2744 p = strchr (p, ';');
2745 }
2746
2747 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2748 BUF will make packet_ok disable the packet. */
2749 if (!support_s || !support_S || !support_c || !support_C)
2750 buf[0] = 0;
2751 }
2752
2753 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
2754 }
2755
2756 /* Resume the remote inferior by using a "vCont" packet. The thread
2757 to be resumed is PTID; STEP and SIGGNAL indicate whether the
2758 resumed thread should be single-stepped and/or signalled. If PTID's
2759 PID is -1, then all threads are resumed; the thread to be stepped and/or
2760 signalled is given in the global INFERIOR_PTID. This function returns
2761 non-zero iff it resumes the inferior.
2762
2763 This function issues a strict subset of all possible vCont commands at the
2764 moment. */
2765
2766 static int
2767 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
2768 {
2769 struct remote_state *rs = get_remote_state ();
2770 int pid = PIDGET (ptid);
2771 char *buf = NULL, *outbuf;
2772 struct cleanup *old_cleanup;
2773
2774 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
2775 remote_vcont_probe (rs);
2776
2777 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
2778 return 0;
2779
2780 /* If we could generate a wider range of packets, we'd have to worry
2781 about overflowing BUF. Should there be a generic
2782 "multi-part-packet" packet? */
2783
2784 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
2785 {
2786 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
2787 don't have any PID numbers the inferior will understand. Make sure
2788 to only send forms that do not specify a PID. */
2789 if (step && siggnal != TARGET_SIGNAL_0)
2790 outbuf = xstrprintf ("vCont;S%02x", siggnal);
2791 else if (step)
2792 outbuf = xstrprintf ("vCont;s");
2793 else if (siggnal != TARGET_SIGNAL_0)
2794 outbuf = xstrprintf ("vCont;C%02x", siggnal);
2795 else
2796 outbuf = xstrprintf ("vCont;c");
2797 }
2798 else if (pid == -1)
2799 {
2800 /* Resume all threads, with preference for INFERIOR_PTID. */
2801 if (step && siggnal != TARGET_SIGNAL_0)
2802 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
2803 PIDGET (inferior_ptid));
2804 else if (step)
2805 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
2806 else if (siggnal != TARGET_SIGNAL_0)
2807 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
2808 PIDGET (inferior_ptid));
2809 else
2810 outbuf = xstrprintf ("vCont;c");
2811 }
2812 else
2813 {
2814 /* Scheduler locking; resume only PTID. */
2815 if (step && siggnal != TARGET_SIGNAL_0)
2816 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
2817 else if (step)
2818 outbuf = xstrprintf ("vCont;s:%x", pid);
2819 else if (siggnal != TARGET_SIGNAL_0)
2820 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
2821 else
2822 outbuf = xstrprintf ("vCont;c:%x", pid);
2823 }
2824
2825 gdb_assert (outbuf && strlen (outbuf) < get_remote_packet_size ());
2826 old_cleanup = make_cleanup (xfree, outbuf);
2827
2828 putpkt (outbuf);
2829
2830 do_cleanups (old_cleanup);
2831
2832 return 1;
2833 }
2834
2835 /* Tell the remote machine to resume. */
2836
2837 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2838
2839 static int last_sent_step;
2840
2841 static void
2842 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2843 {
2844 struct remote_state *rs = get_remote_state ();
2845 char *buf;
2846 int pid = PIDGET (ptid);
2847
2848 last_sent_signal = siggnal;
2849 last_sent_step = step;
2850
2851 /* A hook for when we need to do something at the last moment before
2852 resumption. */
2853 if (deprecated_target_resume_hook)
2854 (*deprecated_target_resume_hook) ();
2855
2856 /* Update the inferior on signals to silently pass, if they've changed. */
2857 remote_pass_signals ();
2858
2859 /* The vCont packet doesn't need to specify threads via Hc. */
2860 if (remote_vcont_resume (ptid, step, siggnal))
2861 return;
2862
2863 /* All other supported resume packets do use Hc, so call set_thread. */
2864 if (pid == -1)
2865 set_thread (0, 0); /* Run any thread. */
2866 else
2867 set_thread (pid, 0); /* Run this thread. */
2868
2869 buf = rs->buf;
2870 if (siggnal != TARGET_SIGNAL_0)
2871 {
2872 buf[0] = step ? 'S' : 'C';
2873 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2874 buf[2] = tohex (((int) siggnal) & 0xf);
2875 buf[3] = '\0';
2876 }
2877 else
2878 strcpy (buf, step ? "s" : "c");
2879
2880 putpkt (buf);
2881 }
2882
2883 /* Same as remote_resume, but with async support. */
2884 static void
2885 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2886 {
2887 remote_resume (ptid, step, siggnal);
2888
2889 /* We are about to start executing the inferior, let's register it
2890 with the event loop. NOTE: this is the one place where all the
2891 execution commands end up. We could alternatively do this in each
2892 of the execution commands in infcmd.c. */
2893 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2894 into infcmd.c in order to allow inferior function calls to work
2895 NOT asynchronously. */
2896 if (target_can_async_p ())
2897 target_async (inferior_event_handler, 0);
2898 /* Tell the world that the target is now executing. */
2899 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2900 this? Instead, should the client of target just assume (for
2901 async targets) that the target is going to start executing? Is
2902 this information already found in the continuation block? */
2903 if (target_is_async_p ())
2904 target_executing = 1;
2905 }
2906 \f
2907
2908 /* Set up the signal handler for SIGINT, while the target is
2909 executing, ovewriting the 'regular' SIGINT signal handler. */
2910 static void
2911 initialize_sigint_signal_handler (void)
2912 {
2913 sigint_remote_token =
2914 create_async_signal_handler (async_remote_interrupt, NULL);
2915 signal (SIGINT, handle_remote_sigint);
2916 }
2917
2918 /* Signal handler for SIGINT, while the target is executing. */
2919 static void
2920 handle_remote_sigint (int sig)
2921 {
2922 signal (sig, handle_remote_sigint_twice);
2923 sigint_remote_twice_token =
2924 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2925 mark_async_signal_handler_wrapper (sigint_remote_token);
2926 }
2927
2928 /* Signal handler for SIGINT, installed after SIGINT has already been
2929 sent once. It will take effect the second time that the user sends
2930 a ^C. */
2931 static void
2932 handle_remote_sigint_twice (int sig)
2933 {
2934 signal (sig, handle_sigint);
2935 sigint_remote_twice_token =
2936 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2937 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2938 }
2939
2940 /* Perform the real interruption of the target execution, in response
2941 to a ^C. */
2942 static void
2943 async_remote_interrupt (gdb_client_data arg)
2944 {
2945 if (remote_debug)
2946 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2947
2948 target_stop ();
2949 }
2950
2951 /* Perform interrupt, if the first attempt did not succeed. Just give
2952 up on the target alltogether. */
2953 void
2954 async_remote_interrupt_twice (gdb_client_data arg)
2955 {
2956 if (remote_debug)
2957 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2958 /* Do something only if the target was not killed by the previous
2959 cntl-C. */
2960 if (target_executing)
2961 {
2962 interrupt_query ();
2963 signal (SIGINT, handle_remote_sigint);
2964 }
2965 }
2966
2967 /* Reinstall the usual SIGINT handlers, after the target has
2968 stopped. */
2969 static void
2970 cleanup_sigint_signal_handler (void *dummy)
2971 {
2972 signal (SIGINT, handle_sigint);
2973 if (sigint_remote_twice_token)
2974 delete_async_signal_handler (&sigint_remote_twice_token);
2975 if (sigint_remote_token)
2976 delete_async_signal_handler (&sigint_remote_token);
2977 }
2978
2979 /* Send ^C to target to halt it. Target will respond, and send us a
2980 packet. */
2981 static void (*ofunc) (int);
2982
2983 /* The command line interface's stop routine. This function is installed
2984 as a signal handler for SIGINT. The first time a user requests a
2985 stop, we call remote_stop to send a break or ^C. If there is no
2986 response from the target (it didn't stop when the user requested it),
2987 we ask the user if he'd like to detach from the target. */
2988 static void
2989 remote_interrupt (int signo)
2990 {
2991 /* If this doesn't work, try more severe steps. */
2992 signal (signo, remote_interrupt_twice);
2993
2994 if (remote_debug)
2995 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2996
2997 target_stop ();
2998 }
2999
3000 /* The user typed ^C twice. */
3001
3002 static void
3003 remote_interrupt_twice (int signo)
3004 {
3005 signal (signo, ofunc);
3006 interrupt_query ();
3007 signal (signo, remote_interrupt);
3008 }
3009
3010 /* This is the generic stop called via the target vector. When a target
3011 interrupt is requested, either by the command line or the GUI, we
3012 will eventually end up here. */
3013 static void
3014 remote_stop (void)
3015 {
3016 /* Send a break or a ^C, depending on user preference. */
3017 if (remote_debug)
3018 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
3019
3020 if (remote_break)
3021 serial_send_break (remote_desc);
3022 else
3023 serial_write (remote_desc, "\003", 1);
3024 }
3025
3026 /* Ask the user what to do when an interrupt is received. */
3027
3028 static void
3029 interrupt_query (void)
3030 {
3031 target_terminal_ours ();
3032
3033 if (query ("Interrupted while waiting for the program.\n\
3034 Give up (and stop debugging it)? "))
3035 {
3036 target_mourn_inferior ();
3037 deprecated_throw_reason (RETURN_QUIT);
3038 }
3039
3040 target_terminal_inferior ();
3041 }
3042
3043 /* Enable/disable target terminal ownership. Most targets can use
3044 terminal groups to control terminal ownership. Remote targets are
3045 different in that explicit transfer of ownership to/from GDB/target
3046 is required. */
3047
3048 static void
3049 remote_async_terminal_inferior (void)
3050 {
3051 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3052 sync_execution here. This function should only be called when
3053 GDB is resuming the inferior in the forground. A background
3054 resume (``run&'') should leave GDB in control of the terminal and
3055 consequently should not call this code. */
3056 if (!sync_execution)
3057 return;
3058 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3059 calls target_terminal_*() idenpotent. The event-loop GDB talking
3060 to an asynchronous target with a synchronous command calls this
3061 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3062 stops trying to transfer the terminal to the target when it
3063 shouldn't this guard can go away. */
3064 if (!remote_async_terminal_ours_p)
3065 return;
3066 delete_file_handler (input_fd);
3067 remote_async_terminal_ours_p = 0;
3068 initialize_sigint_signal_handler ();
3069 /* NOTE: At this point we could also register our selves as the
3070 recipient of all input. Any characters typed could then be
3071 passed on down to the target. */
3072 }
3073
3074 static void
3075 remote_async_terminal_ours (void)
3076 {
3077 /* See FIXME in remote_async_terminal_inferior. */
3078 if (!sync_execution)
3079 return;
3080 /* See FIXME in remote_async_terminal_inferior. */
3081 if (remote_async_terminal_ours_p)
3082 return;
3083 cleanup_sigint_signal_handler (NULL);
3084 add_file_handler (input_fd, stdin_event_handler, 0);
3085 remote_async_terminal_ours_p = 1;
3086 }
3087
3088 /* If nonzero, ignore the next kill. */
3089
3090 int kill_kludge;
3091
3092 void
3093 remote_console_output (char *msg)
3094 {
3095 char *p;
3096
3097 for (p = msg; p[0] && p[1]; p += 2)
3098 {
3099 char tb[2];
3100 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
3101 tb[0] = c;
3102 tb[1] = 0;
3103 fputs_unfiltered (tb, gdb_stdtarg);
3104 }
3105 gdb_flush (gdb_stdtarg);
3106 }
3107
3108 /* Wait until the remote machine stops, then return,
3109 storing status in STATUS just as `wait' would.
3110 Returns "pid", which in the case of a multi-threaded
3111 remote OS, is the thread-id. */
3112
3113 static ptid_t
3114 remote_wait (ptid_t ptid, struct target_waitstatus *status)
3115 {
3116 struct remote_state *rs = get_remote_state ();
3117 struct remote_arch_state *rsa = get_remote_arch_state ();
3118 ULONGEST thread_num = -1;
3119 ULONGEST addr;
3120
3121 status->kind = TARGET_WAITKIND_EXITED;
3122 status->value.integer = 0;
3123
3124 while (1)
3125 {
3126 char *buf, *p;
3127
3128 ofunc = signal (SIGINT, remote_interrupt);
3129 getpkt (&rs->buf, &rs->buf_size, 1);
3130 signal (SIGINT, ofunc);
3131
3132 buf = rs->buf;
3133
3134 /* This is a hook for when we need to do something (perhaps the
3135 collection of trace data) every time the target stops. */
3136 if (deprecated_target_wait_loop_hook)
3137 (*deprecated_target_wait_loop_hook) ();
3138
3139 remote_stopped_by_watchpoint_p = 0;
3140
3141 switch (buf[0])
3142 {
3143 case 'E': /* Error of some sort. */
3144 warning (_("Remote failure reply: %s"), buf);
3145 continue;
3146 case 'F': /* File-I/O request. */
3147 remote_fileio_request (buf);
3148 continue;
3149 case 'T': /* Status with PC, SP, FP, ... */
3150 {
3151 gdb_byte regs[MAX_REGISTER_SIZE];
3152
3153 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3154 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3155 ss = signal number
3156 n... = register number
3157 r... = register contents
3158 */
3159 p = &buf[3]; /* after Txx */
3160
3161 while (*p)
3162 {
3163 char *p1;
3164 char *p_temp;
3165 int fieldsize;
3166 LONGEST pnum = 0;
3167
3168 /* If the packet contains a register number save it in
3169 pnum and set p1 to point to the character following
3170 it. Otherwise p1 points to p. */
3171
3172 /* If this packet is an awatch packet, don't parse the
3173 'a' as a register number. */
3174
3175 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3176 {
3177 /* Read the ``P'' register number. */
3178 pnum = strtol (p, &p_temp, 16);
3179 p1 = p_temp;
3180 }
3181 else
3182 p1 = p;
3183
3184 if (p1 == p) /* No register number present here. */
3185 {
3186 p1 = strchr (p, ':');
3187 if (p1 == NULL)
3188 error (_("Malformed packet(a) (missing colon): %s\n\
3189 Packet: '%s'\n"),
3190 p, buf);
3191 if (strncmp (p, "thread", p1 - p) == 0)
3192 {
3193 p_temp = unpack_varlen_hex (++p1, &thread_num);
3194 record_currthread (thread_num);
3195 p = p_temp;
3196 }
3197 else if ((strncmp (p, "watch", p1 - p) == 0)
3198 || (strncmp (p, "rwatch", p1 - p) == 0)
3199 || (strncmp (p, "awatch", p1 - p) == 0))
3200 {
3201 remote_stopped_by_watchpoint_p = 1;
3202 p = unpack_varlen_hex (++p1, &addr);
3203 remote_watch_data_address = (CORE_ADDR)addr;
3204 }
3205 else
3206 {
3207 /* Silently skip unknown optional info. */
3208 p_temp = strchr (p1 + 1, ';');
3209 if (p_temp)
3210 p = p_temp;
3211 }
3212 }
3213 else
3214 {
3215 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3216 p = p1;
3217
3218 if (*p++ != ':')
3219 error (_("Malformed packet(b) (missing colon): %s\n\
3220 Packet: '%s'\n"),
3221 p, buf);
3222
3223 if (reg == NULL)
3224 error (_("Remote sent bad register number %s: %s\n\
3225 Packet: '%s'\n"),
3226 phex_nz (pnum, 0), p, buf);
3227
3228 fieldsize = hex2bin (p, regs,
3229 register_size (current_gdbarch,
3230 reg->regnum));
3231 p += 2 * fieldsize;
3232 if (fieldsize < register_size (current_gdbarch,
3233 reg->regnum))
3234 warning (_("Remote reply is too short: %s"), buf);
3235 regcache_raw_supply (get_current_regcache (),
3236 reg->regnum, regs);
3237 }
3238
3239 if (*p++ != ';')
3240 error (_("Remote register badly formatted: %s\nhere: %s"),
3241 buf, p);
3242 }
3243 }
3244 /* fall through */
3245 case 'S': /* Old style status, just signal only. */
3246 status->kind = TARGET_WAITKIND_STOPPED;
3247 status->value.sig = (enum target_signal)
3248 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3249
3250 if (buf[3] == 'p')
3251 {
3252 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3253 record_currthread (thread_num);
3254 }
3255 goto got_status;
3256 case 'W': /* Target exited. */
3257 {
3258 /* The remote process exited. */
3259 status->kind = TARGET_WAITKIND_EXITED;
3260 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3261 goto got_status;
3262 }
3263 case 'X':
3264 status->kind = TARGET_WAITKIND_SIGNALLED;
3265 status->value.sig = (enum target_signal)
3266 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3267 kill_kludge = 1;
3268
3269 goto got_status;
3270 case 'O': /* Console output. */
3271 remote_console_output (buf + 1);
3272 continue;
3273 case '\0':
3274 if (last_sent_signal != TARGET_SIGNAL_0)
3275 {
3276 /* Zero length reply means that we tried 'S' or 'C' and
3277 the remote system doesn't support it. */
3278 target_terminal_ours_for_output ();
3279 printf_filtered
3280 ("Can't send signals to this remote system. %s not sent.\n",
3281 target_signal_to_name (last_sent_signal));
3282 last_sent_signal = TARGET_SIGNAL_0;
3283 target_terminal_inferior ();
3284
3285 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3286 putpkt ((char *) buf);
3287 continue;
3288 }
3289 /* else fallthrough */
3290 default:
3291 warning (_("Invalid remote reply: %s"), buf);
3292 continue;
3293 }
3294 }
3295 got_status:
3296 if (thread_num != -1)
3297 {
3298 return pid_to_ptid (thread_num);
3299 }
3300 return inferior_ptid;
3301 }
3302
3303 /* Async version of remote_wait. */
3304 static ptid_t
3305 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3306 {
3307 struct remote_state *rs = get_remote_state ();
3308 struct remote_arch_state *rsa = get_remote_arch_state ();
3309 ULONGEST thread_num = -1;
3310 ULONGEST addr;
3311
3312 status->kind = TARGET_WAITKIND_EXITED;
3313 status->value.integer = 0;
3314
3315 remote_stopped_by_watchpoint_p = 0;
3316
3317 while (1)
3318 {
3319 char *buf, *p;
3320
3321 if (!target_is_async_p ())
3322 ofunc = signal (SIGINT, remote_interrupt);
3323 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3324 _never_ wait for ever -> test on target_is_async_p().
3325 However, before we do that we need to ensure that the caller
3326 knows how to take the target into/out of async mode. */
3327 getpkt (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
3328 if (!target_is_async_p ())
3329 signal (SIGINT, ofunc);
3330
3331 buf = rs->buf;
3332
3333 /* This is a hook for when we need to do something (perhaps the
3334 collection of trace data) every time the target stops. */
3335 if (deprecated_target_wait_loop_hook)
3336 (*deprecated_target_wait_loop_hook) ();
3337
3338 switch (buf[0])
3339 {
3340 case 'E': /* Error of some sort. */
3341 warning (_("Remote failure reply: %s"), buf);
3342 continue;
3343 case 'F': /* File-I/O request. */
3344 remote_fileio_request (buf);
3345 continue;
3346 case 'T': /* Status with PC, SP, FP, ... */
3347 {
3348 gdb_byte regs[MAX_REGISTER_SIZE];
3349
3350 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3351 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3352 ss = signal number
3353 n... = register number
3354 r... = register contents
3355 */
3356 p = &buf[3]; /* after Txx */
3357
3358 while (*p)
3359 {
3360 char *p1;
3361 char *p_temp;
3362 int fieldsize;
3363 long pnum = 0;
3364
3365 /* If the packet contains a register number, save it
3366 in pnum and set p1 to point to the character
3367 following it. Otherwise p1 points to p. */
3368
3369 /* If this packet is an awatch packet, don't parse the 'a'
3370 as a register number. */
3371
3372 if (!strncmp (p, "awatch", strlen ("awatch")) != 0)
3373 {
3374 /* Read the register number. */
3375 pnum = strtol (p, &p_temp, 16);
3376 p1 = p_temp;
3377 }
3378 else
3379 p1 = p;
3380
3381 if (p1 == p) /* No register number present here. */
3382 {
3383 p1 = strchr (p, ':');
3384 if (p1 == NULL)
3385 error (_("Malformed packet(a) (missing colon): %s\n\
3386 Packet: '%s'\n"),
3387 p, buf);
3388 if (strncmp (p, "thread", p1 - p) == 0)
3389 {
3390 p_temp = unpack_varlen_hex (++p1, &thread_num);
3391 record_currthread (thread_num);
3392 p = p_temp;
3393 }
3394 else if ((strncmp (p, "watch", p1 - p) == 0)
3395 || (strncmp (p, "rwatch", p1 - p) == 0)
3396 || (strncmp (p, "awatch", p1 - p) == 0))
3397 {
3398 remote_stopped_by_watchpoint_p = 1;
3399 p = unpack_varlen_hex (++p1, &addr);
3400 remote_watch_data_address = (CORE_ADDR)addr;
3401 }
3402 else
3403 {
3404 /* Silently skip unknown optional info. */
3405 p_temp = strchr (p1 + 1, ';');
3406 if (p_temp)
3407 p = p_temp;
3408 }
3409 }
3410
3411 else
3412 {
3413 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3414 p = p1;
3415 if (*p++ != ':')
3416 error (_("Malformed packet(b) (missing colon): %s\n\
3417 Packet: '%s'\n"),
3418 p, buf);
3419
3420 if (reg == NULL)
3421 error (_("Remote sent bad register number %ld: %s\n\
3422 Packet: '%s'\n"),
3423 pnum, p, buf);
3424
3425 fieldsize = hex2bin (p, regs,
3426 register_size (current_gdbarch,
3427 reg->regnum));
3428 p += 2 * fieldsize;
3429 if (fieldsize < register_size (current_gdbarch,
3430 reg->regnum))
3431 warning (_("Remote reply is too short: %s"), buf);
3432 regcache_raw_supply (get_current_regcache (),
3433 reg->regnum, regs);
3434 }
3435
3436 if (*p++ != ';')
3437 error (_("Remote register badly formatted: %s\nhere: %s"),
3438 buf, p);
3439 }
3440 }
3441 /* fall through */
3442 case 'S': /* Old style status, just signal only. */
3443 status->kind = TARGET_WAITKIND_STOPPED;
3444 status->value.sig = (enum target_signal)
3445 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3446
3447 if (buf[3] == 'p')
3448 {
3449 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3450 record_currthread (thread_num);
3451 }
3452 goto got_status;
3453 case 'W': /* Target exited. */
3454 {
3455 /* The remote process exited. */
3456 status->kind = TARGET_WAITKIND_EXITED;
3457 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3458 goto got_status;
3459 }
3460 case 'X':
3461 status->kind = TARGET_WAITKIND_SIGNALLED;
3462 status->value.sig = (enum target_signal)
3463 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3464 kill_kludge = 1;
3465
3466 goto got_status;
3467 case 'O': /* Console output. */
3468 remote_console_output (buf + 1);
3469 /* Return immediately to the event loop. The event loop will
3470 still be waiting on the inferior afterwards. */
3471 status->kind = TARGET_WAITKIND_IGNORE;
3472 goto got_status;
3473 case '\0':
3474 if (last_sent_signal != TARGET_SIGNAL_0)
3475 {
3476 /* Zero length reply means that we tried 'S' or 'C' and
3477 the remote system doesn't support it. */
3478 target_terminal_ours_for_output ();
3479 printf_filtered
3480 ("Can't send signals to this remote system. %s not sent.\n",
3481 target_signal_to_name (last_sent_signal));
3482 last_sent_signal = TARGET_SIGNAL_0;
3483 target_terminal_inferior ();
3484
3485 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3486 putpkt ((char *) buf);
3487 continue;
3488 }
3489 /* else fallthrough */
3490 default:
3491 warning (_("Invalid remote reply: %s"), buf);
3492 continue;
3493 }
3494 }
3495 got_status:
3496 if (thread_num != -1)
3497 {
3498 return pid_to_ptid (thread_num);
3499 }
3500 return inferior_ptid;
3501 }
3502
3503 /* Fetch a single register using a 'p' packet. */
3504
3505 static int
3506 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
3507 {
3508 struct remote_state *rs = get_remote_state ();
3509 char *buf, *p;
3510 char regp[MAX_REGISTER_SIZE];
3511 int i;
3512
3513 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
3514 return 0;
3515
3516 if (reg->pnum == -1)
3517 return 0;
3518
3519 p = rs->buf;
3520 *p++ = 'p';
3521 p += hexnumstr (p, reg->pnum);
3522 *p++ = '\0';
3523 remote_send (&rs->buf, &rs->buf_size);
3524
3525 buf = rs->buf;
3526
3527 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
3528 {
3529 case PACKET_OK:
3530 break;
3531 case PACKET_UNKNOWN:
3532 return 0;
3533 case PACKET_ERROR:
3534 error (_("Could not fetch register \"%s\""),
3535 gdbarch_register_name (current_gdbarch, reg->regnum));
3536 }
3537
3538 /* If this register is unfetchable, tell the regcache. */
3539 if (buf[0] == 'x')
3540 {
3541 regcache_raw_supply (regcache, reg->regnum, NULL);
3542 return 1;
3543 }
3544
3545 /* Otherwise, parse and supply the value. */
3546 p = buf;
3547 i = 0;
3548 while (p[0] != 0)
3549 {
3550 if (p[1] == 0)
3551 error (_("fetch_register_using_p: early buf termination"));
3552
3553 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3554 p += 2;
3555 }
3556 regcache_raw_supply (regcache, reg->regnum, regp);
3557 return 1;
3558 }
3559
3560 /* Fetch the registers included in the target's 'g' packet. */
3561
3562 static int
3563 send_g_packet (void)
3564 {
3565 struct remote_state *rs = get_remote_state ();
3566 int i, buf_len;
3567 char *p;
3568 char *regs;
3569
3570 sprintf (rs->buf, "g");
3571 remote_send (&rs->buf, &rs->buf_size);
3572
3573 /* We can get out of synch in various cases. If the first character
3574 in the buffer is not a hex character, assume that has happened
3575 and try to fetch another packet to read. */
3576 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
3577 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
3578 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
3579 && rs->buf[0] != 'x') /* New: unavailable register value. */
3580 {
3581 if (remote_debug)
3582 fprintf_unfiltered (gdb_stdlog,
3583 "Bad register packet; fetching a new packet\n");
3584 getpkt (&rs->buf, &rs->buf_size, 0);
3585 }
3586
3587 buf_len = strlen (rs->buf);
3588
3589 /* Sanity check the received packet. */
3590 if (buf_len % 2 != 0)
3591 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
3592
3593 return buf_len / 2;
3594 }
3595
3596 static void
3597 process_g_packet (struct regcache *regcache)
3598 {
3599 struct remote_state *rs = get_remote_state ();
3600 struct remote_arch_state *rsa = get_remote_arch_state ();
3601 int i, buf_len;
3602 char *p;
3603 char *regs;
3604
3605 buf_len = strlen (rs->buf);
3606
3607 /* Further sanity checks, with knowledge of the architecture. */
3608 if (buf_len > 2 * rsa->sizeof_g_packet)
3609 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
3610
3611 /* Save the size of the packet sent to us by the target. It is used
3612 as a heuristic when determining the max size of packets that the
3613 target can safely receive. */
3614 if (rsa->actual_register_packet_size == 0)
3615 rsa->actual_register_packet_size = buf_len;
3616
3617 /* If this is smaller than we guessed the 'g' packet would be,
3618 update our records. A 'g' reply that doesn't include a register's
3619 value implies either that the register is not available, or that
3620 the 'p' packet must be used. */
3621 if (buf_len < 2 * rsa->sizeof_g_packet)
3622 {
3623 rsa->sizeof_g_packet = buf_len / 2;
3624
3625 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3626 {
3627 if (rsa->regs[i].pnum == -1)
3628 continue;
3629
3630 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
3631 rsa->regs[i].in_g_packet = 0;
3632 else
3633 rsa->regs[i].in_g_packet = 1;
3634 }
3635 }
3636
3637 regs = alloca (rsa->sizeof_g_packet);
3638
3639 /* Unimplemented registers read as all bits zero. */
3640 memset (regs, 0, rsa->sizeof_g_packet);
3641
3642 /* Reply describes registers byte by byte, each byte encoded as two
3643 hex characters. Suck them all up, then supply them to the
3644 register cacheing/storage mechanism. */
3645
3646 p = rs->buf;
3647 for (i = 0; i < rsa->sizeof_g_packet; i++)
3648 {
3649 if (p[0] == 0 || p[1] == 0)
3650 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
3651 internal_error (__FILE__, __LINE__,
3652 "unexpected end of 'g' packet reply");
3653
3654 if (p[0] == 'x' && p[1] == 'x')
3655 regs[i] = 0; /* 'x' */
3656 else
3657 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3658 p += 2;
3659 }
3660
3661 {
3662 int i;
3663 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3664 {
3665 struct packet_reg *r = &rsa->regs[i];
3666 if (r->in_g_packet)
3667 {
3668 if (r->offset * 2 >= strlen (rs->buf))
3669 /* This shouldn't happen - we adjusted in_g_packet above. */
3670 internal_error (__FILE__, __LINE__,
3671 "unexpected end of 'g' packet reply");
3672 else if (rs->buf[r->offset * 2] == 'x')
3673 {
3674 gdb_assert (r->offset * 2 < strlen (rs->buf));
3675 /* The register isn't available, mark it as such (at
3676 the same time setting the value to zero). */
3677 regcache_raw_supply (regcache, r->regnum, NULL);
3678 }
3679 else
3680 regcache_raw_supply (regcache, r->regnum,
3681 regs + r->offset);
3682 }
3683 }
3684 }
3685 }
3686
3687 static void
3688 fetch_registers_using_g (struct regcache *regcache)
3689 {
3690 send_g_packet ();
3691 process_g_packet (regcache);
3692 }
3693
3694 static void
3695 remote_fetch_registers (struct regcache *regcache, int regnum)
3696 {
3697 struct remote_state *rs = get_remote_state ();
3698 struct remote_arch_state *rsa = get_remote_arch_state ();
3699 int i;
3700
3701 set_thread (PIDGET (inferior_ptid), 1);
3702
3703 if (regnum >= 0)
3704 {
3705 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3706 gdb_assert (reg != NULL);
3707
3708 /* If this register might be in the 'g' packet, try that first -
3709 we are likely to read more than one register. If this is the
3710 first 'g' packet, we might be overly optimistic about its
3711 contents, so fall back to 'p'. */
3712 if (reg->in_g_packet)
3713 {
3714 fetch_registers_using_g (regcache);
3715 if (reg->in_g_packet)
3716 return;
3717 }
3718
3719 if (fetch_register_using_p (regcache, reg))
3720 return;
3721
3722 /* This register is not available. */
3723 regcache_raw_supply (regcache, reg->regnum, NULL);
3724
3725 return;
3726 }
3727
3728 fetch_registers_using_g (regcache);
3729
3730 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3731 if (!rsa->regs[i].in_g_packet)
3732 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
3733 {
3734 /* This register is not available. */
3735 regcache_raw_supply (regcache, i, NULL);
3736 }
3737 }
3738
3739 /* Prepare to store registers. Since we may send them all (using a
3740 'G' request), we have to read out the ones we don't want to change
3741 first. */
3742
3743 static void
3744 remote_prepare_to_store (struct regcache *regcache)
3745 {
3746 struct remote_arch_state *rsa = get_remote_arch_state ();
3747 int i;
3748 gdb_byte buf[MAX_REGISTER_SIZE];
3749
3750 /* Make sure the entire registers array is valid. */
3751 switch (remote_protocol_packets[PACKET_P].support)
3752 {
3753 case PACKET_DISABLE:
3754 case PACKET_SUPPORT_UNKNOWN:
3755 /* Make sure all the necessary registers are cached. */
3756 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3757 if (rsa->regs[i].in_g_packet)
3758 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
3759 break;
3760 case PACKET_ENABLE:
3761 break;
3762 }
3763 }
3764
3765 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3766 packet was not recognized. */
3767
3768 static int
3769 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
3770 {
3771 struct remote_state *rs = get_remote_state ();
3772 struct remote_arch_state *rsa = get_remote_arch_state ();
3773 /* Try storing a single register. */
3774 char *buf = rs->buf;
3775 gdb_byte regp[MAX_REGISTER_SIZE];
3776 char *p;
3777
3778 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
3779 return 0;
3780
3781 if (reg->pnum == -1)
3782 return 0;
3783
3784 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
3785 p = buf + strlen (buf);
3786 regcache_raw_collect (regcache, reg->regnum, regp);
3787 bin2hex (regp, p, register_size (current_gdbarch, reg->regnum));
3788 remote_send (&rs->buf, &rs->buf_size);
3789
3790 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
3791 {
3792 case PACKET_OK:
3793 return 1;
3794 case PACKET_ERROR:
3795 error (_("Could not write register \"%s\""),
3796 gdbarch_register_name (current_gdbarch, reg->regnum));
3797 case PACKET_UNKNOWN:
3798 return 0;
3799 default:
3800 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
3801 }
3802 }
3803
3804 /* Store register REGNUM, or all registers if REGNUM == -1, from the
3805 contents of the register cache buffer. FIXME: ignores errors. */
3806
3807 static void
3808 store_registers_using_G (const struct regcache *regcache)
3809 {
3810 struct remote_state *rs = get_remote_state ();
3811 struct remote_arch_state *rsa = get_remote_arch_state ();
3812 gdb_byte *regs;
3813 char *p;
3814
3815 /* Extract all the registers in the regcache copying them into a
3816 local buffer. */
3817 {
3818 int i;
3819 regs = alloca (rsa->sizeof_g_packet);
3820 memset (regs, 0, rsa->sizeof_g_packet);
3821 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3822 {
3823 struct packet_reg *r = &rsa->regs[i];
3824 if (r->in_g_packet)
3825 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
3826 }
3827 }
3828
3829 /* Command describes registers byte by byte,
3830 each byte encoded as two hex characters. */
3831 p = rs->buf;
3832 *p++ = 'G';
3833 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
3834 updated. */
3835 bin2hex (regs, p, rsa->sizeof_g_packet);
3836 remote_send (&rs->buf, &rs->buf_size);
3837 }
3838
3839 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3840 of the register cache buffer. FIXME: ignores errors. */
3841
3842 static void
3843 remote_store_registers (struct regcache *regcache, int regnum)
3844 {
3845 struct remote_state *rs = get_remote_state ();
3846 struct remote_arch_state *rsa = get_remote_arch_state ();
3847 int i;
3848
3849 set_thread (PIDGET (inferior_ptid), 1);
3850
3851 if (regnum >= 0)
3852 {
3853 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3854 gdb_assert (reg != NULL);
3855
3856 /* Always prefer to store registers using the 'P' packet if
3857 possible; we often change only a small number of registers.
3858 Sometimes we change a larger number; we'd need help from a
3859 higher layer to know to use 'G'. */
3860 if (store_register_using_P (regcache, reg))
3861 return;
3862
3863 /* For now, don't complain if we have no way to write the
3864 register. GDB loses track of unavailable registers too
3865 easily. Some day, this may be an error. We don't have
3866 any way to read the register, either... */
3867 if (!reg->in_g_packet)
3868 return;
3869
3870 store_registers_using_G (regcache);
3871 return;
3872 }
3873
3874 store_registers_using_G (regcache);
3875
3876 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3877 if (!rsa->regs[i].in_g_packet)
3878 if (!store_register_using_P (regcache, &rsa->regs[i]))
3879 /* See above for why we do not issue an error here. */
3880 continue;
3881 }
3882 \f
3883
3884 /* Return the number of hex digits in num. */
3885
3886 static int
3887 hexnumlen (ULONGEST num)
3888 {
3889 int i;
3890
3891 for (i = 0; num != 0; i++)
3892 num >>= 4;
3893
3894 return max (i, 1);
3895 }
3896
3897 /* Set BUF to the minimum number of hex digits representing NUM. */
3898
3899 static int
3900 hexnumstr (char *buf, ULONGEST num)
3901 {
3902 int len = hexnumlen (num);
3903 return hexnumnstr (buf, num, len);
3904 }
3905
3906
3907 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3908
3909 static int
3910 hexnumnstr (char *buf, ULONGEST num, int width)
3911 {
3912 int i;
3913
3914 buf[width] = '\0';
3915
3916 for (i = width - 1; i >= 0; i--)
3917 {
3918 buf[i] = "0123456789abcdef"[(num & 0xf)];
3919 num >>= 4;
3920 }
3921
3922 return width;
3923 }
3924
3925 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3926
3927 static CORE_ADDR
3928 remote_address_masked (CORE_ADDR addr)
3929 {
3930 if (remote_address_size > 0
3931 && remote_address_size < (sizeof (ULONGEST) * 8))
3932 {
3933 /* Only create a mask when that mask can safely be constructed
3934 in a ULONGEST variable. */
3935 ULONGEST mask = 1;
3936 mask = (mask << remote_address_size) - 1;
3937 addr &= mask;
3938 }
3939 return addr;
3940 }
3941
3942 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
3943 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
3944 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
3945 (which may be more than *OUT_LEN due to escape characters). The
3946 total number of bytes in the output buffer will be at most
3947 OUT_MAXLEN. */
3948
3949 static int
3950 remote_escape_output (const gdb_byte *buffer, int len,
3951 gdb_byte *out_buf, int *out_len,
3952 int out_maxlen)
3953 {
3954 int input_index, output_index;
3955
3956 output_index = 0;
3957 for (input_index = 0; input_index < len; input_index++)
3958 {
3959 gdb_byte b = buffer[input_index];
3960
3961 if (b == '$' || b == '#' || b == '}')
3962 {
3963 /* These must be escaped. */
3964 if (output_index + 2 > out_maxlen)
3965 break;
3966 out_buf[output_index++] = '}';
3967 out_buf[output_index++] = b ^ 0x20;
3968 }
3969 else
3970 {
3971 if (output_index + 1 > out_maxlen)
3972 break;
3973 out_buf[output_index++] = b;
3974 }
3975 }
3976
3977 *out_len = input_index;
3978 return output_index;
3979 }
3980
3981 /* Convert BUFFER, escaped data LEN bytes long, into binary data
3982 in OUT_BUF. Return the number of bytes written to OUT_BUF.
3983 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
3984
3985 This function reverses remote_escape_output. It allows more
3986 escaped characters than that function does, in particular because
3987 '*' must be escaped to avoid the run-length encoding processing
3988 in reading packets. */
3989
3990 static int
3991 remote_unescape_input (const gdb_byte *buffer, int len,
3992 gdb_byte *out_buf, int out_maxlen)
3993 {
3994 int input_index, output_index;
3995 int escaped;
3996
3997 output_index = 0;
3998 escaped = 0;
3999 for (input_index = 0; input_index < len; input_index++)
4000 {
4001 gdb_byte b = buffer[input_index];
4002
4003 if (output_index + 1 > out_maxlen)
4004 {
4005 warning (_("Received too much data from remote target;"
4006 " ignoring overflow."));
4007 return output_index;
4008 }
4009
4010 if (escaped)
4011 {
4012 out_buf[output_index++] = b ^ 0x20;
4013 escaped = 0;
4014 }
4015 else if (b == '}')
4016 escaped = 1;
4017 else
4018 out_buf[output_index++] = b;
4019 }
4020
4021 if (escaped)
4022 error (_("Unmatched escape character in target response."));
4023
4024 return output_index;
4025 }
4026
4027 /* Determine whether the remote target supports binary downloading.
4028 This is accomplished by sending a no-op memory write of zero length
4029 to the target at the specified address. It does not suffice to send
4030 the whole packet, since many stubs strip the eighth bit and
4031 subsequently compute a wrong checksum, which causes real havoc with
4032 remote_write_bytes.
4033
4034 NOTE: This can still lose if the serial line is not eight-bit
4035 clean. In cases like this, the user should clear "remote
4036 X-packet". */
4037
4038 static void
4039 check_binary_download (CORE_ADDR addr)
4040 {
4041 struct remote_state *rs = get_remote_state ();
4042
4043 switch (remote_protocol_packets[PACKET_X].support)
4044 {
4045 case PACKET_DISABLE:
4046 break;
4047 case PACKET_ENABLE:
4048 break;
4049 case PACKET_SUPPORT_UNKNOWN:
4050 {
4051 char *p;
4052
4053 p = rs->buf;
4054 *p++ = 'X';
4055 p += hexnumstr (p, (ULONGEST) addr);
4056 *p++ = ',';
4057 p += hexnumstr (p, (ULONGEST) 0);
4058 *p++ = ':';
4059 *p = '\0';
4060
4061 putpkt_binary (rs->buf, (int) (p - rs->buf));
4062 getpkt (&rs->buf, &rs->buf_size, 0);
4063
4064 if (rs->buf[0] == '\0')
4065 {
4066 if (remote_debug)
4067 fprintf_unfiltered (gdb_stdlog,
4068 "binary downloading NOT suppported by target\n");
4069 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
4070 }
4071 else
4072 {
4073 if (remote_debug)
4074 fprintf_unfiltered (gdb_stdlog,
4075 "binary downloading suppported by target\n");
4076 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
4077 }
4078 break;
4079 }
4080 }
4081 }
4082
4083 /* Write memory data directly to the remote machine.
4084 This does not inform the data cache; the data cache uses this.
4085 HEADER is the starting part of the packet.
4086 MEMADDR is the address in the remote memory space.
4087 MYADDR is the address of the buffer in our space.
4088 LEN is the number of bytes.
4089 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
4090 should send data as binary ('X'), or hex-encoded ('M').
4091
4092 The function creates packet of the form
4093 <HEADER><ADDRESS>,<LENGTH>:<DATA>
4094
4095 where encoding of <DATA> is termined by PACKET_FORMAT.
4096
4097 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
4098 are omitted.
4099
4100 Returns the number of bytes transferred, or 0 (setting errno) for
4101 error. Only transfer a single packet. */
4102
4103 static int
4104 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
4105 const gdb_byte *myaddr, int len,
4106 char packet_format, int use_length)
4107 {
4108 struct remote_state *rs = get_remote_state ();
4109 char *p;
4110 char *plen = NULL;
4111 int plenlen = 0;
4112 int todo;
4113 int nr_bytes;
4114 int payload_size;
4115 int payload_length;
4116 int header_length;
4117
4118 if (packet_format != 'X' && packet_format != 'M')
4119 internal_error (__FILE__, __LINE__,
4120 "remote_write_bytes_aux: bad packet format");
4121
4122 if (len <= 0)
4123 return 0;
4124
4125 payload_size = get_memory_write_packet_size ();
4126
4127 /* The packet buffer will be large enough for the payload;
4128 get_memory_packet_size ensures this. */
4129 rs->buf[0] = '\0';
4130
4131 /* Compute the size of the actual payload by subtracting out the
4132 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
4133 */
4134 payload_size -= strlen ("$,:#NN");
4135 if (!use_length)
4136 /* The comma won't be used. */
4137 payload_size += 1;
4138 header_length = strlen (header);
4139 payload_size -= header_length;
4140 payload_size -= hexnumlen (memaddr);
4141
4142 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
4143
4144 strcat (rs->buf, header);
4145 p = rs->buf + strlen (header);
4146
4147 /* Compute a best guess of the number of bytes actually transfered. */
4148 if (packet_format == 'X')
4149 {
4150 /* Best guess at number of bytes that will fit. */
4151 todo = min (len, payload_size);
4152 if (use_length)
4153 payload_size -= hexnumlen (todo);
4154 todo = min (todo, payload_size);
4155 }
4156 else
4157 {
4158 /* Num bytes that will fit. */
4159 todo = min (len, payload_size / 2);
4160 if (use_length)
4161 payload_size -= hexnumlen (todo);
4162 todo = min (todo, payload_size / 2);
4163 }
4164
4165 if (todo <= 0)
4166 internal_error (__FILE__, __LINE__,
4167 _("minumum packet size too small to write data"));
4168
4169 /* If we already need another packet, then try to align the end
4170 of this packet to a useful boundary. */
4171 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
4172 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
4173
4174 /* Append "<memaddr>". */
4175 memaddr = remote_address_masked (memaddr);
4176 p += hexnumstr (p, (ULONGEST) memaddr);
4177
4178 if (use_length)
4179 {
4180 /* Append ",". */
4181 *p++ = ',';
4182
4183 /* Append <len>. Retain the location/size of <len>. It may need to
4184 be adjusted once the packet body has been created. */
4185 plen = p;
4186 plenlen = hexnumstr (p, (ULONGEST) todo);
4187 p += plenlen;
4188 }
4189
4190 /* Append ":". */
4191 *p++ = ':';
4192 *p = '\0';
4193
4194 /* Append the packet body. */
4195 if (packet_format == 'X')
4196 {
4197 /* Binary mode. Send target system values byte by byte, in
4198 increasing byte addresses. Only escape certain critical
4199 characters. */
4200 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
4201 payload_size);
4202
4203 /* If not all TODO bytes fit, then we'll need another packet. Make
4204 a second try to keep the end of the packet aligned. Don't do
4205 this if the packet is tiny. */
4206 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
4207 {
4208 int new_nr_bytes;
4209
4210 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
4211 - memaddr);
4212 if (new_nr_bytes != nr_bytes)
4213 payload_length = remote_escape_output (myaddr, new_nr_bytes,
4214 p, &nr_bytes,
4215 payload_size);
4216 }
4217
4218 p += payload_length;
4219 if (use_length && nr_bytes < todo)
4220 {
4221 /* Escape chars have filled up the buffer prematurely,
4222 and we have actually sent fewer bytes than planned.
4223 Fix-up the length field of the packet. Use the same
4224 number of characters as before. */
4225 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
4226 *plen = ':'; /* overwrite \0 from hexnumnstr() */
4227 }
4228 }
4229 else
4230 {
4231 /* Normal mode: Send target system values byte by byte, in
4232 increasing byte addresses. Each byte is encoded as a two hex
4233 value. */
4234 nr_bytes = bin2hex (myaddr, p, todo);
4235 p += 2 * nr_bytes;
4236 }
4237
4238 putpkt_binary (rs->buf, (int) (p - rs->buf));
4239 getpkt (&rs->buf, &rs->buf_size, 0);
4240
4241 if (rs->buf[0] == 'E')
4242 {
4243 /* There is no correspondance between what the remote protocol
4244 uses for errors and errno codes. We would like a cleaner way
4245 of representing errors (big enough to include errno codes,
4246 bfd_error codes, and others). But for now just return EIO. */
4247 errno = EIO;
4248 return 0;
4249 }
4250
4251 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
4252 fewer bytes than we'd planned. */
4253 return nr_bytes;
4254 }
4255
4256 /* Write memory data directly to the remote machine.
4257 This does not inform the data cache; the data cache uses this.
4258 MEMADDR is the address in the remote memory space.
4259 MYADDR is the address of the buffer in our space.
4260 LEN is the number of bytes.
4261
4262 Returns number of bytes transferred, or 0 (setting errno) for
4263 error. Only transfer a single packet. */
4264
4265 int
4266 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
4267 {
4268 char *packet_format = 0;
4269
4270 /* Check whether the target supports binary download. */
4271 check_binary_download (memaddr);
4272
4273 switch (remote_protocol_packets[PACKET_X].support)
4274 {
4275 case PACKET_ENABLE:
4276 packet_format = "X";
4277 break;
4278 case PACKET_DISABLE:
4279 packet_format = "M";
4280 break;
4281 case PACKET_SUPPORT_UNKNOWN:
4282 internal_error (__FILE__, __LINE__,
4283 _("remote_write_bytes: bad internal state"));
4284 default:
4285 internal_error (__FILE__, __LINE__, _("bad switch"));
4286 }
4287
4288 return remote_write_bytes_aux (packet_format,
4289 memaddr, myaddr, len, packet_format[0], 1);
4290 }
4291
4292 /* Read memory data directly from the remote machine.
4293 This does not use the data cache; the data cache uses this.
4294 MEMADDR is the address in the remote memory space.
4295 MYADDR is the address of the buffer in our space.
4296 LEN is the number of bytes.
4297
4298 Returns number of bytes transferred, or 0 for error. */
4299
4300 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
4301 remote targets) shouldn't attempt to read the entire buffer.
4302 Instead it should read a single packet worth of data and then
4303 return the byte size of that packet to the caller. The caller (its
4304 caller and its callers caller ;-) already contains code for
4305 handling partial reads. */
4306
4307 int
4308 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
4309 {
4310 struct remote_state *rs = get_remote_state ();
4311 int max_buf_size; /* Max size of packet output buffer. */
4312 int origlen;
4313
4314 if (len <= 0)
4315 return 0;
4316
4317 max_buf_size = get_memory_read_packet_size ();
4318 /* The packet buffer will be large enough for the payload;
4319 get_memory_packet_size ensures this. */
4320
4321 origlen = len;
4322 while (len > 0)
4323 {
4324 char *p;
4325 int todo;
4326 int i;
4327
4328 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
4329
4330 /* construct "m"<memaddr>","<len>" */
4331 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
4332 memaddr = remote_address_masked (memaddr);
4333 p = rs->buf;
4334 *p++ = 'm';
4335 p += hexnumstr (p, (ULONGEST) memaddr);
4336 *p++ = ',';
4337 p += hexnumstr (p, (ULONGEST) todo);
4338 *p = '\0';
4339
4340 putpkt (rs->buf);
4341 getpkt (&rs->buf, &rs->buf_size, 0);
4342
4343 if (rs->buf[0] == 'E'
4344 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
4345 && rs->buf[3] == '\0')
4346 {
4347 /* There is no correspondance between what the remote
4348 protocol uses for errors and errno codes. We would like
4349 a cleaner way of representing errors (big enough to
4350 include errno codes, bfd_error codes, and others). But
4351 for now just return EIO. */
4352 errno = EIO;
4353 return 0;
4354 }
4355
4356 /* Reply describes memory byte by byte,
4357 each byte encoded as two hex characters. */
4358
4359 p = rs->buf;
4360 if ((i = hex2bin (p, myaddr, todo)) < todo)
4361 {
4362 /* Reply is short. This means that we were able to read
4363 only part of what we wanted to. */
4364 return i + (origlen - len);
4365 }
4366 myaddr += todo;
4367 memaddr += todo;
4368 len -= todo;
4369 }
4370 return origlen;
4371 }
4372 \f
4373 /* Read or write LEN bytes from inferior memory at MEMADDR,
4374 transferring to or from debugger address BUFFER. Write to inferior
4375 if SHOULD_WRITE is nonzero. Returns length of data written or
4376 read; 0 for error. TARGET is unused. */
4377
4378 static int
4379 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
4380 int should_write, struct mem_attrib *attrib,
4381 struct target_ops *target)
4382 {
4383 int res;
4384
4385 if (should_write)
4386 res = remote_write_bytes (mem_addr, buffer, mem_len);
4387 else
4388 res = remote_read_bytes (mem_addr, buffer, mem_len);
4389
4390 return res;
4391 }
4392
4393 /* Sends a packet with content determined by the printf format string
4394 FORMAT and the remaining arguments, then gets the reply. Returns
4395 whether the packet was a success, a failure, or unknown. */
4396
4397 enum packet_result
4398 remote_send_printf (const char *format, ...)
4399 {
4400 struct remote_state *rs = get_remote_state ();
4401 int max_size = get_remote_packet_size ();
4402
4403 va_list ap;
4404 va_start (ap, format);
4405
4406 rs->buf[0] = '\0';
4407 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
4408 internal_error (__FILE__, __LINE__, "Too long remote packet.");
4409
4410 if (putpkt (rs->buf) < 0)
4411 error (_("Communication problem with target."));
4412
4413 rs->buf[0] = '\0';
4414 getpkt (&rs->buf, &rs->buf_size, 0);
4415
4416 return packet_check_result (rs->buf);
4417 }
4418
4419 static void
4420 restore_remote_timeout (void *p)
4421 {
4422 int value = *(int *)p;
4423 remote_timeout = value;
4424 }
4425
4426 /* Flash writing can take quite some time. We'll set
4427 effectively infinite timeout for flash operations.
4428 In future, we'll need to decide on a better approach. */
4429 static const int remote_flash_timeout = 1000;
4430
4431 static void
4432 remote_flash_erase (struct target_ops *ops,
4433 ULONGEST address, LONGEST length)
4434 {
4435 int saved_remote_timeout = remote_timeout;
4436 enum packet_result ret;
4437
4438 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4439 &saved_remote_timeout);
4440 remote_timeout = remote_flash_timeout;
4441
4442 ret = remote_send_printf ("vFlashErase:%s,%s",
4443 paddr (address),
4444 phex (length, 4));
4445 switch (ret)
4446 {
4447 case PACKET_UNKNOWN:
4448 error (_("Remote target does not support flash erase"));
4449 case PACKET_ERROR:
4450 error (_("Error erasing flash with vFlashErase packet"));
4451 default:
4452 break;
4453 }
4454
4455 do_cleanups (back_to);
4456 }
4457
4458 static LONGEST
4459 remote_flash_write (struct target_ops *ops,
4460 ULONGEST address, LONGEST length,
4461 const gdb_byte *data)
4462 {
4463 int saved_remote_timeout = remote_timeout;
4464 int ret;
4465 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4466 &saved_remote_timeout);
4467
4468 remote_timeout = remote_flash_timeout;
4469 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
4470 do_cleanups (back_to);
4471
4472 return ret;
4473 }
4474
4475 static void
4476 remote_flash_done (struct target_ops *ops)
4477 {
4478 int saved_remote_timeout = remote_timeout;
4479 int ret;
4480 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4481 &saved_remote_timeout);
4482
4483 remote_timeout = remote_flash_timeout;
4484 ret = remote_send_printf ("vFlashDone");
4485 do_cleanups (back_to);
4486
4487 switch (ret)
4488 {
4489 case PACKET_UNKNOWN:
4490 error (_("Remote target does not support vFlashDone"));
4491 case PACKET_ERROR:
4492 error (_("Error finishing flash operation"));
4493 default:
4494 break;
4495 }
4496 }
4497
4498 static void
4499 remote_files_info (struct target_ops *ignore)
4500 {
4501 puts_filtered ("Debugging a target over a serial line.\n");
4502 }
4503 \f
4504 /* Stuff for dealing with the packets which are part of this protocol.
4505 See comment at top of file for details. */
4506
4507 /* Read a single character from the remote end. */
4508
4509 static int
4510 readchar (int timeout)
4511 {
4512 int ch;
4513
4514 ch = serial_readchar (remote_desc, timeout);
4515
4516 if (ch >= 0)
4517 return ch;
4518
4519 switch ((enum serial_rc) ch)
4520 {
4521 case SERIAL_EOF:
4522 target_mourn_inferior ();
4523 error (_("Remote connection closed"));
4524 /* no return */
4525 case SERIAL_ERROR:
4526 perror_with_name (_("Remote communication error"));
4527 /* no return */
4528 case SERIAL_TIMEOUT:
4529 break;
4530 }
4531 return ch;
4532 }
4533
4534 /* Send the command in *BUF to the remote machine, and read the reply
4535 into *BUF. Report an error if we get an error reply. Resize
4536 *BUF using xrealloc if necessary to hold the result, and update
4537 *SIZEOF_BUF. */
4538
4539 static void
4540 remote_send (char **buf,
4541 long *sizeof_buf)
4542 {
4543 putpkt (*buf);
4544 getpkt (buf, sizeof_buf, 0);
4545
4546 if ((*buf)[0] == 'E')
4547 error (_("Remote failure reply: %s"), *buf);
4548 }
4549
4550 /* Display a null-terminated packet on stdout, for debugging, using C
4551 string notation. */
4552
4553 static void
4554 print_packet (char *buf)
4555 {
4556 puts_filtered ("\"");
4557 fputstr_filtered (buf, '"', gdb_stdout);
4558 puts_filtered ("\"");
4559 }
4560
4561 int
4562 putpkt (char *buf)
4563 {
4564 return putpkt_binary (buf, strlen (buf));
4565 }
4566
4567 /* Send a packet to the remote machine, with error checking. The data
4568 of the packet is in BUF. The string in BUF can be at most
4569 get_remote_packet_size () - 5 to account for the $, # and checksum,
4570 and for a possible /0 if we are debugging (remote_debug) and want
4571 to print the sent packet as a string. */
4572
4573 static int
4574 putpkt_binary (char *buf, int cnt)
4575 {
4576 int i;
4577 unsigned char csum = 0;
4578 char *buf2 = alloca (cnt + 6);
4579
4580 int ch;
4581 int tcount = 0;
4582 char *p;
4583
4584 /* Copy the packet into buffer BUF2, encapsulating it
4585 and giving it a checksum. */
4586
4587 p = buf2;
4588 *p++ = '$';
4589
4590 for (i = 0; i < cnt; i++)
4591 {
4592 csum += buf[i];
4593 *p++ = buf[i];
4594 }
4595 *p++ = '#';
4596 *p++ = tohex ((csum >> 4) & 0xf);
4597 *p++ = tohex (csum & 0xf);
4598
4599 /* Send it over and over until we get a positive ack. */
4600
4601 while (1)
4602 {
4603 int started_error_output = 0;
4604
4605 if (remote_debug)
4606 {
4607 *p = '\0';
4608 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4609 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4610 fprintf_unfiltered (gdb_stdlog, "...");
4611 gdb_flush (gdb_stdlog);
4612 }
4613 if (serial_write (remote_desc, buf2, p - buf2))
4614 perror_with_name (_("putpkt: write failed"));
4615
4616 /* Read until either a timeout occurs (-2) or '+' is read. */
4617 while (1)
4618 {
4619 ch = readchar (remote_timeout);
4620
4621 if (remote_debug)
4622 {
4623 switch (ch)
4624 {
4625 case '+':
4626 case '-':
4627 case SERIAL_TIMEOUT:
4628 case '$':
4629 if (started_error_output)
4630 {
4631 putchar_unfiltered ('\n');
4632 started_error_output = 0;
4633 }
4634 }
4635 }
4636
4637 switch (ch)
4638 {
4639 case '+':
4640 if (remote_debug)
4641 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4642 return 1;
4643 case '-':
4644 if (remote_debug)
4645 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4646 case SERIAL_TIMEOUT:
4647 tcount++;
4648 if (tcount > 3)
4649 return 0;
4650 break; /* Retransmit buffer. */
4651 case '$':
4652 {
4653 if (remote_debug)
4654 fprintf_unfiltered (gdb_stdlog,
4655 "Packet instead of Ack, ignoring it\n");
4656 /* It's probably an old response sent because an ACK
4657 was lost. Gobble up the packet and ack it so it
4658 doesn't get retransmitted when we resend this
4659 packet. */
4660 skip_frame ();
4661 serial_write (remote_desc, "+", 1);
4662 continue; /* Now, go look for +. */
4663 }
4664 default:
4665 if (remote_debug)
4666 {
4667 if (!started_error_output)
4668 {
4669 started_error_output = 1;
4670 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4671 }
4672 fputc_unfiltered (ch & 0177, gdb_stdlog);
4673 }
4674 continue;
4675 }
4676 break; /* Here to retransmit. */
4677 }
4678
4679 #if 0
4680 /* This is wrong. If doing a long backtrace, the user should be
4681 able to get out next time we call QUIT, without anything as
4682 violent as interrupt_query. If we want to provide a way out of
4683 here without getting to the next QUIT, it should be based on
4684 hitting ^C twice as in remote_wait. */
4685 if (quit_flag)
4686 {
4687 quit_flag = 0;
4688 interrupt_query ();
4689 }
4690 #endif
4691 }
4692 }
4693
4694 /* Come here after finding the start of a frame when we expected an
4695 ack. Do our best to discard the rest of this packet. */
4696
4697 static void
4698 skip_frame (void)
4699 {
4700 int c;
4701
4702 while (1)
4703 {
4704 c = readchar (remote_timeout);
4705 switch (c)
4706 {
4707 case SERIAL_TIMEOUT:
4708 /* Nothing we can do. */
4709 return;
4710 case '#':
4711 /* Discard the two bytes of checksum and stop. */
4712 c = readchar (remote_timeout);
4713 if (c >= 0)
4714 c = readchar (remote_timeout);
4715
4716 return;
4717 case '*': /* Run length encoding. */
4718 /* Discard the repeat count. */
4719 c = readchar (remote_timeout);
4720 if (c < 0)
4721 return;
4722 break;
4723 default:
4724 /* A regular character. */
4725 break;
4726 }
4727 }
4728 }
4729
4730 /* Come here after finding the start of the frame. Collect the rest
4731 into *BUF, verifying the checksum, length, and handling run-length
4732 compression. NUL terminate the buffer. If there is not enough room,
4733 expand *BUF using xrealloc.
4734
4735 Returns -1 on error, number of characters in buffer (ignoring the
4736 trailing NULL) on success. (could be extended to return one of the
4737 SERIAL status indications). */
4738
4739 static long
4740 read_frame (char **buf_p,
4741 long *sizeof_buf)
4742 {
4743 unsigned char csum;
4744 long bc;
4745 int c;
4746 char *buf = *buf_p;
4747
4748 csum = 0;
4749 bc = 0;
4750
4751 while (1)
4752 {
4753 c = readchar (remote_timeout);
4754 switch (c)
4755 {
4756 case SERIAL_TIMEOUT:
4757 if (remote_debug)
4758 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4759 return -1;
4760 case '$':
4761 if (remote_debug)
4762 fputs_filtered ("Saw new packet start in middle of old one\n",
4763 gdb_stdlog);
4764 return -1; /* Start a new packet, count retries. */
4765 case '#':
4766 {
4767 unsigned char pktcsum;
4768 int check_0 = 0;
4769 int check_1 = 0;
4770
4771 buf[bc] = '\0';
4772
4773 check_0 = readchar (remote_timeout);
4774 if (check_0 >= 0)
4775 check_1 = readchar (remote_timeout);
4776
4777 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4778 {
4779 if (remote_debug)
4780 fputs_filtered ("Timeout in checksum, retrying\n",
4781 gdb_stdlog);
4782 return -1;
4783 }
4784 else if (check_0 < 0 || check_1 < 0)
4785 {
4786 if (remote_debug)
4787 fputs_filtered ("Communication error in checksum\n",
4788 gdb_stdlog);
4789 return -1;
4790 }
4791
4792 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4793 if (csum == pktcsum)
4794 return bc;
4795
4796 if (remote_debug)
4797 {
4798 fprintf_filtered (gdb_stdlog,
4799 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4800 pktcsum, csum);
4801 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
4802 fputs_filtered ("\n", gdb_stdlog);
4803 }
4804 /* Number of characters in buffer ignoring trailing
4805 NULL. */
4806 return -1;
4807 }
4808 case '*': /* Run length encoding. */
4809 {
4810 int repeat;
4811 csum += c;
4812
4813 c = readchar (remote_timeout);
4814 csum += c;
4815 repeat = c - ' ' + 3; /* Compute repeat count. */
4816
4817 /* The character before ``*'' is repeated. */
4818
4819 if (repeat > 0 && repeat <= 255 && bc > 0)
4820 {
4821 if (bc + repeat - 1 >= *sizeof_buf - 1)
4822 {
4823 /* Make some more room in the buffer. */
4824 *sizeof_buf += repeat;
4825 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4826 buf = *buf_p;
4827 }
4828
4829 memset (&buf[bc], buf[bc - 1], repeat);
4830 bc += repeat;
4831 continue;
4832 }
4833
4834 buf[bc] = '\0';
4835 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
4836 return -1;
4837 }
4838 default:
4839 if (bc >= *sizeof_buf - 1)
4840 {
4841 /* Make some more room in the buffer. */
4842 *sizeof_buf *= 2;
4843 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4844 buf = *buf_p;
4845 }
4846
4847 buf[bc++] = c;
4848 csum += c;
4849 continue;
4850 }
4851 }
4852 }
4853
4854 /* Read a packet from the remote machine, with error checking, and
4855 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4856 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4857 rather than timing out; this is used (in synchronous mode) to wait
4858 for a target that is is executing user code to stop. */
4859 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4860 don't have to change all the calls to getpkt to deal with the
4861 return value, because at the moment I don't know what the right
4862 thing to do it for those. */
4863 void
4864 getpkt (char **buf,
4865 long *sizeof_buf,
4866 int forever)
4867 {
4868 int timed_out;
4869
4870 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4871 }
4872
4873
4874 /* Read a packet from the remote machine, with error checking, and
4875 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4876 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4877 rather than timing out; this is used (in synchronous mode) to wait
4878 for a target that is is executing user code to stop. If FOREVER ==
4879 0, this function is allowed to time out gracefully and return an
4880 indication of this to the caller. Otherwise return the number
4881 of bytes read. */
4882 static int
4883 getpkt_sane (char **buf, long *sizeof_buf, int forever)
4884 {
4885 int c;
4886 int tries;
4887 int timeout;
4888 int val;
4889
4890 strcpy (*buf, "timeout");
4891
4892 if (forever)
4893 {
4894 timeout = watchdog > 0 ? watchdog : -1;
4895 }
4896
4897 else
4898 timeout = remote_timeout;
4899
4900 #define MAX_TRIES 3
4901
4902 for (tries = 1; tries <= MAX_TRIES; tries++)
4903 {
4904 /* This can loop forever if the remote side sends us characters
4905 continuously, but if it pauses, we'll get a zero from
4906 readchar because of timeout. Then we'll count that as a
4907 retry. */
4908
4909 /* Note that we will only wait forever prior to the start of a
4910 packet. After that, we expect characters to arrive at a
4911 brisk pace. They should show up within remote_timeout
4912 intervals. */
4913
4914 do
4915 {
4916 c = readchar (timeout);
4917
4918 if (c == SERIAL_TIMEOUT)
4919 {
4920 if (forever) /* Watchdog went off? Kill the target. */
4921 {
4922 QUIT;
4923 target_mourn_inferior ();
4924 error (_("Watchdog has expired. Target detached."));
4925 }
4926 if (remote_debug)
4927 fputs_filtered ("Timed out.\n", gdb_stdlog);
4928 goto retry;
4929 }
4930 }
4931 while (c != '$');
4932
4933 /* We've found the start of a packet, now collect the data. */
4934
4935 val = read_frame (buf, sizeof_buf);
4936
4937 if (val >= 0)
4938 {
4939 if (remote_debug)
4940 {
4941 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4942 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
4943 fprintf_unfiltered (gdb_stdlog, "\n");
4944 }
4945 serial_write (remote_desc, "+", 1);
4946 return val;
4947 }
4948
4949 /* Try the whole thing again. */
4950 retry:
4951 serial_write (remote_desc, "-", 1);
4952 }
4953
4954 /* We have tried hard enough, and just can't receive the packet.
4955 Give up. */
4956
4957 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
4958 serial_write (remote_desc, "+", 1);
4959 return -1;
4960 }
4961 \f
4962 static void
4963 remote_kill (void)
4964 {
4965 /* For some mysterious reason, wait_for_inferior calls kill instead of
4966 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4967 if (kill_kludge)
4968 {
4969 kill_kludge = 0;
4970 target_mourn_inferior ();
4971 return;
4972 }
4973
4974 /* Use catch_errors so the user can quit from gdb even when we aren't on
4975 speaking terms with the remote system. */
4976 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4977
4978 /* Don't wait for it to die. I'm not really sure it matters whether
4979 we do or not. For the existing stubs, kill is a noop. */
4980 target_mourn_inferior ();
4981 }
4982
4983 /* Async version of remote_kill. */
4984 static void
4985 remote_async_kill (void)
4986 {
4987 /* Unregister the file descriptor from the event loop. */
4988 if (target_is_async_p ())
4989 serial_async (remote_desc, NULL, 0);
4990
4991 /* For some mysterious reason, wait_for_inferior calls kill instead of
4992 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4993 if (kill_kludge)
4994 {
4995 kill_kludge = 0;
4996 target_mourn_inferior ();
4997 return;
4998 }
4999
5000 /* Use catch_errors so the user can quit from gdb even when we
5001 aren't on speaking terms with the remote system. */
5002 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5003
5004 /* Don't wait for it to die. I'm not really sure it matters whether
5005 we do or not. For the existing stubs, kill is a noop. */
5006 target_mourn_inferior ();
5007 }
5008
5009 static void
5010 remote_mourn (void)
5011 {
5012 remote_mourn_1 (&remote_ops);
5013 }
5014
5015 static void
5016 remote_async_mourn (void)
5017 {
5018 remote_mourn_1 (&remote_async_ops);
5019 }
5020
5021 static void
5022 extended_remote_mourn (void)
5023 {
5024 /* We do _not_ want to mourn the target like this; this will
5025 remove the extended remote target from the target stack,
5026 and the next time the user says "run" it'll fail.
5027
5028 FIXME: What is the right thing to do here? */
5029 #if 0
5030 remote_mourn_1 (&extended_remote_ops);
5031 #endif
5032 }
5033
5034 /* Worker function for remote_mourn. */
5035 static void
5036 remote_mourn_1 (struct target_ops *target)
5037 {
5038 unpush_target (target);
5039 generic_mourn_inferior ();
5040 }
5041
5042 /* In the extended protocol we want to be able to do things like
5043 "run" and have them basically work as expected. So we need
5044 a special create_inferior function.
5045
5046 FIXME: One day add support for changing the exec file
5047 we're debugging, arguments and an environment. */
5048
5049 static void
5050 extended_remote_create_inferior (char *exec_file, char *args,
5051 char **env, int from_tty)
5052 {
5053 /* Rip out the breakpoints; we'll reinsert them after restarting
5054 the remote server. */
5055 remove_breakpoints ();
5056
5057 /* Now restart the remote server. */
5058 extended_remote_restart ();
5059
5060 /* NOTE: We don't need to recheck for a target description here; but
5061 if we gain the ability to switch the remote executable we may
5062 need to, if for instance we are running a process which requested
5063 different emulated hardware from the operating system. A
5064 concrete example of this is ARM GNU/Linux, where some binaries
5065 will have a legacy FPA coprocessor emulated and others may have
5066 access to a hardware VFP unit. */
5067
5068 /* Now put the breakpoints back in. This way we're safe if the
5069 restart function works via a unix fork on the remote side. */
5070 insert_breakpoints ();
5071
5072 /* Clean up from the last time we were running. */
5073 clear_proceed_status ();
5074 }
5075
5076 /* Async version of extended_remote_create_inferior. */
5077 static void
5078 extended_remote_async_create_inferior (char *exec_file, char *args,
5079 char **env, int from_tty)
5080 {
5081 /* Rip out the breakpoints; we'll reinsert them after restarting
5082 the remote server. */
5083 remove_breakpoints ();
5084
5085 /* If running asynchronously, register the target file descriptor
5086 with the event loop. */
5087 if (target_can_async_p ())
5088 target_async (inferior_event_handler, 0);
5089
5090 /* Now restart the remote server. */
5091 extended_remote_restart ();
5092
5093 /* NOTE: We don't need to recheck for a target description here; but
5094 if we gain the ability to switch the remote executable we may
5095 need to, if for instance we are running a process which requested
5096 different emulated hardware from the operating system. A
5097 concrete example of this is ARM GNU/Linux, where some binaries
5098 will have a legacy FPA coprocessor emulated and others may have
5099 access to a hardware VFP unit. */
5100
5101 /* Now put the breakpoints back in. This way we're safe if the
5102 restart function works via a unix fork on the remote side. */
5103 insert_breakpoints ();
5104
5105 /* Clean up from the last time we were running. */
5106 clear_proceed_status ();
5107 }
5108 \f
5109
5110 /* Insert a breakpoint. On targets that have software breakpoint
5111 support, we ask the remote target to do the work; on targets
5112 which don't, we insert a traditional memory breakpoint. */
5113
5114 static int
5115 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
5116 {
5117 CORE_ADDR addr = bp_tgt->placed_address;
5118 struct remote_state *rs = get_remote_state ();
5119
5120 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
5121 If it succeeds, then set the support to PACKET_ENABLE. If it
5122 fails, and the user has explicitly requested the Z support then
5123 report an error, otherwise, mark it disabled and go on. */
5124
5125 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5126 {
5127 char *p = rs->buf;
5128
5129 *(p++) = 'Z';
5130 *(p++) = '0';
5131 *(p++) = ',';
5132 gdbarch_breakpoint_from_pc
5133 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5134 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5135 p += hexnumstr (p, addr);
5136 sprintf (p, ",%d", bp_tgt->placed_size);
5137
5138 putpkt (rs->buf);
5139 getpkt (&rs->buf, &rs->buf_size, 0);
5140
5141 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
5142 {
5143 case PACKET_ERROR:
5144 return -1;
5145 case PACKET_OK:
5146 return 0;
5147 case PACKET_UNKNOWN:
5148 break;
5149 }
5150 }
5151
5152 return memory_insert_breakpoint (bp_tgt);
5153 }
5154
5155 static int
5156 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
5157 {
5158 CORE_ADDR addr = bp_tgt->placed_address;
5159 struct remote_state *rs = get_remote_state ();
5160 int bp_size;
5161
5162 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5163 {
5164 char *p = rs->buf;
5165
5166 *(p++) = 'z';
5167 *(p++) = '0';
5168 *(p++) = ',';
5169
5170 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5171 p += hexnumstr (p, addr);
5172 sprintf (p, ",%d", bp_tgt->placed_size);
5173
5174 putpkt (rs->buf);
5175 getpkt (&rs->buf, &rs->buf_size, 0);
5176
5177 return (rs->buf[0] == 'E');
5178 }
5179
5180 return memory_remove_breakpoint (bp_tgt);
5181 }
5182
5183 static int
5184 watchpoint_to_Z_packet (int type)
5185 {
5186 switch (type)
5187 {
5188 case hw_write:
5189 return Z_PACKET_WRITE_WP;
5190 break;
5191 case hw_read:
5192 return Z_PACKET_READ_WP;
5193 break;
5194 case hw_access:
5195 return Z_PACKET_ACCESS_WP;
5196 break;
5197 default:
5198 internal_error (__FILE__, __LINE__,
5199 _("hw_bp_to_z: bad watchpoint type %d"), type);
5200 }
5201 }
5202
5203 static int
5204 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
5205 {
5206 struct remote_state *rs = get_remote_state ();
5207 char *p;
5208 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5209
5210 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5211 return -1;
5212
5213 sprintf (rs->buf, "Z%x,", packet);
5214 p = strchr (rs->buf, '\0');
5215 addr = remote_address_masked (addr);
5216 p += hexnumstr (p, (ULONGEST) addr);
5217 sprintf (p, ",%x", len);
5218
5219 putpkt (rs->buf);
5220 getpkt (&rs->buf, &rs->buf_size, 0);
5221
5222 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5223 {
5224 case PACKET_ERROR:
5225 case PACKET_UNKNOWN:
5226 return -1;
5227 case PACKET_OK:
5228 return 0;
5229 }
5230 internal_error (__FILE__, __LINE__,
5231 _("remote_insert_watchpoint: reached end of function"));
5232 }
5233
5234
5235 static int
5236 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
5237 {
5238 struct remote_state *rs = get_remote_state ();
5239 char *p;
5240 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5241
5242 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5243 return -1;
5244
5245 sprintf (rs->buf, "z%x,", packet);
5246 p = strchr (rs->buf, '\0');
5247 addr = remote_address_masked (addr);
5248 p += hexnumstr (p, (ULONGEST) addr);
5249 sprintf (p, ",%x", len);
5250 putpkt (rs->buf);
5251 getpkt (&rs->buf, &rs->buf_size, 0);
5252
5253 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5254 {
5255 case PACKET_ERROR:
5256 case PACKET_UNKNOWN:
5257 return -1;
5258 case PACKET_OK:
5259 return 0;
5260 }
5261 internal_error (__FILE__, __LINE__,
5262 _("remote_remove_watchpoint: reached end of function"));
5263 }
5264
5265
5266 int remote_hw_watchpoint_limit = -1;
5267 int remote_hw_breakpoint_limit = -1;
5268
5269 static int
5270 remote_check_watch_resources (int type, int cnt, int ot)
5271 {
5272 if (type == bp_hardware_breakpoint)
5273 {
5274 if (remote_hw_breakpoint_limit == 0)
5275 return 0;
5276 else if (remote_hw_breakpoint_limit < 0)
5277 return 1;
5278 else if (cnt <= remote_hw_breakpoint_limit)
5279 return 1;
5280 }
5281 else
5282 {
5283 if (remote_hw_watchpoint_limit == 0)
5284 return 0;
5285 else if (remote_hw_watchpoint_limit < 0)
5286 return 1;
5287 else if (ot)
5288 return -1;
5289 else if (cnt <= remote_hw_watchpoint_limit)
5290 return 1;
5291 }
5292 return -1;
5293 }
5294
5295 static int
5296 remote_stopped_by_watchpoint (void)
5297 {
5298 return remote_stopped_by_watchpoint_p;
5299 }
5300
5301 extern int stepped_after_stopped_by_watchpoint;
5302
5303 static int
5304 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
5305 {
5306 int rc = 0;
5307 if (remote_stopped_by_watchpoint ()
5308 || stepped_after_stopped_by_watchpoint)
5309 {
5310 *addr_p = remote_watch_data_address;
5311 rc = 1;
5312 }
5313
5314 return rc;
5315 }
5316
5317
5318 static int
5319 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
5320 {
5321 CORE_ADDR addr;
5322 struct remote_state *rs = get_remote_state ();
5323 char *p = rs->buf;
5324
5325 /* The length field should be set to the size of a breakpoint
5326 instruction, even though we aren't inserting one ourselves. */
5327
5328 gdbarch_breakpoint_from_pc
5329 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5330
5331 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5332 return -1;
5333
5334 *(p++) = 'Z';
5335 *(p++) = '1';
5336 *(p++) = ',';
5337
5338 addr = remote_address_masked (bp_tgt->placed_address);
5339 p += hexnumstr (p, (ULONGEST) addr);
5340 sprintf (p, ",%x", bp_tgt->placed_size);
5341
5342 putpkt (rs->buf);
5343 getpkt (&rs->buf, &rs->buf_size, 0);
5344
5345 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5346 {
5347 case PACKET_ERROR:
5348 case PACKET_UNKNOWN:
5349 return -1;
5350 case PACKET_OK:
5351 return 0;
5352 }
5353 internal_error (__FILE__, __LINE__,
5354 _("remote_insert_hw_breakpoint: reached end of function"));
5355 }
5356
5357
5358 static int
5359 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
5360 {
5361 CORE_ADDR addr;
5362 struct remote_state *rs = get_remote_state ();
5363 char *p = rs->buf;
5364
5365 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5366 return -1;
5367
5368 *(p++) = 'z';
5369 *(p++) = '1';
5370 *(p++) = ',';
5371
5372 addr = remote_address_masked (bp_tgt->placed_address);
5373 p += hexnumstr (p, (ULONGEST) addr);
5374 sprintf (p, ",%x", bp_tgt->placed_size);
5375
5376 putpkt (rs->buf);
5377 getpkt (&rs->buf, &rs->buf_size, 0);
5378
5379 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5380 {
5381 case PACKET_ERROR:
5382 case PACKET_UNKNOWN:
5383 return -1;
5384 case PACKET_OK:
5385 return 0;
5386 }
5387 internal_error (__FILE__, __LINE__,
5388 _("remote_remove_hw_breakpoint: reached end of function"));
5389 }
5390
5391 /* Some targets are only capable of doing downloads, and afterwards
5392 they switch to the remote serial protocol. This function provides
5393 a clean way to get from the download target to the remote target.
5394 It's basically just a wrapper so that we don't have to expose any
5395 of the internal workings of remote.c.
5396
5397 Prior to calling this routine, you should shutdown the current
5398 target code, else you will get the "A program is being debugged
5399 already..." message. Usually a call to pop_target() suffices. */
5400
5401 void
5402 push_remote_target (char *name, int from_tty)
5403 {
5404 printf_filtered (_("Switching to remote protocol\n"));
5405 remote_open (name, from_tty);
5406 }
5407
5408 /* Table used by the crc32 function to calcuate the checksum. */
5409
5410 static unsigned long crc32_table[256] =
5411 {0, 0};
5412
5413 static unsigned long
5414 crc32 (unsigned char *buf, int len, unsigned int crc)
5415 {
5416 if (!crc32_table[1])
5417 {
5418 /* Initialize the CRC table and the decoding table. */
5419 int i, j;
5420 unsigned int c;
5421
5422 for (i = 0; i < 256; i++)
5423 {
5424 for (c = i << 24, j = 8; j > 0; --j)
5425 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5426 crc32_table[i] = c;
5427 }
5428 }
5429
5430 while (len--)
5431 {
5432 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5433 buf++;
5434 }
5435 return crc;
5436 }
5437
5438 /* compare-sections command
5439
5440 With no arguments, compares each loadable section in the exec bfd
5441 with the same memory range on the target, and reports mismatches.
5442 Useful for verifying the image on the target against the exec file.
5443 Depends on the target understanding the new "qCRC:" request. */
5444
5445 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5446 target method (target verify memory) and generic version of the
5447 actual command. This will allow other high-level code (especially
5448 generic_load()) to make use of this target functionality. */
5449
5450 static void
5451 compare_sections_command (char *args, int from_tty)
5452 {
5453 struct remote_state *rs = get_remote_state ();
5454 asection *s;
5455 unsigned long host_crc, target_crc;
5456 extern bfd *exec_bfd;
5457 struct cleanup *old_chain;
5458 char *tmp;
5459 char *sectdata;
5460 const char *sectname;
5461 bfd_size_type size;
5462 bfd_vma lma;
5463 int matched = 0;
5464 int mismatched = 0;
5465
5466 if (!exec_bfd)
5467 error (_("command cannot be used without an exec file"));
5468 if (!current_target.to_shortname ||
5469 strcmp (current_target.to_shortname, "remote") != 0)
5470 error (_("command can only be used with remote target"));
5471
5472 for (s = exec_bfd->sections; s; s = s->next)
5473 {
5474 if (!(s->flags & SEC_LOAD))
5475 continue; /* skip non-loadable section */
5476
5477 size = bfd_get_section_size (s);
5478 if (size == 0)
5479 continue; /* skip zero-length section */
5480
5481 sectname = bfd_get_section_name (exec_bfd, s);
5482 if (args && strcmp (args, sectname) != 0)
5483 continue; /* not the section selected by user */
5484
5485 matched = 1; /* do this section */
5486 lma = s->lma;
5487 /* FIXME: assumes lma can fit into long. */
5488 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
5489 (long) lma, (long) size);
5490 putpkt (rs->buf);
5491
5492 /* Be clever; compute the host_crc before waiting for target
5493 reply. */
5494 sectdata = xmalloc (size);
5495 old_chain = make_cleanup (xfree, sectdata);
5496 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5497 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5498
5499 getpkt (&rs->buf, &rs->buf_size, 0);
5500 if (rs->buf[0] == 'E')
5501 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
5502 sectname, paddr (lma), paddr (lma + size));
5503 if (rs->buf[0] != 'C')
5504 error (_("remote target does not support this operation"));
5505
5506 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
5507 target_crc = target_crc * 16 + fromhex (*tmp);
5508
5509 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5510 sectname, paddr (lma), paddr (lma + size));
5511 if (host_crc == target_crc)
5512 printf_filtered ("matched.\n");
5513 else
5514 {
5515 printf_filtered ("MIS-MATCHED!\n");
5516 mismatched++;
5517 }
5518
5519 do_cleanups (old_chain);
5520 }
5521 if (mismatched > 0)
5522 warning (_("One or more sections of the remote executable does not match\n\
5523 the loaded file\n"));
5524 if (args && !matched)
5525 printf_filtered (_("No loaded section named '%s'.\n"), args);
5526 }
5527
5528 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
5529 into remote target. The number of bytes written to the remote
5530 target is returned, or -1 for error. */
5531
5532 static LONGEST
5533 remote_write_qxfer (struct target_ops *ops, const char *object_name,
5534 const char *annex, const gdb_byte *writebuf,
5535 ULONGEST offset, LONGEST len,
5536 struct packet_config *packet)
5537 {
5538 int i, buf_len;
5539 ULONGEST n;
5540 gdb_byte *wbuf;
5541 struct remote_state *rs = get_remote_state ();
5542 int max_size = get_memory_write_packet_size ();
5543
5544 if (packet->support == PACKET_DISABLE)
5545 return -1;
5546
5547 /* Insert header. */
5548 i = snprintf (rs->buf, max_size,
5549 "qXfer:%s:write:%s:%s:",
5550 object_name, annex ? annex : "",
5551 phex_nz (offset, sizeof offset));
5552 max_size -= (i + 1);
5553
5554 /* Escape as much data as fits into rs->buf. */
5555 buf_len = remote_escape_output
5556 (writebuf, len, (rs->buf + i), &max_size, max_size);
5557
5558 if (putpkt_binary (rs->buf, i + buf_len) < 0
5559 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
5560 || packet_ok (rs->buf, packet) != PACKET_OK)
5561 return -1;
5562
5563 unpack_varlen_hex (rs->buf, &n);
5564 return n;
5565 }
5566
5567 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
5568 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
5569 number of bytes read is returned, or 0 for EOF, or -1 for error.
5570 The number of bytes read may be less than LEN without indicating an
5571 EOF. PACKET is checked and updated to indicate whether the remote
5572 target supports this object. */
5573
5574 static LONGEST
5575 remote_read_qxfer (struct target_ops *ops, const char *object_name,
5576 const char *annex,
5577 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
5578 struct packet_config *packet)
5579 {
5580 static char *finished_object;
5581 static char *finished_annex;
5582 static ULONGEST finished_offset;
5583
5584 struct remote_state *rs = get_remote_state ();
5585 unsigned int total = 0;
5586 LONGEST i, n, packet_len;
5587
5588 if (packet->support == PACKET_DISABLE)
5589 return -1;
5590
5591 /* Check whether we've cached an end-of-object packet that matches
5592 this request. */
5593 if (finished_object)
5594 {
5595 if (strcmp (object_name, finished_object) == 0
5596 && strcmp (annex ? annex : "", finished_annex) == 0
5597 && offset == finished_offset)
5598 return 0;
5599
5600 /* Otherwise, we're now reading something different. Discard
5601 the cache. */
5602 xfree (finished_object);
5603 xfree (finished_annex);
5604 finished_object = NULL;
5605 finished_annex = NULL;
5606 }
5607
5608 /* Request only enough to fit in a single packet. The actual data
5609 may not, since we don't know how much of it will need to be escaped;
5610 the target is free to respond with slightly less data. We subtract
5611 five to account for the response type and the protocol frame. */
5612 n = min (get_remote_packet_size () - 5, len);
5613 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
5614 object_name, annex ? annex : "",
5615 phex_nz (offset, sizeof offset),
5616 phex_nz (n, sizeof n));
5617 i = putpkt (rs->buf);
5618 if (i < 0)
5619 return -1;
5620
5621 rs->buf[0] = '\0';
5622 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
5623 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
5624 return -1;
5625
5626 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
5627 error (_("Unknown remote qXfer reply: %s"), rs->buf);
5628
5629 /* 'm' means there is (or at least might be) more data after this
5630 batch. That does not make sense unless there's at least one byte
5631 of data in this reply. */
5632 if (rs->buf[0] == 'm' && packet_len == 1)
5633 error (_("Remote qXfer reply contained no data."));
5634
5635 /* Got some data. */
5636 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
5637
5638 /* 'l' is an EOF marker, possibly including a final block of data,
5639 or possibly empty. If we have the final block of a non-empty
5640 object, record this fact to bypass a subsequent partial read. */
5641 if (rs->buf[0] == 'l' && offset + i > 0)
5642 {
5643 finished_object = xstrdup (object_name);
5644 finished_annex = xstrdup (annex ? annex : "");
5645 finished_offset = offset + i;
5646 }
5647
5648 return i;
5649 }
5650
5651 static LONGEST
5652 remote_xfer_partial (struct target_ops *ops, enum target_object object,
5653 const char *annex, gdb_byte *readbuf,
5654 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5655 {
5656 struct remote_state *rs = get_remote_state ();
5657 int i;
5658 char *p2;
5659 char query_type;
5660
5661 /* Handle memory using the standard memory routines. */
5662 if (object == TARGET_OBJECT_MEMORY)
5663 {
5664 int xfered;
5665 errno = 0;
5666
5667 if (writebuf != NULL)
5668 xfered = remote_write_bytes (offset, writebuf, len);
5669 else
5670 xfered = remote_read_bytes (offset, readbuf, len);
5671
5672 if (xfered > 0)
5673 return xfered;
5674 else if (xfered == 0 && errno == 0)
5675 return 0;
5676 else
5677 return -1;
5678 }
5679
5680 /* Handle SPU memory using qxfer packets. */
5681 if (object == TARGET_OBJECT_SPU)
5682 {
5683 if (readbuf)
5684 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
5685 &remote_protocol_packets
5686 [PACKET_qXfer_spu_read]);
5687 else
5688 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
5689 &remote_protocol_packets
5690 [PACKET_qXfer_spu_write]);
5691 }
5692
5693 /* Only handle flash writes. */
5694 if (writebuf != NULL)
5695 {
5696 LONGEST xfered;
5697
5698 switch (object)
5699 {
5700 case TARGET_OBJECT_FLASH:
5701 xfered = remote_flash_write (ops, offset, len, writebuf);
5702
5703 if (xfered > 0)
5704 return xfered;
5705 else if (xfered == 0 && errno == 0)
5706 return 0;
5707 else
5708 return -1;
5709
5710 default:
5711 return -1;
5712 }
5713 }
5714
5715 /* Map pre-existing objects onto letters. DO NOT do this for new
5716 objects!!! Instead specify new query packets. */
5717 switch (object)
5718 {
5719 case TARGET_OBJECT_AVR:
5720 query_type = 'R';
5721 break;
5722
5723 case TARGET_OBJECT_AUXV:
5724 gdb_assert (annex == NULL);
5725 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
5726 &remote_protocol_packets[PACKET_qXfer_auxv]);
5727
5728 case TARGET_OBJECT_AVAILABLE_FEATURES:
5729 return remote_read_qxfer
5730 (ops, "features", annex, readbuf, offset, len,
5731 &remote_protocol_packets[PACKET_qXfer_features]);
5732
5733 case TARGET_OBJECT_MEMORY_MAP:
5734 gdb_assert (annex == NULL);
5735 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
5736 &remote_protocol_packets[PACKET_qXfer_memory_map]);
5737
5738 default:
5739 return -1;
5740 }
5741
5742 /* Note: a zero OFFSET and LEN can be used to query the minimum
5743 buffer size. */
5744 if (offset == 0 && len == 0)
5745 return (get_remote_packet_size ());
5746 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
5747 large enough let the caller deal with it. */
5748 if (len < get_remote_packet_size ())
5749 return -1;
5750 len = get_remote_packet_size ();
5751
5752 /* Except for querying the minimum buffer size, target must be open. */
5753 if (!remote_desc)
5754 error (_("remote query is only available after target open"));
5755
5756 gdb_assert (annex != NULL);
5757 gdb_assert (readbuf != NULL);
5758
5759 p2 = rs->buf;
5760 *p2++ = 'q';
5761 *p2++ = query_type;
5762
5763 /* We used one buffer char for the remote protocol q command and
5764 another for the query type. As the remote protocol encapsulation
5765 uses 4 chars plus one extra in case we are debugging
5766 (remote_debug), we have PBUFZIZ - 7 left to pack the query
5767 string. */
5768 i = 0;
5769 while (annex[i] && (i < (get_remote_packet_size () - 8)))
5770 {
5771 /* Bad caller may have sent forbidden characters. */
5772 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
5773 *p2++ = annex[i];
5774 i++;
5775 }
5776 *p2 = '\0';
5777 gdb_assert (annex[i] == '\0');
5778
5779 i = putpkt (rs->buf);
5780 if (i < 0)
5781 return i;
5782
5783 getpkt (&rs->buf, &rs->buf_size, 0);
5784 strcpy ((char *) readbuf, rs->buf);
5785
5786 return strlen ((char *) readbuf);
5787 }
5788
5789 static void
5790 remote_rcmd (char *command,
5791 struct ui_file *outbuf)
5792 {
5793 struct remote_state *rs = get_remote_state ();
5794 char *p = rs->buf;
5795
5796 if (!remote_desc)
5797 error (_("remote rcmd is only available after target open"));
5798
5799 /* Send a NULL command across as an empty command. */
5800 if (command == NULL)
5801 command = "";
5802
5803 /* The query prefix. */
5804 strcpy (rs->buf, "qRcmd,");
5805 p = strchr (rs->buf, '\0');
5806
5807 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
5808 error (_("\"monitor\" command ``%s'' is too long."), command);
5809
5810 /* Encode the actual command. */
5811 bin2hex ((gdb_byte *) command, p, 0);
5812
5813 if (putpkt (rs->buf) < 0)
5814 error (_("Communication problem with target."));
5815
5816 /* get/display the response */
5817 while (1)
5818 {
5819 char *buf;
5820
5821 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
5822 rs->buf[0] = '\0';
5823 getpkt (&rs->buf, &rs->buf_size, 0);
5824 buf = rs->buf;
5825 if (buf[0] == '\0')
5826 error (_("Target does not support this command."));
5827 if (buf[0] == 'O' && buf[1] != 'K')
5828 {
5829 remote_console_output (buf + 1); /* 'O' message from stub. */
5830 continue;
5831 }
5832 if (strcmp (buf, "OK") == 0)
5833 break;
5834 if (strlen (buf) == 3 && buf[0] == 'E'
5835 && isdigit (buf[1]) && isdigit (buf[2]))
5836 {
5837 error (_("Protocol error with Rcmd"));
5838 }
5839 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5840 {
5841 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5842 fputc_unfiltered (c, outbuf);
5843 }
5844 break;
5845 }
5846 }
5847
5848 static VEC(mem_region_s) *
5849 remote_memory_map (struct target_ops *ops)
5850 {
5851 VEC(mem_region_s) *result = NULL;
5852 char *text = target_read_stralloc (&current_target,
5853 TARGET_OBJECT_MEMORY_MAP, NULL);
5854
5855 if (text)
5856 {
5857 struct cleanup *back_to = make_cleanup (xfree, text);
5858 result = parse_memory_map (text);
5859 do_cleanups (back_to);
5860 }
5861
5862 return result;
5863 }
5864
5865 static void
5866 packet_command (char *args, int from_tty)
5867 {
5868 struct remote_state *rs = get_remote_state ();
5869
5870 if (!remote_desc)
5871 error (_("command can only be used with remote target"));
5872
5873 if (!args)
5874 error (_("remote-packet command requires packet text as argument"));
5875
5876 puts_filtered ("sending: ");
5877 print_packet (args);
5878 puts_filtered ("\n");
5879 putpkt (args);
5880
5881 getpkt (&rs->buf, &rs->buf_size, 0);
5882 puts_filtered ("received: ");
5883 print_packet (rs->buf);
5884 puts_filtered ("\n");
5885 }
5886
5887 #if 0
5888 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
5889
5890 static void display_thread_info (struct gdb_ext_thread_info *info);
5891
5892 static void threadset_test_cmd (char *cmd, int tty);
5893
5894 static void threadalive_test (char *cmd, int tty);
5895
5896 static void threadlist_test_cmd (char *cmd, int tty);
5897
5898 int get_and_display_threadinfo (threadref *ref);
5899
5900 static void threadinfo_test_cmd (char *cmd, int tty);
5901
5902 static int thread_display_step (threadref *ref, void *context);
5903
5904 static void threadlist_update_test_cmd (char *cmd, int tty);
5905
5906 static void init_remote_threadtests (void);
5907
5908 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
5909
5910 static void
5911 threadset_test_cmd (char *cmd, int tty)
5912 {
5913 int sample_thread = SAMPLE_THREAD;
5914
5915 printf_filtered (_("Remote threadset test\n"));
5916 set_thread (sample_thread, 1);
5917 }
5918
5919
5920 static void
5921 threadalive_test (char *cmd, int tty)
5922 {
5923 int sample_thread = SAMPLE_THREAD;
5924
5925 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5926 printf_filtered ("PASS: Thread alive test\n");
5927 else
5928 printf_filtered ("FAIL: Thread alive test\n");
5929 }
5930
5931 void output_threadid (char *title, threadref *ref);
5932
5933 void
5934 output_threadid (char *title, threadref *ref)
5935 {
5936 char hexid[20];
5937
5938 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
5939 hexid[16] = 0;
5940 printf_filtered ("%s %s\n", title, (&hexid[0]));
5941 }
5942
5943 static void
5944 threadlist_test_cmd (char *cmd, int tty)
5945 {
5946 int startflag = 1;
5947 threadref nextthread;
5948 int done, result_count;
5949 threadref threadlist[3];
5950
5951 printf_filtered ("Remote Threadlist test\n");
5952 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5953 &result_count, &threadlist[0]))
5954 printf_filtered ("FAIL: threadlist test\n");
5955 else
5956 {
5957 threadref *scan = threadlist;
5958 threadref *limit = scan + result_count;
5959
5960 while (scan < limit)
5961 output_threadid (" thread ", scan++);
5962 }
5963 }
5964
5965 void
5966 display_thread_info (struct gdb_ext_thread_info *info)
5967 {
5968 output_threadid ("Threadid: ", &info->threadid);
5969 printf_filtered ("Name: %s\n ", info->shortname);
5970 printf_filtered ("State: %s\n", info->display);
5971 printf_filtered ("other: %s\n\n", info->more_display);
5972 }
5973
5974 int
5975 get_and_display_threadinfo (threadref *ref)
5976 {
5977 int result;
5978 int set;
5979 struct gdb_ext_thread_info threadinfo;
5980
5981 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5982 | TAG_MOREDISPLAY | TAG_DISPLAY;
5983 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5984 display_thread_info (&threadinfo);
5985 return result;
5986 }
5987
5988 static void
5989 threadinfo_test_cmd (char *cmd, int tty)
5990 {
5991 int athread = SAMPLE_THREAD;
5992 threadref thread;
5993 int set;
5994
5995 int_to_threadref (&thread, athread);
5996 printf_filtered ("Remote Threadinfo test\n");
5997 if (!get_and_display_threadinfo (&thread))
5998 printf_filtered ("FAIL cannot get thread info\n");
5999 }
6000
6001 static int
6002 thread_display_step (threadref *ref, void *context)
6003 {
6004 /* output_threadid(" threadstep ",ref); *//* simple test */
6005 return get_and_display_threadinfo (ref);
6006 }
6007
6008 static void
6009 threadlist_update_test_cmd (char *cmd, int tty)
6010 {
6011 printf_filtered ("Remote Threadlist update test\n");
6012 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
6013 }
6014
6015 static void
6016 init_remote_threadtests (void)
6017 {
6018 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
6019 Fetch and print the remote list of thread identifiers, one pkt only"));
6020 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
6021 _("Fetch and display info about one thread"));
6022 add_com ("tset", class_obscure, threadset_test_cmd,
6023 _("Test setting to a different thread"));
6024 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
6025 _("Iterate through updating all remote thread info"));
6026 add_com ("talive", class_obscure, threadalive_test,
6027 _(" Remote thread alive test "));
6028 }
6029
6030 #endif /* 0 */
6031
6032 /* Convert a thread ID to a string. Returns the string in a static
6033 buffer. */
6034
6035 static char *
6036 remote_pid_to_str (ptid_t ptid)
6037 {
6038 static char buf[32];
6039
6040 xsnprintf (buf, sizeof buf, "Thread %d", ptid_get_pid (ptid));
6041 return buf;
6042 }
6043
6044 /* Get the address of the thread local variable in OBJFILE which is
6045 stored at OFFSET within the thread local storage for thread PTID. */
6046
6047 static CORE_ADDR
6048 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
6049 {
6050 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
6051 {
6052 struct remote_state *rs = get_remote_state ();
6053 char *p = rs->buf;
6054 enum packet_result result;
6055
6056 strcpy (p, "qGetTLSAddr:");
6057 p += strlen (p);
6058 p += hexnumstr (p, PIDGET (ptid));
6059 *p++ = ',';
6060 p += hexnumstr (p, offset);
6061 *p++ = ',';
6062 p += hexnumstr (p, lm);
6063 *p++ = '\0';
6064
6065 putpkt (rs->buf);
6066 getpkt (&rs->buf, &rs->buf_size, 0);
6067 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
6068 if (result == PACKET_OK)
6069 {
6070 ULONGEST result;
6071
6072 unpack_varlen_hex (rs->buf, &result);
6073 return result;
6074 }
6075 else if (result == PACKET_UNKNOWN)
6076 throw_error (TLS_GENERIC_ERROR,
6077 _("Remote target doesn't support qGetTLSAddr packet"));
6078 else
6079 throw_error (TLS_GENERIC_ERROR,
6080 _("Remote target failed to process qGetTLSAddr request"));
6081 }
6082 else
6083 throw_error (TLS_GENERIC_ERROR,
6084 _("TLS not supported or disabled on this target"));
6085 /* Not reached. */
6086 return 0;
6087 }
6088
6089 /* Support for inferring a target description based on the current
6090 architecture and the size of a 'g' packet. While the 'g' packet
6091 can have any size (since optional registers can be left off the
6092 end), some sizes are easily recognizable given knowledge of the
6093 approximate architecture. */
6094
6095 struct remote_g_packet_guess
6096 {
6097 int bytes;
6098 const struct target_desc *tdesc;
6099 };
6100 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
6101 DEF_VEC_O(remote_g_packet_guess_s);
6102
6103 struct remote_g_packet_data
6104 {
6105 VEC(remote_g_packet_guess_s) *guesses;
6106 };
6107
6108 static struct gdbarch_data *remote_g_packet_data_handle;
6109
6110 static void *
6111 remote_g_packet_data_init (struct obstack *obstack)
6112 {
6113 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
6114 }
6115
6116 void
6117 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
6118 const struct target_desc *tdesc)
6119 {
6120 struct remote_g_packet_data *data
6121 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
6122 struct remote_g_packet_guess new_guess, *guess;
6123 int ix;
6124
6125 gdb_assert (tdesc != NULL);
6126
6127 for (ix = 0;
6128 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6129 ix++)
6130 if (guess->bytes == bytes)
6131 internal_error (__FILE__, __LINE__,
6132 "Duplicate g packet description added for size %d",
6133 bytes);
6134
6135 new_guess.bytes = bytes;
6136 new_guess.tdesc = tdesc;
6137 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
6138 }
6139
6140 static const struct target_desc *
6141 remote_read_description (struct target_ops *target)
6142 {
6143 struct remote_g_packet_data *data
6144 = gdbarch_data (current_gdbarch, remote_g_packet_data_handle);
6145
6146 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
6147 {
6148 struct remote_g_packet_guess *guess;
6149 int ix;
6150 int bytes = send_g_packet ();
6151
6152 for (ix = 0;
6153 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6154 ix++)
6155 if (guess->bytes == bytes)
6156 return guess->tdesc;
6157
6158 /* We discard the g packet. A minor optimization would be to
6159 hold on to it, and fill the register cache once we have selected
6160 an architecture, but it's too tricky to do safely. */
6161 }
6162
6163 return NULL;
6164 }
6165
6166 static void
6167 init_remote_ops (void)
6168 {
6169 remote_ops.to_shortname = "remote";
6170 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
6171 remote_ops.to_doc =
6172 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6173 Specify the serial device it is connected to\n\
6174 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
6175 remote_ops.to_open = remote_open;
6176 remote_ops.to_close = remote_close;
6177 remote_ops.to_detach = remote_detach;
6178 remote_ops.to_disconnect = remote_disconnect;
6179 remote_ops.to_resume = remote_resume;
6180 remote_ops.to_wait = remote_wait;
6181 remote_ops.to_fetch_registers = remote_fetch_registers;
6182 remote_ops.to_store_registers = remote_store_registers;
6183 remote_ops.to_prepare_to_store = remote_prepare_to_store;
6184 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
6185 remote_ops.to_files_info = remote_files_info;
6186 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
6187 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
6188 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6189 remote_ops.to_stopped_data_address = remote_stopped_data_address;
6190 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6191 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6192 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6193 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
6194 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
6195 remote_ops.to_kill = remote_kill;
6196 remote_ops.to_load = generic_load;
6197 remote_ops.to_mourn_inferior = remote_mourn;
6198 remote_ops.to_thread_alive = remote_thread_alive;
6199 remote_ops.to_find_new_threads = remote_threads_info;
6200 remote_ops.to_pid_to_str = remote_pid_to_str;
6201 remote_ops.to_extra_thread_info = remote_threads_extra_info;
6202 remote_ops.to_stop = remote_stop;
6203 remote_ops.to_xfer_partial = remote_xfer_partial;
6204 remote_ops.to_rcmd = remote_rcmd;
6205 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
6206 remote_ops.to_stratum = process_stratum;
6207 remote_ops.to_has_all_memory = 1;
6208 remote_ops.to_has_memory = 1;
6209 remote_ops.to_has_stack = 1;
6210 remote_ops.to_has_registers = 1;
6211 remote_ops.to_has_execution = 1;
6212 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6213 remote_ops.to_magic = OPS_MAGIC;
6214 remote_ops.to_memory_map = remote_memory_map;
6215 remote_ops.to_flash_erase = remote_flash_erase;
6216 remote_ops.to_flash_done = remote_flash_done;
6217 remote_ops.to_read_description = remote_read_description;
6218 }
6219
6220 /* Set up the extended remote vector by making a copy of the standard
6221 remote vector and adding to it. */
6222
6223 static void
6224 init_extended_remote_ops (void)
6225 {
6226 extended_remote_ops = remote_ops;
6227
6228 extended_remote_ops.to_shortname = "extended-remote";
6229 extended_remote_ops.to_longname =
6230 "Extended remote serial target in gdb-specific protocol";
6231 extended_remote_ops.to_doc =
6232 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6233 Specify the serial device it is connected to (e.g. /dev/ttya).",
6234 extended_remote_ops.to_open = extended_remote_open;
6235 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
6236 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
6237 }
6238
6239 static int
6240 remote_can_async_p (void)
6241 {
6242 /* We're async whenever the serial device is. */
6243 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
6244 }
6245
6246 static int
6247 remote_is_async_p (void)
6248 {
6249 /* We're async whenever the serial device is. */
6250 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
6251 }
6252
6253 /* Pass the SERIAL event on and up to the client. One day this code
6254 will be able to delay notifying the client of an event until the
6255 point where an entire packet has been received. */
6256
6257 static void (*async_client_callback) (enum inferior_event_type event_type,
6258 void *context);
6259 static void *async_client_context;
6260 static serial_event_ftype remote_async_serial_handler;
6261
6262 static void
6263 remote_async_serial_handler (struct serial *scb, void *context)
6264 {
6265 /* Don't propogate error information up to the client. Instead let
6266 the client find out about the error by querying the target. */
6267 async_client_callback (INF_REG_EVENT, async_client_context);
6268 }
6269
6270 static void
6271 remote_async (void (*callback) (enum inferior_event_type event_type,
6272 void *context), void *context)
6273 {
6274 if (current_target.to_async_mask_value == 0)
6275 internal_error (__FILE__, __LINE__,
6276 _("Calling remote_async when async is masked"));
6277
6278 if (callback != NULL)
6279 {
6280 serial_async (remote_desc, remote_async_serial_handler, NULL);
6281 async_client_callback = callback;
6282 async_client_context = context;
6283 }
6284 else
6285 serial_async (remote_desc, NULL, NULL);
6286 }
6287
6288 /* Target async and target extended-async.
6289
6290 This are temporary targets, until it is all tested. Eventually
6291 async support will be incorporated int the usual 'remote'
6292 target. */
6293
6294 static void
6295 init_remote_async_ops (void)
6296 {
6297 remote_async_ops.to_shortname = "async";
6298 remote_async_ops.to_longname =
6299 "Remote serial target in async version of the gdb-specific protocol";
6300 remote_async_ops.to_doc =
6301 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6302 Specify the serial device it is connected to (e.g. /dev/ttya).";
6303 remote_async_ops.to_open = remote_async_open;
6304 remote_async_ops.to_close = remote_close;
6305 remote_async_ops.to_detach = remote_detach;
6306 remote_async_ops.to_disconnect = remote_disconnect;
6307 remote_async_ops.to_resume = remote_async_resume;
6308 remote_async_ops.to_wait = remote_async_wait;
6309 remote_async_ops.to_fetch_registers = remote_fetch_registers;
6310 remote_async_ops.to_store_registers = remote_store_registers;
6311 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
6312 remote_async_ops.deprecated_xfer_memory = remote_xfer_memory;
6313 remote_async_ops.to_files_info = remote_files_info;
6314 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
6315 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
6316 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6317 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6318 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6319 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
6320 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
6321 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6322 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
6323 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
6324 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
6325 remote_async_ops.to_kill = remote_async_kill;
6326 remote_async_ops.to_load = generic_load;
6327 remote_async_ops.to_mourn_inferior = remote_async_mourn;
6328 remote_async_ops.to_thread_alive = remote_thread_alive;
6329 remote_async_ops.to_find_new_threads = remote_threads_info;
6330 remote_async_ops.to_pid_to_str = remote_pid_to_str;
6331 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
6332 remote_async_ops.to_stop = remote_stop;
6333 remote_async_ops.to_xfer_partial = remote_xfer_partial;
6334 remote_async_ops.to_rcmd = remote_rcmd;
6335 remote_async_ops.to_stratum = process_stratum;
6336 remote_async_ops.to_has_all_memory = 1;
6337 remote_async_ops.to_has_memory = 1;
6338 remote_async_ops.to_has_stack = 1;
6339 remote_async_ops.to_has_registers = 1;
6340 remote_async_ops.to_has_execution = 1;
6341 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6342 remote_async_ops.to_can_async_p = remote_can_async_p;
6343 remote_async_ops.to_is_async_p = remote_is_async_p;
6344 remote_async_ops.to_async = remote_async;
6345 remote_async_ops.to_async_mask_value = 1;
6346 remote_async_ops.to_magic = OPS_MAGIC;
6347 remote_async_ops.to_memory_map = remote_memory_map;
6348 remote_async_ops.to_flash_erase = remote_flash_erase;
6349 remote_async_ops.to_flash_done = remote_flash_done;
6350 remote_ops.to_read_description = remote_read_description;
6351 }
6352
6353 /* Set up the async extended remote vector by making a copy of the standard
6354 remote vector and adding to it. */
6355
6356 static void
6357 init_extended_async_remote_ops (void)
6358 {
6359 extended_async_remote_ops = remote_async_ops;
6360
6361 extended_async_remote_ops.to_shortname = "extended-async";
6362 extended_async_remote_ops.to_longname =
6363 "Extended remote serial target in async gdb-specific protocol";
6364 extended_async_remote_ops.to_doc =
6365 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
6366 Specify the serial device it is connected to (e.g. /dev/ttya).",
6367 extended_async_remote_ops.to_open = extended_remote_async_open;
6368 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
6369 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
6370 }
6371
6372 static void
6373 set_remote_cmd (char *args, int from_tty)
6374 {
6375 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
6376 }
6377
6378 static void
6379 show_remote_cmd (char *args, int from_tty)
6380 {
6381 /* We can't just use cmd_show_list here, because we want to skip
6382 the redundant "show remote Z-packet" and the legacy aliases. */
6383 struct cleanup *showlist_chain;
6384 struct cmd_list_element *list = remote_show_cmdlist;
6385
6386 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
6387 for (; list != NULL; list = list->next)
6388 if (strcmp (list->name, "Z-packet") == 0)
6389 continue;
6390 else if (list->type == not_set_cmd)
6391 /* Alias commands are exactly like the original, except they
6392 don't have the normal type. */
6393 continue;
6394 else
6395 {
6396 struct cleanup *option_chain
6397 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
6398 ui_out_field_string (uiout, "name", list->name);
6399 ui_out_text (uiout, ": ");
6400 if (list->type == show_cmd)
6401 do_setshow_command ((char *) NULL, from_tty, list);
6402 else
6403 cmd_func (list, NULL, from_tty);
6404 /* Close the tuple. */
6405 do_cleanups (option_chain);
6406 }
6407
6408 /* Close the tuple. */
6409 do_cleanups (showlist_chain);
6410 }
6411
6412 static void
6413 build_remote_gdbarch_data (void)
6414 {
6415 remote_address_size = gdbarch_addr_bit (current_gdbarch);
6416 }
6417
6418 /* Function to be called whenever a new objfile (shlib) is detected. */
6419 static void
6420 remote_new_objfile (struct objfile *objfile)
6421 {
6422 if (remote_desc != 0) /* Have a remote connection. */
6423 remote_check_symbols (objfile);
6424 }
6425
6426 void
6427 _initialize_remote (void)
6428 {
6429 struct remote_state *rs;
6430
6431 /* architecture specific data */
6432 remote_gdbarch_data_handle =
6433 gdbarch_data_register_post_init (init_remote_state);
6434 remote_g_packet_data_handle =
6435 gdbarch_data_register_pre_init (remote_g_packet_data_init);
6436
6437 /* Old tacky stuff. NOTE: This comes after the remote protocol so
6438 that the remote protocol has been initialized. */
6439 DEPRECATED_REGISTER_GDBARCH_SWAP (remote_address_size);
6440 deprecated_register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
6441
6442 /* Initialize the per-target state. At the moment there is only one
6443 of these, not one per target. Only one target is active at a
6444 time. The default buffer size is unimportant; it will be expanded
6445 whenever a larger buffer is needed. */
6446 rs = get_remote_state_raw ();
6447 rs->buf_size = 400;
6448 rs->buf = xmalloc (rs->buf_size);
6449
6450 init_remote_ops ();
6451 add_target (&remote_ops);
6452
6453 init_extended_remote_ops ();
6454 add_target (&extended_remote_ops);
6455
6456 init_remote_async_ops ();
6457 add_target (&remote_async_ops);
6458
6459 init_extended_async_remote_ops ();
6460 add_target (&extended_async_remote_ops);
6461
6462 /* Hook into new objfile notification. */
6463 observer_attach_new_objfile (remote_new_objfile);
6464
6465 #if 0
6466 init_remote_threadtests ();
6467 #endif
6468
6469 /* set/show remote ... */
6470
6471 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
6472 Remote protocol specific variables\n\
6473 Configure various remote-protocol specific variables such as\n\
6474 the packets being used"),
6475 &remote_set_cmdlist, "set remote ",
6476 0 /* allow-unknown */, &setlist);
6477 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
6478 Remote protocol specific variables\n\
6479 Configure various remote-protocol specific variables such as\n\
6480 the packets being used"),
6481 &remote_show_cmdlist, "show remote ",
6482 0 /* allow-unknown */, &showlist);
6483
6484 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
6485 Compare section data on target to the exec file.\n\
6486 Argument is a single section name (default: all loaded sections)."),
6487 &cmdlist);
6488
6489 add_cmd ("packet", class_maintenance, packet_command, _("\
6490 Send an arbitrary packet to a remote target.\n\
6491 maintenance packet TEXT\n\
6492 If GDB is talking to an inferior via the GDB serial protocol, then\n\
6493 this command sends the string TEXT to the inferior, and displays the\n\
6494 response packet. GDB supplies the initial `$' character, and the\n\
6495 terminating `#' character and checksum."),
6496 &maintenancelist);
6497
6498 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
6499 Set whether to send break if interrupted."), _("\
6500 Show whether to send break if interrupted."), _("\
6501 If set, a break, instead of a cntrl-c, is sent to the remote target."),
6502 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
6503 &setlist, &showlist);
6504
6505 /* Install commands for configuring memory read/write packets. */
6506
6507 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
6508 Set the maximum number of bytes per memory write packet (deprecated)."),
6509 &setlist);
6510 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
6511 Show the maximum number of bytes per memory write packet (deprecated)."),
6512 &showlist);
6513 add_cmd ("memory-write-packet-size", no_class,
6514 set_memory_write_packet_size, _("\
6515 Set the maximum number of bytes per memory-write packet.\n\
6516 Specify the number of bytes in a packet or 0 (zero) for the\n\
6517 default packet size. The actual limit is further reduced\n\
6518 dependent on the target. Specify ``fixed'' to disable the\n\
6519 further restriction and ``limit'' to enable that restriction."),
6520 &remote_set_cmdlist);
6521 add_cmd ("memory-read-packet-size", no_class,
6522 set_memory_read_packet_size, _("\
6523 Set the maximum number of bytes per memory-read packet.\n\
6524 Specify the number of bytes in a packet or 0 (zero) for the\n\
6525 default packet size. The actual limit is further reduced\n\
6526 dependent on the target. Specify ``fixed'' to disable the\n\
6527 further restriction and ``limit'' to enable that restriction."),
6528 &remote_set_cmdlist);
6529 add_cmd ("memory-write-packet-size", no_class,
6530 show_memory_write_packet_size,
6531 _("Show the maximum number of bytes per memory-write packet."),
6532 &remote_show_cmdlist);
6533 add_cmd ("memory-read-packet-size", no_class,
6534 show_memory_read_packet_size,
6535 _("Show the maximum number of bytes per memory-read packet."),
6536 &remote_show_cmdlist);
6537
6538 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
6539 &remote_hw_watchpoint_limit, _("\
6540 Set the maximum number of target hardware watchpoints."), _("\
6541 Show the maximum number of target hardware watchpoints."), _("\
6542 Specify a negative limit for unlimited."),
6543 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
6544 &remote_set_cmdlist, &remote_show_cmdlist);
6545 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
6546 &remote_hw_breakpoint_limit, _("\
6547 Set the maximum number of target hardware breakpoints."), _("\
6548 Show the maximum number of target hardware breakpoints."), _("\
6549 Specify a negative limit for unlimited."),
6550 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
6551 &remote_set_cmdlist, &remote_show_cmdlist);
6552
6553 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
6554 &remote_address_size, _("\
6555 Set the maximum size of the address (in bits) in a memory packet."), _("\
6556 Show the maximum size of the address (in bits) in a memory packet."), NULL,
6557 NULL,
6558 NULL, /* FIXME: i18n: */
6559 &setlist, &showlist);
6560
6561 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
6562 "X", "binary-download", 1);
6563
6564 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
6565 "vCont", "verbose-resume", 0);
6566
6567 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
6568 "QPassSignals", "pass-signals", 0);
6569
6570 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
6571 "qSymbol", "symbol-lookup", 0);
6572
6573 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
6574 "P", "set-register", 1);
6575
6576 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
6577 "p", "fetch-register", 1);
6578
6579 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
6580 "Z0", "software-breakpoint", 0);
6581
6582 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
6583 "Z1", "hardware-breakpoint", 0);
6584
6585 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
6586 "Z2", "write-watchpoint", 0);
6587
6588 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
6589 "Z3", "read-watchpoint", 0);
6590
6591 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
6592 "Z4", "access-watchpoint", 0);
6593
6594 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
6595 "qXfer:auxv:read", "read-aux-vector", 0);
6596
6597 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
6598 "qXfer:features:read", "target-features", 0);
6599
6600 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
6601 "qXfer:memory-map:read", "memory-map", 0);
6602
6603 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
6604 "qXfer:spu:read", "read-spu-object", 0);
6605
6606 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
6607 "qXfer:spu:write", "write-spu-object", 0);
6608
6609 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
6610 "qGetTLSAddr", "get-thread-local-storage-address",
6611 0);
6612
6613 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
6614 "qSupported", "supported-packets", 0);
6615
6616 /* Keep the old ``set remote Z-packet ...'' working. Each individual
6617 Z sub-packet has its own set and show commands, but users may
6618 have sets to this variable in their .gdbinit files (or in their
6619 documentation). */
6620 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
6621 &remote_Z_packet_detect, _("\
6622 Set use of remote protocol `Z' packets"), _("\
6623 Show use of remote protocol `Z' packets "), _("\
6624 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
6625 packets."),
6626 set_remote_protocol_Z_packet_cmd,
6627 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
6628 &remote_set_cmdlist, &remote_show_cmdlist);
6629
6630 /* Eventually initialize fileio. See fileio.c */
6631 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
6632 }
This page took 0.191971 seconds and 5 git commands to generate.