* remote.c (REMOTE_ALIGN_WRITES): New.
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 /* See the GDB User Guide for details of the GDB remote protocol. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include <ctype.h>
29 #include <fcntl.h>
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "exceptions.h"
34 #include "target.h"
35 /*#include "terminal.h" */
36 #include "gdbcmd.h"
37 #include "objfiles.h"
38 #include "gdb-stabs.h"
39 #include "gdbthread.h"
40 #include "remote.h"
41 #include "regcache.h"
42 #include "value.h"
43 #include "gdb_assert.h"
44 #include "observer.h"
45 #include "solib.h"
46 #include "cli/cli-decode.h"
47 #include "cli/cli-setshow.h"
48
49 #include <ctype.h>
50 #include <sys/time.h>
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62
63 /* The size to align memory write packets, when practical. The protocol
64 does not guarantee any alignment, and gdb will generate short
65 writes and unaligned writes, but even as a best-effort attempt this
66 can improve bulk transfers. For instance, if a write is misaligned
67 relative to the target's data bus, the stub may need to make an extra
68 round trip fetching data from the target. This doesn't make a
69 huge difference, but it's easy to do, so we try to be helpful.
70
71 The alignment chosen is arbitrary; usually data bus width is
72 important here, not the possibly larger cache line size. */
73 enum { REMOTE_ALIGN_WRITES = 16 };
74
75 /* Prototypes for local functions. */
76 static void cleanup_sigint_signal_handler (void *dummy);
77 static void initialize_sigint_signal_handler (void);
78 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
79
80 static void handle_remote_sigint (int);
81 static void handle_remote_sigint_twice (int);
82 static void async_remote_interrupt (gdb_client_data);
83 void async_remote_interrupt_twice (gdb_client_data);
84
85 static void build_remote_gdbarch_data (void);
86
87 static void remote_files_info (struct target_ops *ignore);
88
89 static void remote_prepare_to_store (void);
90
91 static void remote_fetch_registers (int regno);
92
93 static void remote_resume (ptid_t ptid, int step,
94 enum target_signal siggnal);
95 static void remote_async_resume (ptid_t ptid, int step,
96 enum target_signal siggnal);
97 static void remote_open (char *name, int from_tty);
98 static void remote_async_open (char *name, int from_tty);
99
100 static void extended_remote_open (char *name, int from_tty);
101 static void extended_remote_async_open (char *name, int from_tty);
102
103 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
104 int async_p);
105
106 static void remote_close (int quitting);
107
108 static void remote_store_registers (int regno);
109
110 static void remote_mourn (void);
111 static void remote_async_mourn (void);
112
113 static void extended_remote_restart (void);
114
115 static void extended_remote_mourn (void);
116
117 static void remote_mourn_1 (struct target_ops *);
118
119 static void remote_send (char **buf, long *sizeof_buf_p);
120
121 static int readchar (int timeout);
122
123 static ptid_t remote_wait (ptid_t ptid,
124 struct target_waitstatus *status);
125 static ptid_t remote_async_wait (ptid_t ptid,
126 struct target_waitstatus *status);
127
128 static void remote_kill (void);
129 static void remote_async_kill (void);
130
131 static int tohex (int nib);
132
133 static void remote_detach (char *args, int from_tty);
134
135 static void remote_interrupt (int signo);
136
137 static void remote_interrupt_twice (int signo);
138
139 static void interrupt_query (void);
140
141 static void set_thread (int, int);
142
143 static int remote_thread_alive (ptid_t);
144
145 static void get_offsets (void);
146
147 static void skip_frame (void);
148
149 static long read_frame (char **buf_p, long *sizeof_buf);
150
151 static int hexnumlen (ULONGEST num);
152
153 static void init_remote_ops (void);
154
155 static void init_extended_remote_ops (void);
156
157 static void remote_stop (void);
158
159 static int ishex (int ch, int *val);
160
161 static int stubhex (int ch);
162
163 static int hexnumstr (char *, ULONGEST);
164
165 static int hexnumnstr (char *, ULONGEST, int);
166
167 static CORE_ADDR remote_address_masked (CORE_ADDR);
168
169 static void print_packet (char *);
170
171 static unsigned long crc32 (unsigned char *, int, unsigned int);
172
173 static void compare_sections_command (char *, int);
174
175 static void packet_command (char *, int);
176
177 static int stub_unpack_int (char *buff, int fieldlength);
178
179 static ptid_t remote_current_thread (ptid_t oldptid);
180
181 static void remote_find_new_threads (void);
182
183 static void record_currthread (int currthread);
184
185 static int fromhex (int a);
186
187 static int hex2bin (const char *hex, gdb_byte *bin, int count);
188
189 static int bin2hex (const gdb_byte *bin, char *hex, int count);
190
191 static int putpkt_binary (char *buf, int cnt);
192
193 static void check_binary_download (CORE_ADDR addr);
194
195 struct packet_config;
196
197 static void show_packet_config_cmd (struct packet_config *config);
198
199 static void update_packet_config (struct packet_config *config);
200
201 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
202 struct cmd_list_element *c);
203
204 static void show_remote_protocol_packet_cmd (struct ui_file *file,
205 int from_tty,
206 struct cmd_list_element *c,
207 const char *value);
208
209 void _initialize_remote (void);
210
211 /* For "set remote" and "show remote". */
212
213 static struct cmd_list_element *remote_set_cmdlist;
214 static struct cmd_list_element *remote_show_cmdlist;
215
216 /* Description of the remote protocol state for the currently
217 connected target. This is per-target state, and independent of the
218 selected architecture. */
219
220 struct remote_state
221 {
222 /* A buffer to use for incoming packets, and its current size. The
223 buffer is grown dynamically for larger incoming packets.
224 Outgoing packets may also be constructed in this buffer.
225 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
226 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
227 packets. */
228 char *buf;
229 long buf_size;
230
231 /* If we negotiated packet size explicitly (and thus can bypass
232 heuristics for the largest packet size that will not overflow
233 a buffer in the stub), this will be set to that packet size.
234 Otherwise zero, meaning to use the guessed size. */
235 long explicit_packet_size;
236 };
237
238 /* This data could be associated with a target, but we do not always
239 have access to the current target when we need it, so for now it is
240 static. This will be fine for as long as only one target is in use
241 at a time. */
242 static struct remote_state remote_state;
243
244 static struct remote_state *
245 get_remote_state (void)
246 {
247 return &remote_state;
248 }
249
250 /* Description of the remote protocol for a given architecture. */
251
252 struct packet_reg
253 {
254 long offset; /* Offset into G packet. */
255 long regnum; /* GDB's internal register number. */
256 LONGEST pnum; /* Remote protocol register number. */
257 int in_g_packet; /* Always part of G packet. */
258 /* long size in bytes; == register_size (current_gdbarch, regnum);
259 at present. */
260 /* char *name; == REGISTER_NAME (regnum); at present. */
261 };
262
263 struct remote_arch_state
264 {
265 /* Description of the remote protocol registers. */
266 long sizeof_g_packet;
267
268 /* Description of the remote protocol registers indexed by REGNUM
269 (making an array of NUM_REGS + NUM_PSEUDO_REGS in size). */
270 struct packet_reg *regs;
271
272 /* This is the size (in chars) of the first response to the ``g''
273 packet. It is used as a heuristic when determining the maximum
274 size of memory-read and memory-write packets. A target will
275 typically only reserve a buffer large enough to hold the ``g''
276 packet. The size does not include packet overhead (headers and
277 trailers). */
278 long actual_register_packet_size;
279
280 /* This is the maximum size (in chars) of a non read/write packet.
281 It is also used as a cap on the size of read/write packets. */
282 long remote_packet_size;
283 };
284
285
286 /* Handle for retreving the remote protocol data from gdbarch. */
287 static struct gdbarch_data *remote_gdbarch_data_handle;
288
289 static struct remote_arch_state *
290 get_remote_arch_state (void)
291 {
292 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
293 }
294
295 static void *
296 init_remote_state (struct gdbarch *gdbarch)
297 {
298 int regnum;
299 struct remote_state *rs = get_remote_state ();
300 struct remote_arch_state *rsa;
301
302 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
303
304 rsa->sizeof_g_packet = 0;
305
306 /* Assume a 1:1 regnum<->pnum table. */
307 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch, NUM_REGS + NUM_PSEUDO_REGS,
308 struct packet_reg);
309 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
310 {
311 struct packet_reg *r = &rsa->regs[regnum];
312 r->pnum = regnum;
313 r->regnum = regnum;
314 r->offset = DEPRECATED_REGISTER_BYTE (regnum);
315 r->in_g_packet = (regnum < NUM_REGS);
316 /* ...name = REGISTER_NAME (regnum); */
317
318 /* Compute packet size by accumulating the size of all registers. */
319 if (regnum < NUM_REGS)
320 rsa->sizeof_g_packet += register_size (current_gdbarch, regnum);
321 }
322
323 /* Default maximum number of characters in a packet body. Many
324 remote stubs have a hardwired buffer size of 400 bytes
325 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
326 as the maximum packet-size to ensure that the packet and an extra
327 NUL character can always fit in the buffer. This stops GDB
328 trashing stubs that try to squeeze an extra NUL into what is
329 already a full buffer (As of 1999-12-04 that was most stubs). */
330 rsa->remote_packet_size = 400 - 1;
331
332 /* This one is filled in when a ``g'' packet is received. */
333 rsa->actual_register_packet_size = 0;
334
335 /* Should rsa->sizeof_g_packet needs more space than the
336 default, adjust the size accordingly. Remember that each byte is
337 encoded as two characters. 32 is the overhead for the packet
338 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
339 (``$NN:G...#NN'') is a better guess, the below has been padded a
340 little. */
341 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
342 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
343
344 /* Make sure that the packet buffer is plenty big enough for
345 this architecture. */
346 if (rs->buf_size < rsa->remote_packet_size)
347 {
348 rs->buf_size = 2 * rsa->remote_packet_size;
349 rs->buf = xrealloc (rs->buf, rs->buf_size);
350 }
351
352 return rsa;
353 }
354
355 /* Return the current allowed size of a remote packet. This is
356 inferred from the current architecture, and should be used to
357 limit the length of outgoing packets. */
358 static long
359 get_remote_packet_size (void)
360 {
361 struct remote_state *rs = get_remote_state ();
362 struct remote_arch_state *rsa = get_remote_arch_state ();
363
364 if (rs->explicit_packet_size)
365 return rs->explicit_packet_size;
366
367 return rsa->remote_packet_size;
368 }
369
370 static struct packet_reg *
371 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
372 {
373 if (regnum < 0 && regnum >= NUM_REGS + NUM_PSEUDO_REGS)
374 return NULL;
375 else
376 {
377 struct packet_reg *r = &rsa->regs[regnum];
378 gdb_assert (r->regnum == regnum);
379 return r;
380 }
381 }
382
383 static struct packet_reg *
384 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
385 {
386 int i;
387 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
388 {
389 struct packet_reg *r = &rsa->regs[i];
390 if (r->pnum == pnum)
391 return r;
392 }
393 return NULL;
394 }
395
396 /* FIXME: graces/2002-08-08: These variables should eventually be
397 bound to an instance of the target object (as in gdbarch-tdep()),
398 when such a thing exists. */
399
400 /* This is set to the data address of the access causing the target
401 to stop for a watchpoint. */
402 static CORE_ADDR remote_watch_data_address;
403
404 /* This is non-zero if target stopped for a watchpoint. */
405 static int remote_stopped_by_watchpoint_p;
406
407 static struct target_ops remote_ops;
408
409 static struct target_ops extended_remote_ops;
410
411 /* Temporary target ops. Just like the remote_ops and
412 extended_remote_ops, but with asynchronous support. */
413 static struct target_ops remote_async_ops;
414
415 static struct target_ops extended_async_remote_ops;
416
417 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
418 ``forever'' still use the normal timeout mechanism. This is
419 currently used by the ASYNC code to guarentee that target reads
420 during the initial connect always time-out. Once getpkt has been
421 modified to return a timeout indication and, in turn
422 remote_wait()/wait_for_inferior() have gained a timeout parameter
423 this can go away. */
424 static int wait_forever_enabled_p = 1;
425
426
427 /* This variable chooses whether to send a ^C or a break when the user
428 requests program interruption. Although ^C is usually what remote
429 systems expect, and that is the default here, sometimes a break is
430 preferable instead. */
431
432 static int remote_break;
433
434 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
435 remote_open knows that we don't have a file open when the program
436 starts. */
437 static struct serial *remote_desc = NULL;
438
439 /* This variable sets the number of bits in an address that are to be
440 sent in a memory ("M" or "m") packet. Normally, after stripping
441 leading zeros, the entire address would be sent. This variable
442 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
443 initial implementation of remote.c restricted the address sent in
444 memory packets to ``host::sizeof long'' bytes - (typically 32
445 bits). Consequently, for 64 bit targets, the upper 32 bits of an
446 address was never sent. Since fixing this bug may cause a break in
447 some remote targets this variable is principly provided to
448 facilitate backward compatibility. */
449
450 static int remote_address_size;
451
452 /* Tempoary to track who currently owns the terminal. See
453 target_async_terminal_* for more details. */
454
455 static int remote_async_terminal_ours_p;
456
457 \f
458 /* User configurable variables for the number of characters in a
459 memory read/write packet. MIN (rsa->remote_packet_size,
460 rsa->sizeof_g_packet) is the default. Some targets need smaller
461 values (fifo overruns, et.al.) and some users need larger values
462 (speed up transfers). The variables ``preferred_*'' (the user
463 request), ``current_*'' (what was actually set) and ``forced_*''
464 (Positive - a soft limit, negative - a hard limit). */
465
466 struct memory_packet_config
467 {
468 char *name;
469 long size;
470 int fixed_p;
471 };
472
473 /* Compute the current size of a read/write packet. Since this makes
474 use of ``actual_register_packet_size'' the computation is dynamic. */
475
476 static long
477 get_memory_packet_size (struct memory_packet_config *config)
478 {
479 struct remote_state *rs = get_remote_state ();
480 struct remote_arch_state *rsa = get_remote_arch_state ();
481
482 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
483 law?) that some hosts don't cope very well with large alloca()
484 calls. Eventually the alloca() code will be replaced by calls to
485 xmalloc() and make_cleanups() allowing this restriction to either
486 be lifted or removed. */
487 #ifndef MAX_REMOTE_PACKET_SIZE
488 #define MAX_REMOTE_PACKET_SIZE 16384
489 #endif
490 /* NOTE: 20 ensures we can write at least one byte. */
491 #ifndef MIN_REMOTE_PACKET_SIZE
492 #define MIN_REMOTE_PACKET_SIZE 20
493 #endif
494 long what_they_get;
495 if (config->fixed_p)
496 {
497 if (config->size <= 0)
498 what_they_get = MAX_REMOTE_PACKET_SIZE;
499 else
500 what_they_get = config->size;
501 }
502 else
503 {
504 what_they_get = get_remote_packet_size ();
505 /* Limit the packet to the size specified by the user. */
506 if (config->size > 0
507 && what_they_get > config->size)
508 what_they_get = config->size;
509
510 /* Limit it to the size of the targets ``g'' response unless we have
511 permission from the stub to use a larger packet size. */
512 if (rs->explicit_packet_size == 0
513 && rsa->actual_register_packet_size > 0
514 && what_they_get > rsa->actual_register_packet_size)
515 what_they_get = rsa->actual_register_packet_size;
516 }
517 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
518 what_they_get = MAX_REMOTE_PACKET_SIZE;
519 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
520 what_they_get = MIN_REMOTE_PACKET_SIZE;
521
522 /* Make sure there is room in the global buffer for this packet
523 (including its trailing NUL byte). */
524 if (rs->buf_size < what_they_get + 1)
525 {
526 rs->buf_size = 2 * what_they_get;
527 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
528 }
529
530 return what_they_get;
531 }
532
533 /* Update the size of a read/write packet. If they user wants
534 something really big then do a sanity check. */
535
536 static void
537 set_memory_packet_size (char *args, struct memory_packet_config *config)
538 {
539 int fixed_p = config->fixed_p;
540 long size = config->size;
541 if (args == NULL)
542 error (_("Argument required (integer, `fixed' or `limited')."));
543 else if (strcmp (args, "hard") == 0
544 || strcmp (args, "fixed") == 0)
545 fixed_p = 1;
546 else if (strcmp (args, "soft") == 0
547 || strcmp (args, "limit") == 0)
548 fixed_p = 0;
549 else
550 {
551 char *end;
552 size = strtoul (args, &end, 0);
553 if (args == end)
554 error (_("Invalid %s (bad syntax)."), config->name);
555 #if 0
556 /* Instead of explicitly capping the size of a packet to
557 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
558 instead allowed to set the size to something arbitrarily
559 large. */
560 if (size > MAX_REMOTE_PACKET_SIZE)
561 error (_("Invalid %s (too large)."), config->name);
562 #endif
563 }
564 /* Extra checks? */
565 if (fixed_p && !config->fixed_p)
566 {
567 if (! query (_("The target may not be able to correctly handle a %s\n"
568 "of %ld bytes. Change the packet size? "),
569 config->name, size))
570 error (_("Packet size not changed."));
571 }
572 /* Update the config. */
573 config->fixed_p = fixed_p;
574 config->size = size;
575 }
576
577 static void
578 show_memory_packet_size (struct memory_packet_config *config)
579 {
580 printf_filtered (_("The %s is %ld. "), config->name, config->size);
581 if (config->fixed_p)
582 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
583 get_memory_packet_size (config));
584 else
585 printf_filtered (_("Packets are limited to %ld bytes.\n"),
586 get_memory_packet_size (config));
587 }
588
589 static struct memory_packet_config memory_write_packet_config =
590 {
591 "memory-write-packet-size",
592 };
593
594 static void
595 set_memory_write_packet_size (char *args, int from_tty)
596 {
597 set_memory_packet_size (args, &memory_write_packet_config);
598 }
599
600 static void
601 show_memory_write_packet_size (char *args, int from_tty)
602 {
603 show_memory_packet_size (&memory_write_packet_config);
604 }
605
606 static long
607 get_memory_write_packet_size (void)
608 {
609 return get_memory_packet_size (&memory_write_packet_config);
610 }
611
612 static struct memory_packet_config memory_read_packet_config =
613 {
614 "memory-read-packet-size",
615 };
616
617 static void
618 set_memory_read_packet_size (char *args, int from_tty)
619 {
620 set_memory_packet_size (args, &memory_read_packet_config);
621 }
622
623 static void
624 show_memory_read_packet_size (char *args, int from_tty)
625 {
626 show_memory_packet_size (&memory_read_packet_config);
627 }
628
629 static long
630 get_memory_read_packet_size (void)
631 {
632 long size = get_memory_packet_size (&memory_read_packet_config);
633 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
634 extra buffer size argument before the memory read size can be
635 increased beyond this. */
636 if (size > get_remote_packet_size ())
637 size = get_remote_packet_size ();
638 return size;
639 }
640
641 \f
642 /* Generic configuration support for packets the stub optionally
643 supports. Allows the user to specify the use of the packet as well
644 as allowing GDB to auto-detect support in the remote stub. */
645
646 enum packet_support
647 {
648 PACKET_SUPPORT_UNKNOWN = 0,
649 PACKET_ENABLE,
650 PACKET_DISABLE
651 };
652
653 struct packet_config
654 {
655 const char *name;
656 const char *title;
657 enum auto_boolean detect;
658 enum packet_support support;
659 };
660
661 /* Analyze a packet's return value and update the packet config
662 accordingly. */
663
664 enum packet_result
665 {
666 PACKET_ERROR,
667 PACKET_OK,
668 PACKET_UNKNOWN
669 };
670
671 static void
672 update_packet_config (struct packet_config *config)
673 {
674 switch (config->detect)
675 {
676 case AUTO_BOOLEAN_TRUE:
677 config->support = PACKET_ENABLE;
678 break;
679 case AUTO_BOOLEAN_FALSE:
680 config->support = PACKET_DISABLE;
681 break;
682 case AUTO_BOOLEAN_AUTO:
683 config->support = PACKET_SUPPORT_UNKNOWN;
684 break;
685 }
686 }
687
688 static void
689 show_packet_config_cmd (struct packet_config *config)
690 {
691 char *support = "internal-error";
692 switch (config->support)
693 {
694 case PACKET_ENABLE:
695 support = "enabled";
696 break;
697 case PACKET_DISABLE:
698 support = "disabled";
699 break;
700 case PACKET_SUPPORT_UNKNOWN:
701 support = "unknown";
702 break;
703 }
704 switch (config->detect)
705 {
706 case AUTO_BOOLEAN_AUTO:
707 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
708 config->name, support);
709 break;
710 case AUTO_BOOLEAN_TRUE:
711 case AUTO_BOOLEAN_FALSE:
712 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
713 config->name, support);
714 break;
715 }
716 }
717
718 static void
719 add_packet_config_cmd (struct packet_config *config, const char *name,
720 const char *title, int legacy)
721 {
722 char *set_doc;
723 char *show_doc;
724 char *cmd_name;
725
726 config->name = name;
727 config->title = title;
728 config->detect = AUTO_BOOLEAN_AUTO;
729 config->support = PACKET_SUPPORT_UNKNOWN;
730 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
731 name, title);
732 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
733 name, title);
734 /* set/show TITLE-packet {auto,on,off} */
735 cmd_name = xstrprintf ("%s-packet", title);
736 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
737 &config->detect, set_doc, show_doc, NULL, /* help_doc */
738 set_remote_protocol_packet_cmd,
739 show_remote_protocol_packet_cmd,
740 &remote_set_cmdlist, &remote_show_cmdlist);
741 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
742 if (legacy)
743 {
744 char *legacy_name;
745 legacy_name = xstrprintf ("%s-packet", name);
746 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
747 &remote_set_cmdlist);
748 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
749 &remote_show_cmdlist);
750 }
751 }
752
753 static enum packet_result
754 packet_ok (const char *buf, struct packet_config *config)
755 {
756 if (buf[0] != '\0')
757 {
758 /* The stub recognized the packet request. Check that the
759 operation succeeded. */
760 switch (config->support)
761 {
762 case PACKET_SUPPORT_UNKNOWN:
763 if (remote_debug)
764 fprintf_unfiltered (gdb_stdlog,
765 "Packet %s (%s) is supported\n",
766 config->name, config->title);
767 config->support = PACKET_ENABLE;
768 break;
769 case PACKET_DISABLE:
770 internal_error (__FILE__, __LINE__,
771 _("packet_ok: attempt to use a disabled packet"));
772 break;
773 case PACKET_ENABLE:
774 break;
775 }
776 if (buf[0] == 'O' && buf[1] == 'K' && buf[2] == '\0')
777 /* "OK" - definitly OK. */
778 return PACKET_OK;
779 if (buf[0] == 'E'
780 && isxdigit (buf[1]) && isxdigit (buf[2])
781 && buf[3] == '\0')
782 /* "Enn" - definitly an error. */
783 return PACKET_ERROR;
784 /* The packet may or may not be OK. Just assume it is. */
785 return PACKET_OK;
786 }
787 else
788 {
789 /* The stub does not support the packet. */
790 switch (config->support)
791 {
792 case PACKET_ENABLE:
793 if (config->detect == AUTO_BOOLEAN_AUTO)
794 /* If the stub previously indicated that the packet was
795 supported then there is a protocol error.. */
796 error (_("Protocol error: %s (%s) conflicting enabled responses."),
797 config->name, config->title);
798 else
799 /* The user set it wrong. */
800 error (_("Enabled packet %s (%s) not recognized by stub"),
801 config->name, config->title);
802 break;
803 case PACKET_SUPPORT_UNKNOWN:
804 if (remote_debug)
805 fprintf_unfiltered (gdb_stdlog,
806 "Packet %s (%s) is NOT supported\n",
807 config->name, config->title);
808 config->support = PACKET_DISABLE;
809 break;
810 case PACKET_DISABLE:
811 break;
812 }
813 return PACKET_UNKNOWN;
814 }
815 }
816
817 enum {
818 PACKET_vCont = 0,
819 PACKET_X,
820 PACKET_qSymbol,
821 PACKET_P,
822 PACKET_p,
823 PACKET_Z0,
824 PACKET_Z1,
825 PACKET_Z2,
826 PACKET_Z3,
827 PACKET_Z4,
828 PACKET_qXfer_auxv,
829 PACKET_qGetTLSAddr,
830 PACKET_qSupported,
831 PACKET_MAX
832 };
833
834 static struct packet_config remote_protocol_packets[PACKET_MAX];
835
836 static void
837 set_remote_protocol_packet_cmd (char *args, int from_tty,
838 struct cmd_list_element *c)
839 {
840 struct packet_config *packet;
841
842 for (packet = remote_protocol_packets;
843 packet < &remote_protocol_packets[PACKET_MAX];
844 packet++)
845 {
846 if (&packet->detect == c->var)
847 {
848 update_packet_config (packet);
849 return;
850 }
851 }
852 internal_error (__FILE__, __LINE__, "Could not find config for %s",
853 c->name);
854 }
855
856 static void
857 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
858 struct cmd_list_element *c,
859 const char *value)
860 {
861 struct packet_config *packet;
862
863 for (packet = remote_protocol_packets;
864 packet < &remote_protocol_packets[PACKET_MAX];
865 packet++)
866 {
867 if (&packet->detect == c->var)
868 {
869 show_packet_config_cmd (packet);
870 return;
871 }
872 }
873 internal_error (__FILE__, __LINE__, "Could not find config for %s",
874 c->name);
875 }
876
877 /* Should we try one of the 'Z' requests? */
878
879 enum Z_packet_type
880 {
881 Z_PACKET_SOFTWARE_BP,
882 Z_PACKET_HARDWARE_BP,
883 Z_PACKET_WRITE_WP,
884 Z_PACKET_READ_WP,
885 Z_PACKET_ACCESS_WP,
886 NR_Z_PACKET_TYPES
887 };
888
889 /* For compatibility with older distributions. Provide a ``set remote
890 Z-packet ...'' command that updates all the Z packet types. */
891
892 static enum auto_boolean remote_Z_packet_detect;
893
894 static void
895 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
896 struct cmd_list_element *c)
897 {
898 int i;
899 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
900 {
901 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
902 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
903 }
904 }
905
906 static void
907 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
908 struct cmd_list_element *c,
909 const char *value)
910 {
911 int i;
912 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
913 {
914 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
915 }
916 }
917
918 /* Should we try the 'ThreadInfo' query packet?
919
920 This variable (NOT available to the user: auto-detect only!)
921 determines whether GDB will use the new, simpler "ThreadInfo"
922 query or the older, more complex syntax for thread queries.
923 This is an auto-detect variable (set to true at each connect,
924 and set to false when the target fails to recognize it). */
925
926 static int use_threadinfo_query;
927 static int use_threadextra_query;
928
929 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
930 static void *sigint_remote_twice_token;
931 static void *sigint_remote_token;
932
933 /* These are pointers to hook functions that may be set in order to
934 modify resume/wait behavior for a particular architecture. */
935
936 void (*deprecated_target_resume_hook) (void);
937 void (*deprecated_target_wait_loop_hook) (void);
938 \f
939
940
941 /* These are the threads which we last sent to the remote system.
942 -1 for all or -2 for not sent yet. */
943 static int general_thread;
944 static int continue_thread;
945
946 /* Call this function as a result of
947 1) A halt indication (T packet) containing a thread id
948 2) A direct query of currthread
949 3) Successful execution of set thread
950 */
951
952 static void
953 record_currthread (int currthread)
954 {
955 general_thread = currthread;
956
957 /* If this is a new thread, add it to GDB's thread list.
958 If we leave it up to WFI to do this, bad things will happen. */
959 if (!in_thread_list (pid_to_ptid (currthread)))
960 {
961 add_thread (pid_to_ptid (currthread));
962 ui_out_text (uiout, "[New ");
963 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
964 ui_out_text (uiout, "]\n");
965 }
966 }
967
968 #define MAGIC_NULL_PID 42000
969
970 static void
971 set_thread (int th, int gen)
972 {
973 struct remote_state *rs = get_remote_state ();
974 char *buf = rs->buf;
975 int state = gen ? general_thread : continue_thread;
976
977 if (state == th)
978 return;
979
980 buf[0] = 'H';
981 buf[1] = gen ? 'g' : 'c';
982 if (th == MAGIC_NULL_PID)
983 {
984 buf[2] = '0';
985 buf[3] = '\0';
986 }
987 else if (th < 0)
988 xsnprintf (&buf[2], get_remote_packet_size () - 2, "-%x", -th);
989 else
990 xsnprintf (&buf[2], get_remote_packet_size () - 2, "%x", th);
991 putpkt (buf);
992 getpkt (&rs->buf, &rs->buf_size, 0);
993 if (gen)
994 general_thread = th;
995 else
996 continue_thread = th;
997 }
998 \f
999 /* Return nonzero if the thread TH is still alive on the remote system. */
1000
1001 static int
1002 remote_thread_alive (ptid_t ptid)
1003 {
1004 struct remote_state *rs = get_remote_state ();
1005 int tid = PIDGET (ptid);
1006 char *buf = rs->buf;
1007
1008 if (tid < 0)
1009 xsnprintf (buf, get_remote_packet_size (), "T-%08x", -tid);
1010 else
1011 xsnprintf (buf, get_remote_packet_size (), "T%08x", tid);
1012 putpkt (buf);
1013 getpkt (&rs->buf, &rs->buf_size, 0);
1014 return (buf[0] == 'O' && buf[1] == 'K');
1015 }
1016
1017 /* About these extended threadlist and threadinfo packets. They are
1018 variable length packets but, the fields within them are often fixed
1019 length. They are redundent enough to send over UDP as is the
1020 remote protocol in general. There is a matching unit test module
1021 in libstub. */
1022
1023 #define OPAQUETHREADBYTES 8
1024
1025 /* a 64 bit opaque identifier */
1026 typedef unsigned char threadref[OPAQUETHREADBYTES];
1027
1028 /* WARNING: This threadref data structure comes from the remote O.S.,
1029 libstub protocol encoding, and remote.c. it is not particularly
1030 changable. */
1031
1032 /* Right now, the internal structure is int. We want it to be bigger.
1033 Plan to fix this.
1034 */
1035
1036 typedef int gdb_threadref; /* Internal GDB thread reference. */
1037
1038 /* gdb_ext_thread_info is an internal GDB data structure which is
1039 equivalent to the reply of the remote threadinfo packet. */
1040
1041 struct gdb_ext_thread_info
1042 {
1043 threadref threadid; /* External form of thread reference. */
1044 int active; /* Has state interesting to GDB?
1045 regs, stack. */
1046 char display[256]; /* Brief state display, name,
1047 blocked/suspended. */
1048 char shortname[32]; /* To be used to name threads. */
1049 char more_display[256]; /* Long info, statistics, queue depth,
1050 whatever. */
1051 };
1052
1053 /* The volume of remote transfers can be limited by submitting
1054 a mask containing bits specifying the desired information.
1055 Use a union of these values as the 'selection' parameter to
1056 get_thread_info. FIXME: Make these TAG names more thread specific.
1057 */
1058
1059 #define TAG_THREADID 1
1060 #define TAG_EXISTS 2
1061 #define TAG_DISPLAY 4
1062 #define TAG_THREADNAME 8
1063 #define TAG_MOREDISPLAY 16
1064
1065 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1066
1067 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1068
1069 static char *unpack_nibble (char *buf, int *val);
1070
1071 static char *pack_nibble (char *buf, int nibble);
1072
1073 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1074
1075 static char *unpack_byte (char *buf, int *value);
1076
1077 static char *pack_int (char *buf, int value);
1078
1079 static char *unpack_int (char *buf, int *value);
1080
1081 static char *unpack_string (char *src, char *dest, int length);
1082
1083 static char *pack_threadid (char *pkt, threadref *id);
1084
1085 static char *unpack_threadid (char *inbuf, threadref *id);
1086
1087 void int_to_threadref (threadref *id, int value);
1088
1089 static int threadref_to_int (threadref *ref);
1090
1091 static void copy_threadref (threadref *dest, threadref *src);
1092
1093 static int threadmatch (threadref *dest, threadref *src);
1094
1095 static char *pack_threadinfo_request (char *pkt, int mode,
1096 threadref *id);
1097
1098 static int remote_unpack_thread_info_response (char *pkt,
1099 threadref *expectedref,
1100 struct gdb_ext_thread_info
1101 *info);
1102
1103
1104 static int remote_get_threadinfo (threadref *threadid,
1105 int fieldset, /*TAG mask */
1106 struct gdb_ext_thread_info *info);
1107
1108 static char *pack_threadlist_request (char *pkt, int startflag,
1109 int threadcount,
1110 threadref *nextthread);
1111
1112 static int parse_threadlist_response (char *pkt,
1113 int result_limit,
1114 threadref *original_echo,
1115 threadref *resultlist,
1116 int *doneflag);
1117
1118 static int remote_get_threadlist (int startflag,
1119 threadref *nextthread,
1120 int result_limit,
1121 int *done,
1122 int *result_count,
1123 threadref *threadlist);
1124
1125 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1126
1127 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1128 void *context, int looplimit);
1129
1130 static int remote_newthread_step (threadref *ref, void *context);
1131
1132 /* Encode 64 bits in 16 chars of hex. */
1133
1134 static const char hexchars[] = "0123456789abcdef";
1135
1136 static int
1137 ishex (int ch, int *val)
1138 {
1139 if ((ch >= 'a') && (ch <= 'f'))
1140 {
1141 *val = ch - 'a' + 10;
1142 return 1;
1143 }
1144 if ((ch >= 'A') && (ch <= 'F'))
1145 {
1146 *val = ch - 'A' + 10;
1147 return 1;
1148 }
1149 if ((ch >= '0') && (ch <= '9'))
1150 {
1151 *val = ch - '0';
1152 return 1;
1153 }
1154 return 0;
1155 }
1156
1157 static int
1158 stubhex (int ch)
1159 {
1160 if (ch >= 'a' && ch <= 'f')
1161 return ch - 'a' + 10;
1162 if (ch >= '0' && ch <= '9')
1163 return ch - '0';
1164 if (ch >= 'A' && ch <= 'F')
1165 return ch - 'A' + 10;
1166 return -1;
1167 }
1168
1169 static int
1170 stub_unpack_int (char *buff, int fieldlength)
1171 {
1172 int nibble;
1173 int retval = 0;
1174
1175 while (fieldlength)
1176 {
1177 nibble = stubhex (*buff++);
1178 retval |= nibble;
1179 fieldlength--;
1180 if (fieldlength)
1181 retval = retval << 4;
1182 }
1183 return retval;
1184 }
1185
1186 char *
1187 unpack_varlen_hex (char *buff, /* packet to parse */
1188 ULONGEST *result)
1189 {
1190 int nibble;
1191 int retval = 0;
1192
1193 while (ishex (*buff, &nibble))
1194 {
1195 buff++;
1196 retval = retval << 4;
1197 retval |= nibble & 0x0f;
1198 }
1199 *result = retval;
1200 return buff;
1201 }
1202
1203 static char *
1204 unpack_nibble (char *buf, int *val)
1205 {
1206 ishex (*buf++, val);
1207 return buf;
1208 }
1209
1210 static char *
1211 pack_nibble (char *buf, int nibble)
1212 {
1213 *buf++ = hexchars[(nibble & 0x0f)];
1214 return buf;
1215 }
1216
1217 static char *
1218 pack_hex_byte (char *pkt, int byte)
1219 {
1220 *pkt++ = hexchars[(byte >> 4) & 0xf];
1221 *pkt++ = hexchars[(byte & 0xf)];
1222 return pkt;
1223 }
1224
1225 static char *
1226 unpack_byte (char *buf, int *value)
1227 {
1228 *value = stub_unpack_int (buf, 2);
1229 return buf + 2;
1230 }
1231
1232 static char *
1233 pack_int (char *buf, int value)
1234 {
1235 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1236 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1237 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1238 buf = pack_hex_byte (buf, (value & 0xff));
1239 return buf;
1240 }
1241
1242 static char *
1243 unpack_int (char *buf, int *value)
1244 {
1245 *value = stub_unpack_int (buf, 8);
1246 return buf + 8;
1247 }
1248
1249 #if 0 /* Currently unused, uncomment when needed. */
1250 static char *pack_string (char *pkt, char *string);
1251
1252 static char *
1253 pack_string (char *pkt, char *string)
1254 {
1255 char ch;
1256 int len;
1257
1258 len = strlen (string);
1259 if (len > 200)
1260 len = 200; /* Bigger than most GDB packets, junk??? */
1261 pkt = pack_hex_byte (pkt, len);
1262 while (len-- > 0)
1263 {
1264 ch = *string++;
1265 if ((ch == '\0') || (ch == '#'))
1266 ch = '*'; /* Protect encapsulation. */
1267 *pkt++ = ch;
1268 }
1269 return pkt;
1270 }
1271 #endif /* 0 (unused) */
1272
1273 static char *
1274 unpack_string (char *src, char *dest, int length)
1275 {
1276 while (length--)
1277 *dest++ = *src++;
1278 *dest = '\0';
1279 return src;
1280 }
1281
1282 static char *
1283 pack_threadid (char *pkt, threadref *id)
1284 {
1285 char *limit;
1286 unsigned char *altid;
1287
1288 altid = (unsigned char *) id;
1289 limit = pkt + BUF_THREAD_ID_SIZE;
1290 while (pkt < limit)
1291 pkt = pack_hex_byte (pkt, *altid++);
1292 return pkt;
1293 }
1294
1295
1296 static char *
1297 unpack_threadid (char *inbuf, threadref *id)
1298 {
1299 char *altref;
1300 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1301 int x, y;
1302
1303 altref = (char *) id;
1304
1305 while (inbuf < limit)
1306 {
1307 x = stubhex (*inbuf++);
1308 y = stubhex (*inbuf++);
1309 *altref++ = (x << 4) | y;
1310 }
1311 return inbuf;
1312 }
1313
1314 /* Externally, threadrefs are 64 bits but internally, they are still
1315 ints. This is due to a mismatch of specifications. We would like
1316 to use 64bit thread references internally. This is an adapter
1317 function. */
1318
1319 void
1320 int_to_threadref (threadref *id, int value)
1321 {
1322 unsigned char *scan;
1323
1324 scan = (unsigned char *) id;
1325 {
1326 int i = 4;
1327 while (i--)
1328 *scan++ = 0;
1329 }
1330 *scan++ = (value >> 24) & 0xff;
1331 *scan++ = (value >> 16) & 0xff;
1332 *scan++ = (value >> 8) & 0xff;
1333 *scan++ = (value & 0xff);
1334 }
1335
1336 static int
1337 threadref_to_int (threadref *ref)
1338 {
1339 int i, value = 0;
1340 unsigned char *scan;
1341
1342 scan = *ref;
1343 scan += 4;
1344 i = 4;
1345 while (i-- > 0)
1346 value = (value << 8) | ((*scan++) & 0xff);
1347 return value;
1348 }
1349
1350 static void
1351 copy_threadref (threadref *dest, threadref *src)
1352 {
1353 int i;
1354 unsigned char *csrc, *cdest;
1355
1356 csrc = (unsigned char *) src;
1357 cdest = (unsigned char *) dest;
1358 i = 8;
1359 while (i--)
1360 *cdest++ = *csrc++;
1361 }
1362
1363 static int
1364 threadmatch (threadref *dest, threadref *src)
1365 {
1366 /* Things are broken right now, so just assume we got a match. */
1367 #if 0
1368 unsigned char *srcp, *destp;
1369 int i, result;
1370 srcp = (char *) src;
1371 destp = (char *) dest;
1372
1373 result = 1;
1374 while (i-- > 0)
1375 result &= (*srcp++ == *destp++) ? 1 : 0;
1376 return result;
1377 #endif
1378 return 1;
1379 }
1380
1381 /*
1382 threadid:1, # always request threadid
1383 context_exists:2,
1384 display:4,
1385 unique_name:8,
1386 more_display:16
1387 */
1388
1389 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1390
1391 static char *
1392 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1393 {
1394 *pkt++ = 'q'; /* Info Query */
1395 *pkt++ = 'P'; /* process or thread info */
1396 pkt = pack_int (pkt, mode); /* mode */
1397 pkt = pack_threadid (pkt, id); /* threadid */
1398 *pkt = '\0'; /* terminate */
1399 return pkt;
1400 }
1401
1402 /* These values tag the fields in a thread info response packet. */
1403 /* Tagging the fields allows us to request specific fields and to
1404 add more fields as time goes by. */
1405
1406 #define TAG_THREADID 1 /* Echo the thread identifier. */
1407 #define TAG_EXISTS 2 /* Is this process defined enough to
1408 fetch registers and its stack? */
1409 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1410 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1411 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1412 the process. */
1413
1414 static int
1415 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1416 struct gdb_ext_thread_info *info)
1417 {
1418 struct remote_state *rs = get_remote_state ();
1419 int mask, length;
1420 int tag;
1421 threadref ref;
1422 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1423 int retval = 1;
1424
1425 /* info->threadid = 0; FIXME: implement zero_threadref. */
1426 info->active = 0;
1427 info->display[0] = '\0';
1428 info->shortname[0] = '\0';
1429 info->more_display[0] = '\0';
1430
1431 /* Assume the characters indicating the packet type have been
1432 stripped. */
1433 pkt = unpack_int (pkt, &mask); /* arg mask */
1434 pkt = unpack_threadid (pkt, &ref);
1435
1436 if (mask == 0)
1437 warning (_("Incomplete response to threadinfo request."));
1438 if (!threadmatch (&ref, expectedref))
1439 { /* This is an answer to a different request. */
1440 warning (_("ERROR RMT Thread info mismatch."));
1441 return 0;
1442 }
1443 copy_threadref (&info->threadid, &ref);
1444
1445 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1446
1447 /* Packets are terminated with nulls. */
1448 while ((pkt < limit) && mask && *pkt)
1449 {
1450 pkt = unpack_int (pkt, &tag); /* tag */
1451 pkt = unpack_byte (pkt, &length); /* length */
1452 if (!(tag & mask)) /* Tags out of synch with mask. */
1453 {
1454 warning (_("ERROR RMT: threadinfo tag mismatch."));
1455 retval = 0;
1456 break;
1457 }
1458 if (tag == TAG_THREADID)
1459 {
1460 if (length != 16)
1461 {
1462 warning (_("ERROR RMT: length of threadid is not 16."));
1463 retval = 0;
1464 break;
1465 }
1466 pkt = unpack_threadid (pkt, &ref);
1467 mask = mask & ~TAG_THREADID;
1468 continue;
1469 }
1470 if (tag == TAG_EXISTS)
1471 {
1472 info->active = stub_unpack_int (pkt, length);
1473 pkt += length;
1474 mask = mask & ~(TAG_EXISTS);
1475 if (length > 8)
1476 {
1477 warning (_("ERROR RMT: 'exists' length too long."));
1478 retval = 0;
1479 break;
1480 }
1481 continue;
1482 }
1483 if (tag == TAG_THREADNAME)
1484 {
1485 pkt = unpack_string (pkt, &info->shortname[0], length);
1486 mask = mask & ~TAG_THREADNAME;
1487 continue;
1488 }
1489 if (tag == TAG_DISPLAY)
1490 {
1491 pkt = unpack_string (pkt, &info->display[0], length);
1492 mask = mask & ~TAG_DISPLAY;
1493 continue;
1494 }
1495 if (tag == TAG_MOREDISPLAY)
1496 {
1497 pkt = unpack_string (pkt, &info->more_display[0], length);
1498 mask = mask & ~TAG_MOREDISPLAY;
1499 continue;
1500 }
1501 warning (_("ERROR RMT: unknown thread info tag."));
1502 break; /* Not a tag we know about. */
1503 }
1504 return retval;
1505 }
1506
1507 static int
1508 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1509 struct gdb_ext_thread_info *info)
1510 {
1511 struct remote_state *rs = get_remote_state ();
1512 int result;
1513 char *threadinfo_pkt = rs->buf;
1514
1515 pack_threadinfo_request (threadinfo_pkt, fieldset, threadid);
1516 putpkt (threadinfo_pkt);
1517 getpkt (&rs->buf, &rs->buf_size, 0);
1518 result = remote_unpack_thread_info_response (threadinfo_pkt + 2,
1519 threadid, info);
1520 return result;
1521 }
1522
1523 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1524
1525 static char *
1526 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1527 threadref *nextthread)
1528 {
1529 *pkt++ = 'q'; /* info query packet */
1530 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1531 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1532 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1533 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1534 *pkt = '\0';
1535 return pkt;
1536 }
1537
1538 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1539
1540 static int
1541 parse_threadlist_response (char *pkt, int result_limit,
1542 threadref *original_echo, threadref *resultlist,
1543 int *doneflag)
1544 {
1545 struct remote_state *rs = get_remote_state ();
1546 char *limit;
1547 int count, resultcount, done;
1548
1549 resultcount = 0;
1550 /* Assume the 'q' and 'M chars have been stripped. */
1551 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1552 /* done parse past here */
1553 pkt = unpack_byte (pkt, &count); /* count field */
1554 pkt = unpack_nibble (pkt, &done);
1555 /* The first threadid is the argument threadid. */
1556 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1557 while ((count-- > 0) && (pkt < limit))
1558 {
1559 pkt = unpack_threadid (pkt, resultlist++);
1560 if (resultcount++ >= result_limit)
1561 break;
1562 }
1563 if (doneflag)
1564 *doneflag = done;
1565 return resultcount;
1566 }
1567
1568 static int
1569 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1570 int *done, int *result_count, threadref *threadlist)
1571 {
1572 struct remote_state *rs = get_remote_state ();
1573 static threadref echo_nextthread;
1574 char *threadlist_packet = rs->buf;
1575 int result = 1;
1576
1577 /* Trancate result limit to be smaller than the packet size. */
1578 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1579 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1580
1581 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1582 putpkt (rs->buf);
1583 getpkt (&rs->buf, &rs->buf_size, 0);
1584
1585 *result_count =
1586 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1587 threadlist, done);
1588
1589 if (!threadmatch (&echo_nextthread, nextthread))
1590 {
1591 /* FIXME: This is a good reason to drop the packet. */
1592 /* Possably, there is a duplicate response. */
1593 /* Possabilities :
1594 retransmit immediatly - race conditions
1595 retransmit after timeout - yes
1596 exit
1597 wait for packet, then exit
1598 */
1599 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1600 return 0; /* I choose simply exiting. */
1601 }
1602 if (*result_count <= 0)
1603 {
1604 if (*done != 1)
1605 {
1606 warning (_("RMT ERROR : failed to get remote thread list."));
1607 result = 0;
1608 }
1609 return result; /* break; */
1610 }
1611 if (*result_count > result_limit)
1612 {
1613 *result_count = 0;
1614 warning (_("RMT ERROR: threadlist response longer than requested."));
1615 return 0;
1616 }
1617 return result;
1618 }
1619
1620 /* This is the interface between remote and threads, remotes upper
1621 interface. */
1622
1623 /* remote_find_new_threads retrieves the thread list and for each
1624 thread in the list, looks up the thread in GDB's internal list,
1625 ading the thread if it does not already exist. This involves
1626 getting partial thread lists from the remote target so, polling the
1627 quit_flag is required. */
1628
1629
1630 /* About this many threadisds fit in a packet. */
1631
1632 #define MAXTHREADLISTRESULTS 32
1633
1634 static int
1635 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1636 int looplimit)
1637 {
1638 int done, i, result_count;
1639 int startflag = 1;
1640 int result = 1;
1641 int loopcount = 0;
1642 static threadref nextthread;
1643 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1644
1645 done = 0;
1646 while (!done)
1647 {
1648 if (loopcount++ > looplimit)
1649 {
1650 result = 0;
1651 warning (_("Remote fetch threadlist -infinite loop-."));
1652 break;
1653 }
1654 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1655 &done, &result_count, resultthreadlist))
1656 {
1657 result = 0;
1658 break;
1659 }
1660 /* Clear for later iterations. */
1661 startflag = 0;
1662 /* Setup to resume next batch of thread references, set nextthread. */
1663 if (result_count >= 1)
1664 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1665 i = 0;
1666 while (result_count--)
1667 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1668 break;
1669 }
1670 return result;
1671 }
1672
1673 static int
1674 remote_newthread_step (threadref *ref, void *context)
1675 {
1676 ptid_t ptid;
1677
1678 ptid = pid_to_ptid (threadref_to_int (ref));
1679
1680 if (!in_thread_list (ptid))
1681 add_thread (ptid);
1682 return 1; /* continue iterator */
1683 }
1684
1685 #define CRAZY_MAX_THREADS 1000
1686
1687 static ptid_t
1688 remote_current_thread (ptid_t oldpid)
1689 {
1690 struct remote_state *rs = get_remote_state ();
1691 char *buf = rs->buf;
1692
1693 putpkt ("qC");
1694 getpkt (&rs->buf, &rs->buf_size, 0);
1695 if (buf[0] == 'Q' && buf[1] == 'C')
1696 /* Use strtoul here, so we'll correctly parse values whose highest
1697 bit is set. The protocol carries them as a simple series of
1698 hex digits; in the absence of a sign, strtol will see such
1699 values as positive numbers out of range for signed 'long', and
1700 return LONG_MAX to indicate an overflow. */
1701 return pid_to_ptid (strtoul (&buf[2], NULL, 16));
1702 else
1703 return oldpid;
1704 }
1705
1706 /* Find new threads for info threads command.
1707 * Original version, using John Metzler's thread protocol.
1708 */
1709
1710 static void
1711 remote_find_new_threads (void)
1712 {
1713 remote_threadlist_iterator (remote_newthread_step, 0,
1714 CRAZY_MAX_THREADS);
1715 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1716 inferior_ptid = remote_current_thread (inferior_ptid);
1717 }
1718
1719 /*
1720 * Find all threads for info threads command.
1721 * Uses new thread protocol contributed by Cisco.
1722 * Falls back and attempts to use the older method (above)
1723 * if the target doesn't respond to the new method.
1724 */
1725
1726 static void
1727 remote_threads_info (void)
1728 {
1729 struct remote_state *rs = get_remote_state ();
1730 char *bufp;
1731 int tid;
1732
1733 if (remote_desc == 0) /* paranoia */
1734 error (_("Command can only be used when connected to the remote target."));
1735
1736 if (use_threadinfo_query)
1737 {
1738 putpkt ("qfThreadInfo");
1739 bufp = rs->buf;
1740 getpkt (&rs->buf, &rs->buf_size, 0);
1741 if (bufp[0] != '\0') /* q packet recognized */
1742 {
1743 while (*bufp++ == 'm') /* reply contains one or more TID */
1744 {
1745 do
1746 {
1747 /* Use strtoul here, so we'll correctly parse values
1748 whose highest bit is set. The protocol carries
1749 them as a simple series of hex digits; in the
1750 absence of a sign, strtol will see such values as
1751 positive numbers out of range for signed 'long',
1752 and return LONG_MAX to indicate an overflow. */
1753 tid = strtoul (bufp, &bufp, 16);
1754 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1755 add_thread (pid_to_ptid (tid));
1756 }
1757 while (*bufp++ == ','); /* comma-separated list */
1758 putpkt ("qsThreadInfo");
1759 bufp = rs->buf;
1760 getpkt (&rs->buf, &rs->buf_size, 0);
1761 }
1762 return; /* done */
1763 }
1764 }
1765
1766 /* Else fall back to old method based on jmetzler protocol. */
1767 use_threadinfo_query = 0;
1768 remote_find_new_threads ();
1769 return;
1770 }
1771
1772 /*
1773 * Collect a descriptive string about the given thread.
1774 * The target may say anything it wants to about the thread
1775 * (typically info about its blocked / runnable state, name, etc.).
1776 * This string will appear in the info threads display.
1777 *
1778 * Optional: targets are not required to implement this function.
1779 */
1780
1781 static char *
1782 remote_threads_extra_info (struct thread_info *tp)
1783 {
1784 struct remote_state *rs = get_remote_state ();
1785 int result;
1786 int set;
1787 threadref id;
1788 struct gdb_ext_thread_info threadinfo;
1789 static char display_buf[100]; /* arbitrary... */
1790 int n = 0; /* position in display_buf */
1791
1792 if (remote_desc == 0) /* paranoia */
1793 internal_error (__FILE__, __LINE__,
1794 _("remote_threads_extra_info"));
1795
1796 if (use_threadextra_query)
1797 {
1798 char *bufp = rs->buf;
1799
1800 xsnprintf (bufp, get_remote_packet_size (), "qThreadExtraInfo,%x",
1801 PIDGET (tp->ptid));
1802 putpkt (bufp);
1803 getpkt (&rs->buf, &rs->buf_size, 0);
1804 if (bufp[0] != 0)
1805 {
1806 n = min (strlen (bufp) / 2, sizeof (display_buf));
1807 result = hex2bin (bufp, (gdb_byte *) display_buf, n);
1808 display_buf [result] = '\0';
1809 return display_buf;
1810 }
1811 }
1812
1813 /* If the above query fails, fall back to the old method. */
1814 use_threadextra_query = 0;
1815 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1816 | TAG_MOREDISPLAY | TAG_DISPLAY;
1817 int_to_threadref (&id, PIDGET (tp->ptid));
1818 if (remote_get_threadinfo (&id, set, &threadinfo))
1819 if (threadinfo.active)
1820 {
1821 if (*threadinfo.shortname)
1822 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
1823 " Name: %s,", threadinfo.shortname);
1824 if (*threadinfo.display)
1825 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1826 " State: %s,", threadinfo.display);
1827 if (*threadinfo.more_display)
1828 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1829 " Priority: %s", threadinfo.more_display);
1830
1831 if (n > 0)
1832 {
1833 /* For purely cosmetic reasons, clear up trailing commas. */
1834 if (',' == display_buf[n-1])
1835 display_buf[n-1] = ' ';
1836 return display_buf;
1837 }
1838 }
1839 return NULL;
1840 }
1841 \f
1842
1843 /* Restart the remote side; this is an extended protocol operation. */
1844
1845 static void
1846 extended_remote_restart (void)
1847 {
1848 struct remote_state *rs = get_remote_state ();
1849
1850 /* Send the restart command; for reasons I don't understand the
1851 remote side really expects a number after the "R". */
1852 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
1853 putpkt (rs->buf);
1854
1855 remote_fileio_reset ();
1856
1857 /* Now query for status so this looks just like we restarted
1858 gdbserver from scratch. */
1859 putpkt ("?");
1860 getpkt (&rs->buf, &rs->buf_size, 0);
1861 }
1862 \f
1863 /* Clean up connection to a remote debugger. */
1864
1865 static void
1866 remote_close (int quitting)
1867 {
1868 if (remote_desc)
1869 serial_close (remote_desc);
1870 remote_desc = NULL;
1871 }
1872
1873 /* Query the remote side for the text, data and bss offsets. */
1874
1875 static void
1876 get_offsets (void)
1877 {
1878 struct remote_state *rs = get_remote_state ();
1879 char *buf = rs->buf;
1880 char *ptr;
1881 int lose;
1882 CORE_ADDR text_addr, data_addr, bss_addr;
1883 struct section_offsets *offs;
1884
1885 putpkt ("qOffsets");
1886 getpkt (&rs->buf, &rs->buf_size, 0);
1887
1888 if (buf[0] == '\000')
1889 return; /* Return silently. Stub doesn't support
1890 this command. */
1891 if (buf[0] == 'E')
1892 {
1893 warning (_("Remote failure reply: %s"), buf);
1894 return;
1895 }
1896
1897 /* Pick up each field in turn. This used to be done with scanf, but
1898 scanf will make trouble if CORE_ADDR size doesn't match
1899 conversion directives correctly. The following code will work
1900 with any size of CORE_ADDR. */
1901 text_addr = data_addr = bss_addr = 0;
1902 ptr = buf;
1903 lose = 0;
1904
1905 if (strncmp (ptr, "Text=", 5) == 0)
1906 {
1907 ptr += 5;
1908 /* Don't use strtol, could lose on big values. */
1909 while (*ptr && *ptr != ';')
1910 text_addr = (text_addr << 4) + fromhex (*ptr++);
1911 }
1912 else
1913 lose = 1;
1914
1915 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
1916 {
1917 ptr += 6;
1918 while (*ptr && *ptr != ';')
1919 data_addr = (data_addr << 4) + fromhex (*ptr++);
1920 }
1921 else
1922 lose = 1;
1923
1924 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
1925 {
1926 ptr += 5;
1927 while (*ptr && *ptr != ';')
1928 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
1929 }
1930 else
1931 lose = 1;
1932
1933 if (lose)
1934 error (_("Malformed response to offset query, %s"), buf);
1935
1936 if (symfile_objfile == NULL)
1937 return;
1938
1939 offs = ((struct section_offsets *)
1940 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
1941 memcpy (offs, symfile_objfile->section_offsets,
1942 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
1943
1944 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
1945
1946 /* This is a temporary kludge to force data and bss to use the same offsets
1947 because that's what nlmconv does now. The real solution requires changes
1948 to the stub and remote.c that I don't have time to do right now. */
1949
1950 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
1951 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
1952
1953 objfile_relocate (symfile_objfile, offs);
1954 }
1955
1956 /* Stub for catch_errors. */
1957
1958 static int
1959 remote_start_remote_dummy (struct ui_out *uiout, void *dummy)
1960 {
1961 start_remote (); /* Initialize gdb process mechanisms. */
1962 /* NOTE: Return something >=0. A -ve value is reserved for
1963 catch_exceptions. */
1964 return 1;
1965 }
1966
1967 static void
1968 remote_start_remote (struct ui_out *uiout, void *dummy)
1969 {
1970 immediate_quit++; /* Allow user to interrupt it. */
1971
1972 /* Ack any packet which the remote side has already sent. */
1973 serial_write (remote_desc, "+", 1);
1974
1975 /* Let the stub know that we want it to return the thread. */
1976 set_thread (-1, 0);
1977
1978 inferior_ptid = remote_current_thread (inferior_ptid);
1979
1980 get_offsets (); /* Get text, data & bss offsets. */
1981
1982 putpkt ("?"); /* Initiate a query from remote machine. */
1983 immediate_quit--;
1984
1985 remote_start_remote_dummy (uiout, dummy);
1986 }
1987
1988 /* Open a connection to a remote debugger.
1989 NAME is the filename used for communication. */
1990
1991 static void
1992 remote_open (char *name, int from_tty)
1993 {
1994 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
1995 }
1996
1997 /* Just like remote_open, but with asynchronous support. */
1998 static void
1999 remote_async_open (char *name, int from_tty)
2000 {
2001 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2002 }
2003
2004 /* Open a connection to a remote debugger using the extended
2005 remote gdb protocol. NAME is the filename used for communication. */
2006
2007 static void
2008 extended_remote_open (char *name, int from_tty)
2009 {
2010 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2011 0 /* async_p */);
2012 }
2013
2014 /* Just like extended_remote_open, but with asynchronous support. */
2015 static void
2016 extended_remote_async_open (char *name, int from_tty)
2017 {
2018 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2019 1 /*extended_p */, 1 /* async_p */);
2020 }
2021
2022 /* Generic code for opening a connection to a remote target. */
2023
2024 static void
2025 init_all_packet_configs (void)
2026 {
2027 int i;
2028 for (i = 0; i < PACKET_MAX; i++)
2029 update_packet_config (&remote_protocol_packets[i]);
2030 }
2031
2032 /* Symbol look-up. */
2033
2034 static void
2035 remote_check_symbols (struct objfile *objfile)
2036 {
2037 struct remote_state *rs = get_remote_state ();
2038 char *msg, *reply, *tmp;
2039 struct minimal_symbol *sym;
2040 int end;
2041
2042 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2043 return;
2044
2045 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2046 because we need both at the same time. */
2047 msg = alloca (get_remote_packet_size ());
2048
2049 reply = rs->buf;
2050
2051 /* Invite target to request symbol lookups. */
2052
2053 putpkt ("qSymbol::");
2054 getpkt (&rs->buf, &rs->buf_size, 0);
2055 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2056
2057 while (strncmp (reply, "qSymbol:", 8) == 0)
2058 {
2059 tmp = &reply[8];
2060 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2061 msg[end] = '\0';
2062 sym = lookup_minimal_symbol (msg, NULL, NULL);
2063 if (sym == NULL)
2064 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2065 else
2066 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2067 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2068 &reply[8]);
2069 putpkt (msg);
2070 getpkt (&rs->buf, &rs->buf_size, 0);
2071 }
2072 }
2073
2074 static struct serial *
2075 remote_serial_open (char *name)
2076 {
2077 static int udp_warning = 0;
2078
2079 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2080 of in ser-tcp.c, because it is the remote protocol assuming that the
2081 serial connection is reliable and not the serial connection promising
2082 to be. */
2083 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2084 {
2085 warning (_("\
2086 The remote protocol may be unreliable over UDP.\n\
2087 Some events may be lost, rendering further debugging impossible."));
2088 udp_warning = 1;
2089 }
2090
2091 return serial_open (name);
2092 }
2093
2094 /* This type describes each known response to the qSupported
2095 packet. */
2096 struct protocol_feature
2097 {
2098 /* The name of this protocol feature. */
2099 const char *name;
2100
2101 /* The default for this protocol feature. */
2102 enum packet_support default_support;
2103
2104 /* The function to call when this feature is reported, or after
2105 qSupported processing if the feature is not supported.
2106 The first argument points to this structure. The second
2107 argument indicates whether the packet requested support be
2108 enabled, disabled, or probed (or the default, if this function
2109 is being called at the end of processing and this feature was
2110 not reported). The third argument may be NULL; if not NULL, it
2111 is a NUL-terminated string taken from the packet following
2112 this feature's name and an equals sign. */
2113 void (*func) (const struct protocol_feature *, enum packet_support,
2114 const char *);
2115
2116 /* The corresponding packet for this feature. Only used if
2117 FUNC is remote_supported_packet. */
2118 int packet;
2119 };
2120
2121 static void
2122 remote_supported_packet (const struct protocol_feature *feature,
2123 enum packet_support support,
2124 const char *argument)
2125 {
2126 if (argument)
2127 {
2128 warning (_("Remote qSupported response supplied an unexpected value for"
2129 " \"%s\"."), feature->name);
2130 return;
2131 }
2132
2133 if (remote_protocol_packets[feature->packet].support
2134 == PACKET_SUPPORT_UNKNOWN)
2135 remote_protocol_packets[feature->packet].support = support;
2136 }
2137
2138 static void
2139 remote_packet_size (const struct protocol_feature *feature,
2140 enum packet_support support, const char *value)
2141 {
2142 struct remote_state *rs = get_remote_state ();
2143
2144 int packet_size;
2145 char *value_end;
2146
2147 if (support != PACKET_ENABLE)
2148 return;
2149
2150 if (value == NULL || *value == '\0')
2151 {
2152 warning (_("Remote target reported \"%s\" without a size."),
2153 feature->name);
2154 return;
2155 }
2156
2157 errno = 0;
2158 packet_size = strtol (value, &value_end, 16);
2159 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2160 {
2161 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2162 feature->name, value);
2163 return;
2164 }
2165
2166 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2167 {
2168 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2169 packet_size, MAX_REMOTE_PACKET_SIZE);
2170 packet_size = MAX_REMOTE_PACKET_SIZE;
2171 }
2172
2173 /* Record the new maximum packet size. */
2174 rs->explicit_packet_size = packet_size;
2175 }
2176
2177 static struct protocol_feature remote_protocol_features[] = {
2178 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2179 { "qPart:auxv:read", PACKET_DISABLE, remote_supported_packet,
2180 PACKET_qXfer_auxv }
2181 };
2182
2183 static void
2184 remote_query_supported (void)
2185 {
2186 struct remote_state *rs = get_remote_state ();
2187 char *next;
2188 int i;
2189 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2190
2191 /* The packet support flags are handled differently for this packet
2192 than for most others. We treat an error, a disabled packet, and
2193 an empty response identically: any features which must be reported
2194 to be used will be automatically disabled. An empty buffer
2195 accomplishes this, since that is also the representation for a list
2196 containing no features. */
2197
2198 rs->buf[0] = 0;
2199 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2200 {
2201 putpkt ("qSupported");
2202 getpkt (&rs->buf, &rs->buf_size, 0);
2203
2204 /* If an error occured, warn, but do not return - just reset the
2205 buffer to empty and go on to disable features. */
2206 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2207 == PACKET_ERROR)
2208 {
2209 warning (_("Remote failure reply: %s"), rs->buf);
2210 rs->buf[0] = 0;
2211 }
2212 }
2213
2214 memset (seen, 0, sizeof (seen));
2215
2216 next = rs->buf;
2217 while (*next)
2218 {
2219 enum packet_support is_supported;
2220 char *p, *end, *name_end, *value;
2221
2222 /* First separate out this item from the rest of the packet. If
2223 there's another item after this, we overwrite the separator
2224 (terminated strings are much easier to work with). */
2225 p = next;
2226 end = strchr (p, ';');
2227 if (end == NULL)
2228 {
2229 end = p + strlen (p);
2230 next = end;
2231 }
2232 else
2233 {
2234 if (end == p)
2235 {
2236 warning (_("empty item in \"qSupported\" response"));
2237 continue;
2238 }
2239
2240 *end = '\0';
2241 next = end + 1;
2242 }
2243
2244 name_end = strchr (p, '=');
2245 if (name_end)
2246 {
2247 /* This is a name=value entry. */
2248 is_supported = PACKET_ENABLE;
2249 value = name_end + 1;
2250 *name_end = '\0';
2251 }
2252 else
2253 {
2254 value = NULL;
2255 switch (end[-1])
2256 {
2257 case '+':
2258 is_supported = PACKET_ENABLE;
2259 break;
2260
2261 case '-':
2262 is_supported = PACKET_DISABLE;
2263 break;
2264
2265 case '?':
2266 is_supported = PACKET_SUPPORT_UNKNOWN;
2267 break;
2268
2269 default:
2270 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
2271 continue;
2272 }
2273 end[-1] = '\0';
2274 }
2275
2276 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2277 if (strcmp (remote_protocol_features[i].name, p) == 0)
2278 {
2279 const struct protocol_feature *feature;
2280
2281 seen[i] = 1;
2282 feature = &remote_protocol_features[i];
2283 feature->func (feature, is_supported, value);
2284 break;
2285 }
2286 }
2287
2288 /* If we increased the packet size, make sure to increase the global
2289 buffer size also. We delay this until after parsing the entire
2290 qSupported packet, because this is the same buffer we were
2291 parsing. */
2292 if (rs->buf_size < rs->explicit_packet_size)
2293 {
2294 rs->buf_size = rs->explicit_packet_size;
2295 rs->buf = xrealloc (rs->buf, rs->buf_size);
2296 }
2297
2298 /* Handle the defaults for unmentioned features. */
2299 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2300 if (!seen[i])
2301 {
2302 const struct protocol_feature *feature;
2303
2304 feature = &remote_protocol_features[i];
2305 feature->func (feature, feature->default_support, NULL);
2306 }
2307 }
2308
2309
2310 static void
2311 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2312 int extended_p, int async_p)
2313 {
2314 struct remote_state *rs = get_remote_state ();
2315 if (name == 0)
2316 error (_("To open a remote debug connection, you need to specify what\n"
2317 "serial device is attached to the remote system\n"
2318 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2319
2320 /* See FIXME above. */
2321 if (!async_p)
2322 wait_forever_enabled_p = 1;
2323
2324 target_preopen (from_tty);
2325
2326 unpush_target (target);
2327
2328 remote_fileio_reset ();
2329 reopen_exec_file ();
2330 reread_symbols ();
2331
2332 remote_desc = remote_serial_open (name);
2333 if (!remote_desc)
2334 perror_with_name (name);
2335
2336 if (baud_rate != -1)
2337 {
2338 if (serial_setbaudrate (remote_desc, baud_rate))
2339 {
2340 /* The requested speed could not be set. Error out to
2341 top level after closing remote_desc. Take care to
2342 set remote_desc to NULL to avoid closing remote_desc
2343 more than once. */
2344 serial_close (remote_desc);
2345 remote_desc = NULL;
2346 perror_with_name (name);
2347 }
2348 }
2349
2350 serial_raw (remote_desc);
2351
2352 /* If there is something sitting in the buffer we might take it as a
2353 response to a command, which would be bad. */
2354 serial_flush_input (remote_desc);
2355
2356 if (from_tty)
2357 {
2358 puts_filtered ("Remote debugging using ");
2359 puts_filtered (name);
2360 puts_filtered ("\n");
2361 }
2362 push_target (target); /* Switch to using remote target now. */
2363
2364 /* Reset the target state; these things will be queried either by
2365 remote_query_supported or as they are needed. */
2366 init_all_packet_configs ();
2367 rs->explicit_packet_size = 0;
2368
2369 general_thread = -2;
2370 continue_thread = -2;
2371
2372 /* Probe for ability to use "ThreadInfo" query, as required. */
2373 use_threadinfo_query = 1;
2374 use_threadextra_query = 1;
2375
2376 /* The first packet we send to the target is the optional "supported
2377 packets" request. If the target can answer this, it will tell us
2378 which later probes to skip. */
2379 remote_query_supported ();
2380
2381 /* Without this, some commands which require an active target (such
2382 as kill) won't work. This variable serves (at least) double duty
2383 as both the pid of the target process (if it has such), and as a
2384 flag indicating that a target is active. These functions should
2385 be split out into seperate variables, especially since GDB will
2386 someday have a notion of debugging several processes. */
2387
2388 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2389
2390 if (async_p)
2391 {
2392 /* With this target we start out by owning the terminal. */
2393 remote_async_terminal_ours_p = 1;
2394
2395 /* FIXME: cagney/1999-09-23: During the initial connection it is
2396 assumed that the target is already ready and able to respond to
2397 requests. Unfortunately remote_start_remote() eventually calls
2398 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2399 around this. Eventually a mechanism that allows
2400 wait_for_inferior() to expect/get timeouts will be
2401 implemented. */
2402 wait_forever_enabled_p = 0;
2403 }
2404
2405 /* First delete any symbols previously loaded from shared libraries. */
2406 no_shared_libraries (NULL, 0);
2407
2408 /* Start the remote connection. If error() or QUIT, discard this
2409 target (we'd otherwise be in an inconsistent state) and then
2410 propogate the error on up the exception chain. This ensures that
2411 the caller doesn't stumble along blindly assuming that the
2412 function succeeded. The CLI doesn't have this problem but other
2413 UI's, such as MI do.
2414
2415 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2416 this function should return an error indication letting the
2417 caller restore the previous state. Unfortunately the command
2418 ``target remote'' is directly wired to this function making that
2419 impossible. On a positive note, the CLI side of this problem has
2420 been fixed - the function set_cmd_context() makes it possible for
2421 all the ``target ....'' commands to share a common callback
2422 function. See cli-dump.c. */
2423 {
2424 struct gdb_exception ex
2425 = catch_exception (uiout, remote_start_remote, NULL, RETURN_MASK_ALL);
2426 if (ex.reason < 0)
2427 {
2428 pop_target ();
2429 if (async_p)
2430 wait_forever_enabled_p = 1;
2431 throw_exception (ex);
2432 }
2433 }
2434
2435 if (async_p)
2436 wait_forever_enabled_p = 1;
2437
2438 if (extended_p)
2439 {
2440 /* Tell the remote that we are using the extended protocol. */
2441 putpkt ("!");
2442 getpkt (&rs->buf, &rs->buf_size, 0);
2443 }
2444
2445 post_create_inferior (&current_target, from_tty);
2446
2447 if (exec_bfd) /* No use without an exec file. */
2448 remote_check_symbols (symfile_objfile);
2449 }
2450
2451 /* This takes a program previously attached to and detaches it. After
2452 this is done, GDB can be used to debug some other program. We
2453 better not have left any breakpoints in the target program or it'll
2454 die when it hits one. */
2455
2456 static void
2457 remote_detach (char *args, int from_tty)
2458 {
2459 struct remote_state *rs = get_remote_state ();
2460
2461 if (args)
2462 error (_("Argument given to \"detach\" when remotely debugging."));
2463
2464 /* Tell the remote target to detach. */
2465 strcpy (rs->buf, "D");
2466 remote_send (&rs->buf, &rs->buf_size);
2467
2468 /* Unregister the file descriptor from the event loop. */
2469 if (target_is_async_p ())
2470 serial_async (remote_desc, NULL, 0);
2471
2472 target_mourn_inferior ();
2473 if (from_tty)
2474 puts_filtered ("Ending remote debugging.\n");
2475 }
2476
2477 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2478
2479 static void
2480 remote_disconnect (struct target_ops *target, char *args, int from_tty)
2481 {
2482 if (args)
2483 error (_("Argument given to \"detach\" when remotely debugging."));
2484
2485 /* Unregister the file descriptor from the event loop. */
2486 if (target_is_async_p ())
2487 serial_async (remote_desc, NULL, 0);
2488
2489 target_mourn_inferior ();
2490 if (from_tty)
2491 puts_filtered ("Ending remote debugging.\n");
2492 }
2493
2494 /* Convert hex digit A to a number. */
2495
2496 static int
2497 fromhex (int a)
2498 {
2499 if (a >= '0' && a <= '9')
2500 return a - '0';
2501 else if (a >= 'a' && a <= 'f')
2502 return a - 'a' + 10;
2503 else if (a >= 'A' && a <= 'F')
2504 return a - 'A' + 10;
2505 else
2506 error (_("Reply contains invalid hex digit %d"), a);
2507 }
2508
2509 static int
2510 hex2bin (const char *hex, gdb_byte *bin, int count)
2511 {
2512 int i;
2513
2514 for (i = 0; i < count; i++)
2515 {
2516 if (hex[0] == 0 || hex[1] == 0)
2517 {
2518 /* Hex string is short, or of uneven length.
2519 Return the count that has been converted so far. */
2520 return i;
2521 }
2522 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2523 hex += 2;
2524 }
2525 return i;
2526 }
2527
2528 /* Convert number NIB to a hex digit. */
2529
2530 static int
2531 tohex (int nib)
2532 {
2533 if (nib < 10)
2534 return '0' + nib;
2535 else
2536 return 'a' + nib - 10;
2537 }
2538
2539 static int
2540 bin2hex (const gdb_byte *bin, char *hex, int count)
2541 {
2542 int i;
2543 /* May use a length, or a nul-terminated string as input. */
2544 if (count == 0)
2545 count = strlen ((char *) bin);
2546
2547 for (i = 0; i < count; i++)
2548 {
2549 *hex++ = tohex ((*bin >> 4) & 0xf);
2550 *hex++ = tohex (*bin++ & 0xf);
2551 }
2552 *hex = 0;
2553 return i;
2554 }
2555 \f
2556 /* Check for the availability of vCont. This function should also check
2557 the response. */
2558
2559 static void
2560 remote_vcont_probe (struct remote_state *rs)
2561 {
2562 char *buf = rs->buf;
2563
2564 strcpy (buf, "vCont?");
2565 putpkt (buf);
2566 getpkt (&rs->buf, &rs->buf_size, 0);
2567
2568 /* Make sure that the features we assume are supported. */
2569 if (strncmp (buf, "vCont", 5) == 0)
2570 {
2571 char *p = &buf[5];
2572 int support_s, support_S, support_c, support_C;
2573
2574 support_s = 0;
2575 support_S = 0;
2576 support_c = 0;
2577 support_C = 0;
2578 while (p && *p == ';')
2579 {
2580 p++;
2581 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2582 support_s = 1;
2583 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2584 support_S = 1;
2585 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2586 support_c = 1;
2587 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2588 support_C = 1;
2589
2590 p = strchr (p, ';');
2591 }
2592
2593 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2594 BUF will make packet_ok disable the packet. */
2595 if (!support_s || !support_S || !support_c || !support_C)
2596 buf[0] = 0;
2597 }
2598
2599 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
2600 }
2601
2602 /* Resume the remote inferior by using a "vCont" packet. The thread
2603 to be resumed is PTID; STEP and SIGGNAL indicate whether the
2604 resumed thread should be single-stepped and/or signalled. If PTID's
2605 PID is -1, then all threads are resumed; the thread to be stepped and/or
2606 signalled is given in the global INFERIOR_PTID. This function returns
2607 non-zero iff it resumes the inferior.
2608
2609 This function issues a strict subset of all possible vCont commands at the
2610 moment. */
2611
2612 static int
2613 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
2614 {
2615 struct remote_state *rs = get_remote_state ();
2616 int pid = PIDGET (ptid);
2617 char *buf = NULL, *outbuf;
2618 struct cleanup *old_cleanup;
2619
2620 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
2621 remote_vcont_probe (rs);
2622
2623 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
2624 return 0;
2625
2626 /* If we could generate a wider range of packets, we'd have to worry
2627 about overflowing BUF. Should there be a generic
2628 "multi-part-packet" packet? */
2629
2630 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
2631 {
2632 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
2633 don't have any PID numbers the inferior will understand. Make sure
2634 to only send forms that do not specify a PID. */
2635 if (step && siggnal != TARGET_SIGNAL_0)
2636 outbuf = xstrprintf ("vCont;S%02x", siggnal);
2637 else if (step)
2638 outbuf = xstrprintf ("vCont;s");
2639 else if (siggnal != TARGET_SIGNAL_0)
2640 outbuf = xstrprintf ("vCont;C%02x", siggnal);
2641 else
2642 outbuf = xstrprintf ("vCont;c");
2643 }
2644 else if (pid == -1)
2645 {
2646 /* Resume all threads, with preference for INFERIOR_PTID. */
2647 if (step && siggnal != TARGET_SIGNAL_0)
2648 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
2649 PIDGET (inferior_ptid));
2650 else if (step)
2651 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
2652 else if (siggnal != TARGET_SIGNAL_0)
2653 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
2654 PIDGET (inferior_ptid));
2655 else
2656 outbuf = xstrprintf ("vCont;c");
2657 }
2658 else
2659 {
2660 /* Scheduler locking; resume only PTID. */
2661 if (step && siggnal != TARGET_SIGNAL_0)
2662 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
2663 else if (step)
2664 outbuf = xstrprintf ("vCont;s:%x", pid);
2665 else if (siggnal != TARGET_SIGNAL_0)
2666 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
2667 else
2668 outbuf = xstrprintf ("vCont;c:%x", pid);
2669 }
2670
2671 gdb_assert (outbuf && strlen (outbuf) < get_remote_packet_size ());
2672 old_cleanup = make_cleanup (xfree, outbuf);
2673
2674 putpkt (outbuf);
2675
2676 do_cleanups (old_cleanup);
2677
2678 return 1;
2679 }
2680
2681 /* Tell the remote machine to resume. */
2682
2683 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2684
2685 static int last_sent_step;
2686
2687 static void
2688 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2689 {
2690 struct remote_state *rs = get_remote_state ();
2691 char *buf = rs->buf;
2692 int pid = PIDGET (ptid);
2693
2694 last_sent_signal = siggnal;
2695 last_sent_step = step;
2696
2697 /* A hook for when we need to do something at the last moment before
2698 resumption. */
2699 if (deprecated_target_resume_hook)
2700 (*deprecated_target_resume_hook) ();
2701
2702 /* The vCont packet doesn't need to specify threads via Hc. */
2703 if (remote_vcont_resume (ptid, step, siggnal))
2704 return;
2705
2706 /* All other supported resume packets do use Hc, so call set_thread. */
2707 if (pid == -1)
2708 set_thread (0, 0); /* Run any thread. */
2709 else
2710 set_thread (pid, 0); /* Run this thread. */
2711
2712 if (siggnal != TARGET_SIGNAL_0)
2713 {
2714 buf[0] = step ? 'S' : 'C';
2715 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2716 buf[2] = tohex (((int) siggnal) & 0xf);
2717 buf[3] = '\0';
2718 }
2719 else
2720 strcpy (buf, step ? "s" : "c");
2721
2722 putpkt (buf);
2723 }
2724
2725 /* Same as remote_resume, but with async support. */
2726 static void
2727 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2728 {
2729 remote_resume (ptid, step, siggnal);
2730
2731 /* We are about to start executing the inferior, let's register it
2732 with the event loop. NOTE: this is the one place where all the
2733 execution commands end up. We could alternatively do this in each
2734 of the execution commands in infcmd.c. */
2735 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2736 into infcmd.c in order to allow inferior function calls to work
2737 NOT asynchronously. */
2738 if (target_can_async_p ())
2739 target_async (inferior_event_handler, 0);
2740 /* Tell the world that the target is now executing. */
2741 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2742 this? Instead, should the client of target just assume (for
2743 async targets) that the target is going to start executing? Is
2744 this information already found in the continuation block? */
2745 if (target_is_async_p ())
2746 target_executing = 1;
2747 }
2748 \f
2749
2750 /* Set up the signal handler for SIGINT, while the target is
2751 executing, ovewriting the 'regular' SIGINT signal handler. */
2752 static void
2753 initialize_sigint_signal_handler (void)
2754 {
2755 sigint_remote_token =
2756 create_async_signal_handler (async_remote_interrupt, NULL);
2757 signal (SIGINT, handle_remote_sigint);
2758 }
2759
2760 /* Signal handler for SIGINT, while the target is executing. */
2761 static void
2762 handle_remote_sigint (int sig)
2763 {
2764 signal (sig, handle_remote_sigint_twice);
2765 sigint_remote_twice_token =
2766 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2767 mark_async_signal_handler_wrapper (sigint_remote_token);
2768 }
2769
2770 /* Signal handler for SIGINT, installed after SIGINT has already been
2771 sent once. It will take effect the second time that the user sends
2772 a ^C. */
2773 static void
2774 handle_remote_sigint_twice (int sig)
2775 {
2776 signal (sig, handle_sigint);
2777 sigint_remote_twice_token =
2778 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2779 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2780 }
2781
2782 /* Perform the real interruption of the target execution, in response
2783 to a ^C. */
2784 static void
2785 async_remote_interrupt (gdb_client_data arg)
2786 {
2787 if (remote_debug)
2788 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2789
2790 target_stop ();
2791 }
2792
2793 /* Perform interrupt, if the first attempt did not succeed. Just give
2794 up on the target alltogether. */
2795 void
2796 async_remote_interrupt_twice (gdb_client_data arg)
2797 {
2798 if (remote_debug)
2799 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2800 /* Do something only if the target was not killed by the previous
2801 cntl-C. */
2802 if (target_executing)
2803 {
2804 interrupt_query ();
2805 signal (SIGINT, handle_remote_sigint);
2806 }
2807 }
2808
2809 /* Reinstall the usual SIGINT handlers, after the target has
2810 stopped. */
2811 static void
2812 cleanup_sigint_signal_handler (void *dummy)
2813 {
2814 signal (SIGINT, handle_sigint);
2815 if (sigint_remote_twice_token)
2816 delete_async_signal_handler ((struct async_signal_handler **)
2817 &sigint_remote_twice_token);
2818 if (sigint_remote_token)
2819 delete_async_signal_handler ((struct async_signal_handler **)
2820 &sigint_remote_token);
2821 }
2822
2823 /* Send ^C to target to halt it. Target will respond, and send us a
2824 packet. */
2825 static void (*ofunc) (int);
2826
2827 /* The command line interface's stop routine. This function is installed
2828 as a signal handler for SIGINT. The first time a user requests a
2829 stop, we call remote_stop to send a break or ^C. If there is no
2830 response from the target (it didn't stop when the user requested it),
2831 we ask the user if he'd like to detach from the target. */
2832 static void
2833 remote_interrupt (int signo)
2834 {
2835 /* If this doesn't work, try more severe steps. */
2836 signal (signo, remote_interrupt_twice);
2837
2838 if (remote_debug)
2839 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2840
2841 target_stop ();
2842 }
2843
2844 /* The user typed ^C twice. */
2845
2846 static void
2847 remote_interrupt_twice (int signo)
2848 {
2849 signal (signo, ofunc);
2850 interrupt_query ();
2851 signal (signo, remote_interrupt);
2852 }
2853
2854 /* This is the generic stop called via the target vector. When a target
2855 interrupt is requested, either by the command line or the GUI, we
2856 will eventually end up here. */
2857 static void
2858 remote_stop (void)
2859 {
2860 /* Send a break or a ^C, depending on user preference. */
2861 if (remote_debug)
2862 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2863
2864 if (remote_break)
2865 serial_send_break (remote_desc);
2866 else
2867 serial_write (remote_desc, "\003", 1);
2868 }
2869
2870 /* Ask the user what to do when an interrupt is received. */
2871
2872 static void
2873 interrupt_query (void)
2874 {
2875 target_terminal_ours ();
2876
2877 if (query ("Interrupted while waiting for the program.\n\
2878 Give up (and stop debugging it)? "))
2879 {
2880 target_mourn_inferior ();
2881 deprecated_throw_reason (RETURN_QUIT);
2882 }
2883
2884 target_terminal_inferior ();
2885 }
2886
2887 /* Enable/disable target terminal ownership. Most targets can use
2888 terminal groups to control terminal ownership. Remote targets are
2889 different in that explicit transfer of ownership to/from GDB/target
2890 is required. */
2891
2892 static void
2893 remote_async_terminal_inferior (void)
2894 {
2895 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
2896 sync_execution here. This function should only be called when
2897 GDB is resuming the inferior in the forground. A background
2898 resume (``run&'') should leave GDB in control of the terminal and
2899 consequently should not call this code. */
2900 if (!sync_execution)
2901 return;
2902 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
2903 calls target_terminal_*() idenpotent. The event-loop GDB talking
2904 to an asynchronous target with a synchronous command calls this
2905 function from both event-top.c and infrun.c/infcmd.c. Once GDB
2906 stops trying to transfer the terminal to the target when it
2907 shouldn't this guard can go away. */
2908 if (!remote_async_terminal_ours_p)
2909 return;
2910 delete_file_handler (input_fd);
2911 remote_async_terminal_ours_p = 0;
2912 initialize_sigint_signal_handler ();
2913 /* NOTE: At this point we could also register our selves as the
2914 recipient of all input. Any characters typed could then be
2915 passed on down to the target. */
2916 }
2917
2918 static void
2919 remote_async_terminal_ours (void)
2920 {
2921 /* See FIXME in remote_async_terminal_inferior. */
2922 if (!sync_execution)
2923 return;
2924 /* See FIXME in remote_async_terminal_inferior. */
2925 if (remote_async_terminal_ours_p)
2926 return;
2927 cleanup_sigint_signal_handler (NULL);
2928 add_file_handler (input_fd, stdin_event_handler, 0);
2929 remote_async_terminal_ours_p = 1;
2930 }
2931
2932 /* If nonzero, ignore the next kill. */
2933
2934 int kill_kludge;
2935
2936 void
2937 remote_console_output (char *msg)
2938 {
2939 char *p;
2940
2941 for (p = msg; p[0] && p[1]; p += 2)
2942 {
2943 char tb[2];
2944 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
2945 tb[0] = c;
2946 tb[1] = 0;
2947 fputs_unfiltered (tb, gdb_stdtarg);
2948 }
2949 gdb_flush (gdb_stdtarg);
2950 }
2951
2952 /* Wait until the remote machine stops, then return,
2953 storing status in STATUS just as `wait' would.
2954 Returns "pid", which in the case of a multi-threaded
2955 remote OS, is the thread-id. */
2956
2957 static ptid_t
2958 remote_wait (ptid_t ptid, struct target_waitstatus *status)
2959 {
2960 struct remote_state *rs = get_remote_state ();
2961 struct remote_arch_state *rsa = get_remote_arch_state ();
2962 char *buf = rs->buf;
2963 ULONGEST thread_num = -1;
2964 ULONGEST addr;
2965
2966 status->kind = TARGET_WAITKIND_EXITED;
2967 status->value.integer = 0;
2968
2969 while (1)
2970 {
2971 char *p;
2972
2973 ofunc = signal (SIGINT, remote_interrupt);
2974 getpkt (&rs->buf, &rs->buf_size, 1);
2975 signal (SIGINT, ofunc);
2976
2977 /* This is a hook for when we need to do something (perhaps the
2978 collection of trace data) every time the target stops. */
2979 if (deprecated_target_wait_loop_hook)
2980 (*deprecated_target_wait_loop_hook) ();
2981
2982 remote_stopped_by_watchpoint_p = 0;
2983
2984 switch (buf[0])
2985 {
2986 case 'E': /* Error of some sort. */
2987 warning (_("Remote failure reply: %s"), buf);
2988 continue;
2989 case 'F': /* File-I/O request. */
2990 remote_fileio_request (buf);
2991 continue;
2992 case 'T': /* Status with PC, SP, FP, ... */
2993 {
2994 gdb_byte regs[MAX_REGISTER_SIZE];
2995
2996 /* Expedited reply, containing Signal, {regno, reg} repeat. */
2997 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
2998 ss = signal number
2999 n... = register number
3000 r... = register contents
3001 */
3002 p = &buf[3]; /* after Txx */
3003
3004 while (*p)
3005 {
3006 char *p1;
3007 char *p_temp;
3008 int fieldsize;
3009 LONGEST pnum = 0;
3010
3011 /* If the packet contains a register number save it in
3012 pnum and set p1 to point to the character following
3013 it. Otherwise p1 points to p. */
3014
3015 /* If this packet is an awatch packet, don't parse the
3016 'a' as a register number. */
3017
3018 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3019 {
3020 /* Read the ``P'' register number. */
3021 pnum = strtol (p, &p_temp, 16);
3022 p1 = p_temp;
3023 }
3024 else
3025 p1 = p;
3026
3027 if (p1 == p) /* No register number present here. */
3028 {
3029 p1 = strchr (p, ':');
3030 if (p1 == NULL)
3031 error (_("Malformed packet(a) (missing colon): %s\n\
3032 Packet: '%s'\n"),
3033 p, buf);
3034 if (strncmp (p, "thread", p1 - p) == 0)
3035 {
3036 p_temp = unpack_varlen_hex (++p1, &thread_num);
3037 record_currthread (thread_num);
3038 p = p_temp;
3039 }
3040 else if ((strncmp (p, "watch", p1 - p) == 0)
3041 || (strncmp (p, "rwatch", p1 - p) == 0)
3042 || (strncmp (p, "awatch", p1 - p) == 0))
3043 {
3044 remote_stopped_by_watchpoint_p = 1;
3045 p = unpack_varlen_hex (++p1, &addr);
3046 remote_watch_data_address = (CORE_ADDR)addr;
3047 }
3048 else
3049 {
3050 /* Silently skip unknown optional info. */
3051 p_temp = strchr (p1 + 1, ';');
3052 if (p_temp)
3053 p = p_temp;
3054 }
3055 }
3056 else
3057 {
3058 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3059 p = p1;
3060
3061 if (*p++ != ':')
3062 error (_("Malformed packet(b) (missing colon): %s\n\
3063 Packet: '%s'\n"),
3064 p, buf);
3065
3066 if (reg == NULL)
3067 error (_("Remote sent bad register number %s: %s\n\
3068 Packet: '%s'\n"),
3069 phex_nz (pnum, 0), p, buf);
3070
3071 fieldsize = hex2bin (p, regs,
3072 register_size (current_gdbarch,
3073 reg->regnum));
3074 p += 2 * fieldsize;
3075 if (fieldsize < register_size (current_gdbarch,
3076 reg->regnum))
3077 warning (_("Remote reply is too short: %s"), buf);
3078 regcache_raw_supply (current_regcache,
3079 reg->regnum, regs);
3080 }
3081
3082 if (*p++ != ';')
3083 error (_("Remote register badly formatted: %s\nhere: %s"),
3084 buf, p);
3085 }
3086 }
3087 /* fall through */
3088 case 'S': /* Old style status, just signal only. */
3089 status->kind = TARGET_WAITKIND_STOPPED;
3090 status->value.sig = (enum target_signal)
3091 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3092
3093 if (buf[3] == 'p')
3094 {
3095 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3096 record_currthread (thread_num);
3097 }
3098 goto got_status;
3099 case 'W': /* Target exited. */
3100 {
3101 /* The remote process exited. */
3102 status->kind = TARGET_WAITKIND_EXITED;
3103 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3104 goto got_status;
3105 }
3106 case 'X':
3107 status->kind = TARGET_WAITKIND_SIGNALLED;
3108 status->value.sig = (enum target_signal)
3109 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3110 kill_kludge = 1;
3111
3112 goto got_status;
3113 case 'O': /* Console output. */
3114 remote_console_output (buf + 1);
3115 continue;
3116 case '\0':
3117 if (last_sent_signal != TARGET_SIGNAL_0)
3118 {
3119 /* Zero length reply means that we tried 'S' or 'C' and
3120 the remote system doesn't support it. */
3121 target_terminal_ours_for_output ();
3122 printf_filtered
3123 ("Can't send signals to this remote system. %s not sent.\n",
3124 target_signal_to_name (last_sent_signal));
3125 last_sent_signal = TARGET_SIGNAL_0;
3126 target_terminal_inferior ();
3127
3128 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3129 putpkt ((char *) buf);
3130 continue;
3131 }
3132 /* else fallthrough */
3133 default:
3134 warning (_("Invalid remote reply: %s"), buf);
3135 continue;
3136 }
3137 }
3138 got_status:
3139 if (thread_num != -1)
3140 {
3141 return pid_to_ptid (thread_num);
3142 }
3143 return inferior_ptid;
3144 }
3145
3146 /* Async version of remote_wait. */
3147 static ptid_t
3148 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3149 {
3150 struct remote_state *rs = get_remote_state ();
3151 struct remote_arch_state *rsa = get_remote_arch_state ();
3152 char *buf = rs->buf;
3153 ULONGEST thread_num = -1;
3154 ULONGEST addr;
3155
3156 status->kind = TARGET_WAITKIND_EXITED;
3157 status->value.integer = 0;
3158
3159 remote_stopped_by_watchpoint_p = 0;
3160
3161 while (1)
3162 {
3163 char *p;
3164
3165 if (!target_is_async_p ())
3166 ofunc = signal (SIGINT, remote_interrupt);
3167 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3168 _never_ wait for ever -> test on target_is_async_p().
3169 However, before we do that we need to ensure that the caller
3170 knows how to take the target into/out of async mode. */
3171 getpkt (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
3172 if (!target_is_async_p ())
3173 signal (SIGINT, ofunc);
3174
3175 /* This is a hook for when we need to do something (perhaps the
3176 collection of trace data) every time the target stops. */
3177 if (deprecated_target_wait_loop_hook)
3178 (*deprecated_target_wait_loop_hook) ();
3179
3180 switch (buf[0])
3181 {
3182 case 'E': /* Error of some sort. */
3183 warning (_("Remote failure reply: %s"), buf);
3184 continue;
3185 case 'F': /* File-I/O request. */
3186 remote_fileio_request (buf);
3187 continue;
3188 case 'T': /* Status with PC, SP, FP, ... */
3189 {
3190 gdb_byte regs[MAX_REGISTER_SIZE];
3191
3192 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3193 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3194 ss = signal number
3195 n... = register number
3196 r... = register contents
3197 */
3198 p = &buf[3]; /* after Txx */
3199
3200 while (*p)
3201 {
3202 char *p1;
3203 char *p_temp;
3204 int fieldsize;
3205 long pnum = 0;
3206
3207 /* If the packet contains a register number, save it
3208 in pnum and set p1 to point to the character
3209 following it. Otherwise p1 points to p. */
3210
3211 /* If this packet is an awatch packet, don't parse the 'a'
3212 as a register number. */
3213
3214 if (!strncmp (p, "awatch", strlen ("awatch")) != 0)
3215 {
3216 /* Read the register number. */
3217 pnum = strtol (p, &p_temp, 16);
3218 p1 = p_temp;
3219 }
3220 else
3221 p1 = p;
3222
3223 if (p1 == p) /* No register number present here. */
3224 {
3225 p1 = strchr (p, ':');
3226 if (p1 == NULL)
3227 error (_("Malformed packet(a) (missing colon): %s\n\
3228 Packet: '%s'\n"),
3229 p, buf);
3230 if (strncmp (p, "thread", p1 - p) == 0)
3231 {
3232 p_temp = unpack_varlen_hex (++p1, &thread_num);
3233 record_currthread (thread_num);
3234 p = p_temp;
3235 }
3236 else if ((strncmp (p, "watch", p1 - p) == 0)
3237 || (strncmp (p, "rwatch", p1 - p) == 0)
3238 || (strncmp (p, "awatch", p1 - p) == 0))
3239 {
3240 remote_stopped_by_watchpoint_p = 1;
3241 p = unpack_varlen_hex (++p1, &addr);
3242 remote_watch_data_address = (CORE_ADDR)addr;
3243 }
3244 else
3245 {
3246 /* Silently skip unknown optional info. */
3247 p_temp = strchr (p1 + 1, ';');
3248 if (p_temp)
3249 p = p_temp;
3250 }
3251 }
3252
3253 else
3254 {
3255 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3256 p = p1;
3257 if (*p++ != ':')
3258 error (_("Malformed packet(b) (missing colon): %s\n\
3259 Packet: '%s'\n"),
3260 p, buf);
3261
3262 if (reg == NULL)
3263 error (_("Remote sent bad register number %ld: %s\n\
3264 Packet: '%s'\n"),
3265 pnum, p, buf);
3266
3267 fieldsize = hex2bin (p, regs,
3268 register_size (current_gdbarch,
3269 reg->regnum));
3270 p += 2 * fieldsize;
3271 if (fieldsize < register_size (current_gdbarch,
3272 reg->regnum))
3273 warning (_("Remote reply is too short: %s"), buf);
3274 regcache_raw_supply (current_regcache, reg->regnum, regs);
3275 }
3276
3277 if (*p++ != ';')
3278 error (_("Remote register badly formatted: %s\nhere: %s"),
3279 buf, p);
3280 }
3281 }
3282 /* fall through */
3283 case 'S': /* Old style status, just signal only. */
3284 status->kind = TARGET_WAITKIND_STOPPED;
3285 status->value.sig = (enum target_signal)
3286 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3287
3288 if (buf[3] == 'p')
3289 {
3290 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3291 record_currthread (thread_num);
3292 }
3293 goto got_status;
3294 case 'W': /* Target exited. */
3295 {
3296 /* The remote process exited. */
3297 status->kind = TARGET_WAITKIND_EXITED;
3298 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3299 goto got_status;
3300 }
3301 case 'X':
3302 status->kind = TARGET_WAITKIND_SIGNALLED;
3303 status->value.sig = (enum target_signal)
3304 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3305 kill_kludge = 1;
3306
3307 goto got_status;
3308 case 'O': /* Console output. */
3309 remote_console_output (buf + 1);
3310 /* Return immediately to the event loop. The event loop will
3311 still be waiting on the inferior afterwards. */
3312 status->kind = TARGET_WAITKIND_IGNORE;
3313 goto got_status;
3314 case '\0':
3315 if (last_sent_signal != TARGET_SIGNAL_0)
3316 {
3317 /* Zero length reply means that we tried 'S' or 'C' and
3318 the remote system doesn't support it. */
3319 target_terminal_ours_for_output ();
3320 printf_filtered
3321 ("Can't send signals to this remote system. %s not sent.\n",
3322 target_signal_to_name (last_sent_signal));
3323 last_sent_signal = TARGET_SIGNAL_0;
3324 target_terminal_inferior ();
3325
3326 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3327 putpkt ((char *) buf);
3328 continue;
3329 }
3330 /* else fallthrough */
3331 default:
3332 warning (_("Invalid remote reply: %s"), buf);
3333 continue;
3334 }
3335 }
3336 got_status:
3337 if (thread_num != -1)
3338 {
3339 return pid_to_ptid (thread_num);
3340 }
3341 return inferior_ptid;
3342 }
3343
3344 /* Number of bytes of registers this stub implements. */
3345
3346 static int register_bytes_found;
3347
3348 /* Read the remote registers into the block REGS. */
3349 /* Currently we just read all the registers, so we don't use regnum. */
3350
3351 static int
3352 fetch_register_using_p (int regnum)
3353 {
3354 struct remote_state *rs = get_remote_state ();
3355 char *buf = rs->buf, *p;
3356 char regp[MAX_REGISTER_SIZE];
3357 int i;
3358
3359 p = buf;
3360 *p++ = 'p';
3361 p += hexnumstr (p, regnum);
3362 *p++ = '\0';
3363 remote_send (&rs->buf, &rs->buf_size);
3364
3365 /* If the stub didn't recognize the packet, or if we got an error,
3366 tell our caller. */
3367 if (buf[0] == '\0' || buf[0] == 'E')
3368 return 0;
3369
3370 /* If this register is unfetchable, tell the regcache. */
3371 if (buf[0] == 'x')
3372 {
3373 regcache_raw_supply (current_regcache, regnum, NULL);
3374 set_register_cached (regnum, -1);
3375 return 1;
3376 }
3377
3378 /* Otherwise, parse and supply the value. */
3379 p = buf;
3380 i = 0;
3381 while (p[0] != 0)
3382 {
3383 if (p[1] == 0)
3384 {
3385 error (_("fetch_register_using_p: early buf termination"));
3386 return 0;
3387 }
3388
3389 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3390 p += 2;
3391 }
3392 regcache_raw_supply (current_regcache, regnum, regp);
3393 return 1;
3394 }
3395
3396 static void
3397 remote_fetch_registers (int regnum)
3398 {
3399 struct remote_state *rs = get_remote_state ();
3400 struct remote_arch_state *rsa = get_remote_arch_state ();
3401 char *buf = rs->buf;
3402 int i;
3403 char *p;
3404 char *regs = alloca (rsa->sizeof_g_packet);
3405
3406 set_thread (PIDGET (inferior_ptid), 1);
3407
3408 if (regnum >= 0)
3409 {
3410 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3411 gdb_assert (reg != NULL);
3412 if (!reg->in_g_packet)
3413 internal_error (__FILE__, __LINE__,
3414 _("Attempt to fetch a non G-packet register when this "
3415 "remote.c does not support the p-packet."));
3416 }
3417 switch (remote_protocol_packets[PACKET_p].support)
3418 {
3419 case PACKET_DISABLE:
3420 break;
3421 case PACKET_ENABLE:
3422 if (fetch_register_using_p (regnum))
3423 return;
3424 else
3425 error (_("Protocol error: p packet not recognized by stub"));
3426 case PACKET_SUPPORT_UNKNOWN:
3427 if (fetch_register_using_p (regnum))
3428 {
3429 /* The stub recognized the 'p' packet. Remember this. */
3430 remote_protocol_packets[PACKET_p].support = PACKET_ENABLE;
3431 return;
3432 }
3433 else
3434 {
3435 /* The stub does not support the 'P' packet. Use 'G'
3436 instead, and don't try using 'P' in the future (it
3437 will just waste our time). */
3438 remote_protocol_packets[PACKET_p].support = PACKET_DISABLE;
3439 break;
3440 }
3441 }
3442
3443 sprintf (buf, "g");
3444 remote_send (&rs->buf, &rs->buf_size);
3445
3446 /* Save the size of the packet sent to us by the target. Its used
3447 as a heuristic when determining the max size of packets that the
3448 target can safely receive. */
3449 if ((rsa->actual_register_packet_size) == 0)
3450 (rsa->actual_register_packet_size) = strlen (buf);
3451
3452 /* Unimplemented registers read as all bits zero. */
3453 memset (regs, 0, rsa->sizeof_g_packet);
3454
3455 /* We can get out of synch in various cases. If the first character
3456 in the buffer is not a hex character, assume that has happened
3457 and try to fetch another packet to read. */
3458 while ((buf[0] < '0' || buf[0] > '9')
3459 && (buf[0] < 'A' || buf[0] > 'F')
3460 && (buf[0] < 'a' || buf[0] > 'f')
3461 && buf[0] != 'x') /* New: unavailable register value. */
3462 {
3463 if (remote_debug)
3464 fprintf_unfiltered (gdb_stdlog,
3465 "Bad register packet; fetching a new packet\n");
3466 getpkt (&rs->buf, &rs->buf_size, 0);
3467 }
3468
3469 /* Reply describes registers byte by byte, each byte encoded as two
3470 hex characters. Suck them all up, then supply them to the
3471 register cacheing/storage mechanism. */
3472
3473 p = buf;
3474 for (i = 0; i < rsa->sizeof_g_packet; i++)
3475 {
3476 if (p[0] == 0)
3477 break;
3478 if (p[1] == 0)
3479 {
3480 warning (_("Remote reply is of odd length: %s"), buf);
3481 /* Don't change register_bytes_found in this case, and don't
3482 print a second warning. */
3483 goto supply_them;
3484 }
3485 if (p[0] == 'x' && p[1] == 'x')
3486 regs[i] = 0; /* 'x' */
3487 else
3488 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3489 p += 2;
3490 }
3491
3492 if (i != register_bytes_found)
3493 {
3494 register_bytes_found = i;
3495 if (REGISTER_BYTES_OK_P ()
3496 && !REGISTER_BYTES_OK (i))
3497 warning (_("Remote reply is too short: %s"), buf);
3498 }
3499
3500 supply_them:
3501 {
3502 int i;
3503 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3504 {
3505 struct packet_reg *r = &rsa->regs[i];
3506 if (r->in_g_packet)
3507 {
3508 if (r->offset * 2 >= strlen (buf))
3509 /* A short packet that didn't include the register's
3510 value, this implies that the register is zero (and
3511 not that the register is unavailable). Supply that
3512 zero value. */
3513 regcache_raw_supply (current_regcache, r->regnum, NULL);
3514 else if (buf[r->offset * 2] == 'x')
3515 {
3516 gdb_assert (r->offset * 2 < strlen (buf));
3517 /* The register isn't available, mark it as such (at
3518 the same time setting the value to zero). */
3519 regcache_raw_supply (current_regcache, r->regnum, NULL);
3520 set_register_cached (i, -1);
3521 }
3522 else
3523 regcache_raw_supply (current_regcache, r->regnum,
3524 regs + r->offset);
3525 }
3526 }
3527 }
3528 }
3529
3530 /* Prepare to store registers. Since we may send them all (using a
3531 'G' request), we have to read out the ones we don't want to change
3532 first. */
3533
3534 static void
3535 remote_prepare_to_store (void)
3536 {
3537 struct remote_arch_state *rsa = get_remote_arch_state ();
3538 int i;
3539 gdb_byte buf[MAX_REGISTER_SIZE];
3540
3541 /* Make sure the entire registers array is valid. */
3542 switch (remote_protocol_packets[PACKET_P].support)
3543 {
3544 case PACKET_DISABLE:
3545 case PACKET_SUPPORT_UNKNOWN:
3546 /* Make sure all the necessary registers are cached. */
3547 for (i = 0; i < NUM_REGS; i++)
3548 if (rsa->regs[i].in_g_packet)
3549 regcache_raw_read (current_regcache, rsa->regs[i].regnum, buf);
3550 break;
3551 case PACKET_ENABLE:
3552 break;
3553 }
3554 }
3555
3556 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3557 packet was not recognized. */
3558
3559 static int
3560 store_register_using_P (int regnum)
3561 {
3562 struct remote_state *rs = get_remote_state ();
3563 struct remote_arch_state *rsa = get_remote_arch_state ();
3564 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3565 /* Try storing a single register. */
3566 char *buf = rs->buf;
3567 gdb_byte regp[MAX_REGISTER_SIZE];
3568 char *p;
3569
3570 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
3571 p = buf + strlen (buf);
3572 regcache_raw_collect (current_regcache, reg->regnum, regp);
3573 bin2hex (regp, p, register_size (current_gdbarch, reg->regnum));
3574 remote_send (&rs->buf, &rs->buf_size);
3575
3576 return buf[0] != '\0';
3577 }
3578
3579
3580 /* Store register REGNUM, or all registers if REGNUM == -1, from the
3581 contents of the register cache buffer. FIXME: ignores errors. */
3582
3583 static void
3584 remote_store_registers (int regnum)
3585 {
3586 struct remote_state *rs = get_remote_state ();
3587 struct remote_arch_state *rsa = get_remote_arch_state ();
3588 gdb_byte *regs;
3589 char *p;
3590
3591 set_thread (PIDGET (inferior_ptid), 1);
3592
3593 if (regnum >= 0)
3594 {
3595 switch (remote_protocol_packets[PACKET_P].support)
3596 {
3597 case PACKET_DISABLE:
3598 break;
3599 case PACKET_ENABLE:
3600 if (store_register_using_P (regnum))
3601 return;
3602 else
3603 error (_("Protocol error: P packet not recognized by stub"));
3604 case PACKET_SUPPORT_UNKNOWN:
3605 if (store_register_using_P (regnum))
3606 {
3607 /* The stub recognized the 'P' packet. Remember this. */
3608 remote_protocol_packets[PACKET_P].support = PACKET_ENABLE;
3609 return;
3610 }
3611 else
3612 {
3613 /* The stub does not support the 'P' packet. Use 'G'
3614 instead, and don't try using 'P' in the future (it
3615 will just waste our time). */
3616 remote_protocol_packets[PACKET_P].support = PACKET_DISABLE;
3617 break;
3618 }
3619 }
3620 }
3621
3622 /* Extract all the registers in the regcache copying them into a
3623 local buffer. */
3624 {
3625 int i;
3626 regs = alloca (rsa->sizeof_g_packet);
3627 memset (regs, 0, rsa->sizeof_g_packet);
3628 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3629 {
3630 struct packet_reg *r = &rsa->regs[i];
3631 if (r->in_g_packet)
3632 regcache_raw_collect (current_regcache, r->regnum, regs + r->offset);
3633 }
3634 }
3635
3636 /* Command describes registers byte by byte,
3637 each byte encoded as two hex characters. */
3638 p = rs->buf;
3639 *p++ = 'G';
3640 /* remote_prepare_to_store insures that register_bytes_found gets set. */
3641 bin2hex (regs, p, register_bytes_found);
3642 remote_send (&rs->buf, &rs->buf_size);
3643 }
3644 \f
3645
3646 /* Return the number of hex digits in num. */
3647
3648 static int
3649 hexnumlen (ULONGEST num)
3650 {
3651 int i;
3652
3653 for (i = 0; num != 0; i++)
3654 num >>= 4;
3655
3656 return max (i, 1);
3657 }
3658
3659 /* Set BUF to the minimum number of hex digits representing NUM. */
3660
3661 static int
3662 hexnumstr (char *buf, ULONGEST num)
3663 {
3664 int len = hexnumlen (num);
3665 return hexnumnstr (buf, num, len);
3666 }
3667
3668
3669 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3670
3671 static int
3672 hexnumnstr (char *buf, ULONGEST num, int width)
3673 {
3674 int i;
3675
3676 buf[width] = '\0';
3677
3678 for (i = width - 1; i >= 0; i--)
3679 {
3680 buf[i] = "0123456789abcdef"[(num & 0xf)];
3681 num >>= 4;
3682 }
3683
3684 return width;
3685 }
3686
3687 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3688
3689 static CORE_ADDR
3690 remote_address_masked (CORE_ADDR addr)
3691 {
3692 if (remote_address_size > 0
3693 && remote_address_size < (sizeof (ULONGEST) * 8))
3694 {
3695 /* Only create a mask when that mask can safely be constructed
3696 in a ULONGEST variable. */
3697 ULONGEST mask = 1;
3698 mask = (mask << remote_address_size) - 1;
3699 addr &= mask;
3700 }
3701 return addr;
3702 }
3703
3704 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
3705 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
3706 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
3707 (which may be more than *OUT_LEN due to escape characters). The
3708 total number of bytes in the output buffer will be at most
3709 OUT_MAXLEN. */
3710
3711 static int
3712 remote_escape_output (const gdb_byte *buffer, int len,
3713 gdb_byte *out_buf, int *out_len,
3714 int out_maxlen)
3715 {
3716 int input_index, output_index;
3717
3718 output_index = 0;
3719 for (input_index = 0; input_index < len; input_index++)
3720 {
3721 gdb_byte b = buffer[input_index];
3722
3723 if (b == '$' || b == '#' || b == '}')
3724 {
3725 /* These must be escaped. */
3726 if (output_index + 2 > out_maxlen)
3727 break;
3728 out_buf[output_index++] = '}';
3729 out_buf[output_index++] = b ^ 0x20;
3730 }
3731 else
3732 {
3733 if (output_index + 1 > out_maxlen)
3734 break;
3735 out_buf[output_index++] = b;
3736 }
3737 }
3738
3739 *out_len = input_index;
3740 return output_index;
3741 }
3742
3743 /* Convert BUFFER, escaped data LEN bytes long, into binary data
3744 in OUT_BUF. Return the number of bytes written to OUT_BUF.
3745 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
3746
3747 This function reverses remote_escape_output. It allows more
3748 escaped characters than that function does, in particular because
3749 '*' must be escaped to avoid the run-length encoding processing
3750 in reading packets. */
3751
3752 static int
3753 remote_unescape_input (const gdb_byte *buffer, int len,
3754 gdb_byte *out_buf, int out_maxlen)
3755 {
3756 int input_index, output_index;
3757 int escaped;
3758
3759 output_index = 0;
3760 escaped = 0;
3761 for (input_index = 0; input_index < len; input_index++)
3762 {
3763 gdb_byte b = buffer[input_index];
3764
3765 if (output_index + 1 > out_maxlen)
3766 {
3767 warning (_("Received too much data from remote target;"
3768 " ignoring overflow."));
3769 return output_index;
3770 }
3771
3772 if (escaped)
3773 {
3774 out_buf[output_index++] = b ^ 0x20;
3775 escaped = 0;
3776 }
3777 else if (b == '}')
3778 escaped = 1;
3779 else
3780 out_buf[output_index++] = b;
3781 }
3782
3783 if (escaped)
3784 error (_("Unmatched escape character in target response."));
3785
3786 return output_index;
3787 }
3788
3789 /* Determine whether the remote target supports binary downloading.
3790 This is accomplished by sending a no-op memory write of zero length
3791 to the target at the specified address. It does not suffice to send
3792 the whole packet, since many stubs strip the eighth bit and
3793 subsequently compute a wrong checksum, which causes real havoc with
3794 remote_write_bytes.
3795
3796 NOTE: This can still lose if the serial line is not eight-bit
3797 clean. In cases like this, the user should clear "remote
3798 X-packet". */
3799
3800 static void
3801 check_binary_download (CORE_ADDR addr)
3802 {
3803 struct remote_state *rs = get_remote_state ();
3804
3805 switch (remote_protocol_packets[PACKET_X].support)
3806 {
3807 case PACKET_DISABLE:
3808 break;
3809 case PACKET_ENABLE:
3810 break;
3811 case PACKET_SUPPORT_UNKNOWN:
3812 {
3813 char *buf = rs->buf;
3814 char *p;
3815
3816 p = buf;
3817 *p++ = 'X';
3818 p += hexnumstr (p, (ULONGEST) addr);
3819 *p++ = ',';
3820 p += hexnumstr (p, (ULONGEST) 0);
3821 *p++ = ':';
3822 *p = '\0';
3823
3824 putpkt_binary (buf, (int) (p - buf));
3825 getpkt (&rs->buf, &rs->buf_size, 0);
3826
3827 if (buf[0] == '\0')
3828 {
3829 if (remote_debug)
3830 fprintf_unfiltered (gdb_stdlog,
3831 "binary downloading NOT suppported by target\n");
3832 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
3833 }
3834 else
3835 {
3836 if (remote_debug)
3837 fprintf_unfiltered (gdb_stdlog,
3838 "binary downloading suppported by target\n");
3839 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
3840 }
3841 break;
3842 }
3843 }
3844 }
3845
3846 /* Write memory data directly to the remote machine.
3847 This does not inform the data cache; the data cache uses this.
3848 MEMADDR is the address in the remote memory space.
3849 MYADDR is the address of the buffer in our space.
3850 LEN is the number of bytes.
3851
3852 Returns number of bytes transferred, or 0 (setting errno) for
3853 error. Only transfer a single packet. */
3854
3855 int
3856 remote_write_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
3857 {
3858 struct remote_state *rs = get_remote_state ();
3859 char *buf;
3860 char *p;
3861 char *plen;
3862 int plenlen;
3863 int todo;
3864 int nr_bytes;
3865 int payload_size;
3866 int payload_length;
3867
3868 /* Verify that the target can support a binary download. */
3869 check_binary_download (memaddr);
3870
3871 payload_size = get_memory_write_packet_size ();
3872
3873 /* The packet buffer will be large enough for the payload;
3874 get_memory_packet_size ensures this. */
3875 buf = rs->buf;
3876
3877 /* Compute the size of the actual payload by subtracting out the
3878 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
3879 */
3880 payload_size -= strlen ("$M,:#NN");
3881 payload_size -= hexnumlen (memaddr);
3882
3883 /* Construct the packet header: "[MX]<memaddr>,<len>:". */
3884
3885 /* Append "[XM]". Compute a best guess of the number of bytes
3886 actually transfered. */
3887 p = buf;
3888 switch (remote_protocol_packets[PACKET_X].support)
3889 {
3890 case PACKET_ENABLE:
3891 *p++ = 'X';
3892 /* Best guess at number of bytes that will fit. */
3893 todo = min (len, payload_size);
3894 payload_size -= hexnumlen (todo);
3895 todo = min (todo, payload_size);
3896 break;
3897 case PACKET_DISABLE:
3898 *p++ = 'M';
3899 /* Num bytes that will fit. */
3900 todo = min (len, payload_size / 2);
3901 payload_size -= hexnumlen (todo);
3902 todo = min (todo, payload_size / 2);
3903 break;
3904 case PACKET_SUPPORT_UNKNOWN:
3905 internal_error (__FILE__, __LINE__,
3906 _("remote_write_bytes: bad internal state"));
3907 default:
3908 internal_error (__FILE__, __LINE__, _("bad switch"));
3909 }
3910 if (todo <= 0)
3911 internal_error (__FILE__, __LINE__,
3912 _("minumum packet size too small to write data"));
3913
3914 /* If we already need another packet, then try to align the end
3915 of this packet to a useful boundary. */
3916 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
3917 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
3918
3919 /* Append "<memaddr>". */
3920 memaddr = remote_address_masked (memaddr);
3921 p += hexnumstr (p, (ULONGEST) memaddr);
3922
3923 /* Append ",". */
3924 *p++ = ',';
3925
3926 /* Append <len>. Retain the location/size of <len>. It may need to
3927 be adjusted once the packet body has been created. */
3928 plen = p;
3929 plenlen = hexnumstr (p, (ULONGEST) todo);
3930 p += plenlen;
3931
3932 /* Append ":". */
3933 *p++ = ':';
3934 *p = '\0';
3935
3936 /* Append the packet body. */
3937 switch (remote_protocol_packets[PACKET_X].support)
3938 {
3939 case PACKET_ENABLE:
3940 /* Binary mode. Send target system values byte by byte, in
3941 increasing byte addresses. Only escape certain critical
3942 characters. */
3943 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
3944 payload_size);
3945
3946 /* If not all TODO bytes fit, then we'll need another packet. Make
3947 a second try to keep the end of the packet aligned. */
3948 if (nr_bytes < todo)
3949 {
3950 int new_nr_bytes;
3951
3952 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
3953 - memaddr);
3954 if (new_nr_bytes != nr_bytes)
3955 payload_length = remote_escape_output (myaddr, new_nr_bytes,
3956 p, &nr_bytes,
3957 payload_size);
3958 }
3959
3960 p += payload_length;
3961 if (nr_bytes < todo)
3962 {
3963 /* Escape chars have filled up the buffer prematurely,
3964 and we have actually sent fewer bytes than planned.
3965 Fix-up the length field of the packet. Use the same
3966 number of characters as before. */
3967 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
3968 *plen = ':'; /* overwrite \0 from hexnumnstr() */
3969 }
3970 break;
3971 case PACKET_DISABLE:
3972 /* Normal mode: Send target system values byte by byte, in
3973 increasing byte addresses. Each byte is encoded as a two hex
3974 value. */
3975 nr_bytes = bin2hex (myaddr, p, todo);
3976 p += 2 * nr_bytes;
3977 break;
3978 case PACKET_SUPPORT_UNKNOWN:
3979 internal_error (__FILE__, __LINE__,
3980 _("remote_write_bytes: bad internal state"));
3981 default:
3982 internal_error (__FILE__, __LINE__, _("bad switch"));
3983 }
3984
3985 putpkt_binary (buf, (int) (p - buf));
3986 getpkt (&rs->buf, &rs->buf_size, 0);
3987
3988 if (buf[0] == 'E')
3989 {
3990 /* There is no correspondance between what the remote protocol
3991 uses for errors and errno codes. We would like a cleaner way
3992 of representing errors (big enough to include errno codes,
3993 bfd_error codes, and others). But for now just return EIO. */
3994 errno = EIO;
3995 return 0;
3996 }
3997
3998 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
3999 fewer bytes than we'd planned. */
4000 return nr_bytes;
4001 }
4002
4003 /* Read memory data directly from the remote machine.
4004 This does not use the data cache; the data cache uses this.
4005 MEMADDR is the address in the remote memory space.
4006 MYADDR is the address of the buffer in our space.
4007 LEN is the number of bytes.
4008
4009 Returns number of bytes transferred, or 0 for error. */
4010
4011 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
4012 remote targets) shouldn't attempt to read the entire buffer.
4013 Instead it should read a single packet worth of data and then
4014 return the byte size of that packet to the caller. The caller (its
4015 caller and its callers caller ;-) already contains code for
4016 handling partial reads. */
4017
4018 int
4019 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
4020 {
4021 struct remote_state *rs = get_remote_state ();
4022 char *buf;
4023 int max_buf_size; /* Max size of packet output buffer. */
4024 int origlen;
4025
4026 max_buf_size = get_memory_read_packet_size ();
4027 /* The packet buffer will be large enough for the payload;
4028 get_memory_packet_size ensures this. */
4029 buf = rs->buf;
4030
4031 origlen = len;
4032 while (len > 0)
4033 {
4034 char *p;
4035 int todo;
4036 int i;
4037
4038 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
4039
4040 /* construct "m"<memaddr>","<len>" */
4041 /* sprintf (buf, "m%lx,%x", (unsigned long) memaddr, todo); */
4042 memaddr = remote_address_masked (memaddr);
4043 p = buf;
4044 *p++ = 'm';
4045 p += hexnumstr (p, (ULONGEST) memaddr);
4046 *p++ = ',';
4047 p += hexnumstr (p, (ULONGEST) todo);
4048 *p = '\0';
4049
4050 putpkt (buf);
4051 getpkt (&rs->buf, &rs->buf_size, 0);
4052
4053 if (buf[0] == 'E'
4054 && isxdigit (buf[1]) && isxdigit (buf[2])
4055 && buf[3] == '\0')
4056 {
4057 /* There is no correspondance between what the remote
4058 protocol uses for errors and errno codes. We would like
4059 a cleaner way of representing errors (big enough to
4060 include errno codes, bfd_error codes, and others). But
4061 for now just return EIO. */
4062 errno = EIO;
4063 return 0;
4064 }
4065
4066 /* Reply describes memory byte by byte,
4067 each byte encoded as two hex characters. */
4068
4069 p = buf;
4070 if ((i = hex2bin (p, myaddr, todo)) < todo)
4071 {
4072 /* Reply is short. This means that we were able to read
4073 only part of what we wanted to. */
4074 return i + (origlen - len);
4075 }
4076 myaddr += todo;
4077 memaddr += todo;
4078 len -= todo;
4079 }
4080 return origlen;
4081 }
4082 \f
4083 /* Read or write LEN bytes from inferior memory at MEMADDR,
4084 transferring to or from debugger address BUFFER. Write to inferior
4085 if SHOULD_WRITE is nonzero. Returns length of data written or
4086 read; 0 for error. TARGET is unused. */
4087
4088 static int
4089 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
4090 int should_write, struct mem_attrib *attrib,
4091 struct target_ops *target)
4092 {
4093 CORE_ADDR targ_addr;
4094 int targ_len;
4095 int res;
4096
4097 /* Should this be the selected frame? */
4098 gdbarch_remote_translate_xfer_address (current_gdbarch,
4099 current_regcache,
4100 mem_addr, mem_len,
4101 &targ_addr, &targ_len);
4102 if (targ_len <= 0)
4103 return 0;
4104
4105 if (should_write)
4106 res = remote_write_bytes (targ_addr, buffer, targ_len);
4107 else
4108 res = remote_read_bytes (targ_addr, buffer, targ_len);
4109
4110 return res;
4111 }
4112
4113 static void
4114 remote_files_info (struct target_ops *ignore)
4115 {
4116 puts_filtered ("Debugging a target over a serial line.\n");
4117 }
4118 \f
4119 /* Stuff for dealing with the packets which are part of this protocol.
4120 See comment at top of file for details. */
4121
4122 /* Read a single character from the remote end. */
4123
4124 static int
4125 readchar (int timeout)
4126 {
4127 int ch;
4128
4129 ch = serial_readchar (remote_desc, timeout);
4130
4131 if (ch >= 0)
4132 return ch;
4133
4134 switch ((enum serial_rc) ch)
4135 {
4136 case SERIAL_EOF:
4137 target_mourn_inferior ();
4138 error (_("Remote connection closed"));
4139 /* no return */
4140 case SERIAL_ERROR:
4141 perror_with_name (_("Remote communication error"));
4142 /* no return */
4143 case SERIAL_TIMEOUT:
4144 break;
4145 }
4146 return ch;
4147 }
4148
4149 /* Send the command in *BUF to the remote machine, and read the reply
4150 into *BUF. Report an error if we get an error reply. Resize
4151 *BUF using xrealloc if necessary to hold the result, and update
4152 *SIZEOF_BUF. */
4153
4154 static void
4155 remote_send (char **buf,
4156 long *sizeof_buf)
4157 {
4158 putpkt (*buf);
4159 getpkt (buf, sizeof_buf, 0);
4160
4161 if ((*buf)[0] == 'E')
4162 error (_("Remote failure reply: %s"), *buf);
4163 }
4164
4165 /* Display a null-terminated packet on stdout, for debugging, using C
4166 string notation. */
4167
4168 static void
4169 print_packet (char *buf)
4170 {
4171 puts_filtered ("\"");
4172 fputstr_filtered (buf, '"', gdb_stdout);
4173 puts_filtered ("\"");
4174 }
4175
4176 int
4177 putpkt (char *buf)
4178 {
4179 return putpkt_binary (buf, strlen (buf));
4180 }
4181
4182 /* Send a packet to the remote machine, with error checking. The data
4183 of the packet is in BUF. The string in BUF can be at most
4184 get_remote_packet_size () - 5 to account for the $, # and checksum,
4185 and for a possible /0 if we are debugging (remote_debug) and want
4186 to print the sent packet as a string. */
4187
4188 static int
4189 putpkt_binary (char *buf, int cnt)
4190 {
4191 int i;
4192 unsigned char csum = 0;
4193 char *buf2 = alloca (cnt + 6);
4194
4195 int ch;
4196 int tcount = 0;
4197 char *p;
4198
4199 /* Copy the packet into buffer BUF2, encapsulating it
4200 and giving it a checksum. */
4201
4202 p = buf2;
4203 *p++ = '$';
4204
4205 for (i = 0; i < cnt; i++)
4206 {
4207 csum += buf[i];
4208 *p++ = buf[i];
4209 }
4210 *p++ = '#';
4211 *p++ = tohex ((csum >> 4) & 0xf);
4212 *p++ = tohex (csum & 0xf);
4213
4214 /* Send it over and over until we get a positive ack. */
4215
4216 while (1)
4217 {
4218 int started_error_output = 0;
4219
4220 if (remote_debug)
4221 {
4222 *p = '\0';
4223 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4224 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4225 fprintf_unfiltered (gdb_stdlog, "...");
4226 gdb_flush (gdb_stdlog);
4227 }
4228 if (serial_write (remote_desc, buf2, p - buf2))
4229 perror_with_name (_("putpkt: write failed"));
4230
4231 /* Read until either a timeout occurs (-2) or '+' is read. */
4232 while (1)
4233 {
4234 ch = readchar (remote_timeout);
4235
4236 if (remote_debug)
4237 {
4238 switch (ch)
4239 {
4240 case '+':
4241 case '-':
4242 case SERIAL_TIMEOUT:
4243 case '$':
4244 if (started_error_output)
4245 {
4246 putchar_unfiltered ('\n');
4247 started_error_output = 0;
4248 }
4249 }
4250 }
4251
4252 switch (ch)
4253 {
4254 case '+':
4255 if (remote_debug)
4256 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4257 return 1;
4258 case '-':
4259 if (remote_debug)
4260 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4261 case SERIAL_TIMEOUT:
4262 tcount++;
4263 if (tcount > 3)
4264 return 0;
4265 break; /* Retransmit buffer. */
4266 case '$':
4267 {
4268 if (remote_debug)
4269 fprintf_unfiltered (gdb_stdlog,
4270 "Packet instead of Ack, ignoring it\n");
4271 /* It's probably an old response sent because an ACK
4272 was lost. Gobble up the packet and ack it so it
4273 doesn't get retransmitted when we resend this
4274 packet. */
4275 skip_frame ();
4276 serial_write (remote_desc, "+", 1);
4277 continue; /* Now, go look for +. */
4278 }
4279 default:
4280 if (remote_debug)
4281 {
4282 if (!started_error_output)
4283 {
4284 started_error_output = 1;
4285 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4286 }
4287 fputc_unfiltered (ch & 0177, gdb_stdlog);
4288 }
4289 continue;
4290 }
4291 break; /* Here to retransmit. */
4292 }
4293
4294 #if 0
4295 /* This is wrong. If doing a long backtrace, the user should be
4296 able to get out next time we call QUIT, without anything as
4297 violent as interrupt_query. If we want to provide a way out of
4298 here without getting to the next QUIT, it should be based on
4299 hitting ^C twice as in remote_wait. */
4300 if (quit_flag)
4301 {
4302 quit_flag = 0;
4303 interrupt_query ();
4304 }
4305 #endif
4306 }
4307 }
4308
4309 /* Come here after finding the start of a frame when we expected an
4310 ack. Do our best to discard the rest of this packet. */
4311
4312 static void
4313 skip_frame (void)
4314 {
4315 int c;
4316
4317 while (1)
4318 {
4319 c = readchar (remote_timeout);
4320 switch (c)
4321 {
4322 case SERIAL_TIMEOUT:
4323 /* Nothing we can do. */
4324 return;
4325 case '#':
4326 /* Discard the two bytes of checksum and stop. */
4327 c = readchar (remote_timeout);
4328 if (c >= 0)
4329 c = readchar (remote_timeout);
4330
4331 return;
4332 case '*': /* Run length encoding. */
4333 /* Discard the repeat count. */
4334 c = readchar (remote_timeout);
4335 if (c < 0)
4336 return;
4337 break;
4338 default:
4339 /* A regular character. */
4340 break;
4341 }
4342 }
4343 }
4344
4345 /* Come here after finding the start of the frame. Collect the rest
4346 into *BUF, verifying the checksum, length, and handling run-length
4347 compression. NUL terminate the buffer. If there is not enough room,
4348 expand *BUF using xrealloc.
4349
4350 Returns -1 on error, number of characters in buffer (ignoring the
4351 trailing NULL) on success. (could be extended to return one of the
4352 SERIAL status indications). */
4353
4354 static long
4355 read_frame (char **buf_p,
4356 long *sizeof_buf)
4357 {
4358 unsigned char csum;
4359 long bc;
4360 int c;
4361 char *buf = *buf_p;
4362
4363 csum = 0;
4364 bc = 0;
4365
4366 while (1)
4367 {
4368 c = readchar (remote_timeout);
4369 switch (c)
4370 {
4371 case SERIAL_TIMEOUT:
4372 if (remote_debug)
4373 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4374 return -1;
4375 case '$':
4376 if (remote_debug)
4377 fputs_filtered ("Saw new packet start in middle of old one\n",
4378 gdb_stdlog);
4379 return -1; /* Start a new packet, count retries. */
4380 case '#':
4381 {
4382 unsigned char pktcsum;
4383 int check_0 = 0;
4384 int check_1 = 0;
4385
4386 buf[bc] = '\0';
4387
4388 check_0 = readchar (remote_timeout);
4389 if (check_0 >= 0)
4390 check_1 = readchar (remote_timeout);
4391
4392 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4393 {
4394 if (remote_debug)
4395 fputs_filtered ("Timeout in checksum, retrying\n",
4396 gdb_stdlog);
4397 return -1;
4398 }
4399 else if (check_0 < 0 || check_1 < 0)
4400 {
4401 if (remote_debug)
4402 fputs_filtered ("Communication error in checksum\n",
4403 gdb_stdlog);
4404 return -1;
4405 }
4406
4407 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4408 if (csum == pktcsum)
4409 return bc;
4410
4411 if (remote_debug)
4412 {
4413 fprintf_filtered (gdb_stdlog,
4414 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4415 pktcsum, csum);
4416 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
4417 fputs_filtered ("\n", gdb_stdlog);
4418 }
4419 /* Number of characters in buffer ignoring trailing
4420 NULL. */
4421 return -1;
4422 }
4423 case '*': /* Run length encoding. */
4424 {
4425 int repeat;
4426 csum += c;
4427
4428 c = readchar (remote_timeout);
4429 csum += c;
4430 repeat = c - ' ' + 3; /* Compute repeat count. */
4431
4432 /* The character before ``*'' is repeated. */
4433
4434 if (repeat > 0 && repeat <= 255 && bc > 0)
4435 {
4436 if (bc + repeat - 1 >= *sizeof_buf - 1)
4437 {
4438 /* Make some more room in the buffer. */
4439 *sizeof_buf += repeat;
4440 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4441 buf = *buf_p;
4442 }
4443
4444 memset (&buf[bc], buf[bc - 1], repeat);
4445 bc += repeat;
4446 continue;
4447 }
4448
4449 buf[bc] = '\0';
4450 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
4451 return -1;
4452 }
4453 default:
4454 if (bc >= *sizeof_buf - 1)
4455 {
4456 /* Make some more room in the buffer. */
4457 *sizeof_buf *= 2;
4458 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4459 buf = *buf_p;
4460 }
4461
4462 buf[bc++] = c;
4463 csum += c;
4464 continue;
4465 }
4466 }
4467 }
4468
4469 /* Read a packet from the remote machine, with error checking, and
4470 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4471 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4472 rather than timing out; this is used (in synchronous mode) to wait
4473 for a target that is is executing user code to stop. */
4474 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4475 don't have to change all the calls to getpkt to deal with the
4476 return value, because at the moment I don't know what the right
4477 thing to do it for those. */
4478 void
4479 getpkt (char **buf,
4480 long *sizeof_buf,
4481 int forever)
4482 {
4483 int timed_out;
4484
4485 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4486 }
4487
4488
4489 /* Read a packet from the remote machine, with error checking, and
4490 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4491 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4492 rather than timing out; this is used (in synchronous mode) to wait
4493 for a target that is is executing user code to stop. If FOREVER ==
4494 0, this function is allowed to time out gracefully and return an
4495 indication of this to the caller. Otherwise return the number
4496 of bytes read. */
4497 static int
4498 getpkt_sane (char **buf, long *sizeof_buf, int forever)
4499 {
4500 int c;
4501 int tries;
4502 int timeout;
4503 int val;
4504
4505 strcpy (*buf, "timeout");
4506
4507 if (forever)
4508 {
4509 timeout = watchdog > 0 ? watchdog : -1;
4510 }
4511
4512 else
4513 timeout = remote_timeout;
4514
4515 #define MAX_TRIES 3
4516
4517 for (tries = 1; tries <= MAX_TRIES; tries++)
4518 {
4519 /* This can loop forever if the remote side sends us characters
4520 continuously, but if it pauses, we'll get a zero from
4521 readchar because of timeout. Then we'll count that as a
4522 retry. */
4523
4524 /* Note that we will only wait forever prior to the start of a
4525 packet. After that, we expect characters to arrive at a
4526 brisk pace. They should show up within remote_timeout
4527 intervals. */
4528
4529 do
4530 {
4531 c = readchar (timeout);
4532
4533 if (c == SERIAL_TIMEOUT)
4534 {
4535 if (forever) /* Watchdog went off? Kill the target. */
4536 {
4537 QUIT;
4538 target_mourn_inferior ();
4539 error (_("Watchdog has expired. Target detached."));
4540 }
4541 if (remote_debug)
4542 fputs_filtered ("Timed out.\n", gdb_stdlog);
4543 goto retry;
4544 }
4545 }
4546 while (c != '$');
4547
4548 /* We've found the start of a packet, now collect the data. */
4549
4550 val = read_frame (buf, sizeof_buf);
4551
4552 if (val >= 0)
4553 {
4554 if (remote_debug)
4555 {
4556 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4557 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
4558 fprintf_unfiltered (gdb_stdlog, "\n");
4559 }
4560 serial_write (remote_desc, "+", 1);
4561 return val;
4562 }
4563
4564 /* Try the whole thing again. */
4565 retry:
4566 serial_write (remote_desc, "-", 1);
4567 }
4568
4569 /* We have tried hard enough, and just can't receive the packet.
4570 Give up. */
4571
4572 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
4573 serial_write (remote_desc, "+", 1);
4574 return -1;
4575 }
4576 \f
4577 static void
4578 remote_kill (void)
4579 {
4580 /* For some mysterious reason, wait_for_inferior calls kill instead of
4581 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4582 if (kill_kludge)
4583 {
4584 kill_kludge = 0;
4585 target_mourn_inferior ();
4586 return;
4587 }
4588
4589 /* Use catch_errors so the user can quit from gdb even when we aren't on
4590 speaking terms with the remote system. */
4591 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4592
4593 /* Don't wait for it to die. I'm not really sure it matters whether
4594 we do or not. For the existing stubs, kill is a noop. */
4595 target_mourn_inferior ();
4596 }
4597
4598 /* Async version of remote_kill. */
4599 static void
4600 remote_async_kill (void)
4601 {
4602 /* Unregister the file descriptor from the event loop. */
4603 if (target_is_async_p ())
4604 serial_async (remote_desc, NULL, 0);
4605
4606 /* For some mysterious reason, wait_for_inferior calls kill instead of
4607 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4608 if (kill_kludge)
4609 {
4610 kill_kludge = 0;
4611 target_mourn_inferior ();
4612 return;
4613 }
4614
4615 /* Use catch_errors so the user can quit from gdb even when we
4616 aren't on speaking terms with the remote system. */
4617 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4618
4619 /* Don't wait for it to die. I'm not really sure it matters whether
4620 we do or not. For the existing stubs, kill is a noop. */
4621 target_mourn_inferior ();
4622 }
4623
4624 static void
4625 remote_mourn (void)
4626 {
4627 remote_mourn_1 (&remote_ops);
4628 }
4629
4630 static void
4631 remote_async_mourn (void)
4632 {
4633 remote_mourn_1 (&remote_async_ops);
4634 }
4635
4636 static void
4637 extended_remote_mourn (void)
4638 {
4639 /* We do _not_ want to mourn the target like this; this will
4640 remove the extended remote target from the target stack,
4641 and the next time the user says "run" it'll fail.
4642
4643 FIXME: What is the right thing to do here? */
4644 #if 0
4645 remote_mourn_1 (&extended_remote_ops);
4646 #endif
4647 }
4648
4649 /* Worker function for remote_mourn. */
4650 static void
4651 remote_mourn_1 (struct target_ops *target)
4652 {
4653 unpush_target (target);
4654 generic_mourn_inferior ();
4655 }
4656
4657 /* In the extended protocol we want to be able to do things like
4658 "run" and have them basically work as expected. So we need
4659 a special create_inferior function.
4660
4661 FIXME: One day add support for changing the exec file
4662 we're debugging, arguments and an environment. */
4663
4664 static void
4665 extended_remote_create_inferior (char *exec_file, char *args,
4666 char **env, int from_tty)
4667 {
4668 /* Rip out the breakpoints; we'll reinsert them after restarting
4669 the remote server. */
4670 remove_breakpoints ();
4671
4672 /* Now restart the remote server. */
4673 extended_remote_restart ();
4674
4675 /* Now put the breakpoints back in. This way we're safe if the
4676 restart function works via a unix fork on the remote side. */
4677 insert_breakpoints ();
4678
4679 /* Clean up from the last time we were running. */
4680 clear_proceed_status ();
4681 }
4682
4683 /* Async version of extended_remote_create_inferior. */
4684 static void
4685 extended_remote_async_create_inferior (char *exec_file, char *args,
4686 char **env, int from_tty)
4687 {
4688 /* Rip out the breakpoints; we'll reinsert them after restarting
4689 the remote server. */
4690 remove_breakpoints ();
4691
4692 /* If running asynchronously, register the target file descriptor
4693 with the event loop. */
4694 if (target_can_async_p ())
4695 target_async (inferior_event_handler, 0);
4696
4697 /* Now restart the remote server. */
4698 extended_remote_restart ();
4699
4700 /* Now put the breakpoints back in. This way we're safe if the
4701 restart function works via a unix fork on the remote side. */
4702 insert_breakpoints ();
4703
4704 /* Clean up from the last time we were running. */
4705 clear_proceed_status ();
4706 }
4707 \f
4708
4709 /* On some machines, e.g. 68k, we may use a different breakpoint
4710 instruction than other targets; in those use
4711 DEPRECATED_REMOTE_BREAKPOINT instead of just BREAKPOINT_FROM_PC.
4712 Also, bi-endian targets may define
4713 DEPRECATED_LITTLE_REMOTE_BREAKPOINT and
4714 DEPRECATED_BIG_REMOTE_BREAKPOINT. If none of these are defined, we
4715 just call the standard routines that are in mem-break.c. */
4716
4717 /* NOTE: cagney/2003-06-08: This is silly. A remote and simulator
4718 target should use an identical BREAKPOINT_FROM_PC. As for native,
4719 the ARCH-OS-tdep.c code can override the default. */
4720
4721 #if defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && defined (DEPRECATED_BIG_REMOTE_BREAKPOINT) && !defined(DEPRECATED_REMOTE_BREAKPOINT)
4722 #define DEPRECATED_REMOTE_BREAKPOINT
4723 #endif
4724
4725 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4726
4727 /* If the target isn't bi-endian, just pretend it is. */
4728 #if !defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && !defined (DEPRECATED_BIG_REMOTE_BREAKPOINT)
4729 #define DEPRECATED_LITTLE_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
4730 #define DEPRECATED_BIG_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
4731 #endif
4732
4733 static unsigned char big_break_insn[] = DEPRECATED_BIG_REMOTE_BREAKPOINT;
4734 static unsigned char little_break_insn[] = DEPRECATED_LITTLE_REMOTE_BREAKPOINT;
4735
4736 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4737
4738 /* Insert a breakpoint. On targets that have software breakpoint
4739 support, we ask the remote target to do the work; on targets
4740 which don't, we insert a traditional memory breakpoint. */
4741
4742 static int
4743 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
4744 {
4745 CORE_ADDR addr = bp_tgt->placed_address;
4746 struct remote_state *rs = get_remote_state ();
4747 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4748 int val;
4749 #endif
4750
4751 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
4752 If it succeeds, then set the support to PACKET_ENABLE. If it
4753 fails, and the user has explicitly requested the Z support then
4754 report an error, otherwise, mark it disabled and go on. */
4755
4756 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
4757 {
4758 char *p = rs->buf;
4759
4760 *(p++) = 'Z';
4761 *(p++) = '0';
4762 *(p++) = ',';
4763 BREAKPOINT_FROM_PC (&bp_tgt->placed_address, &bp_tgt->placed_size);
4764 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
4765 p += hexnumstr (p, addr);
4766 sprintf (p, ",%d", bp_tgt->placed_size);
4767
4768 putpkt (rs->buf);
4769 getpkt (&rs->buf, &rs->buf_size, 0);
4770
4771 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
4772 {
4773 case PACKET_ERROR:
4774 return -1;
4775 case PACKET_OK:
4776 return 0;
4777 case PACKET_UNKNOWN:
4778 break;
4779 }
4780 }
4781
4782 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4783 bp_tgt->placed_size = bp_tgt->shadow_len = sizeof big_break_insn;
4784 val = target_read_memory (addr, bp_tgt->shadow_contents, bp_tgt->shadow_len);
4785
4786 if (val == 0)
4787 {
4788 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4789 val = target_write_memory (addr, (char *) big_break_insn,
4790 sizeof big_break_insn);
4791 else
4792 val = target_write_memory (addr, (char *) little_break_insn,
4793 sizeof little_break_insn);
4794 }
4795
4796 return val;
4797 #else
4798 return memory_insert_breakpoint (bp_tgt);
4799 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4800 }
4801
4802 static int
4803 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
4804 {
4805 CORE_ADDR addr = bp_tgt->placed_address;
4806 struct remote_state *rs = get_remote_state ();
4807 int bp_size;
4808
4809 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
4810 {
4811 char *p = rs->buf;
4812
4813 *(p++) = 'z';
4814 *(p++) = '0';
4815 *(p++) = ',';
4816
4817 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
4818 p += hexnumstr (p, addr);
4819 sprintf (p, ",%d", bp_tgt->placed_size);
4820
4821 putpkt (rs->buf);
4822 getpkt (&rs->buf, &rs->buf_size, 0);
4823
4824 return (rs->buf[0] == 'E');
4825 }
4826
4827 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4828 return target_write_memory (bp_tgt->placed_address, bp_tgt->shadow_contents,
4829 bp_tgt->shadow_len);
4830 #else
4831 return memory_remove_breakpoint (bp_tgt);
4832 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4833 }
4834
4835 static int
4836 watchpoint_to_Z_packet (int type)
4837 {
4838 switch (type)
4839 {
4840 case hw_write:
4841 return Z_PACKET_WRITE_WP;
4842 break;
4843 case hw_read:
4844 return Z_PACKET_READ_WP;
4845 break;
4846 case hw_access:
4847 return Z_PACKET_ACCESS_WP;
4848 break;
4849 default:
4850 internal_error (__FILE__, __LINE__,
4851 _("hw_bp_to_z: bad watchpoint type %d"), type);
4852 }
4853 }
4854
4855 static int
4856 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
4857 {
4858 struct remote_state *rs = get_remote_state ();
4859 char *p;
4860 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4861
4862 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
4863 return -1;
4864
4865 sprintf (rs->buf, "Z%x,", packet);
4866 p = strchr (rs->buf, '\0');
4867 addr = remote_address_masked (addr);
4868 p += hexnumstr (p, (ULONGEST) addr);
4869 sprintf (p, ",%x", len);
4870
4871 putpkt (rs->buf);
4872 getpkt (&rs->buf, &rs->buf_size, 0);
4873
4874 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
4875 {
4876 case PACKET_ERROR:
4877 case PACKET_UNKNOWN:
4878 return -1;
4879 case PACKET_OK:
4880 return 0;
4881 }
4882 internal_error (__FILE__, __LINE__,
4883 _("remote_insert_watchpoint: reached end of function"));
4884 }
4885
4886
4887 static int
4888 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
4889 {
4890 struct remote_state *rs = get_remote_state ();
4891 char *p;
4892 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4893
4894 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
4895 return -1;
4896
4897 sprintf (rs->buf, "z%x,", packet);
4898 p = strchr (rs->buf, '\0');
4899 addr = remote_address_masked (addr);
4900 p += hexnumstr (p, (ULONGEST) addr);
4901 sprintf (p, ",%x", len);
4902 putpkt (rs->buf);
4903 getpkt (&rs->buf, &rs->buf_size, 0);
4904
4905 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
4906 {
4907 case PACKET_ERROR:
4908 case PACKET_UNKNOWN:
4909 return -1;
4910 case PACKET_OK:
4911 return 0;
4912 }
4913 internal_error (__FILE__, __LINE__,
4914 _("remote_remove_watchpoint: reached end of function"));
4915 }
4916
4917
4918 int remote_hw_watchpoint_limit = -1;
4919 int remote_hw_breakpoint_limit = -1;
4920
4921 static int
4922 remote_check_watch_resources (int type, int cnt, int ot)
4923 {
4924 if (type == bp_hardware_breakpoint)
4925 {
4926 if (remote_hw_breakpoint_limit == 0)
4927 return 0;
4928 else if (remote_hw_breakpoint_limit < 0)
4929 return 1;
4930 else if (cnt <= remote_hw_breakpoint_limit)
4931 return 1;
4932 }
4933 else
4934 {
4935 if (remote_hw_watchpoint_limit == 0)
4936 return 0;
4937 else if (remote_hw_watchpoint_limit < 0)
4938 return 1;
4939 else if (ot)
4940 return -1;
4941 else if (cnt <= remote_hw_watchpoint_limit)
4942 return 1;
4943 }
4944 return -1;
4945 }
4946
4947 static int
4948 remote_stopped_by_watchpoint (void)
4949 {
4950 return remote_stopped_by_watchpoint_p;
4951 }
4952
4953 extern int stepped_after_stopped_by_watchpoint;
4954
4955 static int
4956 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
4957 {
4958 int rc = 0;
4959 if (remote_stopped_by_watchpoint ()
4960 || stepped_after_stopped_by_watchpoint)
4961 {
4962 *addr_p = remote_watch_data_address;
4963 rc = 1;
4964 }
4965
4966 return rc;
4967 }
4968
4969
4970 static int
4971 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
4972 {
4973 CORE_ADDR addr;
4974 struct remote_state *rs = get_remote_state ();
4975 char *p = rs->buf;
4976
4977 /* The length field should be set to the size of a breakpoint
4978 instruction, even though we aren't inserting one ourselves. */
4979
4980 BREAKPOINT_FROM_PC (&bp_tgt->placed_address, &bp_tgt->placed_size);
4981
4982 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
4983 return -1;
4984
4985 *(p++) = 'Z';
4986 *(p++) = '1';
4987 *(p++) = ',';
4988
4989 addr = remote_address_masked (bp_tgt->placed_address);
4990 p += hexnumstr (p, (ULONGEST) addr);
4991 sprintf (p, ",%x", bp_tgt->placed_size);
4992
4993 putpkt (rs->buf);
4994 getpkt (&rs->buf, &rs->buf_size, 0);
4995
4996 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
4997 {
4998 case PACKET_ERROR:
4999 case PACKET_UNKNOWN:
5000 return -1;
5001 case PACKET_OK:
5002 return 0;
5003 }
5004 internal_error (__FILE__, __LINE__,
5005 _("remote_insert_hw_breakpoint: reached end of function"));
5006 }
5007
5008
5009 static int
5010 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
5011 {
5012 CORE_ADDR addr;
5013 struct remote_state *rs = get_remote_state ();
5014 char *p = rs->buf;
5015
5016 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5017 return -1;
5018
5019 *(p++) = 'z';
5020 *(p++) = '1';
5021 *(p++) = ',';
5022
5023 addr = remote_address_masked (bp_tgt->placed_address);
5024 p += hexnumstr (p, (ULONGEST) addr);
5025 sprintf (p, ",%x", bp_tgt->placed_size);
5026
5027 putpkt (rs->buf);
5028 getpkt (&rs->buf, &rs->buf_size, 0);
5029
5030 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5031 {
5032 case PACKET_ERROR:
5033 case PACKET_UNKNOWN:
5034 return -1;
5035 case PACKET_OK:
5036 return 0;
5037 }
5038 internal_error (__FILE__, __LINE__,
5039 _("remote_remove_hw_breakpoint: reached end of function"));
5040 }
5041
5042 /* Some targets are only capable of doing downloads, and afterwards
5043 they switch to the remote serial protocol. This function provides
5044 a clean way to get from the download target to the remote target.
5045 It's basically just a wrapper so that we don't have to expose any
5046 of the internal workings of remote.c.
5047
5048 Prior to calling this routine, you should shutdown the current
5049 target code, else you will get the "A program is being debugged
5050 already..." message. Usually a call to pop_target() suffices. */
5051
5052 void
5053 push_remote_target (char *name, int from_tty)
5054 {
5055 printf_filtered (_("Switching to remote protocol\n"));
5056 remote_open (name, from_tty);
5057 }
5058
5059 /* Table used by the crc32 function to calcuate the checksum. */
5060
5061 static unsigned long crc32_table[256] =
5062 {0, 0};
5063
5064 static unsigned long
5065 crc32 (unsigned char *buf, int len, unsigned int crc)
5066 {
5067 if (!crc32_table[1])
5068 {
5069 /* Initialize the CRC table and the decoding table. */
5070 int i, j;
5071 unsigned int c;
5072
5073 for (i = 0; i < 256; i++)
5074 {
5075 for (c = i << 24, j = 8; j > 0; --j)
5076 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5077 crc32_table[i] = c;
5078 }
5079 }
5080
5081 while (len--)
5082 {
5083 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5084 buf++;
5085 }
5086 return crc;
5087 }
5088
5089 /* compare-sections command
5090
5091 With no arguments, compares each loadable section in the exec bfd
5092 with the same memory range on the target, and reports mismatches.
5093 Useful for verifying the image on the target against the exec file.
5094 Depends on the target understanding the new "qCRC:" request. */
5095
5096 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5097 target method (target verify memory) and generic version of the
5098 actual command. This will allow other high-level code (especially
5099 generic_load()) to make use of this target functionality. */
5100
5101 static void
5102 compare_sections_command (char *args, int from_tty)
5103 {
5104 struct remote_state *rs = get_remote_state ();
5105 asection *s;
5106 unsigned long host_crc, target_crc;
5107 extern bfd *exec_bfd;
5108 struct cleanup *old_chain;
5109 char *tmp;
5110 char *sectdata;
5111 const char *sectname;
5112 bfd_size_type size;
5113 bfd_vma lma;
5114 int matched = 0;
5115 int mismatched = 0;
5116
5117 if (!exec_bfd)
5118 error (_("command cannot be used without an exec file"));
5119 if (!current_target.to_shortname ||
5120 strcmp (current_target.to_shortname, "remote") != 0)
5121 error (_("command can only be used with remote target"));
5122
5123 for (s = exec_bfd->sections; s; s = s->next)
5124 {
5125 if (!(s->flags & SEC_LOAD))
5126 continue; /* skip non-loadable section */
5127
5128 size = bfd_get_section_size (s);
5129 if (size == 0)
5130 continue; /* skip zero-length section */
5131
5132 sectname = bfd_get_section_name (exec_bfd, s);
5133 if (args && strcmp (args, sectname) != 0)
5134 continue; /* not the section selected by user */
5135
5136 matched = 1; /* do this section */
5137 lma = s->lma;
5138 /* FIXME: assumes lma can fit into long. */
5139 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
5140 (long) lma, (long) size);
5141 putpkt (rs->buf);
5142
5143 /* Be clever; compute the host_crc before waiting for target
5144 reply. */
5145 sectdata = xmalloc (size);
5146 old_chain = make_cleanup (xfree, sectdata);
5147 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5148 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5149
5150 getpkt (&rs->buf, &rs->buf_size, 0);
5151 if (rs->buf[0] == 'E')
5152 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
5153 sectname, paddr (lma), paddr (lma + size));
5154 if (rs->buf[0] != 'C')
5155 error (_("remote target does not support this operation"));
5156
5157 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
5158 target_crc = target_crc * 16 + fromhex (*tmp);
5159
5160 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5161 sectname, paddr (lma), paddr (lma + size));
5162 if (host_crc == target_crc)
5163 printf_filtered ("matched.\n");
5164 else
5165 {
5166 printf_filtered ("MIS-MATCHED!\n");
5167 mismatched++;
5168 }
5169
5170 do_cleanups (old_chain);
5171 }
5172 if (mismatched > 0)
5173 warning (_("One or more sections of the remote executable does not match\n\
5174 the loaded file\n"));
5175 if (args && !matched)
5176 printf_filtered (_("No loaded section named '%s'.\n"), args);
5177 }
5178
5179 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
5180 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
5181 number of bytes read is returned, or 0 for EOF, or -1 for error.
5182 The number of bytes read may be less than LEN without indicating an
5183 EOF. PACKET is checked and updated to indicate whether the remote
5184 target supports this object. */
5185
5186 static LONGEST
5187 remote_read_qxfer (struct target_ops *ops, const char *object_name,
5188 const char *annex,
5189 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
5190 struct packet_config *packet)
5191 {
5192 static char *finished_object;
5193 static char *finished_annex;
5194 static ULONGEST finished_offset;
5195
5196 struct remote_state *rs = get_remote_state ();
5197 unsigned int total = 0;
5198 LONGEST i, n, packet_len;
5199
5200 if (packet->support == PACKET_DISABLE)
5201 return -1;
5202
5203 /* Check whether we've cached an end-of-object packet that matches
5204 this request. */
5205 if (finished_object)
5206 {
5207 if (strcmp (object_name, finished_object) == 0
5208 && strcmp (annex ? annex : "", finished_annex) == 0
5209 && offset == finished_offset)
5210 return 0;
5211
5212 /* Otherwise, we're now reading something different. Discard
5213 the cache. */
5214 xfree (finished_object);
5215 xfree (finished_annex);
5216 finished_object = NULL;
5217 finished_annex = NULL;
5218 }
5219
5220 /* Request only enough to fit in a single packet. The actual data
5221 may not, since we don't know how much of it will need to be escaped;
5222 the target is free to respond with slightly less data. We subtract
5223 five to account for the response type and the protocol frame. */
5224 n = min (get_remote_packet_size () - 5, len);
5225 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
5226 object_name, annex ? annex : "",
5227 phex_nz (offset, sizeof offset),
5228 phex_nz (n, sizeof n));
5229 i = putpkt (rs->buf);
5230 if (i < 0)
5231 return -1;
5232
5233 rs->buf[0] = '\0';
5234 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
5235 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
5236 return -1;
5237
5238 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
5239 error (_("Unknown remote qXfer reply: %s"), rs->buf);
5240
5241 /* 'm' means there is (or at least might be) more data after this
5242 batch. That does not make sense unless there's at least one byte
5243 of data in this reply. */
5244 if (rs->buf[0] == 'm' && packet_len == 1)
5245 error (_("Remote qXfer reply contained no data."));
5246
5247 /* Got some data. */
5248 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
5249
5250 /* 'l' is an EOF marker, possibly including a final block of data,
5251 or possibly empty. Record it to bypass the next read, if one is
5252 issued. */
5253 if (rs->buf[0] == 'l')
5254 {
5255 finished_object = xstrdup (object_name);
5256 finished_annex = xstrdup (annex ? annex : "");
5257 finished_offset = offset + i;
5258 }
5259
5260 return i;
5261 }
5262
5263 static LONGEST
5264 remote_xfer_partial (struct target_ops *ops, enum target_object object,
5265 const char *annex, gdb_byte *readbuf,
5266 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5267 {
5268 struct remote_state *rs = get_remote_state ();
5269 int i;
5270 char *p2;
5271 char query_type;
5272
5273 /* Handle memory using remote_xfer_memory. */
5274 if (object == TARGET_OBJECT_MEMORY)
5275 {
5276 int xfered;
5277 errno = 0;
5278
5279 if (writebuf != NULL)
5280 {
5281 void *buffer = xmalloc (len);
5282 struct cleanup *cleanup = make_cleanup (xfree, buffer);
5283 memcpy (buffer, writebuf, len);
5284 xfered = remote_xfer_memory (offset, buffer, len, 1, NULL, ops);
5285 do_cleanups (cleanup);
5286 }
5287 else
5288 xfered = remote_xfer_memory (offset, readbuf, len, 0, NULL, ops);
5289
5290 if (xfered > 0)
5291 return xfered;
5292 else if (xfered == 0 && errno == 0)
5293 return 0;
5294 else
5295 return -1;
5296 }
5297
5298 /* Only handle reads. */
5299 if (writebuf != NULL || readbuf == NULL)
5300 return -1;
5301
5302 /* Map pre-existing objects onto letters. DO NOT do this for new
5303 objects!!! Instead specify new query packets. */
5304 switch (object)
5305 {
5306 case TARGET_OBJECT_AVR:
5307 query_type = 'R';
5308 break;
5309
5310 case TARGET_OBJECT_AUXV:
5311 gdb_assert (annex == NULL);
5312 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
5313 &remote_protocol_packets[PACKET_qXfer_auxv]);
5314
5315 default:
5316 return -1;
5317 }
5318
5319 /* Note: a zero OFFSET and LEN can be used to query the minimum
5320 buffer size. */
5321 if (offset == 0 && len == 0)
5322 return (get_remote_packet_size ());
5323 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
5324 large enough let the caller deal with it. */
5325 if (len < get_remote_packet_size ())
5326 return -1;
5327 len = get_remote_packet_size ();
5328
5329 /* Except for querying the minimum buffer size, target must be open. */
5330 if (!remote_desc)
5331 error (_("remote query is only available after target open"));
5332
5333 gdb_assert (annex != NULL);
5334 gdb_assert (readbuf != NULL);
5335
5336 p2 = rs->buf;
5337 *p2++ = 'q';
5338 *p2++ = query_type;
5339
5340 /* We used one buffer char for the remote protocol q command and
5341 another for the query type. As the remote protocol encapsulation
5342 uses 4 chars plus one extra in case we are debugging
5343 (remote_debug), we have PBUFZIZ - 7 left to pack the query
5344 string. */
5345 i = 0;
5346 while (annex[i] && (i < (get_remote_packet_size () - 8)))
5347 {
5348 /* Bad caller may have sent forbidden characters. */
5349 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
5350 *p2++ = annex[i];
5351 i++;
5352 }
5353 *p2 = '\0';
5354 gdb_assert (annex[i] == '\0');
5355
5356 i = putpkt (rs->buf);
5357 if (i < 0)
5358 return i;
5359
5360 getpkt (&rs->buf, &rs->buf_size, 0);
5361 strcpy ((char *) readbuf, rs->buf);
5362
5363 return strlen ((char *) readbuf);
5364 }
5365
5366 static void
5367 remote_rcmd (char *command,
5368 struct ui_file *outbuf)
5369 {
5370 struct remote_state *rs = get_remote_state ();
5371 char *buf = rs->buf;
5372 char *p = buf;
5373
5374 if (!remote_desc)
5375 error (_("remote rcmd is only available after target open"));
5376
5377 /* Send a NULL command across as an empty command. */
5378 if (command == NULL)
5379 command = "";
5380
5381 /* The query prefix. */
5382 strcpy (buf, "qRcmd,");
5383 p = strchr (buf, '\0');
5384
5385 if ((strlen (buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
5386 error (_("\"monitor\" command ``%s'' is too long."), command);
5387
5388 /* Encode the actual command. */
5389 bin2hex ((gdb_byte *) command, p, 0);
5390
5391 if (putpkt (rs->buf) < 0)
5392 error (_("Communication problem with target."));
5393
5394 /* get/display the response */
5395 while (1)
5396 {
5397 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
5398 buf[0] = '\0';
5399 getpkt (&rs->buf, &rs->buf_size, 0);
5400 if (buf[0] == '\0')
5401 error (_("Target does not support this command."));
5402 if (buf[0] == 'O' && buf[1] != 'K')
5403 {
5404 remote_console_output (buf + 1); /* 'O' message from stub. */
5405 continue;
5406 }
5407 if (strcmp (buf, "OK") == 0)
5408 break;
5409 if (strlen (buf) == 3 && buf[0] == 'E'
5410 && isdigit (buf[1]) && isdigit (buf[2]))
5411 {
5412 error (_("Protocol error with Rcmd"));
5413 }
5414 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5415 {
5416 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5417 fputc_unfiltered (c, outbuf);
5418 }
5419 break;
5420 }
5421 }
5422
5423 static void
5424 packet_command (char *args, int from_tty)
5425 {
5426 struct remote_state *rs = get_remote_state ();
5427
5428 if (!remote_desc)
5429 error (_("command can only be used with remote target"));
5430
5431 if (!args)
5432 error (_("remote-packet command requires packet text as argument"));
5433
5434 puts_filtered ("sending: ");
5435 print_packet (args);
5436 puts_filtered ("\n");
5437 putpkt (args);
5438
5439 getpkt (&rs->buf, &rs->buf_size, 0);
5440 puts_filtered ("received: ");
5441 print_packet (rs->buf);
5442 puts_filtered ("\n");
5443 }
5444
5445 #if 0
5446 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
5447
5448 static void display_thread_info (struct gdb_ext_thread_info *info);
5449
5450 static void threadset_test_cmd (char *cmd, int tty);
5451
5452 static void threadalive_test (char *cmd, int tty);
5453
5454 static void threadlist_test_cmd (char *cmd, int tty);
5455
5456 int get_and_display_threadinfo (threadref *ref);
5457
5458 static void threadinfo_test_cmd (char *cmd, int tty);
5459
5460 static int thread_display_step (threadref *ref, void *context);
5461
5462 static void threadlist_update_test_cmd (char *cmd, int tty);
5463
5464 static void init_remote_threadtests (void);
5465
5466 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
5467
5468 static void
5469 threadset_test_cmd (char *cmd, int tty)
5470 {
5471 int sample_thread = SAMPLE_THREAD;
5472
5473 printf_filtered (_("Remote threadset test\n"));
5474 set_thread (sample_thread, 1);
5475 }
5476
5477
5478 static void
5479 threadalive_test (char *cmd, int tty)
5480 {
5481 int sample_thread = SAMPLE_THREAD;
5482
5483 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5484 printf_filtered ("PASS: Thread alive test\n");
5485 else
5486 printf_filtered ("FAIL: Thread alive test\n");
5487 }
5488
5489 void output_threadid (char *title, threadref *ref);
5490
5491 void
5492 output_threadid (char *title, threadref *ref)
5493 {
5494 char hexid[20];
5495
5496 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
5497 hexid[16] = 0;
5498 printf_filtered ("%s %s\n", title, (&hexid[0]));
5499 }
5500
5501 static void
5502 threadlist_test_cmd (char *cmd, int tty)
5503 {
5504 int startflag = 1;
5505 threadref nextthread;
5506 int done, result_count;
5507 threadref threadlist[3];
5508
5509 printf_filtered ("Remote Threadlist test\n");
5510 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5511 &result_count, &threadlist[0]))
5512 printf_filtered ("FAIL: threadlist test\n");
5513 else
5514 {
5515 threadref *scan = threadlist;
5516 threadref *limit = scan + result_count;
5517
5518 while (scan < limit)
5519 output_threadid (" thread ", scan++);
5520 }
5521 }
5522
5523 void
5524 display_thread_info (struct gdb_ext_thread_info *info)
5525 {
5526 output_threadid ("Threadid: ", &info->threadid);
5527 printf_filtered ("Name: %s\n ", info->shortname);
5528 printf_filtered ("State: %s\n", info->display);
5529 printf_filtered ("other: %s\n\n", info->more_display);
5530 }
5531
5532 int
5533 get_and_display_threadinfo (threadref *ref)
5534 {
5535 int result;
5536 int set;
5537 struct gdb_ext_thread_info threadinfo;
5538
5539 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5540 | TAG_MOREDISPLAY | TAG_DISPLAY;
5541 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5542 display_thread_info (&threadinfo);
5543 return result;
5544 }
5545
5546 static void
5547 threadinfo_test_cmd (char *cmd, int tty)
5548 {
5549 int athread = SAMPLE_THREAD;
5550 threadref thread;
5551 int set;
5552
5553 int_to_threadref (&thread, athread);
5554 printf_filtered ("Remote Threadinfo test\n");
5555 if (!get_and_display_threadinfo (&thread))
5556 printf_filtered ("FAIL cannot get thread info\n");
5557 }
5558
5559 static int
5560 thread_display_step (threadref *ref, void *context)
5561 {
5562 /* output_threadid(" threadstep ",ref); *//* simple test */
5563 return get_and_display_threadinfo (ref);
5564 }
5565
5566 static void
5567 threadlist_update_test_cmd (char *cmd, int tty)
5568 {
5569 printf_filtered ("Remote Threadlist update test\n");
5570 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5571 }
5572
5573 static void
5574 init_remote_threadtests (void)
5575 {
5576 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
5577 Fetch and print the remote list of thread identifiers, one pkt only"));
5578 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
5579 _("Fetch and display info about one thread"));
5580 add_com ("tset", class_obscure, threadset_test_cmd,
5581 _("Test setting to a different thread"));
5582 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
5583 _("Iterate through updating all remote thread info"));
5584 add_com ("talive", class_obscure, threadalive_test,
5585 _(" Remote thread alive test "));
5586 }
5587
5588 #endif /* 0 */
5589
5590 /* Convert a thread ID to a string. Returns the string in a static
5591 buffer. */
5592
5593 static char *
5594 remote_pid_to_str (ptid_t ptid)
5595 {
5596 static char buf[32];
5597
5598 xsnprintf (buf, sizeof buf, "thread %d", ptid_get_pid (ptid));
5599 return buf;
5600 }
5601
5602 /* Get the address of the thread local variable in OBJFILE which is
5603 stored at OFFSET within the thread local storage for thread PTID. */
5604
5605 static CORE_ADDR
5606 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
5607 {
5608 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
5609 {
5610 struct remote_state *rs = get_remote_state ();
5611 char *p = rs->buf;
5612 enum packet_result result;
5613
5614 strcpy (p, "qGetTLSAddr:");
5615 p += strlen (p);
5616 p += hexnumstr (p, PIDGET (ptid));
5617 *p++ = ',';
5618 p += hexnumstr (p, offset);
5619 *p++ = ',';
5620 p += hexnumstr (p, lm);
5621 *p++ = '\0';
5622
5623 putpkt (rs->buf);
5624 getpkt (&rs->buf, &rs->buf_size, 0);
5625 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
5626 if (result == PACKET_OK)
5627 {
5628 ULONGEST result;
5629
5630 unpack_varlen_hex (rs->buf, &result);
5631 return result;
5632 }
5633 else if (result == PACKET_UNKNOWN)
5634 throw_error (TLS_GENERIC_ERROR,
5635 _("Remote target doesn't support qGetTLSAddr packet"));
5636 else
5637 throw_error (TLS_GENERIC_ERROR,
5638 _("Remote target failed to process qGetTLSAddr request"));
5639 }
5640 else
5641 throw_error (TLS_GENERIC_ERROR,
5642 _("TLS not supported or disabled on this target"));
5643 /* Not reached. */
5644 return 0;
5645 }
5646
5647 static void
5648 init_remote_ops (void)
5649 {
5650 remote_ops.to_shortname = "remote";
5651 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
5652 remote_ops.to_doc =
5653 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5654 Specify the serial device it is connected to\n\
5655 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
5656 remote_ops.to_open = remote_open;
5657 remote_ops.to_close = remote_close;
5658 remote_ops.to_detach = remote_detach;
5659 remote_ops.to_disconnect = remote_disconnect;
5660 remote_ops.to_resume = remote_resume;
5661 remote_ops.to_wait = remote_wait;
5662 remote_ops.to_fetch_registers = remote_fetch_registers;
5663 remote_ops.to_store_registers = remote_store_registers;
5664 remote_ops.to_prepare_to_store = remote_prepare_to_store;
5665 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
5666 remote_ops.to_files_info = remote_files_info;
5667 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
5668 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
5669 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5670 remote_ops.to_stopped_data_address = remote_stopped_data_address;
5671 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5672 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5673 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5674 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
5675 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
5676 remote_ops.to_kill = remote_kill;
5677 remote_ops.to_load = generic_load;
5678 remote_ops.to_mourn_inferior = remote_mourn;
5679 remote_ops.to_thread_alive = remote_thread_alive;
5680 remote_ops.to_find_new_threads = remote_threads_info;
5681 remote_ops.to_pid_to_str = remote_pid_to_str;
5682 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5683 remote_ops.to_stop = remote_stop;
5684 remote_ops.to_xfer_partial = remote_xfer_partial;
5685 remote_ops.to_rcmd = remote_rcmd;
5686 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
5687 remote_ops.to_stratum = process_stratum;
5688 remote_ops.to_has_all_memory = 1;
5689 remote_ops.to_has_memory = 1;
5690 remote_ops.to_has_stack = 1;
5691 remote_ops.to_has_registers = 1;
5692 remote_ops.to_has_execution = 1;
5693 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5694 remote_ops.to_magic = OPS_MAGIC;
5695 }
5696
5697 /* Set up the extended remote vector by making a copy of the standard
5698 remote vector and adding to it. */
5699
5700 static void
5701 init_extended_remote_ops (void)
5702 {
5703 extended_remote_ops = remote_ops;
5704
5705 extended_remote_ops.to_shortname = "extended-remote";
5706 extended_remote_ops.to_longname =
5707 "Extended remote serial target in gdb-specific protocol";
5708 extended_remote_ops.to_doc =
5709 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5710 Specify the serial device it is connected to (e.g. /dev/ttya).",
5711 extended_remote_ops.to_open = extended_remote_open;
5712 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
5713 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
5714 }
5715
5716 static int
5717 remote_can_async_p (void)
5718 {
5719 /* We're async whenever the serial device is. */
5720 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
5721 }
5722
5723 static int
5724 remote_is_async_p (void)
5725 {
5726 /* We're async whenever the serial device is. */
5727 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
5728 }
5729
5730 /* Pass the SERIAL event on and up to the client. One day this code
5731 will be able to delay notifying the client of an event until the
5732 point where an entire packet has been received. */
5733
5734 static void (*async_client_callback) (enum inferior_event_type event_type,
5735 void *context);
5736 static void *async_client_context;
5737 static serial_event_ftype remote_async_serial_handler;
5738
5739 static void
5740 remote_async_serial_handler (struct serial *scb, void *context)
5741 {
5742 /* Don't propogate error information up to the client. Instead let
5743 the client find out about the error by querying the target. */
5744 async_client_callback (INF_REG_EVENT, async_client_context);
5745 }
5746
5747 static void
5748 remote_async (void (*callback) (enum inferior_event_type event_type,
5749 void *context), void *context)
5750 {
5751 if (current_target.to_async_mask_value == 0)
5752 internal_error (__FILE__, __LINE__,
5753 _("Calling remote_async when async is masked"));
5754
5755 if (callback != NULL)
5756 {
5757 serial_async (remote_desc, remote_async_serial_handler, NULL);
5758 async_client_callback = callback;
5759 async_client_context = context;
5760 }
5761 else
5762 serial_async (remote_desc, NULL, NULL);
5763 }
5764
5765 /* Target async and target extended-async.
5766
5767 This are temporary targets, until it is all tested. Eventually
5768 async support will be incorporated int the usual 'remote'
5769 target. */
5770
5771 static void
5772 init_remote_async_ops (void)
5773 {
5774 remote_async_ops.to_shortname = "async";
5775 remote_async_ops.to_longname =
5776 "Remote serial target in async version of the gdb-specific protocol";
5777 remote_async_ops.to_doc =
5778 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5779 Specify the serial device it is connected to (e.g. /dev/ttya).";
5780 remote_async_ops.to_open = remote_async_open;
5781 remote_async_ops.to_close = remote_close;
5782 remote_async_ops.to_detach = remote_detach;
5783 remote_async_ops.to_disconnect = remote_disconnect;
5784 remote_async_ops.to_resume = remote_async_resume;
5785 remote_async_ops.to_wait = remote_async_wait;
5786 remote_async_ops.to_fetch_registers = remote_fetch_registers;
5787 remote_async_ops.to_store_registers = remote_store_registers;
5788 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
5789 remote_async_ops.deprecated_xfer_memory = remote_xfer_memory;
5790 remote_async_ops.to_files_info = remote_files_info;
5791 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
5792 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
5793 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5794 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5795 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5796 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
5797 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
5798 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5799 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
5800 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
5801 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
5802 remote_async_ops.to_kill = remote_async_kill;
5803 remote_async_ops.to_load = generic_load;
5804 remote_async_ops.to_mourn_inferior = remote_async_mourn;
5805 remote_async_ops.to_thread_alive = remote_thread_alive;
5806 remote_async_ops.to_find_new_threads = remote_threads_info;
5807 remote_async_ops.to_pid_to_str = remote_pid_to_str;
5808 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
5809 remote_async_ops.to_stop = remote_stop;
5810 remote_async_ops.to_xfer_partial = remote_xfer_partial;
5811 remote_async_ops.to_rcmd = remote_rcmd;
5812 remote_async_ops.to_stratum = process_stratum;
5813 remote_async_ops.to_has_all_memory = 1;
5814 remote_async_ops.to_has_memory = 1;
5815 remote_async_ops.to_has_stack = 1;
5816 remote_async_ops.to_has_registers = 1;
5817 remote_async_ops.to_has_execution = 1;
5818 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5819 remote_async_ops.to_can_async_p = remote_can_async_p;
5820 remote_async_ops.to_is_async_p = remote_is_async_p;
5821 remote_async_ops.to_async = remote_async;
5822 remote_async_ops.to_async_mask_value = 1;
5823 remote_async_ops.to_magic = OPS_MAGIC;
5824 }
5825
5826 /* Set up the async extended remote vector by making a copy of the standard
5827 remote vector and adding to it. */
5828
5829 static void
5830 init_extended_async_remote_ops (void)
5831 {
5832 extended_async_remote_ops = remote_async_ops;
5833
5834 extended_async_remote_ops.to_shortname = "extended-async";
5835 extended_async_remote_ops.to_longname =
5836 "Extended remote serial target in async gdb-specific protocol";
5837 extended_async_remote_ops.to_doc =
5838 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
5839 Specify the serial device it is connected to (e.g. /dev/ttya).",
5840 extended_async_remote_ops.to_open = extended_remote_async_open;
5841 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
5842 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
5843 }
5844
5845 static void
5846 set_remote_cmd (char *args, int from_tty)
5847 {
5848 }
5849
5850 static void
5851 show_remote_cmd (char *args, int from_tty)
5852 {
5853 /* We can't just use cmd_show_list here, because we want to skip
5854 the redundant "show remote Z-packet". */
5855 struct cleanup *showlist_chain;
5856 struct cmd_list_element *list = remote_show_cmdlist;
5857
5858 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
5859 for (; list != NULL; list = list->next)
5860 if (strcmp (list->name, "Z-packet") == 0)
5861 continue;
5862 else if (list->type == show_cmd)
5863 {
5864 struct cleanup *option_chain
5865 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
5866 ui_out_field_string (uiout, "name", list->name);
5867 ui_out_text (uiout, ": ");
5868 do_setshow_command ((char *) NULL, from_tty, list);
5869 /* Close the tuple. */
5870 do_cleanups (option_chain);
5871 }
5872 }
5873
5874 static void
5875 build_remote_gdbarch_data (void)
5876 {
5877 remote_address_size = TARGET_ADDR_BIT;
5878 }
5879
5880 /* Saved pointer to previous owner of the new_objfile event. */
5881 static void (*remote_new_objfile_chain) (struct objfile *);
5882
5883 /* Function to be called whenever a new objfile (shlib) is detected. */
5884 static void
5885 remote_new_objfile (struct objfile *objfile)
5886 {
5887 if (remote_desc != 0) /* Have a remote connection. */
5888 {
5889 remote_check_symbols (objfile);
5890 }
5891 /* Call predecessor on chain, if any. */
5892 if (remote_new_objfile_chain != 0 &&
5893 remote_desc == 0)
5894 remote_new_objfile_chain (objfile);
5895 }
5896
5897 void
5898 _initialize_remote (void)
5899 {
5900 struct remote_state *rs;
5901
5902 /* architecture specific data */
5903 remote_gdbarch_data_handle =
5904 gdbarch_data_register_post_init (init_remote_state);
5905
5906 /* Old tacky stuff. NOTE: This comes after the remote protocol so
5907 that the remote protocol has been initialized. */
5908 DEPRECATED_REGISTER_GDBARCH_SWAP (remote_address_size);
5909 deprecated_register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
5910
5911 /* Initialize the per-target state. At the moment there is only one
5912 of these, not one per target. Only one target is active at a
5913 time. The default buffer size is unimportant; it will be expanded
5914 whenever a larger buffer is needed. */
5915 rs = get_remote_state ();
5916 rs->buf_size = 400;
5917 rs->buf = xmalloc (rs->buf_size);
5918
5919 init_remote_ops ();
5920 add_target (&remote_ops);
5921
5922 init_extended_remote_ops ();
5923 add_target (&extended_remote_ops);
5924
5925 init_remote_async_ops ();
5926 add_target (&remote_async_ops);
5927
5928 init_extended_async_remote_ops ();
5929 add_target (&extended_async_remote_ops);
5930
5931 /* Hook into new objfile notification. */
5932 remote_new_objfile_chain = deprecated_target_new_objfile_hook;
5933 deprecated_target_new_objfile_hook = remote_new_objfile;
5934
5935 #if 0
5936 init_remote_threadtests ();
5937 #endif
5938
5939 /* set/show remote ... */
5940
5941 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
5942 Remote protocol specific variables\n\
5943 Configure various remote-protocol specific variables such as\n\
5944 the packets being used"),
5945 &remote_set_cmdlist, "set remote ",
5946 0 /* allow-unknown */, &setlist);
5947 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
5948 Remote protocol specific variables\n\
5949 Configure various remote-protocol specific variables such as\n\
5950 the packets being used"),
5951 &remote_show_cmdlist, "show remote ",
5952 0 /* allow-unknown */, &showlist);
5953
5954 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
5955 Compare section data on target to the exec file.\n\
5956 Argument is a single section name (default: all loaded sections)."),
5957 &cmdlist);
5958
5959 add_cmd ("packet", class_maintenance, packet_command, _("\
5960 Send an arbitrary packet to a remote target.\n\
5961 maintenance packet TEXT\n\
5962 If GDB is talking to an inferior via the GDB serial protocol, then\n\
5963 this command sends the string TEXT to the inferior, and displays the\n\
5964 response packet. GDB supplies the initial `$' character, and the\n\
5965 terminating `#' character and checksum."),
5966 &maintenancelist);
5967
5968 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
5969 Set whether to send break if interrupted."), _("\
5970 Show whether to send break if interrupted."), _("\
5971 If set, a break, instead of a cntrl-c, is sent to the remote target."),
5972 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
5973 &setlist, &showlist);
5974
5975 /* Install commands for configuring memory read/write packets. */
5976
5977 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
5978 Set the maximum number of bytes per memory write packet (deprecated)."),
5979 &setlist);
5980 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
5981 Show the maximum number of bytes per memory write packet (deprecated)."),
5982 &showlist);
5983 add_cmd ("memory-write-packet-size", no_class,
5984 set_memory_write_packet_size, _("\
5985 Set the maximum number of bytes per memory-write packet.\n\
5986 Specify the number of bytes in a packet or 0 (zero) for the\n\
5987 default packet size. The actual limit is further reduced\n\
5988 dependent on the target. Specify ``fixed'' to disable the\n\
5989 further restriction and ``limit'' to enable that restriction."),
5990 &remote_set_cmdlist);
5991 add_cmd ("memory-read-packet-size", no_class,
5992 set_memory_read_packet_size, _("\
5993 Set the maximum number of bytes per memory-read packet.\n\
5994 Specify the number of bytes in a packet or 0 (zero) for the\n\
5995 default packet size. The actual limit is further reduced\n\
5996 dependent on the target. Specify ``fixed'' to disable the\n\
5997 further restriction and ``limit'' to enable that restriction."),
5998 &remote_set_cmdlist);
5999 add_cmd ("memory-write-packet-size", no_class,
6000 show_memory_write_packet_size,
6001 _("Show the maximum number of bytes per memory-write packet."),
6002 &remote_show_cmdlist);
6003 add_cmd ("memory-read-packet-size", no_class,
6004 show_memory_read_packet_size,
6005 _("Show the maximum number of bytes per memory-read packet."),
6006 &remote_show_cmdlist);
6007
6008 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
6009 &remote_hw_watchpoint_limit, _("\
6010 Set the maximum number of target hardware watchpoints."), _("\
6011 Show the maximum number of target hardware watchpoints."), _("\
6012 Specify a negative limit for unlimited."),
6013 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
6014 &remote_set_cmdlist, &remote_show_cmdlist);
6015 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
6016 &remote_hw_breakpoint_limit, _("\
6017 Set the maximum number of target hardware breakpoints."), _("\
6018 Show the maximum number of target hardware breakpoints."), _("\
6019 Specify a negative limit for unlimited."),
6020 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
6021 &remote_set_cmdlist, &remote_show_cmdlist);
6022
6023 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
6024 &remote_address_size, _("\
6025 Set the maximum size of the address (in bits) in a memory packet."), _("\
6026 Show the maximum size of the address (in bits) in a memory packet."), NULL,
6027 NULL,
6028 NULL, /* FIXME: i18n: */
6029 &setlist, &showlist);
6030
6031 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
6032 "X", "binary-download", 1);
6033
6034 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
6035 "vCont", "verbose-resume", 0);
6036
6037 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
6038 "qSymbol", "symbol-lookup", 0);
6039
6040 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
6041 "P", "set-register", 1);
6042
6043 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
6044 "p", "fetch-register", 1);
6045
6046 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
6047 "Z0", "software-breakpoint", 0);
6048
6049 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
6050 "Z1", "hardware-breakpoint", 0);
6051
6052 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
6053 "Z2", "write-watchpoint", 0);
6054
6055 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
6056 "Z3", "read-watchpoint", 0);
6057
6058 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
6059 "Z4", "access-watchpoint", 0);
6060
6061 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
6062 "qXfer:auxv:read", "read-aux-vector", 0);
6063
6064 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
6065 "qGetTLSAddr", "get-thread-local-storage-address",
6066 0);
6067
6068 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
6069 "qSupported", "supported-packets", 0);
6070
6071 /* Keep the old ``set remote Z-packet ...'' working. Each individual
6072 Z sub-packet has its own set and show commands, but users may
6073 have sets to this variable in their .gdbinit files (or in their
6074 documentation). */
6075 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
6076 &remote_Z_packet_detect, _("\
6077 Set use of remote protocol `Z' packets"), _("\
6078 Show use of remote protocol `Z' packets "), _("\
6079 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
6080 packets."),
6081 set_remote_protocol_Z_packet_cmd,
6082 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
6083 &remote_set_cmdlist, &remote_show_cmdlist);
6084
6085 /* Eventually initialize fileio. See fileio.c */
6086 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
6087 }
This page took 0.184819 seconds and 5 git commands to generate.