* remote.c (process_g_packet): Don't check size.
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 /* See the GDB User Guide for details of the GDB remote protocol. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include <ctype.h>
29 #include <fcntl.h>
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "exceptions.h"
34 #include "target.h"
35 /*#include "terminal.h" */
36 #include "gdbcmd.h"
37 #include "objfiles.h"
38 #include "gdb-stabs.h"
39 #include "gdbthread.h"
40 #include "remote.h"
41 #include "regcache.h"
42 #include "value.h"
43 #include "gdb_assert.h"
44 #include "observer.h"
45 #include "solib.h"
46 #include "cli/cli-decode.h"
47 #include "cli/cli-setshow.h"
48 #include "target-descriptions.h"
49
50 #include <ctype.h>
51 #include <sys/time.h>
52
53 #include "event-loop.h"
54 #include "event-top.h"
55 #include "inf-loop.h"
56
57 #include <signal.h>
58 #include "serial.h"
59
60 #include "gdbcore.h" /* for exec_bfd */
61
62 #include "remote-fileio.h"
63
64 #include "memory-map.h"
65
66 /* The size to align memory write packets, when practical. The protocol
67 does not guarantee any alignment, and gdb will generate short
68 writes and unaligned writes, but even as a best-effort attempt this
69 can improve bulk transfers. For instance, if a write is misaligned
70 relative to the target's data bus, the stub may need to make an extra
71 round trip fetching data from the target. This doesn't make a
72 huge difference, but it's easy to do, so we try to be helpful.
73
74 The alignment chosen is arbitrary; usually data bus width is
75 important here, not the possibly larger cache line size. */
76 enum { REMOTE_ALIGN_WRITES = 16 };
77
78 /* Prototypes for local functions. */
79 static void cleanup_sigint_signal_handler (void *dummy);
80 static void initialize_sigint_signal_handler (void);
81 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
82
83 static void handle_remote_sigint (int);
84 static void handle_remote_sigint_twice (int);
85 static void async_remote_interrupt (gdb_client_data);
86 void async_remote_interrupt_twice (gdb_client_data);
87
88 static void build_remote_gdbarch_data (void);
89
90 static void remote_files_info (struct target_ops *ignore);
91
92 static void remote_prepare_to_store (struct regcache *regcache);
93
94 static void remote_fetch_registers (struct regcache *regcache, int regno);
95
96 static void remote_resume (ptid_t ptid, int step,
97 enum target_signal siggnal);
98 static void remote_async_resume (ptid_t ptid, int step,
99 enum target_signal siggnal);
100 static void remote_open (char *name, int from_tty);
101 static void remote_async_open (char *name, int from_tty);
102
103 static void extended_remote_open (char *name, int from_tty);
104 static void extended_remote_async_open (char *name, int from_tty);
105
106 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
107 int async_p);
108
109 static void remote_close (int quitting);
110
111 static void remote_store_registers (struct regcache *regcache, int regno);
112
113 static void remote_mourn (void);
114 static void remote_async_mourn (void);
115
116 static void extended_remote_restart (void);
117
118 static void extended_remote_mourn (void);
119
120 static void remote_mourn_1 (struct target_ops *);
121
122 static void remote_send (char **buf, long *sizeof_buf_p);
123
124 static int readchar (int timeout);
125
126 static ptid_t remote_wait (ptid_t ptid,
127 struct target_waitstatus *status);
128 static ptid_t remote_async_wait (ptid_t ptid,
129 struct target_waitstatus *status);
130
131 static void remote_kill (void);
132 static void remote_async_kill (void);
133
134 static int tohex (int nib);
135
136 static void remote_detach (char *args, int from_tty);
137
138 static void remote_interrupt (int signo);
139
140 static void remote_interrupt_twice (int signo);
141
142 static void interrupt_query (void);
143
144 static void set_thread (int, int);
145
146 static int remote_thread_alive (ptid_t);
147
148 static void get_offsets (void);
149
150 static void skip_frame (void);
151
152 static long read_frame (char **buf_p, long *sizeof_buf);
153
154 static int hexnumlen (ULONGEST num);
155
156 static void init_remote_ops (void);
157
158 static void init_extended_remote_ops (void);
159
160 static void remote_stop (void);
161
162 static int ishex (int ch, int *val);
163
164 static int stubhex (int ch);
165
166 static int hexnumstr (char *, ULONGEST);
167
168 static int hexnumnstr (char *, ULONGEST, int);
169
170 static CORE_ADDR remote_address_masked (CORE_ADDR);
171
172 static void print_packet (char *);
173
174 static unsigned long crc32 (unsigned char *, int, unsigned int);
175
176 static void compare_sections_command (char *, int);
177
178 static void packet_command (char *, int);
179
180 static int stub_unpack_int (char *buff, int fieldlength);
181
182 static ptid_t remote_current_thread (ptid_t oldptid);
183
184 static void remote_find_new_threads (void);
185
186 static void record_currthread (int currthread);
187
188 static int fromhex (int a);
189
190 static int hex2bin (const char *hex, gdb_byte *bin, int count);
191
192 static int bin2hex (const gdb_byte *bin, char *hex, int count);
193
194 static int putpkt_binary (char *buf, int cnt);
195
196 static void check_binary_download (CORE_ADDR addr);
197
198 struct packet_config;
199
200 static void show_packet_config_cmd (struct packet_config *config);
201
202 static void update_packet_config (struct packet_config *config);
203
204 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
205 struct cmd_list_element *c);
206
207 static void show_remote_protocol_packet_cmd (struct ui_file *file,
208 int from_tty,
209 struct cmd_list_element *c,
210 const char *value);
211
212 void _initialize_remote (void);
213
214 /* For "set remote" and "show remote". */
215
216 static struct cmd_list_element *remote_set_cmdlist;
217 static struct cmd_list_element *remote_show_cmdlist;
218
219 /* Description of the remote protocol state for the currently
220 connected target. This is per-target state, and independent of the
221 selected architecture. */
222
223 struct remote_state
224 {
225 /* A buffer to use for incoming packets, and its current size. The
226 buffer is grown dynamically for larger incoming packets.
227 Outgoing packets may also be constructed in this buffer.
228 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
229 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
230 packets. */
231 char *buf;
232 long buf_size;
233
234 /* If we negotiated packet size explicitly (and thus can bypass
235 heuristics for the largest packet size that will not overflow
236 a buffer in the stub), this will be set to that packet size.
237 Otherwise zero, meaning to use the guessed size. */
238 long explicit_packet_size;
239 };
240
241 /* This data could be associated with a target, but we do not always
242 have access to the current target when we need it, so for now it is
243 static. This will be fine for as long as only one target is in use
244 at a time. */
245 static struct remote_state remote_state;
246
247 static struct remote_state *
248 get_remote_state_raw (void)
249 {
250 return &remote_state;
251 }
252
253 /* Description of the remote protocol for a given architecture. */
254
255 struct packet_reg
256 {
257 long offset; /* Offset into G packet. */
258 long regnum; /* GDB's internal register number. */
259 LONGEST pnum; /* Remote protocol register number. */
260 int in_g_packet; /* Always part of G packet. */
261 /* long size in bytes; == register_size (current_gdbarch, regnum);
262 at present. */
263 /* char *name; == REGISTER_NAME (regnum); at present. */
264 };
265
266 struct remote_arch_state
267 {
268 /* Description of the remote protocol registers. */
269 long sizeof_g_packet;
270
271 /* Description of the remote protocol registers indexed by REGNUM
272 (making an array gdbarch_num_regs in size). */
273 struct packet_reg *regs;
274
275 /* This is the size (in chars) of the first response to the ``g''
276 packet. It is used as a heuristic when determining the maximum
277 size of memory-read and memory-write packets. A target will
278 typically only reserve a buffer large enough to hold the ``g''
279 packet. The size does not include packet overhead (headers and
280 trailers). */
281 long actual_register_packet_size;
282
283 /* This is the maximum size (in chars) of a non read/write packet.
284 It is also used as a cap on the size of read/write packets. */
285 long remote_packet_size;
286 };
287
288
289 /* Handle for retreving the remote protocol data from gdbarch. */
290 static struct gdbarch_data *remote_gdbarch_data_handle;
291
292 static struct remote_arch_state *
293 get_remote_arch_state (void)
294 {
295 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
296 }
297
298 /* Fetch the global remote target state. */
299
300 static struct remote_state *
301 get_remote_state (void)
302 {
303 /* Make sure that the remote architecture state has been
304 initialized, because doing so might reallocate rs->buf. Any
305 function which calls getpkt also needs to be mindful of changes
306 to rs->buf, but this call limits the number of places which run
307 into trouble. */
308 get_remote_arch_state ();
309
310 return get_remote_state_raw ();
311 }
312
313 static int
314 compare_pnums (const void *lhs_, const void *rhs_)
315 {
316 const struct packet_reg * const *lhs = lhs_;
317 const struct packet_reg * const *rhs = rhs_;
318
319 if ((*lhs)->pnum < (*rhs)->pnum)
320 return -1;
321 else if ((*lhs)->pnum == (*rhs)->pnum)
322 return 0;
323 else
324 return 1;
325 }
326
327 static void *
328 init_remote_state (struct gdbarch *gdbarch)
329 {
330 int regnum, num_remote_regs, offset;
331 struct remote_state *rs = get_remote_state_raw ();
332 struct remote_arch_state *rsa;
333 struct packet_reg **remote_regs;
334
335 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
336
337 /* Use the architecture to build a regnum<->pnum table, which will be
338 1:1 unless a feature set specifies otherwise. */
339 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
340 gdbarch_num_regs (current_gdbarch),
341 struct packet_reg);
342 for (regnum = 0; regnum < gdbarch_num_regs (current_gdbarch); regnum++)
343 {
344 struct packet_reg *r = &rsa->regs[regnum];
345
346 if (register_size (current_gdbarch, regnum) == 0)
347 /* Do not try to fetch zero-sized (placeholder) registers. */
348 r->pnum = -1;
349 else
350 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
351
352 r->regnum = regnum;
353 }
354
355 /* Define the g/G packet format as the contents of each register
356 with a remote protocol number, in order of ascending protocol
357 number. */
358
359 remote_regs = alloca (gdbarch_num_regs (current_gdbarch)
360 * sizeof (struct packet_reg *));
361 for (num_remote_regs = 0, regnum = 0;
362 regnum < gdbarch_num_regs (current_gdbarch);
363 regnum++)
364 if (rsa->regs[regnum].pnum != -1)
365 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
366
367 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
368 compare_pnums);
369
370 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
371 {
372 remote_regs[regnum]->in_g_packet = 1;
373 remote_regs[regnum]->offset = offset;
374 offset += register_size (current_gdbarch, remote_regs[regnum]->regnum);
375 }
376
377 /* Record the maximum possible size of the g packet - it may turn out
378 to be smaller. */
379 rsa->sizeof_g_packet = offset;
380
381 /* Default maximum number of characters in a packet body. Many
382 remote stubs have a hardwired buffer size of 400 bytes
383 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
384 as the maximum packet-size to ensure that the packet and an extra
385 NUL character can always fit in the buffer. This stops GDB
386 trashing stubs that try to squeeze an extra NUL into what is
387 already a full buffer (As of 1999-12-04 that was most stubs). */
388 rsa->remote_packet_size = 400 - 1;
389
390 /* This one is filled in when a ``g'' packet is received. */
391 rsa->actual_register_packet_size = 0;
392
393 /* Should rsa->sizeof_g_packet needs more space than the
394 default, adjust the size accordingly. Remember that each byte is
395 encoded as two characters. 32 is the overhead for the packet
396 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
397 (``$NN:G...#NN'') is a better guess, the below has been padded a
398 little. */
399 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
400 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
401
402 /* Make sure that the packet buffer is plenty big enough for
403 this architecture. */
404 if (rs->buf_size < rsa->remote_packet_size)
405 {
406 rs->buf_size = 2 * rsa->remote_packet_size;
407 rs->buf = xrealloc (rs->buf, rs->buf_size);
408 }
409
410 return rsa;
411 }
412
413 /* Return the current allowed size of a remote packet. This is
414 inferred from the current architecture, and should be used to
415 limit the length of outgoing packets. */
416 static long
417 get_remote_packet_size (void)
418 {
419 struct remote_state *rs = get_remote_state ();
420 struct remote_arch_state *rsa = get_remote_arch_state ();
421
422 if (rs->explicit_packet_size)
423 return rs->explicit_packet_size;
424
425 return rsa->remote_packet_size;
426 }
427
428 static struct packet_reg *
429 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
430 {
431 if (regnum < 0 && regnum >= gdbarch_num_regs (current_gdbarch))
432 return NULL;
433 else
434 {
435 struct packet_reg *r = &rsa->regs[regnum];
436 gdb_assert (r->regnum == regnum);
437 return r;
438 }
439 }
440
441 static struct packet_reg *
442 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
443 {
444 int i;
445 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
446 {
447 struct packet_reg *r = &rsa->regs[i];
448 if (r->pnum == pnum)
449 return r;
450 }
451 return NULL;
452 }
453
454 /* FIXME: graces/2002-08-08: These variables should eventually be
455 bound to an instance of the target object (as in gdbarch-tdep()),
456 when such a thing exists. */
457
458 /* This is set to the data address of the access causing the target
459 to stop for a watchpoint. */
460 static CORE_ADDR remote_watch_data_address;
461
462 /* This is non-zero if target stopped for a watchpoint. */
463 static int remote_stopped_by_watchpoint_p;
464
465 static struct target_ops remote_ops;
466
467 static struct target_ops extended_remote_ops;
468
469 /* Temporary target ops. Just like the remote_ops and
470 extended_remote_ops, but with asynchronous support. */
471 static struct target_ops remote_async_ops;
472
473 static struct target_ops extended_async_remote_ops;
474
475 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
476 ``forever'' still use the normal timeout mechanism. This is
477 currently used by the ASYNC code to guarentee that target reads
478 during the initial connect always time-out. Once getpkt has been
479 modified to return a timeout indication and, in turn
480 remote_wait()/wait_for_inferior() have gained a timeout parameter
481 this can go away. */
482 static int wait_forever_enabled_p = 1;
483
484
485 /* This variable chooses whether to send a ^C or a break when the user
486 requests program interruption. Although ^C is usually what remote
487 systems expect, and that is the default here, sometimes a break is
488 preferable instead. */
489
490 static int remote_break;
491
492 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
493 remote_open knows that we don't have a file open when the program
494 starts. */
495 static struct serial *remote_desc = NULL;
496
497 /* This variable sets the number of bits in an address that are to be
498 sent in a memory ("M" or "m") packet. Normally, after stripping
499 leading zeros, the entire address would be sent. This variable
500 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
501 initial implementation of remote.c restricted the address sent in
502 memory packets to ``host::sizeof long'' bytes - (typically 32
503 bits). Consequently, for 64 bit targets, the upper 32 bits of an
504 address was never sent. Since fixing this bug may cause a break in
505 some remote targets this variable is principly provided to
506 facilitate backward compatibility. */
507
508 static int remote_address_size;
509
510 /* Tempoary to track who currently owns the terminal. See
511 target_async_terminal_* for more details. */
512
513 static int remote_async_terminal_ours_p;
514
515 \f
516 /* User configurable variables for the number of characters in a
517 memory read/write packet. MIN (rsa->remote_packet_size,
518 rsa->sizeof_g_packet) is the default. Some targets need smaller
519 values (fifo overruns, et.al.) and some users need larger values
520 (speed up transfers). The variables ``preferred_*'' (the user
521 request), ``current_*'' (what was actually set) and ``forced_*''
522 (Positive - a soft limit, negative - a hard limit). */
523
524 struct memory_packet_config
525 {
526 char *name;
527 long size;
528 int fixed_p;
529 };
530
531 /* Compute the current size of a read/write packet. Since this makes
532 use of ``actual_register_packet_size'' the computation is dynamic. */
533
534 static long
535 get_memory_packet_size (struct memory_packet_config *config)
536 {
537 struct remote_state *rs = get_remote_state ();
538 struct remote_arch_state *rsa = get_remote_arch_state ();
539
540 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
541 law?) that some hosts don't cope very well with large alloca()
542 calls. Eventually the alloca() code will be replaced by calls to
543 xmalloc() and make_cleanups() allowing this restriction to either
544 be lifted or removed. */
545 #ifndef MAX_REMOTE_PACKET_SIZE
546 #define MAX_REMOTE_PACKET_SIZE 16384
547 #endif
548 /* NOTE: 20 ensures we can write at least one byte. */
549 #ifndef MIN_REMOTE_PACKET_SIZE
550 #define MIN_REMOTE_PACKET_SIZE 20
551 #endif
552 long what_they_get;
553 if (config->fixed_p)
554 {
555 if (config->size <= 0)
556 what_they_get = MAX_REMOTE_PACKET_SIZE;
557 else
558 what_they_get = config->size;
559 }
560 else
561 {
562 what_they_get = get_remote_packet_size ();
563 /* Limit the packet to the size specified by the user. */
564 if (config->size > 0
565 && what_they_get > config->size)
566 what_they_get = config->size;
567
568 /* Limit it to the size of the targets ``g'' response unless we have
569 permission from the stub to use a larger packet size. */
570 if (rs->explicit_packet_size == 0
571 && rsa->actual_register_packet_size > 0
572 && what_they_get > rsa->actual_register_packet_size)
573 what_they_get = rsa->actual_register_packet_size;
574 }
575 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
576 what_they_get = MAX_REMOTE_PACKET_SIZE;
577 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
578 what_they_get = MIN_REMOTE_PACKET_SIZE;
579
580 /* Make sure there is room in the global buffer for this packet
581 (including its trailing NUL byte). */
582 if (rs->buf_size < what_they_get + 1)
583 {
584 rs->buf_size = 2 * what_they_get;
585 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
586 }
587
588 return what_they_get;
589 }
590
591 /* Update the size of a read/write packet. If they user wants
592 something really big then do a sanity check. */
593
594 static void
595 set_memory_packet_size (char *args, struct memory_packet_config *config)
596 {
597 int fixed_p = config->fixed_p;
598 long size = config->size;
599 if (args == NULL)
600 error (_("Argument required (integer, `fixed' or `limited')."));
601 else if (strcmp (args, "hard") == 0
602 || strcmp (args, "fixed") == 0)
603 fixed_p = 1;
604 else if (strcmp (args, "soft") == 0
605 || strcmp (args, "limit") == 0)
606 fixed_p = 0;
607 else
608 {
609 char *end;
610 size = strtoul (args, &end, 0);
611 if (args == end)
612 error (_("Invalid %s (bad syntax)."), config->name);
613 #if 0
614 /* Instead of explicitly capping the size of a packet to
615 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
616 instead allowed to set the size to something arbitrarily
617 large. */
618 if (size > MAX_REMOTE_PACKET_SIZE)
619 error (_("Invalid %s (too large)."), config->name);
620 #endif
621 }
622 /* Extra checks? */
623 if (fixed_p && !config->fixed_p)
624 {
625 if (! query (_("The target may not be able to correctly handle a %s\n"
626 "of %ld bytes. Change the packet size? "),
627 config->name, size))
628 error (_("Packet size not changed."));
629 }
630 /* Update the config. */
631 config->fixed_p = fixed_p;
632 config->size = size;
633 }
634
635 static void
636 show_memory_packet_size (struct memory_packet_config *config)
637 {
638 printf_filtered (_("The %s is %ld. "), config->name, config->size);
639 if (config->fixed_p)
640 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
641 get_memory_packet_size (config));
642 else
643 printf_filtered (_("Packets are limited to %ld bytes.\n"),
644 get_memory_packet_size (config));
645 }
646
647 static struct memory_packet_config memory_write_packet_config =
648 {
649 "memory-write-packet-size",
650 };
651
652 static void
653 set_memory_write_packet_size (char *args, int from_tty)
654 {
655 set_memory_packet_size (args, &memory_write_packet_config);
656 }
657
658 static void
659 show_memory_write_packet_size (char *args, int from_tty)
660 {
661 show_memory_packet_size (&memory_write_packet_config);
662 }
663
664 static long
665 get_memory_write_packet_size (void)
666 {
667 return get_memory_packet_size (&memory_write_packet_config);
668 }
669
670 static struct memory_packet_config memory_read_packet_config =
671 {
672 "memory-read-packet-size",
673 };
674
675 static void
676 set_memory_read_packet_size (char *args, int from_tty)
677 {
678 set_memory_packet_size (args, &memory_read_packet_config);
679 }
680
681 static void
682 show_memory_read_packet_size (char *args, int from_tty)
683 {
684 show_memory_packet_size (&memory_read_packet_config);
685 }
686
687 static long
688 get_memory_read_packet_size (void)
689 {
690 long size = get_memory_packet_size (&memory_read_packet_config);
691 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
692 extra buffer size argument before the memory read size can be
693 increased beyond this. */
694 if (size > get_remote_packet_size ())
695 size = get_remote_packet_size ();
696 return size;
697 }
698
699 \f
700 /* Generic configuration support for packets the stub optionally
701 supports. Allows the user to specify the use of the packet as well
702 as allowing GDB to auto-detect support in the remote stub. */
703
704 enum packet_support
705 {
706 PACKET_SUPPORT_UNKNOWN = 0,
707 PACKET_ENABLE,
708 PACKET_DISABLE
709 };
710
711 struct packet_config
712 {
713 const char *name;
714 const char *title;
715 enum auto_boolean detect;
716 enum packet_support support;
717 };
718
719 /* Analyze a packet's return value and update the packet config
720 accordingly. */
721
722 enum packet_result
723 {
724 PACKET_ERROR,
725 PACKET_OK,
726 PACKET_UNKNOWN
727 };
728
729 static void
730 update_packet_config (struct packet_config *config)
731 {
732 switch (config->detect)
733 {
734 case AUTO_BOOLEAN_TRUE:
735 config->support = PACKET_ENABLE;
736 break;
737 case AUTO_BOOLEAN_FALSE:
738 config->support = PACKET_DISABLE;
739 break;
740 case AUTO_BOOLEAN_AUTO:
741 config->support = PACKET_SUPPORT_UNKNOWN;
742 break;
743 }
744 }
745
746 static void
747 show_packet_config_cmd (struct packet_config *config)
748 {
749 char *support = "internal-error";
750 switch (config->support)
751 {
752 case PACKET_ENABLE:
753 support = "enabled";
754 break;
755 case PACKET_DISABLE:
756 support = "disabled";
757 break;
758 case PACKET_SUPPORT_UNKNOWN:
759 support = "unknown";
760 break;
761 }
762 switch (config->detect)
763 {
764 case AUTO_BOOLEAN_AUTO:
765 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
766 config->name, support);
767 break;
768 case AUTO_BOOLEAN_TRUE:
769 case AUTO_BOOLEAN_FALSE:
770 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
771 config->name, support);
772 break;
773 }
774 }
775
776 static void
777 add_packet_config_cmd (struct packet_config *config, const char *name,
778 const char *title, int legacy)
779 {
780 char *set_doc;
781 char *show_doc;
782 char *cmd_name;
783
784 config->name = name;
785 config->title = title;
786 config->detect = AUTO_BOOLEAN_AUTO;
787 config->support = PACKET_SUPPORT_UNKNOWN;
788 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
789 name, title);
790 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
791 name, title);
792 /* set/show TITLE-packet {auto,on,off} */
793 cmd_name = xstrprintf ("%s-packet", title);
794 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
795 &config->detect, set_doc, show_doc, NULL, /* help_doc */
796 set_remote_protocol_packet_cmd,
797 show_remote_protocol_packet_cmd,
798 &remote_set_cmdlist, &remote_show_cmdlist);
799 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
800 if (legacy)
801 {
802 char *legacy_name;
803 legacy_name = xstrprintf ("%s-packet", name);
804 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
805 &remote_set_cmdlist);
806 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
807 &remote_show_cmdlist);
808 }
809 }
810
811 static enum packet_result
812 packet_check_result (const char *buf)
813 {
814 if (buf[0] != '\0')
815 {
816 /* The stub recognized the packet request. Check that the
817 operation succeeded. */
818 if (buf[0] == 'E'
819 && isxdigit (buf[1]) && isxdigit (buf[2])
820 && buf[3] == '\0')
821 /* "Enn" - definitly an error. */
822 return PACKET_ERROR;
823
824 /* Always treat "E." as an error. This will be used for
825 more verbose error messages, such as E.memtypes. */
826 if (buf[0] == 'E' && buf[1] == '.')
827 return PACKET_ERROR;
828
829 /* The packet may or may not be OK. Just assume it is. */
830 return PACKET_OK;
831 }
832 else
833 /* The stub does not support the packet. */
834 return PACKET_UNKNOWN;
835 }
836
837 static enum packet_result
838 packet_ok (const char *buf, struct packet_config *config)
839 {
840 enum packet_result result;
841
842 result = packet_check_result (buf);
843 switch (result)
844 {
845 case PACKET_OK:
846 case PACKET_ERROR:
847 /* The stub recognized the packet request. */
848 switch (config->support)
849 {
850 case PACKET_SUPPORT_UNKNOWN:
851 if (remote_debug)
852 fprintf_unfiltered (gdb_stdlog,
853 "Packet %s (%s) is supported\n",
854 config->name, config->title);
855 config->support = PACKET_ENABLE;
856 break;
857 case PACKET_DISABLE:
858 internal_error (__FILE__, __LINE__,
859 _("packet_ok: attempt to use a disabled packet"));
860 break;
861 case PACKET_ENABLE:
862 break;
863 }
864 break;
865 case PACKET_UNKNOWN:
866 /* The stub does not support the packet. */
867 switch (config->support)
868 {
869 case PACKET_ENABLE:
870 if (config->detect == AUTO_BOOLEAN_AUTO)
871 /* If the stub previously indicated that the packet was
872 supported then there is a protocol error.. */
873 error (_("Protocol error: %s (%s) conflicting enabled responses."),
874 config->name, config->title);
875 else
876 /* The user set it wrong. */
877 error (_("Enabled packet %s (%s) not recognized by stub"),
878 config->name, config->title);
879 break;
880 case PACKET_SUPPORT_UNKNOWN:
881 if (remote_debug)
882 fprintf_unfiltered (gdb_stdlog,
883 "Packet %s (%s) is NOT supported\n",
884 config->name, config->title);
885 config->support = PACKET_DISABLE;
886 break;
887 case PACKET_DISABLE:
888 break;
889 }
890 break;
891 }
892
893 return result;
894 }
895
896 enum {
897 PACKET_vCont = 0,
898 PACKET_X,
899 PACKET_qSymbol,
900 PACKET_P,
901 PACKET_p,
902 PACKET_Z0,
903 PACKET_Z1,
904 PACKET_Z2,
905 PACKET_Z3,
906 PACKET_Z4,
907 PACKET_qXfer_auxv,
908 PACKET_qXfer_features,
909 PACKET_qXfer_memory_map,
910 PACKET_qGetTLSAddr,
911 PACKET_qSupported,
912 PACKET_QPassSignals,
913 PACKET_MAX
914 };
915
916 static struct packet_config remote_protocol_packets[PACKET_MAX];
917
918 static void
919 set_remote_protocol_packet_cmd (char *args, int from_tty,
920 struct cmd_list_element *c)
921 {
922 struct packet_config *packet;
923
924 for (packet = remote_protocol_packets;
925 packet < &remote_protocol_packets[PACKET_MAX];
926 packet++)
927 {
928 if (&packet->detect == c->var)
929 {
930 update_packet_config (packet);
931 return;
932 }
933 }
934 internal_error (__FILE__, __LINE__, "Could not find config for %s",
935 c->name);
936 }
937
938 static void
939 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
940 struct cmd_list_element *c,
941 const char *value)
942 {
943 struct packet_config *packet;
944
945 for (packet = remote_protocol_packets;
946 packet < &remote_protocol_packets[PACKET_MAX];
947 packet++)
948 {
949 if (&packet->detect == c->var)
950 {
951 show_packet_config_cmd (packet);
952 return;
953 }
954 }
955 internal_error (__FILE__, __LINE__, "Could not find config for %s",
956 c->name);
957 }
958
959 /* Should we try one of the 'Z' requests? */
960
961 enum Z_packet_type
962 {
963 Z_PACKET_SOFTWARE_BP,
964 Z_PACKET_HARDWARE_BP,
965 Z_PACKET_WRITE_WP,
966 Z_PACKET_READ_WP,
967 Z_PACKET_ACCESS_WP,
968 NR_Z_PACKET_TYPES
969 };
970
971 /* For compatibility with older distributions. Provide a ``set remote
972 Z-packet ...'' command that updates all the Z packet types. */
973
974 static enum auto_boolean remote_Z_packet_detect;
975
976 static void
977 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
978 struct cmd_list_element *c)
979 {
980 int i;
981 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
982 {
983 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
984 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
985 }
986 }
987
988 static void
989 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
990 struct cmd_list_element *c,
991 const char *value)
992 {
993 int i;
994 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
995 {
996 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
997 }
998 }
999
1000 /* Should we try the 'ThreadInfo' query packet?
1001
1002 This variable (NOT available to the user: auto-detect only!)
1003 determines whether GDB will use the new, simpler "ThreadInfo"
1004 query or the older, more complex syntax for thread queries.
1005 This is an auto-detect variable (set to true at each connect,
1006 and set to false when the target fails to recognize it). */
1007
1008 static int use_threadinfo_query;
1009 static int use_threadextra_query;
1010
1011 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1012 static struct async_signal_handler *sigint_remote_twice_token;
1013 static struct async_signal_handler *sigint_remote_token;
1014
1015 /* These are pointers to hook functions that may be set in order to
1016 modify resume/wait behavior for a particular architecture. */
1017
1018 void (*deprecated_target_resume_hook) (void);
1019 void (*deprecated_target_wait_loop_hook) (void);
1020 \f
1021
1022
1023 /* These are the threads which we last sent to the remote system.
1024 -1 for all or -2 for not sent yet. */
1025 static int general_thread;
1026 static int continue_thread;
1027
1028 /* Call this function as a result of
1029 1) A halt indication (T packet) containing a thread id
1030 2) A direct query of currthread
1031 3) Successful execution of set thread
1032 */
1033
1034 static void
1035 record_currthread (int currthread)
1036 {
1037 general_thread = currthread;
1038
1039 /* If this is a new thread, add it to GDB's thread list.
1040 If we leave it up to WFI to do this, bad things will happen. */
1041 if (!in_thread_list (pid_to_ptid (currthread)))
1042 {
1043 add_thread (pid_to_ptid (currthread));
1044 ui_out_text (uiout, "[New ");
1045 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1046 ui_out_text (uiout, "]\n");
1047 }
1048 }
1049
1050 static char *last_pass_packet;
1051
1052 /* If 'QPassSignals' is supported, tell the remote stub what signals
1053 it can simply pass through to the inferior without reporting. */
1054
1055 static void
1056 remote_pass_signals (void)
1057 {
1058 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1059 {
1060 char *pass_packet, *p;
1061 int numsigs = (int) TARGET_SIGNAL_LAST;
1062 int count = 0, i;
1063
1064 gdb_assert (numsigs < 256);
1065 for (i = 0; i < numsigs; i++)
1066 {
1067 if (signal_stop_state (i) == 0
1068 && signal_print_state (i) == 0
1069 && signal_pass_state (i) == 1)
1070 count++;
1071 }
1072 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1073 strcpy (pass_packet, "QPassSignals:");
1074 p = pass_packet + strlen (pass_packet);
1075 for (i = 0; i < numsigs; i++)
1076 {
1077 if (signal_stop_state (i) == 0
1078 && signal_print_state (i) == 0
1079 && signal_pass_state (i) == 1)
1080 {
1081 if (i >= 16)
1082 *p++ = tohex (i >> 4);
1083 *p++ = tohex (i & 15);
1084 if (count)
1085 *p++ = ';';
1086 else
1087 break;
1088 count--;
1089 }
1090 }
1091 *p = 0;
1092 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1093 {
1094 struct remote_state *rs = get_remote_state ();
1095 char *buf = rs->buf;
1096
1097 putpkt (pass_packet);
1098 getpkt (&rs->buf, &rs->buf_size, 0);
1099 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1100 if (last_pass_packet)
1101 xfree (last_pass_packet);
1102 last_pass_packet = pass_packet;
1103 }
1104 else
1105 xfree (pass_packet);
1106 }
1107 }
1108
1109 #define MAGIC_NULL_PID 42000
1110
1111 static void
1112 set_thread (int th, int gen)
1113 {
1114 struct remote_state *rs = get_remote_state ();
1115 char *buf = rs->buf;
1116 int state = gen ? general_thread : continue_thread;
1117
1118 if (state == th)
1119 return;
1120
1121 buf[0] = 'H';
1122 buf[1] = gen ? 'g' : 'c';
1123 if (th == MAGIC_NULL_PID)
1124 {
1125 buf[2] = '0';
1126 buf[3] = '\0';
1127 }
1128 else if (th < 0)
1129 xsnprintf (&buf[2], get_remote_packet_size () - 2, "-%x", -th);
1130 else
1131 xsnprintf (&buf[2], get_remote_packet_size () - 2, "%x", th);
1132 putpkt (buf);
1133 getpkt (&rs->buf, &rs->buf_size, 0);
1134 if (gen)
1135 general_thread = th;
1136 else
1137 continue_thread = th;
1138 }
1139 \f
1140 /* Return nonzero if the thread TH is still alive on the remote system. */
1141
1142 static int
1143 remote_thread_alive (ptid_t ptid)
1144 {
1145 struct remote_state *rs = get_remote_state ();
1146 int tid = PIDGET (ptid);
1147
1148 if (tid < 0)
1149 xsnprintf (rs->buf, get_remote_packet_size (), "T-%08x", -tid);
1150 else
1151 xsnprintf (rs->buf, get_remote_packet_size (), "T%08x", tid);
1152 putpkt (rs->buf);
1153 getpkt (&rs->buf, &rs->buf_size, 0);
1154 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1155 }
1156
1157 /* About these extended threadlist and threadinfo packets. They are
1158 variable length packets but, the fields within them are often fixed
1159 length. They are redundent enough to send over UDP as is the
1160 remote protocol in general. There is a matching unit test module
1161 in libstub. */
1162
1163 #define OPAQUETHREADBYTES 8
1164
1165 /* a 64 bit opaque identifier */
1166 typedef unsigned char threadref[OPAQUETHREADBYTES];
1167
1168 /* WARNING: This threadref data structure comes from the remote O.S.,
1169 libstub protocol encoding, and remote.c. it is not particularly
1170 changable. */
1171
1172 /* Right now, the internal structure is int. We want it to be bigger.
1173 Plan to fix this.
1174 */
1175
1176 typedef int gdb_threadref; /* Internal GDB thread reference. */
1177
1178 /* gdb_ext_thread_info is an internal GDB data structure which is
1179 equivalent to the reply of the remote threadinfo packet. */
1180
1181 struct gdb_ext_thread_info
1182 {
1183 threadref threadid; /* External form of thread reference. */
1184 int active; /* Has state interesting to GDB?
1185 regs, stack. */
1186 char display[256]; /* Brief state display, name,
1187 blocked/suspended. */
1188 char shortname[32]; /* To be used to name threads. */
1189 char more_display[256]; /* Long info, statistics, queue depth,
1190 whatever. */
1191 };
1192
1193 /* The volume of remote transfers can be limited by submitting
1194 a mask containing bits specifying the desired information.
1195 Use a union of these values as the 'selection' parameter to
1196 get_thread_info. FIXME: Make these TAG names more thread specific.
1197 */
1198
1199 #define TAG_THREADID 1
1200 #define TAG_EXISTS 2
1201 #define TAG_DISPLAY 4
1202 #define TAG_THREADNAME 8
1203 #define TAG_MOREDISPLAY 16
1204
1205 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1206
1207 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1208
1209 static char *unpack_nibble (char *buf, int *val);
1210
1211 static char *pack_nibble (char *buf, int nibble);
1212
1213 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1214
1215 static char *unpack_byte (char *buf, int *value);
1216
1217 static char *pack_int (char *buf, int value);
1218
1219 static char *unpack_int (char *buf, int *value);
1220
1221 static char *unpack_string (char *src, char *dest, int length);
1222
1223 static char *pack_threadid (char *pkt, threadref *id);
1224
1225 static char *unpack_threadid (char *inbuf, threadref *id);
1226
1227 void int_to_threadref (threadref *id, int value);
1228
1229 static int threadref_to_int (threadref *ref);
1230
1231 static void copy_threadref (threadref *dest, threadref *src);
1232
1233 static int threadmatch (threadref *dest, threadref *src);
1234
1235 static char *pack_threadinfo_request (char *pkt, int mode,
1236 threadref *id);
1237
1238 static int remote_unpack_thread_info_response (char *pkt,
1239 threadref *expectedref,
1240 struct gdb_ext_thread_info
1241 *info);
1242
1243
1244 static int remote_get_threadinfo (threadref *threadid,
1245 int fieldset, /*TAG mask */
1246 struct gdb_ext_thread_info *info);
1247
1248 static char *pack_threadlist_request (char *pkt, int startflag,
1249 int threadcount,
1250 threadref *nextthread);
1251
1252 static int parse_threadlist_response (char *pkt,
1253 int result_limit,
1254 threadref *original_echo,
1255 threadref *resultlist,
1256 int *doneflag);
1257
1258 static int remote_get_threadlist (int startflag,
1259 threadref *nextthread,
1260 int result_limit,
1261 int *done,
1262 int *result_count,
1263 threadref *threadlist);
1264
1265 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1266
1267 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1268 void *context, int looplimit);
1269
1270 static int remote_newthread_step (threadref *ref, void *context);
1271
1272 /* Encode 64 bits in 16 chars of hex. */
1273
1274 static const char hexchars[] = "0123456789abcdef";
1275
1276 static int
1277 ishex (int ch, int *val)
1278 {
1279 if ((ch >= 'a') && (ch <= 'f'))
1280 {
1281 *val = ch - 'a' + 10;
1282 return 1;
1283 }
1284 if ((ch >= 'A') && (ch <= 'F'))
1285 {
1286 *val = ch - 'A' + 10;
1287 return 1;
1288 }
1289 if ((ch >= '0') && (ch <= '9'))
1290 {
1291 *val = ch - '0';
1292 return 1;
1293 }
1294 return 0;
1295 }
1296
1297 static int
1298 stubhex (int ch)
1299 {
1300 if (ch >= 'a' && ch <= 'f')
1301 return ch - 'a' + 10;
1302 if (ch >= '0' && ch <= '9')
1303 return ch - '0';
1304 if (ch >= 'A' && ch <= 'F')
1305 return ch - 'A' + 10;
1306 return -1;
1307 }
1308
1309 static int
1310 stub_unpack_int (char *buff, int fieldlength)
1311 {
1312 int nibble;
1313 int retval = 0;
1314
1315 while (fieldlength)
1316 {
1317 nibble = stubhex (*buff++);
1318 retval |= nibble;
1319 fieldlength--;
1320 if (fieldlength)
1321 retval = retval << 4;
1322 }
1323 return retval;
1324 }
1325
1326 char *
1327 unpack_varlen_hex (char *buff, /* packet to parse */
1328 ULONGEST *result)
1329 {
1330 int nibble;
1331 ULONGEST retval = 0;
1332
1333 while (ishex (*buff, &nibble))
1334 {
1335 buff++;
1336 retval = retval << 4;
1337 retval |= nibble & 0x0f;
1338 }
1339 *result = retval;
1340 return buff;
1341 }
1342
1343 static char *
1344 unpack_nibble (char *buf, int *val)
1345 {
1346 ishex (*buf++, val);
1347 return buf;
1348 }
1349
1350 static char *
1351 pack_nibble (char *buf, int nibble)
1352 {
1353 *buf++ = hexchars[(nibble & 0x0f)];
1354 return buf;
1355 }
1356
1357 static char *
1358 pack_hex_byte (char *pkt, int byte)
1359 {
1360 *pkt++ = hexchars[(byte >> 4) & 0xf];
1361 *pkt++ = hexchars[(byte & 0xf)];
1362 return pkt;
1363 }
1364
1365 static char *
1366 unpack_byte (char *buf, int *value)
1367 {
1368 *value = stub_unpack_int (buf, 2);
1369 return buf + 2;
1370 }
1371
1372 static char *
1373 pack_int (char *buf, int value)
1374 {
1375 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1376 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1377 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1378 buf = pack_hex_byte (buf, (value & 0xff));
1379 return buf;
1380 }
1381
1382 static char *
1383 unpack_int (char *buf, int *value)
1384 {
1385 *value = stub_unpack_int (buf, 8);
1386 return buf + 8;
1387 }
1388
1389 #if 0 /* Currently unused, uncomment when needed. */
1390 static char *pack_string (char *pkt, char *string);
1391
1392 static char *
1393 pack_string (char *pkt, char *string)
1394 {
1395 char ch;
1396 int len;
1397
1398 len = strlen (string);
1399 if (len > 200)
1400 len = 200; /* Bigger than most GDB packets, junk??? */
1401 pkt = pack_hex_byte (pkt, len);
1402 while (len-- > 0)
1403 {
1404 ch = *string++;
1405 if ((ch == '\0') || (ch == '#'))
1406 ch = '*'; /* Protect encapsulation. */
1407 *pkt++ = ch;
1408 }
1409 return pkt;
1410 }
1411 #endif /* 0 (unused) */
1412
1413 static char *
1414 unpack_string (char *src, char *dest, int length)
1415 {
1416 while (length--)
1417 *dest++ = *src++;
1418 *dest = '\0';
1419 return src;
1420 }
1421
1422 static char *
1423 pack_threadid (char *pkt, threadref *id)
1424 {
1425 char *limit;
1426 unsigned char *altid;
1427
1428 altid = (unsigned char *) id;
1429 limit = pkt + BUF_THREAD_ID_SIZE;
1430 while (pkt < limit)
1431 pkt = pack_hex_byte (pkt, *altid++);
1432 return pkt;
1433 }
1434
1435
1436 static char *
1437 unpack_threadid (char *inbuf, threadref *id)
1438 {
1439 char *altref;
1440 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1441 int x, y;
1442
1443 altref = (char *) id;
1444
1445 while (inbuf < limit)
1446 {
1447 x = stubhex (*inbuf++);
1448 y = stubhex (*inbuf++);
1449 *altref++ = (x << 4) | y;
1450 }
1451 return inbuf;
1452 }
1453
1454 /* Externally, threadrefs are 64 bits but internally, they are still
1455 ints. This is due to a mismatch of specifications. We would like
1456 to use 64bit thread references internally. This is an adapter
1457 function. */
1458
1459 void
1460 int_to_threadref (threadref *id, int value)
1461 {
1462 unsigned char *scan;
1463
1464 scan = (unsigned char *) id;
1465 {
1466 int i = 4;
1467 while (i--)
1468 *scan++ = 0;
1469 }
1470 *scan++ = (value >> 24) & 0xff;
1471 *scan++ = (value >> 16) & 0xff;
1472 *scan++ = (value >> 8) & 0xff;
1473 *scan++ = (value & 0xff);
1474 }
1475
1476 static int
1477 threadref_to_int (threadref *ref)
1478 {
1479 int i, value = 0;
1480 unsigned char *scan;
1481
1482 scan = *ref;
1483 scan += 4;
1484 i = 4;
1485 while (i-- > 0)
1486 value = (value << 8) | ((*scan++) & 0xff);
1487 return value;
1488 }
1489
1490 static void
1491 copy_threadref (threadref *dest, threadref *src)
1492 {
1493 int i;
1494 unsigned char *csrc, *cdest;
1495
1496 csrc = (unsigned char *) src;
1497 cdest = (unsigned char *) dest;
1498 i = 8;
1499 while (i--)
1500 *cdest++ = *csrc++;
1501 }
1502
1503 static int
1504 threadmatch (threadref *dest, threadref *src)
1505 {
1506 /* Things are broken right now, so just assume we got a match. */
1507 #if 0
1508 unsigned char *srcp, *destp;
1509 int i, result;
1510 srcp = (char *) src;
1511 destp = (char *) dest;
1512
1513 result = 1;
1514 while (i-- > 0)
1515 result &= (*srcp++ == *destp++) ? 1 : 0;
1516 return result;
1517 #endif
1518 return 1;
1519 }
1520
1521 /*
1522 threadid:1, # always request threadid
1523 context_exists:2,
1524 display:4,
1525 unique_name:8,
1526 more_display:16
1527 */
1528
1529 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1530
1531 static char *
1532 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1533 {
1534 *pkt++ = 'q'; /* Info Query */
1535 *pkt++ = 'P'; /* process or thread info */
1536 pkt = pack_int (pkt, mode); /* mode */
1537 pkt = pack_threadid (pkt, id); /* threadid */
1538 *pkt = '\0'; /* terminate */
1539 return pkt;
1540 }
1541
1542 /* These values tag the fields in a thread info response packet. */
1543 /* Tagging the fields allows us to request specific fields and to
1544 add more fields as time goes by. */
1545
1546 #define TAG_THREADID 1 /* Echo the thread identifier. */
1547 #define TAG_EXISTS 2 /* Is this process defined enough to
1548 fetch registers and its stack? */
1549 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1550 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1551 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1552 the process. */
1553
1554 static int
1555 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1556 struct gdb_ext_thread_info *info)
1557 {
1558 struct remote_state *rs = get_remote_state ();
1559 int mask, length;
1560 int tag;
1561 threadref ref;
1562 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1563 int retval = 1;
1564
1565 /* info->threadid = 0; FIXME: implement zero_threadref. */
1566 info->active = 0;
1567 info->display[0] = '\0';
1568 info->shortname[0] = '\0';
1569 info->more_display[0] = '\0';
1570
1571 /* Assume the characters indicating the packet type have been
1572 stripped. */
1573 pkt = unpack_int (pkt, &mask); /* arg mask */
1574 pkt = unpack_threadid (pkt, &ref);
1575
1576 if (mask == 0)
1577 warning (_("Incomplete response to threadinfo request."));
1578 if (!threadmatch (&ref, expectedref))
1579 { /* This is an answer to a different request. */
1580 warning (_("ERROR RMT Thread info mismatch."));
1581 return 0;
1582 }
1583 copy_threadref (&info->threadid, &ref);
1584
1585 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1586
1587 /* Packets are terminated with nulls. */
1588 while ((pkt < limit) && mask && *pkt)
1589 {
1590 pkt = unpack_int (pkt, &tag); /* tag */
1591 pkt = unpack_byte (pkt, &length); /* length */
1592 if (!(tag & mask)) /* Tags out of synch with mask. */
1593 {
1594 warning (_("ERROR RMT: threadinfo tag mismatch."));
1595 retval = 0;
1596 break;
1597 }
1598 if (tag == TAG_THREADID)
1599 {
1600 if (length != 16)
1601 {
1602 warning (_("ERROR RMT: length of threadid is not 16."));
1603 retval = 0;
1604 break;
1605 }
1606 pkt = unpack_threadid (pkt, &ref);
1607 mask = mask & ~TAG_THREADID;
1608 continue;
1609 }
1610 if (tag == TAG_EXISTS)
1611 {
1612 info->active = stub_unpack_int (pkt, length);
1613 pkt += length;
1614 mask = mask & ~(TAG_EXISTS);
1615 if (length > 8)
1616 {
1617 warning (_("ERROR RMT: 'exists' length too long."));
1618 retval = 0;
1619 break;
1620 }
1621 continue;
1622 }
1623 if (tag == TAG_THREADNAME)
1624 {
1625 pkt = unpack_string (pkt, &info->shortname[0], length);
1626 mask = mask & ~TAG_THREADNAME;
1627 continue;
1628 }
1629 if (tag == TAG_DISPLAY)
1630 {
1631 pkt = unpack_string (pkt, &info->display[0], length);
1632 mask = mask & ~TAG_DISPLAY;
1633 continue;
1634 }
1635 if (tag == TAG_MOREDISPLAY)
1636 {
1637 pkt = unpack_string (pkt, &info->more_display[0], length);
1638 mask = mask & ~TAG_MOREDISPLAY;
1639 continue;
1640 }
1641 warning (_("ERROR RMT: unknown thread info tag."));
1642 break; /* Not a tag we know about. */
1643 }
1644 return retval;
1645 }
1646
1647 static int
1648 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1649 struct gdb_ext_thread_info *info)
1650 {
1651 struct remote_state *rs = get_remote_state ();
1652 int result;
1653
1654 pack_threadinfo_request (rs->buf, fieldset, threadid);
1655 putpkt (rs->buf);
1656 getpkt (&rs->buf, &rs->buf_size, 0);
1657 result = remote_unpack_thread_info_response (rs->buf + 2,
1658 threadid, info);
1659 return result;
1660 }
1661
1662 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1663
1664 static char *
1665 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1666 threadref *nextthread)
1667 {
1668 *pkt++ = 'q'; /* info query packet */
1669 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1670 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1671 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1672 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1673 *pkt = '\0';
1674 return pkt;
1675 }
1676
1677 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1678
1679 static int
1680 parse_threadlist_response (char *pkt, int result_limit,
1681 threadref *original_echo, threadref *resultlist,
1682 int *doneflag)
1683 {
1684 struct remote_state *rs = get_remote_state ();
1685 char *limit;
1686 int count, resultcount, done;
1687
1688 resultcount = 0;
1689 /* Assume the 'q' and 'M chars have been stripped. */
1690 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1691 /* done parse past here */
1692 pkt = unpack_byte (pkt, &count); /* count field */
1693 pkt = unpack_nibble (pkt, &done);
1694 /* The first threadid is the argument threadid. */
1695 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1696 while ((count-- > 0) && (pkt < limit))
1697 {
1698 pkt = unpack_threadid (pkt, resultlist++);
1699 if (resultcount++ >= result_limit)
1700 break;
1701 }
1702 if (doneflag)
1703 *doneflag = done;
1704 return resultcount;
1705 }
1706
1707 static int
1708 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1709 int *done, int *result_count, threadref *threadlist)
1710 {
1711 struct remote_state *rs = get_remote_state ();
1712 static threadref echo_nextthread;
1713 int result = 1;
1714
1715 /* Trancate result limit to be smaller than the packet size. */
1716 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1717 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1718
1719 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1720 putpkt (rs->buf);
1721 getpkt (&rs->buf, &rs->buf_size, 0);
1722
1723 *result_count =
1724 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1725 threadlist, done);
1726
1727 if (!threadmatch (&echo_nextthread, nextthread))
1728 {
1729 /* FIXME: This is a good reason to drop the packet. */
1730 /* Possably, there is a duplicate response. */
1731 /* Possabilities :
1732 retransmit immediatly - race conditions
1733 retransmit after timeout - yes
1734 exit
1735 wait for packet, then exit
1736 */
1737 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1738 return 0; /* I choose simply exiting. */
1739 }
1740 if (*result_count <= 0)
1741 {
1742 if (*done != 1)
1743 {
1744 warning (_("RMT ERROR : failed to get remote thread list."));
1745 result = 0;
1746 }
1747 return result; /* break; */
1748 }
1749 if (*result_count > result_limit)
1750 {
1751 *result_count = 0;
1752 warning (_("RMT ERROR: threadlist response longer than requested."));
1753 return 0;
1754 }
1755 return result;
1756 }
1757
1758 /* This is the interface between remote and threads, remotes upper
1759 interface. */
1760
1761 /* remote_find_new_threads retrieves the thread list and for each
1762 thread in the list, looks up the thread in GDB's internal list,
1763 ading the thread if it does not already exist. This involves
1764 getting partial thread lists from the remote target so, polling the
1765 quit_flag is required. */
1766
1767
1768 /* About this many threadisds fit in a packet. */
1769
1770 #define MAXTHREADLISTRESULTS 32
1771
1772 static int
1773 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1774 int looplimit)
1775 {
1776 int done, i, result_count;
1777 int startflag = 1;
1778 int result = 1;
1779 int loopcount = 0;
1780 static threadref nextthread;
1781 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1782
1783 done = 0;
1784 while (!done)
1785 {
1786 if (loopcount++ > looplimit)
1787 {
1788 result = 0;
1789 warning (_("Remote fetch threadlist -infinite loop-."));
1790 break;
1791 }
1792 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1793 &done, &result_count, resultthreadlist))
1794 {
1795 result = 0;
1796 break;
1797 }
1798 /* Clear for later iterations. */
1799 startflag = 0;
1800 /* Setup to resume next batch of thread references, set nextthread. */
1801 if (result_count >= 1)
1802 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1803 i = 0;
1804 while (result_count--)
1805 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1806 break;
1807 }
1808 return result;
1809 }
1810
1811 static int
1812 remote_newthread_step (threadref *ref, void *context)
1813 {
1814 ptid_t ptid;
1815
1816 ptid = pid_to_ptid (threadref_to_int (ref));
1817
1818 if (!in_thread_list (ptid))
1819 add_thread (ptid);
1820 return 1; /* continue iterator */
1821 }
1822
1823 #define CRAZY_MAX_THREADS 1000
1824
1825 static ptid_t
1826 remote_current_thread (ptid_t oldpid)
1827 {
1828 struct remote_state *rs = get_remote_state ();
1829
1830 putpkt ("qC");
1831 getpkt (&rs->buf, &rs->buf_size, 0);
1832 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
1833 /* Use strtoul here, so we'll correctly parse values whose highest
1834 bit is set. The protocol carries them as a simple series of
1835 hex digits; in the absence of a sign, strtol will see such
1836 values as positive numbers out of range for signed 'long', and
1837 return LONG_MAX to indicate an overflow. */
1838 return pid_to_ptid (strtoul (&rs->buf[2], NULL, 16));
1839 else
1840 return oldpid;
1841 }
1842
1843 /* Find new threads for info threads command.
1844 * Original version, using John Metzler's thread protocol.
1845 */
1846
1847 static void
1848 remote_find_new_threads (void)
1849 {
1850 remote_threadlist_iterator (remote_newthread_step, 0,
1851 CRAZY_MAX_THREADS);
1852 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1853 inferior_ptid = remote_current_thread (inferior_ptid);
1854 }
1855
1856 /*
1857 * Find all threads for info threads command.
1858 * Uses new thread protocol contributed by Cisco.
1859 * Falls back and attempts to use the older method (above)
1860 * if the target doesn't respond to the new method.
1861 */
1862
1863 static void
1864 remote_threads_info (void)
1865 {
1866 struct remote_state *rs = get_remote_state ();
1867 char *bufp;
1868 int tid;
1869
1870 if (remote_desc == 0) /* paranoia */
1871 error (_("Command can only be used when connected to the remote target."));
1872
1873 if (use_threadinfo_query)
1874 {
1875 putpkt ("qfThreadInfo");
1876 getpkt (&rs->buf, &rs->buf_size, 0);
1877 bufp = rs->buf;
1878 if (bufp[0] != '\0') /* q packet recognized */
1879 {
1880 while (*bufp++ == 'm') /* reply contains one or more TID */
1881 {
1882 do
1883 {
1884 /* Use strtoul here, so we'll correctly parse values
1885 whose highest bit is set. The protocol carries
1886 them as a simple series of hex digits; in the
1887 absence of a sign, strtol will see such values as
1888 positive numbers out of range for signed 'long',
1889 and return LONG_MAX to indicate an overflow. */
1890 tid = strtoul (bufp, &bufp, 16);
1891 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1892 add_thread (pid_to_ptid (tid));
1893 }
1894 while (*bufp++ == ','); /* comma-separated list */
1895 putpkt ("qsThreadInfo");
1896 getpkt (&rs->buf, &rs->buf_size, 0);
1897 bufp = rs->buf;
1898 }
1899 return; /* done */
1900 }
1901 }
1902
1903 /* Else fall back to old method based on jmetzler protocol. */
1904 use_threadinfo_query = 0;
1905 remote_find_new_threads ();
1906 return;
1907 }
1908
1909 /*
1910 * Collect a descriptive string about the given thread.
1911 * The target may say anything it wants to about the thread
1912 * (typically info about its blocked / runnable state, name, etc.).
1913 * This string will appear in the info threads display.
1914 *
1915 * Optional: targets are not required to implement this function.
1916 */
1917
1918 static char *
1919 remote_threads_extra_info (struct thread_info *tp)
1920 {
1921 struct remote_state *rs = get_remote_state ();
1922 int result;
1923 int set;
1924 threadref id;
1925 struct gdb_ext_thread_info threadinfo;
1926 static char display_buf[100]; /* arbitrary... */
1927 int n = 0; /* position in display_buf */
1928
1929 if (remote_desc == 0) /* paranoia */
1930 internal_error (__FILE__, __LINE__,
1931 _("remote_threads_extra_info"));
1932
1933 if (use_threadextra_query)
1934 {
1935 xsnprintf (rs->buf, get_remote_packet_size (), "qThreadExtraInfo,%x",
1936 PIDGET (tp->ptid));
1937 putpkt (rs->buf);
1938 getpkt (&rs->buf, &rs->buf_size, 0);
1939 if (rs->buf[0] != 0)
1940 {
1941 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
1942 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
1943 display_buf [result] = '\0';
1944 return display_buf;
1945 }
1946 }
1947
1948 /* If the above query fails, fall back to the old method. */
1949 use_threadextra_query = 0;
1950 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1951 | TAG_MOREDISPLAY | TAG_DISPLAY;
1952 int_to_threadref (&id, PIDGET (tp->ptid));
1953 if (remote_get_threadinfo (&id, set, &threadinfo))
1954 if (threadinfo.active)
1955 {
1956 if (*threadinfo.shortname)
1957 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
1958 " Name: %s,", threadinfo.shortname);
1959 if (*threadinfo.display)
1960 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1961 " State: %s,", threadinfo.display);
1962 if (*threadinfo.more_display)
1963 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1964 " Priority: %s", threadinfo.more_display);
1965
1966 if (n > 0)
1967 {
1968 /* For purely cosmetic reasons, clear up trailing commas. */
1969 if (',' == display_buf[n-1])
1970 display_buf[n-1] = ' ';
1971 return display_buf;
1972 }
1973 }
1974 return NULL;
1975 }
1976 \f
1977
1978 /* Restart the remote side; this is an extended protocol operation. */
1979
1980 static void
1981 extended_remote_restart (void)
1982 {
1983 struct remote_state *rs = get_remote_state ();
1984
1985 /* Send the restart command; for reasons I don't understand the
1986 remote side really expects a number after the "R". */
1987 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
1988 putpkt (rs->buf);
1989
1990 remote_fileio_reset ();
1991
1992 /* Now query for status so this looks just like we restarted
1993 gdbserver from scratch. */
1994 putpkt ("?");
1995 getpkt (&rs->buf, &rs->buf_size, 0);
1996 }
1997 \f
1998 /* Clean up connection to a remote debugger. */
1999
2000 static void
2001 remote_close (int quitting)
2002 {
2003 if (remote_desc)
2004 serial_close (remote_desc);
2005 remote_desc = NULL;
2006 }
2007
2008 /* Query the remote side for the text, data and bss offsets. */
2009
2010 static void
2011 get_offsets (void)
2012 {
2013 struct remote_state *rs = get_remote_state ();
2014 char *buf;
2015 char *ptr;
2016 int lose;
2017 CORE_ADDR text_addr, data_addr, bss_addr;
2018 struct section_offsets *offs;
2019
2020 putpkt ("qOffsets");
2021 getpkt (&rs->buf, &rs->buf_size, 0);
2022 buf = rs->buf;
2023
2024 if (buf[0] == '\000')
2025 return; /* Return silently. Stub doesn't support
2026 this command. */
2027 if (buf[0] == 'E')
2028 {
2029 warning (_("Remote failure reply: %s"), buf);
2030 return;
2031 }
2032
2033 /* Pick up each field in turn. This used to be done with scanf, but
2034 scanf will make trouble if CORE_ADDR size doesn't match
2035 conversion directives correctly. The following code will work
2036 with any size of CORE_ADDR. */
2037 text_addr = data_addr = bss_addr = 0;
2038 ptr = buf;
2039 lose = 0;
2040
2041 if (strncmp (ptr, "Text=", 5) == 0)
2042 {
2043 ptr += 5;
2044 /* Don't use strtol, could lose on big values. */
2045 while (*ptr && *ptr != ';')
2046 text_addr = (text_addr << 4) + fromhex (*ptr++);
2047 }
2048 else
2049 lose = 1;
2050
2051 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
2052 {
2053 ptr += 6;
2054 while (*ptr && *ptr != ';')
2055 data_addr = (data_addr << 4) + fromhex (*ptr++);
2056 }
2057 else
2058 lose = 1;
2059
2060 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2061 {
2062 ptr += 5;
2063 while (*ptr && *ptr != ';')
2064 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2065 }
2066 else
2067 lose = 1;
2068
2069 if (lose)
2070 error (_("Malformed response to offset query, %s"), buf);
2071
2072 if (symfile_objfile == NULL)
2073 return;
2074
2075 offs = ((struct section_offsets *)
2076 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2077 memcpy (offs, symfile_objfile->section_offsets,
2078 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2079
2080 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2081
2082 /* This is a temporary kludge to force data and bss to use the same offsets
2083 because that's what nlmconv does now. The real solution requires changes
2084 to the stub and remote.c that I don't have time to do right now. */
2085
2086 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2087 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2088
2089 objfile_relocate (symfile_objfile, offs);
2090 }
2091
2092 /* Stub for catch_exception. */
2093
2094 static void
2095 remote_start_remote (struct ui_out *uiout, void *from_tty_p)
2096 {
2097 int from_tty = * (int *) from_tty_p;
2098
2099 immediate_quit++; /* Allow user to interrupt it. */
2100
2101 /* Ack any packet which the remote side has already sent. */
2102 serial_write (remote_desc, "+", 1);
2103
2104 /* Let the stub know that we want it to return the thread. */
2105 set_thread (-1, 0);
2106
2107 inferior_ptid = remote_current_thread (inferior_ptid);
2108
2109 get_offsets (); /* Get text, data & bss offsets. */
2110
2111 putpkt ("?"); /* Initiate a query from remote machine. */
2112 immediate_quit--;
2113
2114 start_remote (from_tty); /* Initialize gdb process mechanisms. */
2115 }
2116
2117 /* Open a connection to a remote debugger.
2118 NAME is the filename used for communication. */
2119
2120 static void
2121 remote_open (char *name, int from_tty)
2122 {
2123 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2124 }
2125
2126 /* Just like remote_open, but with asynchronous support. */
2127 static void
2128 remote_async_open (char *name, int from_tty)
2129 {
2130 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2131 }
2132
2133 /* Open a connection to a remote debugger using the extended
2134 remote gdb protocol. NAME is the filename used for communication. */
2135
2136 static void
2137 extended_remote_open (char *name, int from_tty)
2138 {
2139 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2140 0 /* async_p */);
2141 }
2142
2143 /* Just like extended_remote_open, but with asynchronous support. */
2144 static void
2145 extended_remote_async_open (char *name, int from_tty)
2146 {
2147 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2148 1 /*extended_p */, 1 /* async_p */);
2149 }
2150
2151 /* Generic code for opening a connection to a remote target. */
2152
2153 static void
2154 init_all_packet_configs (void)
2155 {
2156 int i;
2157 for (i = 0; i < PACKET_MAX; i++)
2158 update_packet_config (&remote_protocol_packets[i]);
2159 }
2160
2161 /* Symbol look-up. */
2162
2163 static void
2164 remote_check_symbols (struct objfile *objfile)
2165 {
2166 struct remote_state *rs = get_remote_state ();
2167 char *msg, *reply, *tmp;
2168 struct minimal_symbol *sym;
2169 int end;
2170
2171 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2172 return;
2173
2174 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2175 because we need both at the same time. */
2176 msg = alloca (get_remote_packet_size ());
2177
2178 /* Invite target to request symbol lookups. */
2179
2180 putpkt ("qSymbol::");
2181 getpkt (&rs->buf, &rs->buf_size, 0);
2182 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2183 reply = rs->buf;
2184
2185 while (strncmp (reply, "qSymbol:", 8) == 0)
2186 {
2187 tmp = &reply[8];
2188 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2189 msg[end] = '\0';
2190 sym = lookup_minimal_symbol (msg, NULL, NULL);
2191 if (sym == NULL)
2192 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2193 else
2194 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2195 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2196 &reply[8]);
2197 putpkt (msg);
2198 getpkt (&rs->buf, &rs->buf_size, 0);
2199 reply = rs->buf;
2200 }
2201 }
2202
2203 static struct serial *
2204 remote_serial_open (char *name)
2205 {
2206 static int udp_warning = 0;
2207
2208 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2209 of in ser-tcp.c, because it is the remote protocol assuming that the
2210 serial connection is reliable and not the serial connection promising
2211 to be. */
2212 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2213 {
2214 warning (_("\
2215 The remote protocol may be unreliable over UDP.\n\
2216 Some events may be lost, rendering further debugging impossible."));
2217 udp_warning = 1;
2218 }
2219
2220 return serial_open (name);
2221 }
2222
2223 /* This type describes each known response to the qSupported
2224 packet. */
2225 struct protocol_feature
2226 {
2227 /* The name of this protocol feature. */
2228 const char *name;
2229
2230 /* The default for this protocol feature. */
2231 enum packet_support default_support;
2232
2233 /* The function to call when this feature is reported, or after
2234 qSupported processing if the feature is not supported.
2235 The first argument points to this structure. The second
2236 argument indicates whether the packet requested support be
2237 enabled, disabled, or probed (or the default, if this function
2238 is being called at the end of processing and this feature was
2239 not reported). The third argument may be NULL; if not NULL, it
2240 is a NUL-terminated string taken from the packet following
2241 this feature's name and an equals sign. */
2242 void (*func) (const struct protocol_feature *, enum packet_support,
2243 const char *);
2244
2245 /* The corresponding packet for this feature. Only used if
2246 FUNC is remote_supported_packet. */
2247 int packet;
2248 };
2249
2250 static void
2251 remote_supported_packet (const struct protocol_feature *feature,
2252 enum packet_support support,
2253 const char *argument)
2254 {
2255 if (argument)
2256 {
2257 warning (_("Remote qSupported response supplied an unexpected value for"
2258 " \"%s\"."), feature->name);
2259 return;
2260 }
2261
2262 if (remote_protocol_packets[feature->packet].support
2263 == PACKET_SUPPORT_UNKNOWN)
2264 remote_protocol_packets[feature->packet].support = support;
2265 }
2266
2267 static void
2268 remote_packet_size (const struct protocol_feature *feature,
2269 enum packet_support support, const char *value)
2270 {
2271 struct remote_state *rs = get_remote_state ();
2272
2273 int packet_size;
2274 char *value_end;
2275
2276 if (support != PACKET_ENABLE)
2277 return;
2278
2279 if (value == NULL || *value == '\0')
2280 {
2281 warning (_("Remote target reported \"%s\" without a size."),
2282 feature->name);
2283 return;
2284 }
2285
2286 errno = 0;
2287 packet_size = strtol (value, &value_end, 16);
2288 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2289 {
2290 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2291 feature->name, value);
2292 return;
2293 }
2294
2295 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2296 {
2297 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2298 packet_size, MAX_REMOTE_PACKET_SIZE);
2299 packet_size = MAX_REMOTE_PACKET_SIZE;
2300 }
2301
2302 /* Record the new maximum packet size. */
2303 rs->explicit_packet_size = packet_size;
2304 }
2305
2306 static struct protocol_feature remote_protocol_features[] = {
2307 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2308 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2309 PACKET_qXfer_auxv },
2310 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
2311 PACKET_qXfer_features },
2312 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2313 PACKET_qXfer_memory_map },
2314 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2315 PACKET_QPassSignals },
2316 };
2317
2318 static void
2319 remote_query_supported (void)
2320 {
2321 struct remote_state *rs = get_remote_state ();
2322 char *next;
2323 int i;
2324 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2325
2326 /* The packet support flags are handled differently for this packet
2327 than for most others. We treat an error, a disabled packet, and
2328 an empty response identically: any features which must be reported
2329 to be used will be automatically disabled. An empty buffer
2330 accomplishes this, since that is also the representation for a list
2331 containing no features. */
2332
2333 rs->buf[0] = 0;
2334 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2335 {
2336 putpkt ("qSupported");
2337 getpkt (&rs->buf, &rs->buf_size, 0);
2338
2339 /* If an error occured, warn, but do not return - just reset the
2340 buffer to empty and go on to disable features. */
2341 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2342 == PACKET_ERROR)
2343 {
2344 warning (_("Remote failure reply: %s"), rs->buf);
2345 rs->buf[0] = 0;
2346 }
2347 }
2348
2349 memset (seen, 0, sizeof (seen));
2350
2351 next = rs->buf;
2352 while (*next)
2353 {
2354 enum packet_support is_supported;
2355 char *p, *end, *name_end, *value;
2356
2357 /* First separate out this item from the rest of the packet. If
2358 there's another item after this, we overwrite the separator
2359 (terminated strings are much easier to work with). */
2360 p = next;
2361 end = strchr (p, ';');
2362 if (end == NULL)
2363 {
2364 end = p + strlen (p);
2365 next = end;
2366 }
2367 else
2368 {
2369 *end = '\0';
2370 next = end + 1;
2371
2372 if (end == p)
2373 {
2374 warning (_("empty item in \"qSupported\" response"));
2375 continue;
2376 }
2377 }
2378
2379 name_end = strchr (p, '=');
2380 if (name_end)
2381 {
2382 /* This is a name=value entry. */
2383 is_supported = PACKET_ENABLE;
2384 value = name_end + 1;
2385 *name_end = '\0';
2386 }
2387 else
2388 {
2389 value = NULL;
2390 switch (end[-1])
2391 {
2392 case '+':
2393 is_supported = PACKET_ENABLE;
2394 break;
2395
2396 case '-':
2397 is_supported = PACKET_DISABLE;
2398 break;
2399
2400 case '?':
2401 is_supported = PACKET_SUPPORT_UNKNOWN;
2402 break;
2403
2404 default:
2405 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
2406 continue;
2407 }
2408 end[-1] = '\0';
2409 }
2410
2411 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2412 if (strcmp (remote_protocol_features[i].name, p) == 0)
2413 {
2414 const struct protocol_feature *feature;
2415
2416 seen[i] = 1;
2417 feature = &remote_protocol_features[i];
2418 feature->func (feature, is_supported, value);
2419 break;
2420 }
2421 }
2422
2423 /* If we increased the packet size, make sure to increase the global
2424 buffer size also. We delay this until after parsing the entire
2425 qSupported packet, because this is the same buffer we were
2426 parsing. */
2427 if (rs->buf_size < rs->explicit_packet_size)
2428 {
2429 rs->buf_size = rs->explicit_packet_size;
2430 rs->buf = xrealloc (rs->buf, rs->buf_size);
2431 }
2432
2433 /* Handle the defaults for unmentioned features. */
2434 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2435 if (!seen[i])
2436 {
2437 const struct protocol_feature *feature;
2438
2439 feature = &remote_protocol_features[i];
2440 feature->func (feature, feature->default_support, NULL);
2441 }
2442 }
2443
2444
2445 static void
2446 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2447 int extended_p, int async_p)
2448 {
2449 struct remote_state *rs = get_remote_state ();
2450 if (name == 0)
2451 error (_("To open a remote debug connection, you need to specify what\n"
2452 "serial device is attached to the remote system\n"
2453 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2454
2455 /* See FIXME above. */
2456 if (!async_p)
2457 wait_forever_enabled_p = 1;
2458
2459 target_preopen (from_tty);
2460
2461 unpush_target (target);
2462
2463 /* Make sure we send the passed signals list the next time we resume. */
2464 xfree (last_pass_packet);
2465 last_pass_packet = NULL;
2466
2467 remote_fileio_reset ();
2468 reopen_exec_file ();
2469 reread_symbols ();
2470
2471 remote_desc = remote_serial_open (name);
2472 if (!remote_desc)
2473 perror_with_name (name);
2474
2475 if (baud_rate != -1)
2476 {
2477 if (serial_setbaudrate (remote_desc, baud_rate))
2478 {
2479 /* The requested speed could not be set. Error out to
2480 top level after closing remote_desc. Take care to
2481 set remote_desc to NULL to avoid closing remote_desc
2482 more than once. */
2483 serial_close (remote_desc);
2484 remote_desc = NULL;
2485 perror_with_name (name);
2486 }
2487 }
2488
2489 serial_raw (remote_desc);
2490
2491 /* If there is something sitting in the buffer we might take it as a
2492 response to a command, which would be bad. */
2493 serial_flush_input (remote_desc);
2494
2495 if (from_tty)
2496 {
2497 puts_filtered ("Remote debugging using ");
2498 puts_filtered (name);
2499 puts_filtered ("\n");
2500 }
2501 push_target (target); /* Switch to using remote target now. */
2502
2503 /* Reset the target state; these things will be queried either by
2504 remote_query_supported or as they are needed. */
2505 init_all_packet_configs ();
2506 rs->explicit_packet_size = 0;
2507
2508 general_thread = -2;
2509 continue_thread = -2;
2510
2511 /* Probe for ability to use "ThreadInfo" query, as required. */
2512 use_threadinfo_query = 1;
2513 use_threadextra_query = 1;
2514
2515 /* The first packet we send to the target is the optional "supported
2516 packets" request. If the target can answer this, it will tell us
2517 which later probes to skip. */
2518 remote_query_supported ();
2519
2520 /* Next, if the target can specify a description, read it. We do
2521 this before anything involving memory or registers. */
2522 target_find_description ();
2523
2524 /* Without this, some commands which require an active target (such
2525 as kill) won't work. This variable serves (at least) double duty
2526 as both the pid of the target process (if it has such), and as a
2527 flag indicating that a target is active. These functions should
2528 be split out into seperate variables, especially since GDB will
2529 someday have a notion of debugging several processes. */
2530
2531 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2532
2533 if (async_p)
2534 {
2535 /* With this target we start out by owning the terminal. */
2536 remote_async_terminal_ours_p = 1;
2537
2538 /* FIXME: cagney/1999-09-23: During the initial connection it is
2539 assumed that the target is already ready and able to respond to
2540 requests. Unfortunately remote_start_remote() eventually calls
2541 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2542 around this. Eventually a mechanism that allows
2543 wait_for_inferior() to expect/get timeouts will be
2544 implemented. */
2545 wait_forever_enabled_p = 0;
2546 }
2547
2548 /* First delete any symbols previously loaded from shared libraries. */
2549 no_shared_libraries (NULL, 0);
2550
2551 /* Start the remote connection. If error() or QUIT, discard this
2552 target (we'd otherwise be in an inconsistent state) and then
2553 propogate the error on up the exception chain. This ensures that
2554 the caller doesn't stumble along blindly assuming that the
2555 function succeeded. The CLI doesn't have this problem but other
2556 UI's, such as MI do.
2557
2558 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2559 this function should return an error indication letting the
2560 caller restore the previous state. Unfortunately the command
2561 ``target remote'' is directly wired to this function making that
2562 impossible. On a positive note, the CLI side of this problem has
2563 been fixed - the function set_cmd_context() makes it possible for
2564 all the ``target ....'' commands to share a common callback
2565 function. See cli-dump.c. */
2566 {
2567 struct gdb_exception ex
2568 = catch_exception (uiout, remote_start_remote, &from_tty,
2569 RETURN_MASK_ALL);
2570 if (ex.reason < 0)
2571 {
2572 pop_target ();
2573 if (async_p)
2574 wait_forever_enabled_p = 1;
2575 throw_exception (ex);
2576 }
2577 }
2578
2579 if (async_p)
2580 wait_forever_enabled_p = 1;
2581
2582 if (extended_p)
2583 {
2584 /* Tell the remote that we are using the extended protocol. */
2585 putpkt ("!");
2586 getpkt (&rs->buf, &rs->buf_size, 0);
2587 }
2588
2589 if (exec_bfd) /* No use without an exec file. */
2590 remote_check_symbols (symfile_objfile);
2591 }
2592
2593 /* This takes a program previously attached to and detaches it. After
2594 this is done, GDB can be used to debug some other program. We
2595 better not have left any breakpoints in the target program or it'll
2596 die when it hits one. */
2597
2598 static void
2599 remote_detach (char *args, int from_tty)
2600 {
2601 struct remote_state *rs = get_remote_state ();
2602
2603 if (args)
2604 error (_("Argument given to \"detach\" when remotely debugging."));
2605
2606 /* Tell the remote target to detach. */
2607 strcpy (rs->buf, "D");
2608 putpkt (rs->buf);
2609 getpkt (&rs->buf, &rs->buf_size, 0);
2610
2611 if (rs->buf[0] == 'E')
2612 error (_("Can't detach process."));
2613
2614 /* Unregister the file descriptor from the event loop. */
2615 if (target_is_async_p ())
2616 serial_async (remote_desc, NULL, 0);
2617
2618 target_mourn_inferior ();
2619 if (from_tty)
2620 puts_filtered ("Ending remote debugging.\n");
2621 }
2622
2623 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2624
2625 static void
2626 remote_disconnect (struct target_ops *target, char *args, int from_tty)
2627 {
2628 if (args)
2629 error (_("Argument given to \"detach\" when remotely debugging."));
2630
2631 /* Unregister the file descriptor from the event loop. */
2632 if (target_is_async_p ())
2633 serial_async (remote_desc, NULL, 0);
2634
2635 target_mourn_inferior ();
2636 if (from_tty)
2637 puts_filtered ("Ending remote debugging.\n");
2638 }
2639
2640 /* Convert hex digit A to a number. */
2641
2642 static int
2643 fromhex (int a)
2644 {
2645 if (a >= '0' && a <= '9')
2646 return a - '0';
2647 else if (a >= 'a' && a <= 'f')
2648 return a - 'a' + 10;
2649 else if (a >= 'A' && a <= 'F')
2650 return a - 'A' + 10;
2651 else
2652 error (_("Reply contains invalid hex digit %d"), a);
2653 }
2654
2655 static int
2656 hex2bin (const char *hex, gdb_byte *bin, int count)
2657 {
2658 int i;
2659
2660 for (i = 0; i < count; i++)
2661 {
2662 if (hex[0] == 0 || hex[1] == 0)
2663 {
2664 /* Hex string is short, or of uneven length.
2665 Return the count that has been converted so far. */
2666 return i;
2667 }
2668 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2669 hex += 2;
2670 }
2671 return i;
2672 }
2673
2674 /* Convert number NIB to a hex digit. */
2675
2676 static int
2677 tohex (int nib)
2678 {
2679 if (nib < 10)
2680 return '0' + nib;
2681 else
2682 return 'a' + nib - 10;
2683 }
2684
2685 static int
2686 bin2hex (const gdb_byte *bin, char *hex, int count)
2687 {
2688 int i;
2689 /* May use a length, or a nul-terminated string as input. */
2690 if (count == 0)
2691 count = strlen ((char *) bin);
2692
2693 for (i = 0; i < count; i++)
2694 {
2695 *hex++ = tohex ((*bin >> 4) & 0xf);
2696 *hex++ = tohex (*bin++ & 0xf);
2697 }
2698 *hex = 0;
2699 return i;
2700 }
2701 \f
2702 /* Check for the availability of vCont. This function should also check
2703 the response. */
2704
2705 static void
2706 remote_vcont_probe (struct remote_state *rs)
2707 {
2708 char *buf;
2709
2710 strcpy (rs->buf, "vCont?");
2711 putpkt (rs->buf);
2712 getpkt (&rs->buf, &rs->buf_size, 0);
2713 buf = rs->buf;
2714
2715 /* Make sure that the features we assume are supported. */
2716 if (strncmp (buf, "vCont", 5) == 0)
2717 {
2718 char *p = &buf[5];
2719 int support_s, support_S, support_c, support_C;
2720
2721 support_s = 0;
2722 support_S = 0;
2723 support_c = 0;
2724 support_C = 0;
2725 while (p && *p == ';')
2726 {
2727 p++;
2728 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2729 support_s = 1;
2730 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2731 support_S = 1;
2732 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2733 support_c = 1;
2734 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2735 support_C = 1;
2736
2737 p = strchr (p, ';');
2738 }
2739
2740 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2741 BUF will make packet_ok disable the packet. */
2742 if (!support_s || !support_S || !support_c || !support_C)
2743 buf[0] = 0;
2744 }
2745
2746 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
2747 }
2748
2749 /* Resume the remote inferior by using a "vCont" packet. The thread
2750 to be resumed is PTID; STEP and SIGGNAL indicate whether the
2751 resumed thread should be single-stepped and/or signalled. If PTID's
2752 PID is -1, then all threads are resumed; the thread to be stepped and/or
2753 signalled is given in the global INFERIOR_PTID. This function returns
2754 non-zero iff it resumes the inferior.
2755
2756 This function issues a strict subset of all possible vCont commands at the
2757 moment. */
2758
2759 static int
2760 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
2761 {
2762 struct remote_state *rs = get_remote_state ();
2763 int pid = PIDGET (ptid);
2764 char *buf = NULL, *outbuf;
2765 struct cleanup *old_cleanup;
2766
2767 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
2768 remote_vcont_probe (rs);
2769
2770 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
2771 return 0;
2772
2773 /* If we could generate a wider range of packets, we'd have to worry
2774 about overflowing BUF. Should there be a generic
2775 "multi-part-packet" packet? */
2776
2777 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
2778 {
2779 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
2780 don't have any PID numbers the inferior will understand. Make sure
2781 to only send forms that do not specify a PID. */
2782 if (step && siggnal != TARGET_SIGNAL_0)
2783 outbuf = xstrprintf ("vCont;S%02x", siggnal);
2784 else if (step)
2785 outbuf = xstrprintf ("vCont;s");
2786 else if (siggnal != TARGET_SIGNAL_0)
2787 outbuf = xstrprintf ("vCont;C%02x", siggnal);
2788 else
2789 outbuf = xstrprintf ("vCont;c");
2790 }
2791 else if (pid == -1)
2792 {
2793 /* Resume all threads, with preference for INFERIOR_PTID. */
2794 if (step && siggnal != TARGET_SIGNAL_0)
2795 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
2796 PIDGET (inferior_ptid));
2797 else if (step)
2798 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
2799 else if (siggnal != TARGET_SIGNAL_0)
2800 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
2801 PIDGET (inferior_ptid));
2802 else
2803 outbuf = xstrprintf ("vCont;c");
2804 }
2805 else
2806 {
2807 /* Scheduler locking; resume only PTID. */
2808 if (step && siggnal != TARGET_SIGNAL_0)
2809 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
2810 else if (step)
2811 outbuf = xstrprintf ("vCont;s:%x", pid);
2812 else if (siggnal != TARGET_SIGNAL_0)
2813 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
2814 else
2815 outbuf = xstrprintf ("vCont;c:%x", pid);
2816 }
2817
2818 gdb_assert (outbuf && strlen (outbuf) < get_remote_packet_size ());
2819 old_cleanup = make_cleanup (xfree, outbuf);
2820
2821 putpkt (outbuf);
2822
2823 do_cleanups (old_cleanup);
2824
2825 return 1;
2826 }
2827
2828 /* Tell the remote machine to resume. */
2829
2830 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2831
2832 static int last_sent_step;
2833
2834 static void
2835 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2836 {
2837 struct remote_state *rs = get_remote_state ();
2838 char *buf;
2839 int pid = PIDGET (ptid);
2840
2841 last_sent_signal = siggnal;
2842 last_sent_step = step;
2843
2844 /* A hook for when we need to do something at the last moment before
2845 resumption. */
2846 if (deprecated_target_resume_hook)
2847 (*deprecated_target_resume_hook) ();
2848
2849 /* Update the inferior on signals to silently pass, if they've changed. */
2850 remote_pass_signals ();
2851
2852 /* The vCont packet doesn't need to specify threads via Hc. */
2853 if (remote_vcont_resume (ptid, step, siggnal))
2854 return;
2855
2856 /* All other supported resume packets do use Hc, so call set_thread. */
2857 if (pid == -1)
2858 set_thread (0, 0); /* Run any thread. */
2859 else
2860 set_thread (pid, 0); /* Run this thread. */
2861
2862 buf = rs->buf;
2863 if (siggnal != TARGET_SIGNAL_0)
2864 {
2865 buf[0] = step ? 'S' : 'C';
2866 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2867 buf[2] = tohex (((int) siggnal) & 0xf);
2868 buf[3] = '\0';
2869 }
2870 else
2871 strcpy (buf, step ? "s" : "c");
2872
2873 putpkt (buf);
2874 }
2875
2876 /* Same as remote_resume, but with async support. */
2877 static void
2878 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2879 {
2880 remote_resume (ptid, step, siggnal);
2881
2882 /* We are about to start executing the inferior, let's register it
2883 with the event loop. NOTE: this is the one place where all the
2884 execution commands end up. We could alternatively do this in each
2885 of the execution commands in infcmd.c. */
2886 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2887 into infcmd.c in order to allow inferior function calls to work
2888 NOT asynchronously. */
2889 if (target_can_async_p ())
2890 target_async (inferior_event_handler, 0);
2891 /* Tell the world that the target is now executing. */
2892 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2893 this? Instead, should the client of target just assume (for
2894 async targets) that the target is going to start executing? Is
2895 this information already found in the continuation block? */
2896 if (target_is_async_p ())
2897 target_executing = 1;
2898 }
2899 \f
2900
2901 /* Set up the signal handler for SIGINT, while the target is
2902 executing, ovewriting the 'regular' SIGINT signal handler. */
2903 static void
2904 initialize_sigint_signal_handler (void)
2905 {
2906 sigint_remote_token =
2907 create_async_signal_handler (async_remote_interrupt, NULL);
2908 signal (SIGINT, handle_remote_sigint);
2909 }
2910
2911 /* Signal handler for SIGINT, while the target is executing. */
2912 static void
2913 handle_remote_sigint (int sig)
2914 {
2915 signal (sig, handle_remote_sigint_twice);
2916 sigint_remote_twice_token =
2917 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2918 mark_async_signal_handler_wrapper (sigint_remote_token);
2919 }
2920
2921 /* Signal handler for SIGINT, installed after SIGINT has already been
2922 sent once. It will take effect the second time that the user sends
2923 a ^C. */
2924 static void
2925 handle_remote_sigint_twice (int sig)
2926 {
2927 signal (sig, handle_sigint);
2928 sigint_remote_twice_token =
2929 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2930 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2931 }
2932
2933 /* Perform the real interruption of the target execution, in response
2934 to a ^C. */
2935 static void
2936 async_remote_interrupt (gdb_client_data arg)
2937 {
2938 if (remote_debug)
2939 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2940
2941 target_stop ();
2942 }
2943
2944 /* Perform interrupt, if the first attempt did not succeed. Just give
2945 up on the target alltogether. */
2946 void
2947 async_remote_interrupt_twice (gdb_client_data arg)
2948 {
2949 if (remote_debug)
2950 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2951 /* Do something only if the target was not killed by the previous
2952 cntl-C. */
2953 if (target_executing)
2954 {
2955 interrupt_query ();
2956 signal (SIGINT, handle_remote_sigint);
2957 }
2958 }
2959
2960 /* Reinstall the usual SIGINT handlers, after the target has
2961 stopped. */
2962 static void
2963 cleanup_sigint_signal_handler (void *dummy)
2964 {
2965 signal (SIGINT, handle_sigint);
2966 if (sigint_remote_twice_token)
2967 delete_async_signal_handler (&sigint_remote_twice_token);
2968 if (sigint_remote_token)
2969 delete_async_signal_handler (&sigint_remote_token);
2970 }
2971
2972 /* Send ^C to target to halt it. Target will respond, and send us a
2973 packet. */
2974 static void (*ofunc) (int);
2975
2976 /* The command line interface's stop routine. This function is installed
2977 as a signal handler for SIGINT. The first time a user requests a
2978 stop, we call remote_stop to send a break or ^C. If there is no
2979 response from the target (it didn't stop when the user requested it),
2980 we ask the user if he'd like to detach from the target. */
2981 static void
2982 remote_interrupt (int signo)
2983 {
2984 /* If this doesn't work, try more severe steps. */
2985 signal (signo, remote_interrupt_twice);
2986
2987 if (remote_debug)
2988 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2989
2990 target_stop ();
2991 }
2992
2993 /* The user typed ^C twice. */
2994
2995 static void
2996 remote_interrupt_twice (int signo)
2997 {
2998 signal (signo, ofunc);
2999 interrupt_query ();
3000 signal (signo, remote_interrupt);
3001 }
3002
3003 /* This is the generic stop called via the target vector. When a target
3004 interrupt is requested, either by the command line or the GUI, we
3005 will eventually end up here. */
3006 static void
3007 remote_stop (void)
3008 {
3009 /* Send a break or a ^C, depending on user preference. */
3010 if (remote_debug)
3011 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
3012
3013 if (remote_break)
3014 serial_send_break (remote_desc);
3015 else
3016 serial_write (remote_desc, "\003", 1);
3017 }
3018
3019 /* Ask the user what to do when an interrupt is received. */
3020
3021 static void
3022 interrupt_query (void)
3023 {
3024 target_terminal_ours ();
3025
3026 if (query ("Interrupted while waiting for the program.\n\
3027 Give up (and stop debugging it)? "))
3028 {
3029 target_mourn_inferior ();
3030 deprecated_throw_reason (RETURN_QUIT);
3031 }
3032
3033 target_terminal_inferior ();
3034 }
3035
3036 /* Enable/disable target terminal ownership. Most targets can use
3037 terminal groups to control terminal ownership. Remote targets are
3038 different in that explicit transfer of ownership to/from GDB/target
3039 is required. */
3040
3041 static void
3042 remote_async_terminal_inferior (void)
3043 {
3044 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3045 sync_execution here. This function should only be called when
3046 GDB is resuming the inferior in the forground. A background
3047 resume (``run&'') should leave GDB in control of the terminal and
3048 consequently should not call this code. */
3049 if (!sync_execution)
3050 return;
3051 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3052 calls target_terminal_*() idenpotent. The event-loop GDB talking
3053 to an asynchronous target with a synchronous command calls this
3054 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3055 stops trying to transfer the terminal to the target when it
3056 shouldn't this guard can go away. */
3057 if (!remote_async_terminal_ours_p)
3058 return;
3059 delete_file_handler (input_fd);
3060 remote_async_terminal_ours_p = 0;
3061 initialize_sigint_signal_handler ();
3062 /* NOTE: At this point we could also register our selves as the
3063 recipient of all input. Any characters typed could then be
3064 passed on down to the target. */
3065 }
3066
3067 static void
3068 remote_async_terminal_ours (void)
3069 {
3070 /* See FIXME in remote_async_terminal_inferior. */
3071 if (!sync_execution)
3072 return;
3073 /* See FIXME in remote_async_terminal_inferior. */
3074 if (remote_async_terminal_ours_p)
3075 return;
3076 cleanup_sigint_signal_handler (NULL);
3077 add_file_handler (input_fd, stdin_event_handler, 0);
3078 remote_async_terminal_ours_p = 1;
3079 }
3080
3081 /* If nonzero, ignore the next kill. */
3082
3083 int kill_kludge;
3084
3085 void
3086 remote_console_output (char *msg)
3087 {
3088 char *p;
3089
3090 for (p = msg; p[0] && p[1]; p += 2)
3091 {
3092 char tb[2];
3093 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
3094 tb[0] = c;
3095 tb[1] = 0;
3096 fputs_unfiltered (tb, gdb_stdtarg);
3097 }
3098 gdb_flush (gdb_stdtarg);
3099 }
3100
3101 /* Wait until the remote machine stops, then return,
3102 storing status in STATUS just as `wait' would.
3103 Returns "pid", which in the case of a multi-threaded
3104 remote OS, is the thread-id. */
3105
3106 static ptid_t
3107 remote_wait (ptid_t ptid, struct target_waitstatus *status)
3108 {
3109 struct remote_state *rs = get_remote_state ();
3110 struct remote_arch_state *rsa = get_remote_arch_state ();
3111 ULONGEST thread_num = -1;
3112 ULONGEST addr;
3113
3114 status->kind = TARGET_WAITKIND_EXITED;
3115 status->value.integer = 0;
3116
3117 while (1)
3118 {
3119 char *buf, *p;
3120
3121 ofunc = signal (SIGINT, remote_interrupt);
3122 getpkt (&rs->buf, &rs->buf_size, 1);
3123 signal (SIGINT, ofunc);
3124
3125 buf = rs->buf;
3126
3127 /* This is a hook for when we need to do something (perhaps the
3128 collection of trace data) every time the target stops. */
3129 if (deprecated_target_wait_loop_hook)
3130 (*deprecated_target_wait_loop_hook) ();
3131
3132 remote_stopped_by_watchpoint_p = 0;
3133
3134 switch (buf[0])
3135 {
3136 case 'E': /* Error of some sort. */
3137 warning (_("Remote failure reply: %s"), buf);
3138 continue;
3139 case 'F': /* File-I/O request. */
3140 remote_fileio_request (buf);
3141 continue;
3142 case 'T': /* Status with PC, SP, FP, ... */
3143 {
3144 gdb_byte regs[MAX_REGISTER_SIZE];
3145
3146 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3147 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3148 ss = signal number
3149 n... = register number
3150 r... = register contents
3151 */
3152 p = &buf[3]; /* after Txx */
3153
3154 while (*p)
3155 {
3156 char *p1;
3157 char *p_temp;
3158 int fieldsize;
3159 LONGEST pnum = 0;
3160
3161 /* If the packet contains a register number save it in
3162 pnum and set p1 to point to the character following
3163 it. Otherwise p1 points to p. */
3164
3165 /* If this packet is an awatch packet, don't parse the
3166 'a' as a register number. */
3167
3168 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3169 {
3170 /* Read the ``P'' register number. */
3171 pnum = strtol (p, &p_temp, 16);
3172 p1 = p_temp;
3173 }
3174 else
3175 p1 = p;
3176
3177 if (p1 == p) /* No register number present here. */
3178 {
3179 p1 = strchr (p, ':');
3180 if (p1 == NULL)
3181 error (_("Malformed packet(a) (missing colon): %s\n\
3182 Packet: '%s'\n"),
3183 p, buf);
3184 if (strncmp (p, "thread", p1 - p) == 0)
3185 {
3186 p_temp = unpack_varlen_hex (++p1, &thread_num);
3187 record_currthread (thread_num);
3188 p = p_temp;
3189 }
3190 else if ((strncmp (p, "watch", p1 - p) == 0)
3191 || (strncmp (p, "rwatch", p1 - p) == 0)
3192 || (strncmp (p, "awatch", p1 - p) == 0))
3193 {
3194 remote_stopped_by_watchpoint_p = 1;
3195 p = unpack_varlen_hex (++p1, &addr);
3196 remote_watch_data_address = (CORE_ADDR)addr;
3197 }
3198 else
3199 {
3200 /* Silently skip unknown optional info. */
3201 p_temp = strchr (p1 + 1, ';');
3202 if (p_temp)
3203 p = p_temp;
3204 }
3205 }
3206 else
3207 {
3208 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3209 p = p1;
3210
3211 if (*p++ != ':')
3212 error (_("Malformed packet(b) (missing colon): %s\n\
3213 Packet: '%s'\n"),
3214 p, buf);
3215
3216 if (reg == NULL)
3217 error (_("Remote sent bad register number %s: %s\n\
3218 Packet: '%s'\n"),
3219 phex_nz (pnum, 0), p, buf);
3220
3221 fieldsize = hex2bin (p, regs,
3222 register_size (current_gdbarch,
3223 reg->regnum));
3224 p += 2 * fieldsize;
3225 if (fieldsize < register_size (current_gdbarch,
3226 reg->regnum))
3227 warning (_("Remote reply is too short: %s"), buf);
3228 regcache_raw_supply (current_regcache,
3229 reg->regnum, regs);
3230 }
3231
3232 if (*p++ != ';')
3233 error (_("Remote register badly formatted: %s\nhere: %s"),
3234 buf, p);
3235 }
3236 }
3237 /* fall through */
3238 case 'S': /* Old style status, just signal only. */
3239 status->kind = TARGET_WAITKIND_STOPPED;
3240 status->value.sig = (enum target_signal)
3241 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3242
3243 if (buf[3] == 'p')
3244 {
3245 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3246 record_currthread (thread_num);
3247 }
3248 goto got_status;
3249 case 'W': /* Target exited. */
3250 {
3251 /* The remote process exited. */
3252 status->kind = TARGET_WAITKIND_EXITED;
3253 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3254 goto got_status;
3255 }
3256 case 'X':
3257 status->kind = TARGET_WAITKIND_SIGNALLED;
3258 status->value.sig = (enum target_signal)
3259 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3260 kill_kludge = 1;
3261
3262 goto got_status;
3263 case 'O': /* Console output. */
3264 remote_console_output (buf + 1);
3265 continue;
3266 case '\0':
3267 if (last_sent_signal != TARGET_SIGNAL_0)
3268 {
3269 /* Zero length reply means that we tried 'S' or 'C' and
3270 the remote system doesn't support it. */
3271 target_terminal_ours_for_output ();
3272 printf_filtered
3273 ("Can't send signals to this remote system. %s not sent.\n",
3274 target_signal_to_name (last_sent_signal));
3275 last_sent_signal = TARGET_SIGNAL_0;
3276 target_terminal_inferior ();
3277
3278 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3279 putpkt ((char *) buf);
3280 continue;
3281 }
3282 /* else fallthrough */
3283 default:
3284 warning (_("Invalid remote reply: %s"), buf);
3285 continue;
3286 }
3287 }
3288 got_status:
3289 if (thread_num != -1)
3290 {
3291 return pid_to_ptid (thread_num);
3292 }
3293 return inferior_ptid;
3294 }
3295
3296 /* Async version of remote_wait. */
3297 static ptid_t
3298 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3299 {
3300 struct remote_state *rs = get_remote_state ();
3301 struct remote_arch_state *rsa = get_remote_arch_state ();
3302 ULONGEST thread_num = -1;
3303 ULONGEST addr;
3304
3305 status->kind = TARGET_WAITKIND_EXITED;
3306 status->value.integer = 0;
3307
3308 remote_stopped_by_watchpoint_p = 0;
3309
3310 while (1)
3311 {
3312 char *buf, *p;
3313
3314 if (!target_is_async_p ())
3315 ofunc = signal (SIGINT, remote_interrupt);
3316 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3317 _never_ wait for ever -> test on target_is_async_p().
3318 However, before we do that we need to ensure that the caller
3319 knows how to take the target into/out of async mode. */
3320 getpkt (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
3321 if (!target_is_async_p ())
3322 signal (SIGINT, ofunc);
3323
3324 buf = rs->buf;
3325
3326 /* This is a hook for when we need to do something (perhaps the
3327 collection of trace data) every time the target stops. */
3328 if (deprecated_target_wait_loop_hook)
3329 (*deprecated_target_wait_loop_hook) ();
3330
3331 switch (buf[0])
3332 {
3333 case 'E': /* Error of some sort. */
3334 warning (_("Remote failure reply: %s"), buf);
3335 continue;
3336 case 'F': /* File-I/O request. */
3337 remote_fileio_request (buf);
3338 continue;
3339 case 'T': /* Status with PC, SP, FP, ... */
3340 {
3341 gdb_byte regs[MAX_REGISTER_SIZE];
3342
3343 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3344 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3345 ss = signal number
3346 n... = register number
3347 r... = register contents
3348 */
3349 p = &buf[3]; /* after Txx */
3350
3351 while (*p)
3352 {
3353 char *p1;
3354 char *p_temp;
3355 int fieldsize;
3356 long pnum = 0;
3357
3358 /* If the packet contains a register number, save it
3359 in pnum and set p1 to point to the character
3360 following it. Otherwise p1 points to p. */
3361
3362 /* If this packet is an awatch packet, don't parse the 'a'
3363 as a register number. */
3364
3365 if (!strncmp (p, "awatch", strlen ("awatch")) != 0)
3366 {
3367 /* Read the register number. */
3368 pnum = strtol (p, &p_temp, 16);
3369 p1 = p_temp;
3370 }
3371 else
3372 p1 = p;
3373
3374 if (p1 == p) /* No register number present here. */
3375 {
3376 p1 = strchr (p, ':');
3377 if (p1 == NULL)
3378 error (_("Malformed packet(a) (missing colon): %s\n\
3379 Packet: '%s'\n"),
3380 p, buf);
3381 if (strncmp (p, "thread", p1 - p) == 0)
3382 {
3383 p_temp = unpack_varlen_hex (++p1, &thread_num);
3384 record_currthread (thread_num);
3385 p = p_temp;
3386 }
3387 else if ((strncmp (p, "watch", p1 - p) == 0)
3388 || (strncmp (p, "rwatch", p1 - p) == 0)
3389 || (strncmp (p, "awatch", p1 - p) == 0))
3390 {
3391 remote_stopped_by_watchpoint_p = 1;
3392 p = unpack_varlen_hex (++p1, &addr);
3393 remote_watch_data_address = (CORE_ADDR)addr;
3394 }
3395 else
3396 {
3397 /* Silently skip unknown optional info. */
3398 p_temp = strchr (p1 + 1, ';');
3399 if (p_temp)
3400 p = p_temp;
3401 }
3402 }
3403
3404 else
3405 {
3406 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3407 p = p1;
3408 if (*p++ != ':')
3409 error (_("Malformed packet(b) (missing colon): %s\n\
3410 Packet: '%s'\n"),
3411 p, buf);
3412
3413 if (reg == NULL)
3414 error (_("Remote sent bad register number %ld: %s\n\
3415 Packet: '%s'\n"),
3416 pnum, p, buf);
3417
3418 fieldsize = hex2bin (p, regs,
3419 register_size (current_gdbarch,
3420 reg->regnum));
3421 p += 2 * fieldsize;
3422 if (fieldsize < register_size (current_gdbarch,
3423 reg->regnum))
3424 warning (_("Remote reply is too short: %s"), buf);
3425 regcache_raw_supply (current_regcache, reg->regnum, regs);
3426 }
3427
3428 if (*p++ != ';')
3429 error (_("Remote register badly formatted: %s\nhere: %s"),
3430 buf, p);
3431 }
3432 }
3433 /* fall through */
3434 case 'S': /* Old style status, just signal only. */
3435 status->kind = TARGET_WAITKIND_STOPPED;
3436 status->value.sig = (enum target_signal)
3437 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3438
3439 if (buf[3] == 'p')
3440 {
3441 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3442 record_currthread (thread_num);
3443 }
3444 goto got_status;
3445 case 'W': /* Target exited. */
3446 {
3447 /* The remote process exited. */
3448 status->kind = TARGET_WAITKIND_EXITED;
3449 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3450 goto got_status;
3451 }
3452 case 'X':
3453 status->kind = TARGET_WAITKIND_SIGNALLED;
3454 status->value.sig = (enum target_signal)
3455 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3456 kill_kludge = 1;
3457
3458 goto got_status;
3459 case 'O': /* Console output. */
3460 remote_console_output (buf + 1);
3461 /* Return immediately to the event loop. The event loop will
3462 still be waiting on the inferior afterwards. */
3463 status->kind = TARGET_WAITKIND_IGNORE;
3464 goto got_status;
3465 case '\0':
3466 if (last_sent_signal != TARGET_SIGNAL_0)
3467 {
3468 /* Zero length reply means that we tried 'S' or 'C' and
3469 the remote system doesn't support it. */
3470 target_terminal_ours_for_output ();
3471 printf_filtered
3472 ("Can't send signals to this remote system. %s not sent.\n",
3473 target_signal_to_name (last_sent_signal));
3474 last_sent_signal = TARGET_SIGNAL_0;
3475 target_terminal_inferior ();
3476
3477 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3478 putpkt ((char *) buf);
3479 continue;
3480 }
3481 /* else fallthrough */
3482 default:
3483 warning (_("Invalid remote reply: %s"), buf);
3484 continue;
3485 }
3486 }
3487 got_status:
3488 if (thread_num != -1)
3489 {
3490 return pid_to_ptid (thread_num);
3491 }
3492 return inferior_ptid;
3493 }
3494
3495 /* Fetch a single register using a 'p' packet. */
3496
3497 static int
3498 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
3499 {
3500 struct remote_state *rs = get_remote_state ();
3501 char *buf, *p;
3502 char regp[MAX_REGISTER_SIZE];
3503 int i;
3504
3505 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
3506 return 0;
3507
3508 if (reg->pnum == -1)
3509 return 0;
3510
3511 p = rs->buf;
3512 *p++ = 'p';
3513 p += hexnumstr (p, reg->pnum);
3514 *p++ = '\0';
3515 remote_send (&rs->buf, &rs->buf_size);
3516
3517 buf = rs->buf;
3518
3519 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
3520 {
3521 case PACKET_OK:
3522 break;
3523 case PACKET_UNKNOWN:
3524 return 0;
3525 case PACKET_ERROR:
3526 error (_("Could not fetch register \"%s\""),
3527 gdbarch_register_name (current_gdbarch, reg->regnum));
3528 }
3529
3530 /* If this register is unfetchable, tell the regcache. */
3531 if (buf[0] == 'x')
3532 {
3533 regcache_raw_supply (regcache, reg->regnum, NULL);
3534 return 1;
3535 }
3536
3537 /* Otherwise, parse and supply the value. */
3538 p = buf;
3539 i = 0;
3540 while (p[0] != 0)
3541 {
3542 if (p[1] == 0)
3543 error (_("fetch_register_using_p: early buf termination"));
3544
3545 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3546 p += 2;
3547 }
3548 regcache_raw_supply (regcache, reg->regnum, regp);
3549 return 1;
3550 }
3551
3552 /* Fetch the registers included in the target's 'g' packet. */
3553
3554 static int
3555 send_g_packet (void)
3556 {
3557 struct remote_state *rs = get_remote_state ();
3558 int i, buf_len;
3559 char *p;
3560 char *regs;
3561
3562 sprintf (rs->buf, "g");
3563 remote_send (&rs->buf, &rs->buf_size);
3564
3565 /* We can get out of synch in various cases. If the first character
3566 in the buffer is not a hex character, assume that has happened
3567 and try to fetch another packet to read. */
3568 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
3569 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
3570 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
3571 && rs->buf[0] != 'x') /* New: unavailable register value. */
3572 {
3573 if (remote_debug)
3574 fprintf_unfiltered (gdb_stdlog,
3575 "Bad register packet; fetching a new packet\n");
3576 getpkt (&rs->buf, &rs->buf_size, 0);
3577 }
3578
3579 buf_len = strlen (rs->buf);
3580
3581 /* Sanity check the received packet. */
3582 if (buf_len % 2 != 0)
3583 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
3584
3585 return buf_len / 2;
3586 }
3587
3588 static void
3589 process_g_packet (struct regcache *regcache)
3590 {
3591 struct remote_state *rs = get_remote_state ();
3592 struct remote_arch_state *rsa = get_remote_arch_state ();
3593 int i, buf_len;
3594 char *p;
3595 char *regs;
3596
3597 buf_len = strlen (rs->buf);
3598
3599 /* Further sanity checks, with knowledge of the architecture. */
3600 if (buf_len > 2 * rsa->sizeof_g_packet)
3601 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
3602
3603 /* Save the size of the packet sent to us by the target. It is used
3604 as a heuristic when determining the max size of packets that the
3605 target can safely receive. */
3606 if (rsa->actual_register_packet_size == 0)
3607 rsa->actual_register_packet_size = buf_len;
3608
3609 /* If this is smaller than we guessed the 'g' packet would be,
3610 update our records. A 'g' reply that doesn't include a register's
3611 value implies either that the register is not available, or that
3612 the 'p' packet must be used. */
3613 if (buf_len < 2 * rsa->sizeof_g_packet)
3614 {
3615 rsa->sizeof_g_packet = buf_len / 2;
3616
3617 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3618 {
3619 if (rsa->regs[i].pnum == -1)
3620 continue;
3621
3622 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
3623 rsa->regs[i].in_g_packet = 0;
3624 else
3625 rsa->regs[i].in_g_packet = 1;
3626 }
3627 }
3628
3629 regs = alloca (rsa->sizeof_g_packet);
3630
3631 /* Unimplemented registers read as all bits zero. */
3632 memset (regs, 0, rsa->sizeof_g_packet);
3633
3634 /* Reply describes registers byte by byte, each byte encoded as two
3635 hex characters. Suck them all up, then supply them to the
3636 register cacheing/storage mechanism. */
3637
3638 p = rs->buf;
3639 for (i = 0; i < rsa->sizeof_g_packet; i++)
3640 {
3641 if (p[0] == 0 || p[1] == 0)
3642 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
3643 internal_error (__FILE__, __LINE__,
3644 "unexpected end of 'g' packet reply");
3645
3646 if (p[0] == 'x' && p[1] == 'x')
3647 regs[i] = 0; /* 'x' */
3648 else
3649 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3650 p += 2;
3651 }
3652
3653 {
3654 int i;
3655 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3656 {
3657 struct packet_reg *r = &rsa->regs[i];
3658 if (r->in_g_packet)
3659 {
3660 if (r->offset * 2 >= strlen (rs->buf))
3661 /* This shouldn't happen - we adjusted in_g_packet above. */
3662 internal_error (__FILE__, __LINE__,
3663 "unexpected end of 'g' packet reply");
3664 else if (rs->buf[r->offset * 2] == 'x')
3665 {
3666 gdb_assert (r->offset * 2 < strlen (rs->buf));
3667 /* The register isn't available, mark it as such (at
3668 the same time setting the value to zero). */
3669 regcache_raw_supply (regcache, r->regnum, NULL);
3670 }
3671 else
3672 regcache_raw_supply (regcache, r->regnum,
3673 regs + r->offset);
3674 }
3675 }
3676 }
3677 }
3678
3679 static void
3680 fetch_registers_using_g (struct regcache *regcache)
3681 {
3682 send_g_packet ();
3683 process_g_packet (regcache);
3684 }
3685
3686 static void
3687 remote_fetch_registers (struct regcache *regcache, int regnum)
3688 {
3689 struct remote_state *rs = get_remote_state ();
3690 struct remote_arch_state *rsa = get_remote_arch_state ();
3691 int i;
3692
3693 set_thread (PIDGET (inferior_ptid), 1);
3694
3695 if (regnum >= 0)
3696 {
3697 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3698 gdb_assert (reg != NULL);
3699
3700 /* If this register might be in the 'g' packet, try that first -
3701 we are likely to read more than one register. If this is the
3702 first 'g' packet, we might be overly optimistic about its
3703 contents, so fall back to 'p'. */
3704 if (reg->in_g_packet)
3705 {
3706 fetch_registers_using_g (regcache);
3707 if (reg->in_g_packet)
3708 return;
3709 }
3710
3711 if (fetch_register_using_p (regcache, reg))
3712 return;
3713
3714 /* This register is not available. */
3715 regcache_raw_supply (regcache, reg->regnum, NULL);
3716
3717 return;
3718 }
3719
3720 fetch_registers_using_g (regcache);
3721
3722 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3723 if (!rsa->regs[i].in_g_packet)
3724 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
3725 {
3726 /* This register is not available. */
3727 regcache_raw_supply (regcache, i, NULL);
3728 }
3729 }
3730
3731 /* Prepare to store registers. Since we may send them all (using a
3732 'G' request), we have to read out the ones we don't want to change
3733 first. */
3734
3735 static void
3736 remote_prepare_to_store (struct regcache *regcache)
3737 {
3738 struct remote_arch_state *rsa = get_remote_arch_state ();
3739 int i;
3740 gdb_byte buf[MAX_REGISTER_SIZE];
3741
3742 /* Make sure the entire registers array is valid. */
3743 switch (remote_protocol_packets[PACKET_P].support)
3744 {
3745 case PACKET_DISABLE:
3746 case PACKET_SUPPORT_UNKNOWN:
3747 /* Make sure all the necessary registers are cached. */
3748 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3749 if (rsa->regs[i].in_g_packet)
3750 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
3751 break;
3752 case PACKET_ENABLE:
3753 break;
3754 }
3755 }
3756
3757 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3758 packet was not recognized. */
3759
3760 static int
3761 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
3762 {
3763 struct remote_state *rs = get_remote_state ();
3764 struct remote_arch_state *rsa = get_remote_arch_state ();
3765 /* Try storing a single register. */
3766 char *buf = rs->buf;
3767 gdb_byte regp[MAX_REGISTER_SIZE];
3768 char *p;
3769
3770 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
3771 return 0;
3772
3773 if (reg->pnum == -1)
3774 return 0;
3775
3776 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
3777 p = buf + strlen (buf);
3778 regcache_raw_collect (regcache, reg->regnum, regp);
3779 bin2hex (regp, p, register_size (current_gdbarch, reg->regnum));
3780 remote_send (&rs->buf, &rs->buf_size);
3781
3782 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
3783 {
3784 case PACKET_OK:
3785 return 1;
3786 case PACKET_ERROR:
3787 error (_("Could not write register \"%s\""),
3788 gdbarch_register_name (current_gdbarch, reg->regnum));
3789 case PACKET_UNKNOWN:
3790 return 0;
3791 default:
3792 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
3793 }
3794 }
3795
3796 /* Store register REGNUM, or all registers if REGNUM == -1, from the
3797 contents of the register cache buffer. FIXME: ignores errors. */
3798
3799 static void
3800 store_registers_using_G (const struct regcache *regcache)
3801 {
3802 struct remote_state *rs = get_remote_state ();
3803 struct remote_arch_state *rsa = get_remote_arch_state ();
3804 gdb_byte *regs;
3805 char *p;
3806
3807 /* Extract all the registers in the regcache copying them into a
3808 local buffer. */
3809 {
3810 int i;
3811 regs = alloca (rsa->sizeof_g_packet);
3812 memset (regs, 0, rsa->sizeof_g_packet);
3813 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3814 {
3815 struct packet_reg *r = &rsa->regs[i];
3816 if (r->in_g_packet)
3817 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
3818 }
3819 }
3820
3821 /* Command describes registers byte by byte,
3822 each byte encoded as two hex characters. */
3823 p = rs->buf;
3824 *p++ = 'G';
3825 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
3826 updated. */
3827 bin2hex (regs, p, rsa->sizeof_g_packet);
3828 remote_send (&rs->buf, &rs->buf_size);
3829 }
3830
3831 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3832 of the register cache buffer. FIXME: ignores errors. */
3833
3834 static void
3835 remote_store_registers (struct regcache *regcache, int regnum)
3836 {
3837 struct remote_state *rs = get_remote_state ();
3838 struct remote_arch_state *rsa = get_remote_arch_state ();
3839 int i;
3840
3841 set_thread (PIDGET (inferior_ptid), 1);
3842
3843 if (regnum >= 0)
3844 {
3845 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3846 gdb_assert (reg != NULL);
3847
3848 /* Always prefer to store registers using the 'P' packet if
3849 possible; we often change only a small number of registers.
3850 Sometimes we change a larger number; we'd need help from a
3851 higher layer to know to use 'G'. */
3852 if (store_register_using_P (regcache, reg))
3853 return;
3854
3855 /* For now, don't complain if we have no way to write the
3856 register. GDB loses track of unavailable registers too
3857 easily. Some day, this may be an error. We don't have
3858 any way to read the register, either... */
3859 if (!reg->in_g_packet)
3860 return;
3861
3862 store_registers_using_G (regcache);
3863 return;
3864 }
3865
3866 store_registers_using_G (regcache);
3867
3868 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3869 if (!rsa->regs[i].in_g_packet)
3870 if (!store_register_using_P (regcache, &rsa->regs[i]))
3871 /* See above for why we do not issue an error here. */
3872 continue;
3873 }
3874 \f
3875
3876 /* Return the number of hex digits in num. */
3877
3878 static int
3879 hexnumlen (ULONGEST num)
3880 {
3881 int i;
3882
3883 for (i = 0; num != 0; i++)
3884 num >>= 4;
3885
3886 return max (i, 1);
3887 }
3888
3889 /* Set BUF to the minimum number of hex digits representing NUM. */
3890
3891 static int
3892 hexnumstr (char *buf, ULONGEST num)
3893 {
3894 int len = hexnumlen (num);
3895 return hexnumnstr (buf, num, len);
3896 }
3897
3898
3899 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3900
3901 static int
3902 hexnumnstr (char *buf, ULONGEST num, int width)
3903 {
3904 int i;
3905
3906 buf[width] = '\0';
3907
3908 for (i = width - 1; i >= 0; i--)
3909 {
3910 buf[i] = "0123456789abcdef"[(num & 0xf)];
3911 num >>= 4;
3912 }
3913
3914 return width;
3915 }
3916
3917 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3918
3919 static CORE_ADDR
3920 remote_address_masked (CORE_ADDR addr)
3921 {
3922 if (remote_address_size > 0
3923 && remote_address_size < (sizeof (ULONGEST) * 8))
3924 {
3925 /* Only create a mask when that mask can safely be constructed
3926 in a ULONGEST variable. */
3927 ULONGEST mask = 1;
3928 mask = (mask << remote_address_size) - 1;
3929 addr &= mask;
3930 }
3931 return addr;
3932 }
3933
3934 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
3935 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
3936 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
3937 (which may be more than *OUT_LEN due to escape characters). The
3938 total number of bytes in the output buffer will be at most
3939 OUT_MAXLEN. */
3940
3941 static int
3942 remote_escape_output (const gdb_byte *buffer, int len,
3943 gdb_byte *out_buf, int *out_len,
3944 int out_maxlen)
3945 {
3946 int input_index, output_index;
3947
3948 output_index = 0;
3949 for (input_index = 0; input_index < len; input_index++)
3950 {
3951 gdb_byte b = buffer[input_index];
3952
3953 if (b == '$' || b == '#' || b == '}')
3954 {
3955 /* These must be escaped. */
3956 if (output_index + 2 > out_maxlen)
3957 break;
3958 out_buf[output_index++] = '}';
3959 out_buf[output_index++] = b ^ 0x20;
3960 }
3961 else
3962 {
3963 if (output_index + 1 > out_maxlen)
3964 break;
3965 out_buf[output_index++] = b;
3966 }
3967 }
3968
3969 *out_len = input_index;
3970 return output_index;
3971 }
3972
3973 /* Convert BUFFER, escaped data LEN bytes long, into binary data
3974 in OUT_BUF. Return the number of bytes written to OUT_BUF.
3975 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
3976
3977 This function reverses remote_escape_output. It allows more
3978 escaped characters than that function does, in particular because
3979 '*' must be escaped to avoid the run-length encoding processing
3980 in reading packets. */
3981
3982 static int
3983 remote_unescape_input (const gdb_byte *buffer, int len,
3984 gdb_byte *out_buf, int out_maxlen)
3985 {
3986 int input_index, output_index;
3987 int escaped;
3988
3989 output_index = 0;
3990 escaped = 0;
3991 for (input_index = 0; input_index < len; input_index++)
3992 {
3993 gdb_byte b = buffer[input_index];
3994
3995 if (output_index + 1 > out_maxlen)
3996 {
3997 warning (_("Received too much data from remote target;"
3998 " ignoring overflow."));
3999 return output_index;
4000 }
4001
4002 if (escaped)
4003 {
4004 out_buf[output_index++] = b ^ 0x20;
4005 escaped = 0;
4006 }
4007 else if (b == '}')
4008 escaped = 1;
4009 else
4010 out_buf[output_index++] = b;
4011 }
4012
4013 if (escaped)
4014 error (_("Unmatched escape character in target response."));
4015
4016 return output_index;
4017 }
4018
4019 /* Determine whether the remote target supports binary downloading.
4020 This is accomplished by sending a no-op memory write of zero length
4021 to the target at the specified address. It does not suffice to send
4022 the whole packet, since many stubs strip the eighth bit and
4023 subsequently compute a wrong checksum, which causes real havoc with
4024 remote_write_bytes.
4025
4026 NOTE: This can still lose if the serial line is not eight-bit
4027 clean. In cases like this, the user should clear "remote
4028 X-packet". */
4029
4030 static void
4031 check_binary_download (CORE_ADDR addr)
4032 {
4033 struct remote_state *rs = get_remote_state ();
4034
4035 switch (remote_protocol_packets[PACKET_X].support)
4036 {
4037 case PACKET_DISABLE:
4038 break;
4039 case PACKET_ENABLE:
4040 break;
4041 case PACKET_SUPPORT_UNKNOWN:
4042 {
4043 char *p;
4044
4045 p = rs->buf;
4046 *p++ = 'X';
4047 p += hexnumstr (p, (ULONGEST) addr);
4048 *p++ = ',';
4049 p += hexnumstr (p, (ULONGEST) 0);
4050 *p++ = ':';
4051 *p = '\0';
4052
4053 putpkt_binary (rs->buf, (int) (p - rs->buf));
4054 getpkt (&rs->buf, &rs->buf_size, 0);
4055
4056 if (rs->buf[0] == '\0')
4057 {
4058 if (remote_debug)
4059 fprintf_unfiltered (gdb_stdlog,
4060 "binary downloading NOT suppported by target\n");
4061 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
4062 }
4063 else
4064 {
4065 if (remote_debug)
4066 fprintf_unfiltered (gdb_stdlog,
4067 "binary downloading suppported by target\n");
4068 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
4069 }
4070 break;
4071 }
4072 }
4073 }
4074
4075 /* Write memory data directly to the remote machine.
4076 This does not inform the data cache; the data cache uses this.
4077 HEADER is the starting part of the packet.
4078 MEMADDR is the address in the remote memory space.
4079 MYADDR is the address of the buffer in our space.
4080 LEN is the number of bytes.
4081 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
4082 should send data as binary ('X'), or hex-encoded ('M').
4083
4084 The function creates packet of the form
4085 <HEADER><ADDRESS>,<LENGTH>:<DATA>
4086
4087 where encoding of <DATA> is termined by PACKET_FORMAT.
4088
4089 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
4090 are omitted.
4091
4092 Returns the number of bytes transferred, or 0 (setting errno) for
4093 error. Only transfer a single packet. */
4094
4095 static int
4096 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
4097 const gdb_byte *myaddr, int len,
4098 char packet_format, int use_length)
4099 {
4100 struct remote_state *rs = get_remote_state ();
4101 char *p;
4102 char *plen = NULL;
4103 int plenlen = 0;
4104 int todo;
4105 int nr_bytes;
4106 int payload_size;
4107 int payload_length;
4108 int header_length;
4109
4110 if (packet_format != 'X' && packet_format != 'M')
4111 internal_error (__FILE__, __LINE__,
4112 "remote_write_bytes_aux: bad packet format");
4113
4114 if (len <= 0)
4115 return 0;
4116
4117 payload_size = get_memory_write_packet_size ();
4118
4119 /* The packet buffer will be large enough for the payload;
4120 get_memory_packet_size ensures this. */
4121 rs->buf[0] = '\0';
4122
4123 /* Compute the size of the actual payload by subtracting out the
4124 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
4125 */
4126 payload_size -= strlen ("$,:#NN");
4127 if (!use_length)
4128 /* The comma won't be used. */
4129 payload_size += 1;
4130 header_length = strlen (header);
4131 payload_size -= header_length;
4132 payload_size -= hexnumlen (memaddr);
4133
4134 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
4135
4136 strcat (rs->buf, header);
4137 p = rs->buf + strlen (header);
4138
4139 /* Compute a best guess of the number of bytes actually transfered. */
4140 if (packet_format == 'X')
4141 {
4142 /* Best guess at number of bytes that will fit. */
4143 todo = min (len, payload_size);
4144 if (use_length)
4145 payload_size -= hexnumlen (todo);
4146 todo = min (todo, payload_size);
4147 }
4148 else
4149 {
4150 /* Num bytes that will fit. */
4151 todo = min (len, payload_size / 2);
4152 if (use_length)
4153 payload_size -= hexnumlen (todo);
4154 todo = min (todo, payload_size / 2);
4155 }
4156
4157 if (todo <= 0)
4158 internal_error (__FILE__, __LINE__,
4159 _("minumum packet size too small to write data"));
4160
4161 /* If we already need another packet, then try to align the end
4162 of this packet to a useful boundary. */
4163 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
4164 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
4165
4166 /* Append "<memaddr>". */
4167 memaddr = remote_address_masked (memaddr);
4168 p += hexnumstr (p, (ULONGEST) memaddr);
4169
4170 if (use_length)
4171 {
4172 /* Append ",". */
4173 *p++ = ',';
4174
4175 /* Append <len>. Retain the location/size of <len>. It may need to
4176 be adjusted once the packet body has been created. */
4177 plen = p;
4178 plenlen = hexnumstr (p, (ULONGEST) todo);
4179 p += plenlen;
4180 }
4181
4182 /* Append ":". */
4183 *p++ = ':';
4184 *p = '\0';
4185
4186 /* Append the packet body. */
4187 if (packet_format == 'X')
4188 {
4189 /* Binary mode. Send target system values byte by byte, in
4190 increasing byte addresses. Only escape certain critical
4191 characters. */
4192 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
4193 payload_size);
4194
4195 /* If not all TODO bytes fit, then we'll need another packet. Make
4196 a second try to keep the end of the packet aligned. Don't do
4197 this if the packet is tiny. */
4198 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
4199 {
4200 int new_nr_bytes;
4201
4202 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
4203 - memaddr);
4204 if (new_nr_bytes != nr_bytes)
4205 payload_length = remote_escape_output (myaddr, new_nr_bytes,
4206 p, &nr_bytes,
4207 payload_size);
4208 }
4209
4210 p += payload_length;
4211 if (use_length && nr_bytes < todo)
4212 {
4213 /* Escape chars have filled up the buffer prematurely,
4214 and we have actually sent fewer bytes than planned.
4215 Fix-up the length field of the packet. Use the same
4216 number of characters as before. */
4217 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
4218 *plen = ':'; /* overwrite \0 from hexnumnstr() */
4219 }
4220 }
4221 else
4222 {
4223 /* Normal mode: Send target system values byte by byte, in
4224 increasing byte addresses. Each byte is encoded as a two hex
4225 value. */
4226 nr_bytes = bin2hex (myaddr, p, todo);
4227 p += 2 * nr_bytes;
4228 }
4229
4230 putpkt_binary (rs->buf, (int) (p - rs->buf));
4231 getpkt (&rs->buf, &rs->buf_size, 0);
4232
4233 if (rs->buf[0] == 'E')
4234 {
4235 /* There is no correspondance between what the remote protocol
4236 uses for errors and errno codes. We would like a cleaner way
4237 of representing errors (big enough to include errno codes,
4238 bfd_error codes, and others). But for now just return EIO. */
4239 errno = EIO;
4240 return 0;
4241 }
4242
4243 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
4244 fewer bytes than we'd planned. */
4245 return nr_bytes;
4246 }
4247
4248 /* Write memory data directly to the remote machine.
4249 This does not inform the data cache; the data cache uses this.
4250 MEMADDR is the address in the remote memory space.
4251 MYADDR is the address of the buffer in our space.
4252 LEN is the number of bytes.
4253
4254 Returns number of bytes transferred, or 0 (setting errno) for
4255 error. Only transfer a single packet. */
4256
4257 int
4258 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
4259 {
4260 char *packet_format = 0;
4261
4262 /* Check whether the target supports binary download. */
4263 check_binary_download (memaddr);
4264
4265 switch (remote_protocol_packets[PACKET_X].support)
4266 {
4267 case PACKET_ENABLE:
4268 packet_format = "X";
4269 break;
4270 case PACKET_DISABLE:
4271 packet_format = "M";
4272 break;
4273 case PACKET_SUPPORT_UNKNOWN:
4274 internal_error (__FILE__, __LINE__,
4275 _("remote_write_bytes: bad internal state"));
4276 default:
4277 internal_error (__FILE__, __LINE__, _("bad switch"));
4278 }
4279
4280 return remote_write_bytes_aux (packet_format,
4281 memaddr, myaddr, len, packet_format[0], 1);
4282 }
4283
4284 /* Read memory data directly from the remote machine.
4285 This does not use the data cache; the data cache uses this.
4286 MEMADDR is the address in the remote memory space.
4287 MYADDR is the address of the buffer in our space.
4288 LEN is the number of bytes.
4289
4290 Returns number of bytes transferred, or 0 for error. */
4291
4292 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
4293 remote targets) shouldn't attempt to read the entire buffer.
4294 Instead it should read a single packet worth of data and then
4295 return the byte size of that packet to the caller. The caller (its
4296 caller and its callers caller ;-) already contains code for
4297 handling partial reads. */
4298
4299 int
4300 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
4301 {
4302 struct remote_state *rs = get_remote_state ();
4303 int max_buf_size; /* Max size of packet output buffer. */
4304 int origlen;
4305
4306 if (len <= 0)
4307 return 0;
4308
4309 max_buf_size = get_memory_read_packet_size ();
4310 /* The packet buffer will be large enough for the payload;
4311 get_memory_packet_size ensures this. */
4312
4313 origlen = len;
4314 while (len > 0)
4315 {
4316 char *p;
4317 int todo;
4318 int i;
4319
4320 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
4321
4322 /* construct "m"<memaddr>","<len>" */
4323 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
4324 memaddr = remote_address_masked (memaddr);
4325 p = rs->buf;
4326 *p++ = 'm';
4327 p += hexnumstr (p, (ULONGEST) memaddr);
4328 *p++ = ',';
4329 p += hexnumstr (p, (ULONGEST) todo);
4330 *p = '\0';
4331
4332 putpkt (rs->buf);
4333 getpkt (&rs->buf, &rs->buf_size, 0);
4334
4335 if (rs->buf[0] == 'E'
4336 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
4337 && rs->buf[3] == '\0')
4338 {
4339 /* There is no correspondance between what the remote
4340 protocol uses for errors and errno codes. We would like
4341 a cleaner way of representing errors (big enough to
4342 include errno codes, bfd_error codes, and others). But
4343 for now just return EIO. */
4344 errno = EIO;
4345 return 0;
4346 }
4347
4348 /* Reply describes memory byte by byte,
4349 each byte encoded as two hex characters. */
4350
4351 p = rs->buf;
4352 if ((i = hex2bin (p, myaddr, todo)) < todo)
4353 {
4354 /* Reply is short. This means that we were able to read
4355 only part of what we wanted to. */
4356 return i + (origlen - len);
4357 }
4358 myaddr += todo;
4359 memaddr += todo;
4360 len -= todo;
4361 }
4362 return origlen;
4363 }
4364 \f
4365 /* Read or write LEN bytes from inferior memory at MEMADDR,
4366 transferring to or from debugger address BUFFER. Write to inferior
4367 if SHOULD_WRITE is nonzero. Returns length of data written or
4368 read; 0 for error. TARGET is unused. */
4369
4370 static int
4371 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
4372 int should_write, struct mem_attrib *attrib,
4373 struct target_ops *target)
4374 {
4375 int res;
4376
4377 if (should_write)
4378 res = remote_write_bytes (mem_addr, buffer, mem_len);
4379 else
4380 res = remote_read_bytes (mem_addr, buffer, mem_len);
4381
4382 return res;
4383 }
4384
4385 /* Sends a packet with content determined by the printf format string
4386 FORMAT and the remaining arguments, then gets the reply. Returns
4387 whether the packet was a success, a failure, or unknown. */
4388
4389 enum packet_result
4390 remote_send_printf (const char *format, ...)
4391 {
4392 struct remote_state *rs = get_remote_state ();
4393 int max_size = get_remote_packet_size ();
4394
4395 va_list ap;
4396 va_start (ap, format);
4397
4398 rs->buf[0] = '\0';
4399 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
4400 internal_error (__FILE__, __LINE__, "Too long remote packet.");
4401
4402 if (putpkt (rs->buf) < 0)
4403 error (_("Communication problem with target."));
4404
4405 rs->buf[0] = '\0';
4406 getpkt (&rs->buf, &rs->buf_size, 0);
4407
4408 return packet_check_result (rs->buf);
4409 }
4410
4411 static void
4412 restore_remote_timeout (void *p)
4413 {
4414 int value = *(int *)p;
4415 remote_timeout = value;
4416 }
4417
4418 /* Flash writing can take quite some time. We'll set
4419 effectively infinite timeout for flash operations.
4420 In future, we'll need to decide on a better approach. */
4421 static const int remote_flash_timeout = 1000;
4422
4423 static void
4424 remote_flash_erase (struct target_ops *ops,
4425 ULONGEST address, LONGEST length)
4426 {
4427 int saved_remote_timeout = remote_timeout;
4428 enum packet_result ret;
4429
4430 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4431 &saved_remote_timeout);
4432 remote_timeout = remote_flash_timeout;
4433
4434 ret = remote_send_printf ("vFlashErase:%s,%s",
4435 paddr (address),
4436 phex (length, 4));
4437 switch (ret)
4438 {
4439 case PACKET_UNKNOWN:
4440 error (_("Remote target does not support flash erase"));
4441 case PACKET_ERROR:
4442 error (_("Error erasing flash with vFlashErase packet"));
4443 default:
4444 break;
4445 }
4446
4447 do_cleanups (back_to);
4448 }
4449
4450 static LONGEST
4451 remote_flash_write (struct target_ops *ops,
4452 ULONGEST address, LONGEST length,
4453 const gdb_byte *data)
4454 {
4455 int saved_remote_timeout = remote_timeout;
4456 int ret;
4457 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4458 &saved_remote_timeout);
4459
4460 remote_timeout = remote_flash_timeout;
4461 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
4462 do_cleanups (back_to);
4463
4464 return ret;
4465 }
4466
4467 static void
4468 remote_flash_done (struct target_ops *ops)
4469 {
4470 int saved_remote_timeout = remote_timeout;
4471 int ret;
4472 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4473 &saved_remote_timeout);
4474
4475 remote_timeout = remote_flash_timeout;
4476 ret = remote_send_printf ("vFlashDone");
4477 do_cleanups (back_to);
4478
4479 switch (ret)
4480 {
4481 case PACKET_UNKNOWN:
4482 error (_("Remote target does not support vFlashDone"));
4483 case PACKET_ERROR:
4484 error (_("Error finishing flash operation"));
4485 default:
4486 break;
4487 }
4488 }
4489
4490 static void
4491 remote_files_info (struct target_ops *ignore)
4492 {
4493 puts_filtered ("Debugging a target over a serial line.\n");
4494 }
4495 \f
4496 /* Stuff for dealing with the packets which are part of this protocol.
4497 See comment at top of file for details. */
4498
4499 /* Read a single character from the remote end. */
4500
4501 static int
4502 readchar (int timeout)
4503 {
4504 int ch;
4505
4506 ch = serial_readchar (remote_desc, timeout);
4507
4508 if (ch >= 0)
4509 return ch;
4510
4511 switch ((enum serial_rc) ch)
4512 {
4513 case SERIAL_EOF:
4514 target_mourn_inferior ();
4515 error (_("Remote connection closed"));
4516 /* no return */
4517 case SERIAL_ERROR:
4518 perror_with_name (_("Remote communication error"));
4519 /* no return */
4520 case SERIAL_TIMEOUT:
4521 break;
4522 }
4523 return ch;
4524 }
4525
4526 /* Send the command in *BUF to the remote machine, and read the reply
4527 into *BUF. Report an error if we get an error reply. Resize
4528 *BUF using xrealloc if necessary to hold the result, and update
4529 *SIZEOF_BUF. */
4530
4531 static void
4532 remote_send (char **buf,
4533 long *sizeof_buf)
4534 {
4535 putpkt (*buf);
4536 getpkt (buf, sizeof_buf, 0);
4537
4538 if ((*buf)[0] == 'E')
4539 error (_("Remote failure reply: %s"), *buf);
4540 }
4541
4542 /* Display a null-terminated packet on stdout, for debugging, using C
4543 string notation. */
4544
4545 static void
4546 print_packet (char *buf)
4547 {
4548 puts_filtered ("\"");
4549 fputstr_filtered (buf, '"', gdb_stdout);
4550 puts_filtered ("\"");
4551 }
4552
4553 int
4554 putpkt (char *buf)
4555 {
4556 return putpkt_binary (buf, strlen (buf));
4557 }
4558
4559 /* Send a packet to the remote machine, with error checking. The data
4560 of the packet is in BUF. The string in BUF can be at most
4561 get_remote_packet_size () - 5 to account for the $, # and checksum,
4562 and for a possible /0 if we are debugging (remote_debug) and want
4563 to print the sent packet as a string. */
4564
4565 static int
4566 putpkt_binary (char *buf, int cnt)
4567 {
4568 int i;
4569 unsigned char csum = 0;
4570 char *buf2 = alloca (cnt + 6);
4571
4572 int ch;
4573 int tcount = 0;
4574 char *p;
4575
4576 /* Copy the packet into buffer BUF2, encapsulating it
4577 and giving it a checksum. */
4578
4579 p = buf2;
4580 *p++ = '$';
4581
4582 for (i = 0; i < cnt; i++)
4583 {
4584 csum += buf[i];
4585 *p++ = buf[i];
4586 }
4587 *p++ = '#';
4588 *p++ = tohex ((csum >> 4) & 0xf);
4589 *p++ = tohex (csum & 0xf);
4590
4591 /* Send it over and over until we get a positive ack. */
4592
4593 while (1)
4594 {
4595 int started_error_output = 0;
4596
4597 if (remote_debug)
4598 {
4599 *p = '\0';
4600 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4601 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4602 fprintf_unfiltered (gdb_stdlog, "...");
4603 gdb_flush (gdb_stdlog);
4604 }
4605 if (serial_write (remote_desc, buf2, p - buf2))
4606 perror_with_name (_("putpkt: write failed"));
4607
4608 /* Read until either a timeout occurs (-2) or '+' is read. */
4609 while (1)
4610 {
4611 ch = readchar (remote_timeout);
4612
4613 if (remote_debug)
4614 {
4615 switch (ch)
4616 {
4617 case '+':
4618 case '-':
4619 case SERIAL_TIMEOUT:
4620 case '$':
4621 if (started_error_output)
4622 {
4623 putchar_unfiltered ('\n');
4624 started_error_output = 0;
4625 }
4626 }
4627 }
4628
4629 switch (ch)
4630 {
4631 case '+':
4632 if (remote_debug)
4633 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4634 return 1;
4635 case '-':
4636 if (remote_debug)
4637 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4638 case SERIAL_TIMEOUT:
4639 tcount++;
4640 if (tcount > 3)
4641 return 0;
4642 break; /* Retransmit buffer. */
4643 case '$':
4644 {
4645 if (remote_debug)
4646 fprintf_unfiltered (gdb_stdlog,
4647 "Packet instead of Ack, ignoring it\n");
4648 /* It's probably an old response sent because an ACK
4649 was lost. Gobble up the packet and ack it so it
4650 doesn't get retransmitted when we resend this
4651 packet. */
4652 skip_frame ();
4653 serial_write (remote_desc, "+", 1);
4654 continue; /* Now, go look for +. */
4655 }
4656 default:
4657 if (remote_debug)
4658 {
4659 if (!started_error_output)
4660 {
4661 started_error_output = 1;
4662 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4663 }
4664 fputc_unfiltered (ch & 0177, gdb_stdlog);
4665 }
4666 continue;
4667 }
4668 break; /* Here to retransmit. */
4669 }
4670
4671 #if 0
4672 /* This is wrong. If doing a long backtrace, the user should be
4673 able to get out next time we call QUIT, without anything as
4674 violent as interrupt_query. If we want to provide a way out of
4675 here without getting to the next QUIT, it should be based on
4676 hitting ^C twice as in remote_wait. */
4677 if (quit_flag)
4678 {
4679 quit_flag = 0;
4680 interrupt_query ();
4681 }
4682 #endif
4683 }
4684 }
4685
4686 /* Come here after finding the start of a frame when we expected an
4687 ack. Do our best to discard the rest of this packet. */
4688
4689 static void
4690 skip_frame (void)
4691 {
4692 int c;
4693
4694 while (1)
4695 {
4696 c = readchar (remote_timeout);
4697 switch (c)
4698 {
4699 case SERIAL_TIMEOUT:
4700 /* Nothing we can do. */
4701 return;
4702 case '#':
4703 /* Discard the two bytes of checksum and stop. */
4704 c = readchar (remote_timeout);
4705 if (c >= 0)
4706 c = readchar (remote_timeout);
4707
4708 return;
4709 case '*': /* Run length encoding. */
4710 /* Discard the repeat count. */
4711 c = readchar (remote_timeout);
4712 if (c < 0)
4713 return;
4714 break;
4715 default:
4716 /* A regular character. */
4717 break;
4718 }
4719 }
4720 }
4721
4722 /* Come here after finding the start of the frame. Collect the rest
4723 into *BUF, verifying the checksum, length, and handling run-length
4724 compression. NUL terminate the buffer. If there is not enough room,
4725 expand *BUF using xrealloc.
4726
4727 Returns -1 on error, number of characters in buffer (ignoring the
4728 trailing NULL) on success. (could be extended to return one of the
4729 SERIAL status indications). */
4730
4731 static long
4732 read_frame (char **buf_p,
4733 long *sizeof_buf)
4734 {
4735 unsigned char csum;
4736 long bc;
4737 int c;
4738 char *buf = *buf_p;
4739
4740 csum = 0;
4741 bc = 0;
4742
4743 while (1)
4744 {
4745 c = readchar (remote_timeout);
4746 switch (c)
4747 {
4748 case SERIAL_TIMEOUT:
4749 if (remote_debug)
4750 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4751 return -1;
4752 case '$':
4753 if (remote_debug)
4754 fputs_filtered ("Saw new packet start in middle of old one\n",
4755 gdb_stdlog);
4756 return -1; /* Start a new packet, count retries. */
4757 case '#':
4758 {
4759 unsigned char pktcsum;
4760 int check_0 = 0;
4761 int check_1 = 0;
4762
4763 buf[bc] = '\0';
4764
4765 check_0 = readchar (remote_timeout);
4766 if (check_0 >= 0)
4767 check_1 = readchar (remote_timeout);
4768
4769 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4770 {
4771 if (remote_debug)
4772 fputs_filtered ("Timeout in checksum, retrying\n",
4773 gdb_stdlog);
4774 return -1;
4775 }
4776 else if (check_0 < 0 || check_1 < 0)
4777 {
4778 if (remote_debug)
4779 fputs_filtered ("Communication error in checksum\n",
4780 gdb_stdlog);
4781 return -1;
4782 }
4783
4784 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4785 if (csum == pktcsum)
4786 return bc;
4787
4788 if (remote_debug)
4789 {
4790 fprintf_filtered (gdb_stdlog,
4791 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4792 pktcsum, csum);
4793 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
4794 fputs_filtered ("\n", gdb_stdlog);
4795 }
4796 /* Number of characters in buffer ignoring trailing
4797 NULL. */
4798 return -1;
4799 }
4800 case '*': /* Run length encoding. */
4801 {
4802 int repeat;
4803 csum += c;
4804
4805 c = readchar (remote_timeout);
4806 csum += c;
4807 repeat = c - ' ' + 3; /* Compute repeat count. */
4808
4809 /* The character before ``*'' is repeated. */
4810
4811 if (repeat > 0 && repeat <= 255 && bc > 0)
4812 {
4813 if (bc + repeat - 1 >= *sizeof_buf - 1)
4814 {
4815 /* Make some more room in the buffer. */
4816 *sizeof_buf += repeat;
4817 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4818 buf = *buf_p;
4819 }
4820
4821 memset (&buf[bc], buf[bc - 1], repeat);
4822 bc += repeat;
4823 continue;
4824 }
4825
4826 buf[bc] = '\0';
4827 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
4828 return -1;
4829 }
4830 default:
4831 if (bc >= *sizeof_buf - 1)
4832 {
4833 /* Make some more room in the buffer. */
4834 *sizeof_buf *= 2;
4835 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4836 buf = *buf_p;
4837 }
4838
4839 buf[bc++] = c;
4840 csum += c;
4841 continue;
4842 }
4843 }
4844 }
4845
4846 /* Read a packet from the remote machine, with error checking, and
4847 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4848 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4849 rather than timing out; this is used (in synchronous mode) to wait
4850 for a target that is is executing user code to stop. */
4851 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4852 don't have to change all the calls to getpkt to deal with the
4853 return value, because at the moment I don't know what the right
4854 thing to do it for those. */
4855 void
4856 getpkt (char **buf,
4857 long *sizeof_buf,
4858 int forever)
4859 {
4860 int timed_out;
4861
4862 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4863 }
4864
4865
4866 /* Read a packet from the remote machine, with error checking, and
4867 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4868 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4869 rather than timing out; this is used (in synchronous mode) to wait
4870 for a target that is is executing user code to stop. If FOREVER ==
4871 0, this function is allowed to time out gracefully and return an
4872 indication of this to the caller. Otherwise return the number
4873 of bytes read. */
4874 static int
4875 getpkt_sane (char **buf, long *sizeof_buf, int forever)
4876 {
4877 int c;
4878 int tries;
4879 int timeout;
4880 int val;
4881
4882 strcpy (*buf, "timeout");
4883
4884 if (forever)
4885 {
4886 timeout = watchdog > 0 ? watchdog : -1;
4887 }
4888
4889 else
4890 timeout = remote_timeout;
4891
4892 #define MAX_TRIES 3
4893
4894 for (tries = 1; tries <= MAX_TRIES; tries++)
4895 {
4896 /* This can loop forever if the remote side sends us characters
4897 continuously, but if it pauses, we'll get a zero from
4898 readchar because of timeout. Then we'll count that as a
4899 retry. */
4900
4901 /* Note that we will only wait forever prior to the start of a
4902 packet. After that, we expect characters to arrive at a
4903 brisk pace. They should show up within remote_timeout
4904 intervals. */
4905
4906 do
4907 {
4908 c = readchar (timeout);
4909
4910 if (c == SERIAL_TIMEOUT)
4911 {
4912 if (forever) /* Watchdog went off? Kill the target. */
4913 {
4914 QUIT;
4915 target_mourn_inferior ();
4916 error (_("Watchdog has expired. Target detached."));
4917 }
4918 if (remote_debug)
4919 fputs_filtered ("Timed out.\n", gdb_stdlog);
4920 goto retry;
4921 }
4922 }
4923 while (c != '$');
4924
4925 /* We've found the start of a packet, now collect the data. */
4926
4927 val = read_frame (buf, sizeof_buf);
4928
4929 if (val >= 0)
4930 {
4931 if (remote_debug)
4932 {
4933 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4934 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
4935 fprintf_unfiltered (gdb_stdlog, "\n");
4936 }
4937 serial_write (remote_desc, "+", 1);
4938 return val;
4939 }
4940
4941 /* Try the whole thing again. */
4942 retry:
4943 serial_write (remote_desc, "-", 1);
4944 }
4945
4946 /* We have tried hard enough, and just can't receive the packet.
4947 Give up. */
4948
4949 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
4950 serial_write (remote_desc, "+", 1);
4951 return -1;
4952 }
4953 \f
4954 static void
4955 remote_kill (void)
4956 {
4957 /* For some mysterious reason, wait_for_inferior calls kill instead of
4958 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4959 if (kill_kludge)
4960 {
4961 kill_kludge = 0;
4962 target_mourn_inferior ();
4963 return;
4964 }
4965
4966 /* Use catch_errors so the user can quit from gdb even when we aren't on
4967 speaking terms with the remote system. */
4968 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4969
4970 /* Don't wait for it to die. I'm not really sure it matters whether
4971 we do or not. For the existing stubs, kill is a noop. */
4972 target_mourn_inferior ();
4973 }
4974
4975 /* Async version of remote_kill. */
4976 static void
4977 remote_async_kill (void)
4978 {
4979 /* Unregister the file descriptor from the event loop. */
4980 if (target_is_async_p ())
4981 serial_async (remote_desc, NULL, 0);
4982
4983 /* For some mysterious reason, wait_for_inferior calls kill instead of
4984 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4985 if (kill_kludge)
4986 {
4987 kill_kludge = 0;
4988 target_mourn_inferior ();
4989 return;
4990 }
4991
4992 /* Use catch_errors so the user can quit from gdb even when we
4993 aren't on speaking terms with the remote system. */
4994 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4995
4996 /* Don't wait for it to die. I'm not really sure it matters whether
4997 we do or not. For the existing stubs, kill is a noop. */
4998 target_mourn_inferior ();
4999 }
5000
5001 static void
5002 remote_mourn (void)
5003 {
5004 remote_mourn_1 (&remote_ops);
5005 }
5006
5007 static void
5008 remote_async_mourn (void)
5009 {
5010 remote_mourn_1 (&remote_async_ops);
5011 }
5012
5013 static void
5014 extended_remote_mourn (void)
5015 {
5016 /* We do _not_ want to mourn the target like this; this will
5017 remove the extended remote target from the target stack,
5018 and the next time the user says "run" it'll fail.
5019
5020 FIXME: What is the right thing to do here? */
5021 #if 0
5022 remote_mourn_1 (&extended_remote_ops);
5023 #endif
5024 }
5025
5026 /* Worker function for remote_mourn. */
5027 static void
5028 remote_mourn_1 (struct target_ops *target)
5029 {
5030 unpush_target (target);
5031 generic_mourn_inferior ();
5032 }
5033
5034 /* In the extended protocol we want to be able to do things like
5035 "run" and have them basically work as expected. So we need
5036 a special create_inferior function.
5037
5038 FIXME: One day add support for changing the exec file
5039 we're debugging, arguments and an environment. */
5040
5041 static void
5042 extended_remote_create_inferior (char *exec_file, char *args,
5043 char **env, int from_tty)
5044 {
5045 /* Rip out the breakpoints; we'll reinsert them after restarting
5046 the remote server. */
5047 remove_breakpoints ();
5048
5049 /* Now restart the remote server. */
5050 extended_remote_restart ();
5051
5052 /* NOTE: We don't need to recheck for a target description here; but
5053 if we gain the ability to switch the remote executable we may
5054 need to, if for instance we are running a process which requested
5055 different emulated hardware from the operating system. A
5056 concrete example of this is ARM GNU/Linux, where some binaries
5057 will have a legacy FPA coprocessor emulated and others may have
5058 access to a hardware VFP unit. */
5059
5060 /* Now put the breakpoints back in. This way we're safe if the
5061 restart function works via a unix fork on the remote side. */
5062 insert_breakpoints ();
5063
5064 /* Clean up from the last time we were running. */
5065 clear_proceed_status ();
5066 }
5067
5068 /* Async version of extended_remote_create_inferior. */
5069 static void
5070 extended_remote_async_create_inferior (char *exec_file, char *args,
5071 char **env, int from_tty)
5072 {
5073 /* Rip out the breakpoints; we'll reinsert them after restarting
5074 the remote server. */
5075 remove_breakpoints ();
5076
5077 /* If running asynchronously, register the target file descriptor
5078 with the event loop. */
5079 if (target_can_async_p ())
5080 target_async (inferior_event_handler, 0);
5081
5082 /* Now restart the remote server. */
5083 extended_remote_restart ();
5084
5085 /* NOTE: We don't need to recheck for a target description here; but
5086 if we gain the ability to switch the remote executable we may
5087 need to, if for instance we are running a process which requested
5088 different emulated hardware from the operating system. A
5089 concrete example of this is ARM GNU/Linux, where some binaries
5090 will have a legacy FPA coprocessor emulated and others may have
5091 access to a hardware VFP unit. */
5092
5093 /* Now put the breakpoints back in. This way we're safe if the
5094 restart function works via a unix fork on the remote side. */
5095 insert_breakpoints ();
5096
5097 /* Clean up from the last time we were running. */
5098 clear_proceed_status ();
5099 }
5100 \f
5101
5102 /* Insert a breakpoint. On targets that have software breakpoint
5103 support, we ask the remote target to do the work; on targets
5104 which don't, we insert a traditional memory breakpoint. */
5105
5106 static int
5107 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
5108 {
5109 CORE_ADDR addr = bp_tgt->placed_address;
5110 struct remote_state *rs = get_remote_state ();
5111
5112 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
5113 If it succeeds, then set the support to PACKET_ENABLE. If it
5114 fails, and the user has explicitly requested the Z support then
5115 report an error, otherwise, mark it disabled and go on. */
5116
5117 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5118 {
5119 char *p = rs->buf;
5120
5121 *(p++) = 'Z';
5122 *(p++) = '0';
5123 *(p++) = ',';
5124 BREAKPOINT_FROM_PC (&bp_tgt->placed_address, &bp_tgt->placed_size);
5125 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5126 p += hexnumstr (p, addr);
5127 sprintf (p, ",%d", bp_tgt->placed_size);
5128
5129 putpkt (rs->buf);
5130 getpkt (&rs->buf, &rs->buf_size, 0);
5131
5132 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
5133 {
5134 case PACKET_ERROR:
5135 return -1;
5136 case PACKET_OK:
5137 return 0;
5138 case PACKET_UNKNOWN:
5139 break;
5140 }
5141 }
5142
5143 return memory_insert_breakpoint (bp_tgt);
5144 }
5145
5146 static int
5147 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
5148 {
5149 CORE_ADDR addr = bp_tgt->placed_address;
5150 struct remote_state *rs = get_remote_state ();
5151 int bp_size;
5152
5153 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5154 {
5155 char *p = rs->buf;
5156
5157 *(p++) = 'z';
5158 *(p++) = '0';
5159 *(p++) = ',';
5160
5161 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5162 p += hexnumstr (p, addr);
5163 sprintf (p, ",%d", bp_tgt->placed_size);
5164
5165 putpkt (rs->buf);
5166 getpkt (&rs->buf, &rs->buf_size, 0);
5167
5168 return (rs->buf[0] == 'E');
5169 }
5170
5171 return memory_remove_breakpoint (bp_tgt);
5172 }
5173
5174 static int
5175 watchpoint_to_Z_packet (int type)
5176 {
5177 switch (type)
5178 {
5179 case hw_write:
5180 return Z_PACKET_WRITE_WP;
5181 break;
5182 case hw_read:
5183 return Z_PACKET_READ_WP;
5184 break;
5185 case hw_access:
5186 return Z_PACKET_ACCESS_WP;
5187 break;
5188 default:
5189 internal_error (__FILE__, __LINE__,
5190 _("hw_bp_to_z: bad watchpoint type %d"), type);
5191 }
5192 }
5193
5194 static int
5195 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
5196 {
5197 struct remote_state *rs = get_remote_state ();
5198 char *p;
5199 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5200
5201 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5202 return -1;
5203
5204 sprintf (rs->buf, "Z%x,", packet);
5205 p = strchr (rs->buf, '\0');
5206 addr = remote_address_masked (addr);
5207 p += hexnumstr (p, (ULONGEST) addr);
5208 sprintf (p, ",%x", len);
5209
5210 putpkt (rs->buf);
5211 getpkt (&rs->buf, &rs->buf_size, 0);
5212
5213 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5214 {
5215 case PACKET_ERROR:
5216 case PACKET_UNKNOWN:
5217 return -1;
5218 case PACKET_OK:
5219 return 0;
5220 }
5221 internal_error (__FILE__, __LINE__,
5222 _("remote_insert_watchpoint: reached end of function"));
5223 }
5224
5225
5226 static int
5227 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
5228 {
5229 struct remote_state *rs = get_remote_state ();
5230 char *p;
5231 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5232
5233 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5234 return -1;
5235
5236 sprintf (rs->buf, "z%x,", packet);
5237 p = strchr (rs->buf, '\0');
5238 addr = remote_address_masked (addr);
5239 p += hexnumstr (p, (ULONGEST) addr);
5240 sprintf (p, ",%x", len);
5241 putpkt (rs->buf);
5242 getpkt (&rs->buf, &rs->buf_size, 0);
5243
5244 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5245 {
5246 case PACKET_ERROR:
5247 case PACKET_UNKNOWN:
5248 return -1;
5249 case PACKET_OK:
5250 return 0;
5251 }
5252 internal_error (__FILE__, __LINE__,
5253 _("remote_remove_watchpoint: reached end of function"));
5254 }
5255
5256
5257 int remote_hw_watchpoint_limit = -1;
5258 int remote_hw_breakpoint_limit = -1;
5259
5260 static int
5261 remote_check_watch_resources (int type, int cnt, int ot)
5262 {
5263 if (type == bp_hardware_breakpoint)
5264 {
5265 if (remote_hw_breakpoint_limit == 0)
5266 return 0;
5267 else if (remote_hw_breakpoint_limit < 0)
5268 return 1;
5269 else if (cnt <= remote_hw_breakpoint_limit)
5270 return 1;
5271 }
5272 else
5273 {
5274 if (remote_hw_watchpoint_limit == 0)
5275 return 0;
5276 else if (remote_hw_watchpoint_limit < 0)
5277 return 1;
5278 else if (ot)
5279 return -1;
5280 else if (cnt <= remote_hw_watchpoint_limit)
5281 return 1;
5282 }
5283 return -1;
5284 }
5285
5286 static int
5287 remote_stopped_by_watchpoint (void)
5288 {
5289 return remote_stopped_by_watchpoint_p;
5290 }
5291
5292 extern int stepped_after_stopped_by_watchpoint;
5293
5294 static int
5295 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
5296 {
5297 int rc = 0;
5298 if (remote_stopped_by_watchpoint ()
5299 || stepped_after_stopped_by_watchpoint)
5300 {
5301 *addr_p = remote_watch_data_address;
5302 rc = 1;
5303 }
5304
5305 return rc;
5306 }
5307
5308
5309 static int
5310 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
5311 {
5312 CORE_ADDR addr;
5313 struct remote_state *rs = get_remote_state ();
5314 char *p = rs->buf;
5315
5316 /* The length field should be set to the size of a breakpoint
5317 instruction, even though we aren't inserting one ourselves. */
5318
5319 BREAKPOINT_FROM_PC (&bp_tgt->placed_address, &bp_tgt->placed_size);
5320
5321 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5322 return -1;
5323
5324 *(p++) = 'Z';
5325 *(p++) = '1';
5326 *(p++) = ',';
5327
5328 addr = remote_address_masked (bp_tgt->placed_address);
5329 p += hexnumstr (p, (ULONGEST) addr);
5330 sprintf (p, ",%x", bp_tgt->placed_size);
5331
5332 putpkt (rs->buf);
5333 getpkt (&rs->buf, &rs->buf_size, 0);
5334
5335 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5336 {
5337 case PACKET_ERROR:
5338 case PACKET_UNKNOWN:
5339 return -1;
5340 case PACKET_OK:
5341 return 0;
5342 }
5343 internal_error (__FILE__, __LINE__,
5344 _("remote_insert_hw_breakpoint: reached end of function"));
5345 }
5346
5347
5348 static int
5349 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
5350 {
5351 CORE_ADDR addr;
5352 struct remote_state *rs = get_remote_state ();
5353 char *p = rs->buf;
5354
5355 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5356 return -1;
5357
5358 *(p++) = 'z';
5359 *(p++) = '1';
5360 *(p++) = ',';
5361
5362 addr = remote_address_masked (bp_tgt->placed_address);
5363 p += hexnumstr (p, (ULONGEST) addr);
5364 sprintf (p, ",%x", bp_tgt->placed_size);
5365
5366 putpkt (rs->buf);
5367 getpkt (&rs->buf, &rs->buf_size, 0);
5368
5369 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5370 {
5371 case PACKET_ERROR:
5372 case PACKET_UNKNOWN:
5373 return -1;
5374 case PACKET_OK:
5375 return 0;
5376 }
5377 internal_error (__FILE__, __LINE__,
5378 _("remote_remove_hw_breakpoint: reached end of function"));
5379 }
5380
5381 /* Some targets are only capable of doing downloads, and afterwards
5382 they switch to the remote serial protocol. This function provides
5383 a clean way to get from the download target to the remote target.
5384 It's basically just a wrapper so that we don't have to expose any
5385 of the internal workings of remote.c.
5386
5387 Prior to calling this routine, you should shutdown the current
5388 target code, else you will get the "A program is being debugged
5389 already..." message. Usually a call to pop_target() suffices. */
5390
5391 void
5392 push_remote_target (char *name, int from_tty)
5393 {
5394 printf_filtered (_("Switching to remote protocol\n"));
5395 remote_open (name, from_tty);
5396 }
5397
5398 /* Table used by the crc32 function to calcuate the checksum. */
5399
5400 static unsigned long crc32_table[256] =
5401 {0, 0};
5402
5403 static unsigned long
5404 crc32 (unsigned char *buf, int len, unsigned int crc)
5405 {
5406 if (!crc32_table[1])
5407 {
5408 /* Initialize the CRC table and the decoding table. */
5409 int i, j;
5410 unsigned int c;
5411
5412 for (i = 0; i < 256; i++)
5413 {
5414 for (c = i << 24, j = 8; j > 0; --j)
5415 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5416 crc32_table[i] = c;
5417 }
5418 }
5419
5420 while (len--)
5421 {
5422 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5423 buf++;
5424 }
5425 return crc;
5426 }
5427
5428 /* compare-sections command
5429
5430 With no arguments, compares each loadable section in the exec bfd
5431 with the same memory range on the target, and reports mismatches.
5432 Useful for verifying the image on the target against the exec file.
5433 Depends on the target understanding the new "qCRC:" request. */
5434
5435 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5436 target method (target verify memory) and generic version of the
5437 actual command. This will allow other high-level code (especially
5438 generic_load()) to make use of this target functionality. */
5439
5440 static void
5441 compare_sections_command (char *args, int from_tty)
5442 {
5443 struct remote_state *rs = get_remote_state ();
5444 asection *s;
5445 unsigned long host_crc, target_crc;
5446 extern bfd *exec_bfd;
5447 struct cleanup *old_chain;
5448 char *tmp;
5449 char *sectdata;
5450 const char *sectname;
5451 bfd_size_type size;
5452 bfd_vma lma;
5453 int matched = 0;
5454 int mismatched = 0;
5455
5456 if (!exec_bfd)
5457 error (_("command cannot be used without an exec file"));
5458 if (!current_target.to_shortname ||
5459 strcmp (current_target.to_shortname, "remote") != 0)
5460 error (_("command can only be used with remote target"));
5461
5462 for (s = exec_bfd->sections; s; s = s->next)
5463 {
5464 if (!(s->flags & SEC_LOAD))
5465 continue; /* skip non-loadable section */
5466
5467 size = bfd_get_section_size (s);
5468 if (size == 0)
5469 continue; /* skip zero-length section */
5470
5471 sectname = bfd_get_section_name (exec_bfd, s);
5472 if (args && strcmp (args, sectname) != 0)
5473 continue; /* not the section selected by user */
5474
5475 matched = 1; /* do this section */
5476 lma = s->lma;
5477 /* FIXME: assumes lma can fit into long. */
5478 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
5479 (long) lma, (long) size);
5480 putpkt (rs->buf);
5481
5482 /* Be clever; compute the host_crc before waiting for target
5483 reply. */
5484 sectdata = xmalloc (size);
5485 old_chain = make_cleanup (xfree, sectdata);
5486 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5487 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5488
5489 getpkt (&rs->buf, &rs->buf_size, 0);
5490 if (rs->buf[0] == 'E')
5491 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
5492 sectname, paddr (lma), paddr (lma + size));
5493 if (rs->buf[0] != 'C')
5494 error (_("remote target does not support this operation"));
5495
5496 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
5497 target_crc = target_crc * 16 + fromhex (*tmp);
5498
5499 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5500 sectname, paddr (lma), paddr (lma + size));
5501 if (host_crc == target_crc)
5502 printf_filtered ("matched.\n");
5503 else
5504 {
5505 printf_filtered ("MIS-MATCHED!\n");
5506 mismatched++;
5507 }
5508
5509 do_cleanups (old_chain);
5510 }
5511 if (mismatched > 0)
5512 warning (_("One or more sections of the remote executable does not match\n\
5513 the loaded file\n"));
5514 if (args && !matched)
5515 printf_filtered (_("No loaded section named '%s'.\n"), args);
5516 }
5517
5518 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
5519 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
5520 number of bytes read is returned, or 0 for EOF, or -1 for error.
5521 The number of bytes read may be less than LEN without indicating an
5522 EOF. PACKET is checked and updated to indicate whether the remote
5523 target supports this object. */
5524
5525 static LONGEST
5526 remote_read_qxfer (struct target_ops *ops, const char *object_name,
5527 const char *annex,
5528 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
5529 struct packet_config *packet)
5530 {
5531 static char *finished_object;
5532 static char *finished_annex;
5533 static ULONGEST finished_offset;
5534
5535 struct remote_state *rs = get_remote_state ();
5536 unsigned int total = 0;
5537 LONGEST i, n, packet_len;
5538
5539 if (packet->support == PACKET_DISABLE)
5540 return -1;
5541
5542 /* Check whether we've cached an end-of-object packet that matches
5543 this request. */
5544 if (finished_object)
5545 {
5546 if (strcmp (object_name, finished_object) == 0
5547 && strcmp (annex ? annex : "", finished_annex) == 0
5548 && offset == finished_offset)
5549 return 0;
5550
5551 /* Otherwise, we're now reading something different. Discard
5552 the cache. */
5553 xfree (finished_object);
5554 xfree (finished_annex);
5555 finished_object = NULL;
5556 finished_annex = NULL;
5557 }
5558
5559 /* Request only enough to fit in a single packet. The actual data
5560 may not, since we don't know how much of it will need to be escaped;
5561 the target is free to respond with slightly less data. We subtract
5562 five to account for the response type and the protocol frame. */
5563 n = min (get_remote_packet_size () - 5, len);
5564 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
5565 object_name, annex ? annex : "",
5566 phex_nz (offset, sizeof offset),
5567 phex_nz (n, sizeof n));
5568 i = putpkt (rs->buf);
5569 if (i < 0)
5570 return -1;
5571
5572 rs->buf[0] = '\0';
5573 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
5574 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
5575 return -1;
5576
5577 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
5578 error (_("Unknown remote qXfer reply: %s"), rs->buf);
5579
5580 /* 'm' means there is (or at least might be) more data after this
5581 batch. That does not make sense unless there's at least one byte
5582 of data in this reply. */
5583 if (rs->buf[0] == 'm' && packet_len == 1)
5584 error (_("Remote qXfer reply contained no data."));
5585
5586 /* Got some data. */
5587 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
5588
5589 /* 'l' is an EOF marker, possibly including a final block of data,
5590 or possibly empty. Record it to bypass the next read, if one is
5591 issued. */
5592 if (rs->buf[0] == 'l')
5593 {
5594 finished_object = xstrdup (object_name);
5595 finished_annex = xstrdup (annex ? annex : "");
5596 finished_offset = offset + i;
5597 }
5598
5599 return i;
5600 }
5601
5602 static LONGEST
5603 remote_xfer_partial (struct target_ops *ops, enum target_object object,
5604 const char *annex, gdb_byte *readbuf,
5605 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5606 {
5607 struct remote_state *rs = get_remote_state ();
5608 int i;
5609 char *p2;
5610 char query_type;
5611
5612 /* Handle memory using the standard memory routines. */
5613 if (object == TARGET_OBJECT_MEMORY)
5614 {
5615 int xfered;
5616 errno = 0;
5617
5618 if (writebuf != NULL)
5619 xfered = remote_write_bytes (offset, writebuf, len);
5620 else
5621 xfered = remote_read_bytes (offset, readbuf, len);
5622
5623 if (xfered > 0)
5624 return xfered;
5625 else if (xfered == 0 && errno == 0)
5626 return 0;
5627 else
5628 return -1;
5629 }
5630
5631 /* Only handle flash writes. */
5632 if (writebuf != NULL)
5633 {
5634 LONGEST xfered;
5635
5636 switch (object)
5637 {
5638 case TARGET_OBJECT_FLASH:
5639 xfered = remote_flash_write (ops, offset, len, writebuf);
5640
5641 if (xfered > 0)
5642 return xfered;
5643 else if (xfered == 0 && errno == 0)
5644 return 0;
5645 else
5646 return -1;
5647
5648 default:
5649 return -1;
5650 }
5651 }
5652
5653 /* Map pre-existing objects onto letters. DO NOT do this for new
5654 objects!!! Instead specify new query packets. */
5655 switch (object)
5656 {
5657 case TARGET_OBJECT_AVR:
5658 query_type = 'R';
5659 break;
5660
5661 case TARGET_OBJECT_AUXV:
5662 gdb_assert (annex == NULL);
5663 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
5664 &remote_protocol_packets[PACKET_qXfer_auxv]);
5665
5666 case TARGET_OBJECT_AVAILABLE_FEATURES:
5667 return remote_read_qxfer
5668 (ops, "features", annex, readbuf, offset, len,
5669 &remote_protocol_packets[PACKET_qXfer_features]);
5670
5671 case TARGET_OBJECT_MEMORY_MAP:
5672 gdb_assert (annex == NULL);
5673 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
5674 &remote_protocol_packets[PACKET_qXfer_memory_map]);
5675
5676 default:
5677 return -1;
5678 }
5679
5680 /* Note: a zero OFFSET and LEN can be used to query the minimum
5681 buffer size. */
5682 if (offset == 0 && len == 0)
5683 return (get_remote_packet_size ());
5684 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
5685 large enough let the caller deal with it. */
5686 if (len < get_remote_packet_size ())
5687 return -1;
5688 len = get_remote_packet_size ();
5689
5690 /* Except for querying the minimum buffer size, target must be open. */
5691 if (!remote_desc)
5692 error (_("remote query is only available after target open"));
5693
5694 gdb_assert (annex != NULL);
5695 gdb_assert (readbuf != NULL);
5696
5697 p2 = rs->buf;
5698 *p2++ = 'q';
5699 *p2++ = query_type;
5700
5701 /* We used one buffer char for the remote protocol q command and
5702 another for the query type. As the remote protocol encapsulation
5703 uses 4 chars plus one extra in case we are debugging
5704 (remote_debug), we have PBUFZIZ - 7 left to pack the query
5705 string. */
5706 i = 0;
5707 while (annex[i] && (i < (get_remote_packet_size () - 8)))
5708 {
5709 /* Bad caller may have sent forbidden characters. */
5710 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
5711 *p2++ = annex[i];
5712 i++;
5713 }
5714 *p2 = '\0';
5715 gdb_assert (annex[i] == '\0');
5716
5717 i = putpkt (rs->buf);
5718 if (i < 0)
5719 return i;
5720
5721 getpkt (&rs->buf, &rs->buf_size, 0);
5722 strcpy ((char *) readbuf, rs->buf);
5723
5724 return strlen ((char *) readbuf);
5725 }
5726
5727 static void
5728 remote_rcmd (char *command,
5729 struct ui_file *outbuf)
5730 {
5731 struct remote_state *rs = get_remote_state ();
5732 char *p = rs->buf;
5733
5734 if (!remote_desc)
5735 error (_("remote rcmd is only available after target open"));
5736
5737 /* Send a NULL command across as an empty command. */
5738 if (command == NULL)
5739 command = "";
5740
5741 /* The query prefix. */
5742 strcpy (rs->buf, "qRcmd,");
5743 p = strchr (rs->buf, '\0');
5744
5745 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
5746 error (_("\"monitor\" command ``%s'' is too long."), command);
5747
5748 /* Encode the actual command. */
5749 bin2hex ((gdb_byte *) command, p, 0);
5750
5751 if (putpkt (rs->buf) < 0)
5752 error (_("Communication problem with target."));
5753
5754 /* get/display the response */
5755 while (1)
5756 {
5757 char *buf;
5758
5759 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
5760 rs->buf[0] = '\0';
5761 getpkt (&rs->buf, &rs->buf_size, 0);
5762 buf = rs->buf;
5763 if (buf[0] == '\0')
5764 error (_("Target does not support this command."));
5765 if (buf[0] == 'O' && buf[1] != 'K')
5766 {
5767 remote_console_output (buf + 1); /* 'O' message from stub. */
5768 continue;
5769 }
5770 if (strcmp (buf, "OK") == 0)
5771 break;
5772 if (strlen (buf) == 3 && buf[0] == 'E'
5773 && isdigit (buf[1]) && isdigit (buf[2]))
5774 {
5775 error (_("Protocol error with Rcmd"));
5776 }
5777 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5778 {
5779 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5780 fputc_unfiltered (c, outbuf);
5781 }
5782 break;
5783 }
5784 }
5785
5786 static VEC(mem_region_s) *
5787 remote_memory_map (struct target_ops *ops)
5788 {
5789 VEC(mem_region_s) *result = NULL;
5790 char *text = target_read_stralloc (&current_target,
5791 TARGET_OBJECT_MEMORY_MAP, NULL);
5792
5793 if (text)
5794 {
5795 struct cleanup *back_to = make_cleanup (xfree, text);
5796 result = parse_memory_map (text);
5797 do_cleanups (back_to);
5798 }
5799
5800 return result;
5801 }
5802
5803 static void
5804 packet_command (char *args, int from_tty)
5805 {
5806 struct remote_state *rs = get_remote_state ();
5807
5808 if (!remote_desc)
5809 error (_("command can only be used with remote target"));
5810
5811 if (!args)
5812 error (_("remote-packet command requires packet text as argument"));
5813
5814 puts_filtered ("sending: ");
5815 print_packet (args);
5816 puts_filtered ("\n");
5817 putpkt (args);
5818
5819 getpkt (&rs->buf, &rs->buf_size, 0);
5820 puts_filtered ("received: ");
5821 print_packet (rs->buf);
5822 puts_filtered ("\n");
5823 }
5824
5825 #if 0
5826 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
5827
5828 static void display_thread_info (struct gdb_ext_thread_info *info);
5829
5830 static void threadset_test_cmd (char *cmd, int tty);
5831
5832 static void threadalive_test (char *cmd, int tty);
5833
5834 static void threadlist_test_cmd (char *cmd, int tty);
5835
5836 int get_and_display_threadinfo (threadref *ref);
5837
5838 static void threadinfo_test_cmd (char *cmd, int tty);
5839
5840 static int thread_display_step (threadref *ref, void *context);
5841
5842 static void threadlist_update_test_cmd (char *cmd, int tty);
5843
5844 static void init_remote_threadtests (void);
5845
5846 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
5847
5848 static void
5849 threadset_test_cmd (char *cmd, int tty)
5850 {
5851 int sample_thread = SAMPLE_THREAD;
5852
5853 printf_filtered (_("Remote threadset test\n"));
5854 set_thread (sample_thread, 1);
5855 }
5856
5857
5858 static void
5859 threadalive_test (char *cmd, int tty)
5860 {
5861 int sample_thread = SAMPLE_THREAD;
5862
5863 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5864 printf_filtered ("PASS: Thread alive test\n");
5865 else
5866 printf_filtered ("FAIL: Thread alive test\n");
5867 }
5868
5869 void output_threadid (char *title, threadref *ref);
5870
5871 void
5872 output_threadid (char *title, threadref *ref)
5873 {
5874 char hexid[20];
5875
5876 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
5877 hexid[16] = 0;
5878 printf_filtered ("%s %s\n", title, (&hexid[0]));
5879 }
5880
5881 static void
5882 threadlist_test_cmd (char *cmd, int tty)
5883 {
5884 int startflag = 1;
5885 threadref nextthread;
5886 int done, result_count;
5887 threadref threadlist[3];
5888
5889 printf_filtered ("Remote Threadlist test\n");
5890 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5891 &result_count, &threadlist[0]))
5892 printf_filtered ("FAIL: threadlist test\n");
5893 else
5894 {
5895 threadref *scan = threadlist;
5896 threadref *limit = scan + result_count;
5897
5898 while (scan < limit)
5899 output_threadid (" thread ", scan++);
5900 }
5901 }
5902
5903 void
5904 display_thread_info (struct gdb_ext_thread_info *info)
5905 {
5906 output_threadid ("Threadid: ", &info->threadid);
5907 printf_filtered ("Name: %s\n ", info->shortname);
5908 printf_filtered ("State: %s\n", info->display);
5909 printf_filtered ("other: %s\n\n", info->more_display);
5910 }
5911
5912 int
5913 get_and_display_threadinfo (threadref *ref)
5914 {
5915 int result;
5916 int set;
5917 struct gdb_ext_thread_info threadinfo;
5918
5919 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5920 | TAG_MOREDISPLAY | TAG_DISPLAY;
5921 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5922 display_thread_info (&threadinfo);
5923 return result;
5924 }
5925
5926 static void
5927 threadinfo_test_cmd (char *cmd, int tty)
5928 {
5929 int athread = SAMPLE_THREAD;
5930 threadref thread;
5931 int set;
5932
5933 int_to_threadref (&thread, athread);
5934 printf_filtered ("Remote Threadinfo test\n");
5935 if (!get_and_display_threadinfo (&thread))
5936 printf_filtered ("FAIL cannot get thread info\n");
5937 }
5938
5939 static int
5940 thread_display_step (threadref *ref, void *context)
5941 {
5942 /* output_threadid(" threadstep ",ref); *//* simple test */
5943 return get_and_display_threadinfo (ref);
5944 }
5945
5946 static void
5947 threadlist_update_test_cmd (char *cmd, int tty)
5948 {
5949 printf_filtered ("Remote Threadlist update test\n");
5950 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5951 }
5952
5953 static void
5954 init_remote_threadtests (void)
5955 {
5956 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
5957 Fetch and print the remote list of thread identifiers, one pkt only"));
5958 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
5959 _("Fetch and display info about one thread"));
5960 add_com ("tset", class_obscure, threadset_test_cmd,
5961 _("Test setting to a different thread"));
5962 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
5963 _("Iterate through updating all remote thread info"));
5964 add_com ("talive", class_obscure, threadalive_test,
5965 _(" Remote thread alive test "));
5966 }
5967
5968 #endif /* 0 */
5969
5970 /* Convert a thread ID to a string. Returns the string in a static
5971 buffer. */
5972
5973 static char *
5974 remote_pid_to_str (ptid_t ptid)
5975 {
5976 static char buf[32];
5977
5978 xsnprintf (buf, sizeof buf, "Thread %d", ptid_get_pid (ptid));
5979 return buf;
5980 }
5981
5982 /* Get the address of the thread local variable in OBJFILE which is
5983 stored at OFFSET within the thread local storage for thread PTID. */
5984
5985 static CORE_ADDR
5986 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
5987 {
5988 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
5989 {
5990 struct remote_state *rs = get_remote_state ();
5991 char *p = rs->buf;
5992 enum packet_result result;
5993
5994 strcpy (p, "qGetTLSAddr:");
5995 p += strlen (p);
5996 p += hexnumstr (p, PIDGET (ptid));
5997 *p++ = ',';
5998 p += hexnumstr (p, offset);
5999 *p++ = ',';
6000 p += hexnumstr (p, lm);
6001 *p++ = '\0';
6002
6003 putpkt (rs->buf);
6004 getpkt (&rs->buf, &rs->buf_size, 0);
6005 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
6006 if (result == PACKET_OK)
6007 {
6008 ULONGEST result;
6009
6010 unpack_varlen_hex (rs->buf, &result);
6011 return result;
6012 }
6013 else if (result == PACKET_UNKNOWN)
6014 throw_error (TLS_GENERIC_ERROR,
6015 _("Remote target doesn't support qGetTLSAddr packet"));
6016 else
6017 throw_error (TLS_GENERIC_ERROR,
6018 _("Remote target failed to process qGetTLSAddr request"));
6019 }
6020 else
6021 throw_error (TLS_GENERIC_ERROR,
6022 _("TLS not supported or disabled on this target"));
6023 /* Not reached. */
6024 return 0;
6025 }
6026
6027 /* Support for inferring a target description based on the current
6028 architecture and the size of a 'g' packet. While the 'g' packet
6029 can have any size (since optional registers can be left off the
6030 end), some sizes are easily recognizable given knowledge of the
6031 approximate architecture. */
6032
6033 struct remote_g_packet_guess
6034 {
6035 int bytes;
6036 const struct target_desc *tdesc;
6037 };
6038 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
6039 DEF_VEC_O(remote_g_packet_guess_s);
6040
6041 struct remote_g_packet_data
6042 {
6043 VEC(remote_g_packet_guess_s) *guesses;
6044 };
6045
6046 static struct gdbarch_data *remote_g_packet_data_handle;
6047
6048 static void *
6049 remote_g_packet_data_init (struct obstack *obstack)
6050 {
6051 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
6052 }
6053
6054 void
6055 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
6056 const struct target_desc *tdesc)
6057 {
6058 struct remote_g_packet_data *data
6059 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
6060 struct remote_g_packet_guess new_guess, *guess;
6061 int ix;
6062
6063 gdb_assert (tdesc != NULL);
6064
6065 for (ix = 0;
6066 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6067 ix++)
6068 if (guess->bytes == bytes)
6069 internal_error (__FILE__, __LINE__,
6070 "Duplicate g packet description added for size %d",
6071 bytes);
6072
6073 new_guess.bytes = bytes;
6074 new_guess.tdesc = tdesc;
6075 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
6076 }
6077
6078 static const struct target_desc *
6079 remote_read_description (struct target_ops *target)
6080 {
6081 struct remote_g_packet_data *data
6082 = gdbarch_data (current_gdbarch, remote_g_packet_data_handle);
6083
6084 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
6085 {
6086 struct remote_g_packet_guess *guess;
6087 int ix;
6088 int bytes = send_g_packet ();
6089
6090 for (ix = 0;
6091 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6092 ix++)
6093 if (guess->bytes == bytes)
6094 return guess->tdesc;
6095
6096 /* We discard the g packet. A minor optimization would be to
6097 hold on to it, and fill the register cache once we have selected
6098 an architecture, but it's too tricky to do safely. */
6099 }
6100
6101 return NULL;
6102 }
6103
6104 static void
6105 init_remote_ops (void)
6106 {
6107 remote_ops.to_shortname = "remote";
6108 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
6109 remote_ops.to_doc =
6110 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6111 Specify the serial device it is connected to\n\
6112 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
6113 remote_ops.to_open = remote_open;
6114 remote_ops.to_close = remote_close;
6115 remote_ops.to_detach = remote_detach;
6116 remote_ops.to_disconnect = remote_disconnect;
6117 remote_ops.to_resume = remote_resume;
6118 remote_ops.to_wait = remote_wait;
6119 remote_ops.to_fetch_registers = remote_fetch_registers;
6120 remote_ops.to_store_registers = remote_store_registers;
6121 remote_ops.to_prepare_to_store = remote_prepare_to_store;
6122 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
6123 remote_ops.to_files_info = remote_files_info;
6124 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
6125 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
6126 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6127 remote_ops.to_stopped_data_address = remote_stopped_data_address;
6128 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6129 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6130 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6131 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
6132 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
6133 remote_ops.to_kill = remote_kill;
6134 remote_ops.to_load = generic_load;
6135 remote_ops.to_mourn_inferior = remote_mourn;
6136 remote_ops.to_thread_alive = remote_thread_alive;
6137 remote_ops.to_find_new_threads = remote_threads_info;
6138 remote_ops.to_pid_to_str = remote_pid_to_str;
6139 remote_ops.to_extra_thread_info = remote_threads_extra_info;
6140 remote_ops.to_stop = remote_stop;
6141 remote_ops.to_xfer_partial = remote_xfer_partial;
6142 remote_ops.to_rcmd = remote_rcmd;
6143 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
6144 remote_ops.to_stratum = process_stratum;
6145 remote_ops.to_has_all_memory = 1;
6146 remote_ops.to_has_memory = 1;
6147 remote_ops.to_has_stack = 1;
6148 remote_ops.to_has_registers = 1;
6149 remote_ops.to_has_execution = 1;
6150 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6151 remote_ops.to_magic = OPS_MAGIC;
6152 remote_ops.to_memory_map = remote_memory_map;
6153 remote_ops.to_flash_erase = remote_flash_erase;
6154 remote_ops.to_flash_done = remote_flash_done;
6155 remote_ops.to_read_description = remote_read_description;
6156 }
6157
6158 /* Set up the extended remote vector by making a copy of the standard
6159 remote vector and adding to it. */
6160
6161 static void
6162 init_extended_remote_ops (void)
6163 {
6164 extended_remote_ops = remote_ops;
6165
6166 extended_remote_ops.to_shortname = "extended-remote";
6167 extended_remote_ops.to_longname =
6168 "Extended remote serial target in gdb-specific protocol";
6169 extended_remote_ops.to_doc =
6170 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6171 Specify the serial device it is connected to (e.g. /dev/ttya).",
6172 extended_remote_ops.to_open = extended_remote_open;
6173 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
6174 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
6175 }
6176
6177 static int
6178 remote_can_async_p (void)
6179 {
6180 /* We're async whenever the serial device is. */
6181 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
6182 }
6183
6184 static int
6185 remote_is_async_p (void)
6186 {
6187 /* We're async whenever the serial device is. */
6188 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
6189 }
6190
6191 /* Pass the SERIAL event on and up to the client. One day this code
6192 will be able to delay notifying the client of an event until the
6193 point where an entire packet has been received. */
6194
6195 static void (*async_client_callback) (enum inferior_event_type event_type,
6196 void *context);
6197 static void *async_client_context;
6198 static serial_event_ftype remote_async_serial_handler;
6199
6200 static void
6201 remote_async_serial_handler (struct serial *scb, void *context)
6202 {
6203 /* Don't propogate error information up to the client. Instead let
6204 the client find out about the error by querying the target. */
6205 async_client_callback (INF_REG_EVENT, async_client_context);
6206 }
6207
6208 static void
6209 remote_async (void (*callback) (enum inferior_event_type event_type,
6210 void *context), void *context)
6211 {
6212 if (current_target.to_async_mask_value == 0)
6213 internal_error (__FILE__, __LINE__,
6214 _("Calling remote_async when async is masked"));
6215
6216 if (callback != NULL)
6217 {
6218 serial_async (remote_desc, remote_async_serial_handler, NULL);
6219 async_client_callback = callback;
6220 async_client_context = context;
6221 }
6222 else
6223 serial_async (remote_desc, NULL, NULL);
6224 }
6225
6226 /* Target async and target extended-async.
6227
6228 This are temporary targets, until it is all tested. Eventually
6229 async support will be incorporated int the usual 'remote'
6230 target. */
6231
6232 static void
6233 init_remote_async_ops (void)
6234 {
6235 remote_async_ops.to_shortname = "async";
6236 remote_async_ops.to_longname =
6237 "Remote serial target in async version of the gdb-specific protocol";
6238 remote_async_ops.to_doc =
6239 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6240 Specify the serial device it is connected to (e.g. /dev/ttya).";
6241 remote_async_ops.to_open = remote_async_open;
6242 remote_async_ops.to_close = remote_close;
6243 remote_async_ops.to_detach = remote_detach;
6244 remote_async_ops.to_disconnect = remote_disconnect;
6245 remote_async_ops.to_resume = remote_async_resume;
6246 remote_async_ops.to_wait = remote_async_wait;
6247 remote_async_ops.to_fetch_registers = remote_fetch_registers;
6248 remote_async_ops.to_store_registers = remote_store_registers;
6249 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
6250 remote_async_ops.deprecated_xfer_memory = remote_xfer_memory;
6251 remote_async_ops.to_files_info = remote_files_info;
6252 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
6253 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
6254 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6255 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6256 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6257 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
6258 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
6259 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6260 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
6261 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
6262 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
6263 remote_async_ops.to_kill = remote_async_kill;
6264 remote_async_ops.to_load = generic_load;
6265 remote_async_ops.to_mourn_inferior = remote_async_mourn;
6266 remote_async_ops.to_thread_alive = remote_thread_alive;
6267 remote_async_ops.to_find_new_threads = remote_threads_info;
6268 remote_async_ops.to_pid_to_str = remote_pid_to_str;
6269 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
6270 remote_async_ops.to_stop = remote_stop;
6271 remote_async_ops.to_xfer_partial = remote_xfer_partial;
6272 remote_async_ops.to_rcmd = remote_rcmd;
6273 remote_async_ops.to_stratum = process_stratum;
6274 remote_async_ops.to_has_all_memory = 1;
6275 remote_async_ops.to_has_memory = 1;
6276 remote_async_ops.to_has_stack = 1;
6277 remote_async_ops.to_has_registers = 1;
6278 remote_async_ops.to_has_execution = 1;
6279 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6280 remote_async_ops.to_can_async_p = remote_can_async_p;
6281 remote_async_ops.to_is_async_p = remote_is_async_p;
6282 remote_async_ops.to_async = remote_async;
6283 remote_async_ops.to_async_mask_value = 1;
6284 remote_async_ops.to_magic = OPS_MAGIC;
6285 remote_async_ops.to_memory_map = remote_memory_map;
6286 remote_async_ops.to_flash_erase = remote_flash_erase;
6287 remote_async_ops.to_flash_done = remote_flash_done;
6288 remote_ops.to_read_description = remote_read_description;
6289 }
6290
6291 /* Set up the async extended remote vector by making a copy of the standard
6292 remote vector and adding to it. */
6293
6294 static void
6295 init_extended_async_remote_ops (void)
6296 {
6297 extended_async_remote_ops = remote_async_ops;
6298
6299 extended_async_remote_ops.to_shortname = "extended-async";
6300 extended_async_remote_ops.to_longname =
6301 "Extended remote serial target in async gdb-specific protocol";
6302 extended_async_remote_ops.to_doc =
6303 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
6304 Specify the serial device it is connected to (e.g. /dev/ttya).",
6305 extended_async_remote_ops.to_open = extended_remote_async_open;
6306 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
6307 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
6308 }
6309
6310 static void
6311 set_remote_cmd (char *args, int from_tty)
6312 {
6313 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
6314 }
6315
6316 static void
6317 show_remote_cmd (char *args, int from_tty)
6318 {
6319 /* We can't just use cmd_show_list here, because we want to skip
6320 the redundant "show remote Z-packet" and the legacy aliases. */
6321 struct cleanup *showlist_chain;
6322 struct cmd_list_element *list = remote_show_cmdlist;
6323
6324 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
6325 for (; list != NULL; list = list->next)
6326 if (strcmp (list->name, "Z-packet") == 0)
6327 continue;
6328 else if (list->type == not_set_cmd)
6329 /* Alias commands are exactly like the original, except they
6330 don't have the normal type. */
6331 continue;
6332 else
6333 {
6334 struct cleanup *option_chain
6335 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
6336 ui_out_field_string (uiout, "name", list->name);
6337 ui_out_text (uiout, ": ");
6338 if (list->type == show_cmd)
6339 do_setshow_command ((char *) NULL, from_tty, list);
6340 else
6341 cmd_func (list, NULL, from_tty);
6342 /* Close the tuple. */
6343 do_cleanups (option_chain);
6344 }
6345
6346 /* Close the tuple. */
6347 do_cleanups (showlist_chain);
6348 }
6349
6350 static void
6351 build_remote_gdbarch_data (void)
6352 {
6353 remote_address_size = TARGET_ADDR_BIT;
6354 }
6355
6356 /* Function to be called whenever a new objfile (shlib) is detected. */
6357 static void
6358 remote_new_objfile (struct objfile *objfile)
6359 {
6360 if (remote_desc != 0) /* Have a remote connection. */
6361 remote_check_symbols (objfile);
6362 }
6363
6364 void
6365 _initialize_remote (void)
6366 {
6367 struct remote_state *rs;
6368
6369 /* architecture specific data */
6370 remote_gdbarch_data_handle =
6371 gdbarch_data_register_post_init (init_remote_state);
6372 remote_g_packet_data_handle =
6373 gdbarch_data_register_pre_init (remote_g_packet_data_init);
6374
6375 /* Old tacky stuff. NOTE: This comes after the remote protocol so
6376 that the remote protocol has been initialized. */
6377 DEPRECATED_REGISTER_GDBARCH_SWAP (remote_address_size);
6378 deprecated_register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
6379
6380 /* Initialize the per-target state. At the moment there is only one
6381 of these, not one per target. Only one target is active at a
6382 time. The default buffer size is unimportant; it will be expanded
6383 whenever a larger buffer is needed. */
6384 rs = get_remote_state_raw ();
6385 rs->buf_size = 400;
6386 rs->buf = xmalloc (rs->buf_size);
6387
6388 init_remote_ops ();
6389 add_target (&remote_ops);
6390
6391 init_extended_remote_ops ();
6392 add_target (&extended_remote_ops);
6393
6394 init_remote_async_ops ();
6395 add_target (&remote_async_ops);
6396
6397 init_extended_async_remote_ops ();
6398 add_target (&extended_async_remote_ops);
6399
6400 /* Hook into new objfile notification. */
6401 observer_attach_new_objfile (remote_new_objfile);
6402
6403 #if 0
6404 init_remote_threadtests ();
6405 #endif
6406
6407 /* set/show remote ... */
6408
6409 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
6410 Remote protocol specific variables\n\
6411 Configure various remote-protocol specific variables such as\n\
6412 the packets being used"),
6413 &remote_set_cmdlist, "set remote ",
6414 0 /* allow-unknown */, &setlist);
6415 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
6416 Remote protocol specific variables\n\
6417 Configure various remote-protocol specific variables such as\n\
6418 the packets being used"),
6419 &remote_show_cmdlist, "show remote ",
6420 0 /* allow-unknown */, &showlist);
6421
6422 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
6423 Compare section data on target to the exec file.\n\
6424 Argument is a single section name (default: all loaded sections)."),
6425 &cmdlist);
6426
6427 add_cmd ("packet", class_maintenance, packet_command, _("\
6428 Send an arbitrary packet to a remote target.\n\
6429 maintenance packet TEXT\n\
6430 If GDB is talking to an inferior via the GDB serial protocol, then\n\
6431 this command sends the string TEXT to the inferior, and displays the\n\
6432 response packet. GDB supplies the initial `$' character, and the\n\
6433 terminating `#' character and checksum."),
6434 &maintenancelist);
6435
6436 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
6437 Set whether to send break if interrupted."), _("\
6438 Show whether to send break if interrupted."), _("\
6439 If set, a break, instead of a cntrl-c, is sent to the remote target."),
6440 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
6441 &setlist, &showlist);
6442
6443 /* Install commands for configuring memory read/write packets. */
6444
6445 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
6446 Set the maximum number of bytes per memory write packet (deprecated)."),
6447 &setlist);
6448 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
6449 Show the maximum number of bytes per memory write packet (deprecated)."),
6450 &showlist);
6451 add_cmd ("memory-write-packet-size", no_class,
6452 set_memory_write_packet_size, _("\
6453 Set the maximum number of bytes per memory-write packet.\n\
6454 Specify the number of bytes in a packet or 0 (zero) for the\n\
6455 default packet size. The actual limit is further reduced\n\
6456 dependent on the target. Specify ``fixed'' to disable the\n\
6457 further restriction and ``limit'' to enable that restriction."),
6458 &remote_set_cmdlist);
6459 add_cmd ("memory-read-packet-size", no_class,
6460 set_memory_read_packet_size, _("\
6461 Set the maximum number of bytes per memory-read packet.\n\
6462 Specify the number of bytes in a packet or 0 (zero) for the\n\
6463 default packet size. The actual limit is further reduced\n\
6464 dependent on the target. Specify ``fixed'' to disable the\n\
6465 further restriction and ``limit'' to enable that restriction."),
6466 &remote_set_cmdlist);
6467 add_cmd ("memory-write-packet-size", no_class,
6468 show_memory_write_packet_size,
6469 _("Show the maximum number of bytes per memory-write packet."),
6470 &remote_show_cmdlist);
6471 add_cmd ("memory-read-packet-size", no_class,
6472 show_memory_read_packet_size,
6473 _("Show the maximum number of bytes per memory-read packet."),
6474 &remote_show_cmdlist);
6475
6476 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
6477 &remote_hw_watchpoint_limit, _("\
6478 Set the maximum number of target hardware watchpoints."), _("\
6479 Show the maximum number of target hardware watchpoints."), _("\
6480 Specify a negative limit for unlimited."),
6481 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
6482 &remote_set_cmdlist, &remote_show_cmdlist);
6483 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
6484 &remote_hw_breakpoint_limit, _("\
6485 Set the maximum number of target hardware breakpoints."), _("\
6486 Show the maximum number of target hardware breakpoints."), _("\
6487 Specify a negative limit for unlimited."),
6488 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
6489 &remote_set_cmdlist, &remote_show_cmdlist);
6490
6491 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
6492 &remote_address_size, _("\
6493 Set the maximum size of the address (in bits) in a memory packet."), _("\
6494 Show the maximum size of the address (in bits) in a memory packet."), NULL,
6495 NULL,
6496 NULL, /* FIXME: i18n: */
6497 &setlist, &showlist);
6498
6499 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
6500 "X", "binary-download", 1);
6501
6502 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
6503 "vCont", "verbose-resume", 0);
6504
6505 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
6506 "QPassSignals", "pass-signals", 0);
6507
6508 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
6509 "qSymbol", "symbol-lookup", 0);
6510
6511 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
6512 "P", "set-register", 1);
6513
6514 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
6515 "p", "fetch-register", 1);
6516
6517 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
6518 "Z0", "software-breakpoint", 0);
6519
6520 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
6521 "Z1", "hardware-breakpoint", 0);
6522
6523 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
6524 "Z2", "write-watchpoint", 0);
6525
6526 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
6527 "Z3", "read-watchpoint", 0);
6528
6529 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
6530 "Z4", "access-watchpoint", 0);
6531
6532 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
6533 "qXfer:auxv:read", "read-aux-vector", 0);
6534
6535 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
6536 "qXfer:features:read", "target-features", 0);
6537
6538 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
6539 "qXfer:memory-map:read", "memory-map", 0);
6540
6541 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
6542 "qGetTLSAddr", "get-thread-local-storage-address",
6543 0);
6544
6545 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
6546 "qSupported", "supported-packets", 0);
6547
6548 /* Keep the old ``set remote Z-packet ...'' working. Each individual
6549 Z sub-packet has its own set and show commands, but users may
6550 have sets to this variable in their .gdbinit files (or in their
6551 documentation). */
6552 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
6553 &remote_Z_packet_detect, _("\
6554 Set use of remote protocol `Z' packets"), _("\
6555 Show use of remote protocol `Z' packets "), _("\
6556 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
6557 packets."),
6558 set_remote_protocol_Z_packet_cmd,
6559 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
6560 &remote_set_cmdlist, &remote_show_cmdlist);
6561
6562 /* Eventually initialize fileio. See fileio.c */
6563 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
6564 }
This page took 0.156772 seconds and 5 git commands to generate.