Get rid of VEC(static_tracepoint_marker_p)
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 /*#include "terminal.h" */
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "filestuff.h"
46 #include "rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "common/scoped_restore.h"
76 #include "environ.h"
77 #include "common/byte-vector.h"
78
79 /* Per-program-space data key. */
80 static const struct program_space_data *remote_pspace_data;
81
82 /* The variable registered as the control variable used by the
83 remote exec-file commands. While the remote exec-file setting is
84 per-program-space, the set/show machinery uses this as the
85 location of the remote exec-file value. */
86 static char *remote_exec_file_var;
87
88 /* The size to align memory write packets, when practical. The protocol
89 does not guarantee any alignment, and gdb will generate short
90 writes and unaligned writes, but even as a best-effort attempt this
91 can improve bulk transfers. For instance, if a write is misaligned
92 relative to the target's data bus, the stub may need to make an extra
93 round trip fetching data from the target. This doesn't make a
94 huge difference, but it's easy to do, so we try to be helpful.
95
96 The alignment chosen is arbitrary; usually data bus width is
97 important here, not the possibly larger cache line size. */
98 enum { REMOTE_ALIGN_WRITES = 16 };
99
100 /* Prototypes for local functions. */
101 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
102 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
103 int forever, int *is_notif);
104
105 static void remote_files_info (struct target_ops *ignore);
106
107 static void remote_prepare_to_store (struct target_ops *self,
108 struct regcache *regcache);
109
110 static void remote_open_1 (const char *, int, struct target_ops *,
111 int extended_p);
112
113 static void remote_close (struct target_ops *self);
114
115 struct remote_state;
116
117 static int remote_vkill (int pid, struct remote_state *rs);
118
119 static void remote_kill_k (void);
120
121 static void remote_mourn (struct target_ops *ops);
122
123 static void extended_remote_restart (void);
124
125 static void remote_send (char **buf, long *sizeof_buf_p);
126
127 static int readchar (int timeout);
128
129 static void remote_serial_write (const char *str, int len);
130
131 static void remote_kill (struct target_ops *ops);
132
133 static int remote_can_async_p (struct target_ops *);
134
135 static int remote_is_async_p (struct target_ops *);
136
137 static void remote_async (struct target_ops *ops, int enable);
138
139 static void remote_thread_events (struct target_ops *ops, int enable);
140
141 static void interrupt_query (void);
142
143 static void set_general_thread (ptid_t ptid);
144 static void set_continue_thread (ptid_t ptid);
145
146 static void get_offsets (void);
147
148 static void skip_frame (void);
149
150 static long read_frame (char **buf_p, long *sizeof_buf);
151
152 static int hexnumlen (ULONGEST num);
153
154 static void init_remote_ops (void);
155
156 static void init_extended_remote_ops (void);
157
158 static void remote_stop (struct target_ops *self, ptid_t);
159
160 static int stubhex (int ch);
161
162 static int hexnumstr (char *, ULONGEST);
163
164 static int hexnumnstr (char *, ULONGEST, int);
165
166 static CORE_ADDR remote_address_masked (CORE_ADDR);
167
168 static void print_packet (const char *);
169
170 static int stub_unpack_int (char *buff, int fieldlength);
171
172 static ptid_t remote_current_thread (ptid_t oldptid);
173
174 static int putpkt_binary (const char *buf, int cnt);
175
176 static void check_binary_download (CORE_ADDR addr);
177
178 struct packet_config;
179
180 static void show_packet_config_cmd (struct packet_config *config);
181
182 static void show_remote_protocol_packet_cmd (struct ui_file *file,
183 int from_tty,
184 struct cmd_list_element *c,
185 const char *value);
186
187 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
188 static ptid_t read_ptid (const char *buf, const char **obuf);
189
190 static void remote_set_permissions (struct target_ops *self);
191
192 static int remote_get_trace_status (struct target_ops *self,
193 struct trace_status *ts);
194
195 static int remote_upload_tracepoints (struct target_ops *self,
196 struct uploaded_tp **utpp);
197
198 static int remote_upload_trace_state_variables (struct target_ops *self,
199 struct uploaded_tsv **utsvp);
200
201 static void remote_query_supported (void);
202
203 static void remote_check_symbols (void);
204
205 struct stop_reply;
206 static void stop_reply_xfree (struct stop_reply *);
207 static void remote_parse_stop_reply (char *, struct stop_reply *);
208 static void push_stop_reply (struct stop_reply *);
209 static void discard_pending_stop_replies_in_queue (struct remote_state *);
210 static int peek_stop_reply (ptid_t ptid);
211
212 struct threads_listing_context;
213 static void remove_new_fork_children (struct threads_listing_context *);
214
215 static void remote_async_inferior_event_handler (gdb_client_data);
216
217 static void remote_terminal_ours (struct target_ops *self);
218
219 static int remote_read_description_p (struct target_ops *target);
220
221 static void remote_console_output (char *msg);
222
223 static int remote_supports_cond_breakpoints (struct target_ops *self);
224
225 static int remote_can_run_breakpoint_commands (struct target_ops *self);
226
227 static void remote_btrace_reset (void);
228
229 static void remote_btrace_maybe_reopen (void);
230
231 static int stop_reply_queue_length (void);
232
233 static void readahead_cache_invalidate (void);
234
235 static void remote_unpush_and_throw (void);
236
237 static struct remote_state *get_remote_state (void);
238
239 /* For "remote". */
240
241 static struct cmd_list_element *remote_cmdlist;
242
243 /* For "set remote" and "show remote". */
244
245 static struct cmd_list_element *remote_set_cmdlist;
246 static struct cmd_list_element *remote_show_cmdlist;
247
248 /* Stub vCont actions support.
249
250 Each field is a boolean flag indicating whether the stub reports
251 support for the corresponding action. */
252
253 struct vCont_action_support
254 {
255 /* vCont;t */
256 int t;
257
258 /* vCont;r */
259 int r;
260
261 /* vCont;s */
262 int s;
263
264 /* vCont;S */
265 int S;
266 };
267
268 /* Controls whether GDB is willing to use range stepping. */
269
270 static int use_range_stepping = 1;
271
272 #define OPAQUETHREADBYTES 8
273
274 /* a 64 bit opaque identifier */
275 typedef unsigned char threadref[OPAQUETHREADBYTES];
276
277 /* About this many threadisds fit in a packet. */
278
279 #define MAXTHREADLISTRESULTS 32
280
281 /* The max number of chars in debug output. The rest of chars are
282 omitted. */
283
284 #define REMOTE_DEBUG_MAX_CHAR 512
285
286 /* Data for the vFile:pread readahead cache. */
287
288 struct readahead_cache
289 {
290 /* The file descriptor for the file that is being cached. -1 if the
291 cache is invalid. */
292 int fd;
293
294 /* The offset into the file that the cache buffer corresponds
295 to. */
296 ULONGEST offset;
297
298 /* The buffer holding the cache contents. */
299 gdb_byte *buf;
300 /* The buffer's size. We try to read as much as fits into a packet
301 at a time. */
302 size_t bufsize;
303
304 /* Cache hit and miss counters. */
305 ULONGEST hit_count;
306 ULONGEST miss_count;
307 };
308
309 /* Description of the remote protocol state for the currently
310 connected target. This is per-target state, and independent of the
311 selected architecture. */
312
313 struct remote_state
314 {
315 /* A buffer to use for incoming packets, and its current size. The
316 buffer is grown dynamically for larger incoming packets.
317 Outgoing packets may also be constructed in this buffer.
318 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
319 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
320 packets. */
321 char *buf;
322 long buf_size;
323
324 /* True if we're going through initial connection setup (finding out
325 about the remote side's threads, relocating symbols, etc.). */
326 int starting_up;
327
328 /* If we negotiated packet size explicitly (and thus can bypass
329 heuristics for the largest packet size that will not overflow
330 a buffer in the stub), this will be set to that packet size.
331 Otherwise zero, meaning to use the guessed size. */
332 long explicit_packet_size;
333
334 /* remote_wait is normally called when the target is running and
335 waits for a stop reply packet. But sometimes we need to call it
336 when the target is already stopped. We can send a "?" packet
337 and have remote_wait read the response. Or, if we already have
338 the response, we can stash it in BUF and tell remote_wait to
339 skip calling getpkt. This flag is set when BUF contains a
340 stop reply packet and the target is not waiting. */
341 int cached_wait_status;
342
343 /* True, if in no ack mode. That is, neither GDB nor the stub will
344 expect acks from each other. The connection is assumed to be
345 reliable. */
346 int noack_mode;
347
348 /* True if we're connected in extended remote mode. */
349 int extended;
350
351 /* True if we resumed the target and we're waiting for the target to
352 stop. In the mean time, we can't start another command/query.
353 The remote server wouldn't be ready to process it, so we'd
354 timeout waiting for a reply that would never come and eventually
355 we'd close the connection. This can happen in asynchronous mode
356 because we allow GDB commands while the target is running. */
357 int waiting_for_stop_reply;
358
359 /* The status of the stub support for the various vCont actions. */
360 struct vCont_action_support supports_vCont;
361
362 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
363 responded to that. */
364 int ctrlc_pending_p;
365
366 /* True if we saw a Ctrl-C while reading or writing from/to the
367 remote descriptor. At that point it is not safe to send a remote
368 interrupt packet, so we instead remember we saw the Ctrl-C and
369 process it once we're done with sending/receiving the current
370 packet, which should be shortly. If however that takes too long,
371 and the user presses Ctrl-C again, we offer to disconnect. */
372 int got_ctrlc_during_io;
373
374 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
375 remote_open knows that we don't have a file open when the program
376 starts. */
377 struct serial *remote_desc;
378
379 /* These are the threads which we last sent to the remote system. The
380 TID member will be -1 for all or -2 for not sent yet. */
381 ptid_t general_thread;
382 ptid_t continue_thread;
383
384 /* This is the traceframe which we last selected on the remote system.
385 It will be -1 if no traceframe is selected. */
386 int remote_traceframe_number;
387
388 char *last_pass_packet;
389
390 /* The last QProgramSignals packet sent to the target. We bypass
391 sending a new program signals list down to the target if the new
392 packet is exactly the same as the last we sent. IOW, we only let
393 the target know about program signals list changes. */
394 char *last_program_signals_packet;
395
396 enum gdb_signal last_sent_signal;
397
398 int last_sent_step;
399
400 /* The execution direction of the last resume we got. */
401 enum exec_direction_kind last_resume_exec_dir;
402
403 char *finished_object;
404 char *finished_annex;
405 ULONGEST finished_offset;
406
407 /* Should we try the 'ThreadInfo' query packet?
408
409 This variable (NOT available to the user: auto-detect only!)
410 determines whether GDB will use the new, simpler "ThreadInfo"
411 query or the older, more complex syntax for thread queries.
412 This is an auto-detect variable (set to true at each connect,
413 and set to false when the target fails to recognize it). */
414 int use_threadinfo_query;
415 int use_threadextra_query;
416
417 threadref echo_nextthread;
418 threadref nextthread;
419 threadref resultthreadlist[MAXTHREADLISTRESULTS];
420
421 /* The state of remote notification. */
422 struct remote_notif_state *notif_state;
423
424 /* The branch trace configuration. */
425 struct btrace_config btrace_config;
426
427 /* The argument to the last "vFile:setfs:" packet we sent, used
428 to avoid sending repeated unnecessary "vFile:setfs:" packets.
429 Initialized to -1 to indicate that no "vFile:setfs:" packet
430 has yet been sent. */
431 int fs_pid;
432
433 /* A readahead cache for vFile:pread. Often, reading a binary
434 involves a sequence of small reads. E.g., when parsing an ELF
435 file. A readahead cache helps mostly the case of remote
436 debugging on a connection with higher latency, due to the
437 request/reply nature of the RSP. We only cache data for a single
438 file descriptor at a time. */
439 struct readahead_cache readahead_cache;
440 };
441
442 /* Private data that we'll store in (struct thread_info)->priv. */
443 struct remote_thread_info : public private_thread_info
444 {
445 std::string extra;
446 std::string name;
447 int core = -1;
448
449 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
450 sequence of bytes. */
451 gdb::byte_vector thread_handle;
452
453 /* Whether the target stopped for a breakpoint/watchpoint. */
454 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
455
456 /* This is set to the data address of the access causing the target
457 to stop for a watchpoint. */
458 CORE_ADDR watch_data_address = 0;
459
460 /* Fields used by the vCont action coalescing implemented in
461 remote_resume / remote_commit_resume. remote_resume stores each
462 thread's last resume request in these fields, so that a later
463 remote_commit_resume knows which is the proper action for this
464 thread to include in the vCont packet. */
465
466 /* True if the last target_resume call for this thread was a step
467 request, false if a continue request. */
468 int last_resume_step = 0;
469
470 /* The signal specified in the last target_resume call for this
471 thread. */
472 gdb_signal last_resume_sig = GDB_SIGNAL_0;
473
474 /* Whether this thread was already vCont-resumed on the remote
475 side. */
476 int vcont_resumed = 0;
477 };
478
479 /* This data could be associated with a target, but we do not always
480 have access to the current target when we need it, so for now it is
481 static. This will be fine for as long as only one target is in use
482 at a time. */
483 static struct remote_state *remote_state;
484
485 static struct remote_state *
486 get_remote_state_raw (void)
487 {
488 return remote_state;
489 }
490
491 /* Allocate a new struct remote_state with xmalloc, initialize it, and
492 return it. */
493
494 static struct remote_state *
495 new_remote_state (void)
496 {
497 struct remote_state *result = XCNEW (struct remote_state);
498
499 /* The default buffer size is unimportant; it will be expanded
500 whenever a larger buffer is needed. */
501 result->buf_size = 400;
502 result->buf = (char *) xmalloc (result->buf_size);
503 result->remote_traceframe_number = -1;
504 result->last_sent_signal = GDB_SIGNAL_0;
505 result->last_resume_exec_dir = EXEC_FORWARD;
506 result->fs_pid = -1;
507
508 return result;
509 }
510
511 /* Description of the remote protocol for a given architecture. */
512
513 struct packet_reg
514 {
515 long offset; /* Offset into G packet. */
516 long regnum; /* GDB's internal register number. */
517 LONGEST pnum; /* Remote protocol register number. */
518 int in_g_packet; /* Always part of G packet. */
519 /* long size in bytes; == register_size (target_gdbarch (), regnum);
520 at present. */
521 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
522 at present. */
523 };
524
525 struct remote_arch_state
526 {
527 /* Description of the remote protocol registers. */
528 long sizeof_g_packet;
529
530 /* Description of the remote protocol registers indexed by REGNUM
531 (making an array gdbarch_num_regs in size). */
532 struct packet_reg *regs;
533
534 /* This is the size (in chars) of the first response to the ``g''
535 packet. It is used as a heuristic when determining the maximum
536 size of memory-read and memory-write packets. A target will
537 typically only reserve a buffer large enough to hold the ``g''
538 packet. The size does not include packet overhead (headers and
539 trailers). */
540 long actual_register_packet_size;
541
542 /* This is the maximum size (in chars) of a non read/write packet.
543 It is also used as a cap on the size of read/write packets. */
544 long remote_packet_size;
545 };
546
547 /* Utility: generate error from an incoming stub packet. */
548 static void
549 trace_error (char *buf)
550 {
551 if (*buf++ != 'E')
552 return; /* not an error msg */
553 switch (*buf)
554 {
555 case '1': /* malformed packet error */
556 if (*++buf == '0') /* general case: */
557 error (_("remote.c: error in outgoing packet."));
558 else
559 error (_("remote.c: error in outgoing packet at field #%ld."),
560 strtol (buf, NULL, 16));
561 default:
562 error (_("Target returns error code '%s'."), buf);
563 }
564 }
565
566 /* Utility: wait for reply from stub, while accepting "O" packets. */
567
568 static char *
569 remote_get_noisy_reply ()
570 {
571 struct remote_state *rs = get_remote_state ();
572
573 do /* Loop on reply from remote stub. */
574 {
575 char *buf;
576
577 QUIT; /* Allow user to bail out with ^C. */
578 getpkt (&rs->buf, &rs->buf_size, 0);
579 buf = rs->buf;
580 if (buf[0] == 'E')
581 trace_error (buf);
582 else if (startswith (buf, "qRelocInsn:"))
583 {
584 ULONGEST ul;
585 CORE_ADDR from, to, org_to;
586 const char *p, *pp;
587 int adjusted_size = 0;
588 int relocated = 0;
589
590 p = buf + strlen ("qRelocInsn:");
591 pp = unpack_varlen_hex (p, &ul);
592 if (*pp != ';')
593 error (_("invalid qRelocInsn packet: %s"), buf);
594 from = ul;
595
596 p = pp + 1;
597 unpack_varlen_hex (p, &ul);
598 to = ul;
599
600 org_to = to;
601
602 TRY
603 {
604 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
605 relocated = 1;
606 }
607 CATCH (ex, RETURN_MASK_ALL)
608 {
609 if (ex.error == MEMORY_ERROR)
610 {
611 /* Propagate memory errors silently back to the
612 target. The stub may have limited the range of
613 addresses we can write to, for example. */
614 }
615 else
616 {
617 /* Something unexpectedly bad happened. Be verbose
618 so we can tell what, and propagate the error back
619 to the stub, so it doesn't get stuck waiting for
620 a response. */
621 exception_fprintf (gdb_stderr, ex,
622 _("warning: relocating instruction: "));
623 }
624 putpkt ("E01");
625 }
626 END_CATCH
627
628 if (relocated)
629 {
630 adjusted_size = to - org_to;
631
632 xsnprintf (buf, rs->buf_size, "qRelocInsn:%x", adjusted_size);
633 putpkt (buf);
634 }
635 }
636 else if (buf[0] == 'O' && buf[1] != 'K')
637 remote_console_output (buf + 1); /* 'O' message from stub */
638 else
639 return buf; /* Here's the actual reply. */
640 }
641 while (1);
642 }
643
644 /* Handle for retreving the remote protocol data from gdbarch. */
645 static struct gdbarch_data *remote_gdbarch_data_handle;
646
647 static struct remote_arch_state *
648 get_remote_arch_state (struct gdbarch *gdbarch)
649 {
650 gdb_assert (gdbarch != NULL);
651 return ((struct remote_arch_state *)
652 gdbarch_data (gdbarch, remote_gdbarch_data_handle));
653 }
654
655 /* Fetch the global remote target state. */
656
657 static struct remote_state *
658 get_remote_state (void)
659 {
660 /* Make sure that the remote architecture state has been
661 initialized, because doing so might reallocate rs->buf. Any
662 function which calls getpkt also needs to be mindful of changes
663 to rs->buf, but this call limits the number of places which run
664 into trouble. */
665 get_remote_arch_state (target_gdbarch ());
666
667 return get_remote_state_raw ();
668 }
669
670 /* Cleanup routine for the remote module's pspace data. */
671
672 static void
673 remote_pspace_data_cleanup (struct program_space *pspace, void *arg)
674 {
675 char *remote_exec_file = (char *) arg;
676
677 xfree (remote_exec_file);
678 }
679
680 /* Fetch the remote exec-file from the current program space. */
681
682 static const char *
683 get_remote_exec_file (void)
684 {
685 char *remote_exec_file;
686
687 remote_exec_file
688 = (char *) program_space_data (current_program_space,
689 remote_pspace_data);
690 if (remote_exec_file == NULL)
691 return "";
692
693 return remote_exec_file;
694 }
695
696 /* Set the remote exec file for PSPACE. */
697
698 static void
699 set_pspace_remote_exec_file (struct program_space *pspace,
700 char *remote_exec_file)
701 {
702 char *old_file = (char *) program_space_data (pspace, remote_pspace_data);
703
704 xfree (old_file);
705 set_program_space_data (pspace, remote_pspace_data,
706 xstrdup (remote_exec_file));
707 }
708
709 /* The "set/show remote exec-file" set command hook. */
710
711 static void
712 set_remote_exec_file (const char *ignored, int from_tty,
713 struct cmd_list_element *c)
714 {
715 gdb_assert (remote_exec_file_var != NULL);
716 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
717 }
718
719 /* The "set/show remote exec-file" show command hook. */
720
721 static void
722 show_remote_exec_file (struct ui_file *file, int from_tty,
723 struct cmd_list_element *cmd, const char *value)
724 {
725 fprintf_filtered (file, "%s\n", remote_exec_file_var);
726 }
727
728 static int
729 compare_pnums (const void *lhs_, const void *rhs_)
730 {
731 const struct packet_reg * const *lhs
732 = (const struct packet_reg * const *) lhs_;
733 const struct packet_reg * const *rhs
734 = (const struct packet_reg * const *) rhs_;
735
736 if ((*lhs)->pnum < (*rhs)->pnum)
737 return -1;
738 else if ((*lhs)->pnum == (*rhs)->pnum)
739 return 0;
740 else
741 return 1;
742 }
743
744 static int
745 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
746 {
747 int regnum, num_remote_regs, offset;
748 struct packet_reg **remote_regs;
749
750 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
751 {
752 struct packet_reg *r = &regs[regnum];
753
754 if (register_size (gdbarch, regnum) == 0)
755 /* Do not try to fetch zero-sized (placeholder) registers. */
756 r->pnum = -1;
757 else
758 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
759
760 r->regnum = regnum;
761 }
762
763 /* Define the g/G packet format as the contents of each register
764 with a remote protocol number, in order of ascending protocol
765 number. */
766
767 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
768 for (num_remote_regs = 0, regnum = 0;
769 regnum < gdbarch_num_regs (gdbarch);
770 regnum++)
771 if (regs[regnum].pnum != -1)
772 remote_regs[num_remote_regs++] = &regs[regnum];
773
774 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
775 compare_pnums);
776
777 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
778 {
779 remote_regs[regnum]->in_g_packet = 1;
780 remote_regs[regnum]->offset = offset;
781 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
782 }
783
784 return offset;
785 }
786
787 /* Given the architecture described by GDBARCH, return the remote
788 protocol register's number and the register's offset in the g/G
789 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
790 If the target does not have a mapping for REGNUM, return false,
791 otherwise, return true. */
792
793 int
794 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
795 int *pnum, int *poffset)
796 {
797 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
798
799 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
800
801 map_regcache_remote_table (gdbarch, regs.data ());
802
803 *pnum = regs[regnum].pnum;
804 *poffset = regs[regnum].offset;
805
806 return *pnum != -1;
807 }
808
809 static void *
810 init_remote_state (struct gdbarch *gdbarch)
811 {
812 struct remote_state *rs = get_remote_state_raw ();
813 struct remote_arch_state *rsa;
814
815 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
816
817 /* Use the architecture to build a regnum<->pnum table, which will be
818 1:1 unless a feature set specifies otherwise. */
819 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
820 gdbarch_num_regs (gdbarch),
821 struct packet_reg);
822
823 /* Record the maximum possible size of the g packet - it may turn out
824 to be smaller. */
825 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
826
827 /* Default maximum number of characters in a packet body. Many
828 remote stubs have a hardwired buffer size of 400 bytes
829 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
830 as the maximum packet-size to ensure that the packet and an extra
831 NUL character can always fit in the buffer. This stops GDB
832 trashing stubs that try to squeeze an extra NUL into what is
833 already a full buffer (As of 1999-12-04 that was most stubs). */
834 rsa->remote_packet_size = 400 - 1;
835
836 /* This one is filled in when a ``g'' packet is received. */
837 rsa->actual_register_packet_size = 0;
838
839 /* Should rsa->sizeof_g_packet needs more space than the
840 default, adjust the size accordingly. Remember that each byte is
841 encoded as two characters. 32 is the overhead for the packet
842 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
843 (``$NN:G...#NN'') is a better guess, the below has been padded a
844 little. */
845 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
846 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
847
848 /* Make sure that the packet buffer is plenty big enough for
849 this architecture. */
850 if (rs->buf_size < rsa->remote_packet_size)
851 {
852 rs->buf_size = 2 * rsa->remote_packet_size;
853 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
854 }
855
856 return rsa;
857 }
858
859 /* Return the current allowed size of a remote packet. This is
860 inferred from the current architecture, and should be used to
861 limit the length of outgoing packets. */
862 static long
863 get_remote_packet_size (void)
864 {
865 struct remote_state *rs = get_remote_state ();
866 remote_arch_state *rsa = get_remote_arch_state (target_gdbarch ());
867
868 if (rs->explicit_packet_size)
869 return rs->explicit_packet_size;
870
871 return rsa->remote_packet_size;
872 }
873
874 static struct packet_reg *
875 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
876 long regnum)
877 {
878 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
879 return NULL;
880 else
881 {
882 struct packet_reg *r = &rsa->regs[regnum];
883
884 gdb_assert (r->regnum == regnum);
885 return r;
886 }
887 }
888
889 static struct packet_reg *
890 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
891 LONGEST pnum)
892 {
893 int i;
894
895 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
896 {
897 struct packet_reg *r = &rsa->regs[i];
898
899 if (r->pnum == pnum)
900 return r;
901 }
902 return NULL;
903 }
904
905 static struct target_ops remote_ops;
906
907 static struct target_ops extended_remote_ops;
908
909 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
910 ``forever'' still use the normal timeout mechanism. This is
911 currently used by the ASYNC code to guarentee that target reads
912 during the initial connect always time-out. Once getpkt has been
913 modified to return a timeout indication and, in turn
914 remote_wait()/wait_for_inferior() have gained a timeout parameter
915 this can go away. */
916 static int wait_forever_enabled_p = 1;
917
918 /* Allow the user to specify what sequence to send to the remote
919 when he requests a program interruption: Although ^C is usually
920 what remote systems expect (this is the default, here), it is
921 sometimes preferable to send a break. On other systems such
922 as the Linux kernel, a break followed by g, which is Magic SysRq g
923 is required in order to interrupt the execution. */
924 const char interrupt_sequence_control_c[] = "Ctrl-C";
925 const char interrupt_sequence_break[] = "BREAK";
926 const char interrupt_sequence_break_g[] = "BREAK-g";
927 static const char *const interrupt_sequence_modes[] =
928 {
929 interrupt_sequence_control_c,
930 interrupt_sequence_break,
931 interrupt_sequence_break_g,
932 NULL
933 };
934 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
935
936 static void
937 show_interrupt_sequence (struct ui_file *file, int from_tty,
938 struct cmd_list_element *c,
939 const char *value)
940 {
941 if (interrupt_sequence_mode == interrupt_sequence_control_c)
942 fprintf_filtered (file,
943 _("Send the ASCII ETX character (Ctrl-c) "
944 "to the remote target to interrupt the "
945 "execution of the program.\n"));
946 else if (interrupt_sequence_mode == interrupt_sequence_break)
947 fprintf_filtered (file,
948 _("send a break signal to the remote target "
949 "to interrupt the execution of the program.\n"));
950 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
951 fprintf_filtered (file,
952 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
953 "the remote target to interrupt the execution "
954 "of Linux kernel.\n"));
955 else
956 internal_error (__FILE__, __LINE__,
957 _("Invalid value for interrupt_sequence_mode: %s."),
958 interrupt_sequence_mode);
959 }
960
961 /* This boolean variable specifies whether interrupt_sequence is sent
962 to the remote target when gdb connects to it.
963 This is mostly needed when you debug the Linux kernel: The Linux kernel
964 expects BREAK g which is Magic SysRq g for connecting gdb. */
965 static int interrupt_on_connect = 0;
966
967 /* This variable is used to implement the "set/show remotebreak" commands.
968 Since these commands are now deprecated in favor of "set/show remote
969 interrupt-sequence", it no longer has any effect on the code. */
970 static int remote_break;
971
972 static void
973 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
974 {
975 if (remote_break)
976 interrupt_sequence_mode = interrupt_sequence_break;
977 else
978 interrupt_sequence_mode = interrupt_sequence_control_c;
979 }
980
981 static void
982 show_remotebreak (struct ui_file *file, int from_tty,
983 struct cmd_list_element *c,
984 const char *value)
985 {
986 }
987
988 /* This variable sets the number of bits in an address that are to be
989 sent in a memory ("M" or "m") packet. Normally, after stripping
990 leading zeros, the entire address would be sent. This variable
991 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
992 initial implementation of remote.c restricted the address sent in
993 memory packets to ``host::sizeof long'' bytes - (typically 32
994 bits). Consequently, for 64 bit targets, the upper 32 bits of an
995 address was never sent. Since fixing this bug may cause a break in
996 some remote targets this variable is principly provided to
997 facilitate backward compatibility. */
998
999 static unsigned int remote_address_size;
1000
1001 \f
1002 /* User configurable variables for the number of characters in a
1003 memory read/write packet. MIN (rsa->remote_packet_size,
1004 rsa->sizeof_g_packet) is the default. Some targets need smaller
1005 values (fifo overruns, et.al.) and some users need larger values
1006 (speed up transfers). The variables ``preferred_*'' (the user
1007 request), ``current_*'' (what was actually set) and ``forced_*''
1008 (Positive - a soft limit, negative - a hard limit). */
1009
1010 struct memory_packet_config
1011 {
1012 const char *name;
1013 long size;
1014 int fixed_p;
1015 };
1016
1017 /* The default max memory-write-packet-size. The 16k is historical.
1018 (It came from older GDB's using alloca for buffers and the
1019 knowledge (folklore?) that some hosts don't cope very well with
1020 large alloca calls.) */
1021 #define DEFAULT_MAX_MEMORY_PACKET_SIZE 16384
1022
1023 /* The minimum remote packet size for memory transfers. Ensures we
1024 can write at least one byte. */
1025 #define MIN_MEMORY_PACKET_SIZE 20
1026
1027 /* Compute the current size of a read/write packet. Since this makes
1028 use of ``actual_register_packet_size'' the computation is dynamic. */
1029
1030 static long
1031 get_memory_packet_size (struct memory_packet_config *config)
1032 {
1033 struct remote_state *rs = get_remote_state ();
1034 remote_arch_state *rsa = get_remote_arch_state (target_gdbarch ());
1035
1036 long what_they_get;
1037 if (config->fixed_p)
1038 {
1039 if (config->size <= 0)
1040 what_they_get = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1041 else
1042 what_they_get = config->size;
1043 }
1044 else
1045 {
1046 what_they_get = get_remote_packet_size ();
1047 /* Limit the packet to the size specified by the user. */
1048 if (config->size > 0
1049 && what_they_get > config->size)
1050 what_they_get = config->size;
1051
1052 /* Limit it to the size of the targets ``g'' response unless we have
1053 permission from the stub to use a larger packet size. */
1054 if (rs->explicit_packet_size == 0
1055 && rsa->actual_register_packet_size > 0
1056 && what_they_get > rsa->actual_register_packet_size)
1057 what_they_get = rsa->actual_register_packet_size;
1058 }
1059 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1060 what_they_get = MIN_MEMORY_PACKET_SIZE;
1061
1062 /* Make sure there is room in the global buffer for this packet
1063 (including its trailing NUL byte). */
1064 if (rs->buf_size < what_they_get + 1)
1065 {
1066 rs->buf_size = 2 * what_they_get;
1067 rs->buf = (char *) xrealloc (rs->buf, 2 * what_they_get);
1068 }
1069
1070 return what_they_get;
1071 }
1072
1073 /* Update the size of a read/write packet. If they user wants
1074 something really big then do a sanity check. */
1075
1076 static void
1077 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1078 {
1079 int fixed_p = config->fixed_p;
1080 long size = config->size;
1081
1082 if (args == NULL)
1083 error (_("Argument required (integer, `fixed' or `limited')."));
1084 else if (strcmp (args, "hard") == 0
1085 || strcmp (args, "fixed") == 0)
1086 fixed_p = 1;
1087 else if (strcmp (args, "soft") == 0
1088 || strcmp (args, "limit") == 0)
1089 fixed_p = 0;
1090 else
1091 {
1092 char *end;
1093
1094 size = strtoul (args, &end, 0);
1095 if (args == end)
1096 error (_("Invalid %s (bad syntax)."), config->name);
1097
1098 /* Instead of explicitly capping the size of a packet to or
1099 disallowing it, the user is allowed to set the size to
1100 something arbitrarily large. */
1101 }
1102
1103 /* So that the query shows the correct value. */
1104 if (size <= 0)
1105 size = DEFAULT_MAX_MEMORY_PACKET_SIZE;
1106
1107 /* Extra checks? */
1108 if (fixed_p && !config->fixed_p)
1109 {
1110 if (! query (_("The target may not be able to correctly handle a %s\n"
1111 "of %ld bytes. Change the packet size? "),
1112 config->name, size))
1113 error (_("Packet size not changed."));
1114 }
1115 /* Update the config. */
1116 config->fixed_p = fixed_p;
1117 config->size = size;
1118 }
1119
1120 static void
1121 show_memory_packet_size (struct memory_packet_config *config)
1122 {
1123 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1124 if (config->fixed_p)
1125 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1126 get_memory_packet_size (config));
1127 else
1128 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1129 get_memory_packet_size (config));
1130 }
1131
1132 static struct memory_packet_config memory_write_packet_config =
1133 {
1134 "memory-write-packet-size",
1135 };
1136
1137 static void
1138 set_memory_write_packet_size (const char *args, int from_tty)
1139 {
1140 set_memory_packet_size (args, &memory_write_packet_config);
1141 }
1142
1143 static void
1144 show_memory_write_packet_size (const char *args, int from_tty)
1145 {
1146 show_memory_packet_size (&memory_write_packet_config);
1147 }
1148
1149 static long
1150 get_memory_write_packet_size (void)
1151 {
1152 return get_memory_packet_size (&memory_write_packet_config);
1153 }
1154
1155 static struct memory_packet_config memory_read_packet_config =
1156 {
1157 "memory-read-packet-size",
1158 };
1159
1160 static void
1161 set_memory_read_packet_size (const char *args, int from_tty)
1162 {
1163 set_memory_packet_size (args, &memory_read_packet_config);
1164 }
1165
1166 static void
1167 show_memory_read_packet_size (const char *args, int from_tty)
1168 {
1169 show_memory_packet_size (&memory_read_packet_config);
1170 }
1171
1172 static long
1173 get_memory_read_packet_size (void)
1174 {
1175 long size = get_memory_packet_size (&memory_read_packet_config);
1176
1177 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1178 extra buffer size argument before the memory read size can be
1179 increased beyond this. */
1180 if (size > get_remote_packet_size ())
1181 size = get_remote_packet_size ();
1182 return size;
1183 }
1184
1185 \f
1186 /* Generic configuration support for packets the stub optionally
1187 supports. Allows the user to specify the use of the packet as well
1188 as allowing GDB to auto-detect support in the remote stub. */
1189
1190 enum packet_support
1191 {
1192 PACKET_SUPPORT_UNKNOWN = 0,
1193 PACKET_ENABLE,
1194 PACKET_DISABLE
1195 };
1196
1197 struct packet_config
1198 {
1199 const char *name;
1200 const char *title;
1201
1202 /* If auto, GDB auto-detects support for this packet or feature,
1203 either through qSupported, or by trying the packet and looking
1204 at the response. If true, GDB assumes the target supports this
1205 packet. If false, the packet is disabled. Configs that don't
1206 have an associated command always have this set to auto. */
1207 enum auto_boolean detect;
1208
1209 /* Does the target support this packet? */
1210 enum packet_support support;
1211 };
1212
1213 /* Analyze a packet's return value and update the packet config
1214 accordingly. */
1215
1216 enum packet_result
1217 {
1218 PACKET_ERROR,
1219 PACKET_OK,
1220 PACKET_UNKNOWN
1221 };
1222
1223 static enum packet_support packet_config_support (struct packet_config *config);
1224 static enum packet_support packet_support (int packet);
1225
1226 static void
1227 show_packet_config_cmd (struct packet_config *config)
1228 {
1229 const char *support = "internal-error";
1230
1231 switch (packet_config_support (config))
1232 {
1233 case PACKET_ENABLE:
1234 support = "enabled";
1235 break;
1236 case PACKET_DISABLE:
1237 support = "disabled";
1238 break;
1239 case PACKET_SUPPORT_UNKNOWN:
1240 support = "unknown";
1241 break;
1242 }
1243 switch (config->detect)
1244 {
1245 case AUTO_BOOLEAN_AUTO:
1246 printf_filtered (_("Support for the `%s' packet "
1247 "is auto-detected, currently %s.\n"),
1248 config->name, support);
1249 break;
1250 case AUTO_BOOLEAN_TRUE:
1251 case AUTO_BOOLEAN_FALSE:
1252 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1253 config->name, support);
1254 break;
1255 }
1256 }
1257
1258 static void
1259 add_packet_config_cmd (struct packet_config *config, const char *name,
1260 const char *title, int legacy)
1261 {
1262 char *set_doc;
1263 char *show_doc;
1264 char *cmd_name;
1265
1266 config->name = name;
1267 config->title = title;
1268 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1269 name, title);
1270 show_doc = xstrprintf ("Show current use of remote "
1271 "protocol `%s' (%s) packet",
1272 name, title);
1273 /* set/show TITLE-packet {auto,on,off} */
1274 cmd_name = xstrprintf ("%s-packet", title);
1275 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1276 &config->detect, set_doc,
1277 show_doc, NULL, /* help_doc */
1278 NULL,
1279 show_remote_protocol_packet_cmd,
1280 &remote_set_cmdlist, &remote_show_cmdlist);
1281 /* The command code copies the documentation strings. */
1282 xfree (set_doc);
1283 xfree (show_doc);
1284 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1285 if (legacy)
1286 {
1287 char *legacy_name;
1288
1289 legacy_name = xstrprintf ("%s-packet", name);
1290 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1291 &remote_set_cmdlist);
1292 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1293 &remote_show_cmdlist);
1294 }
1295 }
1296
1297 static enum packet_result
1298 packet_check_result (const char *buf)
1299 {
1300 if (buf[0] != '\0')
1301 {
1302 /* The stub recognized the packet request. Check that the
1303 operation succeeded. */
1304 if (buf[0] == 'E'
1305 && isxdigit (buf[1]) && isxdigit (buf[2])
1306 && buf[3] == '\0')
1307 /* "Enn" - definitly an error. */
1308 return PACKET_ERROR;
1309
1310 /* Always treat "E." as an error. This will be used for
1311 more verbose error messages, such as E.memtypes. */
1312 if (buf[0] == 'E' && buf[1] == '.')
1313 return PACKET_ERROR;
1314
1315 /* The packet may or may not be OK. Just assume it is. */
1316 return PACKET_OK;
1317 }
1318 else
1319 /* The stub does not support the packet. */
1320 return PACKET_UNKNOWN;
1321 }
1322
1323 static enum packet_result
1324 packet_ok (const char *buf, struct packet_config *config)
1325 {
1326 enum packet_result result;
1327
1328 if (config->detect != AUTO_BOOLEAN_TRUE
1329 && config->support == PACKET_DISABLE)
1330 internal_error (__FILE__, __LINE__,
1331 _("packet_ok: attempt to use a disabled packet"));
1332
1333 result = packet_check_result (buf);
1334 switch (result)
1335 {
1336 case PACKET_OK:
1337 case PACKET_ERROR:
1338 /* The stub recognized the packet request. */
1339 if (config->support == PACKET_SUPPORT_UNKNOWN)
1340 {
1341 if (remote_debug)
1342 fprintf_unfiltered (gdb_stdlog,
1343 "Packet %s (%s) is supported\n",
1344 config->name, config->title);
1345 config->support = PACKET_ENABLE;
1346 }
1347 break;
1348 case PACKET_UNKNOWN:
1349 /* The stub does not support the packet. */
1350 if (config->detect == AUTO_BOOLEAN_AUTO
1351 && config->support == PACKET_ENABLE)
1352 {
1353 /* If the stub previously indicated that the packet was
1354 supported then there is a protocol error. */
1355 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1356 config->name, config->title);
1357 }
1358 else if (config->detect == AUTO_BOOLEAN_TRUE)
1359 {
1360 /* The user set it wrong. */
1361 error (_("Enabled packet %s (%s) not recognized by stub"),
1362 config->name, config->title);
1363 }
1364
1365 if (remote_debug)
1366 fprintf_unfiltered (gdb_stdlog,
1367 "Packet %s (%s) is NOT supported\n",
1368 config->name, config->title);
1369 config->support = PACKET_DISABLE;
1370 break;
1371 }
1372
1373 return result;
1374 }
1375
1376 enum {
1377 PACKET_vCont = 0,
1378 PACKET_X,
1379 PACKET_qSymbol,
1380 PACKET_P,
1381 PACKET_p,
1382 PACKET_Z0,
1383 PACKET_Z1,
1384 PACKET_Z2,
1385 PACKET_Z3,
1386 PACKET_Z4,
1387 PACKET_vFile_setfs,
1388 PACKET_vFile_open,
1389 PACKET_vFile_pread,
1390 PACKET_vFile_pwrite,
1391 PACKET_vFile_close,
1392 PACKET_vFile_unlink,
1393 PACKET_vFile_readlink,
1394 PACKET_vFile_fstat,
1395 PACKET_qXfer_auxv,
1396 PACKET_qXfer_features,
1397 PACKET_qXfer_exec_file,
1398 PACKET_qXfer_libraries,
1399 PACKET_qXfer_libraries_svr4,
1400 PACKET_qXfer_memory_map,
1401 PACKET_qXfer_spu_read,
1402 PACKET_qXfer_spu_write,
1403 PACKET_qXfer_osdata,
1404 PACKET_qXfer_threads,
1405 PACKET_qXfer_statictrace_read,
1406 PACKET_qXfer_traceframe_info,
1407 PACKET_qXfer_uib,
1408 PACKET_qGetTIBAddr,
1409 PACKET_qGetTLSAddr,
1410 PACKET_qSupported,
1411 PACKET_qTStatus,
1412 PACKET_QPassSignals,
1413 PACKET_QCatchSyscalls,
1414 PACKET_QProgramSignals,
1415 PACKET_QSetWorkingDir,
1416 PACKET_QStartupWithShell,
1417 PACKET_QEnvironmentHexEncoded,
1418 PACKET_QEnvironmentReset,
1419 PACKET_QEnvironmentUnset,
1420 PACKET_qCRC,
1421 PACKET_qSearch_memory,
1422 PACKET_vAttach,
1423 PACKET_vRun,
1424 PACKET_QStartNoAckMode,
1425 PACKET_vKill,
1426 PACKET_qXfer_siginfo_read,
1427 PACKET_qXfer_siginfo_write,
1428 PACKET_qAttached,
1429
1430 /* Support for conditional tracepoints. */
1431 PACKET_ConditionalTracepoints,
1432
1433 /* Support for target-side breakpoint conditions. */
1434 PACKET_ConditionalBreakpoints,
1435
1436 /* Support for target-side breakpoint commands. */
1437 PACKET_BreakpointCommands,
1438
1439 /* Support for fast tracepoints. */
1440 PACKET_FastTracepoints,
1441
1442 /* Support for static tracepoints. */
1443 PACKET_StaticTracepoints,
1444
1445 /* Support for installing tracepoints while a trace experiment is
1446 running. */
1447 PACKET_InstallInTrace,
1448
1449 PACKET_bc,
1450 PACKET_bs,
1451 PACKET_TracepointSource,
1452 PACKET_QAllow,
1453 PACKET_qXfer_fdpic,
1454 PACKET_QDisableRandomization,
1455 PACKET_QAgent,
1456 PACKET_QTBuffer_size,
1457 PACKET_Qbtrace_off,
1458 PACKET_Qbtrace_bts,
1459 PACKET_Qbtrace_pt,
1460 PACKET_qXfer_btrace,
1461
1462 /* Support for the QNonStop packet. */
1463 PACKET_QNonStop,
1464
1465 /* Support for the QThreadEvents packet. */
1466 PACKET_QThreadEvents,
1467
1468 /* Support for multi-process extensions. */
1469 PACKET_multiprocess_feature,
1470
1471 /* Support for enabling and disabling tracepoints while a trace
1472 experiment is running. */
1473 PACKET_EnableDisableTracepoints_feature,
1474
1475 /* Support for collecting strings using the tracenz bytecode. */
1476 PACKET_tracenz_feature,
1477
1478 /* Support for continuing to run a trace experiment while GDB is
1479 disconnected. */
1480 PACKET_DisconnectedTracing_feature,
1481
1482 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
1483 PACKET_augmented_libraries_svr4_read_feature,
1484
1485 /* Support for the qXfer:btrace-conf:read packet. */
1486 PACKET_qXfer_btrace_conf,
1487
1488 /* Support for the Qbtrace-conf:bts:size packet. */
1489 PACKET_Qbtrace_conf_bts_size,
1490
1491 /* Support for swbreak+ feature. */
1492 PACKET_swbreak_feature,
1493
1494 /* Support for hwbreak+ feature. */
1495 PACKET_hwbreak_feature,
1496
1497 /* Support for fork events. */
1498 PACKET_fork_event_feature,
1499
1500 /* Support for vfork events. */
1501 PACKET_vfork_event_feature,
1502
1503 /* Support for the Qbtrace-conf:pt:size packet. */
1504 PACKET_Qbtrace_conf_pt_size,
1505
1506 /* Support for exec events. */
1507 PACKET_exec_event_feature,
1508
1509 /* Support for query supported vCont actions. */
1510 PACKET_vContSupported,
1511
1512 /* Support remote CTRL-C. */
1513 PACKET_vCtrlC,
1514
1515 /* Support TARGET_WAITKIND_NO_RESUMED. */
1516 PACKET_no_resumed,
1517
1518 PACKET_MAX
1519 };
1520
1521 static struct packet_config remote_protocol_packets[PACKET_MAX];
1522
1523 /* Returns the packet's corresponding "set remote foo-packet" command
1524 state. See struct packet_config for more details. */
1525
1526 static enum auto_boolean
1527 packet_set_cmd_state (int packet)
1528 {
1529 return remote_protocol_packets[packet].detect;
1530 }
1531
1532 /* Returns whether a given packet or feature is supported. This takes
1533 into account the state of the corresponding "set remote foo-packet"
1534 command, which may be used to bypass auto-detection. */
1535
1536 static enum packet_support
1537 packet_config_support (struct packet_config *config)
1538 {
1539 switch (config->detect)
1540 {
1541 case AUTO_BOOLEAN_TRUE:
1542 return PACKET_ENABLE;
1543 case AUTO_BOOLEAN_FALSE:
1544 return PACKET_DISABLE;
1545 case AUTO_BOOLEAN_AUTO:
1546 return config->support;
1547 default:
1548 gdb_assert_not_reached (_("bad switch"));
1549 }
1550 }
1551
1552 /* Same as packet_config_support, but takes the packet's enum value as
1553 argument. */
1554
1555 static enum packet_support
1556 packet_support (int packet)
1557 {
1558 struct packet_config *config = &remote_protocol_packets[packet];
1559
1560 return packet_config_support (config);
1561 }
1562
1563 static void
1564 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1565 struct cmd_list_element *c,
1566 const char *value)
1567 {
1568 struct packet_config *packet;
1569
1570 for (packet = remote_protocol_packets;
1571 packet < &remote_protocol_packets[PACKET_MAX];
1572 packet++)
1573 {
1574 if (&packet->detect == c->var)
1575 {
1576 show_packet_config_cmd (packet);
1577 return;
1578 }
1579 }
1580 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1581 c->name);
1582 }
1583
1584 /* Should we try one of the 'Z' requests? */
1585
1586 enum Z_packet_type
1587 {
1588 Z_PACKET_SOFTWARE_BP,
1589 Z_PACKET_HARDWARE_BP,
1590 Z_PACKET_WRITE_WP,
1591 Z_PACKET_READ_WP,
1592 Z_PACKET_ACCESS_WP,
1593 NR_Z_PACKET_TYPES
1594 };
1595
1596 /* For compatibility with older distributions. Provide a ``set remote
1597 Z-packet ...'' command that updates all the Z packet types. */
1598
1599 static enum auto_boolean remote_Z_packet_detect;
1600
1601 static void
1602 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
1603 struct cmd_list_element *c)
1604 {
1605 int i;
1606
1607 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1608 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1609 }
1610
1611 static void
1612 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1613 struct cmd_list_element *c,
1614 const char *value)
1615 {
1616 int i;
1617
1618 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1619 {
1620 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1621 }
1622 }
1623
1624 /* Returns true if the multi-process extensions are in effect. */
1625
1626 static int
1627 remote_multi_process_p (struct remote_state *rs)
1628 {
1629 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
1630 }
1631
1632 /* Returns true if fork events are supported. */
1633
1634 static int
1635 remote_fork_event_p (struct remote_state *rs)
1636 {
1637 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
1638 }
1639
1640 /* Returns true if vfork events are supported. */
1641
1642 static int
1643 remote_vfork_event_p (struct remote_state *rs)
1644 {
1645 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
1646 }
1647
1648 /* Returns true if exec events are supported. */
1649
1650 static int
1651 remote_exec_event_p (struct remote_state *rs)
1652 {
1653 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
1654 }
1655
1656 /* Insert fork catchpoint target routine. If fork events are enabled
1657 then return success, nothing more to do. */
1658
1659 static int
1660 remote_insert_fork_catchpoint (struct target_ops *ops, int pid)
1661 {
1662 struct remote_state *rs = get_remote_state ();
1663
1664 return !remote_fork_event_p (rs);
1665 }
1666
1667 /* Remove fork catchpoint target routine. Nothing to do, just
1668 return success. */
1669
1670 static int
1671 remote_remove_fork_catchpoint (struct target_ops *ops, int pid)
1672 {
1673 return 0;
1674 }
1675
1676 /* Insert vfork catchpoint target routine. If vfork events are enabled
1677 then return success, nothing more to do. */
1678
1679 static int
1680 remote_insert_vfork_catchpoint (struct target_ops *ops, int pid)
1681 {
1682 struct remote_state *rs = get_remote_state ();
1683
1684 return !remote_vfork_event_p (rs);
1685 }
1686
1687 /* Remove vfork catchpoint target routine. Nothing to do, just
1688 return success. */
1689
1690 static int
1691 remote_remove_vfork_catchpoint (struct target_ops *ops, int pid)
1692 {
1693 return 0;
1694 }
1695
1696 /* Insert exec catchpoint target routine. If exec events are
1697 enabled, just return success. */
1698
1699 static int
1700 remote_insert_exec_catchpoint (struct target_ops *ops, int pid)
1701 {
1702 struct remote_state *rs = get_remote_state ();
1703
1704 return !remote_exec_event_p (rs);
1705 }
1706
1707 /* Remove exec catchpoint target routine. Nothing to do, just
1708 return success. */
1709
1710 static int
1711 remote_remove_exec_catchpoint (struct target_ops *ops, int pid)
1712 {
1713 return 0;
1714 }
1715
1716 \f
1717 /* Asynchronous signal handle registered as event loop source for
1718 when we have pending events ready to be passed to the core. */
1719
1720 static struct async_event_handler *remote_async_inferior_event_token;
1721
1722 \f
1723
1724 static ptid_t magic_null_ptid;
1725 static ptid_t not_sent_ptid;
1726 static ptid_t any_thread_ptid;
1727
1728 /* Find out if the stub attached to PID (and hence GDB should offer to
1729 detach instead of killing it when bailing out). */
1730
1731 static int
1732 remote_query_attached (int pid)
1733 {
1734 struct remote_state *rs = get_remote_state ();
1735 size_t size = get_remote_packet_size ();
1736
1737 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
1738 return 0;
1739
1740 if (remote_multi_process_p (rs))
1741 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1742 else
1743 xsnprintf (rs->buf, size, "qAttached");
1744
1745 putpkt (rs->buf);
1746 getpkt (&rs->buf, &rs->buf_size, 0);
1747
1748 switch (packet_ok (rs->buf,
1749 &remote_protocol_packets[PACKET_qAttached]))
1750 {
1751 case PACKET_OK:
1752 if (strcmp (rs->buf, "1") == 0)
1753 return 1;
1754 break;
1755 case PACKET_ERROR:
1756 warning (_("Remote failure reply: %s"), rs->buf);
1757 break;
1758 case PACKET_UNKNOWN:
1759 break;
1760 }
1761
1762 return 0;
1763 }
1764
1765 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1766 has been invented by GDB, instead of reported by the target. Since
1767 we can be connected to a remote system before before knowing about
1768 any inferior, mark the target with execution when we find the first
1769 inferior. If ATTACHED is 1, then we had just attached to this
1770 inferior. If it is 0, then we just created this inferior. If it
1771 is -1, then try querying the remote stub to find out if it had
1772 attached to the inferior or not. If TRY_OPEN_EXEC is true then
1773 attempt to open this inferior's executable as the main executable
1774 if no main executable is open already. */
1775
1776 static struct inferior *
1777 remote_add_inferior (int fake_pid_p, int pid, int attached,
1778 int try_open_exec)
1779 {
1780 struct inferior *inf;
1781
1782 /* Check whether this process we're learning about is to be
1783 considered attached, or if is to be considered to have been
1784 spawned by the stub. */
1785 if (attached == -1)
1786 attached = remote_query_attached (pid);
1787
1788 if (gdbarch_has_global_solist (target_gdbarch ()))
1789 {
1790 /* If the target shares code across all inferiors, then every
1791 attach adds a new inferior. */
1792 inf = add_inferior (pid);
1793
1794 /* ... and every inferior is bound to the same program space.
1795 However, each inferior may still have its own address
1796 space. */
1797 inf->aspace = maybe_new_address_space ();
1798 inf->pspace = current_program_space;
1799 }
1800 else
1801 {
1802 /* In the traditional debugging scenario, there's a 1-1 match
1803 between program/address spaces. We simply bind the inferior
1804 to the program space's address space. */
1805 inf = current_inferior ();
1806 inferior_appeared (inf, pid);
1807 }
1808
1809 inf->attach_flag = attached;
1810 inf->fake_pid_p = fake_pid_p;
1811
1812 /* If no main executable is currently open then attempt to
1813 open the file that was executed to create this inferior. */
1814 if (try_open_exec && get_exec_file (0) == NULL)
1815 exec_file_locate_attach (pid, 0, 1);
1816
1817 return inf;
1818 }
1819
1820 static remote_thread_info *get_remote_thread_info (thread_info *thread);
1821
1822 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1823 according to RUNNING. */
1824
1825 static void
1826 remote_add_thread (ptid_t ptid, int running, int executing)
1827 {
1828 struct remote_state *rs = get_remote_state ();
1829 struct thread_info *thread;
1830
1831 /* GDB historically didn't pull threads in the initial connection
1832 setup. If the remote target doesn't even have a concept of
1833 threads (e.g., a bare-metal target), even if internally we
1834 consider that a single-threaded target, mentioning a new thread
1835 might be confusing to the user. Be silent then, preserving the
1836 age old behavior. */
1837 if (rs->starting_up)
1838 thread = add_thread_silent (ptid);
1839 else
1840 thread = add_thread (ptid);
1841
1842 get_remote_thread_info (thread)->vcont_resumed = executing;
1843 set_executing (ptid, executing);
1844 set_running (ptid, running);
1845 }
1846
1847 /* Come here when we learn about a thread id from the remote target.
1848 It may be the first time we hear about such thread, so take the
1849 opportunity to add it to GDB's thread list. In case this is the
1850 first time we're noticing its corresponding inferior, add it to
1851 GDB's inferior list as well. EXECUTING indicates whether the
1852 thread is (internally) executing or stopped. */
1853
1854 static void
1855 remote_notice_new_inferior (ptid_t currthread, int executing)
1856 {
1857 /* In non-stop mode, we assume new found threads are (externally)
1858 running until proven otherwise with a stop reply. In all-stop,
1859 we can only get here if all threads are stopped. */
1860 int running = target_is_non_stop_p () ? 1 : 0;
1861
1862 /* If this is a new thread, add it to GDB's thread list.
1863 If we leave it up to WFI to do this, bad things will happen. */
1864
1865 if (in_thread_list (currthread) && is_exited (currthread))
1866 {
1867 /* We're seeing an event on a thread id we knew had exited.
1868 This has to be a new thread reusing the old id. Add it. */
1869 remote_add_thread (currthread, running, executing);
1870 return;
1871 }
1872
1873 if (!in_thread_list (currthread))
1874 {
1875 struct inferior *inf = NULL;
1876 int pid = ptid_get_pid (currthread);
1877
1878 if (ptid_is_pid (inferior_ptid)
1879 && pid == ptid_get_pid (inferior_ptid))
1880 {
1881 /* inferior_ptid has no thread member yet. This can happen
1882 with the vAttach -> remote_wait,"TAAthread:" path if the
1883 stub doesn't support qC. This is the first stop reported
1884 after an attach, so this is the main thread. Update the
1885 ptid in the thread list. */
1886 if (in_thread_list (pid_to_ptid (pid)))
1887 thread_change_ptid (inferior_ptid, currthread);
1888 else
1889 {
1890 remote_add_thread (currthread, running, executing);
1891 inferior_ptid = currthread;
1892 }
1893 return;
1894 }
1895
1896 if (ptid_equal (magic_null_ptid, inferior_ptid))
1897 {
1898 /* inferior_ptid is not set yet. This can happen with the
1899 vRun -> remote_wait,"TAAthread:" path if the stub
1900 doesn't support qC. This is the first stop reported
1901 after an attach, so this is the main thread. Update the
1902 ptid in the thread list. */
1903 thread_change_ptid (inferior_ptid, currthread);
1904 return;
1905 }
1906
1907 /* When connecting to a target remote, or to a target
1908 extended-remote which already was debugging an inferior, we
1909 may not know about it yet. Add it before adding its child
1910 thread, so notifications are emitted in a sensible order. */
1911 if (!in_inferior_list (ptid_get_pid (currthread)))
1912 {
1913 struct remote_state *rs = get_remote_state ();
1914 int fake_pid_p = !remote_multi_process_p (rs);
1915
1916 inf = remote_add_inferior (fake_pid_p,
1917 ptid_get_pid (currthread), -1, 1);
1918 }
1919
1920 /* This is really a new thread. Add it. */
1921 remote_add_thread (currthread, running, executing);
1922
1923 /* If we found a new inferior, let the common code do whatever
1924 it needs to with it (e.g., read shared libraries, insert
1925 breakpoints), unless we're just setting up an all-stop
1926 connection. */
1927 if (inf != NULL)
1928 {
1929 struct remote_state *rs = get_remote_state ();
1930
1931 if (!rs->starting_up)
1932 notice_new_inferior (currthread, executing, 0);
1933 }
1934 }
1935 }
1936
1937 /* Return THREAD's private thread data, creating it if necessary. */
1938
1939 static remote_thread_info *
1940 get_remote_thread_info (thread_info *thread)
1941 {
1942 gdb_assert (thread != NULL);
1943
1944 if (thread->priv == NULL)
1945 thread->priv.reset (new remote_thread_info);
1946
1947 return static_cast<remote_thread_info *> (thread->priv.get ());
1948 }
1949
1950 /* Return PTID's private thread data, creating it if necessary. */
1951
1952 static remote_thread_info *
1953 get_remote_thread_info (ptid_t ptid)
1954 {
1955 struct thread_info *info = find_thread_ptid (ptid);
1956
1957 return get_remote_thread_info (info);
1958 }
1959
1960 /* Call this function as a result of
1961 1) A halt indication (T packet) containing a thread id
1962 2) A direct query of currthread
1963 3) Successful execution of set thread */
1964
1965 static void
1966 record_currthread (struct remote_state *rs, ptid_t currthread)
1967 {
1968 rs->general_thread = currthread;
1969 }
1970
1971 /* If 'QPassSignals' is supported, tell the remote stub what signals
1972 it can simply pass through to the inferior without reporting. */
1973
1974 static void
1975 remote_pass_signals (struct target_ops *self,
1976 int numsigs, unsigned char *pass_signals)
1977 {
1978 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
1979 {
1980 char *pass_packet, *p;
1981 int count = 0, i;
1982 struct remote_state *rs = get_remote_state ();
1983
1984 gdb_assert (numsigs < 256);
1985 for (i = 0; i < numsigs; i++)
1986 {
1987 if (pass_signals[i])
1988 count++;
1989 }
1990 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1991 strcpy (pass_packet, "QPassSignals:");
1992 p = pass_packet + strlen (pass_packet);
1993 for (i = 0; i < numsigs; i++)
1994 {
1995 if (pass_signals[i])
1996 {
1997 if (i >= 16)
1998 *p++ = tohex (i >> 4);
1999 *p++ = tohex (i & 15);
2000 if (count)
2001 *p++ = ';';
2002 else
2003 break;
2004 count--;
2005 }
2006 }
2007 *p = 0;
2008 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2009 {
2010 putpkt (pass_packet);
2011 getpkt (&rs->buf, &rs->buf_size, 0);
2012 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2013 if (rs->last_pass_packet)
2014 xfree (rs->last_pass_packet);
2015 rs->last_pass_packet = pass_packet;
2016 }
2017 else
2018 xfree (pass_packet);
2019 }
2020 }
2021
2022 /* If 'QCatchSyscalls' is supported, tell the remote stub
2023 to report syscalls to GDB. */
2024
2025 static int
2026 remote_set_syscall_catchpoint (struct target_ops *self,
2027 int pid, bool needed, int any_count,
2028 gdb::array_view<const int> syscall_counts)
2029 {
2030 const char *catch_packet;
2031 enum packet_result result;
2032 int n_sysno = 0;
2033
2034 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2035 {
2036 /* Not supported. */
2037 return 1;
2038 }
2039
2040 if (needed && any_count == 0)
2041 {
2042 /* Count how many syscalls are to be caught. */
2043 for (size_t i = 0; i < syscall_counts.size (); i++)
2044 {
2045 if (syscall_counts[i] != 0)
2046 n_sysno++;
2047 }
2048 }
2049
2050 if (remote_debug)
2051 {
2052 fprintf_unfiltered (gdb_stdlog,
2053 "remote_set_syscall_catchpoint "
2054 "pid %d needed %d any_count %d n_sysno %d\n",
2055 pid, needed, any_count, n_sysno);
2056 }
2057
2058 std::string built_packet;
2059 if (needed)
2060 {
2061 /* Prepare a packet with the sysno list, assuming max 8+1
2062 characters for a sysno. If the resulting packet size is too
2063 big, fallback on the non-selective packet. */
2064 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2065 built_packet.reserve (maxpktsz);
2066 built_packet = "QCatchSyscalls:1";
2067 if (any_count == 0)
2068 {
2069 /* Add in each syscall to be caught. */
2070 for (size_t i = 0; i < syscall_counts.size (); i++)
2071 {
2072 if (syscall_counts[i] != 0)
2073 string_appendf (built_packet, ";%zx", i);
2074 }
2075 }
2076 if (built_packet.size () > get_remote_packet_size ())
2077 {
2078 /* catch_packet too big. Fallback to less efficient
2079 non selective mode, with GDB doing the filtering. */
2080 catch_packet = "QCatchSyscalls:1";
2081 }
2082 else
2083 catch_packet = built_packet.c_str ();
2084 }
2085 else
2086 catch_packet = "QCatchSyscalls:0";
2087
2088 struct remote_state *rs = get_remote_state ();
2089
2090 putpkt (catch_packet);
2091 getpkt (&rs->buf, &rs->buf_size, 0);
2092 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2093 if (result == PACKET_OK)
2094 return 0;
2095 else
2096 return -1;
2097 }
2098
2099 /* If 'QProgramSignals' is supported, tell the remote stub what
2100 signals it should pass through to the inferior when detaching. */
2101
2102 static void
2103 remote_program_signals (struct target_ops *self,
2104 int numsigs, unsigned char *signals)
2105 {
2106 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2107 {
2108 char *packet, *p;
2109 int count = 0, i;
2110 struct remote_state *rs = get_remote_state ();
2111
2112 gdb_assert (numsigs < 256);
2113 for (i = 0; i < numsigs; i++)
2114 {
2115 if (signals[i])
2116 count++;
2117 }
2118 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2119 strcpy (packet, "QProgramSignals:");
2120 p = packet + strlen (packet);
2121 for (i = 0; i < numsigs; i++)
2122 {
2123 if (signal_pass_state (i))
2124 {
2125 if (i >= 16)
2126 *p++ = tohex (i >> 4);
2127 *p++ = tohex (i & 15);
2128 if (count)
2129 *p++ = ';';
2130 else
2131 break;
2132 count--;
2133 }
2134 }
2135 *p = 0;
2136 if (!rs->last_program_signals_packet
2137 || strcmp (rs->last_program_signals_packet, packet) != 0)
2138 {
2139 putpkt (packet);
2140 getpkt (&rs->buf, &rs->buf_size, 0);
2141 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2142 xfree (rs->last_program_signals_packet);
2143 rs->last_program_signals_packet = packet;
2144 }
2145 else
2146 xfree (packet);
2147 }
2148 }
2149
2150 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2151 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2152 thread. If GEN is set, set the general thread, if not, then set
2153 the step/continue thread. */
2154 static void
2155 set_thread (ptid_t ptid, int gen)
2156 {
2157 struct remote_state *rs = get_remote_state ();
2158 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2159 char *buf = rs->buf;
2160 char *endbuf = rs->buf + get_remote_packet_size ();
2161
2162 if (ptid_equal (state, ptid))
2163 return;
2164
2165 *buf++ = 'H';
2166 *buf++ = gen ? 'g' : 'c';
2167 if (ptid_equal (ptid, magic_null_ptid))
2168 xsnprintf (buf, endbuf - buf, "0");
2169 else if (ptid_equal (ptid, any_thread_ptid))
2170 xsnprintf (buf, endbuf - buf, "0");
2171 else if (ptid_equal (ptid, minus_one_ptid))
2172 xsnprintf (buf, endbuf - buf, "-1");
2173 else
2174 write_ptid (buf, endbuf, ptid);
2175 putpkt (rs->buf);
2176 getpkt (&rs->buf, &rs->buf_size, 0);
2177 if (gen)
2178 rs->general_thread = ptid;
2179 else
2180 rs->continue_thread = ptid;
2181 }
2182
2183 static void
2184 set_general_thread (ptid_t ptid)
2185 {
2186 set_thread (ptid, 1);
2187 }
2188
2189 static void
2190 set_continue_thread (ptid_t ptid)
2191 {
2192 set_thread (ptid, 0);
2193 }
2194
2195 /* Change the remote current process. Which thread within the process
2196 ends up selected isn't important, as long as it is the same process
2197 as what INFERIOR_PTID points to.
2198
2199 This comes from that fact that there is no explicit notion of
2200 "selected process" in the protocol. The selected process for
2201 general operations is the process the selected general thread
2202 belongs to. */
2203
2204 static void
2205 set_general_process (void)
2206 {
2207 struct remote_state *rs = get_remote_state ();
2208
2209 /* If the remote can't handle multiple processes, don't bother. */
2210 if (!remote_multi_process_p (rs))
2211 return;
2212
2213 /* We only need to change the remote current thread if it's pointing
2214 at some other process. */
2215 if (ptid_get_pid (rs->general_thread) != ptid_get_pid (inferior_ptid))
2216 set_general_thread (inferior_ptid);
2217 }
2218
2219 \f
2220 /* Return nonzero if this is the main thread that we made up ourselves
2221 to model non-threaded targets as single-threaded. */
2222
2223 static int
2224 remote_thread_always_alive (struct target_ops *ops, ptid_t ptid)
2225 {
2226 if (ptid_equal (ptid, magic_null_ptid))
2227 /* The main thread is always alive. */
2228 return 1;
2229
2230 if (ptid_get_pid (ptid) != 0 && ptid_get_lwp (ptid) == 0)
2231 /* The main thread is always alive. This can happen after a
2232 vAttach, if the remote side doesn't support
2233 multi-threading. */
2234 return 1;
2235
2236 return 0;
2237 }
2238
2239 /* Return nonzero if the thread PTID is still alive on the remote
2240 system. */
2241
2242 static int
2243 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
2244 {
2245 struct remote_state *rs = get_remote_state ();
2246 char *p, *endp;
2247
2248 /* Check if this is a thread that we made up ourselves to model
2249 non-threaded targets as single-threaded. */
2250 if (remote_thread_always_alive (ops, ptid))
2251 return 1;
2252
2253 p = rs->buf;
2254 endp = rs->buf + get_remote_packet_size ();
2255
2256 *p++ = 'T';
2257 write_ptid (p, endp, ptid);
2258
2259 putpkt (rs->buf);
2260 getpkt (&rs->buf, &rs->buf_size, 0);
2261 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2262 }
2263
2264 /* Return a pointer to a thread name if we know it and NULL otherwise.
2265 The thread_info object owns the memory for the name. */
2266
2267 static const char *
2268 remote_thread_name (struct target_ops *ops, struct thread_info *info)
2269 {
2270 if (info->priv != NULL)
2271 {
2272 const std::string &name = get_remote_thread_info (info)->name;
2273 return !name.empty () ? name.c_str () : NULL;
2274 }
2275
2276 return NULL;
2277 }
2278
2279 /* About these extended threadlist and threadinfo packets. They are
2280 variable length packets but, the fields within them are often fixed
2281 length. They are redundent enough to send over UDP as is the
2282 remote protocol in general. There is a matching unit test module
2283 in libstub. */
2284
2285 /* WARNING: This threadref data structure comes from the remote O.S.,
2286 libstub protocol encoding, and remote.c. It is not particularly
2287 changable. */
2288
2289 /* Right now, the internal structure is int. We want it to be bigger.
2290 Plan to fix this. */
2291
2292 typedef int gdb_threadref; /* Internal GDB thread reference. */
2293
2294 /* gdb_ext_thread_info is an internal GDB data structure which is
2295 equivalent to the reply of the remote threadinfo packet. */
2296
2297 struct gdb_ext_thread_info
2298 {
2299 threadref threadid; /* External form of thread reference. */
2300 int active; /* Has state interesting to GDB?
2301 regs, stack. */
2302 char display[256]; /* Brief state display, name,
2303 blocked/suspended. */
2304 char shortname[32]; /* To be used to name threads. */
2305 char more_display[256]; /* Long info, statistics, queue depth,
2306 whatever. */
2307 };
2308
2309 /* The volume of remote transfers can be limited by submitting
2310 a mask containing bits specifying the desired information.
2311 Use a union of these values as the 'selection' parameter to
2312 get_thread_info. FIXME: Make these TAG names more thread specific. */
2313
2314 #define TAG_THREADID 1
2315 #define TAG_EXISTS 2
2316 #define TAG_DISPLAY 4
2317 #define TAG_THREADNAME 8
2318 #define TAG_MOREDISPLAY 16
2319
2320 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2321
2322 static char *unpack_nibble (char *buf, int *val);
2323
2324 static char *unpack_byte (char *buf, int *value);
2325
2326 static char *pack_int (char *buf, int value);
2327
2328 static char *unpack_int (char *buf, int *value);
2329
2330 static char *unpack_string (char *src, char *dest, int length);
2331
2332 static char *pack_threadid (char *pkt, threadref *id);
2333
2334 static char *unpack_threadid (char *inbuf, threadref *id);
2335
2336 void int_to_threadref (threadref *id, int value);
2337
2338 static int threadref_to_int (threadref *ref);
2339
2340 static void copy_threadref (threadref *dest, threadref *src);
2341
2342 static int threadmatch (threadref *dest, threadref *src);
2343
2344 static char *pack_threadinfo_request (char *pkt, int mode,
2345 threadref *id);
2346
2347 static int remote_unpack_thread_info_response (char *pkt,
2348 threadref *expectedref,
2349 struct gdb_ext_thread_info
2350 *info);
2351
2352
2353 static int remote_get_threadinfo (threadref *threadid,
2354 int fieldset, /*TAG mask */
2355 struct gdb_ext_thread_info *info);
2356
2357 static char *pack_threadlist_request (char *pkt, int startflag,
2358 int threadcount,
2359 threadref *nextthread);
2360
2361 static int parse_threadlist_response (char *pkt,
2362 int result_limit,
2363 threadref *original_echo,
2364 threadref *resultlist,
2365 int *doneflag);
2366
2367 static int remote_get_threadlist (int startflag,
2368 threadref *nextthread,
2369 int result_limit,
2370 int *done,
2371 int *result_count,
2372 threadref *threadlist);
2373
2374 typedef int (*rmt_thread_action) (threadref *ref, void *context);
2375
2376 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
2377 void *context, int looplimit);
2378
2379 static int remote_newthread_step (threadref *ref, void *context);
2380
2381
2382 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2383 buffer we're allowed to write to. Returns
2384 BUF+CHARACTERS_WRITTEN. */
2385
2386 static char *
2387 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2388 {
2389 int pid, tid;
2390 struct remote_state *rs = get_remote_state ();
2391
2392 if (remote_multi_process_p (rs))
2393 {
2394 pid = ptid_get_pid (ptid);
2395 if (pid < 0)
2396 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2397 else
2398 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2399 }
2400 tid = ptid_get_lwp (ptid);
2401 if (tid < 0)
2402 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2403 else
2404 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2405
2406 return buf;
2407 }
2408
2409 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2410 last parsed char. Returns null_ptid if no thread id is found, and
2411 throws an error if the thread id has an invalid format. */
2412
2413 static ptid_t
2414 read_ptid (const char *buf, const char **obuf)
2415 {
2416 const char *p = buf;
2417 const char *pp;
2418 ULONGEST pid = 0, tid = 0;
2419
2420 if (*p == 'p')
2421 {
2422 /* Multi-process ptid. */
2423 pp = unpack_varlen_hex (p + 1, &pid);
2424 if (*pp != '.')
2425 error (_("invalid remote ptid: %s"), p);
2426
2427 p = pp;
2428 pp = unpack_varlen_hex (p + 1, &tid);
2429 if (obuf)
2430 *obuf = pp;
2431 return ptid_build (pid, tid, 0);
2432 }
2433
2434 /* No multi-process. Just a tid. */
2435 pp = unpack_varlen_hex (p, &tid);
2436
2437 /* Return null_ptid when no thread id is found. */
2438 if (p == pp)
2439 {
2440 if (obuf)
2441 *obuf = pp;
2442 return null_ptid;
2443 }
2444
2445 /* Since the stub is not sending a process id, then default to
2446 what's in inferior_ptid, unless it's null at this point. If so,
2447 then since there's no way to know the pid of the reported
2448 threads, use the magic number. */
2449 if (ptid_equal (inferior_ptid, null_ptid))
2450 pid = ptid_get_pid (magic_null_ptid);
2451 else
2452 pid = ptid_get_pid (inferior_ptid);
2453
2454 if (obuf)
2455 *obuf = pp;
2456 return ptid_build (pid, tid, 0);
2457 }
2458
2459 static int
2460 stubhex (int ch)
2461 {
2462 if (ch >= 'a' && ch <= 'f')
2463 return ch - 'a' + 10;
2464 if (ch >= '0' && ch <= '9')
2465 return ch - '0';
2466 if (ch >= 'A' && ch <= 'F')
2467 return ch - 'A' + 10;
2468 return -1;
2469 }
2470
2471 static int
2472 stub_unpack_int (char *buff, int fieldlength)
2473 {
2474 int nibble;
2475 int retval = 0;
2476
2477 while (fieldlength)
2478 {
2479 nibble = stubhex (*buff++);
2480 retval |= nibble;
2481 fieldlength--;
2482 if (fieldlength)
2483 retval = retval << 4;
2484 }
2485 return retval;
2486 }
2487
2488 static char *
2489 unpack_nibble (char *buf, int *val)
2490 {
2491 *val = fromhex (*buf++);
2492 return buf;
2493 }
2494
2495 static char *
2496 unpack_byte (char *buf, int *value)
2497 {
2498 *value = stub_unpack_int (buf, 2);
2499 return buf + 2;
2500 }
2501
2502 static char *
2503 pack_int (char *buf, int value)
2504 {
2505 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2506 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2507 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2508 buf = pack_hex_byte (buf, (value & 0xff));
2509 return buf;
2510 }
2511
2512 static char *
2513 unpack_int (char *buf, int *value)
2514 {
2515 *value = stub_unpack_int (buf, 8);
2516 return buf + 8;
2517 }
2518
2519 #if 0 /* Currently unused, uncomment when needed. */
2520 static char *pack_string (char *pkt, char *string);
2521
2522 static char *
2523 pack_string (char *pkt, char *string)
2524 {
2525 char ch;
2526 int len;
2527
2528 len = strlen (string);
2529 if (len > 200)
2530 len = 200; /* Bigger than most GDB packets, junk??? */
2531 pkt = pack_hex_byte (pkt, len);
2532 while (len-- > 0)
2533 {
2534 ch = *string++;
2535 if ((ch == '\0') || (ch == '#'))
2536 ch = '*'; /* Protect encapsulation. */
2537 *pkt++ = ch;
2538 }
2539 return pkt;
2540 }
2541 #endif /* 0 (unused) */
2542
2543 static char *
2544 unpack_string (char *src, char *dest, int length)
2545 {
2546 while (length--)
2547 *dest++ = *src++;
2548 *dest = '\0';
2549 return src;
2550 }
2551
2552 static char *
2553 pack_threadid (char *pkt, threadref *id)
2554 {
2555 char *limit;
2556 unsigned char *altid;
2557
2558 altid = (unsigned char *) id;
2559 limit = pkt + BUF_THREAD_ID_SIZE;
2560 while (pkt < limit)
2561 pkt = pack_hex_byte (pkt, *altid++);
2562 return pkt;
2563 }
2564
2565
2566 static char *
2567 unpack_threadid (char *inbuf, threadref *id)
2568 {
2569 char *altref;
2570 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2571 int x, y;
2572
2573 altref = (char *) id;
2574
2575 while (inbuf < limit)
2576 {
2577 x = stubhex (*inbuf++);
2578 y = stubhex (*inbuf++);
2579 *altref++ = (x << 4) | y;
2580 }
2581 return inbuf;
2582 }
2583
2584 /* Externally, threadrefs are 64 bits but internally, they are still
2585 ints. This is due to a mismatch of specifications. We would like
2586 to use 64bit thread references internally. This is an adapter
2587 function. */
2588
2589 void
2590 int_to_threadref (threadref *id, int value)
2591 {
2592 unsigned char *scan;
2593
2594 scan = (unsigned char *) id;
2595 {
2596 int i = 4;
2597 while (i--)
2598 *scan++ = 0;
2599 }
2600 *scan++ = (value >> 24) & 0xff;
2601 *scan++ = (value >> 16) & 0xff;
2602 *scan++ = (value >> 8) & 0xff;
2603 *scan++ = (value & 0xff);
2604 }
2605
2606 static int
2607 threadref_to_int (threadref *ref)
2608 {
2609 int i, value = 0;
2610 unsigned char *scan;
2611
2612 scan = *ref;
2613 scan += 4;
2614 i = 4;
2615 while (i-- > 0)
2616 value = (value << 8) | ((*scan++) & 0xff);
2617 return value;
2618 }
2619
2620 static void
2621 copy_threadref (threadref *dest, threadref *src)
2622 {
2623 int i;
2624 unsigned char *csrc, *cdest;
2625
2626 csrc = (unsigned char *) src;
2627 cdest = (unsigned char *) dest;
2628 i = 8;
2629 while (i--)
2630 *cdest++ = *csrc++;
2631 }
2632
2633 static int
2634 threadmatch (threadref *dest, threadref *src)
2635 {
2636 /* Things are broken right now, so just assume we got a match. */
2637 #if 0
2638 unsigned char *srcp, *destp;
2639 int i, result;
2640 srcp = (char *) src;
2641 destp = (char *) dest;
2642
2643 result = 1;
2644 while (i-- > 0)
2645 result &= (*srcp++ == *destp++) ? 1 : 0;
2646 return result;
2647 #endif
2648 return 1;
2649 }
2650
2651 /*
2652 threadid:1, # always request threadid
2653 context_exists:2,
2654 display:4,
2655 unique_name:8,
2656 more_display:16
2657 */
2658
2659 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2660
2661 static char *
2662 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2663 {
2664 *pkt++ = 'q'; /* Info Query */
2665 *pkt++ = 'P'; /* process or thread info */
2666 pkt = pack_int (pkt, mode); /* mode */
2667 pkt = pack_threadid (pkt, id); /* threadid */
2668 *pkt = '\0'; /* terminate */
2669 return pkt;
2670 }
2671
2672 /* These values tag the fields in a thread info response packet. */
2673 /* Tagging the fields allows us to request specific fields and to
2674 add more fields as time goes by. */
2675
2676 #define TAG_THREADID 1 /* Echo the thread identifier. */
2677 #define TAG_EXISTS 2 /* Is this process defined enough to
2678 fetch registers and its stack? */
2679 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2680 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2681 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2682 the process. */
2683
2684 static int
2685 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2686 struct gdb_ext_thread_info *info)
2687 {
2688 struct remote_state *rs = get_remote_state ();
2689 int mask, length;
2690 int tag;
2691 threadref ref;
2692 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2693 int retval = 1;
2694
2695 /* info->threadid = 0; FIXME: implement zero_threadref. */
2696 info->active = 0;
2697 info->display[0] = '\0';
2698 info->shortname[0] = '\0';
2699 info->more_display[0] = '\0';
2700
2701 /* Assume the characters indicating the packet type have been
2702 stripped. */
2703 pkt = unpack_int (pkt, &mask); /* arg mask */
2704 pkt = unpack_threadid (pkt, &ref);
2705
2706 if (mask == 0)
2707 warning (_("Incomplete response to threadinfo request."));
2708 if (!threadmatch (&ref, expectedref))
2709 { /* This is an answer to a different request. */
2710 warning (_("ERROR RMT Thread info mismatch."));
2711 return 0;
2712 }
2713 copy_threadref (&info->threadid, &ref);
2714
2715 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2716
2717 /* Packets are terminated with nulls. */
2718 while ((pkt < limit) && mask && *pkt)
2719 {
2720 pkt = unpack_int (pkt, &tag); /* tag */
2721 pkt = unpack_byte (pkt, &length); /* length */
2722 if (!(tag & mask)) /* Tags out of synch with mask. */
2723 {
2724 warning (_("ERROR RMT: threadinfo tag mismatch."));
2725 retval = 0;
2726 break;
2727 }
2728 if (tag == TAG_THREADID)
2729 {
2730 if (length != 16)
2731 {
2732 warning (_("ERROR RMT: length of threadid is not 16."));
2733 retval = 0;
2734 break;
2735 }
2736 pkt = unpack_threadid (pkt, &ref);
2737 mask = mask & ~TAG_THREADID;
2738 continue;
2739 }
2740 if (tag == TAG_EXISTS)
2741 {
2742 info->active = stub_unpack_int (pkt, length);
2743 pkt += length;
2744 mask = mask & ~(TAG_EXISTS);
2745 if (length > 8)
2746 {
2747 warning (_("ERROR RMT: 'exists' length too long."));
2748 retval = 0;
2749 break;
2750 }
2751 continue;
2752 }
2753 if (tag == TAG_THREADNAME)
2754 {
2755 pkt = unpack_string (pkt, &info->shortname[0], length);
2756 mask = mask & ~TAG_THREADNAME;
2757 continue;
2758 }
2759 if (tag == TAG_DISPLAY)
2760 {
2761 pkt = unpack_string (pkt, &info->display[0], length);
2762 mask = mask & ~TAG_DISPLAY;
2763 continue;
2764 }
2765 if (tag == TAG_MOREDISPLAY)
2766 {
2767 pkt = unpack_string (pkt, &info->more_display[0], length);
2768 mask = mask & ~TAG_MOREDISPLAY;
2769 continue;
2770 }
2771 warning (_("ERROR RMT: unknown thread info tag."));
2772 break; /* Not a tag we know about. */
2773 }
2774 return retval;
2775 }
2776
2777 static int
2778 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2779 struct gdb_ext_thread_info *info)
2780 {
2781 struct remote_state *rs = get_remote_state ();
2782 int result;
2783
2784 pack_threadinfo_request (rs->buf, fieldset, threadid);
2785 putpkt (rs->buf);
2786 getpkt (&rs->buf, &rs->buf_size, 0);
2787
2788 if (rs->buf[0] == '\0')
2789 return 0;
2790
2791 result = remote_unpack_thread_info_response (rs->buf + 2,
2792 threadid, info);
2793 return result;
2794 }
2795
2796 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2797
2798 static char *
2799 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2800 threadref *nextthread)
2801 {
2802 *pkt++ = 'q'; /* info query packet */
2803 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2804 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2805 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2806 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2807 *pkt = '\0';
2808 return pkt;
2809 }
2810
2811 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2812
2813 static int
2814 parse_threadlist_response (char *pkt, int result_limit,
2815 threadref *original_echo, threadref *resultlist,
2816 int *doneflag)
2817 {
2818 struct remote_state *rs = get_remote_state ();
2819 char *limit;
2820 int count, resultcount, done;
2821
2822 resultcount = 0;
2823 /* Assume the 'q' and 'M chars have been stripped. */
2824 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2825 /* done parse past here */
2826 pkt = unpack_byte (pkt, &count); /* count field */
2827 pkt = unpack_nibble (pkt, &done);
2828 /* The first threadid is the argument threadid. */
2829 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2830 while ((count-- > 0) && (pkt < limit))
2831 {
2832 pkt = unpack_threadid (pkt, resultlist++);
2833 if (resultcount++ >= result_limit)
2834 break;
2835 }
2836 if (doneflag)
2837 *doneflag = done;
2838 return resultcount;
2839 }
2840
2841 /* Fetch the next batch of threads from the remote. Returns -1 if the
2842 qL packet is not supported, 0 on error and 1 on success. */
2843
2844 static int
2845 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2846 int *done, int *result_count, threadref *threadlist)
2847 {
2848 struct remote_state *rs = get_remote_state ();
2849 int result = 1;
2850
2851 /* Trancate result limit to be smaller than the packet size. */
2852 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2853 >= get_remote_packet_size ())
2854 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2855
2856 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2857 putpkt (rs->buf);
2858 getpkt (&rs->buf, &rs->buf_size, 0);
2859 if (*rs->buf == '\0')
2860 {
2861 /* Packet not supported. */
2862 return -1;
2863 }
2864
2865 *result_count =
2866 parse_threadlist_response (rs->buf + 2, result_limit,
2867 &rs->echo_nextthread, threadlist, done);
2868
2869 if (!threadmatch (&rs->echo_nextthread, nextthread))
2870 {
2871 /* FIXME: This is a good reason to drop the packet. */
2872 /* Possably, there is a duplicate response. */
2873 /* Possabilities :
2874 retransmit immediatly - race conditions
2875 retransmit after timeout - yes
2876 exit
2877 wait for packet, then exit
2878 */
2879 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2880 return 0; /* I choose simply exiting. */
2881 }
2882 if (*result_count <= 0)
2883 {
2884 if (*done != 1)
2885 {
2886 warning (_("RMT ERROR : failed to get remote thread list."));
2887 result = 0;
2888 }
2889 return result; /* break; */
2890 }
2891 if (*result_count > result_limit)
2892 {
2893 *result_count = 0;
2894 warning (_("RMT ERROR: threadlist response longer than requested."));
2895 return 0;
2896 }
2897 return result;
2898 }
2899
2900 /* Fetch the list of remote threads, with the qL packet, and call
2901 STEPFUNCTION for each thread found. Stops iterating and returns 1
2902 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
2903 STEPFUNCTION returns false. If the packet is not supported,
2904 returns -1. */
2905
2906 static int
2907 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2908 int looplimit)
2909 {
2910 struct remote_state *rs = get_remote_state ();
2911 int done, i, result_count;
2912 int startflag = 1;
2913 int result = 1;
2914 int loopcount = 0;
2915
2916 done = 0;
2917 while (!done)
2918 {
2919 if (loopcount++ > looplimit)
2920 {
2921 result = 0;
2922 warning (_("Remote fetch threadlist -infinite loop-."));
2923 break;
2924 }
2925 result = remote_get_threadlist (startflag, &rs->nextthread,
2926 MAXTHREADLISTRESULTS,
2927 &done, &result_count,
2928 rs->resultthreadlist);
2929 if (result <= 0)
2930 break;
2931 /* Clear for later iterations. */
2932 startflag = 0;
2933 /* Setup to resume next batch of thread references, set nextthread. */
2934 if (result_count >= 1)
2935 copy_threadref (&rs->nextthread,
2936 &rs->resultthreadlist[result_count - 1]);
2937 i = 0;
2938 while (result_count--)
2939 {
2940 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
2941 {
2942 result = 0;
2943 break;
2944 }
2945 }
2946 }
2947 return result;
2948 }
2949
2950 /* A thread found on the remote target. */
2951
2952 struct thread_item
2953 {
2954 explicit thread_item (ptid_t ptid_)
2955 : ptid (ptid_)
2956 {}
2957
2958 thread_item (thread_item &&other) = default;
2959 thread_item &operator= (thread_item &&other) = default;
2960
2961 DISABLE_COPY_AND_ASSIGN (thread_item);
2962
2963 /* The thread's PTID. */
2964 ptid_t ptid;
2965
2966 /* The thread's extra info. */
2967 std::string extra;
2968
2969 /* The thread's name. */
2970 std::string name;
2971
2972 /* The core the thread was running on. -1 if not known. */
2973 int core = -1;
2974
2975 /* The thread handle associated with the thread. */
2976 gdb::byte_vector thread_handle;
2977 };
2978
2979 /* Context passed around to the various methods listing remote
2980 threads. As new threads are found, they're added to the ITEMS
2981 vector. */
2982
2983 struct threads_listing_context
2984 {
2985 /* Return true if this object contains an entry for a thread with ptid
2986 PTID. */
2987
2988 bool contains_thread (ptid_t ptid) const
2989 {
2990 auto match_ptid = [&] (const thread_item &item)
2991 {
2992 return item.ptid == ptid;
2993 };
2994
2995 auto it = std::find_if (this->items.begin (),
2996 this->items.end (),
2997 match_ptid);
2998
2999 return it != this->items.end ();
3000 }
3001
3002 /* Remove the thread with ptid PTID. */
3003
3004 void remove_thread (ptid_t ptid)
3005 {
3006 auto match_ptid = [&] (const thread_item &item)
3007 {
3008 return item.ptid == ptid;
3009 };
3010
3011 auto it = std::remove_if (this->items.begin (),
3012 this->items.end (),
3013 match_ptid);
3014
3015 if (it != this->items.end ())
3016 this->items.erase (it);
3017 }
3018
3019 /* The threads found on the remote target. */
3020 std::vector<thread_item> items;
3021 };
3022
3023 static int
3024 remote_newthread_step (threadref *ref, void *data)
3025 {
3026 struct threads_listing_context *context
3027 = (struct threads_listing_context *) data;
3028 int pid = inferior_ptid.pid ();
3029 int lwp = threadref_to_int (ref);
3030 ptid_t ptid (pid, lwp);
3031
3032 context->items.emplace_back (ptid);
3033
3034 return 1; /* continue iterator */
3035 }
3036
3037 #define CRAZY_MAX_THREADS 1000
3038
3039 static ptid_t
3040 remote_current_thread (ptid_t oldpid)
3041 {
3042 struct remote_state *rs = get_remote_state ();
3043
3044 putpkt ("qC");
3045 getpkt (&rs->buf, &rs->buf_size, 0);
3046 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3047 {
3048 const char *obuf;
3049 ptid_t result;
3050
3051 result = read_ptid (&rs->buf[2], &obuf);
3052 if (*obuf != '\0' && remote_debug)
3053 fprintf_unfiltered (gdb_stdlog,
3054 "warning: garbage in qC reply\n");
3055
3056 return result;
3057 }
3058 else
3059 return oldpid;
3060 }
3061
3062 /* List remote threads using the deprecated qL packet. */
3063
3064 static int
3065 remote_get_threads_with_ql (struct target_ops *ops,
3066 struct threads_listing_context *context)
3067 {
3068 if (remote_threadlist_iterator (remote_newthread_step, context,
3069 CRAZY_MAX_THREADS) >= 0)
3070 return 1;
3071
3072 return 0;
3073 }
3074
3075 #if defined(HAVE_LIBEXPAT)
3076
3077 static void
3078 start_thread (struct gdb_xml_parser *parser,
3079 const struct gdb_xml_element *element,
3080 void *user_data,
3081 std::vector<gdb_xml_value> &attributes)
3082 {
3083 struct threads_listing_context *data
3084 = (struct threads_listing_context *) user_data;
3085 struct gdb_xml_value *attr;
3086
3087 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3088 ptid_t ptid = read_ptid (id, NULL);
3089
3090 data->items.emplace_back (ptid);
3091 thread_item &item = data->items.back ();
3092
3093 attr = xml_find_attribute (attributes, "core");
3094 if (attr != NULL)
3095 item.core = *(ULONGEST *) attr->value.get ();
3096
3097 attr = xml_find_attribute (attributes, "name");
3098 if (attr != NULL)
3099 item.name = (const char *) attr->value.get ();
3100
3101 attr = xml_find_attribute (attributes, "handle");
3102 if (attr != NULL)
3103 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3104 }
3105
3106 static void
3107 end_thread (struct gdb_xml_parser *parser,
3108 const struct gdb_xml_element *element,
3109 void *user_data, const char *body_text)
3110 {
3111 struct threads_listing_context *data
3112 = (struct threads_listing_context *) user_data;
3113
3114 if (body_text != NULL && *body_text != '\0')
3115 data->items.back ().extra = body_text;
3116 }
3117
3118 const struct gdb_xml_attribute thread_attributes[] = {
3119 { "id", GDB_XML_AF_NONE, NULL, NULL },
3120 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3121 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3122 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3123 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3124 };
3125
3126 const struct gdb_xml_element thread_children[] = {
3127 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3128 };
3129
3130 const struct gdb_xml_element threads_children[] = {
3131 { "thread", thread_attributes, thread_children,
3132 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3133 start_thread, end_thread },
3134 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3135 };
3136
3137 const struct gdb_xml_element threads_elements[] = {
3138 { "threads", NULL, threads_children,
3139 GDB_XML_EF_NONE, NULL, NULL },
3140 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3141 };
3142
3143 #endif
3144
3145 /* List remote threads using qXfer:threads:read. */
3146
3147 static int
3148 remote_get_threads_with_qxfer (struct target_ops *ops,
3149 struct threads_listing_context *context)
3150 {
3151 #if defined(HAVE_LIBEXPAT)
3152 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3153 {
3154 gdb::unique_xmalloc_ptr<char> xml
3155 = target_read_stralloc (ops, TARGET_OBJECT_THREADS, NULL);
3156
3157 if (xml != NULL && *xml != '\0')
3158 {
3159 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3160 threads_elements, xml.get (), context);
3161 }
3162
3163 return 1;
3164 }
3165 #endif
3166
3167 return 0;
3168 }
3169
3170 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3171
3172 static int
3173 remote_get_threads_with_qthreadinfo (struct target_ops *ops,
3174 struct threads_listing_context *context)
3175 {
3176 struct remote_state *rs = get_remote_state ();
3177
3178 if (rs->use_threadinfo_query)
3179 {
3180 const char *bufp;
3181
3182 putpkt ("qfThreadInfo");
3183 getpkt (&rs->buf, &rs->buf_size, 0);
3184 bufp = rs->buf;
3185 if (bufp[0] != '\0') /* q packet recognized */
3186 {
3187 while (*bufp++ == 'm') /* reply contains one or more TID */
3188 {
3189 do
3190 {
3191 ptid_t ptid = read_ptid (bufp, &bufp);
3192 context->items.emplace_back (ptid);
3193 }
3194 while (*bufp++ == ','); /* comma-separated list */
3195 putpkt ("qsThreadInfo");
3196 getpkt (&rs->buf, &rs->buf_size, 0);
3197 bufp = rs->buf;
3198 }
3199 return 1;
3200 }
3201 else
3202 {
3203 /* Packet not recognized. */
3204 rs->use_threadinfo_query = 0;
3205 }
3206 }
3207
3208 return 0;
3209 }
3210
3211 /* Implement the to_update_thread_list function for the remote
3212 targets. */
3213
3214 static void
3215 remote_update_thread_list (struct target_ops *ops)
3216 {
3217 struct threads_listing_context context;
3218 int got_list = 0;
3219
3220 /* We have a few different mechanisms to fetch the thread list. Try
3221 them all, starting with the most preferred one first, falling
3222 back to older methods. */
3223 if (remote_get_threads_with_qxfer (ops, &context)
3224 || remote_get_threads_with_qthreadinfo (ops, &context)
3225 || remote_get_threads_with_ql (ops, &context))
3226 {
3227 struct thread_info *tp, *tmp;
3228
3229 got_list = 1;
3230
3231 if (context.items.empty ()
3232 && remote_thread_always_alive (ops, inferior_ptid))
3233 {
3234 /* Some targets don't really support threads, but still
3235 reply an (empty) thread list in response to the thread
3236 listing packets, instead of replying "packet not
3237 supported". Exit early so we don't delete the main
3238 thread. */
3239 return;
3240 }
3241
3242 /* CONTEXT now holds the current thread list on the remote
3243 target end. Delete GDB-side threads no longer found on the
3244 target. */
3245 ALL_THREADS_SAFE (tp, tmp)
3246 {
3247 if (!context.contains_thread (tp->ptid))
3248 {
3249 /* Not found. */
3250 delete_thread (tp->ptid);
3251 }
3252 }
3253
3254 /* Remove any unreported fork child threads from CONTEXT so
3255 that we don't interfere with follow fork, which is where
3256 creation of such threads is handled. */
3257 remove_new_fork_children (&context);
3258
3259 /* And now add threads we don't know about yet to our list. */
3260 for (thread_item &item : context.items)
3261 {
3262 if (item.ptid != null_ptid)
3263 {
3264 /* In non-stop mode, we assume new found threads are
3265 executing until proven otherwise with a stop reply.
3266 In all-stop, we can only get here if all threads are
3267 stopped. */
3268 int executing = target_is_non_stop_p () ? 1 : 0;
3269
3270 remote_notice_new_inferior (item.ptid, executing);
3271
3272 remote_thread_info *info = get_remote_thread_info (item.ptid);
3273 info->core = item.core;
3274 info->extra = std::move (item.extra);
3275 info->name = std::move (item.name);
3276 info->thread_handle = std::move (item.thread_handle);
3277 }
3278 }
3279 }
3280
3281 if (!got_list)
3282 {
3283 /* If no thread listing method is supported, then query whether
3284 each known thread is alive, one by one, with the T packet.
3285 If the target doesn't support threads at all, then this is a
3286 no-op. See remote_thread_alive. */
3287 prune_threads ();
3288 }
3289 }
3290
3291 /*
3292 * Collect a descriptive string about the given thread.
3293 * The target may say anything it wants to about the thread
3294 * (typically info about its blocked / runnable state, name, etc.).
3295 * This string will appear in the info threads display.
3296 *
3297 * Optional: targets are not required to implement this function.
3298 */
3299
3300 static const char *
3301 remote_threads_extra_info (struct target_ops *self, struct thread_info *tp)
3302 {
3303 struct remote_state *rs = get_remote_state ();
3304 int result;
3305 int set;
3306 threadref id;
3307 struct gdb_ext_thread_info threadinfo;
3308 static char display_buf[100]; /* arbitrary... */
3309 int n = 0; /* position in display_buf */
3310
3311 if (rs->remote_desc == 0) /* paranoia */
3312 internal_error (__FILE__, __LINE__,
3313 _("remote_threads_extra_info"));
3314
3315 if (ptid_equal (tp->ptid, magic_null_ptid)
3316 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_lwp (tp->ptid) == 0))
3317 /* This is the main thread which was added by GDB. The remote
3318 server doesn't know about it. */
3319 return NULL;
3320
3321 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3322 {
3323 struct thread_info *info = find_thread_ptid (tp->ptid);
3324
3325 if (info != NULL && info->priv != NULL)
3326 {
3327 const std::string &extra = get_remote_thread_info (info)->extra;
3328 return !extra.empty () ? extra.c_str () : NULL;
3329 }
3330 else
3331 return NULL;
3332 }
3333
3334 if (rs->use_threadextra_query)
3335 {
3336 char *b = rs->buf;
3337 char *endb = rs->buf + get_remote_packet_size ();
3338
3339 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3340 b += strlen (b);
3341 write_ptid (b, endb, tp->ptid);
3342
3343 putpkt (rs->buf);
3344 getpkt (&rs->buf, &rs->buf_size, 0);
3345 if (rs->buf[0] != 0)
3346 {
3347 n = std::min (strlen (rs->buf) / 2, sizeof (display_buf));
3348 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
3349 display_buf [result] = '\0';
3350 return display_buf;
3351 }
3352 }
3353
3354 /* If the above query fails, fall back to the old method. */
3355 rs->use_threadextra_query = 0;
3356 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3357 | TAG_MOREDISPLAY | TAG_DISPLAY;
3358 int_to_threadref (&id, ptid_get_lwp (tp->ptid));
3359 if (remote_get_threadinfo (&id, set, &threadinfo))
3360 if (threadinfo.active)
3361 {
3362 if (*threadinfo.shortname)
3363 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
3364 " Name: %s,", threadinfo.shortname);
3365 if (*threadinfo.display)
3366 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3367 " State: %s,", threadinfo.display);
3368 if (*threadinfo.more_display)
3369 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3370 " Priority: %s", threadinfo.more_display);
3371
3372 if (n > 0)
3373 {
3374 /* For purely cosmetic reasons, clear up trailing commas. */
3375 if (',' == display_buf[n-1])
3376 display_buf[n-1] = ' ';
3377 return display_buf;
3378 }
3379 }
3380 return NULL;
3381 }
3382 \f
3383
3384 static bool
3385 remote_static_tracepoint_marker_at (struct target_ops *self, CORE_ADDR addr,
3386 struct static_tracepoint_marker *marker)
3387 {
3388 struct remote_state *rs = get_remote_state ();
3389 char *p = rs->buf;
3390
3391 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3392 p += strlen (p);
3393 p += hexnumstr (p, addr);
3394 putpkt (rs->buf);
3395 getpkt (&rs->buf, &rs->buf_size, 0);
3396 p = rs->buf;
3397
3398 if (*p == 'E')
3399 error (_("Remote failure reply: %s"), p);
3400
3401 if (*p++ == 'm')
3402 {
3403 parse_static_tracepoint_marker_definition (p, NULL, marker);
3404 return true;
3405 }
3406
3407 return false;
3408 }
3409
3410 static std::vector<static_tracepoint_marker>
3411 remote_static_tracepoint_markers_by_strid (struct target_ops *self,
3412 const char *strid)
3413 {
3414 struct remote_state *rs = get_remote_state ();
3415 std::vector<static_tracepoint_marker> markers;
3416 const char *p;
3417 static_tracepoint_marker marker;
3418
3419 /* Ask for a first packet of static tracepoint marker
3420 definition. */
3421 putpkt ("qTfSTM");
3422 getpkt (&rs->buf, &rs->buf_size, 0);
3423 p = rs->buf;
3424 if (*p == 'E')
3425 error (_("Remote failure reply: %s"), p);
3426
3427 while (*p++ == 'm')
3428 {
3429 do
3430 {
3431 parse_static_tracepoint_marker_definition (p, &p, &marker);
3432
3433 if (strid == NULL || marker.str_id == strid)
3434 markers.push_back (std::move (marker));
3435 }
3436 while (*p++ == ','); /* comma-separated list */
3437 /* Ask for another packet of static tracepoint definition. */
3438 putpkt ("qTsSTM");
3439 getpkt (&rs->buf, &rs->buf_size, 0);
3440 p = rs->buf;
3441 }
3442
3443 return markers;
3444 }
3445
3446 \f
3447 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3448
3449 static ptid_t
3450 remote_get_ada_task_ptid (struct target_ops *self, long lwp, long thread)
3451 {
3452 return ptid_build (ptid_get_pid (inferior_ptid), lwp, 0);
3453 }
3454 \f
3455
3456 /* Restart the remote side; this is an extended protocol operation. */
3457
3458 static void
3459 extended_remote_restart (void)
3460 {
3461 struct remote_state *rs = get_remote_state ();
3462
3463 /* Send the restart command; for reasons I don't understand the
3464 remote side really expects a number after the "R". */
3465 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
3466 putpkt (rs->buf);
3467
3468 remote_fileio_reset ();
3469 }
3470 \f
3471 /* Clean up connection to a remote debugger. */
3472
3473 static void
3474 remote_close (struct target_ops *self)
3475 {
3476 struct remote_state *rs = get_remote_state ();
3477
3478 if (rs->remote_desc == NULL)
3479 return; /* already closed */
3480
3481 /* Make sure we leave stdin registered in the event loop. */
3482 remote_terminal_ours (self);
3483
3484 serial_close (rs->remote_desc);
3485 rs->remote_desc = NULL;
3486
3487 /* We don't have a connection to the remote stub anymore. Get rid
3488 of all the inferiors and their threads we were controlling.
3489 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3490 will be unable to find the thread corresponding to (pid, 0, 0). */
3491 inferior_ptid = null_ptid;
3492 discard_all_inferiors ();
3493
3494 /* We are closing the remote target, so we should discard
3495 everything of this target. */
3496 discard_pending_stop_replies_in_queue (rs);
3497
3498 if (remote_async_inferior_event_token)
3499 delete_async_event_handler (&remote_async_inferior_event_token);
3500
3501 remote_notif_state_xfree (rs->notif_state);
3502
3503 trace_reset_local_state ();
3504 }
3505
3506 /* Query the remote side for the text, data and bss offsets. */
3507
3508 static void
3509 get_offsets (void)
3510 {
3511 struct remote_state *rs = get_remote_state ();
3512 char *buf;
3513 char *ptr;
3514 int lose, num_segments = 0, do_sections, do_segments;
3515 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3516 struct section_offsets *offs;
3517 struct symfile_segment_data *data;
3518
3519 if (symfile_objfile == NULL)
3520 return;
3521
3522 putpkt ("qOffsets");
3523 getpkt (&rs->buf, &rs->buf_size, 0);
3524 buf = rs->buf;
3525
3526 if (buf[0] == '\000')
3527 return; /* Return silently. Stub doesn't support
3528 this command. */
3529 if (buf[0] == 'E')
3530 {
3531 warning (_("Remote failure reply: %s"), buf);
3532 return;
3533 }
3534
3535 /* Pick up each field in turn. This used to be done with scanf, but
3536 scanf will make trouble if CORE_ADDR size doesn't match
3537 conversion directives correctly. The following code will work
3538 with any size of CORE_ADDR. */
3539 text_addr = data_addr = bss_addr = 0;
3540 ptr = buf;
3541 lose = 0;
3542
3543 if (startswith (ptr, "Text="))
3544 {
3545 ptr += 5;
3546 /* Don't use strtol, could lose on big values. */
3547 while (*ptr && *ptr != ';')
3548 text_addr = (text_addr << 4) + fromhex (*ptr++);
3549
3550 if (startswith (ptr, ";Data="))
3551 {
3552 ptr += 6;
3553 while (*ptr && *ptr != ';')
3554 data_addr = (data_addr << 4) + fromhex (*ptr++);
3555 }
3556 else
3557 lose = 1;
3558
3559 if (!lose && startswith (ptr, ";Bss="))
3560 {
3561 ptr += 5;
3562 while (*ptr && *ptr != ';')
3563 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3564
3565 if (bss_addr != data_addr)
3566 warning (_("Target reported unsupported offsets: %s"), buf);
3567 }
3568 else
3569 lose = 1;
3570 }
3571 else if (startswith (ptr, "TextSeg="))
3572 {
3573 ptr += 8;
3574 /* Don't use strtol, could lose on big values. */
3575 while (*ptr && *ptr != ';')
3576 text_addr = (text_addr << 4) + fromhex (*ptr++);
3577 num_segments = 1;
3578
3579 if (startswith (ptr, ";DataSeg="))
3580 {
3581 ptr += 9;
3582 while (*ptr && *ptr != ';')
3583 data_addr = (data_addr << 4) + fromhex (*ptr++);
3584 num_segments++;
3585 }
3586 }
3587 else
3588 lose = 1;
3589
3590 if (lose)
3591 error (_("Malformed response to offset query, %s"), buf);
3592 else if (*ptr != '\0')
3593 warning (_("Target reported unsupported offsets: %s"), buf);
3594
3595 offs = ((struct section_offsets *)
3596 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3597 memcpy (offs, symfile_objfile->section_offsets,
3598 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3599
3600 data = get_symfile_segment_data (symfile_objfile->obfd);
3601 do_segments = (data != NULL);
3602 do_sections = num_segments == 0;
3603
3604 if (num_segments > 0)
3605 {
3606 segments[0] = text_addr;
3607 segments[1] = data_addr;
3608 }
3609 /* If we have two segments, we can still try to relocate everything
3610 by assuming that the .text and .data offsets apply to the whole
3611 text and data segments. Convert the offsets given in the packet
3612 to base addresses for symfile_map_offsets_to_segments. */
3613 else if (data && data->num_segments == 2)
3614 {
3615 segments[0] = data->segment_bases[0] + text_addr;
3616 segments[1] = data->segment_bases[1] + data_addr;
3617 num_segments = 2;
3618 }
3619 /* If the object file has only one segment, assume that it is text
3620 rather than data; main programs with no writable data are rare,
3621 but programs with no code are useless. Of course the code might
3622 have ended up in the data segment... to detect that we would need
3623 the permissions here. */
3624 else if (data && data->num_segments == 1)
3625 {
3626 segments[0] = data->segment_bases[0] + text_addr;
3627 num_segments = 1;
3628 }
3629 /* There's no way to relocate by segment. */
3630 else
3631 do_segments = 0;
3632
3633 if (do_segments)
3634 {
3635 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3636 offs, num_segments, segments);
3637
3638 if (ret == 0 && !do_sections)
3639 error (_("Can not handle qOffsets TextSeg "
3640 "response with this symbol file"));
3641
3642 if (ret > 0)
3643 do_sections = 0;
3644 }
3645
3646 if (data)
3647 free_symfile_segment_data (data);
3648
3649 if (do_sections)
3650 {
3651 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3652
3653 /* This is a temporary kludge to force data and bss to use the
3654 same offsets because that's what nlmconv does now. The real
3655 solution requires changes to the stub and remote.c that I
3656 don't have time to do right now. */
3657
3658 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3659 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3660 }
3661
3662 objfile_relocate (symfile_objfile, offs);
3663 }
3664
3665 /* Send interrupt_sequence to remote target. */
3666 static void
3667 send_interrupt_sequence (void)
3668 {
3669 struct remote_state *rs = get_remote_state ();
3670
3671 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3672 remote_serial_write ("\x03", 1);
3673 else if (interrupt_sequence_mode == interrupt_sequence_break)
3674 serial_send_break (rs->remote_desc);
3675 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3676 {
3677 serial_send_break (rs->remote_desc);
3678 remote_serial_write ("g", 1);
3679 }
3680 else
3681 internal_error (__FILE__, __LINE__,
3682 _("Invalid value for interrupt_sequence_mode: %s."),
3683 interrupt_sequence_mode);
3684 }
3685
3686
3687 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
3688 and extract the PTID. Returns NULL_PTID if not found. */
3689
3690 static ptid_t
3691 stop_reply_extract_thread (char *stop_reply)
3692 {
3693 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
3694 {
3695 const char *p;
3696
3697 /* Txx r:val ; r:val (...) */
3698 p = &stop_reply[3];
3699
3700 /* Look for "register" named "thread". */
3701 while (*p != '\0')
3702 {
3703 const char *p1;
3704
3705 p1 = strchr (p, ':');
3706 if (p1 == NULL)
3707 return null_ptid;
3708
3709 if (strncmp (p, "thread", p1 - p) == 0)
3710 return read_ptid (++p1, &p);
3711
3712 p1 = strchr (p, ';');
3713 if (p1 == NULL)
3714 return null_ptid;
3715 p1++;
3716
3717 p = p1;
3718 }
3719 }
3720
3721 return null_ptid;
3722 }
3723
3724 /* Determine the remote side's current thread. If we have a stop
3725 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
3726 "thread" register we can extract the current thread from. If not,
3727 ask the remote which is the current thread with qC. The former
3728 method avoids a roundtrip. */
3729
3730 static ptid_t
3731 get_current_thread (char *wait_status)
3732 {
3733 ptid_t ptid = null_ptid;
3734
3735 /* Note we don't use remote_parse_stop_reply as that makes use of
3736 the target architecture, which we haven't yet fully determined at
3737 this point. */
3738 if (wait_status != NULL)
3739 ptid = stop_reply_extract_thread (wait_status);
3740 if (ptid_equal (ptid, null_ptid))
3741 ptid = remote_current_thread (inferior_ptid);
3742
3743 return ptid;
3744 }
3745
3746 /* Query the remote target for which is the current thread/process,
3747 add it to our tables, and update INFERIOR_PTID. The caller is
3748 responsible for setting the state such that the remote end is ready
3749 to return the current thread.
3750
3751 This function is called after handling the '?' or 'vRun' packets,
3752 whose response is a stop reply from which we can also try
3753 extracting the thread. If the target doesn't support the explicit
3754 qC query, we infer the current thread from that stop reply, passed
3755 in in WAIT_STATUS, which may be NULL. */
3756
3757 static void
3758 add_current_inferior_and_thread (char *wait_status)
3759 {
3760 struct remote_state *rs = get_remote_state ();
3761 int fake_pid_p = 0;
3762
3763 inferior_ptid = null_ptid;
3764
3765 /* Now, if we have thread information, update inferior_ptid. */
3766 ptid_t curr_ptid = get_current_thread (wait_status);
3767
3768 if (curr_ptid != null_ptid)
3769 {
3770 if (!remote_multi_process_p (rs))
3771 fake_pid_p = 1;
3772 }
3773 else
3774 {
3775 /* Without this, some commands which require an active target
3776 (such as kill) won't work. This variable serves (at least)
3777 double duty as both the pid of the target process (if it has
3778 such), and as a flag indicating that a target is active. */
3779 curr_ptid = magic_null_ptid;
3780 fake_pid_p = 1;
3781 }
3782
3783 remote_add_inferior (fake_pid_p, ptid_get_pid (curr_ptid), -1, 1);
3784
3785 /* Add the main thread and switch to it. Don't try reading
3786 registers yet, since we haven't fetched the target description
3787 yet. */
3788 thread_info *tp = add_thread_silent (curr_ptid);
3789 switch_to_thread_no_regs (tp);
3790 }
3791
3792 /* Print info about a thread that was found already stopped on
3793 connection. */
3794
3795 static void
3796 print_one_stopped_thread (struct thread_info *thread)
3797 {
3798 struct target_waitstatus *ws = &thread->suspend.waitstatus;
3799
3800 switch_to_thread (thread->ptid);
3801 stop_pc = get_frame_pc (get_current_frame ());
3802 set_current_sal_from_frame (get_current_frame ());
3803
3804 thread->suspend.waitstatus_pending_p = 0;
3805
3806 if (ws->kind == TARGET_WAITKIND_STOPPED)
3807 {
3808 enum gdb_signal sig = ws->value.sig;
3809
3810 if (signal_print_state (sig))
3811 gdb::observers::signal_received.notify (sig);
3812 }
3813 gdb::observers::normal_stop.notify (NULL, 1);
3814 }
3815
3816 /* Process all initial stop replies the remote side sent in response
3817 to the ? packet. These indicate threads that were already stopped
3818 on initial connection. We mark these threads as stopped and print
3819 their current frame before giving the user the prompt. */
3820
3821 static void
3822 process_initial_stop_replies (int from_tty)
3823 {
3824 int pending_stop_replies = stop_reply_queue_length ();
3825 struct inferior *inf;
3826 struct thread_info *thread;
3827 struct thread_info *selected = NULL;
3828 struct thread_info *lowest_stopped = NULL;
3829 struct thread_info *first = NULL;
3830
3831 /* Consume the initial pending events. */
3832 while (pending_stop_replies-- > 0)
3833 {
3834 ptid_t waiton_ptid = minus_one_ptid;
3835 ptid_t event_ptid;
3836 struct target_waitstatus ws;
3837 int ignore_event = 0;
3838 struct thread_info *thread;
3839
3840 memset (&ws, 0, sizeof (ws));
3841 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
3842 if (remote_debug)
3843 print_target_wait_results (waiton_ptid, event_ptid, &ws);
3844
3845 switch (ws.kind)
3846 {
3847 case TARGET_WAITKIND_IGNORE:
3848 case TARGET_WAITKIND_NO_RESUMED:
3849 case TARGET_WAITKIND_SIGNALLED:
3850 case TARGET_WAITKIND_EXITED:
3851 /* We shouldn't see these, but if we do, just ignore. */
3852 if (remote_debug)
3853 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
3854 ignore_event = 1;
3855 break;
3856
3857 case TARGET_WAITKIND_EXECD:
3858 xfree (ws.value.execd_pathname);
3859 break;
3860 default:
3861 break;
3862 }
3863
3864 if (ignore_event)
3865 continue;
3866
3867 thread = find_thread_ptid (event_ptid);
3868
3869 if (ws.kind == TARGET_WAITKIND_STOPPED)
3870 {
3871 enum gdb_signal sig = ws.value.sig;
3872
3873 /* Stubs traditionally report SIGTRAP as initial signal,
3874 instead of signal 0. Suppress it. */
3875 if (sig == GDB_SIGNAL_TRAP)
3876 sig = GDB_SIGNAL_0;
3877 thread->suspend.stop_signal = sig;
3878 ws.value.sig = sig;
3879 }
3880
3881 thread->suspend.waitstatus = ws;
3882
3883 if (ws.kind != TARGET_WAITKIND_STOPPED
3884 || ws.value.sig != GDB_SIGNAL_0)
3885 thread->suspend.waitstatus_pending_p = 1;
3886
3887 set_executing (event_ptid, 0);
3888 set_running (event_ptid, 0);
3889 get_remote_thread_info (thread)->vcont_resumed = 0;
3890 }
3891
3892 /* "Notice" the new inferiors before anything related to
3893 registers/memory. */
3894 ALL_INFERIORS (inf)
3895 {
3896 if (inf->pid == 0)
3897 continue;
3898
3899 inf->needs_setup = 1;
3900
3901 if (non_stop)
3902 {
3903 thread = any_live_thread_of_process (inf->pid);
3904 notice_new_inferior (thread->ptid,
3905 thread->state == THREAD_RUNNING,
3906 from_tty);
3907 }
3908 }
3909
3910 /* If all-stop on top of non-stop, pause all threads. Note this
3911 records the threads' stop pc, so must be done after "noticing"
3912 the inferiors. */
3913 if (!non_stop)
3914 {
3915 stop_all_threads ();
3916
3917 /* If all threads of an inferior were already stopped, we
3918 haven't setup the inferior yet. */
3919 ALL_INFERIORS (inf)
3920 {
3921 if (inf->pid == 0)
3922 continue;
3923
3924 if (inf->needs_setup)
3925 {
3926 thread = any_live_thread_of_process (inf->pid);
3927 switch_to_thread_no_regs (thread);
3928 setup_inferior (0);
3929 }
3930 }
3931 }
3932
3933 /* Now go over all threads that are stopped, and print their current
3934 frame. If all-stop, then if there's a signalled thread, pick
3935 that as current. */
3936 ALL_NON_EXITED_THREADS (thread)
3937 {
3938 if (first == NULL)
3939 first = thread;
3940
3941 if (!non_stop)
3942 set_running (thread->ptid, 0);
3943 else if (thread->state != THREAD_STOPPED)
3944 continue;
3945
3946 if (selected == NULL
3947 && thread->suspend.waitstatus_pending_p)
3948 selected = thread;
3949
3950 if (lowest_stopped == NULL
3951 || thread->inf->num < lowest_stopped->inf->num
3952 || thread->per_inf_num < lowest_stopped->per_inf_num)
3953 lowest_stopped = thread;
3954
3955 if (non_stop)
3956 print_one_stopped_thread (thread);
3957 }
3958
3959 /* In all-stop, we only print the status of one thread, and leave
3960 others with their status pending. */
3961 if (!non_stop)
3962 {
3963 thread = selected;
3964 if (thread == NULL)
3965 thread = lowest_stopped;
3966 if (thread == NULL)
3967 thread = first;
3968
3969 print_one_stopped_thread (thread);
3970 }
3971
3972 /* For "info program". */
3973 thread = inferior_thread ();
3974 if (thread->state == THREAD_STOPPED)
3975 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
3976 }
3977
3978 /* Start the remote connection and sync state. */
3979
3980 static void
3981 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3982 {
3983 struct remote_state *rs = get_remote_state ();
3984 struct packet_config *noack_config;
3985 char *wait_status = NULL;
3986
3987 /* Signal other parts that we're going through the initial setup,
3988 and so things may not be stable yet. E.g., we don't try to
3989 install tracepoints until we've relocated symbols. Also, a
3990 Ctrl-C before we're connected and synced up can't interrupt the
3991 target. Instead, it offers to drop the (potentially wedged)
3992 connection. */
3993 rs->starting_up = 1;
3994
3995 QUIT;
3996
3997 if (interrupt_on_connect)
3998 send_interrupt_sequence ();
3999
4000 /* Ack any packet which the remote side has already sent. */
4001 remote_serial_write ("+", 1);
4002
4003 /* The first packet we send to the target is the optional "supported
4004 packets" request. If the target can answer this, it will tell us
4005 which later probes to skip. */
4006 remote_query_supported ();
4007
4008 /* If the stub wants to get a QAllow, compose one and send it. */
4009 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4010 remote_set_permissions (target);
4011
4012 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4013 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4014 as a reply to known packet. For packet "vFile:setfs:" it is an
4015 invalid reply and GDB would return error in
4016 remote_hostio_set_filesystem, making remote files access impossible.
4017 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4018 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4019 {
4020 const char v_mustreplyempty[] = "vMustReplyEmpty";
4021
4022 putpkt (v_mustreplyempty);
4023 getpkt (&rs->buf, &rs->buf_size, 0);
4024 if (strcmp (rs->buf, "OK") == 0)
4025 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4026 else if (strcmp (rs->buf, "") != 0)
4027 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4028 rs->buf);
4029 }
4030
4031 /* Next, we possibly activate noack mode.
4032
4033 If the QStartNoAckMode packet configuration is set to AUTO,
4034 enable noack mode if the stub reported a wish for it with
4035 qSupported.
4036
4037 If set to TRUE, then enable noack mode even if the stub didn't
4038 report it in qSupported. If the stub doesn't reply OK, the
4039 session ends with an error.
4040
4041 If FALSE, then don't activate noack mode, regardless of what the
4042 stub claimed should be the default with qSupported. */
4043
4044 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4045 if (packet_config_support (noack_config) != PACKET_DISABLE)
4046 {
4047 putpkt ("QStartNoAckMode");
4048 getpkt (&rs->buf, &rs->buf_size, 0);
4049 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4050 rs->noack_mode = 1;
4051 }
4052
4053 if (extended_p)
4054 {
4055 /* Tell the remote that we are using the extended protocol. */
4056 putpkt ("!");
4057 getpkt (&rs->buf, &rs->buf_size, 0);
4058 }
4059
4060 /* Let the target know which signals it is allowed to pass down to
4061 the program. */
4062 update_signals_program_target ();
4063
4064 /* Next, if the target can specify a description, read it. We do
4065 this before anything involving memory or registers. */
4066 target_find_description ();
4067
4068 /* Next, now that we know something about the target, update the
4069 address spaces in the program spaces. */
4070 update_address_spaces ();
4071
4072 /* On OSs where the list of libraries is global to all
4073 processes, we fetch them early. */
4074 if (gdbarch_has_global_solist (target_gdbarch ()))
4075 solib_add (NULL, from_tty, auto_solib_add);
4076
4077 if (target_is_non_stop_p ())
4078 {
4079 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4080 error (_("Non-stop mode requested, but remote "
4081 "does not support non-stop"));
4082
4083 putpkt ("QNonStop:1");
4084 getpkt (&rs->buf, &rs->buf_size, 0);
4085
4086 if (strcmp (rs->buf, "OK") != 0)
4087 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
4088
4089 /* Find about threads and processes the stub is already
4090 controlling. We default to adding them in the running state.
4091 The '?' query below will then tell us about which threads are
4092 stopped. */
4093 remote_update_thread_list (target);
4094 }
4095 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4096 {
4097 /* Don't assume that the stub can operate in all-stop mode.
4098 Request it explicitly. */
4099 putpkt ("QNonStop:0");
4100 getpkt (&rs->buf, &rs->buf_size, 0);
4101
4102 if (strcmp (rs->buf, "OK") != 0)
4103 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
4104 }
4105
4106 /* Upload TSVs regardless of whether the target is running or not. The
4107 remote stub, such as GDBserver, may have some predefined or builtin
4108 TSVs, even if the target is not running. */
4109 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4110 {
4111 struct uploaded_tsv *uploaded_tsvs = NULL;
4112
4113 remote_upload_trace_state_variables (target, &uploaded_tsvs);
4114 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4115 }
4116
4117 /* Check whether the target is running now. */
4118 putpkt ("?");
4119 getpkt (&rs->buf, &rs->buf_size, 0);
4120
4121 if (!target_is_non_stop_p ())
4122 {
4123 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4124 {
4125 if (!extended_p)
4126 error (_("The target is not running (try extended-remote?)"));
4127
4128 /* We're connected, but not running. Drop out before we
4129 call start_remote. */
4130 rs->starting_up = 0;
4131 return;
4132 }
4133 else
4134 {
4135 /* Save the reply for later. */
4136 wait_status = (char *) alloca (strlen (rs->buf) + 1);
4137 strcpy (wait_status, rs->buf);
4138 }
4139
4140 /* Fetch thread list. */
4141 target_update_thread_list ();
4142
4143 /* Let the stub know that we want it to return the thread. */
4144 set_continue_thread (minus_one_ptid);
4145
4146 if (thread_count () == 0)
4147 {
4148 /* Target has no concept of threads at all. GDB treats
4149 non-threaded target as single-threaded; add a main
4150 thread. */
4151 add_current_inferior_and_thread (wait_status);
4152 }
4153 else
4154 {
4155 /* We have thread information; select the thread the target
4156 says should be current. If we're reconnecting to a
4157 multi-threaded program, this will ideally be the thread
4158 that last reported an event before GDB disconnected. */
4159 inferior_ptid = get_current_thread (wait_status);
4160 if (ptid_equal (inferior_ptid, null_ptid))
4161 {
4162 /* Odd... The target was able to list threads, but not
4163 tell us which thread was current (no "thread"
4164 register in T stop reply?). Just pick the first
4165 thread in the thread list then. */
4166
4167 if (remote_debug)
4168 fprintf_unfiltered (gdb_stdlog,
4169 "warning: couldn't determine remote "
4170 "current thread; picking first in list.\n");
4171
4172 inferior_ptid = thread_list->ptid;
4173 }
4174 }
4175
4176 /* init_wait_for_inferior should be called before get_offsets in order
4177 to manage `inserted' flag in bp loc in a correct state.
4178 breakpoint_init_inferior, called from init_wait_for_inferior, set
4179 `inserted' flag to 0, while before breakpoint_re_set, called from
4180 start_remote, set `inserted' flag to 1. In the initialization of
4181 inferior, breakpoint_init_inferior should be called first, and then
4182 breakpoint_re_set can be called. If this order is broken, state of
4183 `inserted' flag is wrong, and cause some problems on breakpoint
4184 manipulation. */
4185 init_wait_for_inferior ();
4186
4187 get_offsets (); /* Get text, data & bss offsets. */
4188
4189 /* If we could not find a description using qXfer, and we know
4190 how to do it some other way, try again. This is not
4191 supported for non-stop; it could be, but it is tricky if
4192 there are no stopped threads when we connect. */
4193 if (remote_read_description_p (target)
4194 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4195 {
4196 target_clear_description ();
4197 target_find_description ();
4198 }
4199
4200 /* Use the previously fetched status. */
4201 gdb_assert (wait_status != NULL);
4202 strcpy (rs->buf, wait_status);
4203 rs->cached_wait_status = 1;
4204
4205 start_remote (from_tty); /* Initialize gdb process mechanisms. */
4206 }
4207 else
4208 {
4209 /* Clear WFI global state. Do this before finding about new
4210 threads and inferiors, and setting the current inferior.
4211 Otherwise we would clear the proceed status of the current
4212 inferior when we want its stop_soon state to be preserved
4213 (see notice_new_inferior). */
4214 init_wait_for_inferior ();
4215
4216 /* In non-stop, we will either get an "OK", meaning that there
4217 are no stopped threads at this time; or, a regular stop
4218 reply. In the latter case, there may be more than one thread
4219 stopped --- we pull them all out using the vStopped
4220 mechanism. */
4221 if (strcmp (rs->buf, "OK") != 0)
4222 {
4223 struct notif_client *notif = &notif_client_stop;
4224
4225 /* remote_notif_get_pending_replies acks this one, and gets
4226 the rest out. */
4227 rs->notif_state->pending_event[notif_client_stop.id]
4228 = remote_notif_parse (notif, rs->buf);
4229 remote_notif_get_pending_events (notif);
4230 }
4231
4232 if (thread_count () == 0)
4233 {
4234 if (!extended_p)
4235 error (_("The target is not running (try extended-remote?)"));
4236
4237 /* We're connected, but not running. Drop out before we
4238 call start_remote. */
4239 rs->starting_up = 0;
4240 return;
4241 }
4242
4243 /* In non-stop mode, any cached wait status will be stored in
4244 the stop reply queue. */
4245 gdb_assert (wait_status == NULL);
4246
4247 /* Report all signals during attach/startup. */
4248 remote_pass_signals (target, 0, NULL);
4249
4250 /* If there are already stopped threads, mark them stopped and
4251 report their stops before giving the prompt to the user. */
4252 process_initial_stop_replies (from_tty);
4253
4254 if (target_can_async_p ())
4255 target_async (1);
4256 }
4257
4258 /* If we connected to a live target, do some additional setup. */
4259 if (target_has_execution)
4260 {
4261 if (symfile_objfile) /* No use without a symbol-file. */
4262 remote_check_symbols ();
4263 }
4264
4265 /* Possibly the target has been engaged in a trace run started
4266 previously; find out where things are at. */
4267 if (remote_get_trace_status (target, current_trace_status ()) != -1)
4268 {
4269 struct uploaded_tp *uploaded_tps = NULL;
4270
4271 if (current_trace_status ()->running)
4272 printf_filtered (_("Trace is already running on the target.\n"));
4273
4274 remote_upload_tracepoints (target, &uploaded_tps);
4275
4276 merge_uploaded_tracepoints (&uploaded_tps);
4277 }
4278
4279 /* Possibly the target has been engaged in a btrace record started
4280 previously; find out where things are at. */
4281 remote_btrace_maybe_reopen ();
4282
4283 /* The thread and inferior lists are now synchronized with the
4284 target, our symbols have been relocated, and we're merged the
4285 target's tracepoints with ours. We're done with basic start
4286 up. */
4287 rs->starting_up = 0;
4288
4289 /* Maybe breakpoints are global and need to be inserted now. */
4290 if (breakpoints_should_be_inserted_now ())
4291 insert_breakpoints ();
4292 }
4293
4294 /* Open a connection to a remote debugger.
4295 NAME is the filename used for communication. */
4296
4297 static void
4298 remote_open (const char *name, int from_tty)
4299 {
4300 remote_open_1 (name, from_tty, &remote_ops, 0);
4301 }
4302
4303 /* Open a connection to a remote debugger using the extended
4304 remote gdb protocol. NAME is the filename used for communication. */
4305
4306 static void
4307 extended_remote_open (const char *name, int from_tty)
4308 {
4309 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
4310 }
4311
4312 /* Reset all packets back to "unknown support". Called when opening a
4313 new connection to a remote target. */
4314
4315 static void
4316 reset_all_packet_configs_support (void)
4317 {
4318 int i;
4319
4320 for (i = 0; i < PACKET_MAX; i++)
4321 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4322 }
4323
4324 /* Initialize all packet configs. */
4325
4326 static void
4327 init_all_packet_configs (void)
4328 {
4329 int i;
4330
4331 for (i = 0; i < PACKET_MAX; i++)
4332 {
4333 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4334 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4335 }
4336 }
4337
4338 /* Symbol look-up. */
4339
4340 static void
4341 remote_check_symbols (void)
4342 {
4343 char *msg, *reply, *tmp;
4344 int end;
4345 long reply_size;
4346 struct cleanup *old_chain;
4347
4348 /* The remote side has no concept of inferiors that aren't running
4349 yet, it only knows about running processes. If we're connected
4350 but our current inferior is not running, we should not invite the
4351 remote target to request symbol lookups related to its
4352 (unrelated) current process. */
4353 if (!target_has_execution)
4354 return;
4355
4356 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4357 return;
4358
4359 /* Make sure the remote is pointing at the right process. Note
4360 there's no way to select "no process". */
4361 set_general_process ();
4362
4363 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4364 because we need both at the same time. */
4365 msg = (char *) xmalloc (get_remote_packet_size ());
4366 old_chain = make_cleanup (xfree, msg);
4367 reply = (char *) xmalloc (get_remote_packet_size ());
4368 make_cleanup (free_current_contents, &reply);
4369 reply_size = get_remote_packet_size ();
4370
4371 /* Invite target to request symbol lookups. */
4372
4373 putpkt ("qSymbol::");
4374 getpkt (&reply, &reply_size, 0);
4375 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4376
4377 while (startswith (reply, "qSymbol:"))
4378 {
4379 struct bound_minimal_symbol sym;
4380
4381 tmp = &reply[8];
4382 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
4383 msg[end] = '\0';
4384 sym = lookup_minimal_symbol (msg, NULL, NULL);
4385 if (sym.minsym == NULL)
4386 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
4387 else
4388 {
4389 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4390 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4391
4392 /* If this is a function address, return the start of code
4393 instead of any data function descriptor. */
4394 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4395 sym_addr,
4396 &current_target);
4397
4398 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
4399 phex_nz (sym_addr, addr_size), &reply[8]);
4400 }
4401
4402 putpkt (msg);
4403 getpkt (&reply, &reply_size, 0);
4404 }
4405
4406 do_cleanups (old_chain);
4407 }
4408
4409 static struct serial *
4410 remote_serial_open (const char *name)
4411 {
4412 static int udp_warning = 0;
4413
4414 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4415 of in ser-tcp.c, because it is the remote protocol assuming that the
4416 serial connection is reliable and not the serial connection promising
4417 to be. */
4418 if (!udp_warning && startswith (name, "udp:"))
4419 {
4420 warning (_("The remote protocol may be unreliable over UDP.\n"
4421 "Some events may be lost, rendering further debugging "
4422 "impossible."));
4423 udp_warning = 1;
4424 }
4425
4426 return serial_open (name);
4427 }
4428
4429 /* Inform the target of our permission settings. The permission flags
4430 work without this, but if the target knows the settings, it can do
4431 a couple things. First, it can add its own check, to catch cases
4432 that somehow manage to get by the permissions checks in target
4433 methods. Second, if the target is wired to disallow particular
4434 settings (for instance, a system in the field that is not set up to
4435 be able to stop at a breakpoint), it can object to any unavailable
4436 permissions. */
4437
4438 void
4439 remote_set_permissions (struct target_ops *self)
4440 {
4441 struct remote_state *rs = get_remote_state ();
4442
4443 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
4444 "WriteReg:%x;WriteMem:%x;"
4445 "InsertBreak:%x;InsertTrace:%x;"
4446 "InsertFastTrace:%x;Stop:%x",
4447 may_write_registers, may_write_memory,
4448 may_insert_breakpoints, may_insert_tracepoints,
4449 may_insert_fast_tracepoints, may_stop);
4450 putpkt (rs->buf);
4451 getpkt (&rs->buf, &rs->buf_size, 0);
4452
4453 /* If the target didn't like the packet, warn the user. Do not try
4454 to undo the user's settings, that would just be maddening. */
4455 if (strcmp (rs->buf, "OK") != 0)
4456 warning (_("Remote refused setting permissions with: %s"), rs->buf);
4457 }
4458
4459 /* This type describes each known response to the qSupported
4460 packet. */
4461 struct protocol_feature
4462 {
4463 /* The name of this protocol feature. */
4464 const char *name;
4465
4466 /* The default for this protocol feature. */
4467 enum packet_support default_support;
4468
4469 /* The function to call when this feature is reported, or after
4470 qSupported processing if the feature is not supported.
4471 The first argument points to this structure. The second
4472 argument indicates whether the packet requested support be
4473 enabled, disabled, or probed (or the default, if this function
4474 is being called at the end of processing and this feature was
4475 not reported). The third argument may be NULL; if not NULL, it
4476 is a NUL-terminated string taken from the packet following
4477 this feature's name and an equals sign. */
4478 void (*func) (const struct protocol_feature *, enum packet_support,
4479 const char *);
4480
4481 /* The corresponding packet for this feature. Only used if
4482 FUNC is remote_supported_packet. */
4483 int packet;
4484 };
4485
4486 static void
4487 remote_supported_packet (const struct protocol_feature *feature,
4488 enum packet_support support,
4489 const char *argument)
4490 {
4491 if (argument)
4492 {
4493 warning (_("Remote qSupported response supplied an unexpected value for"
4494 " \"%s\"."), feature->name);
4495 return;
4496 }
4497
4498 remote_protocol_packets[feature->packet].support = support;
4499 }
4500
4501 static void
4502 remote_packet_size (const struct protocol_feature *feature,
4503 enum packet_support support, const char *value)
4504 {
4505 struct remote_state *rs = get_remote_state ();
4506
4507 int packet_size;
4508 char *value_end;
4509
4510 if (support != PACKET_ENABLE)
4511 return;
4512
4513 if (value == NULL || *value == '\0')
4514 {
4515 warning (_("Remote target reported \"%s\" without a size."),
4516 feature->name);
4517 return;
4518 }
4519
4520 errno = 0;
4521 packet_size = strtol (value, &value_end, 16);
4522 if (errno != 0 || *value_end != '\0' || packet_size < 0)
4523 {
4524 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
4525 feature->name, value);
4526 return;
4527 }
4528
4529 /* Record the new maximum packet size. */
4530 rs->explicit_packet_size = packet_size;
4531 }
4532
4533 static const struct protocol_feature remote_protocol_features[] = {
4534 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
4535 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
4536 PACKET_qXfer_auxv },
4537 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
4538 PACKET_qXfer_exec_file },
4539 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
4540 PACKET_qXfer_features },
4541 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
4542 PACKET_qXfer_libraries },
4543 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
4544 PACKET_qXfer_libraries_svr4 },
4545 { "augmented-libraries-svr4-read", PACKET_DISABLE,
4546 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
4547 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
4548 PACKET_qXfer_memory_map },
4549 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
4550 PACKET_qXfer_spu_read },
4551 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
4552 PACKET_qXfer_spu_write },
4553 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
4554 PACKET_qXfer_osdata },
4555 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
4556 PACKET_qXfer_threads },
4557 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
4558 PACKET_qXfer_traceframe_info },
4559 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
4560 PACKET_QPassSignals },
4561 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
4562 PACKET_QCatchSyscalls },
4563 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
4564 PACKET_QProgramSignals },
4565 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
4566 PACKET_QSetWorkingDir },
4567 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
4568 PACKET_QStartupWithShell },
4569 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
4570 PACKET_QEnvironmentHexEncoded },
4571 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
4572 PACKET_QEnvironmentReset },
4573 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
4574 PACKET_QEnvironmentUnset },
4575 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
4576 PACKET_QStartNoAckMode },
4577 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
4578 PACKET_multiprocess_feature },
4579 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
4580 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
4581 PACKET_qXfer_siginfo_read },
4582 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
4583 PACKET_qXfer_siginfo_write },
4584 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
4585 PACKET_ConditionalTracepoints },
4586 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
4587 PACKET_ConditionalBreakpoints },
4588 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
4589 PACKET_BreakpointCommands },
4590 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
4591 PACKET_FastTracepoints },
4592 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
4593 PACKET_StaticTracepoints },
4594 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
4595 PACKET_InstallInTrace},
4596 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
4597 PACKET_DisconnectedTracing_feature },
4598 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
4599 PACKET_bc },
4600 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
4601 PACKET_bs },
4602 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
4603 PACKET_TracepointSource },
4604 { "QAllow", PACKET_DISABLE, remote_supported_packet,
4605 PACKET_QAllow },
4606 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
4607 PACKET_EnableDisableTracepoints_feature },
4608 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
4609 PACKET_qXfer_fdpic },
4610 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
4611 PACKET_qXfer_uib },
4612 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
4613 PACKET_QDisableRandomization },
4614 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
4615 { "QTBuffer:size", PACKET_DISABLE,
4616 remote_supported_packet, PACKET_QTBuffer_size},
4617 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
4618 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
4619 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
4620 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
4621 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
4622 PACKET_qXfer_btrace },
4623 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
4624 PACKET_qXfer_btrace_conf },
4625 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
4626 PACKET_Qbtrace_conf_bts_size },
4627 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
4628 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
4629 { "fork-events", PACKET_DISABLE, remote_supported_packet,
4630 PACKET_fork_event_feature },
4631 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
4632 PACKET_vfork_event_feature },
4633 { "exec-events", PACKET_DISABLE, remote_supported_packet,
4634 PACKET_exec_event_feature },
4635 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
4636 PACKET_Qbtrace_conf_pt_size },
4637 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
4638 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
4639 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
4640 };
4641
4642 static char *remote_support_xml;
4643
4644 /* Register string appended to "xmlRegisters=" in qSupported query. */
4645
4646 void
4647 register_remote_support_xml (const char *xml)
4648 {
4649 #if defined(HAVE_LIBEXPAT)
4650 if (remote_support_xml == NULL)
4651 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
4652 else
4653 {
4654 char *copy = xstrdup (remote_support_xml + 13);
4655 char *p = strtok (copy, ",");
4656
4657 do
4658 {
4659 if (strcmp (p, xml) == 0)
4660 {
4661 /* already there */
4662 xfree (copy);
4663 return;
4664 }
4665 }
4666 while ((p = strtok (NULL, ",")) != NULL);
4667 xfree (copy);
4668
4669 remote_support_xml = reconcat (remote_support_xml,
4670 remote_support_xml, ",", xml,
4671 (char *) NULL);
4672 }
4673 #endif
4674 }
4675
4676 static char *
4677 remote_query_supported_append (char *msg, const char *append)
4678 {
4679 if (msg)
4680 return reconcat (msg, msg, ";", append, (char *) NULL);
4681 else
4682 return xstrdup (append);
4683 }
4684
4685 static void
4686 remote_query_supported (void)
4687 {
4688 struct remote_state *rs = get_remote_state ();
4689 char *next;
4690 int i;
4691 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4692
4693 /* The packet support flags are handled differently for this packet
4694 than for most others. We treat an error, a disabled packet, and
4695 an empty response identically: any features which must be reported
4696 to be used will be automatically disabled. An empty buffer
4697 accomplishes this, since that is also the representation for a list
4698 containing no features. */
4699
4700 rs->buf[0] = 0;
4701 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
4702 {
4703 char *q = NULL;
4704 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
4705
4706 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
4707 q = remote_query_supported_append (q, "multiprocess+");
4708
4709 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
4710 q = remote_query_supported_append (q, "swbreak+");
4711 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
4712 q = remote_query_supported_append (q, "hwbreak+");
4713
4714 q = remote_query_supported_append (q, "qRelocInsn+");
4715
4716 if (packet_set_cmd_state (PACKET_fork_event_feature)
4717 != AUTO_BOOLEAN_FALSE)
4718 q = remote_query_supported_append (q, "fork-events+");
4719 if (packet_set_cmd_state (PACKET_vfork_event_feature)
4720 != AUTO_BOOLEAN_FALSE)
4721 q = remote_query_supported_append (q, "vfork-events+");
4722 if (packet_set_cmd_state (PACKET_exec_event_feature)
4723 != AUTO_BOOLEAN_FALSE)
4724 q = remote_query_supported_append (q, "exec-events+");
4725
4726 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
4727 q = remote_query_supported_append (q, "vContSupported+");
4728
4729 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
4730 q = remote_query_supported_append (q, "QThreadEvents+");
4731
4732 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
4733 q = remote_query_supported_append (q, "no-resumed+");
4734
4735 /* Keep this one last to work around a gdbserver <= 7.10 bug in
4736 the qSupported:xmlRegisters=i386 handling. */
4737 if (remote_support_xml != NULL
4738 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
4739 q = remote_query_supported_append (q, remote_support_xml);
4740
4741 q = reconcat (q, "qSupported:", q, (char *) NULL);
4742 putpkt (q);
4743
4744 do_cleanups (old_chain);
4745
4746 getpkt (&rs->buf, &rs->buf_size, 0);
4747
4748 /* If an error occured, warn, but do not return - just reset the
4749 buffer to empty and go on to disable features. */
4750 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4751 == PACKET_ERROR)
4752 {
4753 warning (_("Remote failure reply: %s"), rs->buf);
4754 rs->buf[0] = 0;
4755 }
4756 }
4757
4758 memset (seen, 0, sizeof (seen));
4759
4760 next = rs->buf;
4761 while (*next)
4762 {
4763 enum packet_support is_supported;
4764 char *p, *end, *name_end, *value;
4765
4766 /* First separate out this item from the rest of the packet. If
4767 there's another item after this, we overwrite the separator
4768 (terminated strings are much easier to work with). */
4769 p = next;
4770 end = strchr (p, ';');
4771 if (end == NULL)
4772 {
4773 end = p + strlen (p);
4774 next = end;
4775 }
4776 else
4777 {
4778 *end = '\0';
4779 next = end + 1;
4780
4781 if (end == p)
4782 {
4783 warning (_("empty item in \"qSupported\" response"));
4784 continue;
4785 }
4786 }
4787
4788 name_end = strchr (p, '=');
4789 if (name_end)
4790 {
4791 /* This is a name=value entry. */
4792 is_supported = PACKET_ENABLE;
4793 value = name_end + 1;
4794 *name_end = '\0';
4795 }
4796 else
4797 {
4798 value = NULL;
4799 switch (end[-1])
4800 {
4801 case '+':
4802 is_supported = PACKET_ENABLE;
4803 break;
4804
4805 case '-':
4806 is_supported = PACKET_DISABLE;
4807 break;
4808
4809 case '?':
4810 is_supported = PACKET_SUPPORT_UNKNOWN;
4811 break;
4812
4813 default:
4814 warning (_("unrecognized item \"%s\" "
4815 "in \"qSupported\" response"), p);
4816 continue;
4817 }
4818 end[-1] = '\0';
4819 }
4820
4821 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4822 if (strcmp (remote_protocol_features[i].name, p) == 0)
4823 {
4824 const struct protocol_feature *feature;
4825
4826 seen[i] = 1;
4827 feature = &remote_protocol_features[i];
4828 feature->func (feature, is_supported, value);
4829 break;
4830 }
4831 }
4832
4833 /* If we increased the packet size, make sure to increase the global
4834 buffer size also. We delay this until after parsing the entire
4835 qSupported packet, because this is the same buffer we were
4836 parsing. */
4837 if (rs->buf_size < rs->explicit_packet_size)
4838 {
4839 rs->buf_size = rs->explicit_packet_size;
4840 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
4841 }
4842
4843 /* Handle the defaults for unmentioned features. */
4844 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4845 if (!seen[i])
4846 {
4847 const struct protocol_feature *feature;
4848
4849 feature = &remote_protocol_features[i];
4850 feature->func (feature, feature->default_support, NULL);
4851 }
4852 }
4853
4854 /* Serial QUIT handler for the remote serial descriptor.
4855
4856 Defers handling a Ctrl-C until we're done with the current
4857 command/response packet sequence, unless:
4858
4859 - We're setting up the connection. Don't send a remote interrupt
4860 request, as we're not fully synced yet. Quit immediately
4861 instead.
4862
4863 - The target has been resumed in the foreground
4864 (target_terminal::is_ours is false) with a synchronous resume
4865 packet, and we're blocked waiting for the stop reply, thus a
4866 Ctrl-C should be immediately sent to the target.
4867
4868 - We get a second Ctrl-C while still within the same serial read or
4869 write. In that case the serial is seemingly wedged --- offer to
4870 quit/disconnect.
4871
4872 - We see a second Ctrl-C without target response, after having
4873 previously interrupted the target. In that case the target/stub
4874 is probably wedged --- offer to quit/disconnect.
4875 */
4876
4877 static void
4878 remote_serial_quit_handler (void)
4879 {
4880 struct remote_state *rs = get_remote_state ();
4881
4882 if (check_quit_flag ())
4883 {
4884 /* If we're starting up, we're not fully synced yet. Quit
4885 immediately. */
4886 if (rs->starting_up)
4887 quit ();
4888 else if (rs->got_ctrlc_during_io)
4889 {
4890 if (query (_("The target is not responding to GDB commands.\n"
4891 "Stop debugging it? ")))
4892 remote_unpush_and_throw ();
4893 }
4894 /* If ^C has already been sent once, offer to disconnect. */
4895 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
4896 interrupt_query ();
4897 /* All-stop protocol, and blocked waiting for stop reply. Send
4898 an interrupt request. */
4899 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
4900 target_interrupt ();
4901 else
4902 rs->got_ctrlc_during_io = 1;
4903 }
4904 }
4905
4906 /* Remove any of the remote.c targets from target stack. Upper targets depend
4907 on it so remove them first. */
4908
4909 static void
4910 remote_unpush_target (void)
4911 {
4912 pop_all_targets_at_and_above (process_stratum);
4913 }
4914
4915 static void
4916 remote_unpush_and_throw (void)
4917 {
4918 remote_unpush_target ();
4919 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
4920 }
4921
4922 static void
4923 remote_open_1 (const char *name, int from_tty,
4924 struct target_ops *target, int extended_p)
4925 {
4926 struct remote_state *rs = get_remote_state ();
4927
4928 if (name == 0)
4929 error (_("To open a remote debug connection, you need to specify what\n"
4930 "serial device is attached to the remote system\n"
4931 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4932
4933 /* See FIXME above. */
4934 if (!target_async_permitted)
4935 wait_forever_enabled_p = 1;
4936
4937 /* If we're connected to a running target, target_preopen will kill it.
4938 Ask this question first, before target_preopen has a chance to kill
4939 anything. */
4940 if (rs->remote_desc != NULL && !have_inferiors ())
4941 {
4942 if (from_tty
4943 && !query (_("Already connected to a remote target. Disconnect? ")))
4944 error (_("Still connected."));
4945 }
4946
4947 /* Here the possibly existing remote target gets unpushed. */
4948 target_preopen (from_tty);
4949
4950 /* Make sure we send the passed signals list the next time we resume. */
4951 xfree (rs->last_pass_packet);
4952 rs->last_pass_packet = NULL;
4953
4954 /* Make sure we send the program signals list the next time we
4955 resume. */
4956 xfree (rs->last_program_signals_packet);
4957 rs->last_program_signals_packet = NULL;
4958
4959 remote_fileio_reset ();
4960 reopen_exec_file ();
4961 reread_symbols ();
4962
4963 rs->remote_desc = remote_serial_open (name);
4964 if (!rs->remote_desc)
4965 perror_with_name (name);
4966
4967 if (baud_rate != -1)
4968 {
4969 if (serial_setbaudrate (rs->remote_desc, baud_rate))
4970 {
4971 /* The requested speed could not be set. Error out to
4972 top level after closing remote_desc. Take care to
4973 set remote_desc to NULL to avoid closing remote_desc
4974 more than once. */
4975 serial_close (rs->remote_desc);
4976 rs->remote_desc = NULL;
4977 perror_with_name (name);
4978 }
4979 }
4980
4981 serial_setparity (rs->remote_desc, serial_parity);
4982 serial_raw (rs->remote_desc);
4983
4984 /* If there is something sitting in the buffer we might take it as a
4985 response to a command, which would be bad. */
4986 serial_flush_input (rs->remote_desc);
4987
4988 if (from_tty)
4989 {
4990 puts_filtered ("Remote debugging using ");
4991 puts_filtered (name);
4992 puts_filtered ("\n");
4993 }
4994 push_target (target); /* Switch to using remote target now. */
4995
4996 /* Register extra event sources in the event loop. */
4997 remote_async_inferior_event_token
4998 = create_async_event_handler (remote_async_inferior_event_handler,
4999 NULL);
5000 rs->notif_state = remote_notif_state_allocate ();
5001
5002 /* Reset the target state; these things will be queried either by
5003 remote_query_supported or as they are needed. */
5004 reset_all_packet_configs_support ();
5005 rs->cached_wait_status = 0;
5006 rs->explicit_packet_size = 0;
5007 rs->noack_mode = 0;
5008 rs->extended = extended_p;
5009 rs->waiting_for_stop_reply = 0;
5010 rs->ctrlc_pending_p = 0;
5011 rs->got_ctrlc_during_io = 0;
5012
5013 rs->general_thread = not_sent_ptid;
5014 rs->continue_thread = not_sent_ptid;
5015 rs->remote_traceframe_number = -1;
5016
5017 rs->last_resume_exec_dir = EXEC_FORWARD;
5018
5019 /* Probe for ability to use "ThreadInfo" query, as required. */
5020 rs->use_threadinfo_query = 1;
5021 rs->use_threadextra_query = 1;
5022
5023 readahead_cache_invalidate ();
5024
5025 if (target_async_permitted)
5026 {
5027 /* FIXME: cagney/1999-09-23: During the initial connection it is
5028 assumed that the target is already ready and able to respond to
5029 requests. Unfortunately remote_start_remote() eventually calls
5030 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5031 around this. Eventually a mechanism that allows
5032 wait_for_inferior() to expect/get timeouts will be
5033 implemented. */
5034 wait_forever_enabled_p = 0;
5035 }
5036
5037 /* First delete any symbols previously loaded from shared libraries. */
5038 no_shared_libraries (NULL, 0);
5039
5040 /* Start afresh. */
5041 init_thread_list ();
5042
5043 /* Start the remote connection. If error() or QUIT, discard this
5044 target (we'd otherwise be in an inconsistent state) and then
5045 propogate the error on up the exception chain. This ensures that
5046 the caller doesn't stumble along blindly assuming that the
5047 function succeeded. The CLI doesn't have this problem but other
5048 UI's, such as MI do.
5049
5050 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5051 this function should return an error indication letting the
5052 caller restore the previous state. Unfortunately the command
5053 ``target remote'' is directly wired to this function making that
5054 impossible. On a positive note, the CLI side of this problem has
5055 been fixed - the function set_cmd_context() makes it possible for
5056 all the ``target ....'' commands to share a common callback
5057 function. See cli-dump.c. */
5058 {
5059
5060 TRY
5061 {
5062 remote_start_remote (from_tty, target, extended_p);
5063 }
5064 CATCH (ex, RETURN_MASK_ALL)
5065 {
5066 /* Pop the partially set up target - unless something else did
5067 already before throwing the exception. */
5068 if (rs->remote_desc != NULL)
5069 remote_unpush_target ();
5070 if (target_async_permitted)
5071 wait_forever_enabled_p = 1;
5072 throw_exception (ex);
5073 }
5074 END_CATCH
5075 }
5076
5077 remote_btrace_reset ();
5078
5079 if (target_async_permitted)
5080 wait_forever_enabled_p = 1;
5081 }
5082
5083 /* Detach the specified process. */
5084
5085 static void
5086 remote_detach_pid (int pid)
5087 {
5088 struct remote_state *rs = get_remote_state ();
5089
5090 if (remote_multi_process_p (rs))
5091 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
5092 else
5093 strcpy (rs->buf, "D");
5094
5095 putpkt (rs->buf);
5096 getpkt (&rs->buf, &rs->buf_size, 0);
5097
5098 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5099 ;
5100 else if (rs->buf[0] == '\0')
5101 error (_("Remote doesn't know how to detach"));
5102 else
5103 error (_("Can't detach process."));
5104 }
5105
5106 /* This detaches a program to which we previously attached, using
5107 inferior_ptid to identify the process. After this is done, GDB
5108 can be used to debug some other program. We better not have left
5109 any breakpoints in the target program or it'll die when it hits
5110 one. */
5111
5112 static void
5113 remote_detach_1 (int from_tty, inferior *inf)
5114 {
5115 int pid = ptid_get_pid (inferior_ptid);
5116 struct remote_state *rs = get_remote_state ();
5117 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5118 int is_fork_parent;
5119
5120 if (!target_has_execution)
5121 error (_("No process to detach from."));
5122
5123 target_announce_detach (from_tty);
5124
5125 /* Tell the remote target to detach. */
5126 remote_detach_pid (pid);
5127
5128 /* Exit only if this is the only active inferior. */
5129 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5130 puts_filtered (_("Ending remote debugging.\n"));
5131
5132 /* Check to see if we are detaching a fork parent. Note that if we
5133 are detaching a fork child, tp == NULL. */
5134 is_fork_parent = (tp != NULL
5135 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5136
5137 /* If doing detach-on-fork, we don't mourn, because that will delete
5138 breakpoints that should be available for the followed inferior. */
5139 if (!is_fork_parent)
5140 target_mourn_inferior (inferior_ptid);
5141 else
5142 {
5143 inferior_ptid = null_ptid;
5144 detach_inferior (pid);
5145 }
5146 }
5147
5148 static void
5149 remote_detach (struct target_ops *ops, inferior *inf, int from_tty)
5150 {
5151 remote_detach_1 (from_tty, inf);
5152 }
5153
5154 static void
5155 extended_remote_detach (struct target_ops *ops, inferior *inf, int from_tty)
5156 {
5157 remote_detach_1 (from_tty, inf);
5158 }
5159
5160 /* Target follow-fork function for remote targets. On entry, and
5161 at return, the current inferior is the fork parent.
5162
5163 Note that although this is currently only used for extended-remote,
5164 it is named remote_follow_fork in anticipation of using it for the
5165 remote target as well. */
5166
5167 static int
5168 remote_follow_fork (struct target_ops *ops, int follow_child,
5169 int detach_fork)
5170 {
5171 struct remote_state *rs = get_remote_state ();
5172 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5173
5174 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5175 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5176 {
5177 /* When following the parent and detaching the child, we detach
5178 the child here. For the case of following the child and
5179 detaching the parent, the detach is done in the target-
5180 independent follow fork code in infrun.c. We can't use
5181 target_detach when detaching an unfollowed child because
5182 the client side doesn't know anything about the child. */
5183 if (detach_fork && !follow_child)
5184 {
5185 /* Detach the fork child. */
5186 ptid_t child_ptid;
5187 pid_t child_pid;
5188
5189 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5190 child_pid = ptid_get_pid (child_ptid);
5191
5192 remote_detach_pid (child_pid);
5193 }
5194 }
5195 return 0;
5196 }
5197
5198 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5199 in the program space of the new inferior. On entry and at return the
5200 current inferior is the exec'ing inferior. INF is the new exec'd
5201 inferior, which may be the same as the exec'ing inferior unless
5202 follow-exec-mode is "new". */
5203
5204 static void
5205 remote_follow_exec (struct target_ops *ops,
5206 struct inferior *inf, char *execd_pathname)
5207 {
5208 /* We know that this is a target file name, so if it has the "target:"
5209 prefix we strip it off before saving it in the program space. */
5210 if (is_target_filename (execd_pathname))
5211 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5212
5213 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5214 }
5215
5216 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5217
5218 static void
5219 remote_disconnect (struct target_ops *target, const char *args, int from_tty)
5220 {
5221 if (args)
5222 error (_("Argument given to \"disconnect\" when remotely debugging."));
5223
5224 /* Make sure we unpush even the extended remote targets. Calling
5225 target_mourn_inferior won't unpush, and remote_mourn won't
5226 unpush if there is more than one inferior left. */
5227 unpush_target (target);
5228 generic_mourn_inferior ();
5229
5230 if (from_tty)
5231 puts_filtered ("Ending remote debugging.\n");
5232 }
5233
5234 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5235 be chatty about it. */
5236
5237 static void
5238 extended_remote_attach (struct target_ops *target, const char *args,
5239 int from_tty)
5240 {
5241 struct remote_state *rs = get_remote_state ();
5242 int pid;
5243 char *wait_status = NULL;
5244
5245 pid = parse_pid_to_attach (args);
5246
5247 /* Remote PID can be freely equal to getpid, do not check it here the same
5248 way as in other targets. */
5249
5250 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5251 error (_("This target does not support attaching to a process"));
5252
5253 if (from_tty)
5254 {
5255 char *exec_file = get_exec_file (0);
5256
5257 if (exec_file)
5258 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5259 target_pid_to_str (pid_to_ptid (pid)));
5260 else
5261 printf_unfiltered (_("Attaching to %s\n"),
5262 target_pid_to_str (pid_to_ptid (pid)));
5263
5264 gdb_flush (gdb_stdout);
5265 }
5266
5267 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
5268 putpkt (rs->buf);
5269 getpkt (&rs->buf, &rs->buf_size, 0);
5270
5271 switch (packet_ok (rs->buf,
5272 &remote_protocol_packets[PACKET_vAttach]))
5273 {
5274 case PACKET_OK:
5275 if (!target_is_non_stop_p ())
5276 {
5277 /* Save the reply for later. */
5278 wait_status = (char *) alloca (strlen (rs->buf) + 1);
5279 strcpy (wait_status, rs->buf);
5280 }
5281 else if (strcmp (rs->buf, "OK") != 0)
5282 error (_("Attaching to %s failed with: %s"),
5283 target_pid_to_str (pid_to_ptid (pid)),
5284 rs->buf);
5285 break;
5286 case PACKET_UNKNOWN:
5287 error (_("This target does not support attaching to a process"));
5288 default:
5289 error (_("Attaching to %s failed"),
5290 target_pid_to_str (pid_to_ptid (pid)));
5291 }
5292
5293 set_current_inferior (remote_add_inferior (0, pid, 1, 0));
5294
5295 inferior_ptid = pid_to_ptid (pid);
5296
5297 if (target_is_non_stop_p ())
5298 {
5299 struct thread_info *thread;
5300
5301 /* Get list of threads. */
5302 remote_update_thread_list (target);
5303
5304 thread = first_thread_of_process (pid);
5305 if (thread)
5306 inferior_ptid = thread->ptid;
5307 else
5308 inferior_ptid = pid_to_ptid (pid);
5309
5310 /* Invalidate our notion of the remote current thread. */
5311 record_currthread (rs, minus_one_ptid);
5312 }
5313 else
5314 {
5315 /* Now, if we have thread information, update inferior_ptid. */
5316 inferior_ptid = remote_current_thread (inferior_ptid);
5317
5318 /* Add the main thread to the thread list. */
5319 add_thread_silent (inferior_ptid);
5320 }
5321
5322 /* Next, if the target can specify a description, read it. We do
5323 this before anything involving memory or registers. */
5324 target_find_description ();
5325
5326 if (!target_is_non_stop_p ())
5327 {
5328 /* Use the previously fetched status. */
5329 gdb_assert (wait_status != NULL);
5330
5331 if (target_can_async_p ())
5332 {
5333 struct notif_event *reply
5334 = remote_notif_parse (&notif_client_stop, wait_status);
5335
5336 push_stop_reply ((struct stop_reply *) reply);
5337
5338 target_async (1);
5339 }
5340 else
5341 {
5342 gdb_assert (wait_status != NULL);
5343 strcpy (rs->buf, wait_status);
5344 rs->cached_wait_status = 1;
5345 }
5346 }
5347 else
5348 gdb_assert (wait_status == NULL);
5349 }
5350
5351 /* Implementation of the to_post_attach method. */
5352
5353 static void
5354 extended_remote_post_attach (struct target_ops *ops, int pid)
5355 {
5356 /* Get text, data & bss offsets. */
5357 get_offsets ();
5358
5359 /* In certain cases GDB might not have had the chance to start
5360 symbol lookup up until now. This could happen if the debugged
5361 binary is not using shared libraries, the vsyscall page is not
5362 present (on Linux) and the binary itself hadn't changed since the
5363 debugging process was started. */
5364 if (symfile_objfile != NULL)
5365 remote_check_symbols();
5366 }
5367
5368 \f
5369 /* Check for the availability of vCont. This function should also check
5370 the response. */
5371
5372 static void
5373 remote_vcont_probe (struct remote_state *rs)
5374 {
5375 char *buf;
5376
5377 strcpy (rs->buf, "vCont?");
5378 putpkt (rs->buf);
5379 getpkt (&rs->buf, &rs->buf_size, 0);
5380 buf = rs->buf;
5381
5382 /* Make sure that the features we assume are supported. */
5383 if (startswith (buf, "vCont"))
5384 {
5385 char *p = &buf[5];
5386 int support_c, support_C;
5387
5388 rs->supports_vCont.s = 0;
5389 rs->supports_vCont.S = 0;
5390 support_c = 0;
5391 support_C = 0;
5392 rs->supports_vCont.t = 0;
5393 rs->supports_vCont.r = 0;
5394 while (p && *p == ';')
5395 {
5396 p++;
5397 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5398 rs->supports_vCont.s = 1;
5399 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5400 rs->supports_vCont.S = 1;
5401 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5402 support_c = 1;
5403 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5404 support_C = 1;
5405 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5406 rs->supports_vCont.t = 1;
5407 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5408 rs->supports_vCont.r = 1;
5409
5410 p = strchr (p, ';');
5411 }
5412
5413 /* If c, and C are not all supported, we can't use vCont. Clearing
5414 BUF will make packet_ok disable the packet. */
5415 if (!support_c || !support_C)
5416 buf[0] = 0;
5417 }
5418
5419 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
5420 }
5421
5422 /* Helper function for building "vCont" resumptions. Write a
5423 resumption to P. ENDP points to one-passed-the-end of the buffer
5424 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5425 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5426 resumed thread should be single-stepped and/or signalled. If PTID
5427 equals minus_one_ptid, then all threads are resumed; if PTID
5428 represents a process, then all threads of the process are resumed;
5429 the thread to be stepped and/or signalled is given in the global
5430 INFERIOR_PTID. */
5431
5432 static char *
5433 append_resumption (char *p, char *endp,
5434 ptid_t ptid, int step, enum gdb_signal siggnal)
5435 {
5436 struct remote_state *rs = get_remote_state ();
5437
5438 if (step && siggnal != GDB_SIGNAL_0)
5439 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
5440 else if (step
5441 /* GDB is willing to range step. */
5442 && use_range_stepping
5443 /* Target supports range stepping. */
5444 && rs->supports_vCont.r
5445 /* We don't currently support range stepping multiple
5446 threads with a wildcard (though the protocol allows it,
5447 so stubs shouldn't make an active effort to forbid
5448 it). */
5449 && !(remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5450 {
5451 struct thread_info *tp;
5452
5453 if (ptid_equal (ptid, minus_one_ptid))
5454 {
5455 /* If we don't know about the target thread's tid, then
5456 we're resuming magic_null_ptid (see caller). */
5457 tp = find_thread_ptid (magic_null_ptid);
5458 }
5459 else
5460 tp = find_thread_ptid (ptid);
5461 gdb_assert (tp != NULL);
5462
5463 if (tp->control.may_range_step)
5464 {
5465 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5466
5467 p += xsnprintf (p, endp - p, ";r%s,%s",
5468 phex_nz (tp->control.step_range_start,
5469 addr_size),
5470 phex_nz (tp->control.step_range_end,
5471 addr_size));
5472 }
5473 else
5474 p += xsnprintf (p, endp - p, ";s");
5475 }
5476 else if (step)
5477 p += xsnprintf (p, endp - p, ";s");
5478 else if (siggnal != GDB_SIGNAL_0)
5479 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
5480 else
5481 p += xsnprintf (p, endp - p, ";c");
5482
5483 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
5484 {
5485 ptid_t nptid;
5486
5487 /* All (-1) threads of process. */
5488 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
5489
5490 p += xsnprintf (p, endp - p, ":");
5491 p = write_ptid (p, endp, nptid);
5492 }
5493 else if (!ptid_equal (ptid, minus_one_ptid))
5494 {
5495 p += xsnprintf (p, endp - p, ":");
5496 p = write_ptid (p, endp, ptid);
5497 }
5498
5499 return p;
5500 }
5501
5502 /* Clear the thread's private info on resume. */
5503
5504 static void
5505 resume_clear_thread_private_info (struct thread_info *thread)
5506 {
5507 if (thread->priv != NULL)
5508 {
5509 remote_thread_info *priv = get_remote_thread_info (thread);
5510
5511 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
5512 priv->watch_data_address = 0;
5513 }
5514 }
5515
5516 /* Append a vCont continue-with-signal action for threads that have a
5517 non-zero stop signal. */
5518
5519 static char *
5520 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
5521 {
5522 struct thread_info *thread;
5523
5524 ALL_NON_EXITED_THREADS (thread)
5525 if (ptid_match (thread->ptid, ptid)
5526 && !ptid_equal (inferior_ptid, thread->ptid)
5527 && thread->suspend.stop_signal != GDB_SIGNAL_0)
5528 {
5529 p = append_resumption (p, endp, thread->ptid,
5530 0, thread->suspend.stop_signal);
5531 thread->suspend.stop_signal = GDB_SIGNAL_0;
5532 resume_clear_thread_private_info (thread);
5533 }
5534
5535 return p;
5536 }
5537
5538 /* Set the target running, using the packets that use Hc
5539 (c/s/C/S). */
5540
5541 static void
5542 remote_resume_with_hc (struct target_ops *ops,
5543 ptid_t ptid, int step, enum gdb_signal siggnal)
5544 {
5545 struct remote_state *rs = get_remote_state ();
5546 struct thread_info *thread;
5547 char *buf;
5548
5549 rs->last_sent_signal = siggnal;
5550 rs->last_sent_step = step;
5551
5552 /* The c/s/C/S resume packets use Hc, so set the continue
5553 thread. */
5554 if (ptid_equal (ptid, minus_one_ptid))
5555 set_continue_thread (any_thread_ptid);
5556 else
5557 set_continue_thread (ptid);
5558
5559 ALL_NON_EXITED_THREADS (thread)
5560 resume_clear_thread_private_info (thread);
5561
5562 buf = rs->buf;
5563 if (execution_direction == EXEC_REVERSE)
5564 {
5565 /* We don't pass signals to the target in reverse exec mode. */
5566 if (info_verbose && siggnal != GDB_SIGNAL_0)
5567 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
5568 siggnal);
5569
5570 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
5571 error (_("Remote reverse-step not supported."));
5572 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
5573 error (_("Remote reverse-continue not supported."));
5574
5575 strcpy (buf, step ? "bs" : "bc");
5576 }
5577 else if (siggnal != GDB_SIGNAL_0)
5578 {
5579 buf[0] = step ? 'S' : 'C';
5580 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
5581 buf[2] = tohex (((int) siggnal) & 0xf);
5582 buf[3] = '\0';
5583 }
5584 else
5585 strcpy (buf, step ? "s" : "c");
5586
5587 putpkt (buf);
5588 }
5589
5590 /* Resume the remote inferior by using a "vCont" packet. The thread
5591 to be resumed is PTID; STEP and SIGGNAL indicate whether the
5592 resumed thread should be single-stepped and/or signalled. If PTID
5593 equals minus_one_ptid, then all threads are resumed; the thread to
5594 be stepped and/or signalled is given in the global INFERIOR_PTID.
5595 This function returns non-zero iff it resumes the inferior.
5596
5597 This function issues a strict subset of all possible vCont commands
5598 at the moment. */
5599
5600 static int
5601 remote_resume_with_vcont (ptid_t ptid, int step, enum gdb_signal siggnal)
5602 {
5603 struct remote_state *rs = get_remote_state ();
5604 char *p;
5605 char *endp;
5606
5607 /* No reverse execution actions defined for vCont. */
5608 if (execution_direction == EXEC_REVERSE)
5609 return 0;
5610
5611 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
5612 remote_vcont_probe (rs);
5613
5614 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
5615 return 0;
5616
5617 p = rs->buf;
5618 endp = rs->buf + get_remote_packet_size ();
5619
5620 /* If we could generate a wider range of packets, we'd have to worry
5621 about overflowing BUF. Should there be a generic
5622 "multi-part-packet" packet? */
5623
5624 p += xsnprintf (p, endp - p, "vCont");
5625
5626 if (ptid_equal (ptid, magic_null_ptid))
5627 {
5628 /* MAGIC_NULL_PTID means that we don't have any active threads,
5629 so we don't have any TID numbers the inferior will
5630 understand. Make sure to only send forms that do not specify
5631 a TID. */
5632 append_resumption (p, endp, minus_one_ptid, step, siggnal);
5633 }
5634 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
5635 {
5636 /* Resume all threads (of all processes, or of a single
5637 process), with preference for INFERIOR_PTID. This assumes
5638 inferior_ptid belongs to the set of all threads we are about
5639 to resume. */
5640 if (step || siggnal != GDB_SIGNAL_0)
5641 {
5642 /* Step inferior_ptid, with or without signal. */
5643 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
5644 }
5645
5646 /* Also pass down any pending signaled resumption for other
5647 threads not the current. */
5648 p = append_pending_thread_resumptions (p, endp, ptid);
5649
5650 /* And continue others without a signal. */
5651 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
5652 }
5653 else
5654 {
5655 /* Scheduler locking; resume only PTID. */
5656 append_resumption (p, endp, ptid, step, siggnal);
5657 }
5658
5659 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
5660 putpkt (rs->buf);
5661
5662 if (target_is_non_stop_p ())
5663 {
5664 /* In non-stop, the stub replies to vCont with "OK". The stop
5665 reply will be reported asynchronously by means of a `%Stop'
5666 notification. */
5667 getpkt (&rs->buf, &rs->buf_size, 0);
5668 if (strcmp (rs->buf, "OK") != 0)
5669 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5670 }
5671
5672 return 1;
5673 }
5674
5675 /* Tell the remote machine to resume. */
5676
5677 static void
5678 remote_resume (struct target_ops *ops,
5679 ptid_t ptid, int step, enum gdb_signal siggnal)
5680 {
5681 struct remote_state *rs = get_remote_state ();
5682
5683 /* When connected in non-stop mode, the core resumes threads
5684 individually. Resuming remote threads directly in target_resume
5685 would thus result in sending one packet per thread. Instead, to
5686 minimize roundtrip latency, here we just store the resume
5687 request; the actual remote resumption will be done in
5688 target_commit_resume / remote_commit_resume, where we'll be able
5689 to do vCont action coalescing. */
5690 if (target_is_non_stop_p () && execution_direction != EXEC_REVERSE)
5691 {
5692 remote_thread_info *remote_thr;
5693
5694 if (ptid_equal (minus_one_ptid, ptid) || ptid_is_pid (ptid))
5695 remote_thr = get_remote_thread_info (inferior_ptid);
5696 else
5697 remote_thr = get_remote_thread_info (ptid);
5698
5699 remote_thr->last_resume_step = step;
5700 remote_thr->last_resume_sig = siggnal;
5701 return;
5702 }
5703
5704 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
5705 (explained in remote-notif.c:handle_notification) so
5706 remote_notif_process is not called. We need find a place where
5707 it is safe to start a 'vNotif' sequence. It is good to do it
5708 before resuming inferior, because inferior was stopped and no RSP
5709 traffic at that moment. */
5710 if (!target_is_non_stop_p ())
5711 remote_notif_process (rs->notif_state, &notif_client_stop);
5712
5713 rs->last_resume_exec_dir = execution_direction;
5714
5715 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
5716 if (!remote_resume_with_vcont (ptid, step, siggnal))
5717 remote_resume_with_hc (ops, ptid, step, siggnal);
5718
5719 /* We are about to start executing the inferior, let's register it
5720 with the event loop. NOTE: this is the one place where all the
5721 execution commands end up. We could alternatively do this in each
5722 of the execution commands in infcmd.c. */
5723 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
5724 into infcmd.c in order to allow inferior function calls to work
5725 NOT asynchronously. */
5726 if (target_can_async_p ())
5727 target_async (1);
5728
5729 /* We've just told the target to resume. The remote server will
5730 wait for the inferior to stop, and then send a stop reply. In
5731 the mean time, we can't start another command/query ourselves
5732 because the stub wouldn't be ready to process it. This applies
5733 only to the base all-stop protocol, however. In non-stop (which
5734 only supports vCont), the stub replies with an "OK", and is
5735 immediate able to process further serial input. */
5736 if (!target_is_non_stop_p ())
5737 rs->waiting_for_stop_reply = 1;
5738 }
5739
5740 static void check_pending_events_prevent_wildcard_vcont
5741 (int *may_global_wildcard_vcont);
5742 static int is_pending_fork_parent_thread (struct thread_info *thread);
5743
5744 /* Private per-inferior info for target remote processes. */
5745
5746 struct remote_inferior : public private_inferior
5747 {
5748 /* Whether we can send a wildcard vCont for this process. */
5749 bool may_wildcard_vcont = true;
5750 };
5751
5752 /* Get the remote private inferior data associated to INF. */
5753
5754 static remote_inferior *
5755 get_remote_inferior (inferior *inf)
5756 {
5757 if (inf->priv == NULL)
5758 inf->priv.reset (new remote_inferior);
5759
5760 return static_cast<remote_inferior *> (inf->priv.get ());
5761 }
5762
5763 /* Structure used to track the construction of a vCont packet in the
5764 outgoing packet buffer. This is used to send multiple vCont
5765 packets if we have more actions than would fit a single packet. */
5766
5767 struct vcont_builder
5768 {
5769 /* Pointer to the first action. P points here if no action has been
5770 appended yet. */
5771 char *first_action;
5772
5773 /* Where the next action will be appended. */
5774 char *p;
5775
5776 /* The end of the buffer. Must never write past this. */
5777 char *endp;
5778 };
5779
5780 /* Prepare the outgoing buffer for a new vCont packet. */
5781
5782 static void
5783 vcont_builder_restart (struct vcont_builder *builder)
5784 {
5785 struct remote_state *rs = get_remote_state ();
5786
5787 builder->p = rs->buf;
5788 builder->endp = rs->buf + get_remote_packet_size ();
5789 builder->p += xsnprintf (builder->p, builder->endp - builder->p, "vCont");
5790 builder->first_action = builder->p;
5791 }
5792
5793 /* If the vCont packet being built has any action, send it to the
5794 remote end. */
5795
5796 static void
5797 vcont_builder_flush (struct vcont_builder *builder)
5798 {
5799 struct remote_state *rs;
5800
5801 if (builder->p == builder->first_action)
5802 return;
5803
5804 rs = get_remote_state ();
5805 putpkt (rs->buf);
5806 getpkt (&rs->buf, &rs->buf_size, 0);
5807 if (strcmp (rs->buf, "OK") != 0)
5808 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5809 }
5810
5811 /* The largest action is range-stepping, with its two addresses. This
5812 is more than sufficient. If a new, bigger action is created, it'll
5813 quickly trigger a failed assertion in append_resumption (and we'll
5814 just bump this). */
5815 #define MAX_ACTION_SIZE 200
5816
5817 /* Append a new vCont action in the outgoing packet being built. If
5818 the action doesn't fit the packet along with previous actions, push
5819 what we've got so far to the remote end and start over a new vCont
5820 packet (with the new action). */
5821
5822 static void
5823 vcont_builder_push_action (struct vcont_builder *builder,
5824 ptid_t ptid, int step, enum gdb_signal siggnal)
5825 {
5826 char buf[MAX_ACTION_SIZE + 1];
5827 char *endp;
5828 size_t rsize;
5829
5830 endp = append_resumption (buf, buf + sizeof (buf),
5831 ptid, step, siggnal);
5832
5833 /* Check whether this new action would fit in the vCont packet along
5834 with previous actions. If not, send what we've got so far and
5835 start a new vCont packet. */
5836 rsize = endp - buf;
5837 if (rsize > builder->endp - builder->p)
5838 {
5839 vcont_builder_flush (builder);
5840 vcont_builder_restart (builder);
5841
5842 /* Should now fit. */
5843 gdb_assert (rsize <= builder->endp - builder->p);
5844 }
5845
5846 memcpy (builder->p, buf, rsize);
5847 builder->p += rsize;
5848 *builder->p = '\0';
5849 }
5850
5851 /* to_commit_resume implementation. */
5852
5853 static void
5854 remote_commit_resume (struct target_ops *ops)
5855 {
5856 struct inferior *inf;
5857 struct thread_info *tp;
5858 int any_process_wildcard;
5859 int may_global_wildcard_vcont;
5860 struct vcont_builder vcont_builder;
5861
5862 /* If connected in all-stop mode, we'd send the remote resume
5863 request directly from remote_resume. Likewise if
5864 reverse-debugging, as there are no defined vCont actions for
5865 reverse execution. */
5866 if (!target_is_non_stop_p () || execution_direction == EXEC_REVERSE)
5867 return;
5868
5869 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
5870 instead of resuming all threads of each process individually.
5871 However, if any thread of a process must remain halted, we can't
5872 send wildcard resumes and must send one action per thread.
5873
5874 Care must be taken to not resume threads/processes the server
5875 side already told us are stopped, but the core doesn't know about
5876 yet, because the events are still in the vStopped notification
5877 queue. For example:
5878
5879 #1 => vCont s:p1.1;c
5880 #2 <= OK
5881 #3 <= %Stopped T05 p1.1
5882 #4 => vStopped
5883 #5 <= T05 p1.2
5884 #6 => vStopped
5885 #7 <= OK
5886 #8 (infrun handles the stop for p1.1 and continues stepping)
5887 #9 => vCont s:p1.1;c
5888
5889 The last vCont above would resume thread p1.2 by mistake, because
5890 the server has no idea that the event for p1.2 had not been
5891 handled yet.
5892
5893 The server side must similarly ignore resume actions for the
5894 thread that has a pending %Stopped notification (and any other
5895 threads with events pending), until GDB acks the notification
5896 with vStopped. Otherwise, e.g., the following case is
5897 mishandled:
5898
5899 #1 => g (or any other packet)
5900 #2 <= [registers]
5901 #3 <= %Stopped T05 p1.2
5902 #4 => vCont s:p1.1;c
5903 #5 <= OK
5904
5905 Above, the server must not resume thread p1.2. GDB can't know
5906 that p1.2 stopped until it acks the %Stopped notification, and
5907 since from GDB's perspective all threads should be running, it
5908 sends a "c" action.
5909
5910 Finally, special care must also be given to handling fork/vfork
5911 events. A (v)fork event actually tells us that two processes
5912 stopped -- the parent and the child. Until we follow the fork,
5913 we must not resume the child. Therefore, if we have a pending
5914 fork follow, we must not send a global wildcard resume action
5915 (vCont;c). We can still send process-wide wildcards though. */
5916
5917 /* Start by assuming a global wildcard (vCont;c) is possible. */
5918 may_global_wildcard_vcont = 1;
5919
5920 /* And assume every process is individually wildcard-able too. */
5921 ALL_NON_EXITED_INFERIORS (inf)
5922 {
5923 remote_inferior *priv = get_remote_inferior (inf);
5924
5925 priv->may_wildcard_vcont = true;
5926 }
5927
5928 /* Check for any pending events (not reported or processed yet) and
5929 disable process and global wildcard resumes appropriately. */
5930 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
5931
5932 ALL_NON_EXITED_THREADS (tp)
5933 {
5934 /* If a thread of a process is not meant to be resumed, then we
5935 can't wildcard that process. */
5936 if (!tp->executing)
5937 {
5938 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
5939
5940 /* And if we can't wildcard a process, we can't wildcard
5941 everything either. */
5942 may_global_wildcard_vcont = 0;
5943 continue;
5944 }
5945
5946 /* If a thread is the parent of an unfollowed fork, then we
5947 can't do a global wildcard, as that would resume the fork
5948 child. */
5949 if (is_pending_fork_parent_thread (tp))
5950 may_global_wildcard_vcont = 0;
5951 }
5952
5953 /* Now let's build the vCont packet(s). Actions must be appended
5954 from narrower to wider scopes (thread -> process -> global). If
5955 we end up with too many actions for a single packet vcont_builder
5956 flushes the current vCont packet to the remote side and starts a
5957 new one. */
5958 vcont_builder_restart (&vcont_builder);
5959
5960 /* Threads first. */
5961 ALL_NON_EXITED_THREADS (tp)
5962 {
5963 remote_thread_info *remote_thr = get_remote_thread_info (tp);
5964
5965 if (!tp->executing || remote_thr->vcont_resumed)
5966 continue;
5967
5968 gdb_assert (!thread_is_in_step_over_chain (tp));
5969
5970 if (!remote_thr->last_resume_step
5971 && remote_thr->last_resume_sig == GDB_SIGNAL_0
5972 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
5973 {
5974 /* We'll send a wildcard resume instead. */
5975 remote_thr->vcont_resumed = 1;
5976 continue;
5977 }
5978
5979 vcont_builder_push_action (&vcont_builder, tp->ptid,
5980 remote_thr->last_resume_step,
5981 remote_thr->last_resume_sig);
5982 remote_thr->vcont_resumed = 1;
5983 }
5984
5985 /* Now check whether we can send any process-wide wildcard. This is
5986 to avoid sending a global wildcard in the case nothing is
5987 supposed to be resumed. */
5988 any_process_wildcard = 0;
5989
5990 ALL_NON_EXITED_INFERIORS (inf)
5991 {
5992 if (get_remote_inferior (inf)->may_wildcard_vcont)
5993 {
5994 any_process_wildcard = 1;
5995 break;
5996 }
5997 }
5998
5999 if (any_process_wildcard)
6000 {
6001 /* If all processes are wildcard-able, then send a single "c"
6002 action, otherwise, send an "all (-1) threads of process"
6003 continue action for each running process, if any. */
6004 if (may_global_wildcard_vcont)
6005 {
6006 vcont_builder_push_action (&vcont_builder, minus_one_ptid,
6007 0, GDB_SIGNAL_0);
6008 }
6009 else
6010 {
6011 ALL_NON_EXITED_INFERIORS (inf)
6012 {
6013 if (get_remote_inferior (inf)->may_wildcard_vcont)
6014 {
6015 vcont_builder_push_action (&vcont_builder,
6016 pid_to_ptid (inf->pid),
6017 0, GDB_SIGNAL_0);
6018 }
6019 }
6020 }
6021 }
6022
6023 vcont_builder_flush (&vcont_builder);
6024 }
6025
6026 \f
6027
6028 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6029 thread, all threads of a remote process, or all threads of all
6030 processes. */
6031
6032 static void
6033 remote_stop_ns (ptid_t ptid)
6034 {
6035 struct remote_state *rs = get_remote_state ();
6036 char *p = rs->buf;
6037 char *endp = rs->buf + get_remote_packet_size ();
6038
6039 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6040 remote_vcont_probe (rs);
6041
6042 if (!rs->supports_vCont.t)
6043 error (_("Remote server does not support stopping threads"));
6044
6045 if (ptid_equal (ptid, minus_one_ptid)
6046 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
6047 p += xsnprintf (p, endp - p, "vCont;t");
6048 else
6049 {
6050 ptid_t nptid;
6051
6052 p += xsnprintf (p, endp - p, "vCont;t:");
6053
6054 if (ptid_is_pid (ptid))
6055 /* All (-1) threads of process. */
6056 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
6057 else
6058 {
6059 /* Small optimization: if we already have a stop reply for
6060 this thread, no use in telling the stub we want this
6061 stopped. */
6062 if (peek_stop_reply (ptid))
6063 return;
6064
6065 nptid = ptid;
6066 }
6067
6068 write_ptid (p, endp, nptid);
6069 }
6070
6071 /* In non-stop, we get an immediate OK reply. The stop reply will
6072 come in asynchronously by notification. */
6073 putpkt (rs->buf);
6074 getpkt (&rs->buf, &rs->buf_size, 0);
6075 if (strcmp (rs->buf, "OK") != 0)
6076 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
6077 }
6078
6079 /* All-stop version of target_interrupt. Sends a break or a ^C to
6080 interrupt the remote target. It is undefined which thread of which
6081 process reports the interrupt. */
6082
6083 static void
6084 remote_interrupt_as (void)
6085 {
6086 struct remote_state *rs = get_remote_state ();
6087
6088 rs->ctrlc_pending_p = 1;
6089
6090 /* If the inferior is stopped already, but the core didn't know
6091 about it yet, just ignore the request. The cached wait status
6092 will be collected in remote_wait. */
6093 if (rs->cached_wait_status)
6094 return;
6095
6096 /* Send interrupt_sequence to remote target. */
6097 send_interrupt_sequence ();
6098 }
6099
6100 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6101 the remote target. It is undefined which thread of which process
6102 reports the interrupt. Throws an error if the packet is not
6103 supported by the server. */
6104
6105 static void
6106 remote_interrupt_ns (void)
6107 {
6108 struct remote_state *rs = get_remote_state ();
6109 char *p = rs->buf;
6110 char *endp = rs->buf + get_remote_packet_size ();
6111
6112 xsnprintf (p, endp - p, "vCtrlC");
6113
6114 /* In non-stop, we get an immediate OK reply. The stop reply will
6115 come in asynchronously by notification. */
6116 putpkt (rs->buf);
6117 getpkt (&rs->buf, &rs->buf_size, 0);
6118
6119 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6120 {
6121 case PACKET_OK:
6122 break;
6123 case PACKET_UNKNOWN:
6124 error (_("No support for interrupting the remote target."));
6125 case PACKET_ERROR:
6126 error (_("Interrupting target failed: %s"), rs->buf);
6127 }
6128 }
6129
6130 /* Implement the to_stop function for the remote targets. */
6131
6132 static void
6133 remote_stop (struct target_ops *self, ptid_t ptid)
6134 {
6135 if (remote_debug)
6136 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6137
6138 if (target_is_non_stop_p ())
6139 remote_stop_ns (ptid);
6140 else
6141 {
6142 /* We don't currently have a way to transparently pause the
6143 remote target in all-stop mode. Interrupt it instead. */
6144 remote_interrupt_as ();
6145 }
6146 }
6147
6148 /* Implement the to_interrupt function for the remote targets. */
6149
6150 static void
6151 remote_interrupt (struct target_ops *self)
6152 {
6153 if (remote_debug)
6154 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6155
6156 if (target_is_non_stop_p ())
6157 remote_interrupt_ns ();
6158 else
6159 remote_interrupt_as ();
6160 }
6161
6162 /* Implement the to_pass_ctrlc function for the remote targets. */
6163
6164 static void
6165 remote_pass_ctrlc (struct target_ops *self)
6166 {
6167 struct remote_state *rs = get_remote_state ();
6168
6169 if (remote_debug)
6170 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6171
6172 /* If we're starting up, we're not fully synced yet. Quit
6173 immediately. */
6174 if (rs->starting_up)
6175 quit ();
6176 /* If ^C has already been sent once, offer to disconnect. */
6177 else if (rs->ctrlc_pending_p)
6178 interrupt_query ();
6179 else
6180 target_interrupt ();
6181 }
6182
6183 /* Ask the user what to do when an interrupt is received. */
6184
6185 static void
6186 interrupt_query (void)
6187 {
6188 struct remote_state *rs = get_remote_state ();
6189
6190 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6191 {
6192 if (query (_("The target is not responding to interrupt requests.\n"
6193 "Stop debugging it? ")))
6194 {
6195 remote_unpush_target ();
6196 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6197 }
6198 }
6199 else
6200 {
6201 if (query (_("Interrupted while waiting for the program.\n"
6202 "Give up waiting? ")))
6203 quit ();
6204 }
6205 }
6206
6207 /* Enable/disable target terminal ownership. Most targets can use
6208 terminal groups to control terminal ownership. Remote targets are
6209 different in that explicit transfer of ownership to/from GDB/target
6210 is required. */
6211
6212 static void
6213 remote_terminal_inferior (struct target_ops *self)
6214 {
6215 /* NOTE: At this point we could also register our selves as the
6216 recipient of all input. Any characters typed could then be
6217 passed on down to the target. */
6218 }
6219
6220 static void
6221 remote_terminal_ours (struct target_ops *self)
6222 {
6223 }
6224
6225 static void
6226 remote_console_output (char *msg)
6227 {
6228 char *p;
6229
6230 for (p = msg; p[0] && p[1]; p += 2)
6231 {
6232 char tb[2];
6233 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6234
6235 tb[0] = c;
6236 tb[1] = 0;
6237 fputs_unfiltered (tb, gdb_stdtarg);
6238 }
6239 gdb_flush (gdb_stdtarg);
6240 }
6241
6242 DEF_VEC_O(cached_reg_t);
6243
6244 typedef struct stop_reply
6245 {
6246 struct notif_event base;
6247
6248 /* The identifier of the thread about this event */
6249 ptid_t ptid;
6250
6251 /* The remote state this event is associated with. When the remote
6252 connection, represented by a remote_state object, is closed,
6253 all the associated stop_reply events should be released. */
6254 struct remote_state *rs;
6255
6256 struct target_waitstatus ws;
6257
6258 /* The architecture associated with the expedited registers. */
6259 gdbarch *arch;
6260
6261 /* Expedited registers. This makes remote debugging a bit more
6262 efficient for those targets that provide critical registers as
6263 part of their normal status mechanism (as another roundtrip to
6264 fetch them is avoided). */
6265 VEC(cached_reg_t) *regcache;
6266
6267 enum target_stop_reason stop_reason;
6268
6269 CORE_ADDR watch_data_address;
6270
6271 int core;
6272 } *stop_reply_p;
6273
6274 DECLARE_QUEUE_P (stop_reply_p);
6275 DEFINE_QUEUE_P (stop_reply_p);
6276 /* The list of already fetched and acknowledged stop events. This
6277 queue is used for notification Stop, and other notifications
6278 don't need queue for their events, because the notification events
6279 of Stop can't be consumed immediately, so that events should be
6280 queued first, and be consumed by remote_wait_{ns,as} one per
6281 time. Other notifications can consume their events immediately,
6282 so queue is not needed for them. */
6283 static QUEUE (stop_reply_p) *stop_reply_queue;
6284
6285 static void
6286 stop_reply_xfree (struct stop_reply *r)
6287 {
6288 notif_event_xfree ((struct notif_event *) r);
6289 }
6290
6291 /* Return the length of the stop reply queue. */
6292
6293 static int
6294 stop_reply_queue_length (void)
6295 {
6296 return QUEUE_length (stop_reply_p, stop_reply_queue);
6297 }
6298
6299 static void
6300 remote_notif_stop_parse (struct notif_client *self, char *buf,
6301 struct notif_event *event)
6302 {
6303 remote_parse_stop_reply (buf, (struct stop_reply *) event);
6304 }
6305
6306 static void
6307 remote_notif_stop_ack (struct notif_client *self, char *buf,
6308 struct notif_event *event)
6309 {
6310 struct stop_reply *stop_reply = (struct stop_reply *) event;
6311
6312 /* acknowledge */
6313 putpkt (self->ack_command);
6314
6315 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6316 /* We got an unknown stop reply. */
6317 error (_("Unknown stop reply"));
6318
6319 push_stop_reply (stop_reply);
6320 }
6321
6322 static int
6323 remote_notif_stop_can_get_pending_events (struct notif_client *self)
6324 {
6325 /* We can't get pending events in remote_notif_process for
6326 notification stop, and we have to do this in remote_wait_ns
6327 instead. If we fetch all queued events from stub, remote stub
6328 may exit and we have no chance to process them back in
6329 remote_wait_ns. */
6330 mark_async_event_handler (remote_async_inferior_event_token);
6331 return 0;
6332 }
6333
6334 static void
6335 stop_reply_dtr (struct notif_event *event)
6336 {
6337 struct stop_reply *r = (struct stop_reply *) event;
6338 cached_reg_t *reg;
6339 int ix;
6340
6341 for (ix = 0;
6342 VEC_iterate (cached_reg_t, r->regcache, ix, reg);
6343 ix++)
6344 xfree (reg->data);
6345
6346 VEC_free (cached_reg_t, r->regcache);
6347 }
6348
6349 static struct notif_event *
6350 remote_notif_stop_alloc_reply (void)
6351 {
6352 /* We cast to a pointer to the "base class". */
6353 struct notif_event *r = (struct notif_event *) XNEW (struct stop_reply);
6354
6355 r->dtr = stop_reply_dtr;
6356
6357 return r;
6358 }
6359
6360 /* A client of notification Stop. */
6361
6362 struct notif_client notif_client_stop =
6363 {
6364 "Stop",
6365 "vStopped",
6366 remote_notif_stop_parse,
6367 remote_notif_stop_ack,
6368 remote_notif_stop_can_get_pending_events,
6369 remote_notif_stop_alloc_reply,
6370 REMOTE_NOTIF_STOP,
6371 };
6372
6373 /* A parameter to pass data in and out. */
6374
6375 struct queue_iter_param
6376 {
6377 void *input;
6378 struct stop_reply *output;
6379 };
6380
6381 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6382 the pid of the process that owns the threads we want to check, or
6383 -1 if we want to check all threads. */
6384
6385 static int
6386 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6387 ptid_t thread_ptid)
6388 {
6389 if (ws->kind == TARGET_WAITKIND_FORKED
6390 || ws->kind == TARGET_WAITKIND_VFORKED)
6391 {
6392 if (event_pid == -1 || event_pid == ptid_get_pid (thread_ptid))
6393 return 1;
6394 }
6395
6396 return 0;
6397 }
6398
6399 /* Return the thread's pending status used to determine whether the
6400 thread is a fork parent stopped at a fork event. */
6401
6402 static struct target_waitstatus *
6403 thread_pending_fork_status (struct thread_info *thread)
6404 {
6405 if (thread->suspend.waitstatus_pending_p)
6406 return &thread->suspend.waitstatus;
6407 else
6408 return &thread->pending_follow;
6409 }
6410
6411 /* Determine if THREAD is a pending fork parent thread. */
6412
6413 static int
6414 is_pending_fork_parent_thread (struct thread_info *thread)
6415 {
6416 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6417 int pid = -1;
6418
6419 return is_pending_fork_parent (ws, pid, thread->ptid);
6420 }
6421
6422 /* Check whether EVENT is a fork event, and if it is, remove the
6423 fork child from the context list passed in DATA. */
6424
6425 static int
6426 remove_child_of_pending_fork (QUEUE (stop_reply_p) *q,
6427 QUEUE_ITER (stop_reply_p) *iter,
6428 stop_reply_p event,
6429 void *data)
6430 {
6431 struct queue_iter_param *param = (struct queue_iter_param *) data;
6432 struct threads_listing_context *context
6433 = (struct threads_listing_context *) param->input;
6434
6435 if (event->ws.kind == TARGET_WAITKIND_FORKED
6436 || event->ws.kind == TARGET_WAITKIND_VFORKED
6437 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
6438 context->remove_thread (event->ws.value.related_pid);
6439
6440 return 1;
6441 }
6442
6443 /* If CONTEXT contains any fork child threads that have not been
6444 reported yet, remove them from the CONTEXT list. If such a
6445 thread exists it is because we are stopped at a fork catchpoint
6446 and have not yet called follow_fork, which will set up the
6447 host-side data structures for the new process. */
6448
6449 static void
6450 remove_new_fork_children (struct threads_listing_context *context)
6451 {
6452 struct thread_info * thread;
6453 int pid = -1;
6454 struct notif_client *notif = &notif_client_stop;
6455 struct queue_iter_param param;
6456
6457 /* For any threads stopped at a fork event, remove the corresponding
6458 fork child threads from the CONTEXT list. */
6459 ALL_NON_EXITED_THREADS (thread)
6460 {
6461 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6462
6463 if (is_pending_fork_parent (ws, pid, thread->ptid))
6464 context->remove_thread (ws->value.related_pid);
6465 }
6466
6467 /* Check for any pending fork events (not reported or processed yet)
6468 in process PID and remove those fork child threads from the
6469 CONTEXT list as well. */
6470 remote_notif_get_pending_events (notif);
6471 param.input = context;
6472 param.output = NULL;
6473 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6474 remove_child_of_pending_fork, &param);
6475 }
6476
6477 /* Check whether EVENT would prevent a global or process wildcard
6478 vCont action. */
6479
6480 static int
6481 check_pending_event_prevents_wildcard_vcont_callback
6482 (QUEUE (stop_reply_p) *q,
6483 QUEUE_ITER (stop_reply_p) *iter,
6484 stop_reply_p event,
6485 void *data)
6486 {
6487 struct inferior *inf;
6488 int *may_global_wildcard_vcont = (int *) data;
6489
6490 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
6491 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
6492 return 1;
6493
6494 if (event->ws.kind == TARGET_WAITKIND_FORKED
6495 || event->ws.kind == TARGET_WAITKIND_VFORKED)
6496 *may_global_wildcard_vcont = 0;
6497
6498 inf = find_inferior_ptid (event->ptid);
6499
6500 /* This may be the first time we heard about this process.
6501 Regardless, we must not do a global wildcard resume, otherwise
6502 we'd resume this process too. */
6503 *may_global_wildcard_vcont = 0;
6504 if (inf != NULL)
6505 get_remote_inferior (inf)->may_wildcard_vcont = false;
6506
6507 return 1;
6508 }
6509
6510 /* Check whether any event pending in the vStopped queue would prevent
6511 a global or process wildcard vCont action. Clear
6512 *may_global_wildcard if we can't do a global wildcard (vCont;c),
6513 and clear the event inferior's may_wildcard_vcont flag if we can't
6514 do a process-wide wildcard resume (vCont;c:pPID.-1). */
6515
6516 static void
6517 check_pending_events_prevent_wildcard_vcont (int *may_global_wildcard)
6518 {
6519 struct notif_client *notif = &notif_client_stop;
6520
6521 remote_notif_get_pending_events (notif);
6522 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6523 check_pending_event_prevents_wildcard_vcont_callback,
6524 may_global_wildcard);
6525 }
6526
6527 /* Remove stop replies in the queue if its pid is equal to the given
6528 inferior's pid. */
6529
6530 static int
6531 remove_stop_reply_for_inferior (QUEUE (stop_reply_p) *q,
6532 QUEUE_ITER (stop_reply_p) *iter,
6533 stop_reply_p event,
6534 void *data)
6535 {
6536 struct queue_iter_param *param = (struct queue_iter_param *) data;
6537 struct inferior *inf = (struct inferior *) param->input;
6538
6539 if (ptid_get_pid (event->ptid) == inf->pid)
6540 {
6541 stop_reply_xfree (event);
6542 QUEUE_remove_elem (stop_reply_p, q, iter);
6543 }
6544
6545 return 1;
6546 }
6547
6548 /* Discard all pending stop replies of inferior INF. */
6549
6550 static void
6551 discard_pending_stop_replies (struct inferior *inf)
6552 {
6553 struct queue_iter_param param;
6554 struct stop_reply *reply;
6555 struct remote_state *rs = get_remote_state ();
6556 struct remote_notif_state *rns = rs->notif_state;
6557
6558 /* This function can be notified when an inferior exists. When the
6559 target is not remote, the notification state is NULL. */
6560 if (rs->remote_desc == NULL)
6561 return;
6562
6563 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
6564
6565 /* Discard the in-flight notification. */
6566 if (reply != NULL && ptid_get_pid (reply->ptid) == inf->pid)
6567 {
6568 stop_reply_xfree (reply);
6569 rns->pending_event[notif_client_stop.id] = NULL;
6570 }
6571
6572 param.input = inf;
6573 param.output = NULL;
6574 /* Discard the stop replies we have already pulled with
6575 vStopped. */
6576 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6577 remove_stop_reply_for_inferior, &param);
6578 }
6579
6580 /* If its remote state is equal to the given remote state,
6581 remove EVENT from the stop reply queue. */
6582
6583 static int
6584 remove_stop_reply_of_remote_state (QUEUE (stop_reply_p) *q,
6585 QUEUE_ITER (stop_reply_p) *iter,
6586 stop_reply_p event,
6587 void *data)
6588 {
6589 struct queue_iter_param *param = (struct queue_iter_param *) data;
6590 struct remote_state *rs = (struct remote_state *) param->input;
6591
6592 if (event->rs == rs)
6593 {
6594 stop_reply_xfree (event);
6595 QUEUE_remove_elem (stop_reply_p, q, iter);
6596 }
6597
6598 return 1;
6599 }
6600
6601 /* Discard the stop replies for RS in stop_reply_queue. */
6602
6603 static void
6604 discard_pending_stop_replies_in_queue (struct remote_state *rs)
6605 {
6606 struct queue_iter_param param;
6607
6608 param.input = rs;
6609 param.output = NULL;
6610 /* Discard the stop replies we have already pulled with
6611 vStopped. */
6612 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6613 remove_stop_reply_of_remote_state, &param);
6614 }
6615
6616 /* A parameter to pass data in and out. */
6617
6618 static int
6619 remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
6620 QUEUE_ITER (stop_reply_p) *iter,
6621 stop_reply_p event,
6622 void *data)
6623 {
6624 struct queue_iter_param *param = (struct queue_iter_param *) data;
6625 ptid_t *ptid = (ptid_t *) param->input;
6626
6627 if (ptid_match (event->ptid, *ptid))
6628 {
6629 param->output = event;
6630 QUEUE_remove_elem (stop_reply_p, q, iter);
6631 return 0;
6632 }
6633
6634 return 1;
6635 }
6636
6637 /* Remove the first reply in 'stop_reply_queue' which matches
6638 PTID. */
6639
6640 static struct stop_reply *
6641 remote_notif_remove_queued_reply (ptid_t ptid)
6642 {
6643 struct queue_iter_param param;
6644
6645 param.input = &ptid;
6646 param.output = NULL;
6647
6648 QUEUE_iterate (stop_reply_p, stop_reply_queue,
6649 remote_notif_remove_once_on_match, &param);
6650 if (notif_debug)
6651 fprintf_unfiltered (gdb_stdlog,
6652 "notif: discard queued event: 'Stop' in %s\n",
6653 target_pid_to_str (ptid));
6654
6655 return param.output;
6656 }
6657
6658 /* Look for a queued stop reply belonging to PTID. If one is found,
6659 remove it from the queue, and return it. Returns NULL if none is
6660 found. If there are still queued events left to process, tell the
6661 event loop to get back to target_wait soon. */
6662
6663 static struct stop_reply *
6664 queued_stop_reply (ptid_t ptid)
6665 {
6666 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
6667
6668 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
6669 /* There's still at least an event left. */
6670 mark_async_event_handler (remote_async_inferior_event_token);
6671
6672 return r;
6673 }
6674
6675 /* Push a fully parsed stop reply in the stop reply queue. Since we
6676 know that we now have at least one queued event left to pass to the
6677 core side, tell the event loop to get back to target_wait soon. */
6678
6679 static void
6680 push_stop_reply (struct stop_reply *new_event)
6681 {
6682 QUEUE_enque (stop_reply_p, stop_reply_queue, new_event);
6683
6684 if (notif_debug)
6685 fprintf_unfiltered (gdb_stdlog,
6686 "notif: push 'Stop' %s to queue %d\n",
6687 target_pid_to_str (new_event->ptid),
6688 QUEUE_length (stop_reply_p,
6689 stop_reply_queue));
6690
6691 mark_async_event_handler (remote_async_inferior_event_token);
6692 }
6693
6694 static int
6695 stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
6696 QUEUE_ITER (stop_reply_p) *iter,
6697 struct stop_reply *event,
6698 void *data)
6699 {
6700 ptid_t *ptid = (ptid_t *) data;
6701
6702 return !(ptid_equal (*ptid, event->ptid)
6703 && event->ws.kind == TARGET_WAITKIND_STOPPED);
6704 }
6705
6706 /* Returns true if we have a stop reply for PTID. */
6707
6708 static int
6709 peek_stop_reply (ptid_t ptid)
6710 {
6711 return !QUEUE_iterate (stop_reply_p, stop_reply_queue,
6712 stop_reply_match_ptid_and_ws, &ptid);
6713 }
6714
6715 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
6716 starting with P and ending with PEND matches PREFIX. */
6717
6718 static int
6719 strprefix (const char *p, const char *pend, const char *prefix)
6720 {
6721 for ( ; p < pend; p++, prefix++)
6722 if (*p != *prefix)
6723 return 0;
6724 return *prefix == '\0';
6725 }
6726
6727 /* Parse the stop reply in BUF. Either the function succeeds, and the
6728 result is stored in EVENT, or throws an error. */
6729
6730 static void
6731 remote_parse_stop_reply (char *buf, struct stop_reply *event)
6732 {
6733 remote_arch_state *rsa = NULL;
6734 ULONGEST addr;
6735 const char *p;
6736 int skipregs = 0;
6737
6738 event->ptid = null_ptid;
6739 event->rs = get_remote_state ();
6740 event->ws.kind = TARGET_WAITKIND_IGNORE;
6741 event->ws.value.integer = 0;
6742 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6743 event->regcache = NULL;
6744 event->core = -1;
6745
6746 switch (buf[0])
6747 {
6748 case 'T': /* Status with PC, SP, FP, ... */
6749 /* Expedited reply, containing Signal, {regno, reg} repeat. */
6750 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
6751 ss = signal number
6752 n... = register number
6753 r... = register contents
6754 */
6755
6756 p = &buf[3]; /* after Txx */
6757 while (*p)
6758 {
6759 const char *p1;
6760 int fieldsize;
6761
6762 p1 = strchr (p, ':');
6763 if (p1 == NULL)
6764 error (_("Malformed packet(a) (missing colon): %s\n\
6765 Packet: '%s'\n"),
6766 p, buf);
6767 if (p == p1)
6768 error (_("Malformed packet(a) (missing register number): %s\n\
6769 Packet: '%s'\n"),
6770 p, buf);
6771
6772 /* Some "registers" are actually extended stop information.
6773 Note if you're adding a new entry here: GDB 7.9 and
6774 earlier assume that all register "numbers" that start
6775 with an hex digit are real register numbers. Make sure
6776 the server only sends such a packet if it knows the
6777 client understands it. */
6778
6779 if (strprefix (p, p1, "thread"))
6780 event->ptid = read_ptid (++p1, &p);
6781 else if (strprefix (p, p1, "syscall_entry"))
6782 {
6783 ULONGEST sysno;
6784
6785 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
6786 p = unpack_varlen_hex (++p1, &sysno);
6787 event->ws.value.syscall_number = (int) sysno;
6788 }
6789 else if (strprefix (p, p1, "syscall_return"))
6790 {
6791 ULONGEST sysno;
6792
6793 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
6794 p = unpack_varlen_hex (++p1, &sysno);
6795 event->ws.value.syscall_number = (int) sysno;
6796 }
6797 else if (strprefix (p, p1, "watch")
6798 || strprefix (p, p1, "rwatch")
6799 || strprefix (p, p1, "awatch"))
6800 {
6801 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
6802 p = unpack_varlen_hex (++p1, &addr);
6803 event->watch_data_address = (CORE_ADDR) addr;
6804 }
6805 else if (strprefix (p, p1, "swbreak"))
6806 {
6807 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
6808
6809 /* Make sure the stub doesn't forget to indicate support
6810 with qSupported. */
6811 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
6812 error (_("Unexpected swbreak stop reason"));
6813
6814 /* The value part is documented as "must be empty",
6815 though we ignore it, in case we ever decide to make
6816 use of it in a backward compatible way. */
6817 p = strchrnul (p1 + 1, ';');
6818 }
6819 else if (strprefix (p, p1, "hwbreak"))
6820 {
6821 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
6822
6823 /* Make sure the stub doesn't forget to indicate support
6824 with qSupported. */
6825 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
6826 error (_("Unexpected hwbreak stop reason"));
6827
6828 /* See above. */
6829 p = strchrnul (p1 + 1, ';');
6830 }
6831 else if (strprefix (p, p1, "library"))
6832 {
6833 event->ws.kind = TARGET_WAITKIND_LOADED;
6834 p = strchrnul (p1 + 1, ';');
6835 }
6836 else if (strprefix (p, p1, "replaylog"))
6837 {
6838 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
6839 /* p1 will indicate "begin" or "end", but it makes
6840 no difference for now, so ignore it. */
6841 p = strchrnul (p1 + 1, ';');
6842 }
6843 else if (strprefix (p, p1, "core"))
6844 {
6845 ULONGEST c;
6846
6847 p = unpack_varlen_hex (++p1, &c);
6848 event->core = c;
6849 }
6850 else if (strprefix (p, p1, "fork"))
6851 {
6852 event->ws.value.related_pid = read_ptid (++p1, &p);
6853 event->ws.kind = TARGET_WAITKIND_FORKED;
6854 }
6855 else if (strprefix (p, p1, "vfork"))
6856 {
6857 event->ws.value.related_pid = read_ptid (++p1, &p);
6858 event->ws.kind = TARGET_WAITKIND_VFORKED;
6859 }
6860 else if (strprefix (p, p1, "vforkdone"))
6861 {
6862 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
6863 p = strchrnul (p1 + 1, ';');
6864 }
6865 else if (strprefix (p, p1, "exec"))
6866 {
6867 ULONGEST ignored;
6868 char pathname[PATH_MAX];
6869 int pathlen;
6870
6871 /* Determine the length of the execd pathname. */
6872 p = unpack_varlen_hex (++p1, &ignored);
6873 pathlen = (p - p1) / 2;
6874
6875 /* Save the pathname for event reporting and for
6876 the next run command. */
6877 hex2bin (p1, (gdb_byte *) pathname, pathlen);
6878 pathname[pathlen] = '\0';
6879
6880 /* This is freed during event handling. */
6881 event->ws.value.execd_pathname = xstrdup (pathname);
6882 event->ws.kind = TARGET_WAITKIND_EXECD;
6883
6884 /* Skip the registers included in this packet, since
6885 they may be for an architecture different from the
6886 one used by the original program. */
6887 skipregs = 1;
6888 }
6889 else if (strprefix (p, p1, "create"))
6890 {
6891 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
6892 p = strchrnul (p1 + 1, ';');
6893 }
6894 else
6895 {
6896 ULONGEST pnum;
6897 const char *p_temp;
6898
6899 if (skipregs)
6900 {
6901 p = strchrnul (p1 + 1, ';');
6902 p++;
6903 continue;
6904 }
6905
6906 /* Maybe a real ``P'' register number. */
6907 p_temp = unpack_varlen_hex (p, &pnum);
6908 /* If the first invalid character is the colon, we got a
6909 register number. Otherwise, it's an unknown stop
6910 reason. */
6911 if (p_temp == p1)
6912 {
6913 /* If we haven't parsed the event's thread yet, find
6914 it now, in order to find the architecture of the
6915 reported expedited registers. */
6916 if (event->ptid == null_ptid)
6917 {
6918 const char *thr = strstr (p1 + 1, ";thread:");
6919 if (thr != NULL)
6920 event->ptid = read_ptid (thr + strlen (";thread:"),
6921 NULL);
6922 else
6923 {
6924 /* Either the current thread hasn't changed,
6925 or the inferior is not multi-threaded.
6926 The event must be for the thread we last
6927 set as (or learned as being) current. */
6928 event->ptid = event->rs->general_thread;
6929 }
6930 }
6931
6932 if (rsa == NULL)
6933 {
6934 inferior *inf = (event->ptid == null_ptid
6935 ? NULL
6936 : find_inferior_ptid (event->ptid));
6937 /* If this is the first time we learn anything
6938 about this process, skip the registers
6939 included in this packet, since we don't yet
6940 know which architecture to use to parse them.
6941 We'll determine the architecture later when
6942 we process the stop reply and retrieve the
6943 target description, via
6944 remote_notice_new_inferior ->
6945 post_create_inferior. */
6946 if (inf == NULL)
6947 {
6948 p = strchrnul (p1 + 1, ';');
6949 p++;
6950 continue;
6951 }
6952
6953 event->arch = inf->gdbarch;
6954 rsa = get_remote_arch_state (event->arch);
6955 }
6956
6957 packet_reg *reg
6958 = packet_reg_from_pnum (event->arch, rsa, pnum);
6959 cached_reg_t cached_reg;
6960
6961 if (reg == NULL)
6962 error (_("Remote sent bad register number %s: %s\n\
6963 Packet: '%s'\n"),
6964 hex_string (pnum), p, buf);
6965
6966 cached_reg.num = reg->regnum;
6967 cached_reg.data = (gdb_byte *)
6968 xmalloc (register_size (event->arch, reg->regnum));
6969
6970 p = p1 + 1;
6971 fieldsize = hex2bin (p, cached_reg.data,
6972 register_size (event->arch, reg->regnum));
6973 p += 2 * fieldsize;
6974 if (fieldsize < register_size (event->arch, reg->regnum))
6975 warning (_("Remote reply is too short: %s"), buf);
6976
6977 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
6978 }
6979 else
6980 {
6981 /* Not a number. Silently skip unknown optional
6982 info. */
6983 p = strchrnul (p1 + 1, ';');
6984 }
6985 }
6986
6987 if (*p != ';')
6988 error (_("Remote register badly formatted: %s\nhere: %s"),
6989 buf, p);
6990 ++p;
6991 }
6992
6993 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
6994 break;
6995
6996 /* fall through */
6997 case 'S': /* Old style status, just signal only. */
6998 {
6999 int sig;
7000
7001 event->ws.kind = TARGET_WAITKIND_STOPPED;
7002 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7003 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7004 event->ws.value.sig = (enum gdb_signal) sig;
7005 else
7006 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7007 }
7008 break;
7009 case 'w': /* Thread exited. */
7010 {
7011 const char *p;
7012 ULONGEST value;
7013
7014 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7015 p = unpack_varlen_hex (&buf[1], &value);
7016 event->ws.value.integer = value;
7017 if (*p != ';')
7018 error (_("stop reply packet badly formatted: %s"), buf);
7019 event->ptid = read_ptid (++p, NULL);
7020 break;
7021 }
7022 case 'W': /* Target exited. */
7023 case 'X':
7024 {
7025 const char *p;
7026 int pid;
7027 ULONGEST value;
7028
7029 /* GDB used to accept only 2 hex chars here. Stubs should
7030 only send more if they detect GDB supports multi-process
7031 support. */
7032 p = unpack_varlen_hex (&buf[1], &value);
7033
7034 if (buf[0] == 'W')
7035 {
7036 /* The remote process exited. */
7037 event->ws.kind = TARGET_WAITKIND_EXITED;
7038 event->ws.value.integer = value;
7039 }
7040 else
7041 {
7042 /* The remote process exited with a signal. */
7043 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7044 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7045 event->ws.value.sig = (enum gdb_signal) value;
7046 else
7047 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7048 }
7049
7050 /* If no process is specified, assume inferior_ptid. */
7051 pid = ptid_get_pid (inferior_ptid);
7052 if (*p == '\0')
7053 ;
7054 else if (*p == ';')
7055 {
7056 p++;
7057
7058 if (*p == '\0')
7059 ;
7060 else if (startswith (p, "process:"))
7061 {
7062 ULONGEST upid;
7063
7064 p += sizeof ("process:") - 1;
7065 unpack_varlen_hex (p, &upid);
7066 pid = upid;
7067 }
7068 else
7069 error (_("unknown stop reply packet: %s"), buf);
7070 }
7071 else
7072 error (_("unknown stop reply packet: %s"), buf);
7073 event->ptid = pid_to_ptid (pid);
7074 }
7075 break;
7076 case 'N':
7077 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7078 event->ptid = minus_one_ptid;
7079 break;
7080 }
7081
7082 if (target_is_non_stop_p () && ptid_equal (event->ptid, null_ptid))
7083 error (_("No process or thread specified in stop reply: %s"), buf);
7084 }
7085
7086 /* When the stub wants to tell GDB about a new notification reply, it
7087 sends a notification (%Stop, for example). Those can come it at
7088 any time, hence, we have to make sure that any pending
7089 putpkt/getpkt sequence we're making is finished, before querying
7090 the stub for more events with the corresponding ack command
7091 (vStopped, for example). E.g., if we started a vStopped sequence
7092 immediately upon receiving the notification, something like this
7093 could happen:
7094
7095 1.1) --> Hg 1
7096 1.2) <-- OK
7097 1.3) --> g
7098 1.4) <-- %Stop
7099 1.5) --> vStopped
7100 1.6) <-- (registers reply to step #1.3)
7101
7102 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7103 query.
7104
7105 To solve this, whenever we parse a %Stop notification successfully,
7106 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7107 doing whatever we were doing:
7108
7109 2.1) --> Hg 1
7110 2.2) <-- OK
7111 2.3) --> g
7112 2.4) <-- %Stop
7113 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7114 2.5) <-- (registers reply to step #2.3)
7115
7116 Eventualy after step #2.5, we return to the event loop, which
7117 notices there's an event on the
7118 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7119 associated callback --- the function below. At this point, we're
7120 always safe to start a vStopped sequence. :
7121
7122 2.6) --> vStopped
7123 2.7) <-- T05 thread:2
7124 2.8) --> vStopped
7125 2.9) --> OK
7126 */
7127
7128 void
7129 remote_notif_get_pending_events (struct notif_client *nc)
7130 {
7131 struct remote_state *rs = get_remote_state ();
7132
7133 if (rs->notif_state->pending_event[nc->id] != NULL)
7134 {
7135 if (notif_debug)
7136 fprintf_unfiltered (gdb_stdlog,
7137 "notif: process: '%s' ack pending event\n",
7138 nc->name);
7139
7140 /* acknowledge */
7141 nc->ack (nc, rs->buf, rs->notif_state->pending_event[nc->id]);
7142 rs->notif_state->pending_event[nc->id] = NULL;
7143
7144 while (1)
7145 {
7146 getpkt (&rs->buf, &rs->buf_size, 0);
7147 if (strcmp (rs->buf, "OK") == 0)
7148 break;
7149 else
7150 remote_notif_ack (nc, rs->buf);
7151 }
7152 }
7153 else
7154 {
7155 if (notif_debug)
7156 fprintf_unfiltered (gdb_stdlog,
7157 "notif: process: '%s' no pending reply\n",
7158 nc->name);
7159 }
7160 }
7161
7162 /* Called when it is decided that STOP_REPLY holds the info of the
7163 event that is to be returned to the core. This function always
7164 destroys STOP_REPLY. */
7165
7166 static ptid_t
7167 process_stop_reply (struct stop_reply *stop_reply,
7168 struct target_waitstatus *status)
7169 {
7170 ptid_t ptid;
7171
7172 *status = stop_reply->ws;
7173 ptid = stop_reply->ptid;
7174
7175 /* If no thread/process was reported by the stub, assume the current
7176 inferior. */
7177 if (ptid_equal (ptid, null_ptid))
7178 ptid = inferior_ptid;
7179
7180 if (status->kind != TARGET_WAITKIND_EXITED
7181 && status->kind != TARGET_WAITKIND_SIGNALLED
7182 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7183 {
7184 /* Expedited registers. */
7185 if (stop_reply->regcache)
7186 {
7187 struct regcache *regcache
7188 = get_thread_arch_regcache (ptid, stop_reply->arch);
7189 cached_reg_t *reg;
7190 int ix;
7191
7192 for (ix = 0;
7193 VEC_iterate (cached_reg_t, stop_reply->regcache, ix, reg);
7194 ix++)
7195 {
7196 regcache_raw_supply (regcache, reg->num, reg->data);
7197 xfree (reg->data);
7198 }
7199
7200 VEC_free (cached_reg_t, stop_reply->regcache);
7201 }
7202
7203 remote_notice_new_inferior (ptid, 0);
7204 remote_thread_info *remote_thr = get_remote_thread_info (ptid);
7205 remote_thr->core = stop_reply->core;
7206 remote_thr->stop_reason = stop_reply->stop_reason;
7207 remote_thr->watch_data_address = stop_reply->watch_data_address;
7208 remote_thr->vcont_resumed = 0;
7209 }
7210
7211 stop_reply_xfree (stop_reply);
7212 return ptid;
7213 }
7214
7215 /* The non-stop mode version of target_wait. */
7216
7217 static ptid_t
7218 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7219 {
7220 struct remote_state *rs = get_remote_state ();
7221 struct stop_reply *stop_reply;
7222 int ret;
7223 int is_notif = 0;
7224
7225 /* If in non-stop mode, get out of getpkt even if a
7226 notification is received. */
7227
7228 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7229 0 /* forever */, &is_notif);
7230 while (1)
7231 {
7232 if (ret != -1 && !is_notif)
7233 switch (rs->buf[0])
7234 {
7235 case 'E': /* Error of some sort. */
7236 /* We're out of sync with the target now. Did it continue
7237 or not? We can't tell which thread it was in non-stop,
7238 so just ignore this. */
7239 warning (_("Remote failure reply: %s"), rs->buf);
7240 break;
7241 case 'O': /* Console output. */
7242 remote_console_output (rs->buf + 1);
7243 break;
7244 default:
7245 warning (_("Invalid remote reply: %s"), rs->buf);
7246 break;
7247 }
7248
7249 /* Acknowledge a pending stop reply that may have arrived in the
7250 mean time. */
7251 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7252 remote_notif_get_pending_events (&notif_client_stop);
7253
7254 /* If indeed we noticed a stop reply, we're done. */
7255 stop_reply = queued_stop_reply (ptid);
7256 if (stop_reply != NULL)
7257 return process_stop_reply (stop_reply, status);
7258
7259 /* Still no event. If we're just polling for an event, then
7260 return to the event loop. */
7261 if (options & TARGET_WNOHANG)
7262 {
7263 status->kind = TARGET_WAITKIND_IGNORE;
7264 return minus_one_ptid;
7265 }
7266
7267 /* Otherwise do a blocking wait. */
7268 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7269 1 /* forever */, &is_notif);
7270 }
7271 }
7272
7273 /* Wait until the remote machine stops, then return, storing status in
7274 STATUS just as `wait' would. */
7275
7276 static ptid_t
7277 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
7278 {
7279 struct remote_state *rs = get_remote_state ();
7280 ptid_t event_ptid = null_ptid;
7281 char *buf;
7282 struct stop_reply *stop_reply;
7283
7284 again:
7285
7286 status->kind = TARGET_WAITKIND_IGNORE;
7287 status->value.integer = 0;
7288
7289 stop_reply = queued_stop_reply (ptid);
7290 if (stop_reply != NULL)
7291 return process_stop_reply (stop_reply, status);
7292
7293 if (rs->cached_wait_status)
7294 /* Use the cached wait status, but only once. */
7295 rs->cached_wait_status = 0;
7296 else
7297 {
7298 int ret;
7299 int is_notif;
7300 int forever = ((options & TARGET_WNOHANG) == 0
7301 && wait_forever_enabled_p);
7302
7303 if (!rs->waiting_for_stop_reply)
7304 {
7305 status->kind = TARGET_WAITKIND_NO_RESUMED;
7306 return minus_one_ptid;
7307 }
7308
7309 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7310 _never_ wait for ever -> test on target_is_async_p().
7311 However, before we do that we need to ensure that the caller
7312 knows how to take the target into/out of async mode. */
7313 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7314 forever, &is_notif);
7315
7316 /* GDB gets a notification. Return to core as this event is
7317 not interesting. */
7318 if (ret != -1 && is_notif)
7319 return minus_one_ptid;
7320
7321 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7322 return minus_one_ptid;
7323 }
7324
7325 buf = rs->buf;
7326
7327 /* Assume that the target has acknowledged Ctrl-C unless we receive
7328 an 'F' or 'O' packet. */
7329 if (buf[0] != 'F' && buf[0] != 'O')
7330 rs->ctrlc_pending_p = 0;
7331
7332 switch (buf[0])
7333 {
7334 case 'E': /* Error of some sort. */
7335 /* We're out of sync with the target now. Did it continue or
7336 not? Not is more likely, so report a stop. */
7337 rs->waiting_for_stop_reply = 0;
7338
7339 warning (_("Remote failure reply: %s"), buf);
7340 status->kind = TARGET_WAITKIND_STOPPED;
7341 status->value.sig = GDB_SIGNAL_0;
7342 break;
7343 case 'F': /* File-I/O request. */
7344 /* GDB may access the inferior memory while handling the File-I/O
7345 request, but we don't want GDB accessing memory while waiting
7346 for a stop reply. See the comments in putpkt_binary. Set
7347 waiting_for_stop_reply to 0 temporarily. */
7348 rs->waiting_for_stop_reply = 0;
7349 remote_fileio_request (buf, rs->ctrlc_pending_p);
7350 rs->ctrlc_pending_p = 0;
7351 /* GDB handled the File-I/O request, and the target is running
7352 again. Keep waiting for events. */
7353 rs->waiting_for_stop_reply = 1;
7354 break;
7355 case 'N': case 'T': case 'S': case 'X': case 'W':
7356 {
7357 struct stop_reply *stop_reply;
7358
7359 /* There is a stop reply to handle. */
7360 rs->waiting_for_stop_reply = 0;
7361
7362 stop_reply
7363 = (struct stop_reply *) remote_notif_parse (&notif_client_stop,
7364 rs->buf);
7365
7366 event_ptid = process_stop_reply (stop_reply, status);
7367 break;
7368 }
7369 case 'O': /* Console output. */
7370 remote_console_output (buf + 1);
7371 break;
7372 case '\0':
7373 if (rs->last_sent_signal != GDB_SIGNAL_0)
7374 {
7375 /* Zero length reply means that we tried 'S' or 'C' and the
7376 remote system doesn't support it. */
7377 target_terminal::ours_for_output ();
7378 printf_filtered
7379 ("Can't send signals to this remote system. %s not sent.\n",
7380 gdb_signal_to_name (rs->last_sent_signal));
7381 rs->last_sent_signal = GDB_SIGNAL_0;
7382 target_terminal::inferior ();
7383
7384 strcpy (buf, rs->last_sent_step ? "s" : "c");
7385 putpkt (buf);
7386 break;
7387 }
7388 /* else fallthrough */
7389 default:
7390 warning (_("Invalid remote reply: %s"), buf);
7391 break;
7392 }
7393
7394 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7395 return minus_one_ptid;
7396 else if (status->kind == TARGET_WAITKIND_IGNORE)
7397 {
7398 /* Nothing interesting happened. If we're doing a non-blocking
7399 poll, we're done. Otherwise, go back to waiting. */
7400 if (options & TARGET_WNOHANG)
7401 return minus_one_ptid;
7402 else
7403 goto again;
7404 }
7405 else if (status->kind != TARGET_WAITKIND_EXITED
7406 && status->kind != TARGET_WAITKIND_SIGNALLED)
7407 {
7408 if (!ptid_equal (event_ptid, null_ptid))
7409 record_currthread (rs, event_ptid);
7410 else
7411 event_ptid = inferior_ptid;
7412 }
7413 else
7414 /* A process exit. Invalidate our notion of current thread. */
7415 record_currthread (rs, minus_one_ptid);
7416
7417 return event_ptid;
7418 }
7419
7420 /* Wait until the remote machine stops, then return, storing status in
7421 STATUS just as `wait' would. */
7422
7423 static ptid_t
7424 remote_wait (struct target_ops *ops,
7425 ptid_t ptid, struct target_waitstatus *status, int options)
7426 {
7427 ptid_t event_ptid;
7428
7429 if (target_is_non_stop_p ())
7430 event_ptid = remote_wait_ns (ptid, status, options);
7431 else
7432 event_ptid = remote_wait_as (ptid, status, options);
7433
7434 if (target_is_async_p ())
7435 {
7436 /* If there are are events left in the queue tell the event loop
7437 to return here. */
7438 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
7439 mark_async_event_handler (remote_async_inferior_event_token);
7440 }
7441
7442 return event_ptid;
7443 }
7444
7445 /* Fetch a single register using a 'p' packet. */
7446
7447 static int
7448 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
7449 {
7450 struct gdbarch *gdbarch = regcache->arch ();
7451 struct remote_state *rs = get_remote_state ();
7452 char *buf, *p;
7453 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7454 int i;
7455
7456 if (packet_support (PACKET_p) == PACKET_DISABLE)
7457 return 0;
7458
7459 if (reg->pnum == -1)
7460 return 0;
7461
7462 p = rs->buf;
7463 *p++ = 'p';
7464 p += hexnumstr (p, reg->pnum);
7465 *p++ = '\0';
7466 putpkt (rs->buf);
7467 getpkt (&rs->buf, &rs->buf_size, 0);
7468
7469 buf = rs->buf;
7470
7471 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
7472 {
7473 case PACKET_OK:
7474 break;
7475 case PACKET_UNKNOWN:
7476 return 0;
7477 case PACKET_ERROR:
7478 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7479 gdbarch_register_name (regcache->arch (),
7480 reg->regnum),
7481 buf);
7482 }
7483
7484 /* If this register is unfetchable, tell the regcache. */
7485 if (buf[0] == 'x')
7486 {
7487 regcache_raw_supply (regcache, reg->regnum, NULL);
7488 return 1;
7489 }
7490
7491 /* Otherwise, parse and supply the value. */
7492 p = buf;
7493 i = 0;
7494 while (p[0] != 0)
7495 {
7496 if (p[1] == 0)
7497 error (_("fetch_register_using_p: early buf termination"));
7498
7499 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7500 p += 2;
7501 }
7502 regcache_raw_supply (regcache, reg->regnum, regp);
7503 return 1;
7504 }
7505
7506 /* Fetch the registers included in the target's 'g' packet. */
7507
7508 static int
7509 send_g_packet (void)
7510 {
7511 struct remote_state *rs = get_remote_state ();
7512 int buf_len;
7513
7514 xsnprintf (rs->buf, get_remote_packet_size (), "g");
7515 remote_send (&rs->buf, &rs->buf_size);
7516
7517 /* We can get out of synch in various cases. If the first character
7518 in the buffer is not a hex character, assume that has happened
7519 and try to fetch another packet to read. */
7520 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
7521 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
7522 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
7523 && rs->buf[0] != 'x') /* New: unavailable register value. */
7524 {
7525 if (remote_debug)
7526 fprintf_unfiltered (gdb_stdlog,
7527 "Bad register packet; fetching a new packet\n");
7528 getpkt (&rs->buf, &rs->buf_size, 0);
7529 }
7530
7531 buf_len = strlen (rs->buf);
7532
7533 /* Sanity check the received packet. */
7534 if (buf_len % 2 != 0)
7535 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
7536
7537 return buf_len / 2;
7538 }
7539
7540 static void
7541 process_g_packet (struct regcache *regcache)
7542 {
7543 struct gdbarch *gdbarch = regcache->arch ();
7544 struct remote_state *rs = get_remote_state ();
7545 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7546 int i, buf_len;
7547 char *p;
7548 char *regs;
7549
7550 buf_len = strlen (rs->buf);
7551
7552 /* Further sanity checks, with knowledge of the architecture. */
7553 if (buf_len > 2 * rsa->sizeof_g_packet)
7554 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
7555 "bytes): %s"), rsa->sizeof_g_packet, buf_len / 2, rs->buf);
7556
7557 /* Save the size of the packet sent to us by the target. It is used
7558 as a heuristic when determining the max size of packets that the
7559 target can safely receive. */
7560 if (rsa->actual_register_packet_size == 0)
7561 rsa->actual_register_packet_size = buf_len;
7562
7563 /* If this is smaller than we guessed the 'g' packet would be,
7564 update our records. A 'g' reply that doesn't include a register's
7565 value implies either that the register is not available, or that
7566 the 'p' packet must be used. */
7567 if (buf_len < 2 * rsa->sizeof_g_packet)
7568 {
7569 long sizeof_g_packet = buf_len / 2;
7570
7571 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7572 {
7573 long offset = rsa->regs[i].offset;
7574 long reg_size = register_size (gdbarch, i);
7575
7576 if (rsa->regs[i].pnum == -1)
7577 continue;
7578
7579 if (offset >= sizeof_g_packet)
7580 rsa->regs[i].in_g_packet = 0;
7581 else if (offset + reg_size > sizeof_g_packet)
7582 error (_("Truncated register %d in remote 'g' packet"), i);
7583 else
7584 rsa->regs[i].in_g_packet = 1;
7585 }
7586
7587 /* Looks valid enough, we can assume this is the correct length
7588 for a 'g' packet. It's important not to adjust
7589 rsa->sizeof_g_packet if we have truncated registers otherwise
7590 this "if" won't be run the next time the method is called
7591 with a packet of the same size and one of the internal errors
7592 below will trigger instead. */
7593 rsa->sizeof_g_packet = sizeof_g_packet;
7594 }
7595
7596 regs = (char *) alloca (rsa->sizeof_g_packet);
7597
7598 /* Unimplemented registers read as all bits zero. */
7599 memset (regs, 0, rsa->sizeof_g_packet);
7600
7601 /* Reply describes registers byte by byte, each byte encoded as two
7602 hex characters. Suck them all up, then supply them to the
7603 register cacheing/storage mechanism. */
7604
7605 p = rs->buf;
7606 for (i = 0; i < rsa->sizeof_g_packet; i++)
7607 {
7608 if (p[0] == 0 || p[1] == 0)
7609 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
7610 internal_error (__FILE__, __LINE__,
7611 _("unexpected end of 'g' packet reply"));
7612
7613 if (p[0] == 'x' && p[1] == 'x')
7614 regs[i] = 0; /* 'x' */
7615 else
7616 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
7617 p += 2;
7618 }
7619
7620 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7621 {
7622 struct packet_reg *r = &rsa->regs[i];
7623 long reg_size = register_size (gdbarch, i);
7624
7625 if (r->in_g_packet)
7626 {
7627 if ((r->offset + reg_size) * 2 > strlen (rs->buf))
7628 /* This shouldn't happen - we adjusted in_g_packet above. */
7629 internal_error (__FILE__, __LINE__,
7630 _("unexpected end of 'g' packet reply"));
7631 else if (rs->buf[r->offset * 2] == 'x')
7632 {
7633 gdb_assert (r->offset * 2 < strlen (rs->buf));
7634 /* The register isn't available, mark it as such (at
7635 the same time setting the value to zero). */
7636 regcache_raw_supply (regcache, r->regnum, NULL);
7637 }
7638 else
7639 regcache_raw_supply (regcache, r->regnum,
7640 regs + r->offset);
7641 }
7642 }
7643 }
7644
7645 static void
7646 fetch_registers_using_g (struct regcache *regcache)
7647 {
7648 send_g_packet ();
7649 process_g_packet (regcache);
7650 }
7651
7652 /* Make the remote selected traceframe match GDB's selected
7653 traceframe. */
7654
7655 static void
7656 set_remote_traceframe (void)
7657 {
7658 int newnum;
7659 struct remote_state *rs = get_remote_state ();
7660
7661 if (rs->remote_traceframe_number == get_traceframe_number ())
7662 return;
7663
7664 /* Avoid recursion, remote_trace_find calls us again. */
7665 rs->remote_traceframe_number = get_traceframe_number ();
7666
7667 newnum = target_trace_find (tfind_number,
7668 get_traceframe_number (), 0, 0, NULL);
7669
7670 /* Should not happen. If it does, all bets are off. */
7671 if (newnum != get_traceframe_number ())
7672 warning (_("could not set remote traceframe"));
7673 }
7674
7675 static void
7676 remote_fetch_registers (struct target_ops *ops,
7677 struct regcache *regcache, int regnum)
7678 {
7679 struct gdbarch *gdbarch = regcache->arch ();
7680 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7681 int i;
7682
7683 set_remote_traceframe ();
7684 set_general_thread (regcache_get_ptid (regcache));
7685
7686 if (regnum >= 0)
7687 {
7688 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
7689
7690 gdb_assert (reg != NULL);
7691
7692 /* If this register might be in the 'g' packet, try that first -
7693 we are likely to read more than one register. If this is the
7694 first 'g' packet, we might be overly optimistic about its
7695 contents, so fall back to 'p'. */
7696 if (reg->in_g_packet)
7697 {
7698 fetch_registers_using_g (regcache);
7699 if (reg->in_g_packet)
7700 return;
7701 }
7702
7703 if (fetch_register_using_p (regcache, reg))
7704 return;
7705
7706 /* This register is not available. */
7707 regcache_raw_supply (regcache, reg->regnum, NULL);
7708
7709 return;
7710 }
7711
7712 fetch_registers_using_g (regcache);
7713
7714 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7715 if (!rsa->regs[i].in_g_packet)
7716 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
7717 {
7718 /* This register is not available. */
7719 regcache_raw_supply (regcache, i, NULL);
7720 }
7721 }
7722
7723 /* Prepare to store registers. Since we may send them all (using a
7724 'G' request), we have to read out the ones we don't want to change
7725 first. */
7726
7727 static void
7728 remote_prepare_to_store (struct target_ops *self, struct regcache *regcache)
7729 {
7730 remote_arch_state *rsa = get_remote_arch_state (regcache->arch ());
7731 int i;
7732
7733 /* Make sure the entire registers array is valid. */
7734 switch (packet_support (PACKET_P))
7735 {
7736 case PACKET_DISABLE:
7737 case PACKET_SUPPORT_UNKNOWN:
7738 /* Make sure all the necessary registers are cached. */
7739 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
7740 if (rsa->regs[i].in_g_packet)
7741 regcache_raw_update (regcache, rsa->regs[i].regnum);
7742 break;
7743 case PACKET_ENABLE:
7744 break;
7745 }
7746 }
7747
7748 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
7749 packet was not recognized. */
7750
7751 static int
7752 store_register_using_P (const struct regcache *regcache,
7753 struct packet_reg *reg)
7754 {
7755 struct gdbarch *gdbarch = regcache->arch ();
7756 struct remote_state *rs = get_remote_state ();
7757 /* Try storing a single register. */
7758 char *buf = rs->buf;
7759 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7760 char *p;
7761
7762 if (packet_support (PACKET_P) == PACKET_DISABLE)
7763 return 0;
7764
7765 if (reg->pnum == -1)
7766 return 0;
7767
7768 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
7769 p = buf + strlen (buf);
7770 regcache_raw_collect (regcache, reg->regnum, regp);
7771 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
7772 putpkt (rs->buf);
7773 getpkt (&rs->buf, &rs->buf_size, 0);
7774
7775 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
7776 {
7777 case PACKET_OK:
7778 return 1;
7779 case PACKET_ERROR:
7780 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
7781 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
7782 case PACKET_UNKNOWN:
7783 return 0;
7784 default:
7785 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
7786 }
7787 }
7788
7789 /* Store register REGNUM, or all registers if REGNUM == -1, from the
7790 contents of the register cache buffer. FIXME: ignores errors. */
7791
7792 static void
7793 store_registers_using_G (const struct regcache *regcache)
7794 {
7795 struct remote_state *rs = get_remote_state ();
7796 remote_arch_state *rsa = get_remote_arch_state (regcache->arch ());
7797 gdb_byte *regs;
7798 char *p;
7799
7800 /* Extract all the registers in the regcache copying them into a
7801 local buffer. */
7802 {
7803 int i;
7804
7805 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
7806 memset (regs, 0, rsa->sizeof_g_packet);
7807 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
7808 {
7809 struct packet_reg *r = &rsa->regs[i];
7810
7811 if (r->in_g_packet)
7812 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
7813 }
7814 }
7815
7816 /* Command describes registers byte by byte,
7817 each byte encoded as two hex characters. */
7818 p = rs->buf;
7819 *p++ = 'G';
7820 bin2hex (regs, p, rsa->sizeof_g_packet);
7821 putpkt (rs->buf);
7822 getpkt (&rs->buf, &rs->buf_size, 0);
7823 if (packet_check_result (rs->buf) == PACKET_ERROR)
7824 error (_("Could not write registers; remote failure reply '%s'"),
7825 rs->buf);
7826 }
7827
7828 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
7829 of the register cache buffer. FIXME: ignores errors. */
7830
7831 static void
7832 remote_store_registers (struct target_ops *ops,
7833 struct regcache *regcache, int regnum)
7834 {
7835 struct gdbarch *gdbarch = regcache->arch ();
7836 remote_arch_state *rsa = get_remote_arch_state (gdbarch);
7837 int i;
7838
7839 set_remote_traceframe ();
7840 set_general_thread (regcache_get_ptid (regcache));
7841
7842 if (regnum >= 0)
7843 {
7844 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
7845
7846 gdb_assert (reg != NULL);
7847
7848 /* Always prefer to store registers using the 'P' packet if
7849 possible; we often change only a small number of registers.
7850 Sometimes we change a larger number; we'd need help from a
7851 higher layer to know to use 'G'. */
7852 if (store_register_using_P (regcache, reg))
7853 return;
7854
7855 /* For now, don't complain if we have no way to write the
7856 register. GDB loses track of unavailable registers too
7857 easily. Some day, this may be an error. We don't have
7858 any way to read the register, either... */
7859 if (!reg->in_g_packet)
7860 return;
7861
7862 store_registers_using_G (regcache);
7863 return;
7864 }
7865
7866 store_registers_using_G (regcache);
7867
7868 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
7869 if (!rsa->regs[i].in_g_packet)
7870 if (!store_register_using_P (regcache, &rsa->regs[i]))
7871 /* See above for why we do not issue an error here. */
7872 continue;
7873 }
7874 \f
7875
7876 /* Return the number of hex digits in num. */
7877
7878 static int
7879 hexnumlen (ULONGEST num)
7880 {
7881 int i;
7882
7883 for (i = 0; num != 0; i++)
7884 num >>= 4;
7885
7886 return std::max (i, 1);
7887 }
7888
7889 /* Set BUF to the minimum number of hex digits representing NUM. */
7890
7891 static int
7892 hexnumstr (char *buf, ULONGEST num)
7893 {
7894 int len = hexnumlen (num);
7895
7896 return hexnumnstr (buf, num, len);
7897 }
7898
7899
7900 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
7901
7902 static int
7903 hexnumnstr (char *buf, ULONGEST num, int width)
7904 {
7905 int i;
7906
7907 buf[width] = '\0';
7908
7909 for (i = width - 1; i >= 0; i--)
7910 {
7911 buf[i] = "0123456789abcdef"[(num & 0xf)];
7912 num >>= 4;
7913 }
7914
7915 return width;
7916 }
7917
7918 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
7919
7920 static CORE_ADDR
7921 remote_address_masked (CORE_ADDR addr)
7922 {
7923 unsigned int address_size = remote_address_size;
7924
7925 /* If "remoteaddresssize" was not set, default to target address size. */
7926 if (!address_size)
7927 address_size = gdbarch_addr_bit (target_gdbarch ());
7928
7929 if (address_size > 0
7930 && address_size < (sizeof (ULONGEST) * 8))
7931 {
7932 /* Only create a mask when that mask can safely be constructed
7933 in a ULONGEST variable. */
7934 ULONGEST mask = 1;
7935
7936 mask = (mask << address_size) - 1;
7937 addr &= mask;
7938 }
7939 return addr;
7940 }
7941
7942 /* Determine whether the remote target supports binary downloading.
7943 This is accomplished by sending a no-op memory write of zero length
7944 to the target at the specified address. It does not suffice to send
7945 the whole packet, since many stubs strip the eighth bit and
7946 subsequently compute a wrong checksum, which causes real havoc with
7947 remote_write_bytes.
7948
7949 NOTE: This can still lose if the serial line is not eight-bit
7950 clean. In cases like this, the user should clear "remote
7951 X-packet". */
7952
7953 static void
7954 check_binary_download (CORE_ADDR addr)
7955 {
7956 struct remote_state *rs = get_remote_state ();
7957
7958 switch (packet_support (PACKET_X))
7959 {
7960 case PACKET_DISABLE:
7961 break;
7962 case PACKET_ENABLE:
7963 break;
7964 case PACKET_SUPPORT_UNKNOWN:
7965 {
7966 char *p;
7967
7968 p = rs->buf;
7969 *p++ = 'X';
7970 p += hexnumstr (p, (ULONGEST) addr);
7971 *p++ = ',';
7972 p += hexnumstr (p, (ULONGEST) 0);
7973 *p++ = ':';
7974 *p = '\0';
7975
7976 putpkt_binary (rs->buf, (int) (p - rs->buf));
7977 getpkt (&rs->buf, &rs->buf_size, 0);
7978
7979 if (rs->buf[0] == '\0')
7980 {
7981 if (remote_debug)
7982 fprintf_unfiltered (gdb_stdlog,
7983 "binary downloading NOT "
7984 "supported by target\n");
7985 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
7986 }
7987 else
7988 {
7989 if (remote_debug)
7990 fprintf_unfiltered (gdb_stdlog,
7991 "binary downloading supported by target\n");
7992 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
7993 }
7994 break;
7995 }
7996 }
7997 }
7998
7999 /* Helper function to resize the payload in order to try to get a good
8000 alignment. We try to write an amount of data such that the next write will
8001 start on an address aligned on REMOTE_ALIGN_WRITES. */
8002
8003 static int
8004 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8005 {
8006 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8007 }
8008
8009 /* Write memory data directly to the remote machine.
8010 This does not inform the data cache; the data cache uses this.
8011 HEADER is the starting part of the packet.
8012 MEMADDR is the address in the remote memory space.
8013 MYADDR is the address of the buffer in our space.
8014 LEN_UNITS is the number of addressable units to write.
8015 UNIT_SIZE is the length in bytes of an addressable unit.
8016 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8017 should send data as binary ('X'), or hex-encoded ('M').
8018
8019 The function creates packet of the form
8020 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8021
8022 where encoding of <DATA> is terminated by PACKET_FORMAT.
8023
8024 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8025 are omitted.
8026
8027 Return the transferred status, error or OK (an
8028 'enum target_xfer_status' value). Save the number of addressable units
8029 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8030
8031 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8032 exchange between gdb and the stub could look like (?? in place of the
8033 checksum):
8034
8035 -> $m1000,4#??
8036 <- aaaabbbbccccdddd
8037
8038 -> $M1000,3:eeeeffffeeee#??
8039 <- OK
8040
8041 -> $m1000,4#??
8042 <- eeeeffffeeeedddd */
8043
8044 static enum target_xfer_status
8045 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8046 const gdb_byte *myaddr, ULONGEST len_units,
8047 int unit_size, ULONGEST *xfered_len_units,
8048 char packet_format, int use_length)
8049 {
8050 struct remote_state *rs = get_remote_state ();
8051 char *p;
8052 char *plen = NULL;
8053 int plenlen = 0;
8054 int todo_units;
8055 int units_written;
8056 int payload_capacity_bytes;
8057 int payload_length_bytes;
8058
8059 if (packet_format != 'X' && packet_format != 'M')
8060 internal_error (__FILE__, __LINE__,
8061 _("remote_write_bytes_aux: bad packet format"));
8062
8063 if (len_units == 0)
8064 return TARGET_XFER_EOF;
8065
8066 payload_capacity_bytes = get_memory_write_packet_size ();
8067
8068 /* The packet buffer will be large enough for the payload;
8069 get_memory_packet_size ensures this. */
8070 rs->buf[0] = '\0';
8071
8072 /* Compute the size of the actual payload by subtracting out the
8073 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8074
8075 payload_capacity_bytes -= strlen ("$,:#NN");
8076 if (!use_length)
8077 /* The comma won't be used. */
8078 payload_capacity_bytes += 1;
8079 payload_capacity_bytes -= strlen (header);
8080 payload_capacity_bytes -= hexnumlen (memaddr);
8081
8082 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8083
8084 strcat (rs->buf, header);
8085 p = rs->buf + strlen (header);
8086
8087 /* Compute a best guess of the number of bytes actually transfered. */
8088 if (packet_format == 'X')
8089 {
8090 /* Best guess at number of bytes that will fit. */
8091 todo_units = std::min (len_units,
8092 (ULONGEST) payload_capacity_bytes / unit_size);
8093 if (use_length)
8094 payload_capacity_bytes -= hexnumlen (todo_units);
8095 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8096 }
8097 else
8098 {
8099 /* Number of bytes that will fit. */
8100 todo_units
8101 = std::min (len_units,
8102 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8103 if (use_length)
8104 payload_capacity_bytes -= hexnumlen (todo_units);
8105 todo_units = std::min (todo_units,
8106 (payload_capacity_bytes / unit_size) / 2);
8107 }
8108
8109 if (todo_units <= 0)
8110 internal_error (__FILE__, __LINE__,
8111 _("minimum packet size too small to write data"));
8112
8113 /* If we already need another packet, then try to align the end
8114 of this packet to a useful boundary. */
8115 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8116 todo_units = align_for_efficient_write (todo_units, memaddr);
8117
8118 /* Append "<memaddr>". */
8119 memaddr = remote_address_masked (memaddr);
8120 p += hexnumstr (p, (ULONGEST) memaddr);
8121
8122 if (use_length)
8123 {
8124 /* Append ",". */
8125 *p++ = ',';
8126
8127 /* Append the length and retain its location and size. It may need to be
8128 adjusted once the packet body has been created. */
8129 plen = p;
8130 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8131 p += plenlen;
8132 }
8133
8134 /* Append ":". */
8135 *p++ = ':';
8136 *p = '\0';
8137
8138 /* Append the packet body. */
8139 if (packet_format == 'X')
8140 {
8141 /* Binary mode. Send target system values byte by byte, in
8142 increasing byte addresses. Only escape certain critical
8143 characters. */
8144 payload_length_bytes =
8145 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8146 &units_written, payload_capacity_bytes);
8147
8148 /* If not all TODO units fit, then we'll need another packet. Make
8149 a second try to keep the end of the packet aligned. Don't do
8150 this if the packet is tiny. */
8151 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8152 {
8153 int new_todo_units;
8154
8155 new_todo_units = align_for_efficient_write (units_written, memaddr);
8156
8157 if (new_todo_units != units_written)
8158 payload_length_bytes =
8159 remote_escape_output (myaddr, new_todo_units, unit_size,
8160 (gdb_byte *) p, &units_written,
8161 payload_capacity_bytes);
8162 }
8163
8164 p += payload_length_bytes;
8165 if (use_length && units_written < todo_units)
8166 {
8167 /* Escape chars have filled up the buffer prematurely,
8168 and we have actually sent fewer units than planned.
8169 Fix-up the length field of the packet. Use the same
8170 number of characters as before. */
8171 plen += hexnumnstr (plen, (ULONGEST) units_written,
8172 plenlen);
8173 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8174 }
8175 }
8176 else
8177 {
8178 /* Normal mode: Send target system values byte by byte, in
8179 increasing byte addresses. Each byte is encoded as a two hex
8180 value. */
8181 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8182 units_written = todo_units;
8183 }
8184
8185 putpkt_binary (rs->buf, (int) (p - rs->buf));
8186 getpkt (&rs->buf, &rs->buf_size, 0);
8187
8188 if (rs->buf[0] == 'E')
8189 return TARGET_XFER_E_IO;
8190
8191 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8192 send fewer units than we'd planned. */
8193 *xfered_len_units = (ULONGEST) units_written;
8194 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8195 }
8196
8197 /* Write memory data directly to the remote machine.
8198 This does not inform the data cache; the data cache uses this.
8199 MEMADDR is the address in the remote memory space.
8200 MYADDR is the address of the buffer in our space.
8201 LEN is the number of bytes.
8202
8203 Return the transferred status, error or OK (an
8204 'enum target_xfer_status' value). Save the number of bytes
8205 transferred in *XFERED_LEN. Only transfer a single packet. */
8206
8207 static enum target_xfer_status
8208 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ULONGEST len,
8209 int unit_size, ULONGEST *xfered_len)
8210 {
8211 const char *packet_format = NULL;
8212
8213 /* Check whether the target supports binary download. */
8214 check_binary_download (memaddr);
8215
8216 switch (packet_support (PACKET_X))
8217 {
8218 case PACKET_ENABLE:
8219 packet_format = "X";
8220 break;
8221 case PACKET_DISABLE:
8222 packet_format = "M";
8223 break;
8224 case PACKET_SUPPORT_UNKNOWN:
8225 internal_error (__FILE__, __LINE__,
8226 _("remote_write_bytes: bad internal state"));
8227 default:
8228 internal_error (__FILE__, __LINE__, _("bad switch"));
8229 }
8230
8231 return remote_write_bytes_aux (packet_format,
8232 memaddr, myaddr, len, unit_size, xfered_len,
8233 packet_format[0], 1);
8234 }
8235
8236 /* Read memory data directly from the remote machine.
8237 This does not use the data cache; the data cache uses this.
8238 MEMADDR is the address in the remote memory space.
8239 MYADDR is the address of the buffer in our space.
8240 LEN_UNITS is the number of addressable memory units to read..
8241 UNIT_SIZE is the length in bytes of an addressable unit.
8242
8243 Return the transferred status, error or OK (an
8244 'enum target_xfer_status' value). Save the number of bytes
8245 transferred in *XFERED_LEN_UNITS.
8246
8247 See the comment of remote_write_bytes_aux for an example of
8248 memory read/write exchange between gdb and the stub. */
8249
8250 static enum target_xfer_status
8251 remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr, ULONGEST len_units,
8252 int unit_size, ULONGEST *xfered_len_units)
8253 {
8254 struct remote_state *rs = get_remote_state ();
8255 int buf_size_bytes; /* Max size of packet output buffer. */
8256 char *p;
8257 int todo_units;
8258 int decoded_bytes;
8259
8260 buf_size_bytes = get_memory_read_packet_size ();
8261 /* The packet buffer will be large enough for the payload;
8262 get_memory_packet_size ensures this. */
8263
8264 /* Number of units that will fit. */
8265 todo_units = std::min (len_units,
8266 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8267
8268 /* Construct "m"<memaddr>","<len>". */
8269 memaddr = remote_address_masked (memaddr);
8270 p = rs->buf;
8271 *p++ = 'm';
8272 p += hexnumstr (p, (ULONGEST) memaddr);
8273 *p++ = ',';
8274 p += hexnumstr (p, (ULONGEST) todo_units);
8275 *p = '\0';
8276 putpkt (rs->buf);
8277 getpkt (&rs->buf, &rs->buf_size, 0);
8278 if (rs->buf[0] == 'E'
8279 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8280 && rs->buf[3] == '\0')
8281 return TARGET_XFER_E_IO;
8282 /* Reply describes memory byte by byte, each byte encoded as two hex
8283 characters. */
8284 p = rs->buf;
8285 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8286 /* Return what we have. Let higher layers handle partial reads. */
8287 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8288 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8289 }
8290
8291 /* Using the set of read-only target sections of remote, read live
8292 read-only memory.
8293
8294 For interface/parameters/return description see target.h,
8295 to_xfer_partial. */
8296
8297 static enum target_xfer_status
8298 remote_xfer_live_readonly_partial (struct target_ops *ops, gdb_byte *readbuf,
8299 ULONGEST memaddr, ULONGEST len,
8300 int unit_size, ULONGEST *xfered_len)
8301 {
8302 struct target_section *secp;
8303 struct target_section_table *table;
8304
8305 secp = target_section_by_addr (ops, memaddr);
8306 if (secp != NULL
8307 && (bfd_get_section_flags (secp->the_bfd_section->owner,
8308 secp->the_bfd_section)
8309 & SEC_READONLY))
8310 {
8311 struct target_section *p;
8312 ULONGEST memend = memaddr + len;
8313
8314 table = target_get_section_table (ops);
8315
8316 for (p = table->sections; p < table->sections_end; p++)
8317 {
8318 if (memaddr >= p->addr)
8319 {
8320 if (memend <= p->endaddr)
8321 {
8322 /* Entire transfer is within this section. */
8323 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8324 xfered_len);
8325 }
8326 else if (memaddr >= p->endaddr)
8327 {
8328 /* This section ends before the transfer starts. */
8329 continue;
8330 }
8331 else
8332 {
8333 /* This section overlaps the transfer. Just do half. */
8334 len = p->endaddr - memaddr;
8335 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8336 xfered_len);
8337 }
8338 }
8339 }
8340 }
8341
8342 return TARGET_XFER_EOF;
8343 }
8344
8345 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8346 first if the requested memory is unavailable in traceframe.
8347 Otherwise, fall back to remote_read_bytes_1. */
8348
8349 static enum target_xfer_status
8350 remote_read_bytes (struct target_ops *ops, CORE_ADDR memaddr,
8351 gdb_byte *myaddr, ULONGEST len, int unit_size,
8352 ULONGEST *xfered_len)
8353 {
8354 if (len == 0)
8355 return TARGET_XFER_EOF;
8356
8357 if (get_traceframe_number () != -1)
8358 {
8359 std::vector<mem_range> available;
8360
8361 /* If we fail to get the set of available memory, then the
8362 target does not support querying traceframe info, and so we
8363 attempt reading from the traceframe anyway (assuming the
8364 target implements the old QTro packet then). */
8365 if (traceframe_available_memory (&available, memaddr, len))
8366 {
8367 if (available.empty () || available[0].start != memaddr)
8368 {
8369 enum target_xfer_status res;
8370
8371 /* Don't read into the traceframe's available
8372 memory. */
8373 if (!available.empty ())
8374 {
8375 LONGEST oldlen = len;
8376
8377 len = available[0].start - memaddr;
8378 gdb_assert (len <= oldlen);
8379 }
8380
8381 /* This goes through the topmost target again. */
8382 res = remote_xfer_live_readonly_partial (ops, myaddr, memaddr,
8383 len, unit_size, xfered_len);
8384 if (res == TARGET_XFER_OK)
8385 return TARGET_XFER_OK;
8386 else
8387 {
8388 /* No use trying further, we know some memory starting
8389 at MEMADDR isn't available. */
8390 *xfered_len = len;
8391 return (*xfered_len != 0) ?
8392 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8393 }
8394 }
8395
8396 /* Don't try to read more than how much is available, in
8397 case the target implements the deprecated QTro packet to
8398 cater for older GDBs (the target's knowledge of read-only
8399 sections may be outdated by now). */
8400 len = available[0].length;
8401 }
8402 }
8403
8404 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8405 }
8406
8407 \f
8408
8409 /* Sends a packet with content determined by the printf format string
8410 FORMAT and the remaining arguments, then gets the reply. Returns
8411 whether the packet was a success, a failure, or unknown. */
8412
8413 static enum packet_result remote_send_printf (const char *format, ...)
8414 ATTRIBUTE_PRINTF (1, 2);
8415
8416 static enum packet_result
8417 remote_send_printf (const char *format, ...)
8418 {
8419 struct remote_state *rs = get_remote_state ();
8420 int max_size = get_remote_packet_size ();
8421 va_list ap;
8422
8423 va_start (ap, format);
8424
8425 rs->buf[0] = '\0';
8426 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
8427 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8428
8429 if (putpkt (rs->buf) < 0)
8430 error (_("Communication problem with target."));
8431
8432 rs->buf[0] = '\0';
8433 getpkt (&rs->buf, &rs->buf_size, 0);
8434
8435 return packet_check_result (rs->buf);
8436 }
8437
8438 /* Flash writing can take quite some time. We'll set
8439 effectively infinite timeout for flash operations.
8440 In future, we'll need to decide on a better approach. */
8441 static const int remote_flash_timeout = 1000;
8442
8443 static void
8444 remote_flash_erase (struct target_ops *ops,
8445 ULONGEST address, LONGEST length)
8446 {
8447 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8448 enum packet_result ret;
8449 scoped_restore restore_timeout
8450 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8451
8452 ret = remote_send_printf ("vFlashErase:%s,%s",
8453 phex (address, addr_size),
8454 phex (length, 4));
8455 switch (ret)
8456 {
8457 case PACKET_UNKNOWN:
8458 error (_("Remote target does not support flash erase"));
8459 case PACKET_ERROR:
8460 error (_("Error erasing flash with vFlashErase packet"));
8461 default:
8462 break;
8463 }
8464 }
8465
8466 static enum target_xfer_status
8467 remote_flash_write (struct target_ops *ops, ULONGEST address,
8468 ULONGEST length, ULONGEST *xfered_len,
8469 const gdb_byte *data)
8470 {
8471 scoped_restore restore_timeout
8472 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8473 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8474 xfered_len,'X', 0);
8475 }
8476
8477 static void
8478 remote_flash_done (struct target_ops *ops)
8479 {
8480 int ret;
8481
8482 scoped_restore restore_timeout
8483 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8484
8485 ret = remote_send_printf ("vFlashDone");
8486
8487 switch (ret)
8488 {
8489 case PACKET_UNKNOWN:
8490 error (_("Remote target does not support vFlashDone"));
8491 case PACKET_ERROR:
8492 error (_("Error finishing flash operation"));
8493 default:
8494 break;
8495 }
8496 }
8497
8498 static void
8499 remote_files_info (struct target_ops *ignore)
8500 {
8501 puts_filtered ("Debugging a target over a serial line.\n");
8502 }
8503 \f
8504 /* Stuff for dealing with the packets which are part of this protocol.
8505 See comment at top of file for details. */
8506
8507 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8508 error to higher layers. Called when a serial error is detected.
8509 The exception message is STRING, followed by a colon and a blank,
8510 the system error message for errno at function entry and final dot
8511 for output compatibility with throw_perror_with_name. */
8512
8513 static void
8514 unpush_and_perror (const char *string)
8515 {
8516 int saved_errno = errno;
8517
8518 remote_unpush_target ();
8519 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
8520 safe_strerror (saved_errno));
8521 }
8522
8523 /* Read a single character from the remote end. The current quit
8524 handler is overridden to avoid quitting in the middle of packet
8525 sequence, as that would break communication with the remote server.
8526 See remote_serial_quit_handler for more detail. */
8527
8528 static int
8529 readchar (int timeout)
8530 {
8531 int ch;
8532 struct remote_state *rs = get_remote_state ();
8533
8534 {
8535 scoped_restore restore_quit
8536 = make_scoped_restore (&quit_handler, remote_serial_quit_handler);
8537
8538 rs->got_ctrlc_during_io = 0;
8539
8540 ch = serial_readchar (rs->remote_desc, timeout);
8541
8542 if (rs->got_ctrlc_during_io)
8543 set_quit_flag ();
8544 }
8545
8546 if (ch >= 0)
8547 return ch;
8548
8549 switch ((enum serial_rc) ch)
8550 {
8551 case SERIAL_EOF:
8552 remote_unpush_target ();
8553 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
8554 /* no return */
8555 case SERIAL_ERROR:
8556 unpush_and_perror (_("Remote communication error. "
8557 "Target disconnected."));
8558 /* no return */
8559 case SERIAL_TIMEOUT:
8560 break;
8561 }
8562 return ch;
8563 }
8564
8565 /* Wrapper for serial_write that closes the target and throws if
8566 writing fails. The current quit handler is overridden to avoid
8567 quitting in the middle of packet sequence, as that would break
8568 communication with the remote server. See
8569 remote_serial_quit_handler for more detail. */
8570
8571 static void
8572 remote_serial_write (const char *str, int len)
8573 {
8574 struct remote_state *rs = get_remote_state ();
8575
8576 scoped_restore restore_quit
8577 = make_scoped_restore (&quit_handler, remote_serial_quit_handler);
8578
8579 rs->got_ctrlc_during_io = 0;
8580
8581 if (serial_write (rs->remote_desc, str, len))
8582 {
8583 unpush_and_perror (_("Remote communication error. "
8584 "Target disconnected."));
8585 }
8586
8587 if (rs->got_ctrlc_during_io)
8588 set_quit_flag ();
8589 }
8590
8591 /* Send the command in *BUF to the remote machine, and read the reply
8592 into *BUF. Report an error if we get an error reply. Resize
8593 *BUF using xrealloc if necessary to hold the result, and update
8594 *SIZEOF_BUF. */
8595
8596 static void
8597 remote_send (char **buf,
8598 long *sizeof_buf)
8599 {
8600 putpkt (*buf);
8601 getpkt (buf, sizeof_buf, 0);
8602
8603 if ((*buf)[0] == 'E')
8604 error (_("Remote failure reply: %s"), *buf);
8605 }
8606
8607 /* Return a string representing an escaped version of BUF, of len N.
8608 E.g. \n is converted to \\n, \t to \\t, etc. */
8609
8610 static std::string
8611 escape_buffer (const char *buf, int n)
8612 {
8613 string_file stb;
8614
8615 stb.putstrn (buf, n, '\\');
8616 return std::move (stb.string ());
8617 }
8618
8619 /* Display a null-terminated packet on stdout, for debugging, using C
8620 string notation. */
8621
8622 static void
8623 print_packet (const char *buf)
8624 {
8625 puts_filtered ("\"");
8626 fputstr_filtered (buf, '"', gdb_stdout);
8627 puts_filtered ("\"");
8628 }
8629
8630 int
8631 putpkt (const char *buf)
8632 {
8633 return putpkt_binary (buf, strlen (buf));
8634 }
8635
8636 /* Send a packet to the remote machine, with error checking. The data
8637 of the packet is in BUF. The string in BUF can be at most
8638 get_remote_packet_size () - 5 to account for the $, # and checksum,
8639 and for a possible /0 if we are debugging (remote_debug) and want
8640 to print the sent packet as a string. */
8641
8642 static int
8643 putpkt_binary (const char *buf, int cnt)
8644 {
8645 struct remote_state *rs = get_remote_state ();
8646 int i;
8647 unsigned char csum = 0;
8648 gdb::def_vector<char> data (cnt + 6);
8649 char *buf2 = data.data ();
8650
8651 int ch;
8652 int tcount = 0;
8653 char *p;
8654
8655 /* Catch cases like trying to read memory or listing threads while
8656 we're waiting for a stop reply. The remote server wouldn't be
8657 ready to handle this request, so we'd hang and timeout. We don't
8658 have to worry about this in synchronous mode, because in that
8659 case it's not possible to issue a command while the target is
8660 running. This is not a problem in non-stop mode, because in that
8661 case, the stub is always ready to process serial input. */
8662 if (!target_is_non_stop_p ()
8663 && target_is_async_p ()
8664 && rs->waiting_for_stop_reply)
8665 {
8666 error (_("Cannot execute this command while the target is running.\n"
8667 "Use the \"interrupt\" command to stop the target\n"
8668 "and then try again."));
8669 }
8670
8671 /* We're sending out a new packet. Make sure we don't look at a
8672 stale cached response. */
8673 rs->cached_wait_status = 0;
8674
8675 /* Copy the packet into buffer BUF2, encapsulating it
8676 and giving it a checksum. */
8677
8678 p = buf2;
8679 *p++ = '$';
8680
8681 for (i = 0; i < cnt; i++)
8682 {
8683 csum += buf[i];
8684 *p++ = buf[i];
8685 }
8686 *p++ = '#';
8687 *p++ = tohex ((csum >> 4) & 0xf);
8688 *p++ = tohex (csum & 0xf);
8689
8690 /* Send it over and over until we get a positive ack. */
8691
8692 while (1)
8693 {
8694 int started_error_output = 0;
8695
8696 if (remote_debug)
8697 {
8698 *p = '\0';
8699
8700 int len = (int) (p - buf2);
8701
8702 std::string str
8703 = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
8704
8705 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
8706
8707 if (len > REMOTE_DEBUG_MAX_CHAR)
8708 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
8709 len - REMOTE_DEBUG_MAX_CHAR);
8710
8711 fprintf_unfiltered (gdb_stdlog, "...");
8712
8713 gdb_flush (gdb_stdlog);
8714 }
8715 remote_serial_write (buf2, p - buf2);
8716
8717 /* If this is a no acks version of the remote protocol, send the
8718 packet and move on. */
8719 if (rs->noack_mode)
8720 break;
8721
8722 /* Read until either a timeout occurs (-2) or '+' is read.
8723 Handle any notification that arrives in the mean time. */
8724 while (1)
8725 {
8726 ch = readchar (remote_timeout);
8727
8728 if (remote_debug)
8729 {
8730 switch (ch)
8731 {
8732 case '+':
8733 case '-':
8734 case SERIAL_TIMEOUT:
8735 case '$':
8736 case '%':
8737 if (started_error_output)
8738 {
8739 putchar_unfiltered ('\n');
8740 started_error_output = 0;
8741 }
8742 }
8743 }
8744
8745 switch (ch)
8746 {
8747 case '+':
8748 if (remote_debug)
8749 fprintf_unfiltered (gdb_stdlog, "Ack\n");
8750 return 1;
8751 case '-':
8752 if (remote_debug)
8753 fprintf_unfiltered (gdb_stdlog, "Nak\n");
8754 /* FALLTHROUGH */
8755 case SERIAL_TIMEOUT:
8756 tcount++;
8757 if (tcount > 3)
8758 return 0;
8759 break; /* Retransmit buffer. */
8760 case '$':
8761 {
8762 if (remote_debug)
8763 fprintf_unfiltered (gdb_stdlog,
8764 "Packet instead of Ack, ignoring it\n");
8765 /* It's probably an old response sent because an ACK
8766 was lost. Gobble up the packet and ack it so it
8767 doesn't get retransmitted when we resend this
8768 packet. */
8769 skip_frame ();
8770 remote_serial_write ("+", 1);
8771 continue; /* Now, go look for +. */
8772 }
8773
8774 case '%':
8775 {
8776 int val;
8777
8778 /* If we got a notification, handle it, and go back to looking
8779 for an ack. */
8780 /* We've found the start of a notification. Now
8781 collect the data. */
8782 val = read_frame (&rs->buf, &rs->buf_size);
8783 if (val >= 0)
8784 {
8785 if (remote_debug)
8786 {
8787 std::string str = escape_buffer (rs->buf, val);
8788
8789 fprintf_unfiltered (gdb_stdlog,
8790 " Notification received: %s\n",
8791 str.c_str ());
8792 }
8793 handle_notification (rs->notif_state, rs->buf);
8794 /* We're in sync now, rewait for the ack. */
8795 tcount = 0;
8796 }
8797 else
8798 {
8799 if (remote_debug)
8800 {
8801 if (!started_error_output)
8802 {
8803 started_error_output = 1;
8804 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8805 }
8806 fputc_unfiltered (ch & 0177, gdb_stdlog);
8807 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
8808 }
8809 }
8810 continue;
8811 }
8812 /* fall-through */
8813 default:
8814 if (remote_debug)
8815 {
8816 if (!started_error_output)
8817 {
8818 started_error_output = 1;
8819 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
8820 }
8821 fputc_unfiltered (ch & 0177, gdb_stdlog);
8822 }
8823 continue;
8824 }
8825 break; /* Here to retransmit. */
8826 }
8827
8828 #if 0
8829 /* This is wrong. If doing a long backtrace, the user should be
8830 able to get out next time we call QUIT, without anything as
8831 violent as interrupt_query. If we want to provide a way out of
8832 here without getting to the next QUIT, it should be based on
8833 hitting ^C twice as in remote_wait. */
8834 if (quit_flag)
8835 {
8836 quit_flag = 0;
8837 interrupt_query ();
8838 }
8839 #endif
8840 }
8841
8842 return 0;
8843 }
8844
8845 /* Come here after finding the start of a frame when we expected an
8846 ack. Do our best to discard the rest of this packet. */
8847
8848 static void
8849 skip_frame (void)
8850 {
8851 int c;
8852
8853 while (1)
8854 {
8855 c = readchar (remote_timeout);
8856 switch (c)
8857 {
8858 case SERIAL_TIMEOUT:
8859 /* Nothing we can do. */
8860 return;
8861 case '#':
8862 /* Discard the two bytes of checksum and stop. */
8863 c = readchar (remote_timeout);
8864 if (c >= 0)
8865 c = readchar (remote_timeout);
8866
8867 return;
8868 case '*': /* Run length encoding. */
8869 /* Discard the repeat count. */
8870 c = readchar (remote_timeout);
8871 if (c < 0)
8872 return;
8873 break;
8874 default:
8875 /* A regular character. */
8876 break;
8877 }
8878 }
8879 }
8880
8881 /* Come here after finding the start of the frame. Collect the rest
8882 into *BUF, verifying the checksum, length, and handling run-length
8883 compression. NUL terminate the buffer. If there is not enough room,
8884 expand *BUF using xrealloc.
8885
8886 Returns -1 on error, number of characters in buffer (ignoring the
8887 trailing NULL) on success. (could be extended to return one of the
8888 SERIAL status indications). */
8889
8890 static long
8891 read_frame (char **buf_p,
8892 long *sizeof_buf)
8893 {
8894 unsigned char csum;
8895 long bc;
8896 int c;
8897 char *buf = *buf_p;
8898 struct remote_state *rs = get_remote_state ();
8899
8900 csum = 0;
8901 bc = 0;
8902
8903 while (1)
8904 {
8905 c = readchar (remote_timeout);
8906 switch (c)
8907 {
8908 case SERIAL_TIMEOUT:
8909 if (remote_debug)
8910 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
8911 return -1;
8912 case '$':
8913 if (remote_debug)
8914 fputs_filtered ("Saw new packet start in middle of old one\n",
8915 gdb_stdlog);
8916 return -1; /* Start a new packet, count retries. */
8917 case '#':
8918 {
8919 unsigned char pktcsum;
8920 int check_0 = 0;
8921 int check_1 = 0;
8922
8923 buf[bc] = '\0';
8924
8925 check_0 = readchar (remote_timeout);
8926 if (check_0 >= 0)
8927 check_1 = readchar (remote_timeout);
8928
8929 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
8930 {
8931 if (remote_debug)
8932 fputs_filtered ("Timeout in checksum, retrying\n",
8933 gdb_stdlog);
8934 return -1;
8935 }
8936 else if (check_0 < 0 || check_1 < 0)
8937 {
8938 if (remote_debug)
8939 fputs_filtered ("Communication error in checksum\n",
8940 gdb_stdlog);
8941 return -1;
8942 }
8943
8944 /* Don't recompute the checksum; with no ack packets we
8945 don't have any way to indicate a packet retransmission
8946 is necessary. */
8947 if (rs->noack_mode)
8948 return bc;
8949
8950 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
8951 if (csum == pktcsum)
8952 return bc;
8953
8954 if (remote_debug)
8955 {
8956 std::string str = escape_buffer (buf, bc);
8957
8958 fprintf_unfiltered (gdb_stdlog,
8959 "Bad checksum, sentsum=0x%x, "
8960 "csum=0x%x, buf=%s\n",
8961 pktcsum, csum, str.c_str ());
8962 }
8963 /* Number of characters in buffer ignoring trailing
8964 NULL. */
8965 return -1;
8966 }
8967 case '*': /* Run length encoding. */
8968 {
8969 int repeat;
8970
8971 csum += c;
8972 c = readchar (remote_timeout);
8973 csum += c;
8974 repeat = c - ' ' + 3; /* Compute repeat count. */
8975
8976 /* The character before ``*'' is repeated. */
8977
8978 if (repeat > 0 && repeat <= 255 && bc > 0)
8979 {
8980 if (bc + repeat - 1 >= *sizeof_buf - 1)
8981 {
8982 /* Make some more room in the buffer. */
8983 *sizeof_buf += repeat;
8984 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
8985 buf = *buf_p;
8986 }
8987
8988 memset (&buf[bc], buf[bc - 1], repeat);
8989 bc += repeat;
8990 continue;
8991 }
8992
8993 buf[bc] = '\0';
8994 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
8995 return -1;
8996 }
8997 default:
8998 if (bc >= *sizeof_buf - 1)
8999 {
9000 /* Make some more room in the buffer. */
9001 *sizeof_buf *= 2;
9002 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9003 buf = *buf_p;
9004 }
9005
9006 buf[bc++] = c;
9007 csum += c;
9008 continue;
9009 }
9010 }
9011 }
9012
9013 /* Read a packet from the remote machine, with error checking, and
9014 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9015 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9016 rather than timing out; this is used (in synchronous mode) to wait
9017 for a target that is is executing user code to stop. */
9018 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9019 don't have to change all the calls to getpkt to deal with the
9020 return value, because at the moment I don't know what the right
9021 thing to do it for those. */
9022 void
9023 getpkt (char **buf,
9024 long *sizeof_buf,
9025 int forever)
9026 {
9027 getpkt_sane (buf, sizeof_buf, forever);
9028 }
9029
9030
9031 /* Read a packet from the remote machine, with error checking, and
9032 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9033 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9034 rather than timing out; this is used (in synchronous mode) to wait
9035 for a target that is is executing user code to stop. If FOREVER ==
9036 0, this function is allowed to time out gracefully and return an
9037 indication of this to the caller. Otherwise return the number of
9038 bytes read. If EXPECTING_NOTIF, consider receiving a notification
9039 enough reason to return to the caller. *IS_NOTIF is an output
9040 boolean that indicates whether *BUF holds a notification or not
9041 (a regular packet). */
9042
9043 static int
9044 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
9045 int expecting_notif, int *is_notif)
9046 {
9047 struct remote_state *rs = get_remote_state ();
9048 int c;
9049 int tries;
9050 int timeout;
9051 int val = -1;
9052
9053 /* We're reading a new response. Make sure we don't look at a
9054 previously cached response. */
9055 rs->cached_wait_status = 0;
9056
9057 strcpy (*buf, "timeout");
9058
9059 if (forever)
9060 timeout = watchdog > 0 ? watchdog : -1;
9061 else if (expecting_notif)
9062 timeout = 0; /* There should already be a char in the buffer. If
9063 not, bail out. */
9064 else
9065 timeout = remote_timeout;
9066
9067 #define MAX_TRIES 3
9068
9069 /* Process any number of notifications, and then return when
9070 we get a packet. */
9071 for (;;)
9072 {
9073 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9074 times. */
9075 for (tries = 1; tries <= MAX_TRIES; tries++)
9076 {
9077 /* This can loop forever if the remote side sends us
9078 characters continuously, but if it pauses, we'll get
9079 SERIAL_TIMEOUT from readchar because of timeout. Then
9080 we'll count that as a retry.
9081
9082 Note that even when forever is set, we will only wait
9083 forever prior to the start of a packet. After that, we
9084 expect characters to arrive at a brisk pace. They should
9085 show up within remote_timeout intervals. */
9086 do
9087 c = readchar (timeout);
9088 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9089
9090 if (c == SERIAL_TIMEOUT)
9091 {
9092 if (expecting_notif)
9093 return -1; /* Don't complain, it's normal to not get
9094 anything in this case. */
9095
9096 if (forever) /* Watchdog went off? Kill the target. */
9097 {
9098 remote_unpush_target ();
9099 throw_error (TARGET_CLOSE_ERROR,
9100 _("Watchdog timeout has expired. "
9101 "Target detached."));
9102 }
9103 if (remote_debug)
9104 fputs_filtered ("Timed out.\n", gdb_stdlog);
9105 }
9106 else
9107 {
9108 /* We've found the start of a packet or notification.
9109 Now collect the data. */
9110 val = read_frame (buf, sizeof_buf);
9111 if (val >= 0)
9112 break;
9113 }
9114
9115 remote_serial_write ("-", 1);
9116 }
9117
9118 if (tries > MAX_TRIES)
9119 {
9120 /* We have tried hard enough, and just can't receive the
9121 packet/notification. Give up. */
9122 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9123
9124 /* Skip the ack char if we're in no-ack mode. */
9125 if (!rs->noack_mode)
9126 remote_serial_write ("+", 1);
9127 return -1;
9128 }
9129
9130 /* If we got an ordinary packet, return that to our caller. */
9131 if (c == '$')
9132 {
9133 if (remote_debug)
9134 {
9135 std::string str
9136 = escape_buffer (*buf,
9137 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9138
9139 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9140 str.c_str ());
9141
9142 if (val > REMOTE_DEBUG_MAX_CHAR)
9143 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9144 val - REMOTE_DEBUG_MAX_CHAR);
9145
9146 fprintf_unfiltered (gdb_stdlog, "\n");
9147 }
9148
9149 /* Skip the ack char if we're in no-ack mode. */
9150 if (!rs->noack_mode)
9151 remote_serial_write ("+", 1);
9152 if (is_notif != NULL)
9153 *is_notif = 0;
9154 return val;
9155 }
9156
9157 /* If we got a notification, handle it, and go back to looking
9158 for a packet. */
9159 else
9160 {
9161 gdb_assert (c == '%');
9162
9163 if (remote_debug)
9164 {
9165 std::string str = escape_buffer (*buf, val);
9166
9167 fprintf_unfiltered (gdb_stdlog,
9168 " Notification received: %s\n",
9169 str.c_str ());
9170 }
9171 if (is_notif != NULL)
9172 *is_notif = 1;
9173
9174 handle_notification (rs->notif_state, *buf);
9175
9176 /* Notifications require no acknowledgement. */
9177
9178 if (expecting_notif)
9179 return val;
9180 }
9181 }
9182 }
9183
9184 static int
9185 getpkt_sane (char **buf, long *sizeof_buf, int forever)
9186 {
9187 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
9188 }
9189
9190 static int
9191 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
9192 int *is_notif)
9193 {
9194 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
9195 is_notif);
9196 }
9197
9198 /* Check whether EVENT is a fork event for the process specified
9199 by the pid passed in DATA, and if it is, kill the fork child. */
9200
9201 static int
9202 kill_child_of_pending_fork (QUEUE (stop_reply_p) *q,
9203 QUEUE_ITER (stop_reply_p) *iter,
9204 stop_reply_p event,
9205 void *data)
9206 {
9207 struct queue_iter_param *param = (struct queue_iter_param *) data;
9208 int parent_pid = *(int *) param->input;
9209
9210 if (is_pending_fork_parent (&event->ws, parent_pid, event->ptid))
9211 {
9212 struct remote_state *rs = get_remote_state ();
9213 int child_pid = ptid_get_pid (event->ws.value.related_pid);
9214 int res;
9215
9216 res = remote_vkill (child_pid, rs);
9217 if (res != 0)
9218 error (_("Can't kill fork child process %d"), child_pid);
9219 }
9220
9221 return 1;
9222 }
9223
9224 /* Kill any new fork children of process PID that haven't been
9225 processed by follow_fork. */
9226
9227 static void
9228 kill_new_fork_children (int pid, struct remote_state *rs)
9229 {
9230 struct thread_info *thread;
9231 struct notif_client *notif = &notif_client_stop;
9232 struct queue_iter_param param;
9233
9234 /* Kill the fork child threads of any threads in process PID
9235 that are stopped at a fork event. */
9236 ALL_NON_EXITED_THREADS (thread)
9237 {
9238 struct target_waitstatus *ws = &thread->pending_follow;
9239
9240 if (is_pending_fork_parent (ws, pid, thread->ptid))
9241 {
9242 struct remote_state *rs = get_remote_state ();
9243 int child_pid = ptid_get_pid (ws->value.related_pid);
9244 int res;
9245
9246 res = remote_vkill (child_pid, rs);
9247 if (res != 0)
9248 error (_("Can't kill fork child process %d"), child_pid);
9249 }
9250 }
9251
9252 /* Check for any pending fork events (not reported or processed yet)
9253 in process PID and kill those fork child threads as well. */
9254 remote_notif_get_pending_events (notif);
9255 param.input = &pid;
9256 param.output = NULL;
9257 QUEUE_iterate (stop_reply_p, stop_reply_queue,
9258 kill_child_of_pending_fork, &param);
9259 }
9260
9261 \f
9262 /* Target hook to kill the current inferior. */
9263
9264 static void
9265 remote_kill (struct target_ops *ops)
9266 {
9267 int res = -1;
9268 int pid = ptid_get_pid (inferior_ptid);
9269 struct remote_state *rs = get_remote_state ();
9270
9271 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9272 {
9273 /* If we're stopped while forking and we haven't followed yet,
9274 kill the child task. We need to do this before killing the
9275 parent task because if this is a vfork then the parent will
9276 be sleeping. */
9277 kill_new_fork_children (pid, rs);
9278
9279 res = remote_vkill (pid, rs);
9280 if (res == 0)
9281 {
9282 target_mourn_inferior (inferior_ptid);
9283 return;
9284 }
9285 }
9286
9287 /* If we are in 'target remote' mode and we are killing the only
9288 inferior, then we will tell gdbserver to exit and unpush the
9289 target. */
9290 if (res == -1 && !remote_multi_process_p (rs)
9291 && number_of_live_inferiors () == 1)
9292 {
9293 remote_kill_k ();
9294
9295 /* We've killed the remote end, we get to mourn it. If we are
9296 not in extended mode, mourning the inferior also unpushes
9297 remote_ops from the target stack, which closes the remote
9298 connection. */
9299 target_mourn_inferior (inferior_ptid);
9300
9301 return;
9302 }
9303
9304 error (_("Can't kill process"));
9305 }
9306
9307 /* Send a kill request to the target using the 'vKill' packet. */
9308
9309 static int
9310 remote_vkill (int pid, struct remote_state *rs)
9311 {
9312 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9313 return -1;
9314
9315 /* Tell the remote target to detach. */
9316 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
9317 putpkt (rs->buf);
9318 getpkt (&rs->buf, &rs->buf_size, 0);
9319
9320 switch (packet_ok (rs->buf,
9321 &remote_protocol_packets[PACKET_vKill]))
9322 {
9323 case PACKET_OK:
9324 return 0;
9325 case PACKET_ERROR:
9326 return 1;
9327 case PACKET_UNKNOWN:
9328 return -1;
9329 default:
9330 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9331 }
9332 }
9333
9334 /* Send a kill request to the target using the 'k' packet. */
9335
9336 static void
9337 remote_kill_k (void)
9338 {
9339 /* Catch errors so the user can quit from gdb even when we
9340 aren't on speaking terms with the remote system. */
9341 TRY
9342 {
9343 putpkt ("k");
9344 }
9345 CATCH (ex, RETURN_MASK_ERROR)
9346 {
9347 if (ex.error == TARGET_CLOSE_ERROR)
9348 {
9349 /* If we got an (EOF) error that caused the target
9350 to go away, then we're done, that's what we wanted.
9351 "k" is susceptible to cause a premature EOF, given
9352 that the remote server isn't actually required to
9353 reply to "k", and it can happen that it doesn't
9354 even get to reply ACK to the "k". */
9355 return;
9356 }
9357
9358 /* Otherwise, something went wrong. We didn't actually kill
9359 the target. Just propagate the exception, and let the
9360 user or higher layers decide what to do. */
9361 throw_exception (ex);
9362 }
9363 END_CATCH
9364 }
9365
9366 static void
9367 remote_mourn (struct target_ops *target)
9368 {
9369 struct remote_state *rs = get_remote_state ();
9370
9371 /* In 'target remote' mode with one inferior, we close the connection. */
9372 if (!rs->extended && number_of_live_inferiors () <= 1)
9373 {
9374 unpush_target (target);
9375
9376 /* remote_close takes care of doing most of the clean up. */
9377 generic_mourn_inferior ();
9378 return;
9379 }
9380
9381 /* In case we got here due to an error, but we're going to stay
9382 connected. */
9383 rs->waiting_for_stop_reply = 0;
9384
9385 /* If the current general thread belonged to the process we just
9386 detached from or has exited, the remote side current general
9387 thread becomes undefined. Considering a case like this:
9388
9389 - We just got here due to a detach.
9390 - The process that we're detaching from happens to immediately
9391 report a global breakpoint being hit in non-stop mode, in the
9392 same thread we had selected before.
9393 - GDB attaches to this process again.
9394 - This event happens to be the next event we handle.
9395
9396 GDB would consider that the current general thread didn't need to
9397 be set on the stub side (with Hg), since for all it knew,
9398 GENERAL_THREAD hadn't changed.
9399
9400 Notice that although in all-stop mode, the remote server always
9401 sets the current thread to the thread reporting the stop event,
9402 that doesn't happen in non-stop mode; in non-stop, the stub *must
9403 not* change the current thread when reporting a breakpoint hit,
9404 due to the decoupling of event reporting and event handling.
9405
9406 To keep things simple, we always invalidate our notion of the
9407 current thread. */
9408 record_currthread (rs, minus_one_ptid);
9409
9410 /* Call common code to mark the inferior as not running. */
9411 generic_mourn_inferior ();
9412
9413 if (!have_inferiors ())
9414 {
9415 if (!remote_multi_process_p (rs))
9416 {
9417 /* Check whether the target is running now - some remote stubs
9418 automatically restart after kill. */
9419 putpkt ("?");
9420 getpkt (&rs->buf, &rs->buf_size, 0);
9421
9422 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9423 {
9424 /* Assume that the target has been restarted. Set
9425 inferior_ptid so that bits of core GDB realizes
9426 there's something here, e.g., so that the user can
9427 say "kill" again. */
9428 inferior_ptid = magic_null_ptid;
9429 }
9430 }
9431 }
9432 }
9433
9434 static int
9435 extended_remote_supports_disable_randomization (struct target_ops *self)
9436 {
9437 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9438 }
9439
9440 static void
9441 extended_remote_disable_randomization (int val)
9442 {
9443 struct remote_state *rs = get_remote_state ();
9444 char *reply;
9445
9446 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
9447 val);
9448 putpkt (rs->buf);
9449 reply = remote_get_noisy_reply ();
9450 if (*reply == '\0')
9451 error (_("Target does not support QDisableRandomization."));
9452 if (strcmp (reply, "OK") != 0)
9453 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9454 }
9455
9456 static int
9457 extended_remote_run (const std::string &args)
9458 {
9459 struct remote_state *rs = get_remote_state ();
9460 int len;
9461 const char *remote_exec_file = get_remote_exec_file ();
9462
9463 /* If the user has disabled vRun support, or we have detected that
9464 support is not available, do not try it. */
9465 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9466 return -1;
9467
9468 strcpy (rs->buf, "vRun;");
9469 len = strlen (rs->buf);
9470
9471 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9472 error (_("Remote file name too long for run packet"));
9473 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len,
9474 strlen (remote_exec_file));
9475
9476 if (!args.empty ())
9477 {
9478 int i;
9479
9480 gdb_argv argv (args.c_str ());
9481 for (i = 0; argv[i] != NULL; i++)
9482 {
9483 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9484 error (_("Argument list too long for run packet"));
9485 rs->buf[len++] = ';';
9486 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len,
9487 strlen (argv[i]));
9488 }
9489 }
9490
9491 rs->buf[len++] = '\0';
9492
9493 putpkt (rs->buf);
9494 getpkt (&rs->buf, &rs->buf_size, 0);
9495
9496 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9497 {
9498 case PACKET_OK:
9499 /* We have a wait response. All is well. */
9500 return 0;
9501 case PACKET_UNKNOWN:
9502 return -1;
9503 case PACKET_ERROR:
9504 if (remote_exec_file[0] == '\0')
9505 error (_("Running the default executable on the remote target failed; "
9506 "try \"set remote exec-file\"?"));
9507 else
9508 error (_("Running \"%s\" on the remote target failed"),
9509 remote_exec_file);
9510 default:
9511 gdb_assert_not_reached (_("bad switch"));
9512 }
9513 }
9514
9515 /* Helper function to send set/unset environment packets. ACTION is
9516 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
9517 or "QEnvironmentUnsetVariable". VALUE is the variable to be
9518 sent. */
9519
9520 static void
9521 send_environment_packet (struct remote_state *rs,
9522 const char *action,
9523 const char *packet,
9524 const char *value)
9525 {
9526 /* Convert the environment variable to an hex string, which
9527 is the best format to be transmitted over the wire. */
9528 std::string encoded_value = bin2hex ((const gdb_byte *) value,
9529 strlen (value));
9530
9531 xsnprintf (rs->buf, get_remote_packet_size (),
9532 "%s:%s", packet, encoded_value.c_str ());
9533
9534 putpkt (rs->buf);
9535 getpkt (&rs->buf, &rs->buf_size, 0);
9536 if (strcmp (rs->buf, "OK") != 0)
9537 warning (_("Unable to %s environment variable '%s' on remote."),
9538 action, value);
9539 }
9540
9541 /* Helper function to handle the QEnvironment* packets. */
9542
9543 static void
9544 extended_remote_environment_support (struct remote_state *rs)
9545 {
9546 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
9547 {
9548 putpkt ("QEnvironmentReset");
9549 getpkt (&rs->buf, &rs->buf_size, 0);
9550 if (strcmp (rs->buf, "OK") != 0)
9551 warning (_("Unable to reset environment on remote."));
9552 }
9553
9554 gdb_environ *e = &current_inferior ()->environment;
9555
9556 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
9557 for (const std::string &el : e->user_set_env ())
9558 send_environment_packet (rs, "set", "QEnvironmentHexEncoded",
9559 el.c_str ());
9560
9561 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
9562 for (const std::string &el : e->user_unset_env ())
9563 send_environment_packet (rs, "unset", "QEnvironmentUnset", el.c_str ());
9564 }
9565
9566 /* Helper function to set the current working directory for the
9567 inferior in the remote target. */
9568
9569 static void
9570 extended_remote_set_inferior_cwd (struct remote_state *rs)
9571 {
9572 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
9573 {
9574 const char *inferior_cwd = get_inferior_cwd ();
9575
9576 if (inferior_cwd != NULL)
9577 {
9578 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
9579 strlen (inferior_cwd));
9580
9581 xsnprintf (rs->buf, get_remote_packet_size (),
9582 "QSetWorkingDir:%s", hexpath.c_str ());
9583 }
9584 else
9585 {
9586 /* An empty inferior_cwd means that the user wants us to
9587 reset the remote server's inferior's cwd. */
9588 xsnprintf (rs->buf, get_remote_packet_size (),
9589 "QSetWorkingDir:");
9590 }
9591
9592 putpkt (rs->buf);
9593 getpkt (&rs->buf, &rs->buf_size, 0);
9594 if (packet_ok (rs->buf,
9595 &remote_protocol_packets[PACKET_QSetWorkingDir])
9596 != PACKET_OK)
9597 error (_("\
9598 Remote replied unexpectedly while setting the inferior's working\n\
9599 directory: %s"),
9600 rs->buf);
9601
9602 }
9603 }
9604
9605 /* In the extended protocol we want to be able to do things like
9606 "run" and have them basically work as expected. So we need
9607 a special create_inferior function. We support changing the
9608 executable file and the command line arguments, but not the
9609 environment. */
9610
9611 static void
9612 extended_remote_create_inferior (struct target_ops *ops,
9613 const char *exec_file,
9614 const std::string &args,
9615 char **env, int from_tty)
9616 {
9617 int run_worked;
9618 char *stop_reply;
9619 struct remote_state *rs = get_remote_state ();
9620 const char *remote_exec_file = get_remote_exec_file ();
9621
9622 /* If running asynchronously, register the target file descriptor
9623 with the event loop. */
9624 if (target_can_async_p ())
9625 target_async (1);
9626
9627 /* Disable address space randomization if requested (and supported). */
9628 if (extended_remote_supports_disable_randomization (ops))
9629 extended_remote_disable_randomization (disable_randomization);
9630
9631 /* If startup-with-shell is on, we inform gdbserver to start the
9632 remote inferior using a shell. */
9633 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
9634 {
9635 xsnprintf (rs->buf, get_remote_packet_size (),
9636 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
9637 putpkt (rs->buf);
9638 getpkt (&rs->buf, &rs->buf_size, 0);
9639 if (strcmp (rs->buf, "OK") != 0)
9640 error (_("\
9641 Remote replied unexpectedly while setting startup-with-shell: %s"),
9642 rs->buf);
9643 }
9644
9645 extended_remote_environment_support (rs);
9646
9647 extended_remote_set_inferior_cwd (rs);
9648
9649 /* Now restart the remote server. */
9650 run_worked = extended_remote_run (args) != -1;
9651 if (!run_worked)
9652 {
9653 /* vRun was not supported. Fail if we need it to do what the
9654 user requested. */
9655 if (remote_exec_file[0])
9656 error (_("Remote target does not support \"set remote exec-file\""));
9657 if (!args.empty ())
9658 error (_("Remote target does not support \"set args\" or run <ARGS>"));
9659
9660 /* Fall back to "R". */
9661 extended_remote_restart ();
9662 }
9663
9664 if (!have_inferiors ())
9665 {
9666 /* Clean up from the last time we ran, before we mark the target
9667 running again. This will mark breakpoints uninserted, and
9668 get_offsets may insert breakpoints. */
9669 init_thread_list ();
9670 init_wait_for_inferior ();
9671 }
9672
9673 /* vRun's success return is a stop reply. */
9674 stop_reply = run_worked ? rs->buf : NULL;
9675 add_current_inferior_and_thread (stop_reply);
9676
9677 /* Get updated offsets, if the stub uses qOffsets. */
9678 get_offsets ();
9679 }
9680 \f
9681
9682 /* Given a location's target info BP_TGT and the packet buffer BUF, output
9683 the list of conditions (in agent expression bytecode format), if any, the
9684 target needs to evaluate. The output is placed into the packet buffer
9685 started from BUF and ended at BUF_END. */
9686
9687 static int
9688 remote_add_target_side_condition (struct gdbarch *gdbarch,
9689 struct bp_target_info *bp_tgt, char *buf,
9690 char *buf_end)
9691 {
9692 if (bp_tgt->conditions.empty ())
9693 return 0;
9694
9695 buf += strlen (buf);
9696 xsnprintf (buf, buf_end - buf, "%s", ";");
9697 buf++;
9698
9699 /* Send conditions to the target. */
9700 for (agent_expr *aexpr : bp_tgt->conditions)
9701 {
9702 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
9703 buf += strlen (buf);
9704 for (int i = 0; i < aexpr->len; ++i)
9705 buf = pack_hex_byte (buf, aexpr->buf[i]);
9706 *buf = '\0';
9707 }
9708 return 0;
9709 }
9710
9711 static void
9712 remote_add_target_side_commands (struct gdbarch *gdbarch,
9713 struct bp_target_info *bp_tgt, char *buf)
9714 {
9715 if (bp_tgt->tcommands.empty ())
9716 return;
9717
9718 buf += strlen (buf);
9719
9720 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
9721 buf += strlen (buf);
9722
9723 /* Concatenate all the agent expressions that are commands into the
9724 cmds parameter. */
9725 for (agent_expr *aexpr : bp_tgt->tcommands)
9726 {
9727 sprintf (buf, "X%x,", aexpr->len);
9728 buf += strlen (buf);
9729 for (int i = 0; i < aexpr->len; ++i)
9730 buf = pack_hex_byte (buf, aexpr->buf[i]);
9731 *buf = '\0';
9732 }
9733 }
9734
9735 /* Insert a breakpoint. On targets that have software breakpoint
9736 support, we ask the remote target to do the work; on targets
9737 which don't, we insert a traditional memory breakpoint. */
9738
9739 static int
9740 remote_insert_breakpoint (struct target_ops *ops,
9741 struct gdbarch *gdbarch,
9742 struct bp_target_info *bp_tgt)
9743 {
9744 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
9745 If it succeeds, then set the support to PACKET_ENABLE. If it
9746 fails, and the user has explicitly requested the Z support then
9747 report an error, otherwise, mark it disabled and go on. */
9748
9749 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9750 {
9751 CORE_ADDR addr = bp_tgt->reqstd_address;
9752 struct remote_state *rs;
9753 char *p, *endbuf;
9754
9755 /* Make sure the remote is pointing at the right process, if
9756 necessary. */
9757 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9758 set_general_process ();
9759
9760 rs = get_remote_state ();
9761 p = rs->buf;
9762 endbuf = rs->buf + get_remote_packet_size ();
9763
9764 *(p++) = 'Z';
9765 *(p++) = '0';
9766 *(p++) = ',';
9767 addr = (ULONGEST) remote_address_masked (addr);
9768 p += hexnumstr (p, addr);
9769 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
9770
9771 if (remote_supports_cond_breakpoints (ops))
9772 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
9773
9774 if (remote_can_run_breakpoint_commands (ops))
9775 remote_add_target_side_commands (gdbarch, bp_tgt, p);
9776
9777 putpkt (rs->buf);
9778 getpkt (&rs->buf, &rs->buf_size, 0);
9779
9780 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
9781 {
9782 case PACKET_ERROR:
9783 return -1;
9784 case PACKET_OK:
9785 return 0;
9786 case PACKET_UNKNOWN:
9787 break;
9788 }
9789 }
9790
9791 /* If this breakpoint has target-side commands but this stub doesn't
9792 support Z0 packets, throw error. */
9793 if (!bp_tgt->tcommands.empty ())
9794 throw_error (NOT_SUPPORTED_ERROR, _("\
9795 Target doesn't support breakpoints that have target side commands."));
9796
9797 return memory_insert_breakpoint (ops, gdbarch, bp_tgt);
9798 }
9799
9800 static int
9801 remote_remove_breakpoint (struct target_ops *ops,
9802 struct gdbarch *gdbarch,
9803 struct bp_target_info *bp_tgt,
9804 enum remove_bp_reason reason)
9805 {
9806 CORE_ADDR addr = bp_tgt->placed_address;
9807 struct remote_state *rs = get_remote_state ();
9808
9809 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
9810 {
9811 char *p = rs->buf;
9812 char *endbuf = rs->buf + get_remote_packet_size ();
9813
9814 /* Make sure the remote is pointing at the right process, if
9815 necessary. */
9816 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9817 set_general_process ();
9818
9819 *(p++) = 'z';
9820 *(p++) = '0';
9821 *(p++) = ',';
9822
9823 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
9824 p += hexnumstr (p, addr);
9825 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
9826
9827 putpkt (rs->buf);
9828 getpkt (&rs->buf, &rs->buf_size, 0);
9829
9830 return (rs->buf[0] == 'E');
9831 }
9832
9833 return memory_remove_breakpoint (ops, gdbarch, bp_tgt, reason);
9834 }
9835
9836 static enum Z_packet_type
9837 watchpoint_to_Z_packet (int type)
9838 {
9839 switch (type)
9840 {
9841 case hw_write:
9842 return Z_PACKET_WRITE_WP;
9843 break;
9844 case hw_read:
9845 return Z_PACKET_READ_WP;
9846 break;
9847 case hw_access:
9848 return Z_PACKET_ACCESS_WP;
9849 break;
9850 default:
9851 internal_error (__FILE__, __LINE__,
9852 _("hw_bp_to_z: bad watchpoint type %d"), type);
9853 }
9854 }
9855
9856 static int
9857 remote_insert_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9858 enum target_hw_bp_type type, struct expression *cond)
9859 {
9860 struct remote_state *rs = get_remote_state ();
9861 char *endbuf = rs->buf + get_remote_packet_size ();
9862 char *p;
9863 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
9864
9865 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
9866 return 1;
9867
9868 /* Make sure the remote is pointing at the right process, if
9869 necessary. */
9870 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9871 set_general_process ();
9872
9873 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
9874 p = strchr (rs->buf, '\0');
9875 addr = remote_address_masked (addr);
9876 p += hexnumstr (p, (ULONGEST) addr);
9877 xsnprintf (p, endbuf - p, ",%x", len);
9878
9879 putpkt (rs->buf);
9880 getpkt (&rs->buf, &rs->buf_size, 0);
9881
9882 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
9883 {
9884 case PACKET_ERROR:
9885 return -1;
9886 case PACKET_UNKNOWN:
9887 return 1;
9888 case PACKET_OK:
9889 return 0;
9890 }
9891 internal_error (__FILE__, __LINE__,
9892 _("remote_insert_watchpoint: reached end of function"));
9893 }
9894
9895 static int
9896 remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
9897 CORE_ADDR start, int length)
9898 {
9899 CORE_ADDR diff = remote_address_masked (addr - start);
9900
9901 return diff < length;
9902 }
9903
9904
9905 static int
9906 remote_remove_watchpoint (struct target_ops *self, CORE_ADDR addr, int len,
9907 enum target_hw_bp_type type, struct expression *cond)
9908 {
9909 struct remote_state *rs = get_remote_state ();
9910 char *endbuf = rs->buf + get_remote_packet_size ();
9911 char *p;
9912 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
9913
9914 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
9915 return -1;
9916
9917 /* Make sure the remote is pointing at the right process, if
9918 necessary. */
9919 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9920 set_general_process ();
9921
9922 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
9923 p = strchr (rs->buf, '\0');
9924 addr = remote_address_masked (addr);
9925 p += hexnumstr (p, (ULONGEST) addr);
9926 xsnprintf (p, endbuf - p, ",%x", len);
9927 putpkt (rs->buf);
9928 getpkt (&rs->buf, &rs->buf_size, 0);
9929
9930 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
9931 {
9932 case PACKET_ERROR:
9933 case PACKET_UNKNOWN:
9934 return -1;
9935 case PACKET_OK:
9936 return 0;
9937 }
9938 internal_error (__FILE__, __LINE__,
9939 _("remote_remove_watchpoint: reached end of function"));
9940 }
9941
9942
9943 int remote_hw_watchpoint_limit = -1;
9944 int remote_hw_watchpoint_length_limit = -1;
9945 int remote_hw_breakpoint_limit = -1;
9946
9947 static int
9948 remote_region_ok_for_hw_watchpoint (struct target_ops *self,
9949 CORE_ADDR addr, int len)
9950 {
9951 if (remote_hw_watchpoint_length_limit == 0)
9952 return 0;
9953 else if (remote_hw_watchpoint_length_limit < 0)
9954 return 1;
9955 else if (len <= remote_hw_watchpoint_length_limit)
9956 return 1;
9957 else
9958 return 0;
9959 }
9960
9961 static int
9962 remote_check_watch_resources (struct target_ops *self,
9963 enum bptype type, int cnt, int ot)
9964 {
9965 if (type == bp_hardware_breakpoint)
9966 {
9967 if (remote_hw_breakpoint_limit == 0)
9968 return 0;
9969 else if (remote_hw_breakpoint_limit < 0)
9970 return 1;
9971 else if (cnt <= remote_hw_breakpoint_limit)
9972 return 1;
9973 }
9974 else
9975 {
9976 if (remote_hw_watchpoint_limit == 0)
9977 return 0;
9978 else if (remote_hw_watchpoint_limit < 0)
9979 return 1;
9980 else if (ot)
9981 return -1;
9982 else if (cnt <= remote_hw_watchpoint_limit)
9983 return 1;
9984 }
9985 return -1;
9986 }
9987
9988 /* The to_stopped_by_sw_breakpoint method of target remote. */
9989
9990 static int
9991 remote_stopped_by_sw_breakpoint (struct target_ops *ops)
9992 {
9993 struct thread_info *thread = inferior_thread ();
9994
9995 return (thread->priv != NULL
9996 && (get_remote_thread_info (thread)->stop_reason
9997 == TARGET_STOPPED_BY_SW_BREAKPOINT));
9998 }
9999
10000 /* The to_supports_stopped_by_sw_breakpoint method of target
10001 remote. */
10002
10003 static int
10004 remote_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
10005 {
10006 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10007 }
10008
10009 /* The to_stopped_by_hw_breakpoint method of target remote. */
10010
10011 static int
10012 remote_stopped_by_hw_breakpoint (struct target_ops *ops)
10013 {
10014 struct thread_info *thread = inferior_thread ();
10015
10016 return (thread->priv != NULL
10017 && (get_remote_thread_info (thread)->stop_reason
10018 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10019 }
10020
10021 /* The to_supports_stopped_by_hw_breakpoint method of target
10022 remote. */
10023
10024 static int
10025 remote_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
10026 {
10027 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10028 }
10029
10030 static int
10031 remote_stopped_by_watchpoint (struct target_ops *ops)
10032 {
10033 struct thread_info *thread = inferior_thread ();
10034
10035 return (thread->priv != NULL
10036 && (get_remote_thread_info (thread)->stop_reason
10037 == TARGET_STOPPED_BY_WATCHPOINT));
10038 }
10039
10040 static int
10041 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
10042 {
10043 struct thread_info *thread = inferior_thread ();
10044
10045 if (thread->priv != NULL
10046 && (get_remote_thread_info (thread)->stop_reason
10047 == TARGET_STOPPED_BY_WATCHPOINT))
10048 {
10049 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10050 return 1;
10051 }
10052
10053 return 0;
10054 }
10055
10056
10057 static int
10058 remote_insert_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
10059 struct bp_target_info *bp_tgt)
10060 {
10061 CORE_ADDR addr = bp_tgt->reqstd_address;
10062 struct remote_state *rs;
10063 char *p, *endbuf;
10064 char *message;
10065
10066 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10067 return -1;
10068
10069 /* Make sure the remote is pointing at the right process, if
10070 necessary. */
10071 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10072 set_general_process ();
10073
10074 rs = get_remote_state ();
10075 p = rs->buf;
10076 endbuf = rs->buf + get_remote_packet_size ();
10077
10078 *(p++) = 'Z';
10079 *(p++) = '1';
10080 *(p++) = ',';
10081
10082 addr = remote_address_masked (addr);
10083 p += hexnumstr (p, (ULONGEST) addr);
10084 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10085
10086 if (remote_supports_cond_breakpoints (self))
10087 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10088
10089 if (remote_can_run_breakpoint_commands (self))
10090 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10091
10092 putpkt (rs->buf);
10093 getpkt (&rs->buf, &rs->buf_size, 0);
10094
10095 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10096 {
10097 case PACKET_ERROR:
10098 if (rs->buf[1] == '.')
10099 {
10100 message = strchr (rs->buf + 2, '.');
10101 if (message)
10102 error (_("Remote failure reply: %s"), message + 1);
10103 }
10104 return -1;
10105 case PACKET_UNKNOWN:
10106 return -1;
10107 case PACKET_OK:
10108 return 0;
10109 }
10110 internal_error (__FILE__, __LINE__,
10111 _("remote_insert_hw_breakpoint: reached end of function"));
10112 }
10113
10114
10115 static int
10116 remote_remove_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
10117 struct bp_target_info *bp_tgt)
10118 {
10119 CORE_ADDR addr;
10120 struct remote_state *rs = get_remote_state ();
10121 char *p = rs->buf;
10122 char *endbuf = rs->buf + get_remote_packet_size ();
10123
10124 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10125 return -1;
10126
10127 /* Make sure the remote is pointing at the right process, if
10128 necessary. */
10129 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10130 set_general_process ();
10131
10132 *(p++) = 'z';
10133 *(p++) = '1';
10134 *(p++) = ',';
10135
10136 addr = remote_address_masked (bp_tgt->placed_address);
10137 p += hexnumstr (p, (ULONGEST) addr);
10138 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10139
10140 putpkt (rs->buf);
10141 getpkt (&rs->buf, &rs->buf_size, 0);
10142
10143 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10144 {
10145 case PACKET_ERROR:
10146 case PACKET_UNKNOWN:
10147 return -1;
10148 case PACKET_OK:
10149 return 0;
10150 }
10151 internal_error (__FILE__, __LINE__,
10152 _("remote_remove_hw_breakpoint: reached end of function"));
10153 }
10154
10155 /* Verify memory using the "qCRC:" request. */
10156
10157 static int
10158 remote_verify_memory (struct target_ops *ops,
10159 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10160 {
10161 struct remote_state *rs = get_remote_state ();
10162 unsigned long host_crc, target_crc;
10163 char *tmp;
10164
10165 /* It doesn't make sense to use qCRC if the remote target is
10166 connected but not running. */
10167 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10168 {
10169 enum packet_result result;
10170
10171 /* Make sure the remote is pointing at the right process. */
10172 set_general_process ();
10173
10174 /* FIXME: assumes lma can fit into long. */
10175 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
10176 (long) lma, (long) size);
10177 putpkt (rs->buf);
10178
10179 /* Be clever; compute the host_crc before waiting for target
10180 reply. */
10181 host_crc = xcrc32 (data, size, 0xffffffff);
10182
10183 getpkt (&rs->buf, &rs->buf_size, 0);
10184
10185 result = packet_ok (rs->buf,
10186 &remote_protocol_packets[PACKET_qCRC]);
10187 if (result == PACKET_ERROR)
10188 return -1;
10189 else if (result == PACKET_OK)
10190 {
10191 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10192 target_crc = target_crc * 16 + fromhex (*tmp);
10193
10194 return (host_crc == target_crc);
10195 }
10196 }
10197
10198 return simple_verify_memory (ops, data, lma, size);
10199 }
10200
10201 /* compare-sections command
10202
10203 With no arguments, compares each loadable section in the exec bfd
10204 with the same memory range on the target, and reports mismatches.
10205 Useful for verifying the image on the target against the exec file. */
10206
10207 static void
10208 compare_sections_command (const char *args, int from_tty)
10209 {
10210 asection *s;
10211 const char *sectname;
10212 bfd_size_type size;
10213 bfd_vma lma;
10214 int matched = 0;
10215 int mismatched = 0;
10216 int res;
10217 int read_only = 0;
10218
10219 if (!exec_bfd)
10220 error (_("command cannot be used without an exec file"));
10221
10222 /* Make sure the remote is pointing at the right process. */
10223 set_general_process ();
10224
10225 if (args != NULL && strcmp (args, "-r") == 0)
10226 {
10227 read_only = 1;
10228 args = NULL;
10229 }
10230
10231 for (s = exec_bfd->sections; s; s = s->next)
10232 {
10233 if (!(s->flags & SEC_LOAD))
10234 continue; /* Skip non-loadable section. */
10235
10236 if (read_only && (s->flags & SEC_READONLY) == 0)
10237 continue; /* Skip writeable sections */
10238
10239 size = bfd_get_section_size (s);
10240 if (size == 0)
10241 continue; /* Skip zero-length section. */
10242
10243 sectname = bfd_get_section_name (exec_bfd, s);
10244 if (args && strcmp (args, sectname) != 0)
10245 continue; /* Not the section selected by user. */
10246
10247 matched = 1; /* Do this section. */
10248 lma = s->lma;
10249
10250 gdb::byte_vector sectdata (size);
10251 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10252
10253 res = target_verify_memory (sectdata.data (), lma, size);
10254
10255 if (res == -1)
10256 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10257 paddress (target_gdbarch (), lma),
10258 paddress (target_gdbarch (), lma + size));
10259
10260 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10261 paddress (target_gdbarch (), lma),
10262 paddress (target_gdbarch (), lma + size));
10263 if (res)
10264 printf_filtered ("matched.\n");
10265 else
10266 {
10267 printf_filtered ("MIS-MATCHED!\n");
10268 mismatched++;
10269 }
10270 }
10271 if (mismatched > 0)
10272 warning (_("One or more sections of the target image does not match\n\
10273 the loaded file\n"));
10274 if (args && !matched)
10275 printf_filtered (_("No loaded section named '%s'.\n"), args);
10276 }
10277
10278 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10279 into remote target. The number of bytes written to the remote
10280 target is returned, or -1 for error. */
10281
10282 static enum target_xfer_status
10283 remote_write_qxfer (struct target_ops *ops, const char *object_name,
10284 const char *annex, const gdb_byte *writebuf,
10285 ULONGEST offset, LONGEST len, ULONGEST *xfered_len,
10286 struct packet_config *packet)
10287 {
10288 int i, buf_len;
10289 ULONGEST n;
10290 struct remote_state *rs = get_remote_state ();
10291 int max_size = get_memory_write_packet_size ();
10292
10293 if (packet_config_support (packet) == PACKET_DISABLE)
10294 return TARGET_XFER_E_IO;
10295
10296 /* Insert header. */
10297 i = snprintf (rs->buf, max_size,
10298 "qXfer:%s:write:%s:%s:",
10299 object_name, annex ? annex : "",
10300 phex_nz (offset, sizeof offset));
10301 max_size -= (i + 1);
10302
10303 /* Escape as much data as fits into rs->buf. */
10304 buf_len = remote_escape_output
10305 (writebuf, len, 1, (gdb_byte *) rs->buf + i, &max_size, max_size);
10306
10307 if (putpkt_binary (rs->buf, i + buf_len) < 0
10308 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10309 || packet_ok (rs->buf, packet) != PACKET_OK)
10310 return TARGET_XFER_E_IO;
10311
10312 unpack_varlen_hex (rs->buf, &n);
10313
10314 *xfered_len = n;
10315 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10316 }
10317
10318 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10319 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10320 number of bytes read is returned, or 0 for EOF, or -1 for error.
10321 The number of bytes read may be less than LEN without indicating an
10322 EOF. PACKET is checked and updated to indicate whether the remote
10323 target supports this object. */
10324
10325 static enum target_xfer_status
10326 remote_read_qxfer (struct target_ops *ops, const char *object_name,
10327 const char *annex,
10328 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
10329 ULONGEST *xfered_len,
10330 struct packet_config *packet)
10331 {
10332 struct remote_state *rs = get_remote_state ();
10333 LONGEST i, n, packet_len;
10334
10335 if (packet_config_support (packet) == PACKET_DISABLE)
10336 return TARGET_XFER_E_IO;
10337
10338 /* Check whether we've cached an end-of-object packet that matches
10339 this request. */
10340 if (rs->finished_object)
10341 {
10342 if (strcmp (object_name, rs->finished_object) == 0
10343 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10344 && offset == rs->finished_offset)
10345 return TARGET_XFER_EOF;
10346
10347
10348 /* Otherwise, we're now reading something different. Discard
10349 the cache. */
10350 xfree (rs->finished_object);
10351 xfree (rs->finished_annex);
10352 rs->finished_object = NULL;
10353 rs->finished_annex = NULL;
10354 }
10355
10356 /* Request only enough to fit in a single packet. The actual data
10357 may not, since we don't know how much of it will need to be escaped;
10358 the target is free to respond with slightly less data. We subtract
10359 five to account for the response type and the protocol frame. */
10360 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10361 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
10362 object_name, annex ? annex : "",
10363 phex_nz (offset, sizeof offset),
10364 phex_nz (n, sizeof n));
10365 i = putpkt (rs->buf);
10366 if (i < 0)
10367 return TARGET_XFER_E_IO;
10368
10369 rs->buf[0] = '\0';
10370 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
10371 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10372 return TARGET_XFER_E_IO;
10373
10374 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10375 error (_("Unknown remote qXfer reply: %s"), rs->buf);
10376
10377 /* 'm' means there is (or at least might be) more data after this
10378 batch. That does not make sense unless there's at least one byte
10379 of data in this reply. */
10380 if (rs->buf[0] == 'm' && packet_len == 1)
10381 error (_("Remote qXfer reply contained no data."));
10382
10383 /* Got some data. */
10384 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
10385 packet_len - 1, readbuf, n);
10386
10387 /* 'l' is an EOF marker, possibly including a final block of data,
10388 or possibly empty. If we have the final block of a non-empty
10389 object, record this fact to bypass a subsequent partial read. */
10390 if (rs->buf[0] == 'l' && offset + i > 0)
10391 {
10392 rs->finished_object = xstrdup (object_name);
10393 rs->finished_annex = xstrdup (annex ? annex : "");
10394 rs->finished_offset = offset + i;
10395 }
10396
10397 if (i == 0)
10398 return TARGET_XFER_EOF;
10399 else
10400 {
10401 *xfered_len = i;
10402 return TARGET_XFER_OK;
10403 }
10404 }
10405
10406 static enum target_xfer_status
10407 remote_xfer_partial (struct target_ops *ops, enum target_object object,
10408 const char *annex, gdb_byte *readbuf,
10409 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10410 ULONGEST *xfered_len)
10411 {
10412 struct remote_state *rs;
10413 int i;
10414 char *p2;
10415 char query_type;
10416 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10417
10418 set_remote_traceframe ();
10419 set_general_thread (inferior_ptid);
10420
10421 rs = get_remote_state ();
10422
10423 /* Handle memory using the standard memory routines. */
10424 if (object == TARGET_OBJECT_MEMORY)
10425 {
10426 /* If the remote target is connected but not running, we should
10427 pass this request down to a lower stratum (e.g. the executable
10428 file). */
10429 if (!target_has_execution)
10430 return TARGET_XFER_EOF;
10431
10432 if (writebuf != NULL)
10433 return remote_write_bytes (offset, writebuf, len, unit_size,
10434 xfered_len);
10435 else
10436 return remote_read_bytes (ops, offset, readbuf, len, unit_size,
10437 xfered_len);
10438 }
10439
10440 /* Handle SPU memory using qxfer packets. */
10441 if (object == TARGET_OBJECT_SPU)
10442 {
10443 if (readbuf)
10444 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
10445 xfered_len, &remote_protocol_packets
10446 [PACKET_qXfer_spu_read]);
10447 else
10448 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
10449 xfered_len, &remote_protocol_packets
10450 [PACKET_qXfer_spu_write]);
10451 }
10452
10453 /* Handle extra signal info using qxfer packets. */
10454 if (object == TARGET_OBJECT_SIGNAL_INFO)
10455 {
10456 if (readbuf)
10457 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
10458 xfered_len, &remote_protocol_packets
10459 [PACKET_qXfer_siginfo_read]);
10460 else
10461 return remote_write_qxfer (ops, "siginfo", annex,
10462 writebuf, offset, len, xfered_len,
10463 &remote_protocol_packets
10464 [PACKET_qXfer_siginfo_write]);
10465 }
10466
10467 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10468 {
10469 if (readbuf)
10470 return remote_read_qxfer (ops, "statictrace", annex,
10471 readbuf, offset, len, xfered_len,
10472 &remote_protocol_packets
10473 [PACKET_qXfer_statictrace_read]);
10474 else
10475 return TARGET_XFER_E_IO;
10476 }
10477
10478 /* Only handle flash writes. */
10479 if (writebuf != NULL)
10480 {
10481 switch (object)
10482 {
10483 case TARGET_OBJECT_FLASH:
10484 return remote_flash_write (ops, offset, len, xfered_len,
10485 writebuf);
10486
10487 default:
10488 return TARGET_XFER_E_IO;
10489 }
10490 }
10491
10492 /* Map pre-existing objects onto letters. DO NOT do this for new
10493 objects!!! Instead specify new query packets. */
10494 switch (object)
10495 {
10496 case TARGET_OBJECT_AVR:
10497 query_type = 'R';
10498 break;
10499
10500 case TARGET_OBJECT_AUXV:
10501 gdb_assert (annex == NULL);
10502 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
10503 xfered_len,
10504 &remote_protocol_packets[PACKET_qXfer_auxv]);
10505
10506 case TARGET_OBJECT_AVAILABLE_FEATURES:
10507 return remote_read_qxfer
10508 (ops, "features", annex, readbuf, offset, len, xfered_len,
10509 &remote_protocol_packets[PACKET_qXfer_features]);
10510
10511 case TARGET_OBJECT_LIBRARIES:
10512 return remote_read_qxfer
10513 (ops, "libraries", annex, readbuf, offset, len, xfered_len,
10514 &remote_protocol_packets[PACKET_qXfer_libraries]);
10515
10516 case TARGET_OBJECT_LIBRARIES_SVR4:
10517 return remote_read_qxfer
10518 (ops, "libraries-svr4", annex, readbuf, offset, len, xfered_len,
10519 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10520
10521 case TARGET_OBJECT_MEMORY_MAP:
10522 gdb_assert (annex == NULL);
10523 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
10524 xfered_len,
10525 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10526
10527 case TARGET_OBJECT_OSDATA:
10528 /* Should only get here if we're connected. */
10529 gdb_assert (rs->remote_desc);
10530 return remote_read_qxfer
10531 (ops, "osdata", annex, readbuf, offset, len, xfered_len,
10532 &remote_protocol_packets[PACKET_qXfer_osdata]);
10533
10534 case TARGET_OBJECT_THREADS:
10535 gdb_assert (annex == NULL);
10536 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
10537 xfered_len,
10538 &remote_protocol_packets[PACKET_qXfer_threads]);
10539
10540 case TARGET_OBJECT_TRACEFRAME_INFO:
10541 gdb_assert (annex == NULL);
10542 return remote_read_qxfer
10543 (ops, "traceframe-info", annex, readbuf, offset, len, xfered_len,
10544 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
10545
10546 case TARGET_OBJECT_FDPIC:
10547 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
10548 xfered_len,
10549 &remote_protocol_packets[PACKET_qXfer_fdpic]);
10550
10551 case TARGET_OBJECT_OPENVMS_UIB:
10552 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
10553 xfered_len,
10554 &remote_protocol_packets[PACKET_qXfer_uib]);
10555
10556 case TARGET_OBJECT_BTRACE:
10557 return remote_read_qxfer (ops, "btrace", annex, readbuf, offset, len,
10558 xfered_len,
10559 &remote_protocol_packets[PACKET_qXfer_btrace]);
10560
10561 case TARGET_OBJECT_BTRACE_CONF:
10562 return remote_read_qxfer (ops, "btrace-conf", annex, readbuf, offset,
10563 len, xfered_len,
10564 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
10565
10566 case TARGET_OBJECT_EXEC_FILE:
10567 return remote_read_qxfer (ops, "exec-file", annex, readbuf, offset,
10568 len, xfered_len,
10569 &remote_protocol_packets[PACKET_qXfer_exec_file]);
10570
10571 default:
10572 return TARGET_XFER_E_IO;
10573 }
10574
10575 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
10576 large enough let the caller deal with it. */
10577 if (len < get_remote_packet_size ())
10578 return TARGET_XFER_E_IO;
10579 len = get_remote_packet_size ();
10580
10581 /* Except for querying the minimum buffer size, target must be open. */
10582 if (!rs->remote_desc)
10583 error (_("remote query is only available after target open"));
10584
10585 gdb_assert (annex != NULL);
10586 gdb_assert (readbuf != NULL);
10587
10588 p2 = rs->buf;
10589 *p2++ = 'q';
10590 *p2++ = query_type;
10591
10592 /* We used one buffer char for the remote protocol q command and
10593 another for the query type. As the remote protocol encapsulation
10594 uses 4 chars plus one extra in case we are debugging
10595 (remote_debug), we have PBUFZIZ - 7 left to pack the query
10596 string. */
10597 i = 0;
10598 while (annex[i] && (i < (get_remote_packet_size () - 8)))
10599 {
10600 /* Bad caller may have sent forbidden characters. */
10601 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
10602 *p2++ = annex[i];
10603 i++;
10604 }
10605 *p2 = '\0';
10606 gdb_assert (annex[i] == '\0');
10607
10608 i = putpkt (rs->buf);
10609 if (i < 0)
10610 return TARGET_XFER_E_IO;
10611
10612 getpkt (&rs->buf, &rs->buf_size, 0);
10613 strcpy ((char *) readbuf, rs->buf);
10614
10615 *xfered_len = strlen ((char *) readbuf);
10616 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10617 }
10618
10619 /* Implementation of to_get_memory_xfer_limit. */
10620
10621 static ULONGEST
10622 remote_get_memory_xfer_limit (struct target_ops *ops)
10623 {
10624 return get_memory_write_packet_size ();
10625 }
10626
10627 static int
10628 remote_search_memory (struct target_ops* ops,
10629 CORE_ADDR start_addr, ULONGEST search_space_len,
10630 const gdb_byte *pattern, ULONGEST pattern_len,
10631 CORE_ADDR *found_addrp)
10632 {
10633 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
10634 struct remote_state *rs = get_remote_state ();
10635 int max_size = get_memory_write_packet_size ();
10636 struct packet_config *packet =
10637 &remote_protocol_packets[PACKET_qSearch_memory];
10638 /* Number of packet bytes used to encode the pattern;
10639 this could be more than PATTERN_LEN due to escape characters. */
10640 int escaped_pattern_len;
10641 /* Amount of pattern that was encodable in the packet. */
10642 int used_pattern_len;
10643 int i;
10644 int found;
10645 ULONGEST found_addr;
10646
10647 /* Don't go to the target if we don't have to. This is done before
10648 checking packet_config_support to avoid the possibility that a
10649 success for this edge case means the facility works in
10650 general. */
10651 if (pattern_len > search_space_len)
10652 return 0;
10653 if (pattern_len == 0)
10654 {
10655 *found_addrp = start_addr;
10656 return 1;
10657 }
10658
10659 /* If we already know the packet isn't supported, fall back to the simple
10660 way of searching memory. */
10661
10662 if (packet_config_support (packet) == PACKET_DISABLE)
10663 {
10664 /* Target doesn't provided special support, fall back and use the
10665 standard support (copy memory and do the search here). */
10666 return simple_search_memory (ops, start_addr, search_space_len,
10667 pattern, pattern_len, found_addrp);
10668 }
10669
10670 /* Make sure the remote is pointing at the right process. */
10671 set_general_process ();
10672
10673 /* Insert header. */
10674 i = snprintf (rs->buf, max_size,
10675 "qSearch:memory:%s;%s;",
10676 phex_nz (start_addr, addr_size),
10677 phex_nz (search_space_len, sizeof (search_space_len)));
10678 max_size -= (i + 1);
10679
10680 /* Escape as much data as fits into rs->buf. */
10681 escaped_pattern_len =
10682 remote_escape_output (pattern, pattern_len, 1, (gdb_byte *) rs->buf + i,
10683 &used_pattern_len, max_size);
10684
10685 /* Bail if the pattern is too large. */
10686 if (used_pattern_len != pattern_len)
10687 error (_("Pattern is too large to transmit to remote target."));
10688
10689 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
10690 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10691 || packet_ok (rs->buf, packet) != PACKET_OK)
10692 {
10693 /* The request may not have worked because the command is not
10694 supported. If so, fall back to the simple way. */
10695 if (packet_config_support (packet) == PACKET_DISABLE)
10696 {
10697 return simple_search_memory (ops, start_addr, search_space_len,
10698 pattern, pattern_len, found_addrp);
10699 }
10700 return -1;
10701 }
10702
10703 if (rs->buf[0] == '0')
10704 found = 0;
10705 else if (rs->buf[0] == '1')
10706 {
10707 found = 1;
10708 if (rs->buf[1] != ',')
10709 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10710 unpack_varlen_hex (rs->buf + 2, &found_addr);
10711 *found_addrp = found_addr;
10712 }
10713 else
10714 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
10715
10716 return found;
10717 }
10718
10719 static void
10720 remote_rcmd (struct target_ops *self, const char *command,
10721 struct ui_file *outbuf)
10722 {
10723 struct remote_state *rs = get_remote_state ();
10724 char *p = rs->buf;
10725
10726 if (!rs->remote_desc)
10727 error (_("remote rcmd is only available after target open"));
10728
10729 /* Send a NULL command across as an empty command. */
10730 if (command == NULL)
10731 command = "";
10732
10733 /* The query prefix. */
10734 strcpy (rs->buf, "qRcmd,");
10735 p = strchr (rs->buf, '\0');
10736
10737 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
10738 > get_remote_packet_size ())
10739 error (_("\"monitor\" command ``%s'' is too long."), command);
10740
10741 /* Encode the actual command. */
10742 bin2hex ((const gdb_byte *) command, p, strlen (command));
10743
10744 if (putpkt (rs->buf) < 0)
10745 error (_("Communication problem with target."));
10746
10747 /* get/display the response */
10748 while (1)
10749 {
10750 char *buf;
10751
10752 /* XXX - see also remote_get_noisy_reply(). */
10753 QUIT; /* Allow user to bail out with ^C. */
10754 rs->buf[0] = '\0';
10755 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
10756 {
10757 /* Timeout. Continue to (try to) read responses.
10758 This is better than stopping with an error, assuming the stub
10759 is still executing the (long) monitor command.
10760 If needed, the user can interrupt gdb using C-c, obtaining
10761 an effect similar to stop on timeout. */
10762 continue;
10763 }
10764 buf = rs->buf;
10765 if (buf[0] == '\0')
10766 error (_("Target does not support this command."));
10767 if (buf[0] == 'O' && buf[1] != 'K')
10768 {
10769 remote_console_output (buf + 1); /* 'O' message from stub. */
10770 continue;
10771 }
10772 if (strcmp (buf, "OK") == 0)
10773 break;
10774 if (strlen (buf) == 3 && buf[0] == 'E'
10775 && isdigit (buf[1]) && isdigit (buf[2]))
10776 {
10777 error (_("Protocol error with Rcmd"));
10778 }
10779 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
10780 {
10781 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
10782
10783 fputc_unfiltered (c, outbuf);
10784 }
10785 break;
10786 }
10787 }
10788
10789 static std::vector<mem_region>
10790 remote_memory_map (struct target_ops *ops)
10791 {
10792 std::vector<mem_region> result;
10793 gdb::unique_xmalloc_ptr<char> text
10794 = target_read_stralloc (&current_target, TARGET_OBJECT_MEMORY_MAP, NULL);
10795
10796 if (text)
10797 result = parse_memory_map (text.get ());
10798
10799 return result;
10800 }
10801
10802 static void
10803 packet_command (const char *args, int from_tty)
10804 {
10805 struct remote_state *rs = get_remote_state ();
10806
10807 if (!rs->remote_desc)
10808 error (_("command can only be used with remote target"));
10809
10810 if (!args)
10811 error (_("remote-packet command requires packet text as argument"));
10812
10813 puts_filtered ("sending: ");
10814 print_packet (args);
10815 puts_filtered ("\n");
10816 putpkt (args);
10817
10818 getpkt (&rs->buf, &rs->buf_size, 0);
10819 puts_filtered ("received: ");
10820 print_packet (rs->buf);
10821 puts_filtered ("\n");
10822 }
10823
10824 #if 0
10825 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
10826
10827 static void display_thread_info (struct gdb_ext_thread_info *info);
10828
10829 static void threadset_test_cmd (char *cmd, int tty);
10830
10831 static void threadalive_test (char *cmd, int tty);
10832
10833 static void threadlist_test_cmd (char *cmd, int tty);
10834
10835 int get_and_display_threadinfo (threadref *ref);
10836
10837 static void threadinfo_test_cmd (char *cmd, int tty);
10838
10839 static int thread_display_step (threadref *ref, void *context);
10840
10841 static void threadlist_update_test_cmd (char *cmd, int tty);
10842
10843 static void init_remote_threadtests (void);
10844
10845 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
10846
10847 static void
10848 threadset_test_cmd (const char *cmd, int tty)
10849 {
10850 int sample_thread = SAMPLE_THREAD;
10851
10852 printf_filtered (_("Remote threadset test\n"));
10853 set_general_thread (sample_thread);
10854 }
10855
10856
10857 static void
10858 threadalive_test (const char *cmd, int tty)
10859 {
10860 int sample_thread = SAMPLE_THREAD;
10861 int pid = ptid_get_pid (inferior_ptid);
10862 ptid_t ptid = ptid_build (pid, sample_thread, 0);
10863
10864 if (remote_thread_alive (ptid))
10865 printf_filtered ("PASS: Thread alive test\n");
10866 else
10867 printf_filtered ("FAIL: Thread alive test\n");
10868 }
10869
10870 void output_threadid (char *title, threadref *ref);
10871
10872 void
10873 output_threadid (char *title, threadref *ref)
10874 {
10875 char hexid[20];
10876
10877 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
10878 hexid[16] = 0;
10879 printf_filtered ("%s %s\n", title, (&hexid[0]));
10880 }
10881
10882 static void
10883 threadlist_test_cmd (const char *cmd, int tty)
10884 {
10885 int startflag = 1;
10886 threadref nextthread;
10887 int done, result_count;
10888 threadref threadlist[3];
10889
10890 printf_filtered ("Remote Threadlist test\n");
10891 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
10892 &result_count, &threadlist[0]))
10893 printf_filtered ("FAIL: threadlist test\n");
10894 else
10895 {
10896 threadref *scan = threadlist;
10897 threadref *limit = scan + result_count;
10898
10899 while (scan < limit)
10900 output_threadid (" thread ", scan++);
10901 }
10902 }
10903
10904 void
10905 display_thread_info (struct gdb_ext_thread_info *info)
10906 {
10907 output_threadid ("Threadid: ", &info->threadid);
10908 printf_filtered ("Name: %s\n ", info->shortname);
10909 printf_filtered ("State: %s\n", info->display);
10910 printf_filtered ("other: %s\n\n", info->more_display);
10911 }
10912
10913 int
10914 get_and_display_threadinfo (threadref *ref)
10915 {
10916 int result;
10917 int set;
10918 struct gdb_ext_thread_info threadinfo;
10919
10920 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
10921 | TAG_MOREDISPLAY | TAG_DISPLAY;
10922 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
10923 display_thread_info (&threadinfo);
10924 return result;
10925 }
10926
10927 static void
10928 threadinfo_test_cmd (const char *cmd, int tty)
10929 {
10930 int athread = SAMPLE_THREAD;
10931 threadref thread;
10932 int set;
10933
10934 int_to_threadref (&thread, athread);
10935 printf_filtered ("Remote Threadinfo test\n");
10936 if (!get_and_display_threadinfo (&thread))
10937 printf_filtered ("FAIL cannot get thread info\n");
10938 }
10939
10940 static int
10941 thread_display_step (threadref *ref, void *context)
10942 {
10943 /* output_threadid(" threadstep ",ref); *//* simple test */
10944 return get_and_display_threadinfo (ref);
10945 }
10946
10947 static void
10948 threadlist_update_test_cmd (const char *cmd, int tty)
10949 {
10950 printf_filtered ("Remote Threadlist update test\n");
10951 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
10952 }
10953
10954 static void
10955 init_remote_threadtests (void)
10956 {
10957 add_com ("tlist", class_obscure, threadlist_test_cmd,
10958 _("Fetch and print the remote list of "
10959 "thread identifiers, one pkt only"));
10960 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
10961 _("Fetch and display info about one thread"));
10962 add_com ("tset", class_obscure, threadset_test_cmd,
10963 _("Test setting to a different thread"));
10964 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
10965 _("Iterate through updating all remote thread info"));
10966 add_com ("talive", class_obscure, threadalive_test,
10967 _(" Remote thread alive test "));
10968 }
10969
10970 #endif /* 0 */
10971
10972 /* Convert a thread ID to a string. Returns the string in a static
10973 buffer. */
10974
10975 static const char *
10976 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
10977 {
10978 static char buf[64];
10979 struct remote_state *rs = get_remote_state ();
10980
10981 if (ptid_equal (ptid, null_ptid))
10982 return normal_pid_to_str (ptid);
10983 else if (ptid_is_pid (ptid))
10984 {
10985 /* Printing an inferior target id. */
10986
10987 /* When multi-process extensions are off, there's no way in the
10988 remote protocol to know the remote process id, if there's any
10989 at all. There's one exception --- when we're connected with
10990 target extended-remote, and we manually attached to a process
10991 with "attach PID". We don't record anywhere a flag that
10992 allows us to distinguish that case from the case of
10993 connecting with extended-remote and the stub already being
10994 attached to a process, and reporting yes to qAttached, hence
10995 no smart special casing here. */
10996 if (!remote_multi_process_p (rs))
10997 {
10998 xsnprintf (buf, sizeof buf, "Remote target");
10999 return buf;
11000 }
11001
11002 return normal_pid_to_str (ptid);
11003 }
11004 else
11005 {
11006 if (ptid_equal (magic_null_ptid, ptid))
11007 xsnprintf (buf, sizeof buf, "Thread <main>");
11008 else if (remote_multi_process_p (rs))
11009 if (ptid_get_lwp (ptid) == 0)
11010 return normal_pid_to_str (ptid);
11011 else
11012 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
11013 ptid_get_pid (ptid), ptid_get_lwp (ptid));
11014 else
11015 xsnprintf (buf, sizeof buf, "Thread %ld",
11016 ptid_get_lwp (ptid));
11017 return buf;
11018 }
11019 }
11020
11021 /* Get the address of the thread local variable in OBJFILE which is
11022 stored at OFFSET within the thread local storage for thread PTID. */
11023
11024 static CORE_ADDR
11025 remote_get_thread_local_address (struct target_ops *ops,
11026 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
11027 {
11028 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11029 {
11030 struct remote_state *rs = get_remote_state ();
11031 char *p = rs->buf;
11032 char *endp = rs->buf + get_remote_packet_size ();
11033 enum packet_result result;
11034
11035 strcpy (p, "qGetTLSAddr:");
11036 p += strlen (p);
11037 p = write_ptid (p, endp, ptid);
11038 *p++ = ',';
11039 p += hexnumstr (p, offset);
11040 *p++ = ',';
11041 p += hexnumstr (p, lm);
11042 *p++ = '\0';
11043
11044 putpkt (rs->buf);
11045 getpkt (&rs->buf, &rs->buf_size, 0);
11046 result = packet_ok (rs->buf,
11047 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11048 if (result == PACKET_OK)
11049 {
11050 ULONGEST result;
11051
11052 unpack_varlen_hex (rs->buf, &result);
11053 return result;
11054 }
11055 else if (result == PACKET_UNKNOWN)
11056 throw_error (TLS_GENERIC_ERROR,
11057 _("Remote target doesn't support qGetTLSAddr packet"));
11058 else
11059 throw_error (TLS_GENERIC_ERROR,
11060 _("Remote target failed to process qGetTLSAddr request"));
11061 }
11062 else
11063 throw_error (TLS_GENERIC_ERROR,
11064 _("TLS not supported or disabled on this target"));
11065 /* Not reached. */
11066 return 0;
11067 }
11068
11069 /* Provide thread local base, i.e. Thread Information Block address.
11070 Returns 1 if ptid is found and thread_local_base is non zero. */
11071
11072 static int
11073 remote_get_tib_address (struct target_ops *self, ptid_t ptid, CORE_ADDR *addr)
11074 {
11075 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11076 {
11077 struct remote_state *rs = get_remote_state ();
11078 char *p = rs->buf;
11079 char *endp = rs->buf + get_remote_packet_size ();
11080 enum packet_result result;
11081
11082 strcpy (p, "qGetTIBAddr:");
11083 p += strlen (p);
11084 p = write_ptid (p, endp, ptid);
11085 *p++ = '\0';
11086
11087 putpkt (rs->buf);
11088 getpkt (&rs->buf, &rs->buf_size, 0);
11089 result = packet_ok (rs->buf,
11090 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11091 if (result == PACKET_OK)
11092 {
11093 ULONGEST result;
11094
11095 unpack_varlen_hex (rs->buf, &result);
11096 if (addr)
11097 *addr = (CORE_ADDR) result;
11098 return 1;
11099 }
11100 else if (result == PACKET_UNKNOWN)
11101 error (_("Remote target doesn't support qGetTIBAddr packet"));
11102 else
11103 error (_("Remote target failed to process qGetTIBAddr request"));
11104 }
11105 else
11106 error (_("qGetTIBAddr not supported or disabled on this target"));
11107 /* Not reached. */
11108 return 0;
11109 }
11110
11111 /* Support for inferring a target description based on the current
11112 architecture and the size of a 'g' packet. While the 'g' packet
11113 can have any size (since optional registers can be left off the
11114 end), some sizes are easily recognizable given knowledge of the
11115 approximate architecture. */
11116
11117 struct remote_g_packet_guess
11118 {
11119 int bytes;
11120 const struct target_desc *tdesc;
11121 };
11122 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
11123 DEF_VEC_O(remote_g_packet_guess_s);
11124
11125 struct remote_g_packet_data
11126 {
11127 VEC(remote_g_packet_guess_s) *guesses;
11128 };
11129
11130 static struct gdbarch_data *remote_g_packet_data_handle;
11131
11132 static void *
11133 remote_g_packet_data_init (struct obstack *obstack)
11134 {
11135 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
11136 }
11137
11138 void
11139 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11140 const struct target_desc *tdesc)
11141 {
11142 struct remote_g_packet_data *data
11143 = ((struct remote_g_packet_data *)
11144 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11145 struct remote_g_packet_guess new_guess, *guess;
11146 int ix;
11147
11148 gdb_assert (tdesc != NULL);
11149
11150 for (ix = 0;
11151 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11152 ix++)
11153 if (guess->bytes == bytes)
11154 internal_error (__FILE__, __LINE__,
11155 _("Duplicate g packet description added for size %d"),
11156 bytes);
11157
11158 new_guess.bytes = bytes;
11159 new_guess.tdesc = tdesc;
11160 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
11161 }
11162
11163 /* Return 1 if remote_read_description would do anything on this target
11164 and architecture, 0 otherwise. */
11165
11166 static int
11167 remote_read_description_p (struct target_ops *target)
11168 {
11169 struct remote_g_packet_data *data
11170 = ((struct remote_g_packet_data *)
11171 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11172
11173 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11174 return 1;
11175
11176 return 0;
11177 }
11178
11179 static const struct target_desc *
11180 remote_read_description (struct target_ops *target)
11181 {
11182 struct remote_g_packet_data *data
11183 = ((struct remote_g_packet_data *)
11184 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11185
11186 /* Do not try this during initial connection, when we do not know
11187 whether there is a running but stopped thread. */
11188 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
11189 return target->beneath->to_read_description (target->beneath);
11190
11191 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11192 {
11193 struct remote_g_packet_guess *guess;
11194 int ix;
11195 int bytes = send_g_packet ();
11196
11197 for (ix = 0;
11198 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11199 ix++)
11200 if (guess->bytes == bytes)
11201 return guess->tdesc;
11202
11203 /* We discard the g packet. A minor optimization would be to
11204 hold on to it, and fill the register cache once we have selected
11205 an architecture, but it's too tricky to do safely. */
11206 }
11207
11208 return target->beneath->to_read_description (target->beneath);
11209 }
11210
11211 /* Remote file transfer support. This is host-initiated I/O, not
11212 target-initiated; for target-initiated, see remote-fileio.c. */
11213
11214 /* If *LEFT is at least the length of STRING, copy STRING to
11215 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11216 decrease *LEFT. Otherwise raise an error. */
11217
11218 static void
11219 remote_buffer_add_string (char **buffer, int *left, const char *string)
11220 {
11221 int len = strlen (string);
11222
11223 if (len > *left)
11224 error (_("Packet too long for target."));
11225
11226 memcpy (*buffer, string, len);
11227 *buffer += len;
11228 *left -= len;
11229
11230 /* NUL-terminate the buffer as a convenience, if there is
11231 room. */
11232 if (*left)
11233 **buffer = '\0';
11234 }
11235
11236 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11237 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11238 decrease *LEFT. Otherwise raise an error. */
11239
11240 static void
11241 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11242 int len)
11243 {
11244 if (2 * len > *left)
11245 error (_("Packet too long for target."));
11246
11247 bin2hex (bytes, *buffer, len);
11248 *buffer += 2 * len;
11249 *left -= 2 * len;
11250
11251 /* NUL-terminate the buffer as a convenience, if there is
11252 room. */
11253 if (*left)
11254 **buffer = '\0';
11255 }
11256
11257 /* If *LEFT is large enough, convert VALUE to hex and add it to
11258 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11259 decrease *LEFT. Otherwise raise an error. */
11260
11261 static void
11262 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11263 {
11264 int len = hexnumlen (value);
11265
11266 if (len > *left)
11267 error (_("Packet too long for target."));
11268
11269 hexnumstr (*buffer, value);
11270 *buffer += len;
11271 *left -= len;
11272
11273 /* NUL-terminate the buffer as a convenience, if there is
11274 room. */
11275 if (*left)
11276 **buffer = '\0';
11277 }
11278
11279 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11280 value, *REMOTE_ERRNO to the remote error number or zero if none
11281 was included, and *ATTACHMENT to point to the start of the annex
11282 if any. The length of the packet isn't needed here; there may
11283 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11284
11285 Return 0 if the packet could be parsed, -1 if it could not. If
11286 -1 is returned, the other variables may not be initialized. */
11287
11288 static int
11289 remote_hostio_parse_result (char *buffer, int *retcode,
11290 int *remote_errno, char **attachment)
11291 {
11292 char *p, *p2;
11293
11294 *remote_errno = 0;
11295 *attachment = NULL;
11296
11297 if (buffer[0] != 'F')
11298 return -1;
11299
11300 errno = 0;
11301 *retcode = strtol (&buffer[1], &p, 16);
11302 if (errno != 0 || p == &buffer[1])
11303 return -1;
11304
11305 /* Check for ",errno". */
11306 if (*p == ',')
11307 {
11308 errno = 0;
11309 *remote_errno = strtol (p + 1, &p2, 16);
11310 if (errno != 0 || p + 1 == p2)
11311 return -1;
11312 p = p2;
11313 }
11314
11315 /* Check for ";attachment". If there is no attachment, the
11316 packet should end here. */
11317 if (*p == ';')
11318 {
11319 *attachment = p + 1;
11320 return 0;
11321 }
11322 else if (*p == '\0')
11323 return 0;
11324 else
11325 return -1;
11326 }
11327
11328 /* Send a prepared I/O packet to the target and read its response.
11329 The prepared packet is in the global RS->BUF before this function
11330 is called, and the answer is there when we return.
11331
11332 COMMAND_BYTES is the length of the request to send, which may include
11333 binary data. WHICH_PACKET is the packet configuration to check
11334 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11335 is set to the error number and -1 is returned. Otherwise the value
11336 returned by the function is returned.
11337
11338 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11339 attachment is expected; an error will be reported if there's a
11340 mismatch. If one is found, *ATTACHMENT will be set to point into
11341 the packet buffer and *ATTACHMENT_LEN will be set to the
11342 attachment's length. */
11343
11344 static int
11345 remote_hostio_send_command (int command_bytes, int which_packet,
11346 int *remote_errno, char **attachment,
11347 int *attachment_len)
11348 {
11349 struct remote_state *rs = get_remote_state ();
11350 int ret, bytes_read;
11351 char *attachment_tmp;
11352
11353 if (!rs->remote_desc
11354 || packet_support (which_packet) == PACKET_DISABLE)
11355 {
11356 *remote_errno = FILEIO_ENOSYS;
11357 return -1;
11358 }
11359
11360 putpkt_binary (rs->buf, command_bytes);
11361 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
11362
11363 /* If it timed out, something is wrong. Don't try to parse the
11364 buffer. */
11365 if (bytes_read < 0)
11366 {
11367 *remote_errno = FILEIO_EINVAL;
11368 return -1;
11369 }
11370
11371 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11372 {
11373 case PACKET_ERROR:
11374 *remote_errno = FILEIO_EINVAL;
11375 return -1;
11376 case PACKET_UNKNOWN:
11377 *remote_errno = FILEIO_ENOSYS;
11378 return -1;
11379 case PACKET_OK:
11380 break;
11381 }
11382
11383 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
11384 &attachment_tmp))
11385 {
11386 *remote_errno = FILEIO_EINVAL;
11387 return -1;
11388 }
11389
11390 /* Make sure we saw an attachment if and only if we expected one. */
11391 if ((attachment_tmp == NULL && attachment != NULL)
11392 || (attachment_tmp != NULL && attachment == NULL))
11393 {
11394 *remote_errno = FILEIO_EINVAL;
11395 return -1;
11396 }
11397
11398 /* If an attachment was found, it must point into the packet buffer;
11399 work out how many bytes there were. */
11400 if (attachment_tmp != NULL)
11401 {
11402 *attachment = attachment_tmp;
11403 *attachment_len = bytes_read - (*attachment - rs->buf);
11404 }
11405
11406 return ret;
11407 }
11408
11409 /* Invalidate the readahead cache. */
11410
11411 static void
11412 readahead_cache_invalidate (void)
11413 {
11414 struct remote_state *rs = get_remote_state ();
11415
11416 rs->readahead_cache.fd = -1;
11417 }
11418
11419 /* Invalidate the readahead cache if it is holding data for FD. */
11420
11421 static void
11422 readahead_cache_invalidate_fd (int fd)
11423 {
11424 struct remote_state *rs = get_remote_state ();
11425
11426 if (rs->readahead_cache.fd == fd)
11427 rs->readahead_cache.fd = -1;
11428 }
11429
11430 /* Set the filesystem remote_hostio functions that take FILENAME
11431 arguments will use. Return 0 on success, or -1 if an error
11432 occurs (and set *REMOTE_ERRNO). */
11433
11434 static int
11435 remote_hostio_set_filesystem (struct inferior *inf, int *remote_errno)
11436 {
11437 struct remote_state *rs = get_remote_state ();
11438 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11439 char *p = rs->buf;
11440 int left = get_remote_packet_size () - 1;
11441 char arg[9];
11442 int ret;
11443
11444 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11445 return 0;
11446
11447 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11448 return 0;
11449
11450 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11451
11452 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11453 remote_buffer_add_string (&p, &left, arg);
11454
11455 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_setfs,
11456 remote_errno, NULL, NULL);
11457
11458 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11459 return 0;
11460
11461 if (ret == 0)
11462 rs->fs_pid = required_pid;
11463
11464 return ret;
11465 }
11466
11467 /* Implementation of to_fileio_open. */
11468
11469 static int
11470 remote_hostio_open (struct target_ops *self,
11471 struct inferior *inf, const char *filename,
11472 int flags, int mode, int warn_if_slow,
11473 int *remote_errno)
11474 {
11475 struct remote_state *rs = get_remote_state ();
11476 char *p = rs->buf;
11477 int left = get_remote_packet_size () - 1;
11478
11479 if (warn_if_slow)
11480 {
11481 static int warning_issued = 0;
11482
11483 printf_unfiltered (_("Reading %s from remote target...\n"),
11484 filename);
11485
11486 if (!warning_issued)
11487 {
11488 warning (_("File transfers from remote targets can be slow."
11489 " Use \"set sysroot\" to access files locally"
11490 " instead."));
11491 warning_issued = 1;
11492 }
11493 }
11494
11495 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11496 return -1;
11497
11498 remote_buffer_add_string (&p, &left, "vFile:open:");
11499
11500 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11501 strlen (filename));
11502 remote_buffer_add_string (&p, &left, ",");
11503
11504 remote_buffer_add_int (&p, &left, flags);
11505 remote_buffer_add_string (&p, &left, ",");
11506
11507 remote_buffer_add_int (&p, &left, mode);
11508
11509 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
11510 remote_errno, NULL, NULL);
11511 }
11512
11513 /* Implementation of to_fileio_pwrite. */
11514
11515 static int
11516 remote_hostio_pwrite (struct target_ops *self,
11517 int fd, const gdb_byte *write_buf, int len,
11518 ULONGEST offset, int *remote_errno)
11519 {
11520 struct remote_state *rs = get_remote_state ();
11521 char *p = rs->buf;
11522 int left = get_remote_packet_size ();
11523 int out_len;
11524
11525 readahead_cache_invalidate_fd (fd);
11526
11527 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11528
11529 remote_buffer_add_int (&p, &left, fd);
11530 remote_buffer_add_string (&p, &left, ",");
11531
11532 remote_buffer_add_int (&p, &left, offset);
11533 remote_buffer_add_string (&p, &left, ",");
11534
11535 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11536 get_remote_packet_size () - (p - rs->buf));
11537
11538 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
11539 remote_errno, NULL, NULL);
11540 }
11541
11542 /* Helper for the implementation of to_fileio_pread. Read the file
11543 from the remote side with vFile:pread. */
11544
11545 static int
11546 remote_hostio_pread_vFile (struct target_ops *self,
11547 int fd, gdb_byte *read_buf, int len,
11548 ULONGEST offset, int *remote_errno)
11549 {
11550 struct remote_state *rs = get_remote_state ();
11551 char *p = rs->buf;
11552 char *attachment;
11553 int left = get_remote_packet_size ();
11554 int ret, attachment_len;
11555 int read_len;
11556
11557 remote_buffer_add_string (&p, &left, "vFile:pread:");
11558
11559 remote_buffer_add_int (&p, &left, fd);
11560 remote_buffer_add_string (&p, &left, ",");
11561
11562 remote_buffer_add_int (&p, &left, len);
11563 remote_buffer_add_string (&p, &left, ",");
11564
11565 remote_buffer_add_int (&p, &left, offset);
11566
11567 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
11568 remote_errno, &attachment,
11569 &attachment_len);
11570
11571 if (ret < 0)
11572 return ret;
11573
11574 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11575 read_buf, len);
11576 if (read_len != ret)
11577 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
11578
11579 return ret;
11580 }
11581
11582 /* Serve pread from the readahead cache. Returns number of bytes
11583 read, or 0 if the request can't be served from the cache. */
11584
11585 static int
11586 remote_hostio_pread_from_cache (struct remote_state *rs,
11587 int fd, gdb_byte *read_buf, size_t len,
11588 ULONGEST offset)
11589 {
11590 struct readahead_cache *cache = &rs->readahead_cache;
11591
11592 if (cache->fd == fd
11593 && cache->offset <= offset
11594 && offset < cache->offset + cache->bufsize)
11595 {
11596 ULONGEST max = cache->offset + cache->bufsize;
11597
11598 if (offset + len > max)
11599 len = max - offset;
11600
11601 memcpy (read_buf, cache->buf + offset - cache->offset, len);
11602 return len;
11603 }
11604
11605 return 0;
11606 }
11607
11608 /* Implementation of to_fileio_pread. */
11609
11610 static int
11611 remote_hostio_pread (struct target_ops *self,
11612 int fd, gdb_byte *read_buf, int len,
11613 ULONGEST offset, int *remote_errno)
11614 {
11615 int ret;
11616 struct remote_state *rs = get_remote_state ();
11617 struct readahead_cache *cache = &rs->readahead_cache;
11618
11619 ret = remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11620 if (ret > 0)
11621 {
11622 cache->hit_count++;
11623
11624 if (remote_debug)
11625 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
11626 pulongest (cache->hit_count));
11627 return ret;
11628 }
11629
11630 cache->miss_count++;
11631 if (remote_debug)
11632 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
11633 pulongest (cache->miss_count));
11634
11635 cache->fd = fd;
11636 cache->offset = offset;
11637 cache->bufsize = get_remote_packet_size ();
11638 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
11639
11640 ret = remote_hostio_pread_vFile (self, cache->fd, cache->buf, cache->bufsize,
11641 cache->offset, remote_errno);
11642 if (ret <= 0)
11643 {
11644 readahead_cache_invalidate_fd (fd);
11645 return ret;
11646 }
11647
11648 cache->bufsize = ret;
11649 return remote_hostio_pread_from_cache (rs, fd, read_buf, len, offset);
11650 }
11651
11652 /* Implementation of to_fileio_close. */
11653
11654 static int
11655 remote_hostio_close (struct target_ops *self, int fd, int *remote_errno)
11656 {
11657 struct remote_state *rs = get_remote_state ();
11658 char *p = rs->buf;
11659 int left = get_remote_packet_size () - 1;
11660
11661 readahead_cache_invalidate_fd (fd);
11662
11663 remote_buffer_add_string (&p, &left, "vFile:close:");
11664
11665 remote_buffer_add_int (&p, &left, fd);
11666
11667 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
11668 remote_errno, NULL, NULL);
11669 }
11670
11671 /* Implementation of to_fileio_unlink. */
11672
11673 static int
11674 remote_hostio_unlink (struct target_ops *self,
11675 struct inferior *inf, const char *filename,
11676 int *remote_errno)
11677 {
11678 struct remote_state *rs = get_remote_state ();
11679 char *p = rs->buf;
11680 int left = get_remote_packet_size () - 1;
11681
11682 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11683 return -1;
11684
11685 remote_buffer_add_string (&p, &left, "vFile:unlink:");
11686
11687 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11688 strlen (filename));
11689
11690 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
11691 remote_errno, NULL, NULL);
11692 }
11693
11694 /* Implementation of to_fileio_readlink. */
11695
11696 static gdb::optional<std::string>
11697 remote_hostio_readlink (struct target_ops *self,
11698 struct inferior *inf, const char *filename,
11699 int *remote_errno)
11700 {
11701 struct remote_state *rs = get_remote_state ();
11702 char *p = rs->buf;
11703 char *attachment;
11704 int left = get_remote_packet_size ();
11705 int len, attachment_len;
11706 int read_len;
11707
11708 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11709 return {};
11710
11711 remote_buffer_add_string (&p, &left, "vFile:readlink:");
11712
11713 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11714 strlen (filename));
11715
11716 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
11717 remote_errno, &attachment,
11718 &attachment_len);
11719
11720 if (len < 0)
11721 return {};
11722
11723 std::string ret (len, '\0');
11724
11725 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11726 (gdb_byte *) &ret[0], len);
11727 if (read_len != len)
11728 error (_("Readlink returned %d, but %d bytes."), len, read_len);
11729
11730 return ret;
11731 }
11732
11733 /* Implementation of to_fileio_fstat. */
11734
11735 static int
11736 remote_hostio_fstat (struct target_ops *self,
11737 int fd, struct stat *st,
11738 int *remote_errno)
11739 {
11740 struct remote_state *rs = get_remote_state ();
11741 char *p = rs->buf;
11742 int left = get_remote_packet_size ();
11743 int attachment_len, ret;
11744 char *attachment;
11745 struct fio_stat fst;
11746 int read_len;
11747
11748 remote_buffer_add_string (&p, &left, "vFile:fstat:");
11749
11750 remote_buffer_add_int (&p, &left, fd);
11751
11752 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_fstat,
11753 remote_errno, &attachment,
11754 &attachment_len);
11755 if (ret < 0)
11756 {
11757 if (*remote_errno != FILEIO_ENOSYS)
11758 return ret;
11759
11760 /* Strictly we should return -1, ENOSYS here, but when
11761 "set sysroot remote:" was implemented in August 2008
11762 BFD's need for a stat function was sidestepped with
11763 this hack. This was not remedied until March 2015
11764 so we retain the previous behavior to avoid breaking
11765 compatibility.
11766
11767 Note that the memset is a March 2015 addition; older
11768 GDBs set st_size *and nothing else* so the structure
11769 would have garbage in all other fields. This might
11770 break something but retaining the previous behavior
11771 here would be just too wrong. */
11772
11773 memset (st, 0, sizeof (struct stat));
11774 st->st_size = INT_MAX;
11775 return 0;
11776 }
11777
11778 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11779 (gdb_byte *) &fst, sizeof (fst));
11780
11781 if (read_len != ret)
11782 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
11783
11784 if (read_len != sizeof (fst))
11785 error (_("vFile:fstat returned %d bytes, but expecting %d."),
11786 read_len, (int) sizeof (fst));
11787
11788 remote_fileio_to_host_stat (&fst, st);
11789
11790 return 0;
11791 }
11792
11793 /* Implementation of to_filesystem_is_local. */
11794
11795 static int
11796 remote_filesystem_is_local (struct target_ops *self)
11797 {
11798 /* Valgrind GDB presents itself as a remote target but works
11799 on the local filesystem: it does not implement remote get
11800 and users are not expected to set a sysroot. To handle
11801 this case we treat the remote filesystem as local if the
11802 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
11803 does not support vFile:open. */
11804 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
11805 {
11806 enum packet_support ps = packet_support (PACKET_vFile_open);
11807
11808 if (ps == PACKET_SUPPORT_UNKNOWN)
11809 {
11810 int fd, remote_errno;
11811
11812 /* Try opening a file to probe support. The supplied
11813 filename is irrelevant, we only care about whether
11814 the stub recognizes the packet or not. */
11815 fd = remote_hostio_open (self, NULL, "just probing",
11816 FILEIO_O_RDONLY, 0700, 0,
11817 &remote_errno);
11818
11819 if (fd >= 0)
11820 remote_hostio_close (self, fd, &remote_errno);
11821
11822 ps = packet_support (PACKET_vFile_open);
11823 }
11824
11825 if (ps == PACKET_DISABLE)
11826 {
11827 static int warning_issued = 0;
11828
11829 if (!warning_issued)
11830 {
11831 warning (_("remote target does not support file"
11832 " transfer, attempting to access files"
11833 " from local filesystem."));
11834 warning_issued = 1;
11835 }
11836
11837 return 1;
11838 }
11839 }
11840
11841 return 0;
11842 }
11843
11844 static int
11845 remote_fileio_errno_to_host (int errnum)
11846 {
11847 switch (errnum)
11848 {
11849 case FILEIO_EPERM:
11850 return EPERM;
11851 case FILEIO_ENOENT:
11852 return ENOENT;
11853 case FILEIO_EINTR:
11854 return EINTR;
11855 case FILEIO_EIO:
11856 return EIO;
11857 case FILEIO_EBADF:
11858 return EBADF;
11859 case FILEIO_EACCES:
11860 return EACCES;
11861 case FILEIO_EFAULT:
11862 return EFAULT;
11863 case FILEIO_EBUSY:
11864 return EBUSY;
11865 case FILEIO_EEXIST:
11866 return EEXIST;
11867 case FILEIO_ENODEV:
11868 return ENODEV;
11869 case FILEIO_ENOTDIR:
11870 return ENOTDIR;
11871 case FILEIO_EISDIR:
11872 return EISDIR;
11873 case FILEIO_EINVAL:
11874 return EINVAL;
11875 case FILEIO_ENFILE:
11876 return ENFILE;
11877 case FILEIO_EMFILE:
11878 return EMFILE;
11879 case FILEIO_EFBIG:
11880 return EFBIG;
11881 case FILEIO_ENOSPC:
11882 return ENOSPC;
11883 case FILEIO_ESPIPE:
11884 return ESPIPE;
11885 case FILEIO_EROFS:
11886 return EROFS;
11887 case FILEIO_ENOSYS:
11888 return ENOSYS;
11889 case FILEIO_ENAMETOOLONG:
11890 return ENAMETOOLONG;
11891 }
11892 return -1;
11893 }
11894
11895 static char *
11896 remote_hostio_error (int errnum)
11897 {
11898 int host_error = remote_fileio_errno_to_host (errnum);
11899
11900 if (host_error == -1)
11901 error (_("Unknown remote I/O error %d"), errnum);
11902 else
11903 error (_("Remote I/O error: %s"), safe_strerror (host_error));
11904 }
11905
11906 static void
11907 remote_hostio_close_cleanup (void *opaque)
11908 {
11909 int fd = *(int *) opaque;
11910 int remote_errno;
11911
11912 remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno);
11913 }
11914
11915 void
11916 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
11917 {
11918 struct cleanup *back_to, *close_cleanup;
11919 int retcode, fd, remote_errno, bytes, io_size;
11920 gdb_byte *buffer;
11921 int bytes_in_buffer;
11922 int saw_eof;
11923 ULONGEST offset;
11924 struct remote_state *rs = get_remote_state ();
11925
11926 if (!rs->remote_desc)
11927 error (_("command can only be used with remote target"));
11928
11929 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
11930 if (file == NULL)
11931 perror_with_name (local_file);
11932
11933 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
11934 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
11935 | FILEIO_O_TRUNC),
11936 0700, 0, &remote_errno);
11937 if (fd == -1)
11938 remote_hostio_error (remote_errno);
11939
11940 /* Send up to this many bytes at once. They won't all fit in the
11941 remote packet limit, so we'll transfer slightly fewer. */
11942 io_size = get_remote_packet_size ();
11943 buffer = (gdb_byte *) xmalloc (io_size);
11944 back_to = make_cleanup (xfree, buffer);
11945
11946 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
11947
11948 bytes_in_buffer = 0;
11949 saw_eof = 0;
11950 offset = 0;
11951 while (bytes_in_buffer || !saw_eof)
11952 {
11953 if (!saw_eof)
11954 {
11955 bytes = fread (buffer + bytes_in_buffer, 1,
11956 io_size - bytes_in_buffer,
11957 file.get ());
11958 if (bytes == 0)
11959 {
11960 if (ferror (file.get ()))
11961 error (_("Error reading %s."), local_file);
11962 else
11963 {
11964 /* EOF. Unless there is something still in the
11965 buffer from the last iteration, we are done. */
11966 saw_eof = 1;
11967 if (bytes_in_buffer == 0)
11968 break;
11969 }
11970 }
11971 }
11972 else
11973 bytes = 0;
11974
11975 bytes += bytes_in_buffer;
11976 bytes_in_buffer = 0;
11977
11978 retcode = remote_hostio_pwrite (find_target_at (process_stratum),
11979 fd, buffer, bytes,
11980 offset, &remote_errno);
11981
11982 if (retcode < 0)
11983 remote_hostio_error (remote_errno);
11984 else if (retcode == 0)
11985 error (_("Remote write of %d bytes returned 0!"), bytes);
11986 else if (retcode < bytes)
11987 {
11988 /* Short write. Save the rest of the read data for the next
11989 write. */
11990 bytes_in_buffer = bytes - retcode;
11991 memmove (buffer, buffer + retcode, bytes_in_buffer);
11992 }
11993
11994 offset += retcode;
11995 }
11996
11997 discard_cleanups (close_cleanup);
11998 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
11999 remote_hostio_error (remote_errno);
12000
12001 if (from_tty)
12002 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12003 do_cleanups (back_to);
12004 }
12005
12006 void
12007 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12008 {
12009 struct cleanup *back_to, *close_cleanup;
12010 int fd, remote_errno, bytes, io_size;
12011 gdb_byte *buffer;
12012 ULONGEST offset;
12013 struct remote_state *rs = get_remote_state ();
12014
12015 if (!rs->remote_desc)
12016 error (_("command can only be used with remote target"));
12017
12018 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
12019 remote_file, FILEIO_O_RDONLY, 0, 0,
12020 &remote_errno);
12021 if (fd == -1)
12022 remote_hostio_error (remote_errno);
12023
12024 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12025 if (file == NULL)
12026 perror_with_name (local_file);
12027
12028 /* Send up to this many bytes at once. They won't all fit in the
12029 remote packet limit, so we'll transfer slightly fewer. */
12030 io_size = get_remote_packet_size ();
12031 buffer = (gdb_byte *) xmalloc (io_size);
12032 back_to = make_cleanup (xfree, buffer);
12033
12034 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
12035
12036 offset = 0;
12037 while (1)
12038 {
12039 bytes = remote_hostio_pread (find_target_at (process_stratum),
12040 fd, buffer, io_size, offset, &remote_errno);
12041 if (bytes == 0)
12042 /* Success, but no bytes, means end-of-file. */
12043 break;
12044 if (bytes == -1)
12045 remote_hostio_error (remote_errno);
12046
12047 offset += bytes;
12048
12049 bytes = fwrite (buffer, 1, bytes, file.get ());
12050 if (bytes == 0)
12051 perror_with_name (local_file);
12052 }
12053
12054 discard_cleanups (close_cleanup);
12055 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
12056 remote_hostio_error (remote_errno);
12057
12058 if (from_tty)
12059 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12060 do_cleanups (back_to);
12061 }
12062
12063 void
12064 remote_file_delete (const char *remote_file, int from_tty)
12065 {
12066 int retcode, remote_errno;
12067 struct remote_state *rs = get_remote_state ();
12068
12069 if (!rs->remote_desc)
12070 error (_("command can only be used with remote target"));
12071
12072 retcode = remote_hostio_unlink (find_target_at (process_stratum),
12073 NULL, remote_file, &remote_errno);
12074 if (retcode == -1)
12075 remote_hostio_error (remote_errno);
12076
12077 if (from_tty)
12078 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12079 }
12080
12081 static void
12082 remote_put_command (const char *args, int from_tty)
12083 {
12084 if (args == NULL)
12085 error_no_arg (_("file to put"));
12086
12087 gdb_argv argv (args);
12088 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12089 error (_("Invalid parameters to remote put"));
12090
12091 remote_file_put (argv[0], argv[1], from_tty);
12092 }
12093
12094 static void
12095 remote_get_command (const char *args, int from_tty)
12096 {
12097 if (args == NULL)
12098 error_no_arg (_("file to get"));
12099
12100 gdb_argv argv (args);
12101 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12102 error (_("Invalid parameters to remote get"));
12103
12104 remote_file_get (argv[0], argv[1], from_tty);
12105 }
12106
12107 static void
12108 remote_delete_command (const char *args, int from_tty)
12109 {
12110 if (args == NULL)
12111 error_no_arg (_("file to delete"));
12112
12113 gdb_argv argv (args);
12114 if (argv[0] == NULL || argv[1] != NULL)
12115 error (_("Invalid parameters to remote delete"));
12116
12117 remote_file_delete (argv[0], from_tty);
12118 }
12119
12120 static void
12121 remote_command (const char *args, int from_tty)
12122 {
12123 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12124 }
12125
12126 static int
12127 remote_can_execute_reverse (struct target_ops *self)
12128 {
12129 if (packet_support (PACKET_bs) == PACKET_ENABLE
12130 || packet_support (PACKET_bc) == PACKET_ENABLE)
12131 return 1;
12132 else
12133 return 0;
12134 }
12135
12136 static int
12137 remote_supports_non_stop (struct target_ops *self)
12138 {
12139 return 1;
12140 }
12141
12142 static int
12143 remote_supports_disable_randomization (struct target_ops *self)
12144 {
12145 /* Only supported in extended mode. */
12146 return 0;
12147 }
12148
12149 static int
12150 remote_supports_multi_process (struct target_ops *self)
12151 {
12152 struct remote_state *rs = get_remote_state ();
12153
12154 return remote_multi_process_p (rs);
12155 }
12156
12157 static int
12158 remote_supports_cond_tracepoints (void)
12159 {
12160 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12161 }
12162
12163 static int
12164 remote_supports_cond_breakpoints (struct target_ops *self)
12165 {
12166 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12167 }
12168
12169 static int
12170 remote_supports_fast_tracepoints (void)
12171 {
12172 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12173 }
12174
12175 static int
12176 remote_supports_static_tracepoints (void)
12177 {
12178 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12179 }
12180
12181 static int
12182 remote_supports_install_in_trace (void)
12183 {
12184 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12185 }
12186
12187 static int
12188 remote_supports_enable_disable_tracepoint (struct target_ops *self)
12189 {
12190 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12191 == PACKET_ENABLE);
12192 }
12193
12194 static int
12195 remote_supports_string_tracing (struct target_ops *self)
12196 {
12197 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12198 }
12199
12200 static int
12201 remote_can_run_breakpoint_commands (struct target_ops *self)
12202 {
12203 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12204 }
12205
12206 static void
12207 remote_trace_init (struct target_ops *self)
12208 {
12209 struct remote_state *rs = get_remote_state ();
12210
12211 putpkt ("QTinit");
12212 remote_get_noisy_reply ();
12213 if (strcmp (rs->buf, "OK") != 0)
12214 error (_("Target does not support this command."));
12215 }
12216
12217 /* Recursive routine to walk through command list including loops, and
12218 download packets for each command. */
12219
12220 static void
12221 remote_download_command_source (int num, ULONGEST addr,
12222 struct command_line *cmds)
12223 {
12224 struct remote_state *rs = get_remote_state ();
12225 struct command_line *cmd;
12226
12227 for (cmd = cmds; cmd; cmd = cmd->next)
12228 {
12229 QUIT; /* Allow user to bail out with ^C. */
12230 strcpy (rs->buf, "QTDPsrc:");
12231 encode_source_string (num, addr, "cmd", cmd->line,
12232 rs->buf + strlen (rs->buf),
12233 rs->buf_size - strlen (rs->buf));
12234 putpkt (rs->buf);
12235 remote_get_noisy_reply ();
12236 if (strcmp (rs->buf, "OK"))
12237 warning (_("Target does not support source download."));
12238
12239 if (cmd->control_type == while_control
12240 || cmd->control_type == while_stepping_control)
12241 {
12242 remote_download_command_source (num, addr, *cmd->body_list);
12243
12244 QUIT; /* Allow user to bail out with ^C. */
12245 strcpy (rs->buf, "QTDPsrc:");
12246 encode_source_string (num, addr, "cmd", "end",
12247 rs->buf + strlen (rs->buf),
12248 rs->buf_size - strlen (rs->buf));
12249 putpkt (rs->buf);
12250 remote_get_noisy_reply ();
12251 if (strcmp (rs->buf, "OK"))
12252 warning (_("Target does not support source download."));
12253 }
12254 }
12255 }
12256
12257 static void
12258 remote_download_tracepoint (struct target_ops *self, struct bp_location *loc)
12259 {
12260 #define BUF_SIZE 2048
12261
12262 CORE_ADDR tpaddr;
12263 char addrbuf[40];
12264 char buf[BUF_SIZE];
12265 std::vector<std::string> tdp_actions;
12266 std::vector<std::string> stepping_actions;
12267 char *pkt;
12268 struct breakpoint *b = loc->owner;
12269 struct tracepoint *t = (struct tracepoint *) b;
12270 struct remote_state *rs = get_remote_state ();
12271
12272 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12273
12274 tpaddr = loc->address;
12275 sprintf_vma (addrbuf, tpaddr);
12276 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
12277 addrbuf, /* address */
12278 (b->enable_state == bp_enabled ? 'E' : 'D'),
12279 t->step_count, t->pass_count);
12280 /* Fast tracepoints are mostly handled by the target, but we can
12281 tell the target how big of an instruction block should be moved
12282 around. */
12283 if (b->type == bp_fast_tracepoint)
12284 {
12285 /* Only test for support at download time; we may not know
12286 target capabilities at definition time. */
12287 if (remote_supports_fast_tracepoints ())
12288 {
12289 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12290 NULL))
12291 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
12292 gdb_insn_length (loc->gdbarch, tpaddr));
12293 else
12294 /* If it passed validation at definition but fails now,
12295 something is very wrong. */
12296 internal_error (__FILE__, __LINE__,
12297 _("Fast tracepoint not "
12298 "valid during download"));
12299 }
12300 else
12301 /* Fast tracepoints are functionally identical to regular
12302 tracepoints, so don't take lack of support as a reason to
12303 give up on the trace run. */
12304 warning (_("Target does not support fast tracepoints, "
12305 "downloading %d as regular tracepoint"), b->number);
12306 }
12307 else if (b->type == bp_static_tracepoint)
12308 {
12309 /* Only test for support at download time; we may not know
12310 target capabilities at definition time. */
12311 if (remote_supports_static_tracepoints ())
12312 {
12313 struct static_tracepoint_marker marker;
12314
12315 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12316 strcat (buf, ":S");
12317 else
12318 error (_("Static tracepoint not valid during download"));
12319 }
12320 else
12321 /* Fast tracepoints are functionally identical to regular
12322 tracepoints, so don't take lack of support as a reason
12323 to give up on the trace run. */
12324 error (_("Target does not support static tracepoints"));
12325 }
12326 /* If the tracepoint has a conditional, make it into an agent
12327 expression and append to the definition. */
12328 if (loc->cond)
12329 {
12330 /* Only test support at download time, we may not know target
12331 capabilities at definition time. */
12332 if (remote_supports_cond_tracepoints ())
12333 {
12334 agent_expr_up aexpr = gen_eval_for_expr (tpaddr, loc->cond.get ());
12335 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
12336 aexpr->len);
12337 pkt = buf + strlen (buf);
12338 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12339 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12340 *pkt = '\0';
12341 }
12342 else
12343 warning (_("Target does not support conditional tracepoints, "
12344 "ignoring tp %d cond"), b->number);
12345 }
12346
12347 if (b->commands || *default_collect)
12348 strcat (buf, "-");
12349 putpkt (buf);
12350 remote_get_noisy_reply ();
12351 if (strcmp (rs->buf, "OK"))
12352 error (_("Target does not support tracepoints."));
12353
12354 /* do_single_steps (t); */
12355 for (auto action_it = tdp_actions.begin ();
12356 action_it != tdp_actions.end (); action_it++)
12357 {
12358 QUIT; /* Allow user to bail out with ^C. */
12359
12360 bool has_more = (action_it != tdp_actions.end ()
12361 || !stepping_actions.empty ());
12362
12363 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
12364 b->number, addrbuf, /* address */
12365 action_it->c_str (),
12366 has_more ? '-' : 0);
12367 putpkt (buf);
12368 remote_get_noisy_reply ();
12369 if (strcmp (rs->buf, "OK"))
12370 error (_("Error on target while setting tracepoints."));
12371 }
12372
12373 for (auto action_it = stepping_actions.begin ();
12374 action_it != stepping_actions.end (); action_it++)
12375 {
12376 QUIT; /* Allow user to bail out with ^C. */
12377
12378 bool is_first = action_it == stepping_actions.begin ();
12379 bool has_more = action_it != stepping_actions.end ();
12380
12381 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
12382 b->number, addrbuf, /* address */
12383 is_first ? "S" : "",
12384 action_it->c_str (),
12385 has_more ? "-" : "");
12386 putpkt (buf);
12387 remote_get_noisy_reply ();
12388 if (strcmp (rs->buf, "OK"))
12389 error (_("Error on target while setting tracepoints."));
12390 }
12391
12392 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12393 {
12394 if (b->location != NULL)
12395 {
12396 strcpy (buf, "QTDPsrc:");
12397 encode_source_string (b->number, loc->address, "at",
12398 event_location_to_string (b->location.get ()),
12399 buf + strlen (buf), 2048 - strlen (buf));
12400 putpkt (buf);
12401 remote_get_noisy_reply ();
12402 if (strcmp (rs->buf, "OK"))
12403 warning (_("Target does not support source download."));
12404 }
12405 if (b->cond_string)
12406 {
12407 strcpy (buf, "QTDPsrc:");
12408 encode_source_string (b->number, loc->address,
12409 "cond", b->cond_string, buf + strlen (buf),
12410 2048 - strlen (buf));
12411 putpkt (buf);
12412 remote_get_noisy_reply ();
12413 if (strcmp (rs->buf, "OK"))
12414 warning (_("Target does not support source download."));
12415 }
12416 remote_download_command_source (b->number, loc->address,
12417 breakpoint_commands (b));
12418 }
12419 }
12420
12421 static int
12422 remote_can_download_tracepoint (struct target_ops *self)
12423 {
12424 struct remote_state *rs = get_remote_state ();
12425 struct trace_status *ts;
12426 int status;
12427
12428 /* Don't try to install tracepoints until we've relocated our
12429 symbols, and fetched and merged the target's tracepoint list with
12430 ours. */
12431 if (rs->starting_up)
12432 return 0;
12433
12434 ts = current_trace_status ();
12435 status = remote_get_trace_status (self, ts);
12436
12437 if (status == -1 || !ts->running_known || !ts->running)
12438 return 0;
12439
12440 /* If we are in a tracing experiment, but remote stub doesn't support
12441 installing tracepoint in trace, we have to return. */
12442 if (!remote_supports_install_in_trace ())
12443 return 0;
12444
12445 return 1;
12446 }
12447
12448
12449 static void
12450 remote_download_trace_state_variable (struct target_ops *self,
12451 struct trace_state_variable *tsv)
12452 {
12453 struct remote_state *rs = get_remote_state ();
12454 char *p;
12455
12456 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
12457 tsv->number, phex ((ULONGEST) tsv->initial_value, 8),
12458 tsv->builtin);
12459 p = rs->buf + strlen (rs->buf);
12460 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
12461 error (_("Trace state variable name too long for tsv definition packet"));
12462 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, strlen (tsv->name));
12463 *p++ = '\0';
12464 putpkt (rs->buf);
12465 remote_get_noisy_reply ();
12466 if (*rs->buf == '\0')
12467 error (_("Target does not support this command."));
12468 if (strcmp (rs->buf, "OK") != 0)
12469 error (_("Error on target while downloading trace state variable."));
12470 }
12471
12472 static void
12473 remote_enable_tracepoint (struct target_ops *self,
12474 struct bp_location *location)
12475 {
12476 struct remote_state *rs = get_remote_state ();
12477 char addr_buf[40];
12478
12479 sprintf_vma (addr_buf, location->address);
12480 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
12481 location->owner->number, addr_buf);
12482 putpkt (rs->buf);
12483 remote_get_noisy_reply ();
12484 if (*rs->buf == '\0')
12485 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
12486 if (strcmp (rs->buf, "OK") != 0)
12487 error (_("Error on target while enabling tracepoint."));
12488 }
12489
12490 static void
12491 remote_disable_tracepoint (struct target_ops *self,
12492 struct bp_location *location)
12493 {
12494 struct remote_state *rs = get_remote_state ();
12495 char addr_buf[40];
12496
12497 sprintf_vma (addr_buf, location->address);
12498 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
12499 location->owner->number, addr_buf);
12500 putpkt (rs->buf);
12501 remote_get_noisy_reply ();
12502 if (*rs->buf == '\0')
12503 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
12504 if (strcmp (rs->buf, "OK") != 0)
12505 error (_("Error on target while disabling tracepoint."));
12506 }
12507
12508 static void
12509 remote_trace_set_readonly_regions (struct target_ops *self)
12510 {
12511 asection *s;
12512 bfd *abfd = NULL;
12513 bfd_size_type size;
12514 bfd_vma vma;
12515 int anysecs = 0;
12516 int offset = 0;
12517
12518 if (!exec_bfd)
12519 return; /* No information to give. */
12520
12521 struct remote_state *rs = get_remote_state ();
12522
12523 strcpy (rs->buf, "QTro");
12524 offset = strlen (rs->buf);
12525 for (s = exec_bfd->sections; s; s = s->next)
12526 {
12527 char tmp1[40], tmp2[40];
12528 int sec_length;
12529
12530 if ((s->flags & SEC_LOAD) == 0 ||
12531 /* (s->flags & SEC_CODE) == 0 || */
12532 (s->flags & SEC_READONLY) == 0)
12533 continue;
12534
12535 anysecs = 1;
12536 vma = bfd_get_section_vma (abfd, s);
12537 size = bfd_get_section_size (s);
12538 sprintf_vma (tmp1, vma);
12539 sprintf_vma (tmp2, vma + size);
12540 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
12541 if (offset + sec_length + 1 > rs->buf_size)
12542 {
12543 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
12544 warning (_("\
12545 Too many sections for read-only sections definition packet."));
12546 break;
12547 }
12548 xsnprintf (rs->buf + offset, rs->buf_size - offset, ":%s,%s",
12549 tmp1, tmp2);
12550 offset += sec_length;
12551 }
12552 if (anysecs)
12553 {
12554 putpkt (rs->buf);
12555 getpkt (&rs->buf, &rs->buf_size, 0);
12556 }
12557 }
12558
12559 static void
12560 remote_trace_start (struct target_ops *self)
12561 {
12562 struct remote_state *rs = get_remote_state ();
12563
12564 putpkt ("QTStart");
12565 remote_get_noisy_reply ();
12566 if (*rs->buf == '\0')
12567 error (_("Target does not support this command."));
12568 if (strcmp (rs->buf, "OK") != 0)
12569 error (_("Bogus reply from target: %s"), rs->buf);
12570 }
12571
12572 static int
12573 remote_get_trace_status (struct target_ops *self, struct trace_status *ts)
12574 {
12575 /* Initialize it just to avoid a GCC false warning. */
12576 char *p = NULL;
12577 /* FIXME we need to get register block size some other way. */
12578 extern int trace_regblock_size;
12579 enum packet_result result;
12580 struct remote_state *rs = get_remote_state ();
12581
12582 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
12583 return -1;
12584
12585 trace_regblock_size
12586 = get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
12587
12588 putpkt ("qTStatus");
12589
12590 TRY
12591 {
12592 p = remote_get_noisy_reply ();
12593 }
12594 CATCH (ex, RETURN_MASK_ERROR)
12595 {
12596 if (ex.error != TARGET_CLOSE_ERROR)
12597 {
12598 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
12599 return -1;
12600 }
12601 throw_exception (ex);
12602 }
12603 END_CATCH
12604
12605 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
12606
12607 /* If the remote target doesn't do tracing, flag it. */
12608 if (result == PACKET_UNKNOWN)
12609 return -1;
12610
12611 /* We're working with a live target. */
12612 ts->filename = NULL;
12613
12614 if (*p++ != 'T')
12615 error (_("Bogus trace status reply from target: %s"), rs->buf);
12616
12617 /* Function 'parse_trace_status' sets default value of each field of
12618 'ts' at first, so we don't have to do it here. */
12619 parse_trace_status (p, ts);
12620
12621 return ts->running;
12622 }
12623
12624 static void
12625 remote_get_tracepoint_status (struct target_ops *self, struct breakpoint *bp,
12626 struct uploaded_tp *utp)
12627 {
12628 struct remote_state *rs = get_remote_state ();
12629 char *reply;
12630 struct bp_location *loc;
12631 struct tracepoint *tp = (struct tracepoint *) bp;
12632 size_t size = get_remote_packet_size ();
12633
12634 if (tp)
12635 {
12636 tp->hit_count = 0;
12637 tp->traceframe_usage = 0;
12638 for (loc = tp->loc; loc; loc = loc->next)
12639 {
12640 /* If the tracepoint was never downloaded, don't go asking for
12641 any status. */
12642 if (tp->number_on_target == 0)
12643 continue;
12644 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
12645 phex_nz (loc->address, 0));
12646 putpkt (rs->buf);
12647 reply = remote_get_noisy_reply ();
12648 if (reply && *reply)
12649 {
12650 if (*reply == 'V')
12651 parse_tracepoint_status (reply + 1, bp, utp);
12652 }
12653 }
12654 }
12655 else if (utp)
12656 {
12657 utp->hit_count = 0;
12658 utp->traceframe_usage = 0;
12659 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
12660 phex_nz (utp->addr, 0));
12661 putpkt (rs->buf);
12662 reply = remote_get_noisy_reply ();
12663 if (reply && *reply)
12664 {
12665 if (*reply == 'V')
12666 parse_tracepoint_status (reply + 1, bp, utp);
12667 }
12668 }
12669 }
12670
12671 static void
12672 remote_trace_stop (struct target_ops *self)
12673 {
12674 struct remote_state *rs = get_remote_state ();
12675
12676 putpkt ("QTStop");
12677 remote_get_noisy_reply ();
12678 if (*rs->buf == '\0')
12679 error (_("Target does not support this command."));
12680 if (strcmp (rs->buf, "OK") != 0)
12681 error (_("Bogus reply from target: %s"), rs->buf);
12682 }
12683
12684 static int
12685 remote_trace_find (struct target_ops *self,
12686 enum trace_find_type type, int num,
12687 CORE_ADDR addr1, CORE_ADDR addr2,
12688 int *tpp)
12689 {
12690 struct remote_state *rs = get_remote_state ();
12691 char *endbuf = rs->buf + get_remote_packet_size ();
12692 char *p, *reply;
12693 int target_frameno = -1, target_tracept = -1;
12694
12695 /* Lookups other than by absolute frame number depend on the current
12696 trace selected, so make sure it is correct on the remote end
12697 first. */
12698 if (type != tfind_number)
12699 set_remote_traceframe ();
12700
12701 p = rs->buf;
12702 strcpy (p, "QTFrame:");
12703 p = strchr (p, '\0');
12704 switch (type)
12705 {
12706 case tfind_number:
12707 xsnprintf (p, endbuf - p, "%x", num);
12708 break;
12709 case tfind_pc:
12710 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
12711 break;
12712 case tfind_tp:
12713 xsnprintf (p, endbuf - p, "tdp:%x", num);
12714 break;
12715 case tfind_range:
12716 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
12717 phex_nz (addr2, 0));
12718 break;
12719 case tfind_outside:
12720 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
12721 phex_nz (addr2, 0));
12722 break;
12723 default:
12724 error (_("Unknown trace find type %d"), type);
12725 }
12726
12727 putpkt (rs->buf);
12728 reply = remote_get_noisy_reply ();
12729 if (*reply == '\0')
12730 error (_("Target does not support this command."));
12731
12732 while (reply && *reply)
12733 switch (*reply)
12734 {
12735 case 'F':
12736 p = ++reply;
12737 target_frameno = (int) strtol (p, &reply, 16);
12738 if (reply == p)
12739 error (_("Unable to parse trace frame number"));
12740 /* Don't update our remote traceframe number cache on failure
12741 to select a remote traceframe. */
12742 if (target_frameno == -1)
12743 return -1;
12744 break;
12745 case 'T':
12746 p = ++reply;
12747 target_tracept = (int) strtol (p, &reply, 16);
12748 if (reply == p)
12749 error (_("Unable to parse tracepoint number"));
12750 break;
12751 case 'O': /* "OK"? */
12752 if (reply[1] == 'K' && reply[2] == '\0')
12753 reply += 2;
12754 else
12755 error (_("Bogus reply from target: %s"), reply);
12756 break;
12757 default:
12758 error (_("Bogus reply from target: %s"), reply);
12759 }
12760 if (tpp)
12761 *tpp = target_tracept;
12762
12763 rs->remote_traceframe_number = target_frameno;
12764 return target_frameno;
12765 }
12766
12767 static int
12768 remote_get_trace_state_variable_value (struct target_ops *self,
12769 int tsvnum, LONGEST *val)
12770 {
12771 struct remote_state *rs = get_remote_state ();
12772 char *reply;
12773 ULONGEST uval;
12774
12775 set_remote_traceframe ();
12776
12777 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
12778 putpkt (rs->buf);
12779 reply = remote_get_noisy_reply ();
12780 if (reply && *reply)
12781 {
12782 if (*reply == 'V')
12783 {
12784 unpack_varlen_hex (reply + 1, &uval);
12785 *val = (LONGEST) uval;
12786 return 1;
12787 }
12788 }
12789 return 0;
12790 }
12791
12792 static int
12793 remote_save_trace_data (struct target_ops *self, const char *filename)
12794 {
12795 struct remote_state *rs = get_remote_state ();
12796 char *p, *reply;
12797
12798 p = rs->buf;
12799 strcpy (p, "QTSave:");
12800 p += strlen (p);
12801 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
12802 error (_("Remote file name too long for trace save packet"));
12803 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
12804 *p++ = '\0';
12805 putpkt (rs->buf);
12806 reply = remote_get_noisy_reply ();
12807 if (*reply == '\0')
12808 error (_("Target does not support this command."));
12809 if (strcmp (reply, "OK") != 0)
12810 error (_("Bogus reply from target: %s"), reply);
12811 return 0;
12812 }
12813
12814 /* This is basically a memory transfer, but needs to be its own packet
12815 because we don't know how the target actually organizes its trace
12816 memory, plus we want to be able to ask for as much as possible, but
12817 not be unhappy if we don't get as much as we ask for. */
12818
12819 static LONGEST
12820 remote_get_raw_trace_data (struct target_ops *self,
12821 gdb_byte *buf, ULONGEST offset, LONGEST len)
12822 {
12823 struct remote_state *rs = get_remote_state ();
12824 char *reply;
12825 char *p;
12826 int rslt;
12827
12828 p = rs->buf;
12829 strcpy (p, "qTBuffer:");
12830 p += strlen (p);
12831 p += hexnumstr (p, offset);
12832 *p++ = ',';
12833 p += hexnumstr (p, len);
12834 *p++ = '\0';
12835
12836 putpkt (rs->buf);
12837 reply = remote_get_noisy_reply ();
12838 if (reply && *reply)
12839 {
12840 /* 'l' by itself means we're at the end of the buffer and
12841 there is nothing more to get. */
12842 if (*reply == 'l')
12843 return 0;
12844
12845 /* Convert the reply into binary. Limit the number of bytes to
12846 convert according to our passed-in buffer size, rather than
12847 what was returned in the packet; if the target is
12848 unexpectedly generous and gives us a bigger reply than we
12849 asked for, we don't want to crash. */
12850 rslt = hex2bin (reply, buf, len);
12851 return rslt;
12852 }
12853
12854 /* Something went wrong, flag as an error. */
12855 return -1;
12856 }
12857
12858 static void
12859 remote_set_disconnected_tracing (struct target_ops *self, int val)
12860 {
12861 struct remote_state *rs = get_remote_state ();
12862
12863 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
12864 {
12865 char *reply;
12866
12867 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
12868 putpkt (rs->buf);
12869 reply = remote_get_noisy_reply ();
12870 if (*reply == '\0')
12871 error (_("Target does not support this command."));
12872 if (strcmp (reply, "OK") != 0)
12873 error (_("Bogus reply from target: %s"), reply);
12874 }
12875 else if (val)
12876 warning (_("Target does not support disconnected tracing."));
12877 }
12878
12879 static int
12880 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
12881 {
12882 struct thread_info *info = find_thread_ptid (ptid);
12883
12884 if (info != NULL && info->priv != NULL)
12885 return get_remote_thread_info (info)->core;
12886
12887 return -1;
12888 }
12889
12890 static void
12891 remote_set_circular_trace_buffer (struct target_ops *self, int val)
12892 {
12893 struct remote_state *rs = get_remote_state ();
12894 char *reply;
12895
12896 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
12897 putpkt (rs->buf);
12898 reply = remote_get_noisy_reply ();
12899 if (*reply == '\0')
12900 error (_("Target does not support this command."));
12901 if (strcmp (reply, "OK") != 0)
12902 error (_("Bogus reply from target: %s"), reply);
12903 }
12904
12905 static traceframe_info_up
12906 remote_traceframe_info (struct target_ops *self)
12907 {
12908 gdb::unique_xmalloc_ptr<char> text
12909 = target_read_stralloc (&current_target, TARGET_OBJECT_TRACEFRAME_INFO,
12910 NULL);
12911 if (text != NULL)
12912 return parse_traceframe_info (text.get ());
12913
12914 return NULL;
12915 }
12916
12917 /* Handle the qTMinFTPILen packet. Returns the minimum length of
12918 instruction on which a fast tracepoint may be placed. Returns -1
12919 if the packet is not supported, and 0 if the minimum instruction
12920 length is unknown. */
12921
12922 static int
12923 remote_get_min_fast_tracepoint_insn_len (struct target_ops *self)
12924 {
12925 struct remote_state *rs = get_remote_state ();
12926 char *reply;
12927
12928 /* If we're not debugging a process yet, the IPA can't be
12929 loaded. */
12930 if (!target_has_execution)
12931 return 0;
12932
12933 /* Make sure the remote is pointing at the right process. */
12934 set_general_process ();
12935
12936 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
12937 putpkt (rs->buf);
12938 reply = remote_get_noisy_reply ();
12939 if (*reply == '\0')
12940 return -1;
12941 else
12942 {
12943 ULONGEST min_insn_len;
12944
12945 unpack_varlen_hex (reply, &min_insn_len);
12946
12947 return (int) min_insn_len;
12948 }
12949 }
12950
12951 static void
12952 remote_set_trace_buffer_size (struct target_ops *self, LONGEST val)
12953 {
12954 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
12955 {
12956 struct remote_state *rs = get_remote_state ();
12957 char *buf = rs->buf;
12958 char *endbuf = rs->buf + get_remote_packet_size ();
12959 enum packet_result result;
12960
12961 gdb_assert (val >= 0 || val == -1);
12962 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
12963 /* Send -1 as literal "-1" to avoid host size dependency. */
12964 if (val < 0)
12965 {
12966 *buf++ = '-';
12967 buf += hexnumstr (buf, (ULONGEST) -val);
12968 }
12969 else
12970 buf += hexnumstr (buf, (ULONGEST) val);
12971
12972 putpkt (rs->buf);
12973 remote_get_noisy_reply ();
12974 result = packet_ok (rs->buf,
12975 &remote_protocol_packets[PACKET_QTBuffer_size]);
12976
12977 if (result != PACKET_OK)
12978 warning (_("Bogus reply from target: %s"), rs->buf);
12979 }
12980 }
12981
12982 static int
12983 remote_set_trace_notes (struct target_ops *self,
12984 const char *user, const char *notes,
12985 const char *stop_notes)
12986 {
12987 struct remote_state *rs = get_remote_state ();
12988 char *reply;
12989 char *buf = rs->buf;
12990 char *endbuf = rs->buf + get_remote_packet_size ();
12991 int nbytes;
12992
12993 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
12994 if (user)
12995 {
12996 buf += xsnprintf (buf, endbuf - buf, "user:");
12997 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
12998 buf += 2 * nbytes;
12999 *buf++ = ';';
13000 }
13001 if (notes)
13002 {
13003 buf += xsnprintf (buf, endbuf - buf, "notes:");
13004 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13005 buf += 2 * nbytes;
13006 *buf++ = ';';
13007 }
13008 if (stop_notes)
13009 {
13010 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13011 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13012 buf += 2 * nbytes;
13013 *buf++ = ';';
13014 }
13015 /* Ensure the buffer is terminated. */
13016 *buf = '\0';
13017
13018 putpkt (rs->buf);
13019 reply = remote_get_noisy_reply ();
13020 if (*reply == '\0')
13021 return 0;
13022
13023 if (strcmp (reply, "OK") != 0)
13024 error (_("Bogus reply from target: %s"), reply);
13025
13026 return 1;
13027 }
13028
13029 static int
13030 remote_use_agent (struct target_ops *self, int use)
13031 {
13032 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13033 {
13034 struct remote_state *rs = get_remote_state ();
13035
13036 /* If the stub supports QAgent. */
13037 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
13038 putpkt (rs->buf);
13039 getpkt (&rs->buf, &rs->buf_size, 0);
13040
13041 if (strcmp (rs->buf, "OK") == 0)
13042 {
13043 use_agent = use;
13044 return 1;
13045 }
13046 }
13047
13048 return 0;
13049 }
13050
13051 static int
13052 remote_can_use_agent (struct target_ops *self)
13053 {
13054 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13055 }
13056
13057 struct btrace_target_info
13058 {
13059 /* The ptid of the traced thread. */
13060 ptid_t ptid;
13061
13062 /* The obtained branch trace configuration. */
13063 struct btrace_config conf;
13064 };
13065
13066 /* Reset our idea of our target's btrace configuration. */
13067
13068 static void
13069 remote_btrace_reset (void)
13070 {
13071 struct remote_state *rs = get_remote_state ();
13072
13073 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13074 }
13075
13076 /* Synchronize the configuration with the target. */
13077
13078 static void
13079 btrace_sync_conf (const struct btrace_config *conf)
13080 {
13081 struct packet_config *packet;
13082 struct remote_state *rs;
13083 char *buf, *pos, *endbuf;
13084
13085 rs = get_remote_state ();
13086 buf = rs->buf;
13087 endbuf = buf + get_remote_packet_size ();
13088
13089 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13090 if (packet_config_support (packet) == PACKET_ENABLE
13091 && conf->bts.size != rs->btrace_config.bts.size)
13092 {
13093 pos = buf;
13094 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13095 conf->bts.size);
13096
13097 putpkt (buf);
13098 getpkt (&buf, &rs->buf_size, 0);
13099
13100 if (packet_ok (buf, packet) == PACKET_ERROR)
13101 {
13102 if (buf[0] == 'E' && buf[1] == '.')
13103 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13104 else
13105 error (_("Failed to configure the BTS buffer size."));
13106 }
13107
13108 rs->btrace_config.bts.size = conf->bts.size;
13109 }
13110
13111 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13112 if (packet_config_support (packet) == PACKET_ENABLE
13113 && conf->pt.size != rs->btrace_config.pt.size)
13114 {
13115 pos = buf;
13116 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13117 conf->pt.size);
13118
13119 putpkt (buf);
13120 getpkt (&buf, &rs->buf_size, 0);
13121
13122 if (packet_ok (buf, packet) == PACKET_ERROR)
13123 {
13124 if (buf[0] == 'E' && buf[1] == '.')
13125 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13126 else
13127 error (_("Failed to configure the trace buffer size."));
13128 }
13129
13130 rs->btrace_config.pt.size = conf->pt.size;
13131 }
13132 }
13133
13134 /* Read the current thread's btrace configuration from the target and
13135 store it into CONF. */
13136
13137 static void
13138 btrace_read_config (struct btrace_config *conf)
13139 {
13140 gdb::unique_xmalloc_ptr<char> xml
13141 = target_read_stralloc (&current_target, TARGET_OBJECT_BTRACE_CONF, "");
13142 if (xml != NULL)
13143 parse_xml_btrace_conf (conf, xml.get ());
13144 }
13145
13146 /* Maybe reopen target btrace. */
13147
13148 static void
13149 remote_btrace_maybe_reopen (void)
13150 {
13151 struct remote_state *rs = get_remote_state ();
13152 struct thread_info *tp;
13153 int btrace_target_pushed = 0;
13154 int warned = 0;
13155
13156 scoped_restore_current_thread restore_thread;
13157
13158 ALL_NON_EXITED_THREADS (tp)
13159 {
13160 set_general_thread (tp->ptid);
13161
13162 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13163 btrace_read_config (&rs->btrace_config);
13164
13165 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13166 continue;
13167
13168 #if !defined (HAVE_LIBIPT)
13169 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13170 {
13171 if (!warned)
13172 {
13173 warned = 1;
13174 warning (_("Target is recording using Intel Processor Trace "
13175 "but support was disabled at compile time."));
13176 }
13177
13178 continue;
13179 }
13180 #endif /* !defined (HAVE_LIBIPT) */
13181
13182 /* Push target, once, but before anything else happens. This way our
13183 changes to the threads will be cleaned up by unpushing the target
13184 in case btrace_read_config () throws. */
13185 if (!btrace_target_pushed)
13186 {
13187 btrace_target_pushed = 1;
13188 record_btrace_push_target ();
13189 printf_filtered (_("Target is recording using %s.\n"),
13190 btrace_format_string (rs->btrace_config.format));
13191 }
13192
13193 tp->btrace.target = XCNEW (struct btrace_target_info);
13194 tp->btrace.target->ptid = tp->ptid;
13195 tp->btrace.target->conf = rs->btrace_config;
13196 }
13197 }
13198
13199 /* Enable branch tracing. */
13200
13201 static struct btrace_target_info *
13202 remote_enable_btrace (struct target_ops *self, ptid_t ptid,
13203 const struct btrace_config *conf)
13204 {
13205 struct btrace_target_info *tinfo = NULL;
13206 struct packet_config *packet = NULL;
13207 struct remote_state *rs = get_remote_state ();
13208 char *buf = rs->buf;
13209 char *endbuf = rs->buf + get_remote_packet_size ();
13210
13211 switch (conf->format)
13212 {
13213 case BTRACE_FORMAT_BTS:
13214 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13215 break;
13216
13217 case BTRACE_FORMAT_PT:
13218 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13219 break;
13220 }
13221
13222 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13223 error (_("Target does not support branch tracing."));
13224
13225 btrace_sync_conf (conf);
13226
13227 set_general_thread (ptid);
13228
13229 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13230 putpkt (rs->buf);
13231 getpkt (&rs->buf, &rs->buf_size, 0);
13232
13233 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13234 {
13235 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13236 error (_("Could not enable branch tracing for %s: %s"),
13237 target_pid_to_str (ptid), rs->buf + 2);
13238 else
13239 error (_("Could not enable branch tracing for %s."),
13240 target_pid_to_str (ptid));
13241 }
13242
13243 tinfo = XCNEW (struct btrace_target_info);
13244 tinfo->ptid = ptid;
13245
13246 /* If we fail to read the configuration, we lose some information, but the
13247 tracing itself is not impacted. */
13248 TRY
13249 {
13250 btrace_read_config (&tinfo->conf);
13251 }
13252 CATCH (err, RETURN_MASK_ERROR)
13253 {
13254 if (err.message != NULL)
13255 warning ("%s", err.message);
13256 }
13257 END_CATCH
13258
13259 return tinfo;
13260 }
13261
13262 /* Disable branch tracing. */
13263
13264 static void
13265 remote_disable_btrace (struct target_ops *self,
13266 struct btrace_target_info *tinfo)
13267 {
13268 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13269 struct remote_state *rs = get_remote_state ();
13270 char *buf = rs->buf;
13271 char *endbuf = rs->buf + get_remote_packet_size ();
13272
13273 if (packet_config_support (packet) != PACKET_ENABLE)
13274 error (_("Target does not support branch tracing."));
13275
13276 set_general_thread (tinfo->ptid);
13277
13278 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13279 putpkt (rs->buf);
13280 getpkt (&rs->buf, &rs->buf_size, 0);
13281
13282 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13283 {
13284 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13285 error (_("Could not disable branch tracing for %s: %s"),
13286 target_pid_to_str (tinfo->ptid), rs->buf + 2);
13287 else
13288 error (_("Could not disable branch tracing for %s."),
13289 target_pid_to_str (tinfo->ptid));
13290 }
13291
13292 xfree (tinfo);
13293 }
13294
13295 /* Teardown branch tracing. */
13296
13297 static void
13298 remote_teardown_btrace (struct target_ops *self,
13299 struct btrace_target_info *tinfo)
13300 {
13301 /* We must not talk to the target during teardown. */
13302 xfree (tinfo);
13303 }
13304
13305 /* Read the branch trace. */
13306
13307 static enum btrace_error
13308 remote_read_btrace (struct target_ops *self,
13309 struct btrace_data *btrace,
13310 struct btrace_target_info *tinfo,
13311 enum btrace_read_type type)
13312 {
13313 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13314 const char *annex;
13315
13316 if (packet_config_support (packet) != PACKET_ENABLE)
13317 error (_("Target does not support branch tracing."));
13318
13319 #if !defined(HAVE_LIBEXPAT)
13320 error (_("Cannot process branch tracing result. XML parsing not supported."));
13321 #endif
13322
13323 switch (type)
13324 {
13325 case BTRACE_READ_ALL:
13326 annex = "all";
13327 break;
13328 case BTRACE_READ_NEW:
13329 annex = "new";
13330 break;
13331 case BTRACE_READ_DELTA:
13332 annex = "delta";
13333 break;
13334 default:
13335 internal_error (__FILE__, __LINE__,
13336 _("Bad branch tracing read type: %u."),
13337 (unsigned int) type);
13338 }
13339
13340 gdb::unique_xmalloc_ptr<char> xml
13341 = target_read_stralloc (&current_target, TARGET_OBJECT_BTRACE, annex);
13342 if (xml == NULL)
13343 return BTRACE_ERR_UNKNOWN;
13344
13345 parse_xml_btrace (btrace, xml.get ());
13346
13347 return BTRACE_ERR_NONE;
13348 }
13349
13350 static const struct btrace_config *
13351 remote_btrace_conf (struct target_ops *self,
13352 const struct btrace_target_info *tinfo)
13353 {
13354 return &tinfo->conf;
13355 }
13356
13357 static int
13358 remote_augmented_libraries_svr4_read (struct target_ops *self)
13359 {
13360 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13361 == PACKET_ENABLE);
13362 }
13363
13364 /* Implementation of to_load. */
13365
13366 static void
13367 remote_load (struct target_ops *self, const char *name, int from_tty)
13368 {
13369 generic_load (name, from_tty);
13370 }
13371
13372 /* Accepts an integer PID; returns a string representing a file that
13373 can be opened on the remote side to get the symbols for the child
13374 process. Returns NULL if the operation is not supported. */
13375
13376 static char *
13377 remote_pid_to_exec_file (struct target_ops *self, int pid)
13378 {
13379 static gdb::unique_xmalloc_ptr<char> filename;
13380 struct inferior *inf;
13381 char *annex = NULL;
13382
13383 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13384 return NULL;
13385
13386 inf = find_inferior_pid (pid);
13387 if (inf == NULL)
13388 internal_error (__FILE__, __LINE__,
13389 _("not currently attached to process %d"), pid);
13390
13391 if (!inf->fake_pid_p)
13392 {
13393 const int annex_size = 9;
13394
13395 annex = (char *) alloca (annex_size);
13396 xsnprintf (annex, annex_size, "%x", pid);
13397 }
13398
13399 filename = target_read_stralloc (&current_target,
13400 TARGET_OBJECT_EXEC_FILE, annex);
13401
13402 return filename.get ();
13403 }
13404
13405 /* Implement the to_can_do_single_step target_ops method. */
13406
13407 static int
13408 remote_can_do_single_step (struct target_ops *ops)
13409 {
13410 /* We can only tell whether target supports single step or not by
13411 supported s and S vCont actions if the stub supports vContSupported
13412 feature. If the stub doesn't support vContSupported feature,
13413 we have conservatively to think target doesn't supports single
13414 step. */
13415 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13416 {
13417 struct remote_state *rs = get_remote_state ();
13418
13419 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13420 remote_vcont_probe (rs);
13421
13422 return rs->supports_vCont.s && rs->supports_vCont.S;
13423 }
13424 else
13425 return 0;
13426 }
13427
13428 /* Implementation of the to_execution_direction method for the remote
13429 target. */
13430
13431 static enum exec_direction_kind
13432 remote_execution_direction (struct target_ops *self)
13433 {
13434 struct remote_state *rs = get_remote_state ();
13435
13436 return rs->last_resume_exec_dir;
13437 }
13438
13439 /* Return pointer to the thread_info struct which corresponds to
13440 THREAD_HANDLE (having length HANDLE_LEN). */
13441
13442 static struct thread_info *
13443 remote_thread_handle_to_thread_info (struct target_ops *ops,
13444 const gdb_byte *thread_handle,
13445 int handle_len,
13446 struct inferior *inf)
13447 {
13448 struct thread_info *tp;
13449
13450 ALL_NON_EXITED_THREADS (tp)
13451 {
13452 remote_thread_info *priv = get_remote_thread_info (tp);
13453
13454 if (tp->inf == inf && priv != NULL)
13455 {
13456 if (handle_len != priv->thread_handle.size ())
13457 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
13458 handle_len, priv->thread_handle.size ());
13459 if (memcmp (thread_handle, priv->thread_handle.data (),
13460 handle_len) == 0)
13461 return tp;
13462 }
13463 }
13464
13465 return NULL;
13466 }
13467
13468 static void
13469 init_remote_ops (void)
13470 {
13471 remote_ops.to_shortname = "remote";
13472 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
13473 remote_ops.to_doc =
13474 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13475 Specify the serial device it is connected to\n\
13476 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
13477 remote_ops.to_open = remote_open;
13478 remote_ops.to_close = remote_close;
13479 remote_ops.to_detach = remote_detach;
13480 remote_ops.to_disconnect = remote_disconnect;
13481 remote_ops.to_resume = remote_resume;
13482 remote_ops.to_commit_resume = remote_commit_resume;
13483 remote_ops.to_wait = remote_wait;
13484 remote_ops.to_fetch_registers = remote_fetch_registers;
13485 remote_ops.to_store_registers = remote_store_registers;
13486 remote_ops.to_prepare_to_store = remote_prepare_to_store;
13487 remote_ops.to_files_info = remote_files_info;
13488 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
13489 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
13490 remote_ops.to_stopped_by_sw_breakpoint = remote_stopped_by_sw_breakpoint;
13491 remote_ops.to_supports_stopped_by_sw_breakpoint = remote_supports_stopped_by_sw_breakpoint;
13492 remote_ops.to_stopped_by_hw_breakpoint = remote_stopped_by_hw_breakpoint;
13493 remote_ops.to_supports_stopped_by_hw_breakpoint = remote_supports_stopped_by_hw_breakpoint;
13494 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
13495 remote_ops.to_stopped_data_address = remote_stopped_data_address;
13496 remote_ops.to_watchpoint_addr_within_range =
13497 remote_watchpoint_addr_within_range;
13498 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
13499 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
13500 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
13501 remote_ops.to_region_ok_for_hw_watchpoint
13502 = remote_region_ok_for_hw_watchpoint;
13503 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
13504 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
13505 remote_ops.to_kill = remote_kill;
13506 remote_ops.to_load = remote_load;
13507 remote_ops.to_mourn_inferior = remote_mourn;
13508 remote_ops.to_pass_signals = remote_pass_signals;
13509 remote_ops.to_set_syscall_catchpoint = remote_set_syscall_catchpoint;
13510 remote_ops.to_program_signals = remote_program_signals;
13511 remote_ops.to_thread_alive = remote_thread_alive;
13512 remote_ops.to_thread_name = remote_thread_name;
13513 remote_ops.to_update_thread_list = remote_update_thread_list;
13514 remote_ops.to_pid_to_str = remote_pid_to_str;
13515 remote_ops.to_extra_thread_info = remote_threads_extra_info;
13516 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
13517 remote_ops.to_stop = remote_stop;
13518 remote_ops.to_interrupt = remote_interrupt;
13519 remote_ops.to_pass_ctrlc = remote_pass_ctrlc;
13520 remote_ops.to_xfer_partial = remote_xfer_partial;
13521 remote_ops.to_get_memory_xfer_limit = remote_get_memory_xfer_limit;
13522 remote_ops.to_rcmd = remote_rcmd;
13523 remote_ops.to_pid_to_exec_file = remote_pid_to_exec_file;
13524 remote_ops.to_log_command = serial_log_command;
13525 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
13526 remote_ops.to_stratum = process_stratum;
13527 remote_ops.to_has_all_memory = default_child_has_all_memory;
13528 remote_ops.to_has_memory = default_child_has_memory;
13529 remote_ops.to_has_stack = default_child_has_stack;
13530 remote_ops.to_has_registers = default_child_has_registers;
13531 remote_ops.to_has_execution = default_child_has_execution;
13532 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
13533 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
13534 remote_ops.to_magic = OPS_MAGIC;
13535 remote_ops.to_memory_map = remote_memory_map;
13536 remote_ops.to_flash_erase = remote_flash_erase;
13537 remote_ops.to_flash_done = remote_flash_done;
13538 remote_ops.to_read_description = remote_read_description;
13539 remote_ops.to_search_memory = remote_search_memory;
13540 remote_ops.to_can_async_p = remote_can_async_p;
13541 remote_ops.to_is_async_p = remote_is_async_p;
13542 remote_ops.to_async = remote_async;
13543 remote_ops.to_thread_events = remote_thread_events;
13544 remote_ops.to_can_do_single_step = remote_can_do_single_step;
13545 remote_ops.to_terminal_inferior = remote_terminal_inferior;
13546 remote_ops.to_terminal_ours = remote_terminal_ours;
13547 remote_ops.to_supports_non_stop = remote_supports_non_stop;
13548 remote_ops.to_supports_multi_process = remote_supports_multi_process;
13549 remote_ops.to_supports_disable_randomization
13550 = remote_supports_disable_randomization;
13551 remote_ops.to_filesystem_is_local = remote_filesystem_is_local;
13552 remote_ops.to_fileio_open = remote_hostio_open;
13553 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
13554 remote_ops.to_fileio_pread = remote_hostio_pread;
13555 remote_ops.to_fileio_fstat = remote_hostio_fstat;
13556 remote_ops.to_fileio_close = remote_hostio_close;
13557 remote_ops.to_fileio_unlink = remote_hostio_unlink;
13558 remote_ops.to_fileio_readlink = remote_hostio_readlink;
13559 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
13560 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
13561 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
13562 remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands;
13563 remote_ops.to_trace_init = remote_trace_init;
13564 remote_ops.to_download_tracepoint = remote_download_tracepoint;
13565 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
13566 remote_ops.to_download_trace_state_variable
13567 = remote_download_trace_state_variable;
13568 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
13569 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
13570 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
13571 remote_ops.to_trace_start = remote_trace_start;
13572 remote_ops.to_get_trace_status = remote_get_trace_status;
13573 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
13574 remote_ops.to_trace_stop = remote_trace_stop;
13575 remote_ops.to_trace_find = remote_trace_find;
13576 remote_ops.to_get_trace_state_variable_value
13577 = remote_get_trace_state_variable_value;
13578 remote_ops.to_save_trace_data = remote_save_trace_data;
13579 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
13580 remote_ops.to_upload_trace_state_variables
13581 = remote_upload_trace_state_variables;
13582 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
13583 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
13584 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
13585 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
13586 remote_ops.to_set_trace_buffer_size = remote_set_trace_buffer_size;
13587 remote_ops.to_set_trace_notes = remote_set_trace_notes;
13588 remote_ops.to_core_of_thread = remote_core_of_thread;
13589 remote_ops.to_verify_memory = remote_verify_memory;
13590 remote_ops.to_get_tib_address = remote_get_tib_address;
13591 remote_ops.to_set_permissions = remote_set_permissions;
13592 remote_ops.to_static_tracepoint_marker_at
13593 = remote_static_tracepoint_marker_at;
13594 remote_ops.to_static_tracepoint_markers_by_strid
13595 = remote_static_tracepoint_markers_by_strid;
13596 remote_ops.to_traceframe_info = remote_traceframe_info;
13597 remote_ops.to_use_agent = remote_use_agent;
13598 remote_ops.to_can_use_agent = remote_can_use_agent;
13599 remote_ops.to_enable_btrace = remote_enable_btrace;
13600 remote_ops.to_disable_btrace = remote_disable_btrace;
13601 remote_ops.to_teardown_btrace = remote_teardown_btrace;
13602 remote_ops.to_read_btrace = remote_read_btrace;
13603 remote_ops.to_btrace_conf = remote_btrace_conf;
13604 remote_ops.to_augmented_libraries_svr4_read =
13605 remote_augmented_libraries_svr4_read;
13606 remote_ops.to_follow_fork = remote_follow_fork;
13607 remote_ops.to_follow_exec = remote_follow_exec;
13608 remote_ops.to_insert_fork_catchpoint = remote_insert_fork_catchpoint;
13609 remote_ops.to_remove_fork_catchpoint = remote_remove_fork_catchpoint;
13610 remote_ops.to_insert_vfork_catchpoint = remote_insert_vfork_catchpoint;
13611 remote_ops.to_remove_vfork_catchpoint = remote_remove_vfork_catchpoint;
13612 remote_ops.to_insert_exec_catchpoint = remote_insert_exec_catchpoint;
13613 remote_ops.to_remove_exec_catchpoint = remote_remove_exec_catchpoint;
13614 remote_ops.to_execution_direction = remote_execution_direction;
13615 remote_ops.to_thread_handle_to_thread_info =
13616 remote_thread_handle_to_thread_info;
13617 }
13618
13619 /* Set up the extended remote vector by making a copy of the standard
13620 remote vector and adding to it. */
13621
13622 static void
13623 init_extended_remote_ops (void)
13624 {
13625 extended_remote_ops = remote_ops;
13626
13627 extended_remote_ops.to_shortname = "extended-remote";
13628 extended_remote_ops.to_longname =
13629 "Extended remote serial target in gdb-specific protocol";
13630 extended_remote_ops.to_doc =
13631 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
13632 Specify the serial device it is connected to (e.g. /dev/ttya).";
13633 extended_remote_ops.to_open = extended_remote_open;
13634 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
13635 extended_remote_ops.to_detach = extended_remote_detach;
13636 extended_remote_ops.to_attach = extended_remote_attach;
13637 extended_remote_ops.to_post_attach = extended_remote_post_attach;
13638 extended_remote_ops.to_supports_disable_randomization
13639 = extended_remote_supports_disable_randomization;
13640 }
13641
13642 static int
13643 remote_can_async_p (struct target_ops *ops)
13644 {
13645 struct remote_state *rs = get_remote_state ();
13646
13647 /* We don't go async if the user has explicitly prevented it with the
13648 "maint set target-async" command. */
13649 if (!target_async_permitted)
13650 return 0;
13651
13652 /* We're async whenever the serial device is. */
13653 return serial_can_async_p (rs->remote_desc);
13654 }
13655
13656 static int
13657 remote_is_async_p (struct target_ops *ops)
13658 {
13659 struct remote_state *rs = get_remote_state ();
13660
13661 if (!target_async_permitted)
13662 /* We only enable async when the user specifically asks for it. */
13663 return 0;
13664
13665 /* We're async whenever the serial device is. */
13666 return serial_is_async_p (rs->remote_desc);
13667 }
13668
13669 /* Pass the SERIAL event on and up to the client. One day this code
13670 will be able to delay notifying the client of an event until the
13671 point where an entire packet has been received. */
13672
13673 static serial_event_ftype remote_async_serial_handler;
13674
13675 static void
13676 remote_async_serial_handler (struct serial *scb, void *context)
13677 {
13678 /* Don't propogate error information up to the client. Instead let
13679 the client find out about the error by querying the target. */
13680 inferior_event_handler (INF_REG_EVENT, NULL);
13681 }
13682
13683 static void
13684 remote_async_inferior_event_handler (gdb_client_data data)
13685 {
13686 inferior_event_handler (INF_REG_EVENT, NULL);
13687 }
13688
13689 static void
13690 remote_async (struct target_ops *ops, int enable)
13691 {
13692 struct remote_state *rs = get_remote_state ();
13693
13694 if (enable)
13695 {
13696 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
13697
13698 /* If there are pending events in the stop reply queue tell the
13699 event loop to process them. */
13700 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
13701 mark_async_event_handler (remote_async_inferior_event_token);
13702 /* For simplicity, below we clear the pending events token
13703 without remembering whether it is marked, so here we always
13704 mark it. If there's actually no pending notification to
13705 process, this ends up being a no-op (other than a spurious
13706 event-loop wakeup). */
13707 if (target_is_non_stop_p ())
13708 mark_async_event_handler (rs->notif_state->get_pending_events_token);
13709 }
13710 else
13711 {
13712 serial_async (rs->remote_desc, NULL, NULL);
13713 /* If the core is disabling async, it doesn't want to be
13714 disturbed with target events. Clear all async event sources
13715 too. */
13716 clear_async_event_handler (remote_async_inferior_event_token);
13717 if (target_is_non_stop_p ())
13718 clear_async_event_handler (rs->notif_state->get_pending_events_token);
13719 }
13720 }
13721
13722 /* Implementation of the to_thread_events method. */
13723
13724 static void
13725 remote_thread_events (struct target_ops *ops, int enable)
13726 {
13727 struct remote_state *rs = get_remote_state ();
13728 size_t size = get_remote_packet_size ();
13729
13730 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
13731 return;
13732
13733 xsnprintf (rs->buf, size, "QThreadEvents:%x", enable ? 1 : 0);
13734 putpkt (rs->buf);
13735 getpkt (&rs->buf, &rs->buf_size, 0);
13736
13737 switch (packet_ok (rs->buf,
13738 &remote_protocol_packets[PACKET_QThreadEvents]))
13739 {
13740 case PACKET_OK:
13741 if (strcmp (rs->buf, "OK") != 0)
13742 error (_("Remote refused setting thread events: %s"), rs->buf);
13743 break;
13744 case PACKET_ERROR:
13745 warning (_("Remote failure reply: %s"), rs->buf);
13746 break;
13747 case PACKET_UNKNOWN:
13748 break;
13749 }
13750 }
13751
13752 static void
13753 set_remote_cmd (const char *args, int from_tty)
13754 {
13755 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
13756 }
13757
13758 static void
13759 show_remote_cmd (const char *args, int from_tty)
13760 {
13761 /* We can't just use cmd_show_list here, because we want to skip
13762 the redundant "show remote Z-packet" and the legacy aliases. */
13763 struct cmd_list_element *list = remote_show_cmdlist;
13764 struct ui_out *uiout = current_uiout;
13765
13766 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
13767 for (; list != NULL; list = list->next)
13768 if (strcmp (list->name, "Z-packet") == 0)
13769 continue;
13770 else if (list->type == not_set_cmd)
13771 /* Alias commands are exactly like the original, except they
13772 don't have the normal type. */
13773 continue;
13774 else
13775 {
13776 ui_out_emit_tuple option_emitter (uiout, "option");
13777
13778 uiout->field_string ("name", list->name);
13779 uiout->text (": ");
13780 if (list->type == show_cmd)
13781 do_show_command (NULL, from_tty, list);
13782 else
13783 cmd_func (list, NULL, from_tty);
13784 }
13785 }
13786
13787
13788 /* Function to be called whenever a new objfile (shlib) is detected. */
13789 static void
13790 remote_new_objfile (struct objfile *objfile)
13791 {
13792 struct remote_state *rs = get_remote_state ();
13793
13794 if (rs->remote_desc != 0) /* Have a remote connection. */
13795 remote_check_symbols ();
13796 }
13797
13798 /* Pull all the tracepoints defined on the target and create local
13799 data structures representing them. We don't want to create real
13800 tracepoints yet, we don't want to mess up the user's existing
13801 collection. */
13802
13803 static int
13804 remote_upload_tracepoints (struct target_ops *self, struct uploaded_tp **utpp)
13805 {
13806 struct remote_state *rs = get_remote_state ();
13807 char *p;
13808
13809 /* Ask for a first packet of tracepoint definition. */
13810 putpkt ("qTfP");
13811 getpkt (&rs->buf, &rs->buf_size, 0);
13812 p = rs->buf;
13813 while (*p && *p != 'l')
13814 {
13815 parse_tracepoint_definition (p, utpp);
13816 /* Ask for another packet of tracepoint definition. */
13817 putpkt ("qTsP");
13818 getpkt (&rs->buf, &rs->buf_size, 0);
13819 p = rs->buf;
13820 }
13821 return 0;
13822 }
13823
13824 static int
13825 remote_upload_trace_state_variables (struct target_ops *self,
13826 struct uploaded_tsv **utsvp)
13827 {
13828 struct remote_state *rs = get_remote_state ();
13829 char *p;
13830
13831 /* Ask for a first packet of variable definition. */
13832 putpkt ("qTfV");
13833 getpkt (&rs->buf, &rs->buf_size, 0);
13834 p = rs->buf;
13835 while (*p && *p != 'l')
13836 {
13837 parse_tsv_definition (p, utsvp);
13838 /* Ask for another packet of variable definition. */
13839 putpkt ("qTsV");
13840 getpkt (&rs->buf, &rs->buf_size, 0);
13841 p = rs->buf;
13842 }
13843 return 0;
13844 }
13845
13846 /* The "set/show range-stepping" show hook. */
13847
13848 static void
13849 show_range_stepping (struct ui_file *file, int from_tty,
13850 struct cmd_list_element *c,
13851 const char *value)
13852 {
13853 fprintf_filtered (file,
13854 _("Debugger's willingness to use range stepping "
13855 "is %s.\n"), value);
13856 }
13857
13858 /* The "set/show range-stepping" set hook. */
13859
13860 static void
13861 set_range_stepping (const char *ignore_args, int from_tty,
13862 struct cmd_list_element *c)
13863 {
13864 struct remote_state *rs = get_remote_state ();
13865
13866 /* Whene enabling, check whether range stepping is actually
13867 supported by the target, and warn if not. */
13868 if (use_range_stepping)
13869 {
13870 if (rs->remote_desc != NULL)
13871 {
13872 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13873 remote_vcont_probe (rs);
13874
13875 if (packet_support (PACKET_vCont) == PACKET_ENABLE
13876 && rs->supports_vCont.r)
13877 return;
13878 }
13879
13880 warning (_("Range stepping is not supported by the current target"));
13881 }
13882 }
13883
13884 void
13885 _initialize_remote (void)
13886 {
13887 struct cmd_list_element *cmd;
13888 const char *cmd_name;
13889
13890 /* architecture specific data */
13891 remote_gdbarch_data_handle =
13892 gdbarch_data_register_post_init (init_remote_state);
13893 remote_g_packet_data_handle =
13894 gdbarch_data_register_pre_init (remote_g_packet_data_init);
13895
13896 remote_pspace_data
13897 = register_program_space_data_with_cleanup (NULL,
13898 remote_pspace_data_cleanup);
13899
13900 /* Initialize the per-target state. At the moment there is only one
13901 of these, not one per target. Only one target is active at a
13902 time. */
13903 remote_state = new_remote_state ();
13904
13905 init_remote_ops ();
13906 add_target (&remote_ops);
13907
13908 init_extended_remote_ops ();
13909 add_target (&extended_remote_ops);
13910
13911 /* Hook into new objfile notification. */
13912 gdb::observers::new_objfile.attach (remote_new_objfile);
13913 /* We're no longer interested in notification events of an inferior
13914 when it exits. */
13915 gdb::observers::inferior_exit.attach (discard_pending_stop_replies);
13916
13917 #if 0
13918 init_remote_threadtests ();
13919 #endif
13920
13921 stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
13922 /* set/show remote ... */
13923
13924 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
13925 Remote protocol specific variables\n\
13926 Configure various remote-protocol specific variables such as\n\
13927 the packets being used"),
13928 &remote_set_cmdlist, "set remote ",
13929 0 /* allow-unknown */, &setlist);
13930 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
13931 Remote protocol specific variables\n\
13932 Configure various remote-protocol specific variables such as\n\
13933 the packets being used"),
13934 &remote_show_cmdlist, "show remote ",
13935 0 /* allow-unknown */, &showlist);
13936
13937 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
13938 Compare section data on target to the exec file.\n\
13939 Argument is a single section name (default: all loaded sections).\n\
13940 To compare only read-only loaded sections, specify the -r option."),
13941 &cmdlist);
13942
13943 add_cmd ("packet", class_maintenance, packet_command, _("\
13944 Send an arbitrary packet to a remote target.\n\
13945 maintenance packet TEXT\n\
13946 If GDB is talking to an inferior via the GDB serial protocol, then\n\
13947 this command sends the string TEXT to the inferior, and displays the\n\
13948 response packet. GDB supplies the initial `$' character, and the\n\
13949 terminating `#' character and checksum."),
13950 &maintenancelist);
13951
13952 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
13953 Set whether to send break if interrupted."), _("\
13954 Show whether to send break if interrupted."), _("\
13955 If set, a break, instead of a cntrl-c, is sent to the remote target."),
13956 set_remotebreak, show_remotebreak,
13957 &setlist, &showlist);
13958 cmd_name = "remotebreak";
13959 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
13960 deprecate_cmd (cmd, "set remote interrupt-sequence");
13961 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
13962 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
13963 deprecate_cmd (cmd, "show remote interrupt-sequence");
13964
13965 add_setshow_enum_cmd ("interrupt-sequence", class_support,
13966 interrupt_sequence_modes, &interrupt_sequence_mode,
13967 _("\
13968 Set interrupt sequence to remote target."), _("\
13969 Show interrupt sequence to remote target."), _("\
13970 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
13971 NULL, show_interrupt_sequence,
13972 &remote_set_cmdlist,
13973 &remote_show_cmdlist);
13974
13975 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
13976 &interrupt_on_connect, _("\
13977 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
13978 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
13979 If set, interrupt sequence is sent to remote target."),
13980 NULL, NULL,
13981 &remote_set_cmdlist, &remote_show_cmdlist);
13982
13983 /* Install commands for configuring memory read/write packets. */
13984
13985 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
13986 Set the maximum number of bytes per memory write packet (deprecated)."),
13987 &setlist);
13988 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
13989 Show the maximum number of bytes per memory write packet (deprecated)."),
13990 &showlist);
13991 add_cmd ("memory-write-packet-size", no_class,
13992 set_memory_write_packet_size, _("\
13993 Set the maximum number of bytes per memory-write packet.\n\
13994 Specify the number of bytes in a packet or 0 (zero) for the\n\
13995 default packet size. The actual limit is further reduced\n\
13996 dependent on the target. Specify ``fixed'' to disable the\n\
13997 further restriction and ``limit'' to enable that restriction."),
13998 &remote_set_cmdlist);
13999 add_cmd ("memory-read-packet-size", no_class,
14000 set_memory_read_packet_size, _("\
14001 Set the maximum number of bytes per memory-read packet.\n\
14002 Specify the number of bytes in a packet or 0 (zero) for the\n\
14003 default packet size. The actual limit is further reduced\n\
14004 dependent on the target. Specify ``fixed'' to disable the\n\
14005 further restriction and ``limit'' to enable that restriction."),
14006 &remote_set_cmdlist);
14007 add_cmd ("memory-write-packet-size", no_class,
14008 show_memory_write_packet_size,
14009 _("Show the maximum number of bytes per memory-write packet."),
14010 &remote_show_cmdlist);
14011 add_cmd ("memory-read-packet-size", no_class,
14012 show_memory_read_packet_size,
14013 _("Show the maximum number of bytes per memory-read packet."),
14014 &remote_show_cmdlist);
14015
14016 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
14017 &remote_hw_watchpoint_limit, _("\
14018 Set the maximum number of target hardware watchpoints."), _("\
14019 Show the maximum number of target hardware watchpoints."), _("\
14020 Specify a negative limit for unlimited."),
14021 NULL, NULL, /* FIXME: i18n: The maximum
14022 number of target hardware
14023 watchpoints is %s. */
14024 &remote_set_cmdlist, &remote_show_cmdlist);
14025 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
14026 &remote_hw_watchpoint_length_limit, _("\
14027 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14028 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14029 Specify a negative limit for unlimited."),
14030 NULL, NULL, /* FIXME: i18n: The maximum
14031 length (in bytes) of a target
14032 hardware watchpoint is %s. */
14033 &remote_set_cmdlist, &remote_show_cmdlist);
14034 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
14035 &remote_hw_breakpoint_limit, _("\
14036 Set the maximum number of target hardware breakpoints."), _("\
14037 Show the maximum number of target hardware breakpoints."), _("\
14038 Specify a negative limit for unlimited."),
14039 NULL, NULL, /* FIXME: i18n: The maximum
14040 number of target hardware
14041 breakpoints is %s. */
14042 &remote_set_cmdlist, &remote_show_cmdlist);
14043
14044 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14045 &remote_address_size, _("\
14046 Set the maximum size of the address (in bits) in a memory packet."), _("\
14047 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14048 NULL,
14049 NULL, /* FIXME: i18n: */
14050 &setlist, &showlist);
14051
14052 init_all_packet_configs ();
14053
14054 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14055 "X", "binary-download", 1);
14056
14057 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14058 "vCont", "verbose-resume", 0);
14059
14060 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14061 "QPassSignals", "pass-signals", 0);
14062
14063 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14064 "QCatchSyscalls", "catch-syscalls", 0);
14065
14066 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14067 "QProgramSignals", "program-signals", 0);
14068
14069 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14070 "QSetWorkingDir", "set-working-dir", 0);
14071
14072 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14073 "QStartupWithShell", "startup-with-shell", 0);
14074
14075 add_packet_config_cmd (&remote_protocol_packets
14076 [PACKET_QEnvironmentHexEncoded],
14077 "QEnvironmentHexEncoded", "environment-hex-encoded",
14078 0);
14079
14080 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14081 "QEnvironmentReset", "environment-reset",
14082 0);
14083
14084 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14085 "QEnvironmentUnset", "environment-unset",
14086 0);
14087
14088 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14089 "qSymbol", "symbol-lookup", 0);
14090
14091 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14092 "P", "set-register", 1);
14093
14094 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14095 "p", "fetch-register", 1);
14096
14097 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14098 "Z0", "software-breakpoint", 0);
14099
14100 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14101 "Z1", "hardware-breakpoint", 0);
14102
14103 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14104 "Z2", "write-watchpoint", 0);
14105
14106 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14107 "Z3", "read-watchpoint", 0);
14108
14109 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14110 "Z4", "access-watchpoint", 0);
14111
14112 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14113 "qXfer:auxv:read", "read-aux-vector", 0);
14114
14115 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14116 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14117
14118 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14119 "qXfer:features:read", "target-features", 0);
14120
14121 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14122 "qXfer:libraries:read", "library-info", 0);
14123
14124 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14125 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14126
14127 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14128 "qXfer:memory-map:read", "memory-map", 0);
14129
14130 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14131 "qXfer:spu:read", "read-spu-object", 0);
14132
14133 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14134 "qXfer:spu:write", "write-spu-object", 0);
14135
14136 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14137 "qXfer:osdata:read", "osdata", 0);
14138
14139 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14140 "qXfer:threads:read", "threads", 0);
14141
14142 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14143 "qXfer:siginfo:read", "read-siginfo-object", 0);
14144
14145 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14146 "qXfer:siginfo:write", "write-siginfo-object", 0);
14147
14148 add_packet_config_cmd
14149 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14150 "qXfer:traceframe-info:read", "traceframe-info", 0);
14151
14152 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14153 "qXfer:uib:read", "unwind-info-block", 0);
14154
14155 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14156 "qGetTLSAddr", "get-thread-local-storage-address",
14157 0);
14158
14159 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14160 "qGetTIBAddr", "get-thread-information-block-address",
14161 0);
14162
14163 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14164 "bc", "reverse-continue", 0);
14165
14166 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14167 "bs", "reverse-step", 0);
14168
14169 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14170 "qSupported", "supported-packets", 0);
14171
14172 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14173 "qSearch:memory", "search-memory", 0);
14174
14175 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14176 "qTStatus", "trace-status", 0);
14177
14178 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14179 "vFile:setfs", "hostio-setfs", 0);
14180
14181 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14182 "vFile:open", "hostio-open", 0);
14183
14184 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14185 "vFile:pread", "hostio-pread", 0);
14186
14187 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14188 "vFile:pwrite", "hostio-pwrite", 0);
14189
14190 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14191 "vFile:close", "hostio-close", 0);
14192
14193 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14194 "vFile:unlink", "hostio-unlink", 0);
14195
14196 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14197 "vFile:readlink", "hostio-readlink", 0);
14198
14199 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14200 "vFile:fstat", "hostio-fstat", 0);
14201
14202 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14203 "vAttach", "attach", 0);
14204
14205 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14206 "vRun", "run", 0);
14207
14208 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14209 "QStartNoAckMode", "noack", 0);
14210
14211 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14212 "vKill", "kill", 0);
14213
14214 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14215 "qAttached", "query-attached", 0);
14216
14217 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14218 "ConditionalTracepoints",
14219 "conditional-tracepoints", 0);
14220
14221 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14222 "ConditionalBreakpoints",
14223 "conditional-breakpoints", 0);
14224
14225 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14226 "BreakpointCommands",
14227 "breakpoint-commands", 0);
14228
14229 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14230 "FastTracepoints", "fast-tracepoints", 0);
14231
14232 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14233 "TracepointSource", "TracepointSource", 0);
14234
14235 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14236 "QAllow", "allow", 0);
14237
14238 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14239 "StaticTracepoints", "static-tracepoints", 0);
14240
14241 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14242 "InstallInTrace", "install-in-trace", 0);
14243
14244 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14245 "qXfer:statictrace:read", "read-sdata-object", 0);
14246
14247 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14248 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14249
14250 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14251 "QDisableRandomization", "disable-randomization", 0);
14252
14253 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14254 "QAgent", "agent", 0);
14255
14256 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14257 "QTBuffer:size", "trace-buffer-size", 0);
14258
14259 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14260 "Qbtrace:off", "disable-btrace", 0);
14261
14262 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14263 "Qbtrace:bts", "enable-btrace-bts", 0);
14264
14265 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14266 "Qbtrace:pt", "enable-btrace-pt", 0);
14267
14268 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14269 "qXfer:btrace", "read-btrace", 0);
14270
14271 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14272 "qXfer:btrace-conf", "read-btrace-conf", 0);
14273
14274 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14275 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14276
14277 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14278 "multiprocess-feature", "multiprocess-feature", 0);
14279
14280 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14281 "swbreak-feature", "swbreak-feature", 0);
14282
14283 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14284 "hwbreak-feature", "hwbreak-feature", 0);
14285
14286 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14287 "fork-event-feature", "fork-event-feature", 0);
14288
14289 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14290 "vfork-event-feature", "vfork-event-feature", 0);
14291
14292 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14293 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14294
14295 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14296 "vContSupported", "verbose-resume-supported", 0);
14297
14298 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14299 "exec-event-feature", "exec-event-feature", 0);
14300
14301 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14302 "vCtrlC", "ctrl-c", 0);
14303
14304 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14305 "QThreadEvents", "thread-events", 0);
14306
14307 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14308 "N stop reply", "no-resumed-stop-reply", 0);
14309
14310 /* Assert that we've registered "set remote foo-packet" commands
14311 for all packet configs. */
14312 {
14313 int i;
14314
14315 for (i = 0; i < PACKET_MAX; i++)
14316 {
14317 /* Ideally all configs would have a command associated. Some
14318 still don't though. */
14319 int excepted;
14320
14321 switch (i)
14322 {
14323 case PACKET_QNonStop:
14324 case PACKET_EnableDisableTracepoints_feature:
14325 case PACKET_tracenz_feature:
14326 case PACKET_DisconnectedTracing_feature:
14327 case PACKET_augmented_libraries_svr4_read_feature:
14328 case PACKET_qCRC:
14329 /* Additions to this list need to be well justified:
14330 pre-existing packets are OK; new packets are not. */
14331 excepted = 1;
14332 break;
14333 default:
14334 excepted = 0;
14335 break;
14336 }
14337
14338 /* This catches both forgetting to add a config command, and
14339 forgetting to remove a packet from the exception list. */
14340 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14341 }
14342 }
14343
14344 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14345 Z sub-packet has its own set and show commands, but users may
14346 have sets to this variable in their .gdbinit files (or in their
14347 documentation). */
14348 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14349 &remote_Z_packet_detect, _("\
14350 Set use of remote protocol `Z' packets"), _("\
14351 Show use of remote protocol `Z' packets "), _("\
14352 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14353 packets."),
14354 set_remote_protocol_Z_packet_cmd,
14355 show_remote_protocol_Z_packet_cmd,
14356 /* FIXME: i18n: Use of remote protocol
14357 `Z' packets is %s. */
14358 &remote_set_cmdlist, &remote_show_cmdlist);
14359
14360 add_prefix_cmd ("remote", class_files, remote_command, _("\
14361 Manipulate files on the remote system\n\
14362 Transfer files to and from the remote target system."),
14363 &remote_cmdlist, "remote ",
14364 0 /* allow-unknown */, &cmdlist);
14365
14366 add_cmd ("put", class_files, remote_put_command,
14367 _("Copy a local file to the remote system."),
14368 &remote_cmdlist);
14369
14370 add_cmd ("get", class_files, remote_get_command,
14371 _("Copy a remote file to the local system."),
14372 &remote_cmdlist);
14373
14374 add_cmd ("delete", class_files, remote_delete_command,
14375 _("Delete a remote file."),
14376 &remote_cmdlist);
14377
14378 add_setshow_string_noescape_cmd ("exec-file", class_files,
14379 &remote_exec_file_var, _("\
14380 Set the remote pathname for \"run\""), _("\
14381 Show the remote pathname for \"run\""), NULL,
14382 set_remote_exec_file,
14383 show_remote_exec_file,
14384 &remote_set_cmdlist,
14385 &remote_show_cmdlist);
14386
14387 add_setshow_boolean_cmd ("range-stepping", class_run,
14388 &use_range_stepping, _("\
14389 Enable or disable range stepping."), _("\
14390 Show whether target-assisted range stepping is enabled."), _("\
14391 If on, and the target supports it, when stepping a source line, GDB\n\
14392 tells the target to step the corresponding range of addresses itself instead\n\
14393 of issuing multiple single-steps. This speeds up source level\n\
14394 stepping. If off, GDB always issues single-steps, even if range\n\
14395 stepping is supported by the target. The default is on."),
14396 set_range_stepping,
14397 show_range_stepping,
14398 &setlist,
14399 &showlist);
14400
14401 /* Eventually initialize fileio. See fileio.c */
14402 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14403
14404 /* Take advantage of the fact that the TID field is not used, to tag
14405 special ptids with it set to != 0. */
14406 magic_null_ptid = ptid_build (42000, -1, 1);
14407 not_sent_ptid = ptid_build (42000, -2, 1);
14408 any_thread_ptid = ptid_build (42000, 0, 1);
14409 }
This page took 0.301194 seconds and 5 git commands to generate.