Factor remote_read_bytes.
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <string.h>
24 #include <ctype.h>
25 #include <fcntl.h>
26 #include "inferior.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "exceptions.h"
30 #include "target.h"
31 /*#include "terminal.h" */
32 #include "gdbcmd.h"
33 #include "objfiles.h"
34 #include "gdb-stabs.h"
35 #include "gdbthread.h"
36 #include "remote.h"
37 #include "remote-notif.h"
38 #include "regcache.h"
39 #include "value.h"
40 #include "gdb_assert.h"
41 #include "observer.h"
42 #include "solib.h"
43 #include "cli/cli-decode.h"
44 #include "cli/cli-setshow.h"
45 #include "target-descriptions.h"
46 #include "gdb_bfd.h"
47 #include "filestuff.h"
48 #include "rsp-low.h"
49
50 #include <sys/time.h>
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "agent.h"
72 #include "btrace.h"
73
74 /* Temp hacks for tracepoint encoding migration. */
75 static char *target_buf;
76 static long target_buf_size;
77
78 /* The size to align memory write packets, when practical. The protocol
79 does not guarantee any alignment, and gdb will generate short
80 writes and unaligned writes, but even as a best-effort attempt this
81 can improve bulk transfers. For instance, if a write is misaligned
82 relative to the target's data bus, the stub may need to make an extra
83 round trip fetching data from the target. This doesn't make a
84 huge difference, but it's easy to do, so we try to be helpful.
85
86 The alignment chosen is arbitrary; usually data bus width is
87 important here, not the possibly larger cache line size. */
88 enum { REMOTE_ALIGN_WRITES = 16 };
89
90 /* Prototypes for local functions. */
91 static void async_cleanup_sigint_signal_handler (void *dummy);
92 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
93 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
94 int forever, int *is_notif);
95
96 static void async_handle_remote_sigint (int);
97 static void async_handle_remote_sigint_twice (int);
98
99 static void remote_files_info (struct target_ops *ignore);
100
101 static void remote_prepare_to_store (struct target_ops *self,
102 struct regcache *regcache);
103
104 static void remote_open (char *name, int from_tty);
105
106 static void extended_remote_open (char *name, int from_tty);
107
108 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
109
110 static void remote_close (struct target_ops *self);
111
112 static void remote_mourn (struct target_ops *ops);
113
114 static void extended_remote_restart (void);
115
116 static void extended_remote_mourn (struct target_ops *);
117
118 static void remote_mourn_1 (struct target_ops *);
119
120 static void remote_send (char **buf, long *sizeof_buf_p);
121
122 static int readchar (int timeout);
123
124 static void remote_serial_write (const char *str, int len);
125
126 static void remote_kill (struct target_ops *ops);
127
128 static int remote_can_async_p (struct target_ops *);
129
130 static int remote_is_async_p (struct target_ops *);
131
132 static void remote_async (struct target_ops *ops,
133 void (*callback) (enum inferior_event_type event_type,
134 void *context),
135 void *context);
136
137 static void sync_remote_interrupt_twice (int signo);
138
139 static void interrupt_query (void);
140
141 static void set_general_thread (struct ptid ptid);
142 static void set_continue_thread (struct ptid ptid);
143
144 static void get_offsets (void);
145
146 static void skip_frame (void);
147
148 static long read_frame (char **buf_p, long *sizeof_buf);
149
150 static int hexnumlen (ULONGEST num);
151
152 static void init_remote_ops (void);
153
154 static void init_extended_remote_ops (void);
155
156 static void remote_stop (struct target_ops *self, ptid_t);
157
158 static int stubhex (int ch);
159
160 static int hexnumstr (char *, ULONGEST);
161
162 static int hexnumnstr (char *, ULONGEST, int);
163
164 static CORE_ADDR remote_address_masked (CORE_ADDR);
165
166 static void print_packet (char *);
167
168 static void compare_sections_command (char *, int);
169
170 static void packet_command (char *, int);
171
172 static int stub_unpack_int (char *buff, int fieldlength);
173
174 static ptid_t remote_current_thread (ptid_t oldptid);
175
176 static void remote_find_new_threads (void);
177
178 static int putpkt_binary (char *buf, int cnt);
179
180 static void check_binary_download (CORE_ADDR addr);
181
182 struct packet_config;
183
184 static void show_packet_config_cmd (struct packet_config *config);
185
186 static void update_packet_config (struct packet_config *config);
187
188 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
189 struct cmd_list_element *c);
190
191 static void show_remote_protocol_packet_cmd (struct ui_file *file,
192 int from_tty,
193 struct cmd_list_element *c,
194 const char *value);
195
196 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
197 static ptid_t read_ptid (char *buf, char **obuf);
198
199 static void remote_set_permissions (struct target_ops *self);
200
201 struct remote_state;
202 static int remote_get_trace_status (struct target_ops *self,
203 struct trace_status *ts);
204
205 static int remote_upload_tracepoints (struct target_ops *self,
206 struct uploaded_tp **utpp);
207
208 static int remote_upload_trace_state_variables (struct target_ops *self,
209 struct uploaded_tsv **utsvp);
210
211 static void remote_query_supported (void);
212
213 static void remote_check_symbols (void);
214
215 void _initialize_remote (void);
216
217 struct stop_reply;
218 static void stop_reply_xfree (struct stop_reply *);
219 static void remote_parse_stop_reply (char *, struct stop_reply *);
220 static void push_stop_reply (struct stop_reply *);
221 static void discard_pending_stop_replies_in_queue (struct remote_state *);
222 static int peek_stop_reply (ptid_t ptid);
223
224 static void remote_async_inferior_event_handler (gdb_client_data);
225
226 static void remote_terminal_ours (struct target_ops *self);
227
228 static int remote_read_description_p (struct target_ops *target);
229
230 static void remote_console_output (char *msg);
231
232 static int remote_supports_cond_breakpoints (struct target_ops *self);
233
234 static int remote_can_run_breakpoint_commands (struct target_ops *self);
235
236 /* For "remote". */
237
238 static struct cmd_list_element *remote_cmdlist;
239
240 /* For "set remote" and "show remote". */
241
242 static struct cmd_list_element *remote_set_cmdlist;
243 static struct cmd_list_element *remote_show_cmdlist;
244
245 /* Stub vCont actions support.
246
247 Each field is a boolean flag indicating whether the stub reports
248 support for the corresponding action. */
249
250 struct vCont_action_support
251 {
252 /* vCont;t */
253 int t;
254
255 /* vCont;r */
256 int r;
257 };
258
259 /* Controls whether GDB is willing to use range stepping. */
260
261 static int use_range_stepping = 1;
262
263 #define OPAQUETHREADBYTES 8
264
265 /* a 64 bit opaque identifier */
266 typedef unsigned char threadref[OPAQUETHREADBYTES];
267
268 /* About this many threadisds fit in a packet. */
269
270 #define MAXTHREADLISTRESULTS 32
271
272 /* Description of the remote protocol state for the currently
273 connected target. This is per-target state, and independent of the
274 selected architecture. */
275
276 struct remote_state
277 {
278 /* A buffer to use for incoming packets, and its current size. The
279 buffer is grown dynamically for larger incoming packets.
280 Outgoing packets may also be constructed in this buffer.
281 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
282 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
283 packets. */
284 char *buf;
285 long buf_size;
286
287 /* True if we're going through initial connection setup (finding out
288 about the remote side's threads, relocating symbols, etc.). */
289 int starting_up;
290
291 /* If we negotiated packet size explicitly (and thus can bypass
292 heuristics for the largest packet size that will not overflow
293 a buffer in the stub), this will be set to that packet size.
294 Otherwise zero, meaning to use the guessed size. */
295 long explicit_packet_size;
296
297 /* remote_wait is normally called when the target is running and
298 waits for a stop reply packet. But sometimes we need to call it
299 when the target is already stopped. We can send a "?" packet
300 and have remote_wait read the response. Or, if we already have
301 the response, we can stash it in BUF and tell remote_wait to
302 skip calling getpkt. This flag is set when BUF contains a
303 stop reply packet and the target is not waiting. */
304 int cached_wait_status;
305
306 /* True, if in no ack mode. That is, neither GDB nor the stub will
307 expect acks from each other. The connection is assumed to be
308 reliable. */
309 int noack_mode;
310
311 /* True if we're connected in extended remote mode. */
312 int extended;
313
314 /* True if the stub reported support for multi-process
315 extensions. */
316 int multi_process_aware;
317
318 /* True if we resumed the target and we're waiting for the target to
319 stop. In the mean time, we can't start another command/query.
320 The remote server wouldn't be ready to process it, so we'd
321 timeout waiting for a reply that would never come and eventually
322 we'd close the connection. This can happen in asynchronous mode
323 because we allow GDB commands while the target is running. */
324 int waiting_for_stop_reply;
325
326 /* True if the stub reports support for non-stop mode. */
327 int non_stop_aware;
328
329 /* The status of the stub support for the various vCont actions. */
330 struct vCont_action_support supports_vCont;
331
332 /* True if the stub reports support for conditional tracepoints. */
333 int cond_tracepoints;
334
335 /* True if the stub reports support for target-side breakpoint
336 conditions. */
337 int cond_breakpoints;
338
339 /* True if the stub reports support for target-side breakpoint
340 commands. */
341 int breakpoint_commands;
342
343 /* True if the stub reports support for fast tracepoints. */
344 int fast_tracepoints;
345
346 /* True if the stub reports support for static tracepoints. */
347 int static_tracepoints;
348
349 /* True if the stub reports support for installing tracepoint while
350 tracing. */
351 int install_in_trace;
352
353 /* True if the stub can continue running a trace while GDB is
354 disconnected. */
355 int disconnected_tracing;
356
357 /* True if the stub reports support for enabling and disabling
358 tracepoints while a trace experiment is running. */
359 int enable_disable_tracepoints;
360
361 /* True if the stub can collect strings using tracenz bytecode. */
362 int string_tracing;
363
364 /* True if the stub supports qXfer:libraries-svr4:read with a
365 non-empty annex. */
366 int augmented_libraries_svr4_read;
367
368 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
369 responded to that. */
370 int ctrlc_pending_p;
371
372 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
373 remote_open knows that we don't have a file open when the program
374 starts. */
375 struct serial *remote_desc;
376
377 /* These are the threads which we last sent to the remote system. The
378 TID member will be -1 for all or -2 for not sent yet. */
379 ptid_t general_thread;
380 ptid_t continue_thread;
381
382 /* This is the traceframe which we last selected on the remote system.
383 It will be -1 if no traceframe is selected. */
384 int remote_traceframe_number;
385
386 char *last_pass_packet;
387
388 /* The last QProgramSignals packet sent to the target. We bypass
389 sending a new program signals list down to the target if the new
390 packet is exactly the same as the last we sent. IOW, we only let
391 the target know about program signals list changes. */
392 char *last_program_signals_packet;
393
394 enum gdb_signal last_sent_signal;
395
396 int last_sent_step;
397
398 char *finished_object;
399 char *finished_annex;
400 ULONGEST finished_offset;
401
402 /* Should we try the 'ThreadInfo' query packet?
403
404 This variable (NOT available to the user: auto-detect only!)
405 determines whether GDB will use the new, simpler "ThreadInfo"
406 query or the older, more complex syntax for thread queries.
407 This is an auto-detect variable (set to true at each connect,
408 and set to false when the target fails to recognize it). */
409 int use_threadinfo_query;
410 int use_threadextra_query;
411
412 void (*async_client_callback) (enum inferior_event_type event_type,
413 void *context);
414 void *async_client_context;
415
416 /* This is set to the data address of the access causing the target
417 to stop for a watchpoint. */
418 CORE_ADDR remote_watch_data_address;
419
420 /* This is non-zero if target stopped for a watchpoint. */
421 int remote_stopped_by_watchpoint_p;
422
423 threadref echo_nextthread;
424 threadref nextthread;
425 threadref resultthreadlist[MAXTHREADLISTRESULTS];
426
427 /* The state of remote notification. */
428 struct remote_notif_state *notif_state;
429 };
430
431 /* Private data that we'll store in (struct thread_info)->private. */
432 struct private_thread_info
433 {
434 char *extra;
435 int core;
436 };
437
438 static void
439 free_private_thread_info (struct private_thread_info *info)
440 {
441 xfree (info->extra);
442 xfree (info);
443 }
444
445 /* Returns true if the multi-process extensions are in effect. */
446 static int
447 remote_multi_process_p (struct remote_state *rs)
448 {
449 return rs->multi_process_aware;
450 }
451
452 /* This data could be associated with a target, but we do not always
453 have access to the current target when we need it, so for now it is
454 static. This will be fine for as long as only one target is in use
455 at a time. */
456 static struct remote_state *remote_state;
457
458 static struct remote_state *
459 get_remote_state_raw (void)
460 {
461 return remote_state;
462 }
463
464 /* Allocate a new struct remote_state with xmalloc, initialize it, and
465 return it. */
466
467 static struct remote_state *
468 new_remote_state (void)
469 {
470 struct remote_state *result = XCNEW (struct remote_state);
471
472 /* The default buffer size is unimportant; it will be expanded
473 whenever a larger buffer is needed. */
474 result->buf_size = 400;
475 result->buf = xmalloc (result->buf_size);
476 result->remote_traceframe_number = -1;
477 result->last_sent_signal = GDB_SIGNAL_0;
478
479 return result;
480 }
481
482 /* Description of the remote protocol for a given architecture. */
483
484 struct packet_reg
485 {
486 long offset; /* Offset into G packet. */
487 long regnum; /* GDB's internal register number. */
488 LONGEST pnum; /* Remote protocol register number. */
489 int in_g_packet; /* Always part of G packet. */
490 /* long size in bytes; == register_size (target_gdbarch (), regnum);
491 at present. */
492 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
493 at present. */
494 };
495
496 struct remote_arch_state
497 {
498 /* Description of the remote protocol registers. */
499 long sizeof_g_packet;
500
501 /* Description of the remote protocol registers indexed by REGNUM
502 (making an array gdbarch_num_regs in size). */
503 struct packet_reg *regs;
504
505 /* This is the size (in chars) of the first response to the ``g''
506 packet. It is used as a heuristic when determining the maximum
507 size of memory-read and memory-write packets. A target will
508 typically only reserve a buffer large enough to hold the ``g''
509 packet. The size does not include packet overhead (headers and
510 trailers). */
511 long actual_register_packet_size;
512
513 /* This is the maximum size (in chars) of a non read/write packet.
514 It is also used as a cap on the size of read/write packets. */
515 long remote_packet_size;
516 };
517
518 /* Utility: generate error from an incoming stub packet. */
519 static void
520 trace_error (char *buf)
521 {
522 if (*buf++ != 'E')
523 return; /* not an error msg */
524 switch (*buf)
525 {
526 case '1': /* malformed packet error */
527 if (*++buf == '0') /* general case: */
528 error (_("remote.c: error in outgoing packet."));
529 else
530 error (_("remote.c: error in outgoing packet at field #%ld."),
531 strtol (buf, NULL, 16));
532 default:
533 error (_("Target returns error code '%s'."), buf);
534 }
535 }
536
537 /* Utility: wait for reply from stub, while accepting "O" packets. */
538 static char *
539 remote_get_noisy_reply (char **buf_p,
540 long *sizeof_buf)
541 {
542 do /* Loop on reply from remote stub. */
543 {
544 char *buf;
545
546 QUIT; /* Allow user to bail out with ^C. */
547 getpkt (buf_p, sizeof_buf, 0);
548 buf = *buf_p;
549 if (buf[0] == 'E')
550 trace_error (buf);
551 else if (strncmp (buf, "qRelocInsn:", strlen ("qRelocInsn:")) == 0)
552 {
553 ULONGEST ul;
554 CORE_ADDR from, to, org_to;
555 char *p, *pp;
556 int adjusted_size = 0;
557 volatile struct gdb_exception ex;
558
559 p = buf + strlen ("qRelocInsn:");
560 pp = unpack_varlen_hex (p, &ul);
561 if (*pp != ';')
562 error (_("invalid qRelocInsn packet: %s"), buf);
563 from = ul;
564
565 p = pp + 1;
566 unpack_varlen_hex (p, &ul);
567 to = ul;
568
569 org_to = to;
570
571 TRY_CATCH (ex, RETURN_MASK_ALL)
572 {
573 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
574 }
575 if (ex.reason >= 0)
576 {
577 adjusted_size = to - org_to;
578
579 xsnprintf (buf, *sizeof_buf, "qRelocInsn:%x", adjusted_size);
580 putpkt (buf);
581 }
582 else if (ex.reason < 0 && ex.error == MEMORY_ERROR)
583 {
584 /* Propagate memory errors silently back to the target.
585 The stub may have limited the range of addresses we
586 can write to, for example. */
587 putpkt ("E01");
588 }
589 else
590 {
591 /* Something unexpectedly bad happened. Be verbose so
592 we can tell what, and propagate the error back to the
593 stub, so it doesn't get stuck waiting for a
594 response. */
595 exception_fprintf (gdb_stderr, ex,
596 _("warning: relocating instruction: "));
597 putpkt ("E01");
598 }
599 }
600 else if (buf[0] == 'O' && buf[1] != 'K')
601 remote_console_output (buf + 1); /* 'O' message from stub */
602 else
603 return buf; /* Here's the actual reply. */
604 }
605 while (1);
606 }
607
608 /* Handle for retreving the remote protocol data from gdbarch. */
609 static struct gdbarch_data *remote_gdbarch_data_handle;
610
611 static struct remote_arch_state *
612 get_remote_arch_state (void)
613 {
614 return gdbarch_data (target_gdbarch (), remote_gdbarch_data_handle);
615 }
616
617 /* Fetch the global remote target state. */
618
619 static struct remote_state *
620 get_remote_state (void)
621 {
622 /* Make sure that the remote architecture state has been
623 initialized, because doing so might reallocate rs->buf. Any
624 function which calls getpkt also needs to be mindful of changes
625 to rs->buf, but this call limits the number of places which run
626 into trouble. */
627 get_remote_arch_state ();
628
629 return get_remote_state_raw ();
630 }
631
632 static int
633 compare_pnums (const void *lhs_, const void *rhs_)
634 {
635 const struct packet_reg * const *lhs = lhs_;
636 const struct packet_reg * const *rhs = rhs_;
637
638 if ((*lhs)->pnum < (*rhs)->pnum)
639 return -1;
640 else if ((*lhs)->pnum == (*rhs)->pnum)
641 return 0;
642 else
643 return 1;
644 }
645
646 static int
647 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
648 {
649 int regnum, num_remote_regs, offset;
650 struct packet_reg **remote_regs;
651
652 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
653 {
654 struct packet_reg *r = &regs[regnum];
655
656 if (register_size (gdbarch, regnum) == 0)
657 /* Do not try to fetch zero-sized (placeholder) registers. */
658 r->pnum = -1;
659 else
660 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
661
662 r->regnum = regnum;
663 }
664
665 /* Define the g/G packet format as the contents of each register
666 with a remote protocol number, in order of ascending protocol
667 number. */
668
669 remote_regs = alloca (gdbarch_num_regs (gdbarch)
670 * sizeof (struct packet_reg *));
671 for (num_remote_regs = 0, regnum = 0;
672 regnum < gdbarch_num_regs (gdbarch);
673 regnum++)
674 if (regs[regnum].pnum != -1)
675 remote_regs[num_remote_regs++] = &regs[regnum];
676
677 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
678 compare_pnums);
679
680 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
681 {
682 remote_regs[regnum]->in_g_packet = 1;
683 remote_regs[regnum]->offset = offset;
684 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
685 }
686
687 return offset;
688 }
689
690 /* Given the architecture described by GDBARCH, return the remote
691 protocol register's number and the register's offset in the g/G
692 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
693 If the target does not have a mapping for REGNUM, return false,
694 otherwise, return true. */
695
696 int
697 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
698 int *pnum, int *poffset)
699 {
700 int sizeof_g_packet;
701 struct packet_reg *regs;
702 struct cleanup *old_chain;
703
704 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
705
706 regs = xcalloc (gdbarch_num_regs (gdbarch), sizeof (struct packet_reg));
707 old_chain = make_cleanup (xfree, regs);
708
709 sizeof_g_packet = map_regcache_remote_table (gdbarch, regs);
710
711 *pnum = regs[regnum].pnum;
712 *poffset = regs[regnum].offset;
713
714 do_cleanups (old_chain);
715
716 return *pnum != -1;
717 }
718
719 static void *
720 init_remote_state (struct gdbarch *gdbarch)
721 {
722 struct remote_state *rs = get_remote_state_raw ();
723 struct remote_arch_state *rsa;
724
725 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
726
727 /* Use the architecture to build a regnum<->pnum table, which will be
728 1:1 unless a feature set specifies otherwise. */
729 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
730 gdbarch_num_regs (gdbarch),
731 struct packet_reg);
732
733 /* Record the maximum possible size of the g packet - it may turn out
734 to be smaller. */
735 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
736
737 /* Default maximum number of characters in a packet body. Many
738 remote stubs have a hardwired buffer size of 400 bytes
739 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
740 as the maximum packet-size to ensure that the packet and an extra
741 NUL character can always fit in the buffer. This stops GDB
742 trashing stubs that try to squeeze an extra NUL into what is
743 already a full buffer (As of 1999-12-04 that was most stubs). */
744 rsa->remote_packet_size = 400 - 1;
745
746 /* This one is filled in when a ``g'' packet is received. */
747 rsa->actual_register_packet_size = 0;
748
749 /* Should rsa->sizeof_g_packet needs more space than the
750 default, adjust the size accordingly. Remember that each byte is
751 encoded as two characters. 32 is the overhead for the packet
752 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
753 (``$NN:G...#NN'') is a better guess, the below has been padded a
754 little. */
755 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
756 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
757
758 /* Make sure that the packet buffer is plenty big enough for
759 this architecture. */
760 if (rs->buf_size < rsa->remote_packet_size)
761 {
762 rs->buf_size = 2 * rsa->remote_packet_size;
763 rs->buf = xrealloc (rs->buf, rs->buf_size);
764 }
765
766 return rsa;
767 }
768
769 /* Return the current allowed size of a remote packet. This is
770 inferred from the current architecture, and should be used to
771 limit the length of outgoing packets. */
772 static long
773 get_remote_packet_size (void)
774 {
775 struct remote_state *rs = get_remote_state ();
776 struct remote_arch_state *rsa = get_remote_arch_state ();
777
778 if (rs->explicit_packet_size)
779 return rs->explicit_packet_size;
780
781 return rsa->remote_packet_size;
782 }
783
784 static struct packet_reg *
785 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
786 {
787 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch ()))
788 return NULL;
789 else
790 {
791 struct packet_reg *r = &rsa->regs[regnum];
792
793 gdb_assert (r->regnum == regnum);
794 return r;
795 }
796 }
797
798 static struct packet_reg *
799 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
800 {
801 int i;
802
803 for (i = 0; i < gdbarch_num_regs (target_gdbarch ()); i++)
804 {
805 struct packet_reg *r = &rsa->regs[i];
806
807 if (r->pnum == pnum)
808 return r;
809 }
810 return NULL;
811 }
812
813 static struct target_ops remote_ops;
814
815 static struct target_ops extended_remote_ops;
816
817 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
818 ``forever'' still use the normal timeout mechanism. This is
819 currently used by the ASYNC code to guarentee that target reads
820 during the initial connect always time-out. Once getpkt has been
821 modified to return a timeout indication and, in turn
822 remote_wait()/wait_for_inferior() have gained a timeout parameter
823 this can go away. */
824 static int wait_forever_enabled_p = 1;
825
826 /* Allow the user to specify what sequence to send to the remote
827 when he requests a program interruption: Although ^C is usually
828 what remote systems expect (this is the default, here), it is
829 sometimes preferable to send a break. On other systems such
830 as the Linux kernel, a break followed by g, which is Magic SysRq g
831 is required in order to interrupt the execution. */
832 const char interrupt_sequence_control_c[] = "Ctrl-C";
833 const char interrupt_sequence_break[] = "BREAK";
834 const char interrupt_sequence_break_g[] = "BREAK-g";
835 static const char *const interrupt_sequence_modes[] =
836 {
837 interrupt_sequence_control_c,
838 interrupt_sequence_break,
839 interrupt_sequence_break_g,
840 NULL
841 };
842 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
843
844 static void
845 show_interrupt_sequence (struct ui_file *file, int from_tty,
846 struct cmd_list_element *c,
847 const char *value)
848 {
849 if (interrupt_sequence_mode == interrupt_sequence_control_c)
850 fprintf_filtered (file,
851 _("Send the ASCII ETX character (Ctrl-c) "
852 "to the remote target to interrupt the "
853 "execution of the program.\n"));
854 else if (interrupt_sequence_mode == interrupt_sequence_break)
855 fprintf_filtered (file,
856 _("send a break signal to the remote target "
857 "to interrupt the execution of the program.\n"));
858 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
859 fprintf_filtered (file,
860 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
861 "the remote target to interrupt the execution "
862 "of Linux kernel.\n"));
863 else
864 internal_error (__FILE__, __LINE__,
865 _("Invalid value for interrupt_sequence_mode: %s."),
866 interrupt_sequence_mode);
867 }
868
869 /* This boolean variable specifies whether interrupt_sequence is sent
870 to the remote target when gdb connects to it.
871 This is mostly needed when you debug the Linux kernel: The Linux kernel
872 expects BREAK g which is Magic SysRq g for connecting gdb. */
873 static int interrupt_on_connect = 0;
874
875 /* This variable is used to implement the "set/show remotebreak" commands.
876 Since these commands are now deprecated in favor of "set/show remote
877 interrupt-sequence", it no longer has any effect on the code. */
878 static int remote_break;
879
880 static void
881 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
882 {
883 if (remote_break)
884 interrupt_sequence_mode = interrupt_sequence_break;
885 else
886 interrupt_sequence_mode = interrupt_sequence_control_c;
887 }
888
889 static void
890 show_remotebreak (struct ui_file *file, int from_tty,
891 struct cmd_list_element *c,
892 const char *value)
893 {
894 }
895
896 /* This variable sets the number of bits in an address that are to be
897 sent in a memory ("M" or "m") packet. Normally, after stripping
898 leading zeros, the entire address would be sent. This variable
899 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
900 initial implementation of remote.c restricted the address sent in
901 memory packets to ``host::sizeof long'' bytes - (typically 32
902 bits). Consequently, for 64 bit targets, the upper 32 bits of an
903 address was never sent. Since fixing this bug may cause a break in
904 some remote targets this variable is principly provided to
905 facilitate backward compatibility. */
906
907 static unsigned int remote_address_size;
908
909 /* Temporary to track who currently owns the terminal. See
910 remote_terminal_* for more details. */
911
912 static int remote_async_terminal_ours_p;
913
914 /* The executable file to use for "run" on the remote side. */
915
916 static char *remote_exec_file = "";
917
918 \f
919 /* User configurable variables for the number of characters in a
920 memory read/write packet. MIN (rsa->remote_packet_size,
921 rsa->sizeof_g_packet) is the default. Some targets need smaller
922 values (fifo overruns, et.al.) and some users need larger values
923 (speed up transfers). The variables ``preferred_*'' (the user
924 request), ``current_*'' (what was actually set) and ``forced_*''
925 (Positive - a soft limit, negative - a hard limit). */
926
927 struct memory_packet_config
928 {
929 char *name;
930 long size;
931 int fixed_p;
932 };
933
934 /* Compute the current size of a read/write packet. Since this makes
935 use of ``actual_register_packet_size'' the computation is dynamic. */
936
937 static long
938 get_memory_packet_size (struct memory_packet_config *config)
939 {
940 struct remote_state *rs = get_remote_state ();
941 struct remote_arch_state *rsa = get_remote_arch_state ();
942
943 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
944 law?) that some hosts don't cope very well with large alloca()
945 calls. Eventually the alloca() code will be replaced by calls to
946 xmalloc() and make_cleanups() allowing this restriction to either
947 be lifted or removed. */
948 #ifndef MAX_REMOTE_PACKET_SIZE
949 #define MAX_REMOTE_PACKET_SIZE 16384
950 #endif
951 /* NOTE: 20 ensures we can write at least one byte. */
952 #ifndef MIN_REMOTE_PACKET_SIZE
953 #define MIN_REMOTE_PACKET_SIZE 20
954 #endif
955 long what_they_get;
956 if (config->fixed_p)
957 {
958 if (config->size <= 0)
959 what_they_get = MAX_REMOTE_PACKET_SIZE;
960 else
961 what_they_get = config->size;
962 }
963 else
964 {
965 what_they_get = get_remote_packet_size ();
966 /* Limit the packet to the size specified by the user. */
967 if (config->size > 0
968 && what_they_get > config->size)
969 what_they_get = config->size;
970
971 /* Limit it to the size of the targets ``g'' response unless we have
972 permission from the stub to use a larger packet size. */
973 if (rs->explicit_packet_size == 0
974 && rsa->actual_register_packet_size > 0
975 && what_they_get > rsa->actual_register_packet_size)
976 what_they_get = rsa->actual_register_packet_size;
977 }
978 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
979 what_they_get = MAX_REMOTE_PACKET_SIZE;
980 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
981 what_they_get = MIN_REMOTE_PACKET_SIZE;
982
983 /* Make sure there is room in the global buffer for this packet
984 (including its trailing NUL byte). */
985 if (rs->buf_size < what_they_get + 1)
986 {
987 rs->buf_size = 2 * what_they_get;
988 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
989 }
990
991 return what_they_get;
992 }
993
994 /* Update the size of a read/write packet. If they user wants
995 something really big then do a sanity check. */
996
997 static void
998 set_memory_packet_size (char *args, struct memory_packet_config *config)
999 {
1000 int fixed_p = config->fixed_p;
1001 long size = config->size;
1002
1003 if (args == NULL)
1004 error (_("Argument required (integer, `fixed' or `limited')."));
1005 else if (strcmp (args, "hard") == 0
1006 || strcmp (args, "fixed") == 0)
1007 fixed_p = 1;
1008 else if (strcmp (args, "soft") == 0
1009 || strcmp (args, "limit") == 0)
1010 fixed_p = 0;
1011 else
1012 {
1013 char *end;
1014
1015 size = strtoul (args, &end, 0);
1016 if (args == end)
1017 error (_("Invalid %s (bad syntax)."), config->name);
1018 #if 0
1019 /* Instead of explicitly capping the size of a packet to
1020 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
1021 instead allowed to set the size to something arbitrarily
1022 large. */
1023 if (size > MAX_REMOTE_PACKET_SIZE)
1024 error (_("Invalid %s (too large)."), config->name);
1025 #endif
1026 }
1027 /* Extra checks? */
1028 if (fixed_p && !config->fixed_p)
1029 {
1030 if (! query (_("The target may not be able to correctly handle a %s\n"
1031 "of %ld bytes. Change the packet size? "),
1032 config->name, size))
1033 error (_("Packet size not changed."));
1034 }
1035 /* Update the config. */
1036 config->fixed_p = fixed_p;
1037 config->size = size;
1038 }
1039
1040 static void
1041 show_memory_packet_size (struct memory_packet_config *config)
1042 {
1043 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1044 if (config->fixed_p)
1045 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1046 get_memory_packet_size (config));
1047 else
1048 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1049 get_memory_packet_size (config));
1050 }
1051
1052 static struct memory_packet_config memory_write_packet_config =
1053 {
1054 "memory-write-packet-size",
1055 };
1056
1057 static void
1058 set_memory_write_packet_size (char *args, int from_tty)
1059 {
1060 set_memory_packet_size (args, &memory_write_packet_config);
1061 }
1062
1063 static void
1064 show_memory_write_packet_size (char *args, int from_tty)
1065 {
1066 show_memory_packet_size (&memory_write_packet_config);
1067 }
1068
1069 static long
1070 get_memory_write_packet_size (void)
1071 {
1072 return get_memory_packet_size (&memory_write_packet_config);
1073 }
1074
1075 static struct memory_packet_config memory_read_packet_config =
1076 {
1077 "memory-read-packet-size",
1078 };
1079
1080 static void
1081 set_memory_read_packet_size (char *args, int from_tty)
1082 {
1083 set_memory_packet_size (args, &memory_read_packet_config);
1084 }
1085
1086 static void
1087 show_memory_read_packet_size (char *args, int from_tty)
1088 {
1089 show_memory_packet_size (&memory_read_packet_config);
1090 }
1091
1092 static long
1093 get_memory_read_packet_size (void)
1094 {
1095 long size = get_memory_packet_size (&memory_read_packet_config);
1096
1097 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1098 extra buffer size argument before the memory read size can be
1099 increased beyond this. */
1100 if (size > get_remote_packet_size ())
1101 size = get_remote_packet_size ();
1102 return size;
1103 }
1104
1105 \f
1106 /* Generic configuration support for packets the stub optionally
1107 supports. Allows the user to specify the use of the packet as well
1108 as allowing GDB to auto-detect support in the remote stub. */
1109
1110 enum packet_support
1111 {
1112 PACKET_SUPPORT_UNKNOWN = 0,
1113 PACKET_ENABLE,
1114 PACKET_DISABLE
1115 };
1116
1117 struct packet_config
1118 {
1119 const char *name;
1120 const char *title;
1121 enum auto_boolean detect;
1122 enum packet_support support;
1123 };
1124
1125 /* Analyze a packet's return value and update the packet config
1126 accordingly. */
1127
1128 enum packet_result
1129 {
1130 PACKET_ERROR,
1131 PACKET_OK,
1132 PACKET_UNKNOWN
1133 };
1134
1135 static void
1136 update_packet_config (struct packet_config *config)
1137 {
1138 switch (config->detect)
1139 {
1140 case AUTO_BOOLEAN_TRUE:
1141 config->support = PACKET_ENABLE;
1142 break;
1143 case AUTO_BOOLEAN_FALSE:
1144 config->support = PACKET_DISABLE;
1145 break;
1146 case AUTO_BOOLEAN_AUTO:
1147 config->support = PACKET_SUPPORT_UNKNOWN;
1148 break;
1149 }
1150 }
1151
1152 static void
1153 show_packet_config_cmd (struct packet_config *config)
1154 {
1155 char *support = "internal-error";
1156
1157 switch (config->support)
1158 {
1159 case PACKET_ENABLE:
1160 support = "enabled";
1161 break;
1162 case PACKET_DISABLE:
1163 support = "disabled";
1164 break;
1165 case PACKET_SUPPORT_UNKNOWN:
1166 support = "unknown";
1167 break;
1168 }
1169 switch (config->detect)
1170 {
1171 case AUTO_BOOLEAN_AUTO:
1172 printf_filtered (_("Support for the `%s' packet "
1173 "is auto-detected, currently %s.\n"),
1174 config->name, support);
1175 break;
1176 case AUTO_BOOLEAN_TRUE:
1177 case AUTO_BOOLEAN_FALSE:
1178 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1179 config->name, support);
1180 break;
1181 }
1182 }
1183
1184 static void
1185 add_packet_config_cmd (struct packet_config *config, const char *name,
1186 const char *title, int legacy)
1187 {
1188 char *set_doc;
1189 char *show_doc;
1190 char *cmd_name;
1191
1192 config->name = name;
1193 config->title = title;
1194 config->detect = AUTO_BOOLEAN_AUTO;
1195 config->support = PACKET_SUPPORT_UNKNOWN;
1196 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1197 name, title);
1198 show_doc = xstrprintf ("Show current use of remote "
1199 "protocol `%s' (%s) packet",
1200 name, title);
1201 /* set/show TITLE-packet {auto,on,off} */
1202 cmd_name = xstrprintf ("%s-packet", title);
1203 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1204 &config->detect, set_doc,
1205 show_doc, NULL, /* help_doc */
1206 set_remote_protocol_packet_cmd,
1207 show_remote_protocol_packet_cmd,
1208 &remote_set_cmdlist, &remote_show_cmdlist);
1209 /* The command code copies the documentation strings. */
1210 xfree (set_doc);
1211 xfree (show_doc);
1212 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1213 if (legacy)
1214 {
1215 char *legacy_name;
1216
1217 legacy_name = xstrprintf ("%s-packet", name);
1218 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1219 &remote_set_cmdlist);
1220 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1221 &remote_show_cmdlist);
1222 }
1223 }
1224
1225 static enum packet_result
1226 packet_check_result (const char *buf)
1227 {
1228 if (buf[0] != '\0')
1229 {
1230 /* The stub recognized the packet request. Check that the
1231 operation succeeded. */
1232 if (buf[0] == 'E'
1233 && isxdigit (buf[1]) && isxdigit (buf[2])
1234 && buf[3] == '\0')
1235 /* "Enn" - definitly an error. */
1236 return PACKET_ERROR;
1237
1238 /* Always treat "E." as an error. This will be used for
1239 more verbose error messages, such as E.memtypes. */
1240 if (buf[0] == 'E' && buf[1] == '.')
1241 return PACKET_ERROR;
1242
1243 /* The packet may or may not be OK. Just assume it is. */
1244 return PACKET_OK;
1245 }
1246 else
1247 /* The stub does not support the packet. */
1248 return PACKET_UNKNOWN;
1249 }
1250
1251 static enum packet_result
1252 packet_ok (const char *buf, struct packet_config *config)
1253 {
1254 enum packet_result result;
1255
1256 result = packet_check_result (buf);
1257 switch (result)
1258 {
1259 case PACKET_OK:
1260 case PACKET_ERROR:
1261 /* The stub recognized the packet request. */
1262 switch (config->support)
1263 {
1264 case PACKET_SUPPORT_UNKNOWN:
1265 if (remote_debug)
1266 fprintf_unfiltered (gdb_stdlog,
1267 "Packet %s (%s) is supported\n",
1268 config->name, config->title);
1269 config->support = PACKET_ENABLE;
1270 break;
1271 case PACKET_DISABLE:
1272 internal_error (__FILE__, __LINE__,
1273 _("packet_ok: attempt to use a disabled packet"));
1274 break;
1275 case PACKET_ENABLE:
1276 break;
1277 }
1278 break;
1279 case PACKET_UNKNOWN:
1280 /* The stub does not support the packet. */
1281 switch (config->support)
1282 {
1283 case PACKET_ENABLE:
1284 if (config->detect == AUTO_BOOLEAN_AUTO)
1285 /* If the stub previously indicated that the packet was
1286 supported then there is a protocol error.. */
1287 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1288 config->name, config->title);
1289 else
1290 /* The user set it wrong. */
1291 error (_("Enabled packet %s (%s) not recognized by stub"),
1292 config->name, config->title);
1293 break;
1294 case PACKET_SUPPORT_UNKNOWN:
1295 if (remote_debug)
1296 fprintf_unfiltered (gdb_stdlog,
1297 "Packet %s (%s) is NOT supported\n",
1298 config->name, config->title);
1299 config->support = PACKET_DISABLE;
1300 break;
1301 case PACKET_DISABLE:
1302 break;
1303 }
1304 break;
1305 }
1306
1307 return result;
1308 }
1309
1310 enum {
1311 PACKET_vCont = 0,
1312 PACKET_X,
1313 PACKET_qSymbol,
1314 PACKET_P,
1315 PACKET_p,
1316 PACKET_Z0,
1317 PACKET_Z1,
1318 PACKET_Z2,
1319 PACKET_Z3,
1320 PACKET_Z4,
1321 PACKET_vFile_open,
1322 PACKET_vFile_pread,
1323 PACKET_vFile_pwrite,
1324 PACKET_vFile_close,
1325 PACKET_vFile_unlink,
1326 PACKET_vFile_readlink,
1327 PACKET_qXfer_auxv,
1328 PACKET_qXfer_features,
1329 PACKET_qXfer_libraries,
1330 PACKET_qXfer_libraries_svr4,
1331 PACKET_qXfer_memory_map,
1332 PACKET_qXfer_spu_read,
1333 PACKET_qXfer_spu_write,
1334 PACKET_qXfer_osdata,
1335 PACKET_qXfer_threads,
1336 PACKET_qXfer_statictrace_read,
1337 PACKET_qXfer_traceframe_info,
1338 PACKET_qXfer_uib,
1339 PACKET_qGetTIBAddr,
1340 PACKET_qGetTLSAddr,
1341 PACKET_qSupported,
1342 PACKET_qTStatus,
1343 PACKET_QPassSignals,
1344 PACKET_QProgramSignals,
1345 PACKET_qSearch_memory,
1346 PACKET_vAttach,
1347 PACKET_vRun,
1348 PACKET_QStartNoAckMode,
1349 PACKET_vKill,
1350 PACKET_qXfer_siginfo_read,
1351 PACKET_qXfer_siginfo_write,
1352 PACKET_qAttached,
1353 PACKET_ConditionalTracepoints,
1354 PACKET_ConditionalBreakpoints,
1355 PACKET_BreakpointCommands,
1356 PACKET_FastTracepoints,
1357 PACKET_StaticTracepoints,
1358 PACKET_InstallInTrace,
1359 PACKET_bc,
1360 PACKET_bs,
1361 PACKET_TracepointSource,
1362 PACKET_QAllow,
1363 PACKET_qXfer_fdpic,
1364 PACKET_QDisableRandomization,
1365 PACKET_QAgent,
1366 PACKET_QTBuffer_size,
1367 PACKET_Qbtrace_off,
1368 PACKET_Qbtrace_bts,
1369 PACKET_qXfer_btrace,
1370 PACKET_MAX
1371 };
1372
1373 static struct packet_config remote_protocol_packets[PACKET_MAX];
1374
1375 static void
1376 set_remote_protocol_packet_cmd (char *args, int from_tty,
1377 struct cmd_list_element *c)
1378 {
1379 struct packet_config *packet;
1380
1381 for (packet = remote_protocol_packets;
1382 packet < &remote_protocol_packets[PACKET_MAX];
1383 packet++)
1384 {
1385 if (&packet->detect == c->var)
1386 {
1387 update_packet_config (packet);
1388 return;
1389 }
1390 }
1391 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1392 c->name);
1393 }
1394
1395 static void
1396 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1397 struct cmd_list_element *c,
1398 const char *value)
1399 {
1400 struct packet_config *packet;
1401
1402 for (packet = remote_protocol_packets;
1403 packet < &remote_protocol_packets[PACKET_MAX];
1404 packet++)
1405 {
1406 if (&packet->detect == c->var)
1407 {
1408 show_packet_config_cmd (packet);
1409 return;
1410 }
1411 }
1412 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1413 c->name);
1414 }
1415
1416 /* Should we try one of the 'Z' requests? */
1417
1418 enum Z_packet_type
1419 {
1420 Z_PACKET_SOFTWARE_BP,
1421 Z_PACKET_HARDWARE_BP,
1422 Z_PACKET_WRITE_WP,
1423 Z_PACKET_READ_WP,
1424 Z_PACKET_ACCESS_WP,
1425 NR_Z_PACKET_TYPES
1426 };
1427
1428 /* For compatibility with older distributions. Provide a ``set remote
1429 Z-packet ...'' command that updates all the Z packet types. */
1430
1431 static enum auto_boolean remote_Z_packet_detect;
1432
1433 static void
1434 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1435 struct cmd_list_element *c)
1436 {
1437 int i;
1438
1439 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1440 {
1441 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1442 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1443 }
1444 }
1445
1446 static void
1447 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1448 struct cmd_list_element *c,
1449 const char *value)
1450 {
1451 int i;
1452
1453 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1454 {
1455 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1456 }
1457 }
1458
1459 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1460 static struct async_signal_handler *async_sigint_remote_twice_token;
1461 static struct async_signal_handler *async_sigint_remote_token;
1462
1463 \f
1464 /* Asynchronous signal handle registered as event loop source for
1465 when we have pending events ready to be passed to the core. */
1466
1467 static struct async_event_handler *remote_async_inferior_event_token;
1468
1469 \f
1470
1471 static ptid_t magic_null_ptid;
1472 static ptid_t not_sent_ptid;
1473 static ptid_t any_thread_ptid;
1474
1475 /* Find out if the stub attached to PID (and hence GDB should offer to
1476 detach instead of killing it when bailing out). */
1477
1478 static int
1479 remote_query_attached (int pid)
1480 {
1481 struct remote_state *rs = get_remote_state ();
1482 size_t size = get_remote_packet_size ();
1483
1484 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1485 return 0;
1486
1487 if (remote_multi_process_p (rs))
1488 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1489 else
1490 xsnprintf (rs->buf, size, "qAttached");
1491
1492 putpkt (rs->buf);
1493 getpkt (&rs->buf, &rs->buf_size, 0);
1494
1495 switch (packet_ok (rs->buf,
1496 &remote_protocol_packets[PACKET_qAttached]))
1497 {
1498 case PACKET_OK:
1499 if (strcmp (rs->buf, "1") == 0)
1500 return 1;
1501 break;
1502 case PACKET_ERROR:
1503 warning (_("Remote failure reply: %s"), rs->buf);
1504 break;
1505 case PACKET_UNKNOWN:
1506 break;
1507 }
1508
1509 return 0;
1510 }
1511
1512 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1513 has been invented by GDB, instead of reported by the target. Since
1514 we can be connected to a remote system before before knowing about
1515 any inferior, mark the target with execution when we find the first
1516 inferior. If ATTACHED is 1, then we had just attached to this
1517 inferior. If it is 0, then we just created this inferior. If it
1518 is -1, then try querying the remote stub to find out if it had
1519 attached to the inferior or not. */
1520
1521 static struct inferior *
1522 remote_add_inferior (int fake_pid_p, int pid, int attached)
1523 {
1524 struct inferior *inf;
1525
1526 /* Check whether this process we're learning about is to be
1527 considered attached, or if is to be considered to have been
1528 spawned by the stub. */
1529 if (attached == -1)
1530 attached = remote_query_attached (pid);
1531
1532 if (gdbarch_has_global_solist (target_gdbarch ()))
1533 {
1534 /* If the target shares code across all inferiors, then every
1535 attach adds a new inferior. */
1536 inf = add_inferior (pid);
1537
1538 /* ... and every inferior is bound to the same program space.
1539 However, each inferior may still have its own address
1540 space. */
1541 inf->aspace = maybe_new_address_space ();
1542 inf->pspace = current_program_space;
1543 }
1544 else
1545 {
1546 /* In the traditional debugging scenario, there's a 1-1 match
1547 between program/address spaces. We simply bind the inferior
1548 to the program space's address space. */
1549 inf = current_inferior ();
1550 inferior_appeared (inf, pid);
1551 }
1552
1553 inf->attach_flag = attached;
1554 inf->fake_pid_p = fake_pid_p;
1555
1556 return inf;
1557 }
1558
1559 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1560 according to RUNNING. */
1561
1562 static void
1563 remote_add_thread (ptid_t ptid, int running)
1564 {
1565 struct remote_state *rs = get_remote_state ();
1566
1567 /* GDB historically didn't pull threads in the initial connection
1568 setup. If the remote target doesn't even have a concept of
1569 threads (e.g., a bare-metal target), even if internally we
1570 consider that a single-threaded target, mentioning a new thread
1571 might be confusing to the user. Be silent then, preserving the
1572 age old behavior. */
1573 if (rs->starting_up)
1574 add_thread_silent (ptid);
1575 else
1576 add_thread (ptid);
1577
1578 set_executing (ptid, running);
1579 set_running (ptid, running);
1580 }
1581
1582 /* Come here when we learn about a thread id from the remote target.
1583 It may be the first time we hear about such thread, so take the
1584 opportunity to add it to GDB's thread list. In case this is the
1585 first time we're noticing its corresponding inferior, add it to
1586 GDB's inferior list as well. */
1587
1588 static void
1589 remote_notice_new_inferior (ptid_t currthread, int running)
1590 {
1591 /* If this is a new thread, add it to GDB's thread list.
1592 If we leave it up to WFI to do this, bad things will happen. */
1593
1594 if (in_thread_list (currthread) && is_exited (currthread))
1595 {
1596 /* We're seeing an event on a thread id we knew had exited.
1597 This has to be a new thread reusing the old id. Add it. */
1598 remote_add_thread (currthread, running);
1599 return;
1600 }
1601
1602 if (!in_thread_list (currthread))
1603 {
1604 struct inferior *inf = NULL;
1605 int pid = ptid_get_pid (currthread);
1606
1607 if (ptid_is_pid (inferior_ptid)
1608 && pid == ptid_get_pid (inferior_ptid))
1609 {
1610 /* inferior_ptid has no thread member yet. This can happen
1611 with the vAttach -> remote_wait,"TAAthread:" path if the
1612 stub doesn't support qC. This is the first stop reported
1613 after an attach, so this is the main thread. Update the
1614 ptid in the thread list. */
1615 if (in_thread_list (pid_to_ptid (pid)))
1616 thread_change_ptid (inferior_ptid, currthread);
1617 else
1618 {
1619 remote_add_thread (currthread, running);
1620 inferior_ptid = currthread;
1621 }
1622 return;
1623 }
1624
1625 if (ptid_equal (magic_null_ptid, inferior_ptid))
1626 {
1627 /* inferior_ptid is not set yet. This can happen with the
1628 vRun -> remote_wait,"TAAthread:" path if the stub
1629 doesn't support qC. This is the first stop reported
1630 after an attach, so this is the main thread. Update the
1631 ptid in the thread list. */
1632 thread_change_ptid (inferior_ptid, currthread);
1633 return;
1634 }
1635
1636 /* When connecting to a target remote, or to a target
1637 extended-remote which already was debugging an inferior, we
1638 may not know about it yet. Add it before adding its child
1639 thread, so notifications are emitted in a sensible order. */
1640 if (!in_inferior_list (ptid_get_pid (currthread)))
1641 {
1642 struct remote_state *rs = get_remote_state ();
1643 int fake_pid_p = !remote_multi_process_p (rs);
1644
1645 inf = remote_add_inferior (fake_pid_p,
1646 ptid_get_pid (currthread), -1);
1647 }
1648
1649 /* This is really a new thread. Add it. */
1650 remote_add_thread (currthread, running);
1651
1652 /* If we found a new inferior, let the common code do whatever
1653 it needs to with it (e.g., read shared libraries, insert
1654 breakpoints), unless we're just setting up an all-stop
1655 connection. */
1656 if (inf != NULL)
1657 {
1658 struct remote_state *rs = get_remote_state ();
1659
1660 if (non_stop || !rs->starting_up)
1661 notice_new_inferior (currthread, running, 0);
1662 }
1663 }
1664 }
1665
1666 /* Return the private thread data, creating it if necessary. */
1667
1668 static struct private_thread_info *
1669 demand_private_info (ptid_t ptid)
1670 {
1671 struct thread_info *info = find_thread_ptid (ptid);
1672
1673 gdb_assert (info);
1674
1675 if (!info->private)
1676 {
1677 info->private = xmalloc (sizeof (*(info->private)));
1678 info->private_dtor = free_private_thread_info;
1679 info->private->core = -1;
1680 info->private->extra = 0;
1681 }
1682
1683 return info->private;
1684 }
1685
1686 /* Call this function as a result of
1687 1) A halt indication (T packet) containing a thread id
1688 2) A direct query of currthread
1689 3) Successful execution of set thread */
1690
1691 static void
1692 record_currthread (struct remote_state *rs, ptid_t currthread)
1693 {
1694 rs->general_thread = currthread;
1695 }
1696
1697 /* If 'QPassSignals' is supported, tell the remote stub what signals
1698 it can simply pass through to the inferior without reporting. */
1699
1700 static void
1701 remote_pass_signals (struct target_ops *self,
1702 int numsigs, unsigned char *pass_signals)
1703 {
1704 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1705 {
1706 char *pass_packet, *p;
1707 int count = 0, i;
1708 struct remote_state *rs = get_remote_state ();
1709
1710 gdb_assert (numsigs < 256);
1711 for (i = 0; i < numsigs; i++)
1712 {
1713 if (pass_signals[i])
1714 count++;
1715 }
1716 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1717 strcpy (pass_packet, "QPassSignals:");
1718 p = pass_packet + strlen (pass_packet);
1719 for (i = 0; i < numsigs; i++)
1720 {
1721 if (pass_signals[i])
1722 {
1723 if (i >= 16)
1724 *p++ = tohex (i >> 4);
1725 *p++ = tohex (i & 15);
1726 if (count)
1727 *p++ = ';';
1728 else
1729 break;
1730 count--;
1731 }
1732 }
1733 *p = 0;
1734 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
1735 {
1736 putpkt (pass_packet);
1737 getpkt (&rs->buf, &rs->buf_size, 0);
1738 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
1739 if (rs->last_pass_packet)
1740 xfree (rs->last_pass_packet);
1741 rs->last_pass_packet = pass_packet;
1742 }
1743 else
1744 xfree (pass_packet);
1745 }
1746 }
1747
1748 /* If 'QProgramSignals' is supported, tell the remote stub what
1749 signals it should pass through to the inferior when detaching. */
1750
1751 static void
1752 remote_program_signals (struct target_ops *self,
1753 int numsigs, unsigned char *signals)
1754 {
1755 if (remote_protocol_packets[PACKET_QProgramSignals].support != PACKET_DISABLE)
1756 {
1757 char *packet, *p;
1758 int count = 0, i;
1759 struct remote_state *rs = get_remote_state ();
1760
1761 gdb_assert (numsigs < 256);
1762 for (i = 0; i < numsigs; i++)
1763 {
1764 if (signals[i])
1765 count++;
1766 }
1767 packet = xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
1768 strcpy (packet, "QProgramSignals:");
1769 p = packet + strlen (packet);
1770 for (i = 0; i < numsigs; i++)
1771 {
1772 if (signal_pass_state (i))
1773 {
1774 if (i >= 16)
1775 *p++ = tohex (i >> 4);
1776 *p++ = tohex (i & 15);
1777 if (count)
1778 *p++ = ';';
1779 else
1780 break;
1781 count--;
1782 }
1783 }
1784 *p = 0;
1785 if (!rs->last_program_signals_packet
1786 || strcmp (rs->last_program_signals_packet, packet) != 0)
1787 {
1788 putpkt (packet);
1789 getpkt (&rs->buf, &rs->buf_size, 0);
1790 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
1791 xfree (rs->last_program_signals_packet);
1792 rs->last_program_signals_packet = packet;
1793 }
1794 else
1795 xfree (packet);
1796 }
1797 }
1798
1799 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1800 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1801 thread. If GEN is set, set the general thread, if not, then set
1802 the step/continue thread. */
1803 static void
1804 set_thread (struct ptid ptid, int gen)
1805 {
1806 struct remote_state *rs = get_remote_state ();
1807 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
1808 char *buf = rs->buf;
1809 char *endbuf = rs->buf + get_remote_packet_size ();
1810
1811 if (ptid_equal (state, ptid))
1812 return;
1813
1814 *buf++ = 'H';
1815 *buf++ = gen ? 'g' : 'c';
1816 if (ptid_equal (ptid, magic_null_ptid))
1817 xsnprintf (buf, endbuf - buf, "0");
1818 else if (ptid_equal (ptid, any_thread_ptid))
1819 xsnprintf (buf, endbuf - buf, "0");
1820 else if (ptid_equal (ptid, minus_one_ptid))
1821 xsnprintf (buf, endbuf - buf, "-1");
1822 else
1823 write_ptid (buf, endbuf, ptid);
1824 putpkt (rs->buf);
1825 getpkt (&rs->buf, &rs->buf_size, 0);
1826 if (gen)
1827 rs->general_thread = ptid;
1828 else
1829 rs->continue_thread = ptid;
1830 }
1831
1832 static void
1833 set_general_thread (struct ptid ptid)
1834 {
1835 set_thread (ptid, 1);
1836 }
1837
1838 static void
1839 set_continue_thread (struct ptid ptid)
1840 {
1841 set_thread (ptid, 0);
1842 }
1843
1844 /* Change the remote current process. Which thread within the process
1845 ends up selected isn't important, as long as it is the same process
1846 as what INFERIOR_PTID points to.
1847
1848 This comes from that fact that there is no explicit notion of
1849 "selected process" in the protocol. The selected process for
1850 general operations is the process the selected general thread
1851 belongs to. */
1852
1853 static void
1854 set_general_process (void)
1855 {
1856 struct remote_state *rs = get_remote_state ();
1857
1858 /* If the remote can't handle multiple processes, don't bother. */
1859 if (!rs->extended || !remote_multi_process_p (rs))
1860 return;
1861
1862 /* We only need to change the remote current thread if it's pointing
1863 at some other process. */
1864 if (ptid_get_pid (rs->general_thread) != ptid_get_pid (inferior_ptid))
1865 set_general_thread (inferior_ptid);
1866 }
1867
1868 \f
1869 /* Return nonzero if the thread PTID is still alive on the remote
1870 system. */
1871
1872 static int
1873 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1874 {
1875 struct remote_state *rs = get_remote_state ();
1876 char *p, *endp;
1877
1878 if (ptid_equal (ptid, magic_null_ptid))
1879 /* The main thread is always alive. */
1880 return 1;
1881
1882 if (ptid_get_pid (ptid) != 0 && ptid_get_lwp (ptid) == 0)
1883 /* The main thread is always alive. This can happen after a
1884 vAttach, if the remote side doesn't support
1885 multi-threading. */
1886 return 1;
1887
1888 p = rs->buf;
1889 endp = rs->buf + get_remote_packet_size ();
1890
1891 *p++ = 'T';
1892 write_ptid (p, endp, ptid);
1893
1894 putpkt (rs->buf);
1895 getpkt (&rs->buf, &rs->buf_size, 0);
1896 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1897 }
1898
1899 /* About these extended threadlist and threadinfo packets. They are
1900 variable length packets but, the fields within them are often fixed
1901 length. They are redundent enough to send over UDP as is the
1902 remote protocol in general. There is a matching unit test module
1903 in libstub. */
1904
1905 /* WARNING: This threadref data structure comes from the remote O.S.,
1906 libstub protocol encoding, and remote.c. It is not particularly
1907 changable. */
1908
1909 /* Right now, the internal structure is int. We want it to be bigger.
1910 Plan to fix this. */
1911
1912 typedef int gdb_threadref; /* Internal GDB thread reference. */
1913
1914 /* gdb_ext_thread_info is an internal GDB data structure which is
1915 equivalent to the reply of the remote threadinfo packet. */
1916
1917 struct gdb_ext_thread_info
1918 {
1919 threadref threadid; /* External form of thread reference. */
1920 int active; /* Has state interesting to GDB?
1921 regs, stack. */
1922 char display[256]; /* Brief state display, name,
1923 blocked/suspended. */
1924 char shortname[32]; /* To be used to name threads. */
1925 char more_display[256]; /* Long info, statistics, queue depth,
1926 whatever. */
1927 };
1928
1929 /* The volume of remote transfers can be limited by submitting
1930 a mask containing bits specifying the desired information.
1931 Use a union of these values as the 'selection' parameter to
1932 get_thread_info. FIXME: Make these TAG names more thread specific. */
1933
1934 #define TAG_THREADID 1
1935 #define TAG_EXISTS 2
1936 #define TAG_DISPLAY 4
1937 #define TAG_THREADNAME 8
1938 #define TAG_MOREDISPLAY 16
1939
1940 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1941
1942 static char *unpack_nibble (char *buf, int *val);
1943
1944 static char *unpack_byte (char *buf, int *value);
1945
1946 static char *pack_int (char *buf, int value);
1947
1948 static char *unpack_int (char *buf, int *value);
1949
1950 static char *unpack_string (char *src, char *dest, int length);
1951
1952 static char *pack_threadid (char *pkt, threadref *id);
1953
1954 static char *unpack_threadid (char *inbuf, threadref *id);
1955
1956 void int_to_threadref (threadref *id, int value);
1957
1958 static int threadref_to_int (threadref *ref);
1959
1960 static void copy_threadref (threadref *dest, threadref *src);
1961
1962 static int threadmatch (threadref *dest, threadref *src);
1963
1964 static char *pack_threadinfo_request (char *pkt, int mode,
1965 threadref *id);
1966
1967 static int remote_unpack_thread_info_response (char *pkt,
1968 threadref *expectedref,
1969 struct gdb_ext_thread_info
1970 *info);
1971
1972
1973 static int remote_get_threadinfo (threadref *threadid,
1974 int fieldset, /*TAG mask */
1975 struct gdb_ext_thread_info *info);
1976
1977 static char *pack_threadlist_request (char *pkt, int startflag,
1978 int threadcount,
1979 threadref *nextthread);
1980
1981 static int parse_threadlist_response (char *pkt,
1982 int result_limit,
1983 threadref *original_echo,
1984 threadref *resultlist,
1985 int *doneflag);
1986
1987 static int remote_get_threadlist (int startflag,
1988 threadref *nextthread,
1989 int result_limit,
1990 int *done,
1991 int *result_count,
1992 threadref *threadlist);
1993
1994 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1995
1996 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1997 void *context, int looplimit);
1998
1999 static int remote_newthread_step (threadref *ref, void *context);
2000
2001
2002 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2003 buffer we're allowed to write to. Returns
2004 BUF+CHARACTERS_WRITTEN. */
2005
2006 static char *
2007 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2008 {
2009 int pid, tid;
2010 struct remote_state *rs = get_remote_state ();
2011
2012 if (remote_multi_process_p (rs))
2013 {
2014 pid = ptid_get_pid (ptid);
2015 if (pid < 0)
2016 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2017 else
2018 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2019 }
2020 tid = ptid_get_lwp (ptid);
2021 if (tid < 0)
2022 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2023 else
2024 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2025
2026 return buf;
2027 }
2028
2029 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
2030 passed the last parsed char. Returns null_ptid on error. */
2031
2032 static ptid_t
2033 read_ptid (char *buf, char **obuf)
2034 {
2035 char *p = buf;
2036 char *pp;
2037 ULONGEST pid = 0, tid = 0;
2038
2039 if (*p == 'p')
2040 {
2041 /* Multi-process ptid. */
2042 pp = unpack_varlen_hex (p + 1, &pid);
2043 if (*pp != '.')
2044 error (_("invalid remote ptid: %s"), p);
2045
2046 p = pp;
2047 pp = unpack_varlen_hex (p + 1, &tid);
2048 if (obuf)
2049 *obuf = pp;
2050 return ptid_build (pid, tid, 0);
2051 }
2052
2053 /* No multi-process. Just a tid. */
2054 pp = unpack_varlen_hex (p, &tid);
2055
2056 /* Since the stub is not sending a process id, then default to
2057 what's in inferior_ptid, unless it's null at this point. If so,
2058 then since there's no way to know the pid of the reported
2059 threads, use the magic number. */
2060 if (ptid_equal (inferior_ptid, null_ptid))
2061 pid = ptid_get_pid (magic_null_ptid);
2062 else
2063 pid = ptid_get_pid (inferior_ptid);
2064
2065 if (obuf)
2066 *obuf = pp;
2067 return ptid_build (pid, tid, 0);
2068 }
2069
2070 static int
2071 stubhex (int ch)
2072 {
2073 if (ch >= 'a' && ch <= 'f')
2074 return ch - 'a' + 10;
2075 if (ch >= '0' && ch <= '9')
2076 return ch - '0';
2077 if (ch >= 'A' && ch <= 'F')
2078 return ch - 'A' + 10;
2079 return -1;
2080 }
2081
2082 static int
2083 stub_unpack_int (char *buff, int fieldlength)
2084 {
2085 int nibble;
2086 int retval = 0;
2087
2088 while (fieldlength)
2089 {
2090 nibble = stubhex (*buff++);
2091 retval |= nibble;
2092 fieldlength--;
2093 if (fieldlength)
2094 retval = retval << 4;
2095 }
2096 return retval;
2097 }
2098
2099 static char *
2100 unpack_nibble (char *buf, int *val)
2101 {
2102 *val = fromhex (*buf++);
2103 return buf;
2104 }
2105
2106 static char *
2107 unpack_byte (char *buf, int *value)
2108 {
2109 *value = stub_unpack_int (buf, 2);
2110 return buf + 2;
2111 }
2112
2113 static char *
2114 pack_int (char *buf, int value)
2115 {
2116 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2117 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2118 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2119 buf = pack_hex_byte (buf, (value & 0xff));
2120 return buf;
2121 }
2122
2123 static char *
2124 unpack_int (char *buf, int *value)
2125 {
2126 *value = stub_unpack_int (buf, 8);
2127 return buf + 8;
2128 }
2129
2130 #if 0 /* Currently unused, uncomment when needed. */
2131 static char *pack_string (char *pkt, char *string);
2132
2133 static char *
2134 pack_string (char *pkt, char *string)
2135 {
2136 char ch;
2137 int len;
2138
2139 len = strlen (string);
2140 if (len > 200)
2141 len = 200; /* Bigger than most GDB packets, junk??? */
2142 pkt = pack_hex_byte (pkt, len);
2143 while (len-- > 0)
2144 {
2145 ch = *string++;
2146 if ((ch == '\0') || (ch == '#'))
2147 ch = '*'; /* Protect encapsulation. */
2148 *pkt++ = ch;
2149 }
2150 return pkt;
2151 }
2152 #endif /* 0 (unused) */
2153
2154 static char *
2155 unpack_string (char *src, char *dest, int length)
2156 {
2157 while (length--)
2158 *dest++ = *src++;
2159 *dest = '\0';
2160 return src;
2161 }
2162
2163 static char *
2164 pack_threadid (char *pkt, threadref *id)
2165 {
2166 char *limit;
2167 unsigned char *altid;
2168
2169 altid = (unsigned char *) id;
2170 limit = pkt + BUF_THREAD_ID_SIZE;
2171 while (pkt < limit)
2172 pkt = pack_hex_byte (pkt, *altid++);
2173 return pkt;
2174 }
2175
2176
2177 static char *
2178 unpack_threadid (char *inbuf, threadref *id)
2179 {
2180 char *altref;
2181 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2182 int x, y;
2183
2184 altref = (char *) id;
2185
2186 while (inbuf < limit)
2187 {
2188 x = stubhex (*inbuf++);
2189 y = stubhex (*inbuf++);
2190 *altref++ = (x << 4) | y;
2191 }
2192 return inbuf;
2193 }
2194
2195 /* Externally, threadrefs are 64 bits but internally, they are still
2196 ints. This is due to a mismatch of specifications. We would like
2197 to use 64bit thread references internally. This is an adapter
2198 function. */
2199
2200 void
2201 int_to_threadref (threadref *id, int value)
2202 {
2203 unsigned char *scan;
2204
2205 scan = (unsigned char *) id;
2206 {
2207 int i = 4;
2208 while (i--)
2209 *scan++ = 0;
2210 }
2211 *scan++ = (value >> 24) & 0xff;
2212 *scan++ = (value >> 16) & 0xff;
2213 *scan++ = (value >> 8) & 0xff;
2214 *scan++ = (value & 0xff);
2215 }
2216
2217 static int
2218 threadref_to_int (threadref *ref)
2219 {
2220 int i, value = 0;
2221 unsigned char *scan;
2222
2223 scan = *ref;
2224 scan += 4;
2225 i = 4;
2226 while (i-- > 0)
2227 value = (value << 8) | ((*scan++) & 0xff);
2228 return value;
2229 }
2230
2231 static void
2232 copy_threadref (threadref *dest, threadref *src)
2233 {
2234 int i;
2235 unsigned char *csrc, *cdest;
2236
2237 csrc = (unsigned char *) src;
2238 cdest = (unsigned char *) dest;
2239 i = 8;
2240 while (i--)
2241 *cdest++ = *csrc++;
2242 }
2243
2244 static int
2245 threadmatch (threadref *dest, threadref *src)
2246 {
2247 /* Things are broken right now, so just assume we got a match. */
2248 #if 0
2249 unsigned char *srcp, *destp;
2250 int i, result;
2251 srcp = (char *) src;
2252 destp = (char *) dest;
2253
2254 result = 1;
2255 while (i-- > 0)
2256 result &= (*srcp++ == *destp++) ? 1 : 0;
2257 return result;
2258 #endif
2259 return 1;
2260 }
2261
2262 /*
2263 threadid:1, # always request threadid
2264 context_exists:2,
2265 display:4,
2266 unique_name:8,
2267 more_display:16
2268 */
2269
2270 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2271
2272 static char *
2273 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2274 {
2275 *pkt++ = 'q'; /* Info Query */
2276 *pkt++ = 'P'; /* process or thread info */
2277 pkt = pack_int (pkt, mode); /* mode */
2278 pkt = pack_threadid (pkt, id); /* threadid */
2279 *pkt = '\0'; /* terminate */
2280 return pkt;
2281 }
2282
2283 /* These values tag the fields in a thread info response packet. */
2284 /* Tagging the fields allows us to request specific fields and to
2285 add more fields as time goes by. */
2286
2287 #define TAG_THREADID 1 /* Echo the thread identifier. */
2288 #define TAG_EXISTS 2 /* Is this process defined enough to
2289 fetch registers and its stack? */
2290 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2291 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2292 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2293 the process. */
2294
2295 static int
2296 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2297 struct gdb_ext_thread_info *info)
2298 {
2299 struct remote_state *rs = get_remote_state ();
2300 int mask, length;
2301 int tag;
2302 threadref ref;
2303 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2304 int retval = 1;
2305
2306 /* info->threadid = 0; FIXME: implement zero_threadref. */
2307 info->active = 0;
2308 info->display[0] = '\0';
2309 info->shortname[0] = '\0';
2310 info->more_display[0] = '\0';
2311
2312 /* Assume the characters indicating the packet type have been
2313 stripped. */
2314 pkt = unpack_int (pkt, &mask); /* arg mask */
2315 pkt = unpack_threadid (pkt, &ref);
2316
2317 if (mask == 0)
2318 warning (_("Incomplete response to threadinfo request."));
2319 if (!threadmatch (&ref, expectedref))
2320 { /* This is an answer to a different request. */
2321 warning (_("ERROR RMT Thread info mismatch."));
2322 return 0;
2323 }
2324 copy_threadref (&info->threadid, &ref);
2325
2326 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2327
2328 /* Packets are terminated with nulls. */
2329 while ((pkt < limit) && mask && *pkt)
2330 {
2331 pkt = unpack_int (pkt, &tag); /* tag */
2332 pkt = unpack_byte (pkt, &length); /* length */
2333 if (!(tag & mask)) /* Tags out of synch with mask. */
2334 {
2335 warning (_("ERROR RMT: threadinfo tag mismatch."));
2336 retval = 0;
2337 break;
2338 }
2339 if (tag == TAG_THREADID)
2340 {
2341 if (length != 16)
2342 {
2343 warning (_("ERROR RMT: length of threadid is not 16."));
2344 retval = 0;
2345 break;
2346 }
2347 pkt = unpack_threadid (pkt, &ref);
2348 mask = mask & ~TAG_THREADID;
2349 continue;
2350 }
2351 if (tag == TAG_EXISTS)
2352 {
2353 info->active = stub_unpack_int (pkt, length);
2354 pkt += length;
2355 mask = mask & ~(TAG_EXISTS);
2356 if (length > 8)
2357 {
2358 warning (_("ERROR RMT: 'exists' length too long."));
2359 retval = 0;
2360 break;
2361 }
2362 continue;
2363 }
2364 if (tag == TAG_THREADNAME)
2365 {
2366 pkt = unpack_string (pkt, &info->shortname[0], length);
2367 mask = mask & ~TAG_THREADNAME;
2368 continue;
2369 }
2370 if (tag == TAG_DISPLAY)
2371 {
2372 pkt = unpack_string (pkt, &info->display[0], length);
2373 mask = mask & ~TAG_DISPLAY;
2374 continue;
2375 }
2376 if (tag == TAG_MOREDISPLAY)
2377 {
2378 pkt = unpack_string (pkt, &info->more_display[0], length);
2379 mask = mask & ~TAG_MOREDISPLAY;
2380 continue;
2381 }
2382 warning (_("ERROR RMT: unknown thread info tag."));
2383 break; /* Not a tag we know about. */
2384 }
2385 return retval;
2386 }
2387
2388 static int
2389 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2390 struct gdb_ext_thread_info *info)
2391 {
2392 struct remote_state *rs = get_remote_state ();
2393 int result;
2394
2395 pack_threadinfo_request (rs->buf, fieldset, threadid);
2396 putpkt (rs->buf);
2397 getpkt (&rs->buf, &rs->buf_size, 0);
2398
2399 if (rs->buf[0] == '\0')
2400 return 0;
2401
2402 result = remote_unpack_thread_info_response (rs->buf + 2,
2403 threadid, info);
2404 return result;
2405 }
2406
2407 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2408
2409 static char *
2410 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2411 threadref *nextthread)
2412 {
2413 *pkt++ = 'q'; /* info query packet */
2414 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2415 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2416 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2417 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2418 *pkt = '\0';
2419 return pkt;
2420 }
2421
2422 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2423
2424 static int
2425 parse_threadlist_response (char *pkt, int result_limit,
2426 threadref *original_echo, threadref *resultlist,
2427 int *doneflag)
2428 {
2429 struct remote_state *rs = get_remote_state ();
2430 char *limit;
2431 int count, resultcount, done;
2432
2433 resultcount = 0;
2434 /* Assume the 'q' and 'M chars have been stripped. */
2435 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2436 /* done parse past here */
2437 pkt = unpack_byte (pkt, &count); /* count field */
2438 pkt = unpack_nibble (pkt, &done);
2439 /* The first threadid is the argument threadid. */
2440 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2441 while ((count-- > 0) && (pkt < limit))
2442 {
2443 pkt = unpack_threadid (pkt, resultlist++);
2444 if (resultcount++ >= result_limit)
2445 break;
2446 }
2447 if (doneflag)
2448 *doneflag = done;
2449 return resultcount;
2450 }
2451
2452 static int
2453 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2454 int *done, int *result_count, threadref *threadlist)
2455 {
2456 struct remote_state *rs = get_remote_state ();
2457 int result = 1;
2458
2459 /* Trancate result limit to be smaller than the packet size. */
2460 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2461 >= get_remote_packet_size ())
2462 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2463
2464 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2465 putpkt (rs->buf);
2466 getpkt (&rs->buf, &rs->buf_size, 0);
2467
2468 if (*rs->buf == '\0')
2469 return 0;
2470 else
2471 *result_count =
2472 parse_threadlist_response (rs->buf + 2, result_limit,
2473 &rs->echo_nextthread, threadlist, done);
2474
2475 if (!threadmatch (&rs->echo_nextthread, nextthread))
2476 {
2477 /* FIXME: This is a good reason to drop the packet. */
2478 /* Possably, there is a duplicate response. */
2479 /* Possabilities :
2480 retransmit immediatly - race conditions
2481 retransmit after timeout - yes
2482 exit
2483 wait for packet, then exit
2484 */
2485 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2486 return 0; /* I choose simply exiting. */
2487 }
2488 if (*result_count <= 0)
2489 {
2490 if (*done != 1)
2491 {
2492 warning (_("RMT ERROR : failed to get remote thread list."));
2493 result = 0;
2494 }
2495 return result; /* break; */
2496 }
2497 if (*result_count > result_limit)
2498 {
2499 *result_count = 0;
2500 warning (_("RMT ERROR: threadlist response longer than requested."));
2501 return 0;
2502 }
2503 return result;
2504 }
2505
2506 /* This is the interface between remote and threads, remotes upper
2507 interface. */
2508
2509 /* remote_find_new_threads retrieves the thread list and for each
2510 thread in the list, looks up the thread in GDB's internal list,
2511 adding the thread if it does not already exist. This involves
2512 getting partial thread lists from the remote target so, polling the
2513 quit_flag is required. */
2514
2515
2516 static int
2517 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2518 int looplimit)
2519 {
2520 struct remote_state *rs = get_remote_state ();
2521 int done, i, result_count;
2522 int startflag = 1;
2523 int result = 1;
2524 int loopcount = 0;
2525
2526 done = 0;
2527 while (!done)
2528 {
2529 if (loopcount++ > looplimit)
2530 {
2531 result = 0;
2532 warning (_("Remote fetch threadlist -infinite loop-."));
2533 break;
2534 }
2535 if (!remote_get_threadlist (startflag, &rs->nextthread,
2536 MAXTHREADLISTRESULTS,
2537 &done, &result_count, rs->resultthreadlist))
2538 {
2539 result = 0;
2540 break;
2541 }
2542 /* Clear for later iterations. */
2543 startflag = 0;
2544 /* Setup to resume next batch of thread references, set nextthread. */
2545 if (result_count >= 1)
2546 copy_threadref (&rs->nextthread,
2547 &rs->resultthreadlist[result_count - 1]);
2548 i = 0;
2549 while (result_count--)
2550 if (!(result = (*stepfunction) (&rs->resultthreadlist[i++], context)))
2551 break;
2552 }
2553 return result;
2554 }
2555
2556 static int
2557 remote_newthread_step (threadref *ref, void *context)
2558 {
2559 int pid = ptid_get_pid (inferior_ptid);
2560 ptid_t ptid = ptid_build (pid, threadref_to_int (ref), 0);
2561
2562 if (!in_thread_list (ptid))
2563 add_thread (ptid);
2564 return 1; /* continue iterator */
2565 }
2566
2567 #define CRAZY_MAX_THREADS 1000
2568
2569 static ptid_t
2570 remote_current_thread (ptid_t oldpid)
2571 {
2572 struct remote_state *rs = get_remote_state ();
2573
2574 putpkt ("qC");
2575 getpkt (&rs->buf, &rs->buf_size, 0);
2576 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2577 return read_ptid (&rs->buf[2], NULL);
2578 else
2579 return oldpid;
2580 }
2581
2582 /* Find new threads for info threads command.
2583 * Original version, using John Metzler's thread protocol.
2584 */
2585
2586 static void
2587 remote_find_new_threads (void)
2588 {
2589 remote_threadlist_iterator (remote_newthread_step, 0,
2590 CRAZY_MAX_THREADS);
2591 }
2592
2593 #if defined(HAVE_LIBEXPAT)
2594
2595 typedef struct thread_item
2596 {
2597 ptid_t ptid;
2598 char *extra;
2599 int core;
2600 } thread_item_t;
2601 DEF_VEC_O(thread_item_t);
2602
2603 struct threads_parsing_context
2604 {
2605 VEC (thread_item_t) *items;
2606 };
2607
2608 static void
2609 start_thread (struct gdb_xml_parser *parser,
2610 const struct gdb_xml_element *element,
2611 void *user_data, VEC(gdb_xml_value_s) *attributes)
2612 {
2613 struct threads_parsing_context *data = user_data;
2614
2615 struct thread_item item;
2616 char *id;
2617 struct gdb_xml_value *attr;
2618
2619 id = xml_find_attribute (attributes, "id")->value;
2620 item.ptid = read_ptid (id, NULL);
2621
2622 attr = xml_find_attribute (attributes, "core");
2623 if (attr != NULL)
2624 item.core = *(ULONGEST *) attr->value;
2625 else
2626 item.core = -1;
2627
2628 item.extra = 0;
2629
2630 VEC_safe_push (thread_item_t, data->items, &item);
2631 }
2632
2633 static void
2634 end_thread (struct gdb_xml_parser *parser,
2635 const struct gdb_xml_element *element,
2636 void *user_data, const char *body_text)
2637 {
2638 struct threads_parsing_context *data = user_data;
2639
2640 if (body_text && *body_text)
2641 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
2642 }
2643
2644 const struct gdb_xml_attribute thread_attributes[] = {
2645 { "id", GDB_XML_AF_NONE, NULL, NULL },
2646 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2647 { NULL, GDB_XML_AF_NONE, NULL, NULL }
2648 };
2649
2650 const struct gdb_xml_element thread_children[] = {
2651 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2652 };
2653
2654 const struct gdb_xml_element threads_children[] = {
2655 { "thread", thread_attributes, thread_children,
2656 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2657 start_thread, end_thread },
2658 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2659 };
2660
2661 const struct gdb_xml_element threads_elements[] = {
2662 { "threads", NULL, threads_children,
2663 GDB_XML_EF_NONE, NULL, NULL },
2664 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2665 };
2666
2667 /* Discard the contents of the constructed thread info context. */
2668
2669 static void
2670 clear_threads_parsing_context (void *p)
2671 {
2672 struct threads_parsing_context *context = p;
2673 int i;
2674 struct thread_item *item;
2675
2676 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
2677 xfree (item->extra);
2678
2679 VEC_free (thread_item_t, context->items);
2680 }
2681
2682 #endif
2683
2684 /*
2685 * Find all threads for info threads command.
2686 * Uses new thread protocol contributed by Cisco.
2687 * Falls back and attempts to use the older method (above)
2688 * if the target doesn't respond to the new method.
2689 */
2690
2691 static void
2692 remote_threads_info (struct target_ops *ops)
2693 {
2694 struct remote_state *rs = get_remote_state ();
2695 char *bufp;
2696 ptid_t new_thread;
2697
2698 if (rs->remote_desc == 0) /* paranoia */
2699 error (_("Command can only be used when connected to the remote target."));
2700
2701 #if defined(HAVE_LIBEXPAT)
2702 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2703 {
2704 char *xml = target_read_stralloc (&current_target,
2705 TARGET_OBJECT_THREADS, NULL);
2706
2707 struct cleanup *back_to = make_cleanup (xfree, xml);
2708
2709 if (xml && *xml)
2710 {
2711 struct threads_parsing_context context;
2712
2713 context.items = NULL;
2714 make_cleanup (clear_threads_parsing_context, &context);
2715
2716 if (gdb_xml_parse_quick (_("threads"), "threads.dtd",
2717 threads_elements, xml, &context) == 0)
2718 {
2719 int i;
2720 struct thread_item *item;
2721
2722 for (i = 0;
2723 VEC_iterate (thread_item_t, context.items, i, item);
2724 ++i)
2725 {
2726 if (!ptid_equal (item->ptid, null_ptid))
2727 {
2728 struct private_thread_info *info;
2729 /* In non-stop mode, we assume new found threads
2730 are running until proven otherwise with a
2731 stop reply. In all-stop, we can only get
2732 here if all threads are stopped. */
2733 int running = non_stop ? 1 : 0;
2734
2735 remote_notice_new_inferior (item->ptid, running);
2736
2737 info = demand_private_info (item->ptid);
2738 info->core = item->core;
2739 info->extra = item->extra;
2740 item->extra = NULL;
2741 }
2742 }
2743 }
2744 }
2745
2746 do_cleanups (back_to);
2747 return;
2748 }
2749 #endif
2750
2751 if (rs->use_threadinfo_query)
2752 {
2753 putpkt ("qfThreadInfo");
2754 getpkt (&rs->buf, &rs->buf_size, 0);
2755 bufp = rs->buf;
2756 if (bufp[0] != '\0') /* q packet recognized */
2757 {
2758 struct cleanup *old_chain;
2759 char *saved_reply;
2760
2761 /* remote_notice_new_inferior (in the loop below) may make
2762 new RSP calls, which clobber rs->buf. Work with a
2763 copy. */
2764 bufp = saved_reply = xstrdup (rs->buf);
2765 old_chain = make_cleanup (free_current_contents, &saved_reply);
2766
2767 while (*bufp++ == 'm') /* reply contains one or more TID */
2768 {
2769 do
2770 {
2771 new_thread = read_ptid (bufp, &bufp);
2772 if (!ptid_equal (new_thread, null_ptid))
2773 {
2774 /* In non-stop mode, we assume new found threads
2775 are running until proven otherwise with a
2776 stop reply. In all-stop, we can only get
2777 here if all threads are stopped. */
2778 int running = non_stop ? 1 : 0;
2779
2780 remote_notice_new_inferior (new_thread, running);
2781 }
2782 }
2783 while (*bufp++ == ','); /* comma-separated list */
2784 free_current_contents (&saved_reply);
2785 putpkt ("qsThreadInfo");
2786 getpkt (&rs->buf, &rs->buf_size, 0);
2787 bufp = saved_reply = xstrdup (rs->buf);
2788 }
2789 do_cleanups (old_chain);
2790 return; /* done */
2791 }
2792 }
2793
2794 /* Only qfThreadInfo is supported in non-stop mode. */
2795 if (non_stop)
2796 return;
2797
2798 /* Else fall back to old method based on jmetzler protocol. */
2799 rs->use_threadinfo_query = 0;
2800 remote_find_new_threads ();
2801 return;
2802 }
2803
2804 /*
2805 * Collect a descriptive string about the given thread.
2806 * The target may say anything it wants to about the thread
2807 * (typically info about its blocked / runnable state, name, etc.).
2808 * This string will appear in the info threads display.
2809 *
2810 * Optional: targets are not required to implement this function.
2811 */
2812
2813 static char *
2814 remote_threads_extra_info (struct target_ops *self, struct thread_info *tp)
2815 {
2816 struct remote_state *rs = get_remote_state ();
2817 int result;
2818 int set;
2819 threadref id;
2820 struct gdb_ext_thread_info threadinfo;
2821 static char display_buf[100]; /* arbitrary... */
2822 int n = 0; /* position in display_buf */
2823
2824 if (rs->remote_desc == 0) /* paranoia */
2825 internal_error (__FILE__, __LINE__,
2826 _("remote_threads_extra_info"));
2827
2828 if (ptid_equal (tp->ptid, magic_null_ptid)
2829 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_lwp (tp->ptid) == 0))
2830 /* This is the main thread which was added by GDB. The remote
2831 server doesn't know about it. */
2832 return NULL;
2833
2834 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2835 {
2836 struct thread_info *info = find_thread_ptid (tp->ptid);
2837
2838 if (info && info->private)
2839 return info->private->extra;
2840 else
2841 return NULL;
2842 }
2843
2844 if (rs->use_threadextra_query)
2845 {
2846 char *b = rs->buf;
2847 char *endb = rs->buf + get_remote_packet_size ();
2848
2849 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2850 b += strlen (b);
2851 write_ptid (b, endb, tp->ptid);
2852
2853 putpkt (rs->buf);
2854 getpkt (&rs->buf, &rs->buf_size, 0);
2855 if (rs->buf[0] != 0)
2856 {
2857 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2858 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2859 display_buf [result] = '\0';
2860 return display_buf;
2861 }
2862 }
2863
2864 /* If the above query fails, fall back to the old method. */
2865 rs->use_threadextra_query = 0;
2866 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2867 | TAG_MOREDISPLAY | TAG_DISPLAY;
2868 int_to_threadref (&id, ptid_get_lwp (tp->ptid));
2869 if (remote_get_threadinfo (&id, set, &threadinfo))
2870 if (threadinfo.active)
2871 {
2872 if (*threadinfo.shortname)
2873 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2874 " Name: %s,", threadinfo.shortname);
2875 if (*threadinfo.display)
2876 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2877 " State: %s,", threadinfo.display);
2878 if (*threadinfo.more_display)
2879 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2880 " Priority: %s", threadinfo.more_display);
2881
2882 if (n > 0)
2883 {
2884 /* For purely cosmetic reasons, clear up trailing commas. */
2885 if (',' == display_buf[n-1])
2886 display_buf[n-1] = ' ';
2887 return display_buf;
2888 }
2889 }
2890 return NULL;
2891 }
2892 \f
2893
2894 static int
2895 remote_static_tracepoint_marker_at (struct target_ops *self, CORE_ADDR addr,
2896 struct static_tracepoint_marker *marker)
2897 {
2898 struct remote_state *rs = get_remote_state ();
2899 char *p = rs->buf;
2900
2901 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
2902 p += strlen (p);
2903 p += hexnumstr (p, addr);
2904 putpkt (rs->buf);
2905 getpkt (&rs->buf, &rs->buf_size, 0);
2906 p = rs->buf;
2907
2908 if (*p == 'E')
2909 error (_("Remote failure reply: %s"), p);
2910
2911 if (*p++ == 'm')
2912 {
2913 parse_static_tracepoint_marker_definition (p, &p, marker);
2914 return 1;
2915 }
2916
2917 return 0;
2918 }
2919
2920 static VEC(static_tracepoint_marker_p) *
2921 remote_static_tracepoint_markers_by_strid (struct target_ops *self,
2922 const char *strid)
2923 {
2924 struct remote_state *rs = get_remote_state ();
2925 VEC(static_tracepoint_marker_p) *markers = NULL;
2926 struct static_tracepoint_marker *marker = NULL;
2927 struct cleanup *old_chain;
2928 char *p;
2929
2930 /* Ask for a first packet of static tracepoint marker
2931 definition. */
2932 putpkt ("qTfSTM");
2933 getpkt (&rs->buf, &rs->buf_size, 0);
2934 p = rs->buf;
2935 if (*p == 'E')
2936 error (_("Remote failure reply: %s"), p);
2937
2938 old_chain = make_cleanup (free_current_marker, &marker);
2939
2940 while (*p++ == 'm')
2941 {
2942 if (marker == NULL)
2943 marker = XCNEW (struct static_tracepoint_marker);
2944
2945 do
2946 {
2947 parse_static_tracepoint_marker_definition (p, &p, marker);
2948
2949 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
2950 {
2951 VEC_safe_push (static_tracepoint_marker_p,
2952 markers, marker);
2953 marker = NULL;
2954 }
2955 else
2956 {
2957 release_static_tracepoint_marker (marker);
2958 memset (marker, 0, sizeof (*marker));
2959 }
2960 }
2961 while (*p++ == ','); /* comma-separated list */
2962 /* Ask for another packet of static tracepoint definition. */
2963 putpkt ("qTsSTM");
2964 getpkt (&rs->buf, &rs->buf_size, 0);
2965 p = rs->buf;
2966 }
2967
2968 do_cleanups (old_chain);
2969 return markers;
2970 }
2971
2972 \f
2973 /* Implement the to_get_ada_task_ptid function for the remote targets. */
2974
2975 static ptid_t
2976 remote_get_ada_task_ptid (struct target_ops *self, long lwp, long thread)
2977 {
2978 return ptid_build (ptid_get_pid (inferior_ptid), lwp, 0);
2979 }
2980 \f
2981
2982 /* Restart the remote side; this is an extended protocol operation. */
2983
2984 static void
2985 extended_remote_restart (void)
2986 {
2987 struct remote_state *rs = get_remote_state ();
2988
2989 /* Send the restart command; for reasons I don't understand the
2990 remote side really expects a number after the "R". */
2991 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2992 putpkt (rs->buf);
2993
2994 remote_fileio_reset ();
2995 }
2996 \f
2997 /* Clean up connection to a remote debugger. */
2998
2999 static void
3000 remote_close (struct target_ops *self)
3001 {
3002 struct remote_state *rs = get_remote_state ();
3003
3004 if (rs->remote_desc == NULL)
3005 return; /* already closed */
3006
3007 /* Make sure we leave stdin registered in the event loop, and we
3008 don't leave the async SIGINT signal handler installed. */
3009 remote_terminal_ours (self);
3010
3011 serial_close (rs->remote_desc);
3012 rs->remote_desc = NULL;
3013
3014 /* We don't have a connection to the remote stub anymore. Get rid
3015 of all the inferiors and their threads we were controlling.
3016 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3017 will be unable to find the thread corresponding to (pid, 0, 0). */
3018 inferior_ptid = null_ptid;
3019 discard_all_inferiors ();
3020
3021 /* We are closing the remote target, so we should discard
3022 everything of this target. */
3023 discard_pending_stop_replies_in_queue (rs);
3024
3025 if (remote_async_inferior_event_token)
3026 delete_async_event_handler (&remote_async_inferior_event_token);
3027
3028 remote_notif_state_xfree (rs->notif_state);
3029
3030 trace_reset_local_state ();
3031 }
3032
3033 /* Query the remote side for the text, data and bss offsets. */
3034
3035 static void
3036 get_offsets (void)
3037 {
3038 struct remote_state *rs = get_remote_state ();
3039 char *buf;
3040 char *ptr;
3041 int lose, num_segments = 0, do_sections, do_segments;
3042 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3043 struct section_offsets *offs;
3044 struct symfile_segment_data *data;
3045
3046 if (symfile_objfile == NULL)
3047 return;
3048
3049 putpkt ("qOffsets");
3050 getpkt (&rs->buf, &rs->buf_size, 0);
3051 buf = rs->buf;
3052
3053 if (buf[0] == '\000')
3054 return; /* Return silently. Stub doesn't support
3055 this command. */
3056 if (buf[0] == 'E')
3057 {
3058 warning (_("Remote failure reply: %s"), buf);
3059 return;
3060 }
3061
3062 /* Pick up each field in turn. This used to be done with scanf, but
3063 scanf will make trouble if CORE_ADDR size doesn't match
3064 conversion directives correctly. The following code will work
3065 with any size of CORE_ADDR. */
3066 text_addr = data_addr = bss_addr = 0;
3067 ptr = buf;
3068 lose = 0;
3069
3070 if (strncmp (ptr, "Text=", 5) == 0)
3071 {
3072 ptr += 5;
3073 /* Don't use strtol, could lose on big values. */
3074 while (*ptr && *ptr != ';')
3075 text_addr = (text_addr << 4) + fromhex (*ptr++);
3076
3077 if (strncmp (ptr, ";Data=", 6) == 0)
3078 {
3079 ptr += 6;
3080 while (*ptr && *ptr != ';')
3081 data_addr = (data_addr << 4) + fromhex (*ptr++);
3082 }
3083 else
3084 lose = 1;
3085
3086 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
3087 {
3088 ptr += 5;
3089 while (*ptr && *ptr != ';')
3090 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3091
3092 if (bss_addr != data_addr)
3093 warning (_("Target reported unsupported offsets: %s"), buf);
3094 }
3095 else
3096 lose = 1;
3097 }
3098 else if (strncmp (ptr, "TextSeg=", 8) == 0)
3099 {
3100 ptr += 8;
3101 /* Don't use strtol, could lose on big values. */
3102 while (*ptr && *ptr != ';')
3103 text_addr = (text_addr << 4) + fromhex (*ptr++);
3104 num_segments = 1;
3105
3106 if (strncmp (ptr, ";DataSeg=", 9) == 0)
3107 {
3108 ptr += 9;
3109 while (*ptr && *ptr != ';')
3110 data_addr = (data_addr << 4) + fromhex (*ptr++);
3111 num_segments++;
3112 }
3113 }
3114 else
3115 lose = 1;
3116
3117 if (lose)
3118 error (_("Malformed response to offset query, %s"), buf);
3119 else if (*ptr != '\0')
3120 warning (_("Target reported unsupported offsets: %s"), buf);
3121
3122 offs = ((struct section_offsets *)
3123 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3124 memcpy (offs, symfile_objfile->section_offsets,
3125 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3126
3127 data = get_symfile_segment_data (symfile_objfile->obfd);
3128 do_segments = (data != NULL);
3129 do_sections = num_segments == 0;
3130
3131 if (num_segments > 0)
3132 {
3133 segments[0] = text_addr;
3134 segments[1] = data_addr;
3135 }
3136 /* If we have two segments, we can still try to relocate everything
3137 by assuming that the .text and .data offsets apply to the whole
3138 text and data segments. Convert the offsets given in the packet
3139 to base addresses for symfile_map_offsets_to_segments. */
3140 else if (data && data->num_segments == 2)
3141 {
3142 segments[0] = data->segment_bases[0] + text_addr;
3143 segments[1] = data->segment_bases[1] + data_addr;
3144 num_segments = 2;
3145 }
3146 /* If the object file has only one segment, assume that it is text
3147 rather than data; main programs with no writable data are rare,
3148 but programs with no code are useless. Of course the code might
3149 have ended up in the data segment... to detect that we would need
3150 the permissions here. */
3151 else if (data && data->num_segments == 1)
3152 {
3153 segments[0] = data->segment_bases[0] + text_addr;
3154 num_segments = 1;
3155 }
3156 /* There's no way to relocate by segment. */
3157 else
3158 do_segments = 0;
3159
3160 if (do_segments)
3161 {
3162 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3163 offs, num_segments, segments);
3164
3165 if (ret == 0 && !do_sections)
3166 error (_("Can not handle qOffsets TextSeg "
3167 "response with this symbol file"));
3168
3169 if (ret > 0)
3170 do_sections = 0;
3171 }
3172
3173 if (data)
3174 free_symfile_segment_data (data);
3175
3176 if (do_sections)
3177 {
3178 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3179
3180 /* This is a temporary kludge to force data and bss to use the
3181 same offsets because that's what nlmconv does now. The real
3182 solution requires changes to the stub and remote.c that I
3183 don't have time to do right now. */
3184
3185 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3186 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3187 }
3188
3189 objfile_relocate (symfile_objfile, offs);
3190 }
3191
3192 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
3193 threads we know are stopped already. This is used during the
3194 initial remote connection in non-stop mode --- threads that are
3195 reported as already being stopped are left stopped. */
3196
3197 static int
3198 set_stop_requested_callback (struct thread_info *thread, void *data)
3199 {
3200 /* If we have a stop reply for this thread, it must be stopped. */
3201 if (peek_stop_reply (thread->ptid))
3202 set_stop_requested (thread->ptid, 1);
3203
3204 return 0;
3205 }
3206
3207 /* Send interrupt_sequence to remote target. */
3208 static void
3209 send_interrupt_sequence (void)
3210 {
3211 struct remote_state *rs = get_remote_state ();
3212
3213 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3214 remote_serial_write ("\x03", 1);
3215 else if (interrupt_sequence_mode == interrupt_sequence_break)
3216 serial_send_break (rs->remote_desc);
3217 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3218 {
3219 serial_send_break (rs->remote_desc);
3220 remote_serial_write ("g", 1);
3221 }
3222 else
3223 internal_error (__FILE__, __LINE__,
3224 _("Invalid value for interrupt_sequence_mode: %s."),
3225 interrupt_sequence_mode);
3226 }
3227
3228
3229 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
3230 and extract the PTID. Returns NULL_PTID if not found. */
3231
3232 static ptid_t
3233 stop_reply_extract_thread (char *stop_reply)
3234 {
3235 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
3236 {
3237 char *p;
3238
3239 /* Txx r:val ; r:val (...) */
3240 p = &stop_reply[3];
3241
3242 /* Look for "register" named "thread". */
3243 while (*p != '\0')
3244 {
3245 char *p1;
3246
3247 p1 = strchr (p, ':');
3248 if (p1 == NULL)
3249 return null_ptid;
3250
3251 if (strncmp (p, "thread", p1 - p) == 0)
3252 return read_ptid (++p1, &p);
3253
3254 p1 = strchr (p, ';');
3255 if (p1 == NULL)
3256 return null_ptid;
3257 p1++;
3258
3259 p = p1;
3260 }
3261 }
3262
3263 return null_ptid;
3264 }
3265
3266 /* Determine the remote side's current thread. If we have a stop
3267 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
3268 "thread" register we can extract the current thread from. If not,
3269 ask the remote which is the current thread with qC. The former
3270 method avoids a roundtrip. */
3271
3272 static ptid_t
3273 get_current_thread (char *wait_status)
3274 {
3275 ptid_t ptid;
3276
3277 /* Note we don't use remote_parse_stop_reply as that makes use of
3278 the target architecture, which we haven't yet fully determined at
3279 this point. */
3280 if (wait_status != NULL)
3281 ptid = stop_reply_extract_thread (wait_status);
3282 if (ptid_equal (ptid, null_ptid))
3283 ptid = remote_current_thread (inferior_ptid);
3284
3285 return ptid;
3286 }
3287
3288 /* Query the remote target for which is the current thread/process,
3289 add it to our tables, and update INFERIOR_PTID. The caller is
3290 responsible for setting the state such that the remote end is ready
3291 to return the current thread.
3292
3293 This function is called after handling the '?' or 'vRun' packets,
3294 whose response is a stop reply from which we can also try
3295 extracting the thread. If the target doesn't support the explicit
3296 qC query, we infer the current thread from that stop reply, passed
3297 in in WAIT_STATUS, which may be NULL. */
3298
3299 static void
3300 add_current_inferior_and_thread (char *wait_status)
3301 {
3302 struct remote_state *rs = get_remote_state ();
3303 int fake_pid_p = 0;
3304 ptid_t ptid = null_ptid;
3305
3306 inferior_ptid = null_ptid;
3307
3308 /* Now, if we have thread information, update inferior_ptid. */
3309 ptid = get_current_thread (wait_status);
3310
3311 if (!ptid_equal (ptid, null_ptid))
3312 {
3313 if (!remote_multi_process_p (rs))
3314 fake_pid_p = 1;
3315
3316 inferior_ptid = ptid;
3317 }
3318 else
3319 {
3320 /* Without this, some commands which require an active target
3321 (such as kill) won't work. This variable serves (at least)
3322 double duty as both the pid of the target process (if it has
3323 such), and as a flag indicating that a target is active. */
3324 inferior_ptid = magic_null_ptid;
3325 fake_pid_p = 1;
3326 }
3327
3328 remote_add_inferior (fake_pid_p, ptid_get_pid (inferior_ptid), -1);
3329
3330 /* Add the main thread. */
3331 add_thread_silent (inferior_ptid);
3332 }
3333
3334 static void
3335 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3336 {
3337 struct remote_state *rs = get_remote_state ();
3338 struct packet_config *noack_config;
3339 char *wait_status = NULL;
3340
3341 immediate_quit++; /* Allow user to interrupt it. */
3342 QUIT;
3343
3344 if (interrupt_on_connect)
3345 send_interrupt_sequence ();
3346
3347 /* Ack any packet which the remote side has already sent. */
3348 serial_write (rs->remote_desc, "+", 1);
3349
3350 /* Signal other parts that we're going through the initial setup,
3351 and so things may not be stable yet. */
3352 rs->starting_up = 1;
3353
3354 /* The first packet we send to the target is the optional "supported
3355 packets" request. If the target can answer this, it will tell us
3356 which later probes to skip. */
3357 remote_query_supported ();
3358
3359 /* If the stub wants to get a QAllow, compose one and send it. */
3360 if (remote_protocol_packets[PACKET_QAllow].support != PACKET_DISABLE)
3361 remote_set_permissions (target);
3362
3363 /* Next, we possibly activate noack mode.
3364
3365 If the QStartNoAckMode packet configuration is set to AUTO,
3366 enable noack mode if the stub reported a wish for it with
3367 qSupported.
3368
3369 If set to TRUE, then enable noack mode even if the stub didn't
3370 report it in qSupported. If the stub doesn't reply OK, the
3371 session ends with an error.
3372
3373 If FALSE, then don't activate noack mode, regardless of what the
3374 stub claimed should be the default with qSupported. */
3375
3376 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
3377
3378 if (noack_config->detect == AUTO_BOOLEAN_TRUE
3379 || (noack_config->detect == AUTO_BOOLEAN_AUTO
3380 && noack_config->support == PACKET_ENABLE))
3381 {
3382 putpkt ("QStartNoAckMode");
3383 getpkt (&rs->buf, &rs->buf_size, 0);
3384 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
3385 rs->noack_mode = 1;
3386 }
3387
3388 if (extended_p)
3389 {
3390 /* Tell the remote that we are using the extended protocol. */
3391 putpkt ("!");
3392 getpkt (&rs->buf, &rs->buf_size, 0);
3393 }
3394
3395 /* Let the target know which signals it is allowed to pass down to
3396 the program. */
3397 update_signals_program_target ();
3398
3399 /* Next, if the target can specify a description, read it. We do
3400 this before anything involving memory or registers. */
3401 target_find_description ();
3402
3403 /* Next, now that we know something about the target, update the
3404 address spaces in the program spaces. */
3405 update_address_spaces ();
3406
3407 /* On OSs where the list of libraries is global to all
3408 processes, we fetch them early. */
3409 if (gdbarch_has_global_solist (target_gdbarch ()))
3410 solib_add (NULL, from_tty, target, auto_solib_add);
3411
3412 if (non_stop)
3413 {
3414 if (!rs->non_stop_aware)
3415 error (_("Non-stop mode requested, but remote "
3416 "does not support non-stop"));
3417
3418 putpkt ("QNonStop:1");
3419 getpkt (&rs->buf, &rs->buf_size, 0);
3420
3421 if (strcmp (rs->buf, "OK") != 0)
3422 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
3423
3424 /* Find about threads and processes the stub is already
3425 controlling. We default to adding them in the running state.
3426 The '?' query below will then tell us about which threads are
3427 stopped. */
3428 remote_threads_info (target);
3429 }
3430 else if (rs->non_stop_aware)
3431 {
3432 /* Don't assume that the stub can operate in all-stop mode.
3433 Request it explicitly. */
3434 putpkt ("QNonStop:0");
3435 getpkt (&rs->buf, &rs->buf_size, 0);
3436
3437 if (strcmp (rs->buf, "OK") != 0)
3438 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
3439 }
3440
3441 /* Upload TSVs regardless of whether the target is running or not. The
3442 remote stub, such as GDBserver, may have some predefined or builtin
3443 TSVs, even if the target is not running. */
3444 if (remote_get_trace_status (target, current_trace_status ()) != -1)
3445 {
3446 struct uploaded_tsv *uploaded_tsvs = NULL;
3447
3448 remote_upload_trace_state_variables (target, &uploaded_tsvs);
3449 merge_uploaded_trace_state_variables (&uploaded_tsvs);
3450 }
3451
3452 /* Check whether the target is running now. */
3453 putpkt ("?");
3454 getpkt (&rs->buf, &rs->buf_size, 0);
3455
3456 if (!non_stop)
3457 {
3458 ptid_t ptid;
3459 int fake_pid_p = 0;
3460 struct inferior *inf;
3461
3462 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3463 {
3464 if (!extended_p)
3465 error (_("The target is not running (try extended-remote?)"));
3466
3467 /* We're connected, but not running. Drop out before we
3468 call start_remote. */
3469 rs->starting_up = 0;
3470 return;
3471 }
3472 else
3473 {
3474 /* Save the reply for later. */
3475 wait_status = alloca (strlen (rs->buf) + 1);
3476 strcpy (wait_status, rs->buf);
3477 }
3478
3479 /* Fetch thread list. */
3480 target_find_new_threads ();
3481
3482 /* Let the stub know that we want it to return the thread. */
3483 set_continue_thread (minus_one_ptid);
3484
3485 if (thread_count () == 0)
3486 {
3487 /* Target has no concept of threads at all. GDB treats
3488 non-threaded target as single-threaded; add a main
3489 thread. */
3490 add_current_inferior_and_thread (wait_status);
3491 }
3492 else
3493 {
3494 /* We have thread information; select the thread the target
3495 says should be current. If we're reconnecting to a
3496 multi-threaded program, this will ideally be the thread
3497 that last reported an event before GDB disconnected. */
3498 inferior_ptid = get_current_thread (wait_status);
3499 if (ptid_equal (inferior_ptid, null_ptid))
3500 {
3501 /* Odd... The target was able to list threads, but not
3502 tell us which thread was current (no "thread"
3503 register in T stop reply?). Just pick the first
3504 thread in the thread list then. */
3505 inferior_ptid = thread_list->ptid;
3506 }
3507 }
3508
3509 /* init_wait_for_inferior should be called before get_offsets in order
3510 to manage `inserted' flag in bp loc in a correct state.
3511 breakpoint_init_inferior, called from init_wait_for_inferior, set
3512 `inserted' flag to 0, while before breakpoint_re_set, called from
3513 start_remote, set `inserted' flag to 1. In the initialization of
3514 inferior, breakpoint_init_inferior should be called first, and then
3515 breakpoint_re_set can be called. If this order is broken, state of
3516 `inserted' flag is wrong, and cause some problems on breakpoint
3517 manipulation. */
3518 init_wait_for_inferior ();
3519
3520 get_offsets (); /* Get text, data & bss offsets. */
3521
3522 /* If we could not find a description using qXfer, and we know
3523 how to do it some other way, try again. This is not
3524 supported for non-stop; it could be, but it is tricky if
3525 there are no stopped threads when we connect. */
3526 if (remote_read_description_p (target)
3527 && gdbarch_target_desc (target_gdbarch ()) == NULL)
3528 {
3529 target_clear_description ();
3530 target_find_description ();
3531 }
3532
3533 /* Use the previously fetched status. */
3534 gdb_assert (wait_status != NULL);
3535 strcpy (rs->buf, wait_status);
3536 rs->cached_wait_status = 1;
3537
3538 immediate_quit--;
3539 start_remote (from_tty); /* Initialize gdb process mechanisms. */
3540 }
3541 else
3542 {
3543 /* Clear WFI global state. Do this before finding about new
3544 threads and inferiors, and setting the current inferior.
3545 Otherwise we would clear the proceed status of the current
3546 inferior when we want its stop_soon state to be preserved
3547 (see notice_new_inferior). */
3548 init_wait_for_inferior ();
3549
3550 /* In non-stop, we will either get an "OK", meaning that there
3551 are no stopped threads at this time; or, a regular stop
3552 reply. In the latter case, there may be more than one thread
3553 stopped --- we pull them all out using the vStopped
3554 mechanism. */
3555 if (strcmp (rs->buf, "OK") != 0)
3556 {
3557 struct notif_client *notif = &notif_client_stop;
3558
3559 /* remote_notif_get_pending_replies acks this one, and gets
3560 the rest out. */
3561 rs->notif_state->pending_event[notif_client_stop.id]
3562 = remote_notif_parse (notif, rs->buf);
3563 remote_notif_get_pending_events (notif);
3564
3565 /* Make sure that threads that were stopped remain
3566 stopped. */
3567 iterate_over_threads (set_stop_requested_callback, NULL);
3568 }
3569
3570 if (target_can_async_p ())
3571 target_async (inferior_event_handler, 0);
3572
3573 if (thread_count () == 0)
3574 {
3575 if (!extended_p)
3576 error (_("The target is not running (try extended-remote?)"));
3577
3578 /* We're connected, but not running. Drop out before we
3579 call start_remote. */
3580 rs->starting_up = 0;
3581 return;
3582 }
3583
3584 /* Let the stub know that we want it to return the thread. */
3585
3586 /* Force the stub to choose a thread. */
3587 set_general_thread (null_ptid);
3588
3589 /* Query it. */
3590 inferior_ptid = remote_current_thread (minus_one_ptid);
3591 if (ptid_equal (inferior_ptid, minus_one_ptid))
3592 error (_("remote didn't report the current thread in non-stop mode"));
3593
3594 get_offsets (); /* Get text, data & bss offsets. */
3595
3596 /* In non-stop mode, any cached wait status will be stored in
3597 the stop reply queue. */
3598 gdb_assert (wait_status == NULL);
3599
3600 /* Report all signals during attach/startup. */
3601 remote_pass_signals (target, 0, NULL);
3602 }
3603
3604 /* If we connected to a live target, do some additional setup. */
3605 if (target_has_execution)
3606 {
3607 if (symfile_objfile) /* No use without a symbol-file. */
3608 remote_check_symbols ();
3609 }
3610
3611 /* Possibly the target has been engaged in a trace run started
3612 previously; find out where things are at. */
3613 if (remote_get_trace_status (target, current_trace_status ()) != -1)
3614 {
3615 struct uploaded_tp *uploaded_tps = NULL;
3616
3617 if (current_trace_status ()->running)
3618 printf_filtered (_("Trace is already running on the target.\n"));
3619
3620 remote_upload_tracepoints (target, &uploaded_tps);
3621
3622 merge_uploaded_tracepoints (&uploaded_tps);
3623 }
3624
3625 /* The thread and inferior lists are now synchronized with the
3626 target, our symbols have been relocated, and we're merged the
3627 target's tracepoints with ours. We're done with basic start
3628 up. */
3629 rs->starting_up = 0;
3630
3631 /* If breakpoints are global, insert them now. */
3632 if (gdbarch_has_global_breakpoints (target_gdbarch ())
3633 && breakpoints_always_inserted_mode ())
3634 insert_breakpoints ();
3635 }
3636
3637 /* Open a connection to a remote debugger.
3638 NAME is the filename used for communication. */
3639
3640 static void
3641 remote_open (char *name, int from_tty)
3642 {
3643 remote_open_1 (name, from_tty, &remote_ops, 0);
3644 }
3645
3646 /* Open a connection to a remote debugger using the extended
3647 remote gdb protocol. NAME is the filename used for communication. */
3648
3649 static void
3650 extended_remote_open (char *name, int from_tty)
3651 {
3652 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3653 }
3654
3655 /* Generic code for opening a connection to a remote target. */
3656
3657 static void
3658 init_all_packet_configs (void)
3659 {
3660 int i;
3661
3662 for (i = 0; i < PACKET_MAX; i++)
3663 update_packet_config (&remote_protocol_packets[i]);
3664 }
3665
3666 /* Symbol look-up. */
3667
3668 static void
3669 remote_check_symbols (void)
3670 {
3671 struct remote_state *rs = get_remote_state ();
3672 char *msg, *reply, *tmp;
3673 struct bound_minimal_symbol sym;
3674 int end;
3675
3676 /* The remote side has no concept of inferiors that aren't running
3677 yet, it only knows about running processes. If we're connected
3678 but our current inferior is not running, we should not invite the
3679 remote target to request symbol lookups related to its
3680 (unrelated) current process. */
3681 if (!target_has_execution)
3682 return;
3683
3684 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
3685 return;
3686
3687 /* Make sure the remote is pointing at the right process. Note
3688 there's no way to select "no process". */
3689 set_general_process ();
3690
3691 /* Allocate a message buffer. We can't reuse the input buffer in RS,
3692 because we need both at the same time. */
3693 msg = alloca (get_remote_packet_size ());
3694
3695 /* Invite target to request symbol lookups. */
3696
3697 putpkt ("qSymbol::");
3698 getpkt (&rs->buf, &rs->buf_size, 0);
3699 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3700 reply = rs->buf;
3701
3702 while (strncmp (reply, "qSymbol:", 8) == 0)
3703 {
3704 struct bound_minimal_symbol sym;
3705
3706 tmp = &reply[8];
3707 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3708 msg[end] = '\0';
3709 sym = lookup_minimal_symbol (msg, NULL, NULL);
3710 if (sym.minsym == NULL)
3711 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3712 else
3713 {
3714 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
3715 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
3716
3717 /* If this is a function address, return the start of code
3718 instead of any data function descriptor. */
3719 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
3720 sym_addr,
3721 &current_target);
3722
3723 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3724 phex_nz (sym_addr, addr_size), &reply[8]);
3725 }
3726
3727 putpkt (msg);
3728 getpkt (&rs->buf, &rs->buf_size, 0);
3729 reply = rs->buf;
3730 }
3731 }
3732
3733 static struct serial *
3734 remote_serial_open (char *name)
3735 {
3736 static int udp_warning = 0;
3737
3738 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
3739 of in ser-tcp.c, because it is the remote protocol assuming that the
3740 serial connection is reliable and not the serial connection promising
3741 to be. */
3742 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
3743 {
3744 warning (_("The remote protocol may be unreliable over UDP.\n"
3745 "Some events may be lost, rendering further debugging "
3746 "impossible."));
3747 udp_warning = 1;
3748 }
3749
3750 return serial_open (name);
3751 }
3752
3753 /* Inform the target of our permission settings. The permission flags
3754 work without this, but if the target knows the settings, it can do
3755 a couple things. First, it can add its own check, to catch cases
3756 that somehow manage to get by the permissions checks in target
3757 methods. Second, if the target is wired to disallow particular
3758 settings (for instance, a system in the field that is not set up to
3759 be able to stop at a breakpoint), it can object to any unavailable
3760 permissions. */
3761
3762 void
3763 remote_set_permissions (struct target_ops *self)
3764 {
3765 struct remote_state *rs = get_remote_state ();
3766
3767 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
3768 "WriteReg:%x;WriteMem:%x;"
3769 "InsertBreak:%x;InsertTrace:%x;"
3770 "InsertFastTrace:%x;Stop:%x",
3771 may_write_registers, may_write_memory,
3772 may_insert_breakpoints, may_insert_tracepoints,
3773 may_insert_fast_tracepoints, may_stop);
3774 putpkt (rs->buf);
3775 getpkt (&rs->buf, &rs->buf_size, 0);
3776
3777 /* If the target didn't like the packet, warn the user. Do not try
3778 to undo the user's settings, that would just be maddening. */
3779 if (strcmp (rs->buf, "OK") != 0)
3780 warning (_("Remote refused setting permissions with: %s"), rs->buf);
3781 }
3782
3783 /* This type describes each known response to the qSupported
3784 packet. */
3785 struct protocol_feature
3786 {
3787 /* The name of this protocol feature. */
3788 const char *name;
3789
3790 /* The default for this protocol feature. */
3791 enum packet_support default_support;
3792
3793 /* The function to call when this feature is reported, or after
3794 qSupported processing if the feature is not supported.
3795 The first argument points to this structure. The second
3796 argument indicates whether the packet requested support be
3797 enabled, disabled, or probed (or the default, if this function
3798 is being called at the end of processing and this feature was
3799 not reported). The third argument may be NULL; if not NULL, it
3800 is a NUL-terminated string taken from the packet following
3801 this feature's name and an equals sign. */
3802 void (*func) (const struct protocol_feature *, enum packet_support,
3803 const char *);
3804
3805 /* The corresponding packet for this feature. Only used if
3806 FUNC is remote_supported_packet. */
3807 int packet;
3808 };
3809
3810 static void
3811 remote_supported_packet (const struct protocol_feature *feature,
3812 enum packet_support support,
3813 const char *argument)
3814 {
3815 if (argument)
3816 {
3817 warning (_("Remote qSupported response supplied an unexpected value for"
3818 " \"%s\"."), feature->name);
3819 return;
3820 }
3821
3822 if (remote_protocol_packets[feature->packet].support
3823 == PACKET_SUPPORT_UNKNOWN)
3824 remote_protocol_packets[feature->packet].support = support;
3825 }
3826
3827 static void
3828 remote_packet_size (const struct protocol_feature *feature,
3829 enum packet_support support, const char *value)
3830 {
3831 struct remote_state *rs = get_remote_state ();
3832
3833 int packet_size;
3834 char *value_end;
3835
3836 if (support != PACKET_ENABLE)
3837 return;
3838
3839 if (value == NULL || *value == '\0')
3840 {
3841 warning (_("Remote target reported \"%s\" without a size."),
3842 feature->name);
3843 return;
3844 }
3845
3846 errno = 0;
3847 packet_size = strtol (value, &value_end, 16);
3848 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3849 {
3850 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3851 feature->name, value);
3852 return;
3853 }
3854
3855 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3856 {
3857 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3858 packet_size, MAX_REMOTE_PACKET_SIZE);
3859 packet_size = MAX_REMOTE_PACKET_SIZE;
3860 }
3861
3862 /* Record the new maximum packet size. */
3863 rs->explicit_packet_size = packet_size;
3864 }
3865
3866 static void
3867 remote_multi_process_feature (const struct protocol_feature *feature,
3868 enum packet_support support, const char *value)
3869 {
3870 struct remote_state *rs = get_remote_state ();
3871
3872 rs->multi_process_aware = (support == PACKET_ENABLE);
3873 }
3874
3875 static void
3876 remote_non_stop_feature (const struct protocol_feature *feature,
3877 enum packet_support support, const char *value)
3878 {
3879 struct remote_state *rs = get_remote_state ();
3880
3881 rs->non_stop_aware = (support == PACKET_ENABLE);
3882 }
3883
3884 static void
3885 remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3886 enum packet_support support,
3887 const char *value)
3888 {
3889 struct remote_state *rs = get_remote_state ();
3890
3891 rs->cond_tracepoints = (support == PACKET_ENABLE);
3892 }
3893
3894 static void
3895 remote_cond_breakpoint_feature (const struct protocol_feature *feature,
3896 enum packet_support support,
3897 const char *value)
3898 {
3899 struct remote_state *rs = get_remote_state ();
3900
3901 rs->cond_breakpoints = (support == PACKET_ENABLE);
3902 }
3903
3904 static void
3905 remote_breakpoint_commands_feature (const struct protocol_feature *feature,
3906 enum packet_support support,
3907 const char *value)
3908 {
3909 struct remote_state *rs = get_remote_state ();
3910
3911 rs->breakpoint_commands = (support == PACKET_ENABLE);
3912 }
3913
3914 static void
3915 remote_fast_tracepoint_feature (const struct protocol_feature *feature,
3916 enum packet_support support,
3917 const char *value)
3918 {
3919 struct remote_state *rs = get_remote_state ();
3920
3921 rs->fast_tracepoints = (support == PACKET_ENABLE);
3922 }
3923
3924 static void
3925 remote_static_tracepoint_feature (const struct protocol_feature *feature,
3926 enum packet_support support,
3927 const char *value)
3928 {
3929 struct remote_state *rs = get_remote_state ();
3930
3931 rs->static_tracepoints = (support == PACKET_ENABLE);
3932 }
3933
3934 static void
3935 remote_install_in_trace_feature (const struct protocol_feature *feature,
3936 enum packet_support support,
3937 const char *value)
3938 {
3939 struct remote_state *rs = get_remote_state ();
3940
3941 rs->install_in_trace = (support == PACKET_ENABLE);
3942 }
3943
3944 static void
3945 remote_disconnected_tracing_feature (const struct protocol_feature *feature,
3946 enum packet_support support,
3947 const char *value)
3948 {
3949 struct remote_state *rs = get_remote_state ();
3950
3951 rs->disconnected_tracing = (support == PACKET_ENABLE);
3952 }
3953
3954 static void
3955 remote_enable_disable_tracepoint_feature (const struct protocol_feature *feature,
3956 enum packet_support support,
3957 const char *value)
3958 {
3959 struct remote_state *rs = get_remote_state ();
3960
3961 rs->enable_disable_tracepoints = (support == PACKET_ENABLE);
3962 }
3963
3964 static void
3965 remote_string_tracing_feature (const struct protocol_feature *feature,
3966 enum packet_support support,
3967 const char *value)
3968 {
3969 struct remote_state *rs = get_remote_state ();
3970
3971 rs->string_tracing = (support == PACKET_ENABLE);
3972 }
3973
3974 static void
3975 remote_augmented_libraries_svr4_read_feature
3976 (const struct protocol_feature *feature,
3977 enum packet_support support, const char *value)
3978 {
3979 struct remote_state *rs = get_remote_state ();
3980
3981 rs->augmented_libraries_svr4_read = (support == PACKET_ENABLE);
3982 }
3983
3984 static const struct protocol_feature remote_protocol_features[] = {
3985 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3986 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3987 PACKET_qXfer_auxv },
3988 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3989 PACKET_qXfer_features },
3990 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3991 PACKET_qXfer_libraries },
3992 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
3993 PACKET_qXfer_libraries_svr4 },
3994 { "augmented-libraries-svr4-read", PACKET_DISABLE,
3995 remote_augmented_libraries_svr4_read_feature, -1 },
3996 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
3997 PACKET_qXfer_memory_map },
3998 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
3999 PACKET_qXfer_spu_read },
4000 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
4001 PACKET_qXfer_spu_write },
4002 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
4003 PACKET_qXfer_osdata },
4004 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
4005 PACKET_qXfer_threads },
4006 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
4007 PACKET_qXfer_traceframe_info },
4008 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
4009 PACKET_QPassSignals },
4010 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
4011 PACKET_QProgramSignals },
4012 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
4013 PACKET_QStartNoAckMode },
4014 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
4015 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
4016 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
4017 PACKET_qXfer_siginfo_read },
4018 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
4019 PACKET_qXfer_siginfo_write },
4020 { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
4021 PACKET_ConditionalTracepoints },
4022 { "ConditionalBreakpoints", PACKET_DISABLE, remote_cond_breakpoint_feature,
4023 PACKET_ConditionalBreakpoints },
4024 { "BreakpointCommands", PACKET_DISABLE, remote_breakpoint_commands_feature,
4025 PACKET_BreakpointCommands },
4026 { "FastTracepoints", PACKET_DISABLE, remote_fast_tracepoint_feature,
4027 PACKET_FastTracepoints },
4028 { "StaticTracepoints", PACKET_DISABLE, remote_static_tracepoint_feature,
4029 PACKET_StaticTracepoints },
4030 {"InstallInTrace", PACKET_DISABLE, remote_install_in_trace_feature,
4031 PACKET_InstallInTrace},
4032 { "DisconnectedTracing", PACKET_DISABLE, remote_disconnected_tracing_feature,
4033 -1 },
4034 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
4035 PACKET_bc },
4036 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
4037 PACKET_bs },
4038 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
4039 PACKET_TracepointSource },
4040 { "QAllow", PACKET_DISABLE, remote_supported_packet,
4041 PACKET_QAllow },
4042 { "EnableDisableTracepoints", PACKET_DISABLE,
4043 remote_enable_disable_tracepoint_feature, -1 },
4044 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
4045 PACKET_qXfer_fdpic },
4046 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
4047 PACKET_qXfer_uib },
4048 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
4049 PACKET_QDisableRandomization },
4050 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
4051 { "QTBuffer:size", PACKET_DISABLE,
4052 remote_supported_packet, PACKET_QTBuffer_size},
4053 { "tracenz", PACKET_DISABLE,
4054 remote_string_tracing_feature, -1 },
4055 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
4056 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
4057 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
4058 PACKET_qXfer_btrace }
4059 };
4060
4061 static char *remote_support_xml;
4062
4063 /* Register string appended to "xmlRegisters=" in qSupported query. */
4064
4065 void
4066 register_remote_support_xml (const char *xml)
4067 {
4068 #if defined(HAVE_LIBEXPAT)
4069 if (remote_support_xml == NULL)
4070 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
4071 else
4072 {
4073 char *copy = xstrdup (remote_support_xml + 13);
4074 char *p = strtok (copy, ",");
4075
4076 do
4077 {
4078 if (strcmp (p, xml) == 0)
4079 {
4080 /* already there */
4081 xfree (copy);
4082 return;
4083 }
4084 }
4085 while ((p = strtok (NULL, ",")) != NULL);
4086 xfree (copy);
4087
4088 remote_support_xml = reconcat (remote_support_xml,
4089 remote_support_xml, ",", xml,
4090 (char *) NULL);
4091 }
4092 #endif
4093 }
4094
4095 static char *
4096 remote_query_supported_append (char *msg, const char *append)
4097 {
4098 if (msg)
4099 return reconcat (msg, msg, ";", append, (char *) NULL);
4100 else
4101 return xstrdup (append);
4102 }
4103
4104 static void
4105 remote_query_supported (void)
4106 {
4107 struct remote_state *rs = get_remote_state ();
4108 char *next;
4109 int i;
4110 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4111
4112 /* The packet support flags are handled differently for this packet
4113 than for most others. We treat an error, a disabled packet, and
4114 an empty response identically: any features which must be reported
4115 to be used will be automatically disabled. An empty buffer
4116 accomplishes this, since that is also the representation for a list
4117 containing no features. */
4118
4119 rs->buf[0] = 0;
4120 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
4121 {
4122 char *q = NULL;
4123 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
4124
4125 q = remote_query_supported_append (q, "multiprocess+");
4126
4127 if (remote_support_xml)
4128 q = remote_query_supported_append (q, remote_support_xml);
4129
4130 q = remote_query_supported_append (q, "qRelocInsn+");
4131
4132 q = reconcat (q, "qSupported:", q, (char *) NULL);
4133 putpkt (q);
4134
4135 do_cleanups (old_chain);
4136
4137 getpkt (&rs->buf, &rs->buf_size, 0);
4138
4139 /* If an error occured, warn, but do not return - just reset the
4140 buffer to empty and go on to disable features. */
4141 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4142 == PACKET_ERROR)
4143 {
4144 warning (_("Remote failure reply: %s"), rs->buf);
4145 rs->buf[0] = 0;
4146 }
4147 }
4148
4149 memset (seen, 0, sizeof (seen));
4150
4151 next = rs->buf;
4152 while (*next)
4153 {
4154 enum packet_support is_supported;
4155 char *p, *end, *name_end, *value;
4156
4157 /* First separate out this item from the rest of the packet. If
4158 there's another item after this, we overwrite the separator
4159 (terminated strings are much easier to work with). */
4160 p = next;
4161 end = strchr (p, ';');
4162 if (end == NULL)
4163 {
4164 end = p + strlen (p);
4165 next = end;
4166 }
4167 else
4168 {
4169 *end = '\0';
4170 next = end + 1;
4171
4172 if (end == p)
4173 {
4174 warning (_("empty item in \"qSupported\" response"));
4175 continue;
4176 }
4177 }
4178
4179 name_end = strchr (p, '=');
4180 if (name_end)
4181 {
4182 /* This is a name=value entry. */
4183 is_supported = PACKET_ENABLE;
4184 value = name_end + 1;
4185 *name_end = '\0';
4186 }
4187 else
4188 {
4189 value = NULL;
4190 switch (end[-1])
4191 {
4192 case '+':
4193 is_supported = PACKET_ENABLE;
4194 break;
4195
4196 case '-':
4197 is_supported = PACKET_DISABLE;
4198 break;
4199
4200 case '?':
4201 is_supported = PACKET_SUPPORT_UNKNOWN;
4202 break;
4203
4204 default:
4205 warning (_("unrecognized item \"%s\" "
4206 "in \"qSupported\" response"), p);
4207 continue;
4208 }
4209 end[-1] = '\0';
4210 }
4211
4212 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4213 if (strcmp (remote_protocol_features[i].name, p) == 0)
4214 {
4215 const struct protocol_feature *feature;
4216
4217 seen[i] = 1;
4218 feature = &remote_protocol_features[i];
4219 feature->func (feature, is_supported, value);
4220 break;
4221 }
4222 }
4223
4224 /* If we increased the packet size, make sure to increase the global
4225 buffer size also. We delay this until after parsing the entire
4226 qSupported packet, because this is the same buffer we were
4227 parsing. */
4228 if (rs->buf_size < rs->explicit_packet_size)
4229 {
4230 rs->buf_size = rs->explicit_packet_size;
4231 rs->buf = xrealloc (rs->buf, rs->buf_size);
4232 }
4233
4234 /* Handle the defaults for unmentioned features. */
4235 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4236 if (!seen[i])
4237 {
4238 const struct protocol_feature *feature;
4239
4240 feature = &remote_protocol_features[i];
4241 feature->func (feature, feature->default_support, NULL);
4242 }
4243 }
4244
4245 /* Remove any of the remote.c targets from target stack. Upper targets depend
4246 on it so remove them first. */
4247
4248 static void
4249 remote_unpush_target (void)
4250 {
4251 pop_all_targets_above (process_stratum - 1);
4252 }
4253
4254 static void
4255 remote_open_1 (char *name, int from_tty,
4256 struct target_ops *target, int extended_p)
4257 {
4258 struct remote_state *rs = get_remote_state ();
4259
4260 if (name == 0)
4261 error (_("To open a remote debug connection, you need to specify what\n"
4262 "serial device is attached to the remote system\n"
4263 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4264
4265 /* See FIXME above. */
4266 if (!target_async_permitted)
4267 wait_forever_enabled_p = 1;
4268
4269 /* If we're connected to a running target, target_preopen will kill it.
4270 Ask this question first, before target_preopen has a chance to kill
4271 anything. */
4272 if (rs->remote_desc != NULL && !have_inferiors ())
4273 {
4274 if (from_tty
4275 && !query (_("Already connected to a remote target. Disconnect? ")))
4276 error (_("Still connected."));
4277 }
4278
4279 /* Here the possibly existing remote target gets unpushed. */
4280 target_preopen (from_tty);
4281
4282 /* Make sure we send the passed signals list the next time we resume. */
4283 xfree (rs->last_pass_packet);
4284 rs->last_pass_packet = NULL;
4285
4286 /* Make sure we send the program signals list the next time we
4287 resume. */
4288 xfree (rs->last_program_signals_packet);
4289 rs->last_program_signals_packet = NULL;
4290
4291 remote_fileio_reset ();
4292 reopen_exec_file ();
4293 reread_symbols ();
4294
4295 rs->remote_desc = remote_serial_open (name);
4296 if (!rs->remote_desc)
4297 perror_with_name (name);
4298
4299 if (baud_rate != -1)
4300 {
4301 if (serial_setbaudrate (rs->remote_desc, baud_rate))
4302 {
4303 /* The requested speed could not be set. Error out to
4304 top level after closing remote_desc. Take care to
4305 set remote_desc to NULL to avoid closing remote_desc
4306 more than once. */
4307 serial_close (rs->remote_desc);
4308 rs->remote_desc = NULL;
4309 perror_with_name (name);
4310 }
4311 }
4312
4313 serial_raw (rs->remote_desc);
4314
4315 /* If there is something sitting in the buffer we might take it as a
4316 response to a command, which would be bad. */
4317 serial_flush_input (rs->remote_desc);
4318
4319 if (from_tty)
4320 {
4321 puts_filtered ("Remote debugging using ");
4322 puts_filtered (name);
4323 puts_filtered ("\n");
4324 }
4325 push_target (target); /* Switch to using remote target now. */
4326
4327 /* Register extra event sources in the event loop. */
4328 remote_async_inferior_event_token
4329 = create_async_event_handler (remote_async_inferior_event_handler,
4330 NULL);
4331 rs->notif_state = remote_notif_state_allocate ();
4332
4333 /* Reset the target state; these things will be queried either by
4334 remote_query_supported or as they are needed. */
4335 init_all_packet_configs ();
4336 rs->cached_wait_status = 0;
4337 rs->explicit_packet_size = 0;
4338 rs->noack_mode = 0;
4339 rs->multi_process_aware = 0;
4340 rs->extended = extended_p;
4341 rs->non_stop_aware = 0;
4342 rs->waiting_for_stop_reply = 0;
4343 rs->ctrlc_pending_p = 0;
4344
4345 rs->general_thread = not_sent_ptid;
4346 rs->continue_thread = not_sent_ptid;
4347 rs->remote_traceframe_number = -1;
4348
4349 /* Probe for ability to use "ThreadInfo" query, as required. */
4350 rs->use_threadinfo_query = 1;
4351 rs->use_threadextra_query = 1;
4352
4353 if (target_async_permitted)
4354 {
4355 /* With this target we start out by owning the terminal. */
4356 remote_async_terminal_ours_p = 1;
4357
4358 /* FIXME: cagney/1999-09-23: During the initial connection it is
4359 assumed that the target is already ready and able to respond to
4360 requests. Unfortunately remote_start_remote() eventually calls
4361 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
4362 around this. Eventually a mechanism that allows
4363 wait_for_inferior() to expect/get timeouts will be
4364 implemented. */
4365 wait_forever_enabled_p = 0;
4366 }
4367
4368 /* First delete any symbols previously loaded from shared libraries. */
4369 no_shared_libraries (NULL, 0);
4370
4371 /* Start afresh. */
4372 init_thread_list ();
4373
4374 /* Start the remote connection. If error() or QUIT, discard this
4375 target (we'd otherwise be in an inconsistent state) and then
4376 propogate the error on up the exception chain. This ensures that
4377 the caller doesn't stumble along blindly assuming that the
4378 function succeeded. The CLI doesn't have this problem but other
4379 UI's, such as MI do.
4380
4381 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
4382 this function should return an error indication letting the
4383 caller restore the previous state. Unfortunately the command
4384 ``target remote'' is directly wired to this function making that
4385 impossible. On a positive note, the CLI side of this problem has
4386 been fixed - the function set_cmd_context() makes it possible for
4387 all the ``target ....'' commands to share a common callback
4388 function. See cli-dump.c. */
4389 {
4390 volatile struct gdb_exception ex;
4391
4392 TRY_CATCH (ex, RETURN_MASK_ALL)
4393 {
4394 remote_start_remote (from_tty, target, extended_p);
4395 }
4396 if (ex.reason < 0)
4397 {
4398 /* Pop the partially set up target - unless something else did
4399 already before throwing the exception. */
4400 if (rs->remote_desc != NULL)
4401 remote_unpush_target ();
4402 if (target_async_permitted)
4403 wait_forever_enabled_p = 1;
4404 throw_exception (ex);
4405 }
4406 }
4407
4408 if (target_async_permitted)
4409 wait_forever_enabled_p = 1;
4410 }
4411
4412 /* This takes a program previously attached to and detaches it. After
4413 this is done, GDB can be used to debug some other program. We
4414 better not have left any breakpoints in the target program or it'll
4415 die when it hits one. */
4416
4417 static void
4418 remote_detach_1 (const char *args, int from_tty, int extended)
4419 {
4420 int pid = ptid_get_pid (inferior_ptid);
4421 struct remote_state *rs = get_remote_state ();
4422
4423 if (args)
4424 error (_("Argument given to \"detach\" when remotely debugging."));
4425
4426 if (!target_has_execution)
4427 error (_("No process to detach from."));
4428
4429 if (from_tty)
4430 {
4431 char *exec_file = get_exec_file (0);
4432 if (exec_file == NULL)
4433 exec_file = "";
4434 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
4435 target_pid_to_str (pid_to_ptid (pid)));
4436 gdb_flush (gdb_stdout);
4437 }
4438
4439 /* Tell the remote target to detach. */
4440 if (remote_multi_process_p (rs))
4441 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
4442 else
4443 strcpy (rs->buf, "D");
4444
4445 putpkt (rs->buf);
4446 getpkt (&rs->buf, &rs->buf_size, 0);
4447
4448 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
4449 ;
4450 else if (rs->buf[0] == '\0')
4451 error (_("Remote doesn't know how to detach"));
4452 else
4453 error (_("Can't detach process."));
4454
4455 if (from_tty && !extended)
4456 puts_filtered (_("Ending remote debugging.\n"));
4457
4458 target_mourn_inferior ();
4459 }
4460
4461 static void
4462 remote_detach (struct target_ops *ops, const char *args, int from_tty)
4463 {
4464 remote_detach_1 (args, from_tty, 0);
4465 }
4466
4467 static void
4468 extended_remote_detach (struct target_ops *ops, const char *args, int from_tty)
4469 {
4470 remote_detach_1 (args, from_tty, 1);
4471 }
4472
4473 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
4474
4475 static void
4476 remote_disconnect (struct target_ops *target, char *args, int from_tty)
4477 {
4478 if (args)
4479 error (_("Argument given to \"disconnect\" when remotely debugging."));
4480
4481 /* Make sure we unpush even the extended remote targets; mourn
4482 won't do it. So call remote_mourn_1 directly instead of
4483 target_mourn_inferior. */
4484 remote_mourn_1 (target);
4485
4486 if (from_tty)
4487 puts_filtered ("Ending remote debugging.\n");
4488 }
4489
4490 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
4491 be chatty about it. */
4492
4493 static void
4494 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
4495 {
4496 struct remote_state *rs = get_remote_state ();
4497 int pid;
4498 char *wait_status = NULL;
4499
4500 pid = parse_pid_to_attach (args);
4501
4502 /* Remote PID can be freely equal to getpid, do not check it here the same
4503 way as in other targets. */
4504
4505 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4506 error (_("This target does not support attaching to a process"));
4507
4508 if (from_tty)
4509 {
4510 char *exec_file = get_exec_file (0);
4511
4512 if (exec_file)
4513 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
4514 target_pid_to_str (pid_to_ptid (pid)));
4515 else
4516 printf_unfiltered (_("Attaching to %s\n"),
4517 target_pid_to_str (pid_to_ptid (pid)));
4518
4519 gdb_flush (gdb_stdout);
4520 }
4521
4522 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
4523 putpkt (rs->buf);
4524 getpkt (&rs->buf, &rs->buf_size, 0);
4525
4526 if (packet_ok (rs->buf,
4527 &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
4528 {
4529 if (!non_stop)
4530 {
4531 /* Save the reply for later. */
4532 wait_status = alloca (strlen (rs->buf) + 1);
4533 strcpy (wait_status, rs->buf);
4534 }
4535 else if (strcmp (rs->buf, "OK") != 0)
4536 error (_("Attaching to %s failed with: %s"),
4537 target_pid_to_str (pid_to_ptid (pid)),
4538 rs->buf);
4539 }
4540 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4541 error (_("This target does not support attaching to a process"));
4542 else
4543 error (_("Attaching to %s failed"),
4544 target_pid_to_str (pid_to_ptid (pid)));
4545
4546 set_current_inferior (remote_add_inferior (0, pid, 1));
4547
4548 inferior_ptid = pid_to_ptid (pid);
4549
4550 if (non_stop)
4551 {
4552 struct thread_info *thread;
4553
4554 /* Get list of threads. */
4555 remote_threads_info (target);
4556
4557 thread = first_thread_of_process (pid);
4558 if (thread)
4559 inferior_ptid = thread->ptid;
4560 else
4561 inferior_ptid = pid_to_ptid (pid);
4562
4563 /* Invalidate our notion of the remote current thread. */
4564 record_currthread (rs, minus_one_ptid);
4565 }
4566 else
4567 {
4568 /* Now, if we have thread information, update inferior_ptid. */
4569 inferior_ptid = remote_current_thread (inferior_ptid);
4570
4571 /* Add the main thread to the thread list. */
4572 add_thread_silent (inferior_ptid);
4573 }
4574
4575 /* Next, if the target can specify a description, read it. We do
4576 this before anything involving memory or registers. */
4577 target_find_description ();
4578
4579 if (!non_stop)
4580 {
4581 /* Use the previously fetched status. */
4582 gdb_assert (wait_status != NULL);
4583
4584 if (target_can_async_p ())
4585 {
4586 struct notif_event *reply
4587 = remote_notif_parse (&notif_client_stop, wait_status);
4588
4589 push_stop_reply ((struct stop_reply *) reply);
4590
4591 target_async (inferior_event_handler, 0);
4592 }
4593 else
4594 {
4595 gdb_assert (wait_status != NULL);
4596 strcpy (rs->buf, wait_status);
4597 rs->cached_wait_status = 1;
4598 }
4599 }
4600 else
4601 gdb_assert (wait_status == NULL);
4602 }
4603
4604 static void
4605 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
4606 {
4607 extended_remote_attach_1 (ops, args, from_tty);
4608 }
4609
4610 \f
4611 /* Check for the availability of vCont. This function should also check
4612 the response. */
4613
4614 static void
4615 remote_vcont_probe (struct remote_state *rs)
4616 {
4617 char *buf;
4618
4619 strcpy (rs->buf, "vCont?");
4620 putpkt (rs->buf);
4621 getpkt (&rs->buf, &rs->buf_size, 0);
4622 buf = rs->buf;
4623
4624 /* Make sure that the features we assume are supported. */
4625 if (strncmp (buf, "vCont", 5) == 0)
4626 {
4627 char *p = &buf[5];
4628 int support_s, support_S, support_c, support_C;
4629
4630 support_s = 0;
4631 support_S = 0;
4632 support_c = 0;
4633 support_C = 0;
4634 rs->supports_vCont.t = 0;
4635 rs->supports_vCont.r = 0;
4636 while (p && *p == ';')
4637 {
4638 p++;
4639 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4640 support_s = 1;
4641 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4642 support_S = 1;
4643 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4644 support_c = 1;
4645 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4646 support_C = 1;
4647 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4648 rs->supports_vCont.t = 1;
4649 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
4650 rs->supports_vCont.r = 1;
4651
4652 p = strchr (p, ';');
4653 }
4654
4655 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
4656 BUF will make packet_ok disable the packet. */
4657 if (!support_s || !support_S || !support_c || !support_C)
4658 buf[0] = 0;
4659 }
4660
4661 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4662 }
4663
4664 /* Helper function for building "vCont" resumptions. Write a
4665 resumption to P. ENDP points to one-passed-the-end of the buffer
4666 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
4667 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4668 resumed thread should be single-stepped and/or signalled. If PTID
4669 equals minus_one_ptid, then all threads are resumed; if PTID
4670 represents a process, then all threads of the process are resumed;
4671 the thread to be stepped and/or signalled is given in the global
4672 INFERIOR_PTID. */
4673
4674 static char *
4675 append_resumption (char *p, char *endp,
4676 ptid_t ptid, int step, enum gdb_signal siggnal)
4677 {
4678 struct remote_state *rs = get_remote_state ();
4679
4680 if (step && siggnal != GDB_SIGNAL_0)
4681 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4682 else if (step
4683 /* GDB is willing to range step. */
4684 && use_range_stepping
4685 /* Target supports range stepping. */
4686 && rs->supports_vCont.r
4687 /* We don't currently support range stepping multiple
4688 threads with a wildcard (though the protocol allows it,
4689 so stubs shouldn't make an active effort to forbid
4690 it). */
4691 && !(remote_multi_process_p (rs) && ptid_is_pid (ptid)))
4692 {
4693 struct thread_info *tp;
4694
4695 if (ptid_equal (ptid, minus_one_ptid))
4696 {
4697 /* If we don't know about the target thread's tid, then
4698 we're resuming magic_null_ptid (see caller). */
4699 tp = find_thread_ptid (magic_null_ptid);
4700 }
4701 else
4702 tp = find_thread_ptid (ptid);
4703 gdb_assert (tp != NULL);
4704
4705 if (tp->control.may_range_step)
4706 {
4707 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4708
4709 p += xsnprintf (p, endp - p, ";r%s,%s",
4710 phex_nz (tp->control.step_range_start,
4711 addr_size),
4712 phex_nz (tp->control.step_range_end,
4713 addr_size));
4714 }
4715 else
4716 p += xsnprintf (p, endp - p, ";s");
4717 }
4718 else if (step)
4719 p += xsnprintf (p, endp - p, ";s");
4720 else if (siggnal != GDB_SIGNAL_0)
4721 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4722 else
4723 p += xsnprintf (p, endp - p, ";c");
4724
4725 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4726 {
4727 ptid_t nptid;
4728
4729 /* All (-1) threads of process. */
4730 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
4731
4732 p += xsnprintf (p, endp - p, ":");
4733 p = write_ptid (p, endp, nptid);
4734 }
4735 else if (!ptid_equal (ptid, minus_one_ptid))
4736 {
4737 p += xsnprintf (p, endp - p, ":");
4738 p = write_ptid (p, endp, ptid);
4739 }
4740
4741 return p;
4742 }
4743
4744 /* Append a vCont continue-with-signal action for threads that have a
4745 non-zero stop signal. */
4746
4747 static char *
4748 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
4749 {
4750 struct thread_info *thread;
4751
4752 ALL_THREADS (thread)
4753 if (ptid_match (thread->ptid, ptid)
4754 && !ptid_equal (inferior_ptid, thread->ptid)
4755 && thread->suspend.stop_signal != GDB_SIGNAL_0
4756 && signal_pass_state (thread->suspend.stop_signal))
4757 {
4758 p = append_resumption (p, endp, thread->ptid,
4759 0, thread->suspend.stop_signal);
4760 thread->suspend.stop_signal = GDB_SIGNAL_0;
4761 }
4762
4763 return p;
4764 }
4765
4766 /* Resume the remote inferior by using a "vCont" packet. The thread
4767 to be resumed is PTID; STEP and SIGGNAL indicate whether the
4768 resumed thread should be single-stepped and/or signalled. If PTID
4769 equals minus_one_ptid, then all threads are resumed; the thread to
4770 be stepped and/or signalled is given in the global INFERIOR_PTID.
4771 This function returns non-zero iff it resumes the inferior.
4772
4773 This function issues a strict subset of all possible vCont commands at the
4774 moment. */
4775
4776 static int
4777 remote_vcont_resume (ptid_t ptid, int step, enum gdb_signal siggnal)
4778 {
4779 struct remote_state *rs = get_remote_state ();
4780 char *p;
4781 char *endp;
4782
4783 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4784 remote_vcont_probe (rs);
4785
4786 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
4787 return 0;
4788
4789 p = rs->buf;
4790 endp = rs->buf + get_remote_packet_size ();
4791
4792 /* If we could generate a wider range of packets, we'd have to worry
4793 about overflowing BUF. Should there be a generic
4794 "multi-part-packet" packet? */
4795
4796 p += xsnprintf (p, endp - p, "vCont");
4797
4798 if (ptid_equal (ptid, magic_null_ptid))
4799 {
4800 /* MAGIC_NULL_PTID means that we don't have any active threads,
4801 so we don't have any TID numbers the inferior will
4802 understand. Make sure to only send forms that do not specify
4803 a TID. */
4804 append_resumption (p, endp, minus_one_ptid, step, siggnal);
4805 }
4806 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
4807 {
4808 /* Resume all threads (of all processes, or of a single
4809 process), with preference for INFERIOR_PTID. This assumes
4810 inferior_ptid belongs to the set of all threads we are about
4811 to resume. */
4812 if (step || siggnal != GDB_SIGNAL_0)
4813 {
4814 /* Step inferior_ptid, with or without signal. */
4815 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
4816 }
4817
4818 /* Also pass down any pending signaled resumption for other
4819 threads not the current. */
4820 p = append_pending_thread_resumptions (p, endp, ptid);
4821
4822 /* And continue others without a signal. */
4823 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
4824 }
4825 else
4826 {
4827 /* Scheduler locking; resume only PTID. */
4828 append_resumption (p, endp, ptid, step, siggnal);
4829 }
4830
4831 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
4832 putpkt (rs->buf);
4833
4834 if (non_stop)
4835 {
4836 /* In non-stop, the stub replies to vCont with "OK". The stop
4837 reply will be reported asynchronously by means of a `%Stop'
4838 notification. */
4839 getpkt (&rs->buf, &rs->buf_size, 0);
4840 if (strcmp (rs->buf, "OK") != 0)
4841 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
4842 }
4843
4844 return 1;
4845 }
4846
4847 /* Tell the remote machine to resume. */
4848
4849 static void
4850 remote_resume (struct target_ops *ops,
4851 ptid_t ptid, int step, enum gdb_signal siggnal)
4852 {
4853 struct remote_state *rs = get_remote_state ();
4854 char *buf;
4855
4856 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
4857 (explained in remote-notif.c:handle_notification) so
4858 remote_notif_process is not called. We need find a place where
4859 it is safe to start a 'vNotif' sequence. It is good to do it
4860 before resuming inferior, because inferior was stopped and no RSP
4861 traffic at that moment. */
4862 if (!non_stop)
4863 remote_notif_process (rs->notif_state, &notif_client_stop);
4864
4865 rs->last_sent_signal = siggnal;
4866 rs->last_sent_step = step;
4867
4868 /* The vCont packet doesn't need to specify threads via Hc. */
4869 /* No reverse support (yet) for vCont. */
4870 if (execution_direction != EXEC_REVERSE)
4871 if (remote_vcont_resume (ptid, step, siggnal))
4872 goto done;
4873
4874 /* All other supported resume packets do use Hc, so set the continue
4875 thread. */
4876 if (ptid_equal (ptid, minus_one_ptid))
4877 set_continue_thread (any_thread_ptid);
4878 else
4879 set_continue_thread (ptid);
4880
4881 buf = rs->buf;
4882 if (execution_direction == EXEC_REVERSE)
4883 {
4884 /* We don't pass signals to the target in reverse exec mode. */
4885 if (info_verbose && siggnal != GDB_SIGNAL_0)
4886 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
4887 siggnal);
4888
4889 if (step
4890 && remote_protocol_packets[PACKET_bs].support == PACKET_DISABLE)
4891 error (_("Remote reverse-step not supported."));
4892 if (!step
4893 && remote_protocol_packets[PACKET_bc].support == PACKET_DISABLE)
4894 error (_("Remote reverse-continue not supported."));
4895
4896 strcpy (buf, step ? "bs" : "bc");
4897 }
4898 else if (siggnal != GDB_SIGNAL_0)
4899 {
4900 buf[0] = step ? 'S' : 'C';
4901 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
4902 buf[2] = tohex (((int) siggnal) & 0xf);
4903 buf[3] = '\0';
4904 }
4905 else
4906 strcpy (buf, step ? "s" : "c");
4907
4908 putpkt (buf);
4909
4910 done:
4911 /* We are about to start executing the inferior, let's register it
4912 with the event loop. NOTE: this is the one place where all the
4913 execution commands end up. We could alternatively do this in each
4914 of the execution commands in infcmd.c. */
4915 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
4916 into infcmd.c in order to allow inferior function calls to work
4917 NOT asynchronously. */
4918 if (target_can_async_p ())
4919 target_async (inferior_event_handler, 0);
4920
4921 /* We've just told the target to resume. The remote server will
4922 wait for the inferior to stop, and then send a stop reply. In
4923 the mean time, we can't start another command/query ourselves
4924 because the stub wouldn't be ready to process it. This applies
4925 only to the base all-stop protocol, however. In non-stop (which
4926 only supports vCont), the stub replies with an "OK", and is
4927 immediate able to process further serial input. */
4928 if (!non_stop)
4929 rs->waiting_for_stop_reply = 1;
4930 }
4931 \f
4932
4933 /* Set up the signal handler for SIGINT, while the target is
4934 executing, ovewriting the 'regular' SIGINT signal handler. */
4935 static void
4936 async_initialize_sigint_signal_handler (void)
4937 {
4938 signal (SIGINT, async_handle_remote_sigint);
4939 }
4940
4941 /* Signal handler for SIGINT, while the target is executing. */
4942 static void
4943 async_handle_remote_sigint (int sig)
4944 {
4945 signal (sig, async_handle_remote_sigint_twice);
4946 mark_async_signal_handler (async_sigint_remote_token);
4947 }
4948
4949 /* Signal handler for SIGINT, installed after SIGINT has already been
4950 sent once. It will take effect the second time that the user sends
4951 a ^C. */
4952 static void
4953 async_handle_remote_sigint_twice (int sig)
4954 {
4955 signal (sig, async_handle_remote_sigint);
4956 mark_async_signal_handler (async_sigint_remote_twice_token);
4957 }
4958
4959 /* Perform the real interruption of the target execution, in response
4960 to a ^C. */
4961 static void
4962 async_remote_interrupt (gdb_client_data arg)
4963 {
4964 if (remote_debug)
4965 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt called\n");
4966
4967 target_stop (inferior_ptid);
4968 }
4969
4970 /* Perform interrupt, if the first attempt did not succeed. Just give
4971 up on the target alltogether. */
4972 static void
4973 async_remote_interrupt_twice (gdb_client_data arg)
4974 {
4975 if (remote_debug)
4976 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt_twice called\n");
4977
4978 interrupt_query ();
4979 }
4980
4981 /* Reinstall the usual SIGINT handlers, after the target has
4982 stopped. */
4983 static void
4984 async_cleanup_sigint_signal_handler (void *dummy)
4985 {
4986 signal (SIGINT, handle_sigint);
4987 }
4988
4989 /* Send ^C to target to halt it. Target will respond, and send us a
4990 packet. */
4991 static void (*ofunc) (int);
4992
4993 /* The command line interface's stop routine. This function is installed
4994 as a signal handler for SIGINT. The first time a user requests a
4995 stop, we call remote_stop to send a break or ^C. If there is no
4996 response from the target (it didn't stop when the user requested it),
4997 we ask the user if he'd like to detach from the target. */
4998 static void
4999 sync_remote_interrupt (int signo)
5000 {
5001 /* If this doesn't work, try more severe steps. */
5002 signal (signo, sync_remote_interrupt_twice);
5003
5004 gdb_call_async_signal_handler (async_sigint_remote_token, 1);
5005 }
5006
5007 /* The user typed ^C twice. */
5008
5009 static void
5010 sync_remote_interrupt_twice (int signo)
5011 {
5012 signal (signo, ofunc);
5013 gdb_call_async_signal_handler (async_sigint_remote_twice_token, 1);
5014 signal (signo, sync_remote_interrupt);
5015 }
5016
5017 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
5018 thread, all threads of a remote process, or all threads of all
5019 processes. */
5020
5021 static void
5022 remote_stop_ns (ptid_t ptid)
5023 {
5024 struct remote_state *rs = get_remote_state ();
5025 char *p = rs->buf;
5026 char *endp = rs->buf + get_remote_packet_size ();
5027
5028 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
5029 remote_vcont_probe (rs);
5030
5031 if (!rs->supports_vCont.t)
5032 error (_("Remote server does not support stopping threads"));
5033
5034 if (ptid_equal (ptid, minus_one_ptid)
5035 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5036 p += xsnprintf (p, endp - p, "vCont;t");
5037 else
5038 {
5039 ptid_t nptid;
5040
5041 p += xsnprintf (p, endp - p, "vCont;t:");
5042
5043 if (ptid_is_pid (ptid))
5044 /* All (-1) threads of process. */
5045 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
5046 else
5047 {
5048 /* Small optimization: if we already have a stop reply for
5049 this thread, no use in telling the stub we want this
5050 stopped. */
5051 if (peek_stop_reply (ptid))
5052 return;
5053
5054 nptid = ptid;
5055 }
5056
5057 write_ptid (p, endp, nptid);
5058 }
5059
5060 /* In non-stop, we get an immediate OK reply. The stop reply will
5061 come in asynchronously by notification. */
5062 putpkt (rs->buf);
5063 getpkt (&rs->buf, &rs->buf_size, 0);
5064 if (strcmp (rs->buf, "OK") != 0)
5065 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
5066 }
5067
5068 /* All-stop version of target_stop. Sends a break or a ^C to stop the
5069 remote target. It is undefined which thread of which process
5070 reports the stop. */
5071
5072 static void
5073 remote_stop_as (ptid_t ptid)
5074 {
5075 struct remote_state *rs = get_remote_state ();
5076
5077 rs->ctrlc_pending_p = 1;
5078
5079 /* If the inferior is stopped already, but the core didn't know
5080 about it yet, just ignore the request. The cached wait status
5081 will be collected in remote_wait. */
5082 if (rs->cached_wait_status)
5083 return;
5084
5085 /* Send interrupt_sequence to remote target. */
5086 send_interrupt_sequence ();
5087 }
5088
5089 /* This is the generic stop called via the target vector. When a target
5090 interrupt is requested, either by the command line or the GUI, we
5091 will eventually end up here. */
5092
5093 static void
5094 remote_stop (struct target_ops *self, ptid_t ptid)
5095 {
5096 if (remote_debug)
5097 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
5098
5099 if (non_stop)
5100 remote_stop_ns (ptid);
5101 else
5102 remote_stop_as (ptid);
5103 }
5104
5105 /* Ask the user what to do when an interrupt is received. */
5106
5107 static void
5108 interrupt_query (void)
5109 {
5110 target_terminal_ours ();
5111
5112 if (target_can_async_p ())
5113 {
5114 signal (SIGINT, handle_sigint);
5115 quit ();
5116 }
5117 else
5118 {
5119 if (query (_("Interrupted while waiting for the program.\n\
5120 Give up (and stop debugging it)? ")))
5121 {
5122 remote_unpush_target ();
5123 quit ();
5124 }
5125 }
5126
5127 target_terminal_inferior ();
5128 }
5129
5130 /* Enable/disable target terminal ownership. Most targets can use
5131 terminal groups to control terminal ownership. Remote targets are
5132 different in that explicit transfer of ownership to/from GDB/target
5133 is required. */
5134
5135 static void
5136 remote_terminal_inferior (struct target_ops *self)
5137 {
5138 if (!target_async_permitted)
5139 /* Nothing to do. */
5140 return;
5141
5142 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
5143 idempotent. The event-loop GDB talking to an asynchronous target
5144 with a synchronous command calls this function from both
5145 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
5146 transfer the terminal to the target when it shouldn't this guard
5147 can go away. */
5148 if (!remote_async_terminal_ours_p)
5149 return;
5150 delete_file_handler (input_fd);
5151 remote_async_terminal_ours_p = 0;
5152 async_initialize_sigint_signal_handler ();
5153 /* NOTE: At this point we could also register our selves as the
5154 recipient of all input. Any characters typed could then be
5155 passed on down to the target. */
5156 }
5157
5158 static void
5159 remote_terminal_ours (struct target_ops *self)
5160 {
5161 if (!target_async_permitted)
5162 /* Nothing to do. */
5163 return;
5164
5165 /* See FIXME in remote_terminal_inferior. */
5166 if (remote_async_terminal_ours_p)
5167 return;
5168 async_cleanup_sigint_signal_handler (NULL);
5169 add_file_handler (input_fd, stdin_event_handler, 0);
5170 remote_async_terminal_ours_p = 1;
5171 }
5172
5173 static void
5174 remote_console_output (char *msg)
5175 {
5176 char *p;
5177
5178 for (p = msg; p[0] && p[1]; p += 2)
5179 {
5180 char tb[2];
5181 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
5182
5183 tb[0] = c;
5184 tb[1] = 0;
5185 fputs_unfiltered (tb, gdb_stdtarg);
5186 }
5187 gdb_flush (gdb_stdtarg);
5188 }
5189
5190 typedef struct cached_reg
5191 {
5192 int num;
5193 gdb_byte data[MAX_REGISTER_SIZE];
5194 } cached_reg_t;
5195
5196 DEF_VEC_O(cached_reg_t);
5197
5198 typedef struct stop_reply
5199 {
5200 struct notif_event base;
5201
5202 /* The identifier of the thread about this event */
5203 ptid_t ptid;
5204
5205 /* The remote state this event is associated with. When the remote
5206 connection, represented by a remote_state object, is closed,
5207 all the associated stop_reply events should be released. */
5208 struct remote_state *rs;
5209
5210 struct target_waitstatus ws;
5211
5212 /* Expedited registers. This makes remote debugging a bit more
5213 efficient for those targets that provide critical registers as
5214 part of their normal status mechanism (as another roundtrip to
5215 fetch them is avoided). */
5216 VEC(cached_reg_t) *regcache;
5217
5218 int stopped_by_watchpoint_p;
5219 CORE_ADDR watch_data_address;
5220
5221 int core;
5222 } *stop_reply_p;
5223
5224 DECLARE_QUEUE_P (stop_reply_p);
5225 DEFINE_QUEUE_P (stop_reply_p);
5226 /* The list of already fetched and acknowledged stop events. This
5227 queue is used for notification Stop, and other notifications
5228 don't need queue for their events, because the notification events
5229 of Stop can't be consumed immediately, so that events should be
5230 queued first, and be consumed by remote_wait_{ns,as} one per
5231 time. Other notifications can consume their events immediately,
5232 so queue is not needed for them. */
5233 static QUEUE (stop_reply_p) *stop_reply_queue;
5234
5235 static void
5236 stop_reply_xfree (struct stop_reply *r)
5237 {
5238 notif_event_xfree ((struct notif_event *) r);
5239 }
5240
5241 static void
5242 remote_notif_stop_parse (struct notif_client *self, char *buf,
5243 struct notif_event *event)
5244 {
5245 remote_parse_stop_reply (buf, (struct stop_reply *) event);
5246 }
5247
5248 static void
5249 remote_notif_stop_ack (struct notif_client *self, char *buf,
5250 struct notif_event *event)
5251 {
5252 struct stop_reply *stop_reply = (struct stop_reply *) event;
5253
5254 /* acknowledge */
5255 putpkt ((char *) self->ack_command);
5256
5257 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
5258 /* We got an unknown stop reply. */
5259 error (_("Unknown stop reply"));
5260
5261 push_stop_reply (stop_reply);
5262 }
5263
5264 static int
5265 remote_notif_stop_can_get_pending_events (struct notif_client *self)
5266 {
5267 /* We can't get pending events in remote_notif_process for
5268 notification stop, and we have to do this in remote_wait_ns
5269 instead. If we fetch all queued events from stub, remote stub
5270 may exit and we have no chance to process them back in
5271 remote_wait_ns. */
5272 mark_async_event_handler (remote_async_inferior_event_token);
5273 return 0;
5274 }
5275
5276 static void
5277 stop_reply_dtr (struct notif_event *event)
5278 {
5279 struct stop_reply *r = (struct stop_reply *) event;
5280
5281 VEC_free (cached_reg_t, r->regcache);
5282 }
5283
5284 static struct notif_event *
5285 remote_notif_stop_alloc_reply (void)
5286 {
5287 struct notif_event *r
5288 = (struct notif_event *) XNEW (struct stop_reply);
5289
5290 r->dtr = stop_reply_dtr;
5291
5292 return r;
5293 }
5294
5295 /* A client of notification Stop. */
5296
5297 struct notif_client notif_client_stop =
5298 {
5299 "Stop",
5300 "vStopped",
5301 remote_notif_stop_parse,
5302 remote_notif_stop_ack,
5303 remote_notif_stop_can_get_pending_events,
5304 remote_notif_stop_alloc_reply,
5305 REMOTE_NOTIF_STOP,
5306 };
5307
5308 /* A parameter to pass data in and out. */
5309
5310 struct queue_iter_param
5311 {
5312 void *input;
5313 struct stop_reply *output;
5314 };
5315
5316 /* Remove stop replies in the queue if its pid is equal to the given
5317 inferior's pid. */
5318
5319 static int
5320 remove_stop_reply_for_inferior (QUEUE (stop_reply_p) *q,
5321 QUEUE_ITER (stop_reply_p) *iter,
5322 stop_reply_p event,
5323 void *data)
5324 {
5325 struct queue_iter_param *param = data;
5326 struct inferior *inf = param->input;
5327
5328 if (ptid_get_pid (event->ptid) == inf->pid)
5329 {
5330 stop_reply_xfree (event);
5331 QUEUE_remove_elem (stop_reply_p, q, iter);
5332 }
5333
5334 return 1;
5335 }
5336
5337 /* Discard all pending stop replies of inferior INF. */
5338
5339 static void
5340 discard_pending_stop_replies (struct inferior *inf)
5341 {
5342 int i;
5343 struct queue_iter_param param;
5344 struct stop_reply *reply;
5345 struct remote_state *rs = get_remote_state ();
5346 struct remote_notif_state *rns = rs->notif_state;
5347
5348 /* This function can be notified when an inferior exists. When the
5349 target is not remote, the notification state is NULL. */
5350 if (rs->remote_desc == NULL)
5351 return;
5352
5353 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
5354
5355 /* Discard the in-flight notification. */
5356 if (reply != NULL && ptid_get_pid (reply->ptid) == inf->pid)
5357 {
5358 stop_reply_xfree (reply);
5359 rns->pending_event[notif_client_stop.id] = NULL;
5360 }
5361
5362 param.input = inf;
5363 param.output = NULL;
5364 /* Discard the stop replies we have already pulled with
5365 vStopped. */
5366 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5367 remove_stop_reply_for_inferior, &param);
5368 }
5369
5370 /* If its remote state is equal to the given remote state,
5371 remove EVENT from the stop reply queue. */
5372
5373 static int
5374 remove_stop_reply_of_remote_state (QUEUE (stop_reply_p) *q,
5375 QUEUE_ITER (stop_reply_p) *iter,
5376 stop_reply_p event,
5377 void *data)
5378 {
5379 struct queue_iter_param *param = data;
5380 struct remote_state *rs = param->input;
5381
5382 if (event->rs == rs)
5383 {
5384 stop_reply_xfree (event);
5385 QUEUE_remove_elem (stop_reply_p, q, iter);
5386 }
5387
5388 return 1;
5389 }
5390
5391 /* Discard the stop replies for RS in stop_reply_queue. */
5392
5393 static void
5394 discard_pending_stop_replies_in_queue (struct remote_state *rs)
5395 {
5396 struct queue_iter_param param;
5397
5398 param.input = rs;
5399 param.output = NULL;
5400 /* Discard the stop replies we have already pulled with
5401 vStopped. */
5402 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5403 remove_stop_reply_of_remote_state, &param);
5404 }
5405
5406 /* A parameter to pass data in and out. */
5407
5408 static int
5409 remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
5410 QUEUE_ITER (stop_reply_p) *iter,
5411 stop_reply_p event,
5412 void *data)
5413 {
5414 struct queue_iter_param *param = data;
5415 ptid_t *ptid = param->input;
5416
5417 if (ptid_match (event->ptid, *ptid))
5418 {
5419 param->output = event;
5420 QUEUE_remove_elem (stop_reply_p, q, iter);
5421 return 0;
5422 }
5423
5424 return 1;
5425 }
5426
5427 /* Remove the first reply in 'stop_reply_queue' which matches
5428 PTID. */
5429
5430 static struct stop_reply *
5431 remote_notif_remove_queued_reply (ptid_t ptid)
5432 {
5433 struct queue_iter_param param;
5434
5435 param.input = &ptid;
5436 param.output = NULL;
5437
5438 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5439 remote_notif_remove_once_on_match, &param);
5440 if (notif_debug)
5441 fprintf_unfiltered (gdb_stdlog,
5442 "notif: discard queued event: 'Stop' in %s\n",
5443 target_pid_to_str (ptid));
5444
5445 return param.output;
5446 }
5447
5448 /* Look for a queued stop reply belonging to PTID. If one is found,
5449 remove it from the queue, and return it. Returns NULL if none is
5450 found. If there are still queued events left to process, tell the
5451 event loop to get back to target_wait soon. */
5452
5453 static struct stop_reply *
5454 queued_stop_reply (ptid_t ptid)
5455 {
5456 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
5457
5458 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
5459 /* There's still at least an event left. */
5460 mark_async_event_handler (remote_async_inferior_event_token);
5461
5462 return r;
5463 }
5464
5465 /* Push a fully parsed stop reply in the stop reply queue. Since we
5466 know that we now have at least one queued event left to pass to the
5467 core side, tell the event loop to get back to target_wait soon. */
5468
5469 static void
5470 push_stop_reply (struct stop_reply *new_event)
5471 {
5472 QUEUE_enque (stop_reply_p, stop_reply_queue, new_event);
5473
5474 if (notif_debug)
5475 fprintf_unfiltered (gdb_stdlog,
5476 "notif: push 'Stop' %s to queue %d\n",
5477 target_pid_to_str (new_event->ptid),
5478 QUEUE_length (stop_reply_p,
5479 stop_reply_queue));
5480
5481 mark_async_event_handler (remote_async_inferior_event_token);
5482 }
5483
5484 static int
5485 stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
5486 QUEUE_ITER (stop_reply_p) *iter,
5487 struct stop_reply *event,
5488 void *data)
5489 {
5490 ptid_t *ptid = data;
5491
5492 return !(ptid_equal (*ptid, event->ptid)
5493 && event->ws.kind == TARGET_WAITKIND_STOPPED);
5494 }
5495
5496 /* Returns true if we have a stop reply for PTID. */
5497
5498 static int
5499 peek_stop_reply (ptid_t ptid)
5500 {
5501 return !QUEUE_iterate (stop_reply_p, stop_reply_queue,
5502 stop_reply_match_ptid_and_ws, &ptid);
5503 }
5504
5505 /* Parse the stop reply in BUF. Either the function succeeds, and the
5506 result is stored in EVENT, or throws an error. */
5507
5508 static void
5509 remote_parse_stop_reply (char *buf, struct stop_reply *event)
5510 {
5511 struct remote_arch_state *rsa = get_remote_arch_state ();
5512 ULONGEST addr;
5513 char *p;
5514
5515 event->ptid = null_ptid;
5516 event->rs = get_remote_state ();
5517 event->ws.kind = TARGET_WAITKIND_IGNORE;
5518 event->ws.value.integer = 0;
5519 event->stopped_by_watchpoint_p = 0;
5520 event->regcache = NULL;
5521 event->core = -1;
5522
5523 switch (buf[0])
5524 {
5525 case 'T': /* Status with PC, SP, FP, ... */
5526 /* Expedited reply, containing Signal, {regno, reg} repeat. */
5527 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
5528 ss = signal number
5529 n... = register number
5530 r... = register contents
5531 */
5532
5533 p = &buf[3]; /* after Txx */
5534 while (*p)
5535 {
5536 char *p1;
5537 char *p_temp;
5538 int fieldsize;
5539 LONGEST pnum = 0;
5540
5541 /* If the packet contains a register number, save it in
5542 pnum and set p1 to point to the character following it.
5543 Otherwise p1 points to p. */
5544
5545 /* If this packet is an awatch packet, don't parse the 'a'
5546 as a register number. */
5547
5548 if (strncmp (p, "awatch", strlen("awatch")) != 0
5549 && strncmp (p, "core", strlen ("core") != 0))
5550 {
5551 /* Read the ``P'' register number. */
5552 pnum = strtol (p, &p_temp, 16);
5553 p1 = p_temp;
5554 }
5555 else
5556 p1 = p;
5557
5558 if (p1 == p) /* No register number present here. */
5559 {
5560 p1 = strchr (p, ':');
5561 if (p1 == NULL)
5562 error (_("Malformed packet(a) (missing colon): %s\n\
5563 Packet: '%s'\n"),
5564 p, buf);
5565 if (strncmp (p, "thread", p1 - p) == 0)
5566 event->ptid = read_ptid (++p1, &p);
5567 else if ((strncmp (p, "watch", p1 - p) == 0)
5568 || (strncmp (p, "rwatch", p1 - p) == 0)
5569 || (strncmp (p, "awatch", p1 - p) == 0))
5570 {
5571 event->stopped_by_watchpoint_p = 1;
5572 p = unpack_varlen_hex (++p1, &addr);
5573 event->watch_data_address = (CORE_ADDR) addr;
5574 }
5575 else if (strncmp (p, "library", p1 - p) == 0)
5576 {
5577 p1++;
5578 p_temp = p1;
5579 while (*p_temp && *p_temp != ';')
5580 p_temp++;
5581
5582 event->ws.kind = TARGET_WAITKIND_LOADED;
5583 p = p_temp;
5584 }
5585 else if (strncmp (p, "replaylog", p1 - p) == 0)
5586 {
5587 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
5588 /* p1 will indicate "begin" or "end", but it makes
5589 no difference for now, so ignore it. */
5590 p_temp = strchr (p1 + 1, ';');
5591 if (p_temp)
5592 p = p_temp;
5593 }
5594 else if (strncmp (p, "core", p1 - p) == 0)
5595 {
5596 ULONGEST c;
5597
5598 p = unpack_varlen_hex (++p1, &c);
5599 event->core = c;
5600 }
5601 else
5602 {
5603 /* Silently skip unknown optional info. */
5604 p_temp = strchr (p1 + 1, ';');
5605 if (p_temp)
5606 p = p_temp;
5607 }
5608 }
5609 else
5610 {
5611 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
5612 cached_reg_t cached_reg;
5613
5614 p = p1;
5615
5616 if (*p != ':')
5617 error (_("Malformed packet(b) (missing colon): %s\n\
5618 Packet: '%s'\n"),
5619 p, buf);
5620 ++p;
5621
5622 if (reg == NULL)
5623 error (_("Remote sent bad register number %s: %s\n\
5624 Packet: '%s'\n"),
5625 hex_string (pnum), p, buf);
5626
5627 cached_reg.num = reg->regnum;
5628
5629 fieldsize = hex2bin (p, cached_reg.data,
5630 register_size (target_gdbarch (),
5631 reg->regnum));
5632 p += 2 * fieldsize;
5633 if (fieldsize < register_size (target_gdbarch (),
5634 reg->regnum))
5635 warning (_("Remote reply is too short: %s"), buf);
5636
5637 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
5638 }
5639
5640 if (*p != ';')
5641 error (_("Remote register badly formatted: %s\nhere: %s"),
5642 buf, p);
5643 ++p;
5644 }
5645
5646 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
5647 break;
5648
5649 /* fall through */
5650 case 'S': /* Old style status, just signal only. */
5651 {
5652 int sig;
5653
5654 event->ws.kind = TARGET_WAITKIND_STOPPED;
5655 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
5656 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
5657 event->ws.value.sig = (enum gdb_signal) sig;
5658 else
5659 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
5660 }
5661 break;
5662 case 'W': /* Target exited. */
5663 case 'X':
5664 {
5665 char *p;
5666 int pid;
5667 ULONGEST value;
5668
5669 /* GDB used to accept only 2 hex chars here. Stubs should
5670 only send more if they detect GDB supports multi-process
5671 support. */
5672 p = unpack_varlen_hex (&buf[1], &value);
5673
5674 if (buf[0] == 'W')
5675 {
5676 /* The remote process exited. */
5677 event->ws.kind = TARGET_WAITKIND_EXITED;
5678 event->ws.value.integer = value;
5679 }
5680 else
5681 {
5682 /* The remote process exited with a signal. */
5683 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
5684 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
5685 event->ws.value.sig = (enum gdb_signal) value;
5686 else
5687 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
5688 }
5689
5690 /* If no process is specified, assume inferior_ptid. */
5691 pid = ptid_get_pid (inferior_ptid);
5692 if (*p == '\0')
5693 ;
5694 else if (*p == ';')
5695 {
5696 p++;
5697
5698 if (p == '\0')
5699 ;
5700 else if (strncmp (p,
5701 "process:", sizeof ("process:") - 1) == 0)
5702 {
5703 ULONGEST upid;
5704
5705 p += sizeof ("process:") - 1;
5706 unpack_varlen_hex (p, &upid);
5707 pid = upid;
5708 }
5709 else
5710 error (_("unknown stop reply packet: %s"), buf);
5711 }
5712 else
5713 error (_("unknown stop reply packet: %s"), buf);
5714 event->ptid = pid_to_ptid (pid);
5715 }
5716 break;
5717 }
5718
5719 if (non_stop && ptid_equal (event->ptid, null_ptid))
5720 error (_("No process or thread specified in stop reply: %s"), buf);
5721 }
5722
5723 /* When the stub wants to tell GDB about a new notification reply, it
5724 sends a notification (%Stop, for example). Those can come it at
5725 any time, hence, we have to make sure that any pending
5726 putpkt/getpkt sequence we're making is finished, before querying
5727 the stub for more events with the corresponding ack command
5728 (vStopped, for example). E.g., if we started a vStopped sequence
5729 immediately upon receiving the notification, something like this
5730 could happen:
5731
5732 1.1) --> Hg 1
5733 1.2) <-- OK
5734 1.3) --> g
5735 1.4) <-- %Stop
5736 1.5) --> vStopped
5737 1.6) <-- (registers reply to step #1.3)
5738
5739 Obviously, the reply in step #1.6 would be unexpected to a vStopped
5740 query.
5741
5742 To solve this, whenever we parse a %Stop notification successfully,
5743 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
5744 doing whatever we were doing:
5745
5746 2.1) --> Hg 1
5747 2.2) <-- OK
5748 2.3) --> g
5749 2.4) <-- %Stop
5750 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
5751 2.5) <-- (registers reply to step #2.3)
5752
5753 Eventualy after step #2.5, we return to the event loop, which
5754 notices there's an event on the
5755 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
5756 associated callback --- the function below. At this point, we're
5757 always safe to start a vStopped sequence. :
5758
5759 2.6) --> vStopped
5760 2.7) <-- T05 thread:2
5761 2.8) --> vStopped
5762 2.9) --> OK
5763 */
5764
5765 void
5766 remote_notif_get_pending_events (struct notif_client *nc)
5767 {
5768 struct remote_state *rs = get_remote_state ();
5769
5770 if (rs->notif_state->pending_event[nc->id] != NULL)
5771 {
5772 if (notif_debug)
5773 fprintf_unfiltered (gdb_stdlog,
5774 "notif: process: '%s' ack pending event\n",
5775 nc->name);
5776
5777 /* acknowledge */
5778 nc->ack (nc, rs->buf, rs->notif_state->pending_event[nc->id]);
5779 rs->notif_state->pending_event[nc->id] = NULL;
5780
5781 while (1)
5782 {
5783 getpkt (&rs->buf, &rs->buf_size, 0);
5784 if (strcmp (rs->buf, "OK") == 0)
5785 break;
5786 else
5787 remote_notif_ack (nc, rs->buf);
5788 }
5789 }
5790 else
5791 {
5792 if (notif_debug)
5793 fprintf_unfiltered (gdb_stdlog,
5794 "notif: process: '%s' no pending reply\n",
5795 nc->name);
5796 }
5797 }
5798
5799 /* Called when it is decided that STOP_REPLY holds the info of the
5800 event that is to be returned to the core. This function always
5801 destroys STOP_REPLY. */
5802
5803 static ptid_t
5804 process_stop_reply (struct stop_reply *stop_reply,
5805 struct target_waitstatus *status)
5806 {
5807 ptid_t ptid;
5808
5809 *status = stop_reply->ws;
5810 ptid = stop_reply->ptid;
5811
5812 /* If no thread/process was reported by the stub, assume the current
5813 inferior. */
5814 if (ptid_equal (ptid, null_ptid))
5815 ptid = inferior_ptid;
5816
5817 if (status->kind != TARGET_WAITKIND_EXITED
5818 && status->kind != TARGET_WAITKIND_SIGNALLED)
5819 {
5820 struct remote_state *rs = get_remote_state ();
5821
5822 /* Expedited registers. */
5823 if (stop_reply->regcache)
5824 {
5825 struct regcache *regcache
5826 = get_thread_arch_regcache (ptid, target_gdbarch ());
5827 cached_reg_t *reg;
5828 int ix;
5829
5830 for (ix = 0;
5831 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
5832 ix++)
5833 regcache_raw_supply (regcache, reg->num, reg->data);
5834 VEC_free (cached_reg_t, stop_reply->regcache);
5835 }
5836
5837 rs->remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
5838 rs->remote_watch_data_address = stop_reply->watch_data_address;
5839
5840 remote_notice_new_inferior (ptid, 0);
5841 demand_private_info (ptid)->core = stop_reply->core;
5842 }
5843
5844 stop_reply_xfree (stop_reply);
5845 return ptid;
5846 }
5847
5848 /* The non-stop mode version of target_wait. */
5849
5850 static ptid_t
5851 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
5852 {
5853 struct remote_state *rs = get_remote_state ();
5854 struct stop_reply *stop_reply;
5855 int ret;
5856 int is_notif = 0;
5857
5858 /* If in non-stop mode, get out of getpkt even if a
5859 notification is received. */
5860
5861 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5862 0 /* forever */, &is_notif);
5863 while (1)
5864 {
5865 if (ret != -1 && !is_notif)
5866 switch (rs->buf[0])
5867 {
5868 case 'E': /* Error of some sort. */
5869 /* We're out of sync with the target now. Did it continue
5870 or not? We can't tell which thread it was in non-stop,
5871 so just ignore this. */
5872 warning (_("Remote failure reply: %s"), rs->buf);
5873 break;
5874 case 'O': /* Console output. */
5875 remote_console_output (rs->buf + 1);
5876 break;
5877 default:
5878 warning (_("Invalid remote reply: %s"), rs->buf);
5879 break;
5880 }
5881
5882 /* Acknowledge a pending stop reply that may have arrived in the
5883 mean time. */
5884 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
5885 remote_notif_get_pending_events (&notif_client_stop);
5886
5887 /* If indeed we noticed a stop reply, we're done. */
5888 stop_reply = queued_stop_reply (ptid);
5889 if (stop_reply != NULL)
5890 return process_stop_reply (stop_reply, status);
5891
5892 /* Still no event. If we're just polling for an event, then
5893 return to the event loop. */
5894 if (options & TARGET_WNOHANG)
5895 {
5896 status->kind = TARGET_WAITKIND_IGNORE;
5897 return minus_one_ptid;
5898 }
5899
5900 /* Otherwise do a blocking wait. */
5901 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5902 1 /* forever */, &is_notif);
5903 }
5904 }
5905
5906 /* Wait until the remote machine stops, then return, storing status in
5907 STATUS just as `wait' would. */
5908
5909 static ptid_t
5910 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
5911 {
5912 struct remote_state *rs = get_remote_state ();
5913 ptid_t event_ptid = null_ptid;
5914 char *buf;
5915 struct stop_reply *stop_reply;
5916
5917 again:
5918
5919 status->kind = TARGET_WAITKIND_IGNORE;
5920 status->value.integer = 0;
5921
5922 stop_reply = queued_stop_reply (ptid);
5923 if (stop_reply != NULL)
5924 return process_stop_reply (stop_reply, status);
5925
5926 if (rs->cached_wait_status)
5927 /* Use the cached wait status, but only once. */
5928 rs->cached_wait_status = 0;
5929 else
5930 {
5931 int ret;
5932 int is_notif;
5933
5934 if (!target_is_async_p ())
5935 {
5936 ofunc = signal (SIGINT, sync_remote_interrupt);
5937 /* If the user hit C-c before this packet, or between packets,
5938 pretend that it was hit right here. */
5939 if (check_quit_flag ())
5940 {
5941 clear_quit_flag ();
5942 sync_remote_interrupt (SIGINT);
5943 }
5944 }
5945
5946 /* FIXME: cagney/1999-09-27: If we're in async mode we should
5947 _never_ wait for ever -> test on target_is_async_p().
5948 However, before we do that we need to ensure that the caller
5949 knows how to take the target into/out of async mode. */
5950 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5951 wait_forever_enabled_p, &is_notif);
5952
5953 if (!target_is_async_p ())
5954 signal (SIGINT, ofunc);
5955
5956 /* GDB gets a notification. Return to core as this event is
5957 not interesting. */
5958 if (ret != -1 && is_notif)
5959 return minus_one_ptid;
5960 }
5961
5962 buf = rs->buf;
5963
5964 rs->remote_stopped_by_watchpoint_p = 0;
5965
5966 /* We got something. */
5967 rs->waiting_for_stop_reply = 0;
5968
5969 /* Assume that the target has acknowledged Ctrl-C unless we receive
5970 an 'F' or 'O' packet. */
5971 if (buf[0] != 'F' && buf[0] != 'O')
5972 rs->ctrlc_pending_p = 0;
5973
5974 switch (buf[0])
5975 {
5976 case 'E': /* Error of some sort. */
5977 /* We're out of sync with the target now. Did it continue or
5978 not? Not is more likely, so report a stop. */
5979 warning (_("Remote failure reply: %s"), buf);
5980 status->kind = TARGET_WAITKIND_STOPPED;
5981 status->value.sig = GDB_SIGNAL_0;
5982 break;
5983 case 'F': /* File-I/O request. */
5984 remote_fileio_request (buf, rs->ctrlc_pending_p);
5985 rs->ctrlc_pending_p = 0;
5986 break;
5987 case 'T': case 'S': case 'X': case 'W':
5988 {
5989 struct stop_reply *stop_reply
5990 = (struct stop_reply *) remote_notif_parse (&notif_client_stop,
5991 rs->buf);
5992
5993 event_ptid = process_stop_reply (stop_reply, status);
5994 break;
5995 }
5996 case 'O': /* Console output. */
5997 remote_console_output (buf + 1);
5998
5999 /* The target didn't really stop; keep waiting. */
6000 rs->waiting_for_stop_reply = 1;
6001
6002 break;
6003 case '\0':
6004 if (rs->last_sent_signal != GDB_SIGNAL_0)
6005 {
6006 /* Zero length reply means that we tried 'S' or 'C' and the
6007 remote system doesn't support it. */
6008 target_terminal_ours_for_output ();
6009 printf_filtered
6010 ("Can't send signals to this remote system. %s not sent.\n",
6011 gdb_signal_to_name (rs->last_sent_signal));
6012 rs->last_sent_signal = GDB_SIGNAL_0;
6013 target_terminal_inferior ();
6014
6015 strcpy ((char *) buf, rs->last_sent_step ? "s" : "c");
6016 putpkt ((char *) buf);
6017
6018 /* We just told the target to resume, so a stop reply is in
6019 order. */
6020 rs->waiting_for_stop_reply = 1;
6021 break;
6022 }
6023 /* else fallthrough */
6024 default:
6025 warning (_("Invalid remote reply: %s"), buf);
6026 /* Keep waiting. */
6027 rs->waiting_for_stop_reply = 1;
6028 break;
6029 }
6030
6031 if (status->kind == TARGET_WAITKIND_IGNORE)
6032 {
6033 /* Nothing interesting happened. If we're doing a non-blocking
6034 poll, we're done. Otherwise, go back to waiting. */
6035 if (options & TARGET_WNOHANG)
6036 return minus_one_ptid;
6037 else
6038 goto again;
6039 }
6040 else if (status->kind != TARGET_WAITKIND_EXITED
6041 && status->kind != TARGET_WAITKIND_SIGNALLED)
6042 {
6043 if (!ptid_equal (event_ptid, null_ptid))
6044 record_currthread (rs, event_ptid);
6045 else
6046 event_ptid = inferior_ptid;
6047 }
6048 else
6049 /* A process exit. Invalidate our notion of current thread. */
6050 record_currthread (rs, minus_one_ptid);
6051
6052 return event_ptid;
6053 }
6054
6055 /* Wait until the remote machine stops, then return, storing status in
6056 STATUS just as `wait' would. */
6057
6058 static ptid_t
6059 remote_wait (struct target_ops *ops,
6060 ptid_t ptid, struct target_waitstatus *status, int options)
6061 {
6062 ptid_t event_ptid;
6063
6064 if (non_stop)
6065 event_ptid = remote_wait_ns (ptid, status, options);
6066 else
6067 event_ptid = remote_wait_as (ptid, status, options);
6068
6069 if (target_can_async_p ())
6070 {
6071 /* If there are are events left in the queue tell the event loop
6072 to return here. */
6073 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
6074 mark_async_event_handler (remote_async_inferior_event_token);
6075 }
6076
6077 return event_ptid;
6078 }
6079
6080 /* Fetch a single register using a 'p' packet. */
6081
6082 static int
6083 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
6084 {
6085 struct remote_state *rs = get_remote_state ();
6086 char *buf, *p;
6087 char regp[MAX_REGISTER_SIZE];
6088 int i;
6089
6090 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
6091 return 0;
6092
6093 if (reg->pnum == -1)
6094 return 0;
6095
6096 p = rs->buf;
6097 *p++ = 'p';
6098 p += hexnumstr (p, reg->pnum);
6099 *p++ = '\0';
6100 putpkt (rs->buf);
6101 getpkt (&rs->buf, &rs->buf_size, 0);
6102
6103 buf = rs->buf;
6104
6105 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
6106 {
6107 case PACKET_OK:
6108 break;
6109 case PACKET_UNKNOWN:
6110 return 0;
6111 case PACKET_ERROR:
6112 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
6113 gdbarch_register_name (get_regcache_arch (regcache),
6114 reg->regnum),
6115 buf);
6116 }
6117
6118 /* If this register is unfetchable, tell the regcache. */
6119 if (buf[0] == 'x')
6120 {
6121 regcache_raw_supply (regcache, reg->regnum, NULL);
6122 return 1;
6123 }
6124
6125 /* Otherwise, parse and supply the value. */
6126 p = buf;
6127 i = 0;
6128 while (p[0] != 0)
6129 {
6130 if (p[1] == 0)
6131 error (_("fetch_register_using_p: early buf termination"));
6132
6133 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
6134 p += 2;
6135 }
6136 regcache_raw_supply (regcache, reg->regnum, regp);
6137 return 1;
6138 }
6139
6140 /* Fetch the registers included in the target's 'g' packet. */
6141
6142 static int
6143 send_g_packet (void)
6144 {
6145 struct remote_state *rs = get_remote_state ();
6146 int buf_len;
6147
6148 xsnprintf (rs->buf, get_remote_packet_size (), "g");
6149 remote_send (&rs->buf, &rs->buf_size);
6150
6151 /* We can get out of synch in various cases. If the first character
6152 in the buffer is not a hex character, assume that has happened
6153 and try to fetch another packet to read. */
6154 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
6155 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
6156 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
6157 && rs->buf[0] != 'x') /* New: unavailable register value. */
6158 {
6159 if (remote_debug)
6160 fprintf_unfiltered (gdb_stdlog,
6161 "Bad register packet; fetching a new packet\n");
6162 getpkt (&rs->buf, &rs->buf_size, 0);
6163 }
6164
6165 buf_len = strlen (rs->buf);
6166
6167 /* Sanity check the received packet. */
6168 if (buf_len % 2 != 0)
6169 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
6170
6171 return buf_len / 2;
6172 }
6173
6174 static void
6175 process_g_packet (struct regcache *regcache)
6176 {
6177 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6178 struct remote_state *rs = get_remote_state ();
6179 struct remote_arch_state *rsa = get_remote_arch_state ();
6180 int i, buf_len;
6181 char *p;
6182 char *regs;
6183
6184 buf_len = strlen (rs->buf);
6185
6186 /* Further sanity checks, with knowledge of the architecture. */
6187 if (buf_len > 2 * rsa->sizeof_g_packet)
6188 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
6189
6190 /* Save the size of the packet sent to us by the target. It is used
6191 as a heuristic when determining the max size of packets that the
6192 target can safely receive. */
6193 if (rsa->actual_register_packet_size == 0)
6194 rsa->actual_register_packet_size = buf_len;
6195
6196 /* If this is smaller than we guessed the 'g' packet would be,
6197 update our records. A 'g' reply that doesn't include a register's
6198 value implies either that the register is not available, or that
6199 the 'p' packet must be used. */
6200 if (buf_len < 2 * rsa->sizeof_g_packet)
6201 {
6202 rsa->sizeof_g_packet = buf_len / 2;
6203
6204 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
6205 {
6206 if (rsa->regs[i].pnum == -1)
6207 continue;
6208
6209 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
6210 rsa->regs[i].in_g_packet = 0;
6211 else
6212 rsa->regs[i].in_g_packet = 1;
6213 }
6214 }
6215
6216 regs = alloca (rsa->sizeof_g_packet);
6217
6218 /* Unimplemented registers read as all bits zero. */
6219 memset (regs, 0, rsa->sizeof_g_packet);
6220
6221 /* Reply describes registers byte by byte, each byte encoded as two
6222 hex characters. Suck them all up, then supply them to the
6223 register cacheing/storage mechanism. */
6224
6225 p = rs->buf;
6226 for (i = 0; i < rsa->sizeof_g_packet; i++)
6227 {
6228 if (p[0] == 0 || p[1] == 0)
6229 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
6230 internal_error (__FILE__, __LINE__,
6231 _("unexpected end of 'g' packet reply"));
6232
6233 if (p[0] == 'x' && p[1] == 'x')
6234 regs[i] = 0; /* 'x' */
6235 else
6236 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
6237 p += 2;
6238 }
6239
6240 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
6241 {
6242 struct packet_reg *r = &rsa->regs[i];
6243
6244 if (r->in_g_packet)
6245 {
6246 if (r->offset * 2 >= strlen (rs->buf))
6247 /* This shouldn't happen - we adjusted in_g_packet above. */
6248 internal_error (__FILE__, __LINE__,
6249 _("unexpected end of 'g' packet reply"));
6250 else if (rs->buf[r->offset * 2] == 'x')
6251 {
6252 gdb_assert (r->offset * 2 < strlen (rs->buf));
6253 /* The register isn't available, mark it as such (at
6254 the same time setting the value to zero). */
6255 regcache_raw_supply (regcache, r->regnum, NULL);
6256 }
6257 else
6258 regcache_raw_supply (regcache, r->regnum,
6259 regs + r->offset);
6260 }
6261 }
6262 }
6263
6264 static void
6265 fetch_registers_using_g (struct regcache *regcache)
6266 {
6267 send_g_packet ();
6268 process_g_packet (regcache);
6269 }
6270
6271 /* Make the remote selected traceframe match GDB's selected
6272 traceframe. */
6273
6274 static void
6275 set_remote_traceframe (void)
6276 {
6277 int newnum;
6278 struct remote_state *rs = get_remote_state ();
6279
6280 if (rs->remote_traceframe_number == get_traceframe_number ())
6281 return;
6282
6283 /* Avoid recursion, remote_trace_find calls us again. */
6284 rs->remote_traceframe_number = get_traceframe_number ();
6285
6286 newnum = target_trace_find (tfind_number,
6287 get_traceframe_number (), 0, 0, NULL);
6288
6289 /* Should not happen. If it does, all bets are off. */
6290 if (newnum != get_traceframe_number ())
6291 warning (_("could not set remote traceframe"));
6292 }
6293
6294 static void
6295 remote_fetch_registers (struct target_ops *ops,
6296 struct regcache *regcache, int regnum)
6297 {
6298 struct remote_arch_state *rsa = get_remote_arch_state ();
6299 int i;
6300
6301 set_remote_traceframe ();
6302 set_general_thread (inferior_ptid);
6303
6304 if (regnum >= 0)
6305 {
6306 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6307
6308 gdb_assert (reg != NULL);
6309
6310 /* If this register might be in the 'g' packet, try that first -
6311 we are likely to read more than one register. If this is the
6312 first 'g' packet, we might be overly optimistic about its
6313 contents, so fall back to 'p'. */
6314 if (reg->in_g_packet)
6315 {
6316 fetch_registers_using_g (regcache);
6317 if (reg->in_g_packet)
6318 return;
6319 }
6320
6321 if (fetch_register_using_p (regcache, reg))
6322 return;
6323
6324 /* This register is not available. */
6325 regcache_raw_supply (regcache, reg->regnum, NULL);
6326
6327 return;
6328 }
6329
6330 fetch_registers_using_g (regcache);
6331
6332 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6333 if (!rsa->regs[i].in_g_packet)
6334 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
6335 {
6336 /* This register is not available. */
6337 regcache_raw_supply (regcache, i, NULL);
6338 }
6339 }
6340
6341 /* Prepare to store registers. Since we may send them all (using a
6342 'G' request), we have to read out the ones we don't want to change
6343 first. */
6344
6345 static void
6346 remote_prepare_to_store (struct target_ops *self, struct regcache *regcache)
6347 {
6348 struct remote_arch_state *rsa = get_remote_arch_state ();
6349 int i;
6350 gdb_byte buf[MAX_REGISTER_SIZE];
6351
6352 /* Make sure the entire registers array is valid. */
6353 switch (remote_protocol_packets[PACKET_P].support)
6354 {
6355 case PACKET_DISABLE:
6356 case PACKET_SUPPORT_UNKNOWN:
6357 /* Make sure all the necessary registers are cached. */
6358 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6359 if (rsa->regs[i].in_g_packet)
6360 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
6361 break;
6362 case PACKET_ENABLE:
6363 break;
6364 }
6365 }
6366
6367 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
6368 packet was not recognized. */
6369
6370 static int
6371 store_register_using_P (const struct regcache *regcache,
6372 struct packet_reg *reg)
6373 {
6374 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6375 struct remote_state *rs = get_remote_state ();
6376 /* Try storing a single register. */
6377 char *buf = rs->buf;
6378 gdb_byte regp[MAX_REGISTER_SIZE];
6379 char *p;
6380
6381 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
6382 return 0;
6383
6384 if (reg->pnum == -1)
6385 return 0;
6386
6387 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
6388 p = buf + strlen (buf);
6389 regcache_raw_collect (regcache, reg->regnum, regp);
6390 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
6391 putpkt (rs->buf);
6392 getpkt (&rs->buf, &rs->buf_size, 0);
6393
6394 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
6395 {
6396 case PACKET_OK:
6397 return 1;
6398 case PACKET_ERROR:
6399 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
6400 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
6401 case PACKET_UNKNOWN:
6402 return 0;
6403 default:
6404 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
6405 }
6406 }
6407
6408 /* Store register REGNUM, or all registers if REGNUM == -1, from the
6409 contents of the register cache buffer. FIXME: ignores errors. */
6410
6411 static void
6412 store_registers_using_G (const struct regcache *regcache)
6413 {
6414 struct remote_state *rs = get_remote_state ();
6415 struct remote_arch_state *rsa = get_remote_arch_state ();
6416 gdb_byte *regs;
6417 char *p;
6418
6419 /* Extract all the registers in the regcache copying them into a
6420 local buffer. */
6421 {
6422 int i;
6423
6424 regs = alloca (rsa->sizeof_g_packet);
6425 memset (regs, 0, rsa->sizeof_g_packet);
6426 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6427 {
6428 struct packet_reg *r = &rsa->regs[i];
6429
6430 if (r->in_g_packet)
6431 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
6432 }
6433 }
6434
6435 /* Command describes registers byte by byte,
6436 each byte encoded as two hex characters. */
6437 p = rs->buf;
6438 *p++ = 'G';
6439 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
6440 updated. */
6441 bin2hex (regs, p, rsa->sizeof_g_packet);
6442 putpkt (rs->buf);
6443 getpkt (&rs->buf, &rs->buf_size, 0);
6444 if (packet_check_result (rs->buf) == PACKET_ERROR)
6445 error (_("Could not write registers; remote failure reply '%s'"),
6446 rs->buf);
6447 }
6448
6449 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
6450 of the register cache buffer. FIXME: ignores errors. */
6451
6452 static void
6453 remote_store_registers (struct target_ops *ops,
6454 struct regcache *regcache, int regnum)
6455 {
6456 struct remote_arch_state *rsa = get_remote_arch_state ();
6457 int i;
6458
6459 set_remote_traceframe ();
6460 set_general_thread (inferior_ptid);
6461
6462 if (regnum >= 0)
6463 {
6464 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6465
6466 gdb_assert (reg != NULL);
6467
6468 /* Always prefer to store registers using the 'P' packet if
6469 possible; we often change only a small number of registers.
6470 Sometimes we change a larger number; we'd need help from a
6471 higher layer to know to use 'G'. */
6472 if (store_register_using_P (regcache, reg))
6473 return;
6474
6475 /* For now, don't complain if we have no way to write the
6476 register. GDB loses track of unavailable registers too
6477 easily. Some day, this may be an error. We don't have
6478 any way to read the register, either... */
6479 if (!reg->in_g_packet)
6480 return;
6481
6482 store_registers_using_G (regcache);
6483 return;
6484 }
6485
6486 store_registers_using_G (regcache);
6487
6488 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6489 if (!rsa->regs[i].in_g_packet)
6490 if (!store_register_using_P (regcache, &rsa->regs[i]))
6491 /* See above for why we do not issue an error here. */
6492 continue;
6493 }
6494 \f
6495
6496 /* Return the number of hex digits in num. */
6497
6498 static int
6499 hexnumlen (ULONGEST num)
6500 {
6501 int i;
6502
6503 for (i = 0; num != 0; i++)
6504 num >>= 4;
6505
6506 return max (i, 1);
6507 }
6508
6509 /* Set BUF to the minimum number of hex digits representing NUM. */
6510
6511 static int
6512 hexnumstr (char *buf, ULONGEST num)
6513 {
6514 int len = hexnumlen (num);
6515
6516 return hexnumnstr (buf, num, len);
6517 }
6518
6519
6520 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
6521
6522 static int
6523 hexnumnstr (char *buf, ULONGEST num, int width)
6524 {
6525 int i;
6526
6527 buf[width] = '\0';
6528
6529 for (i = width - 1; i >= 0; i--)
6530 {
6531 buf[i] = "0123456789abcdef"[(num & 0xf)];
6532 num >>= 4;
6533 }
6534
6535 return width;
6536 }
6537
6538 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
6539
6540 static CORE_ADDR
6541 remote_address_masked (CORE_ADDR addr)
6542 {
6543 unsigned int address_size = remote_address_size;
6544
6545 /* If "remoteaddresssize" was not set, default to target address size. */
6546 if (!address_size)
6547 address_size = gdbarch_addr_bit (target_gdbarch ());
6548
6549 if (address_size > 0
6550 && address_size < (sizeof (ULONGEST) * 8))
6551 {
6552 /* Only create a mask when that mask can safely be constructed
6553 in a ULONGEST variable. */
6554 ULONGEST mask = 1;
6555
6556 mask = (mask << address_size) - 1;
6557 addr &= mask;
6558 }
6559 return addr;
6560 }
6561
6562 /* Determine whether the remote target supports binary downloading.
6563 This is accomplished by sending a no-op memory write of zero length
6564 to the target at the specified address. It does not suffice to send
6565 the whole packet, since many stubs strip the eighth bit and
6566 subsequently compute a wrong checksum, which causes real havoc with
6567 remote_write_bytes.
6568
6569 NOTE: This can still lose if the serial line is not eight-bit
6570 clean. In cases like this, the user should clear "remote
6571 X-packet". */
6572
6573 static void
6574 check_binary_download (CORE_ADDR addr)
6575 {
6576 struct remote_state *rs = get_remote_state ();
6577
6578 switch (remote_protocol_packets[PACKET_X].support)
6579 {
6580 case PACKET_DISABLE:
6581 break;
6582 case PACKET_ENABLE:
6583 break;
6584 case PACKET_SUPPORT_UNKNOWN:
6585 {
6586 char *p;
6587
6588 p = rs->buf;
6589 *p++ = 'X';
6590 p += hexnumstr (p, (ULONGEST) addr);
6591 *p++ = ',';
6592 p += hexnumstr (p, (ULONGEST) 0);
6593 *p++ = ':';
6594 *p = '\0';
6595
6596 putpkt_binary (rs->buf, (int) (p - rs->buf));
6597 getpkt (&rs->buf, &rs->buf_size, 0);
6598
6599 if (rs->buf[0] == '\0')
6600 {
6601 if (remote_debug)
6602 fprintf_unfiltered (gdb_stdlog,
6603 "binary downloading NOT "
6604 "supported by target\n");
6605 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
6606 }
6607 else
6608 {
6609 if (remote_debug)
6610 fprintf_unfiltered (gdb_stdlog,
6611 "binary downloading supported by target\n");
6612 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
6613 }
6614 break;
6615 }
6616 }
6617 }
6618
6619 /* Write memory data directly to the remote machine.
6620 This does not inform the data cache; the data cache uses this.
6621 HEADER is the starting part of the packet.
6622 MEMADDR is the address in the remote memory space.
6623 MYADDR is the address of the buffer in our space.
6624 LEN is the number of bytes.
6625 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
6626 should send data as binary ('X'), or hex-encoded ('M').
6627
6628 The function creates packet of the form
6629 <HEADER><ADDRESS>,<LENGTH>:<DATA>
6630
6631 where encoding of <DATA> is termined by PACKET_FORMAT.
6632
6633 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
6634 are omitted.
6635
6636 Return the transferred status, error or OK (an
6637 'enum target_xfer_status' value). Save the number of bytes
6638 transferred in *XFERED_LEN. Only transfer a single packet. */
6639
6640 static enum target_xfer_status
6641 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
6642 const gdb_byte *myaddr, ULONGEST len,
6643 ULONGEST *xfered_len, char packet_format,
6644 int use_length)
6645 {
6646 struct remote_state *rs = get_remote_state ();
6647 char *p;
6648 char *plen = NULL;
6649 int plenlen = 0;
6650 int todo;
6651 int nr_bytes;
6652 int payload_size;
6653 int payload_length;
6654 int header_length;
6655
6656 if (packet_format != 'X' && packet_format != 'M')
6657 internal_error (__FILE__, __LINE__,
6658 _("remote_write_bytes_aux: bad packet format"));
6659
6660 if (len == 0)
6661 return TARGET_XFER_EOF;
6662
6663 payload_size = get_memory_write_packet_size ();
6664
6665 /* The packet buffer will be large enough for the payload;
6666 get_memory_packet_size ensures this. */
6667 rs->buf[0] = '\0';
6668
6669 /* Compute the size of the actual payload by subtracting out the
6670 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
6671
6672 payload_size -= strlen ("$,:#NN");
6673 if (!use_length)
6674 /* The comma won't be used. */
6675 payload_size += 1;
6676 header_length = strlen (header);
6677 payload_size -= header_length;
6678 payload_size -= hexnumlen (memaddr);
6679
6680 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
6681
6682 strcat (rs->buf, header);
6683 p = rs->buf + strlen (header);
6684
6685 /* Compute a best guess of the number of bytes actually transfered. */
6686 if (packet_format == 'X')
6687 {
6688 /* Best guess at number of bytes that will fit. */
6689 todo = min (len, payload_size);
6690 if (use_length)
6691 payload_size -= hexnumlen (todo);
6692 todo = min (todo, payload_size);
6693 }
6694 else
6695 {
6696 /* Num bytes that will fit. */
6697 todo = min (len, payload_size / 2);
6698 if (use_length)
6699 payload_size -= hexnumlen (todo);
6700 todo = min (todo, payload_size / 2);
6701 }
6702
6703 if (todo <= 0)
6704 internal_error (__FILE__, __LINE__,
6705 _("minimum packet size too small to write data"));
6706
6707 /* If we already need another packet, then try to align the end
6708 of this packet to a useful boundary. */
6709 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
6710 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
6711
6712 /* Append "<memaddr>". */
6713 memaddr = remote_address_masked (memaddr);
6714 p += hexnumstr (p, (ULONGEST) memaddr);
6715
6716 if (use_length)
6717 {
6718 /* Append ",". */
6719 *p++ = ',';
6720
6721 /* Append <len>. Retain the location/size of <len>. It may need to
6722 be adjusted once the packet body has been created. */
6723 plen = p;
6724 plenlen = hexnumstr (p, (ULONGEST) todo);
6725 p += plenlen;
6726 }
6727
6728 /* Append ":". */
6729 *p++ = ':';
6730 *p = '\0';
6731
6732 /* Append the packet body. */
6733 if (packet_format == 'X')
6734 {
6735 /* Binary mode. Send target system values byte by byte, in
6736 increasing byte addresses. Only escape certain critical
6737 characters. */
6738 payload_length = remote_escape_output (myaddr, todo, (gdb_byte *) p,
6739 &nr_bytes, payload_size);
6740
6741 /* If not all TODO bytes fit, then we'll need another packet. Make
6742 a second try to keep the end of the packet aligned. Don't do
6743 this if the packet is tiny. */
6744 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
6745 {
6746 int new_nr_bytes;
6747
6748 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
6749 - memaddr);
6750 if (new_nr_bytes != nr_bytes)
6751 payload_length = remote_escape_output (myaddr, new_nr_bytes,
6752 (gdb_byte *) p, &nr_bytes,
6753 payload_size);
6754 }
6755
6756 p += payload_length;
6757 if (use_length && nr_bytes < todo)
6758 {
6759 /* Escape chars have filled up the buffer prematurely,
6760 and we have actually sent fewer bytes than planned.
6761 Fix-up the length field of the packet. Use the same
6762 number of characters as before. */
6763 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
6764 *plen = ':'; /* overwrite \0 from hexnumnstr() */
6765 }
6766 }
6767 else
6768 {
6769 /* Normal mode: Send target system values byte by byte, in
6770 increasing byte addresses. Each byte is encoded as a two hex
6771 value. */
6772 nr_bytes = bin2hex (myaddr, p, todo);
6773 p += 2 * nr_bytes;
6774 }
6775
6776 putpkt_binary (rs->buf, (int) (p - rs->buf));
6777 getpkt (&rs->buf, &rs->buf_size, 0);
6778
6779 if (rs->buf[0] == 'E')
6780 return TARGET_XFER_E_IO;
6781
6782 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
6783 fewer bytes than we'd planned. */
6784 *xfered_len = (ULONGEST) nr_bytes;
6785 return TARGET_XFER_OK;
6786 }
6787
6788 /* Write memory data directly to the remote machine.
6789 This does not inform the data cache; the data cache uses this.
6790 MEMADDR is the address in the remote memory space.
6791 MYADDR is the address of the buffer in our space.
6792 LEN is the number of bytes.
6793
6794 Return the transferred status, error or OK (an
6795 'enum target_xfer_status' value). Save the number of bytes
6796 transferred in *XFERED_LEN. Only transfer a single packet. */
6797
6798 static enum target_xfer_status
6799 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ULONGEST len,
6800 ULONGEST *xfered_len)
6801 {
6802 char *packet_format = 0;
6803
6804 /* Check whether the target supports binary download. */
6805 check_binary_download (memaddr);
6806
6807 switch (remote_protocol_packets[PACKET_X].support)
6808 {
6809 case PACKET_ENABLE:
6810 packet_format = "X";
6811 break;
6812 case PACKET_DISABLE:
6813 packet_format = "M";
6814 break;
6815 case PACKET_SUPPORT_UNKNOWN:
6816 internal_error (__FILE__, __LINE__,
6817 _("remote_write_bytes: bad internal state"));
6818 default:
6819 internal_error (__FILE__, __LINE__, _("bad switch"));
6820 }
6821
6822 return remote_write_bytes_aux (packet_format,
6823 memaddr, myaddr, len, xfered_len,
6824 packet_format[0], 1);
6825 }
6826
6827 /* Read memory data directly from the remote machine.
6828 This does not use the data cache; the data cache uses this.
6829 MEMADDR is the address in the remote memory space.
6830 MYADDR is the address of the buffer in our space.
6831 LEN is the number of bytes.
6832
6833 Return the transferred status, error or OK (an
6834 'enum target_xfer_status' value). Save the number of bytes
6835 transferred in *XFERED_LEN. */
6836
6837 static enum target_xfer_status
6838 remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr, ULONGEST len,
6839 ULONGEST *xfered_len)
6840 {
6841 struct remote_state *rs = get_remote_state ();
6842 int max_buf_size; /* Max size of packet output buffer. */
6843 char *p;
6844 int todo;
6845 int i;
6846
6847 max_buf_size = get_memory_read_packet_size ();
6848 /* The packet buffer will be large enough for the payload;
6849 get_memory_packet_size ensures this. */
6850
6851 /* Number if bytes that will fit. */
6852 todo = min (len, max_buf_size / 2);
6853
6854 /* Construct "m"<memaddr>","<len>". */
6855 memaddr = remote_address_masked (memaddr);
6856 p = rs->buf;
6857 *p++ = 'm';
6858 p += hexnumstr (p, (ULONGEST) memaddr);
6859 *p++ = ',';
6860 p += hexnumstr (p, (ULONGEST) todo);
6861 *p = '\0';
6862 putpkt (rs->buf);
6863 getpkt (&rs->buf, &rs->buf_size, 0);
6864 if (rs->buf[0] == 'E'
6865 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
6866 && rs->buf[3] == '\0')
6867 return TARGET_XFER_E_IO;
6868 /* Reply describes memory byte by byte, each byte encoded as two hex
6869 characters. */
6870 p = rs->buf;
6871 i = hex2bin (p, myaddr, todo);
6872 /* Return what we have. Let higher layers handle partial reads. */
6873 *xfered_len = (ULONGEST) i;
6874 return TARGET_XFER_OK;
6875 }
6876
6877 /* Read memory from the live target, even if currently inspecting a
6878 traceframe. The return is the same as that of target_read. */
6879
6880 static enum target_xfer_status
6881 target_read_live_memory (enum target_object object,
6882 ULONGEST memaddr, gdb_byte *myaddr, ULONGEST len,
6883 ULONGEST *xfered_len)
6884 {
6885 enum target_xfer_status ret;
6886 struct cleanup *cleanup;
6887
6888 /* Switch momentarily out of tfind mode so to access live memory.
6889 Note that this must not clear global state, such as the frame
6890 cache, which must still remain valid for the previous traceframe.
6891 We may be _building_ the frame cache at this point. */
6892 cleanup = make_cleanup_restore_traceframe_number ();
6893 set_traceframe_number (-1);
6894
6895 ret = target_xfer_partial (current_target.beneath, object, NULL,
6896 myaddr, NULL, memaddr, len, xfered_len);
6897
6898 do_cleanups (cleanup);
6899 return ret;
6900 }
6901
6902 /* Using the set of read-only target sections of OPS, read live
6903 read-only memory. Note that the actual reads start from the
6904 top-most target again.
6905
6906 For interface/parameters/return description see target.h,
6907 to_xfer_partial. */
6908
6909 static enum target_xfer_status
6910 memory_xfer_live_readonly_partial (struct target_ops *ops,
6911 enum target_object object,
6912 gdb_byte *readbuf, ULONGEST memaddr,
6913 ULONGEST len, ULONGEST *xfered_len)
6914 {
6915 struct target_section *secp;
6916 struct target_section_table *table;
6917
6918 secp = target_section_by_addr (ops, memaddr);
6919 if (secp != NULL
6920 && (bfd_get_section_flags (secp->the_bfd_section->owner,
6921 secp->the_bfd_section)
6922 & SEC_READONLY))
6923 {
6924 struct target_section *p;
6925 ULONGEST memend = memaddr + len;
6926
6927 table = target_get_section_table (ops);
6928
6929 for (p = table->sections; p < table->sections_end; p++)
6930 {
6931 if (memaddr >= p->addr)
6932 {
6933 if (memend <= p->endaddr)
6934 {
6935 /* Entire transfer is within this section. */
6936 return target_read_live_memory (object, memaddr,
6937 readbuf, len, xfered_len);
6938 }
6939 else if (memaddr >= p->endaddr)
6940 {
6941 /* This section ends before the transfer starts. */
6942 continue;
6943 }
6944 else
6945 {
6946 /* This section overlaps the transfer. Just do half. */
6947 len = p->endaddr - memaddr;
6948 return target_read_live_memory (object, memaddr,
6949 readbuf, len, xfered_len);
6950 }
6951 }
6952 }
6953 }
6954
6955 return TARGET_XFER_EOF;
6956 }
6957
6958 /* Similar to remote_read_bytes_1, but it reads from the remote stub
6959 first if the requested memory is unavailable in traceframe.
6960 Otherwise, fall back to remote_read_bytes_1. */
6961
6962 static enum target_xfer_status
6963 remote_read_bytes (struct target_ops *ops, CORE_ADDR memaddr,
6964 gdb_byte *myaddr, ULONGEST len, ULONGEST *xfered_len)
6965 {
6966 if (len == 0)
6967 return 0;
6968
6969 if (get_traceframe_number () != -1)
6970 {
6971 VEC(mem_range_s) *available;
6972
6973 /* If we fail to get the set of available memory, then the
6974 target does not support querying traceframe info, and so we
6975 attempt reading from the traceframe anyway (assuming the
6976 target implements the old QTro packet then). */
6977 if (traceframe_available_memory (&available, memaddr, len))
6978 {
6979 struct cleanup *old_chain;
6980
6981 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
6982
6983 if (VEC_empty (mem_range_s, available)
6984 || VEC_index (mem_range_s, available, 0)->start != memaddr)
6985 {
6986 enum target_xfer_status res;
6987
6988 /* Don't read into the traceframe's available
6989 memory. */
6990 if (!VEC_empty (mem_range_s, available))
6991 {
6992 LONGEST oldlen = len;
6993
6994 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
6995 gdb_assert (len <= oldlen);
6996 }
6997
6998 do_cleanups (old_chain);
6999
7000 /* This goes through the topmost target again. */
7001 res = memory_xfer_live_readonly_partial (ops,
7002 TARGET_OBJECT_MEMORY,
7003 myaddr, memaddr,
7004 len, xfered_len);
7005 if (res == TARGET_XFER_OK)
7006 return TARGET_XFER_OK;
7007 else
7008 {
7009 /* No use trying further, we know some memory starting
7010 at MEMADDR isn't available. */
7011 *xfered_len = len;
7012 return TARGET_XFER_UNAVAILABLE;
7013 }
7014 }
7015
7016 /* Don't try to read more than how much is available, in
7017 case the target implements the deprecated QTro packet to
7018 cater for older GDBs (the target's knowledge of read-only
7019 sections may be outdated by now). */
7020 len = VEC_index (mem_range_s, available, 0)->length;
7021
7022 do_cleanups (old_chain);
7023 }
7024 }
7025
7026 return remote_read_bytes_1 (memaddr, myaddr, len, xfered_len);
7027 }
7028
7029 \f
7030
7031 /* Sends a packet with content determined by the printf format string
7032 FORMAT and the remaining arguments, then gets the reply. Returns
7033 whether the packet was a success, a failure, or unknown. */
7034
7035 static enum packet_result
7036 remote_send_printf (const char *format, ...)
7037 {
7038 struct remote_state *rs = get_remote_state ();
7039 int max_size = get_remote_packet_size ();
7040 va_list ap;
7041
7042 va_start (ap, format);
7043
7044 rs->buf[0] = '\0';
7045 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
7046 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
7047
7048 if (putpkt (rs->buf) < 0)
7049 error (_("Communication problem with target."));
7050
7051 rs->buf[0] = '\0';
7052 getpkt (&rs->buf, &rs->buf_size, 0);
7053
7054 return packet_check_result (rs->buf);
7055 }
7056
7057 static void
7058 restore_remote_timeout (void *p)
7059 {
7060 int value = *(int *)p;
7061
7062 remote_timeout = value;
7063 }
7064
7065 /* Flash writing can take quite some time. We'll set
7066 effectively infinite timeout for flash operations.
7067 In future, we'll need to decide on a better approach. */
7068 static const int remote_flash_timeout = 1000;
7069
7070 static void
7071 remote_flash_erase (struct target_ops *ops,
7072 ULONGEST address, LONGEST length)
7073 {
7074 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
7075 int saved_remote_timeout = remote_timeout;
7076 enum packet_result ret;
7077 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7078 &saved_remote_timeout);
7079
7080 remote_timeout = remote_flash_timeout;
7081
7082 ret = remote_send_printf ("vFlashErase:%s,%s",
7083 phex (address, addr_size),
7084 phex (length, 4));
7085 switch (ret)
7086 {
7087 case PACKET_UNKNOWN:
7088 error (_("Remote target does not support flash erase"));
7089 case PACKET_ERROR:
7090 error (_("Error erasing flash with vFlashErase packet"));
7091 default:
7092 break;
7093 }
7094
7095 do_cleanups (back_to);
7096 }
7097
7098 static enum target_xfer_status
7099 remote_flash_write (struct target_ops *ops, ULONGEST address,
7100 ULONGEST length, ULONGEST *xfered_len,
7101 const gdb_byte *data)
7102 {
7103 int saved_remote_timeout = remote_timeout;
7104 enum target_xfer_status ret;
7105 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7106 &saved_remote_timeout);
7107
7108 remote_timeout = remote_flash_timeout;
7109 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length,
7110 xfered_len,'X', 0);
7111 do_cleanups (back_to);
7112
7113 return ret;
7114 }
7115
7116 static void
7117 remote_flash_done (struct target_ops *ops)
7118 {
7119 int saved_remote_timeout = remote_timeout;
7120 int ret;
7121 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7122 &saved_remote_timeout);
7123
7124 remote_timeout = remote_flash_timeout;
7125 ret = remote_send_printf ("vFlashDone");
7126 do_cleanups (back_to);
7127
7128 switch (ret)
7129 {
7130 case PACKET_UNKNOWN:
7131 error (_("Remote target does not support vFlashDone"));
7132 case PACKET_ERROR:
7133 error (_("Error finishing flash operation"));
7134 default:
7135 break;
7136 }
7137 }
7138
7139 static void
7140 remote_files_info (struct target_ops *ignore)
7141 {
7142 puts_filtered ("Debugging a target over a serial line.\n");
7143 }
7144 \f
7145 /* Stuff for dealing with the packets which are part of this protocol.
7146 See comment at top of file for details. */
7147
7148 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
7149 error to higher layers. Called when a serial error is detected.
7150 The exception message is STRING, followed by a colon and a blank,
7151 the system error message for errno at function entry and final dot
7152 for output compatibility with throw_perror_with_name. */
7153
7154 static void
7155 unpush_and_perror (const char *string)
7156 {
7157 int saved_errno = errno;
7158
7159 remote_unpush_target ();
7160 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
7161 safe_strerror (saved_errno));
7162 }
7163
7164 /* Read a single character from the remote end. */
7165
7166 static int
7167 readchar (int timeout)
7168 {
7169 int ch;
7170 struct remote_state *rs = get_remote_state ();
7171
7172 ch = serial_readchar (rs->remote_desc, timeout);
7173
7174 if (ch >= 0)
7175 return ch;
7176
7177 switch ((enum serial_rc) ch)
7178 {
7179 case SERIAL_EOF:
7180 remote_unpush_target ();
7181 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
7182 /* no return */
7183 case SERIAL_ERROR:
7184 unpush_and_perror (_("Remote communication error. "
7185 "Target disconnected."));
7186 /* no return */
7187 case SERIAL_TIMEOUT:
7188 break;
7189 }
7190 return ch;
7191 }
7192
7193 /* Wrapper for serial_write that closes the target and throws if
7194 writing fails. */
7195
7196 static void
7197 remote_serial_write (const char *str, int len)
7198 {
7199 struct remote_state *rs = get_remote_state ();
7200
7201 if (serial_write (rs->remote_desc, str, len))
7202 {
7203 unpush_and_perror (_("Remote communication error. "
7204 "Target disconnected."));
7205 }
7206 }
7207
7208 /* Send the command in *BUF to the remote machine, and read the reply
7209 into *BUF. Report an error if we get an error reply. Resize
7210 *BUF using xrealloc if necessary to hold the result, and update
7211 *SIZEOF_BUF. */
7212
7213 static void
7214 remote_send (char **buf,
7215 long *sizeof_buf)
7216 {
7217 putpkt (*buf);
7218 getpkt (buf, sizeof_buf, 0);
7219
7220 if ((*buf)[0] == 'E')
7221 error (_("Remote failure reply: %s"), *buf);
7222 }
7223
7224 /* Return a pointer to an xmalloc'ed string representing an escaped
7225 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
7226 etc. The caller is responsible for releasing the returned
7227 memory. */
7228
7229 static char *
7230 escape_buffer (const char *buf, int n)
7231 {
7232 struct cleanup *old_chain;
7233 struct ui_file *stb;
7234 char *str;
7235
7236 stb = mem_fileopen ();
7237 old_chain = make_cleanup_ui_file_delete (stb);
7238
7239 fputstrn_unfiltered (buf, n, 0, stb);
7240 str = ui_file_xstrdup (stb, NULL);
7241 do_cleanups (old_chain);
7242 return str;
7243 }
7244
7245 /* Display a null-terminated packet on stdout, for debugging, using C
7246 string notation. */
7247
7248 static void
7249 print_packet (char *buf)
7250 {
7251 puts_filtered ("\"");
7252 fputstr_filtered (buf, '"', gdb_stdout);
7253 puts_filtered ("\"");
7254 }
7255
7256 int
7257 putpkt (char *buf)
7258 {
7259 return putpkt_binary (buf, strlen (buf));
7260 }
7261
7262 /* Send a packet to the remote machine, with error checking. The data
7263 of the packet is in BUF. The string in BUF can be at most
7264 get_remote_packet_size () - 5 to account for the $, # and checksum,
7265 and for a possible /0 if we are debugging (remote_debug) and want
7266 to print the sent packet as a string. */
7267
7268 static int
7269 putpkt_binary (char *buf, int cnt)
7270 {
7271 struct remote_state *rs = get_remote_state ();
7272 int i;
7273 unsigned char csum = 0;
7274 char *buf2 = alloca (cnt + 6);
7275
7276 int ch;
7277 int tcount = 0;
7278 char *p;
7279 char *message;
7280
7281 /* Catch cases like trying to read memory or listing threads while
7282 we're waiting for a stop reply. The remote server wouldn't be
7283 ready to handle this request, so we'd hang and timeout. We don't
7284 have to worry about this in synchronous mode, because in that
7285 case it's not possible to issue a command while the target is
7286 running. This is not a problem in non-stop mode, because in that
7287 case, the stub is always ready to process serial input. */
7288 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
7289 error (_("Cannot execute this command while the target is running."));
7290
7291 /* We're sending out a new packet. Make sure we don't look at a
7292 stale cached response. */
7293 rs->cached_wait_status = 0;
7294
7295 /* Copy the packet into buffer BUF2, encapsulating it
7296 and giving it a checksum. */
7297
7298 p = buf2;
7299 *p++ = '$';
7300
7301 for (i = 0; i < cnt; i++)
7302 {
7303 csum += buf[i];
7304 *p++ = buf[i];
7305 }
7306 *p++ = '#';
7307 *p++ = tohex ((csum >> 4) & 0xf);
7308 *p++ = tohex (csum & 0xf);
7309
7310 /* Send it over and over until we get a positive ack. */
7311
7312 while (1)
7313 {
7314 int started_error_output = 0;
7315
7316 if (remote_debug)
7317 {
7318 struct cleanup *old_chain;
7319 char *str;
7320
7321 *p = '\0';
7322 str = escape_buffer (buf2, p - buf2);
7323 old_chain = make_cleanup (xfree, str);
7324 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
7325 gdb_flush (gdb_stdlog);
7326 do_cleanups (old_chain);
7327 }
7328 remote_serial_write (buf2, p - buf2);
7329
7330 /* If this is a no acks version of the remote protocol, send the
7331 packet and move on. */
7332 if (rs->noack_mode)
7333 break;
7334
7335 /* Read until either a timeout occurs (-2) or '+' is read.
7336 Handle any notification that arrives in the mean time. */
7337 while (1)
7338 {
7339 ch = readchar (remote_timeout);
7340
7341 if (remote_debug)
7342 {
7343 switch (ch)
7344 {
7345 case '+':
7346 case '-':
7347 case SERIAL_TIMEOUT:
7348 case '$':
7349 case '%':
7350 if (started_error_output)
7351 {
7352 putchar_unfiltered ('\n');
7353 started_error_output = 0;
7354 }
7355 }
7356 }
7357
7358 switch (ch)
7359 {
7360 case '+':
7361 if (remote_debug)
7362 fprintf_unfiltered (gdb_stdlog, "Ack\n");
7363 return 1;
7364 case '-':
7365 if (remote_debug)
7366 fprintf_unfiltered (gdb_stdlog, "Nak\n");
7367 /* FALLTHROUGH */
7368 case SERIAL_TIMEOUT:
7369 tcount++;
7370 if (tcount > 3)
7371 return 0;
7372 break; /* Retransmit buffer. */
7373 case '$':
7374 {
7375 if (remote_debug)
7376 fprintf_unfiltered (gdb_stdlog,
7377 "Packet instead of Ack, ignoring it\n");
7378 /* It's probably an old response sent because an ACK
7379 was lost. Gobble up the packet and ack it so it
7380 doesn't get retransmitted when we resend this
7381 packet. */
7382 skip_frame ();
7383 remote_serial_write ("+", 1);
7384 continue; /* Now, go look for +. */
7385 }
7386
7387 case '%':
7388 {
7389 int val;
7390
7391 /* If we got a notification, handle it, and go back to looking
7392 for an ack. */
7393 /* We've found the start of a notification. Now
7394 collect the data. */
7395 val = read_frame (&rs->buf, &rs->buf_size);
7396 if (val >= 0)
7397 {
7398 if (remote_debug)
7399 {
7400 struct cleanup *old_chain;
7401 char *str;
7402
7403 str = escape_buffer (rs->buf, val);
7404 old_chain = make_cleanup (xfree, str);
7405 fprintf_unfiltered (gdb_stdlog,
7406 " Notification received: %s\n",
7407 str);
7408 do_cleanups (old_chain);
7409 }
7410 handle_notification (rs->notif_state, rs->buf);
7411 /* We're in sync now, rewait for the ack. */
7412 tcount = 0;
7413 }
7414 else
7415 {
7416 if (remote_debug)
7417 {
7418 if (!started_error_output)
7419 {
7420 started_error_output = 1;
7421 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7422 }
7423 fputc_unfiltered (ch & 0177, gdb_stdlog);
7424 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
7425 }
7426 }
7427 continue;
7428 }
7429 /* fall-through */
7430 default:
7431 if (remote_debug)
7432 {
7433 if (!started_error_output)
7434 {
7435 started_error_output = 1;
7436 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7437 }
7438 fputc_unfiltered (ch & 0177, gdb_stdlog);
7439 }
7440 continue;
7441 }
7442 break; /* Here to retransmit. */
7443 }
7444
7445 #if 0
7446 /* This is wrong. If doing a long backtrace, the user should be
7447 able to get out next time we call QUIT, without anything as
7448 violent as interrupt_query. If we want to provide a way out of
7449 here without getting to the next QUIT, it should be based on
7450 hitting ^C twice as in remote_wait. */
7451 if (quit_flag)
7452 {
7453 quit_flag = 0;
7454 interrupt_query ();
7455 }
7456 #endif
7457 }
7458 return 0;
7459 }
7460
7461 /* Come here after finding the start of a frame when we expected an
7462 ack. Do our best to discard the rest of this packet. */
7463
7464 static void
7465 skip_frame (void)
7466 {
7467 int c;
7468
7469 while (1)
7470 {
7471 c = readchar (remote_timeout);
7472 switch (c)
7473 {
7474 case SERIAL_TIMEOUT:
7475 /* Nothing we can do. */
7476 return;
7477 case '#':
7478 /* Discard the two bytes of checksum and stop. */
7479 c = readchar (remote_timeout);
7480 if (c >= 0)
7481 c = readchar (remote_timeout);
7482
7483 return;
7484 case '*': /* Run length encoding. */
7485 /* Discard the repeat count. */
7486 c = readchar (remote_timeout);
7487 if (c < 0)
7488 return;
7489 break;
7490 default:
7491 /* A regular character. */
7492 break;
7493 }
7494 }
7495 }
7496
7497 /* Come here after finding the start of the frame. Collect the rest
7498 into *BUF, verifying the checksum, length, and handling run-length
7499 compression. NUL terminate the buffer. If there is not enough room,
7500 expand *BUF using xrealloc.
7501
7502 Returns -1 on error, number of characters in buffer (ignoring the
7503 trailing NULL) on success. (could be extended to return one of the
7504 SERIAL status indications). */
7505
7506 static long
7507 read_frame (char **buf_p,
7508 long *sizeof_buf)
7509 {
7510 unsigned char csum;
7511 long bc;
7512 int c;
7513 char *buf = *buf_p;
7514 struct remote_state *rs = get_remote_state ();
7515
7516 csum = 0;
7517 bc = 0;
7518
7519 while (1)
7520 {
7521 c = readchar (remote_timeout);
7522 switch (c)
7523 {
7524 case SERIAL_TIMEOUT:
7525 if (remote_debug)
7526 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
7527 return -1;
7528 case '$':
7529 if (remote_debug)
7530 fputs_filtered ("Saw new packet start in middle of old one\n",
7531 gdb_stdlog);
7532 return -1; /* Start a new packet, count retries. */
7533 case '#':
7534 {
7535 unsigned char pktcsum;
7536 int check_0 = 0;
7537 int check_1 = 0;
7538
7539 buf[bc] = '\0';
7540
7541 check_0 = readchar (remote_timeout);
7542 if (check_0 >= 0)
7543 check_1 = readchar (remote_timeout);
7544
7545 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
7546 {
7547 if (remote_debug)
7548 fputs_filtered ("Timeout in checksum, retrying\n",
7549 gdb_stdlog);
7550 return -1;
7551 }
7552 else if (check_0 < 0 || check_1 < 0)
7553 {
7554 if (remote_debug)
7555 fputs_filtered ("Communication error in checksum\n",
7556 gdb_stdlog);
7557 return -1;
7558 }
7559
7560 /* Don't recompute the checksum; with no ack packets we
7561 don't have any way to indicate a packet retransmission
7562 is necessary. */
7563 if (rs->noack_mode)
7564 return bc;
7565
7566 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
7567 if (csum == pktcsum)
7568 return bc;
7569
7570 if (remote_debug)
7571 {
7572 struct cleanup *old_chain;
7573 char *str;
7574
7575 str = escape_buffer (buf, bc);
7576 old_chain = make_cleanup (xfree, str);
7577 fprintf_unfiltered (gdb_stdlog,
7578 "Bad checksum, sentsum=0x%x, "
7579 "csum=0x%x, buf=%s\n",
7580 pktcsum, csum, str);
7581 do_cleanups (old_chain);
7582 }
7583 /* Number of characters in buffer ignoring trailing
7584 NULL. */
7585 return -1;
7586 }
7587 case '*': /* Run length encoding. */
7588 {
7589 int repeat;
7590
7591 csum += c;
7592 c = readchar (remote_timeout);
7593 csum += c;
7594 repeat = c - ' ' + 3; /* Compute repeat count. */
7595
7596 /* The character before ``*'' is repeated. */
7597
7598 if (repeat > 0 && repeat <= 255 && bc > 0)
7599 {
7600 if (bc + repeat - 1 >= *sizeof_buf - 1)
7601 {
7602 /* Make some more room in the buffer. */
7603 *sizeof_buf += repeat;
7604 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7605 buf = *buf_p;
7606 }
7607
7608 memset (&buf[bc], buf[bc - 1], repeat);
7609 bc += repeat;
7610 continue;
7611 }
7612
7613 buf[bc] = '\0';
7614 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
7615 return -1;
7616 }
7617 default:
7618 if (bc >= *sizeof_buf - 1)
7619 {
7620 /* Make some more room in the buffer. */
7621 *sizeof_buf *= 2;
7622 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7623 buf = *buf_p;
7624 }
7625
7626 buf[bc++] = c;
7627 csum += c;
7628 continue;
7629 }
7630 }
7631 }
7632
7633 /* Read a packet from the remote machine, with error checking, and
7634 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7635 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7636 rather than timing out; this is used (in synchronous mode) to wait
7637 for a target that is is executing user code to stop. */
7638 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
7639 don't have to change all the calls to getpkt to deal with the
7640 return value, because at the moment I don't know what the right
7641 thing to do it for those. */
7642 void
7643 getpkt (char **buf,
7644 long *sizeof_buf,
7645 int forever)
7646 {
7647 int timed_out;
7648
7649 timed_out = getpkt_sane (buf, sizeof_buf, forever);
7650 }
7651
7652
7653 /* Read a packet from the remote machine, with error checking, and
7654 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7655 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7656 rather than timing out; this is used (in synchronous mode) to wait
7657 for a target that is is executing user code to stop. If FOREVER ==
7658 0, this function is allowed to time out gracefully and return an
7659 indication of this to the caller. Otherwise return the number of
7660 bytes read. If EXPECTING_NOTIF, consider receiving a notification
7661 enough reason to return to the caller. *IS_NOTIF is an output
7662 boolean that indicates whether *BUF holds a notification or not
7663 (a regular packet). */
7664
7665 static int
7666 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
7667 int expecting_notif, int *is_notif)
7668 {
7669 struct remote_state *rs = get_remote_state ();
7670 int c;
7671 int tries;
7672 int timeout;
7673 int val = -1;
7674
7675 /* We're reading a new response. Make sure we don't look at a
7676 previously cached response. */
7677 rs->cached_wait_status = 0;
7678
7679 strcpy (*buf, "timeout");
7680
7681 if (forever)
7682 timeout = watchdog > 0 ? watchdog : -1;
7683 else if (expecting_notif)
7684 timeout = 0; /* There should already be a char in the buffer. If
7685 not, bail out. */
7686 else
7687 timeout = remote_timeout;
7688
7689 #define MAX_TRIES 3
7690
7691 /* Process any number of notifications, and then return when
7692 we get a packet. */
7693 for (;;)
7694 {
7695 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
7696 times. */
7697 for (tries = 1; tries <= MAX_TRIES; tries++)
7698 {
7699 /* This can loop forever if the remote side sends us
7700 characters continuously, but if it pauses, we'll get
7701 SERIAL_TIMEOUT from readchar because of timeout. Then
7702 we'll count that as a retry.
7703
7704 Note that even when forever is set, we will only wait
7705 forever prior to the start of a packet. After that, we
7706 expect characters to arrive at a brisk pace. They should
7707 show up within remote_timeout intervals. */
7708 do
7709 c = readchar (timeout);
7710 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
7711
7712 if (c == SERIAL_TIMEOUT)
7713 {
7714 if (expecting_notif)
7715 return -1; /* Don't complain, it's normal to not get
7716 anything in this case. */
7717
7718 if (forever) /* Watchdog went off? Kill the target. */
7719 {
7720 QUIT;
7721 remote_unpush_target ();
7722 throw_error (TARGET_CLOSE_ERROR,
7723 _("Watchdog timeout has expired. "
7724 "Target detached."));
7725 }
7726 if (remote_debug)
7727 fputs_filtered ("Timed out.\n", gdb_stdlog);
7728 }
7729 else
7730 {
7731 /* We've found the start of a packet or notification.
7732 Now collect the data. */
7733 val = read_frame (buf, sizeof_buf);
7734 if (val >= 0)
7735 break;
7736 }
7737
7738 remote_serial_write ("-", 1);
7739 }
7740
7741 if (tries > MAX_TRIES)
7742 {
7743 /* We have tried hard enough, and just can't receive the
7744 packet/notification. Give up. */
7745 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
7746
7747 /* Skip the ack char if we're in no-ack mode. */
7748 if (!rs->noack_mode)
7749 remote_serial_write ("+", 1);
7750 return -1;
7751 }
7752
7753 /* If we got an ordinary packet, return that to our caller. */
7754 if (c == '$')
7755 {
7756 if (remote_debug)
7757 {
7758 struct cleanup *old_chain;
7759 char *str;
7760
7761 str = escape_buffer (*buf, val);
7762 old_chain = make_cleanup (xfree, str);
7763 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
7764 do_cleanups (old_chain);
7765 }
7766
7767 /* Skip the ack char if we're in no-ack mode. */
7768 if (!rs->noack_mode)
7769 remote_serial_write ("+", 1);
7770 if (is_notif != NULL)
7771 *is_notif = 0;
7772 return val;
7773 }
7774
7775 /* If we got a notification, handle it, and go back to looking
7776 for a packet. */
7777 else
7778 {
7779 gdb_assert (c == '%');
7780
7781 if (remote_debug)
7782 {
7783 struct cleanup *old_chain;
7784 char *str;
7785
7786 str = escape_buffer (*buf, val);
7787 old_chain = make_cleanup (xfree, str);
7788 fprintf_unfiltered (gdb_stdlog,
7789 " Notification received: %s\n",
7790 str);
7791 do_cleanups (old_chain);
7792 }
7793 if (is_notif != NULL)
7794 *is_notif = 1;
7795
7796 handle_notification (rs->notif_state, *buf);
7797
7798 /* Notifications require no acknowledgement. */
7799
7800 if (expecting_notif)
7801 return val;
7802 }
7803 }
7804 }
7805
7806 static int
7807 getpkt_sane (char **buf, long *sizeof_buf, int forever)
7808 {
7809 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
7810 }
7811
7812 static int
7813 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
7814 int *is_notif)
7815 {
7816 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
7817 is_notif);
7818 }
7819
7820 \f
7821 static void
7822 remote_kill (struct target_ops *ops)
7823 {
7824 volatile struct gdb_exception ex;
7825
7826 /* Catch errors so the user can quit from gdb even when we
7827 aren't on speaking terms with the remote system. */
7828 TRY_CATCH (ex, RETURN_MASK_ERROR)
7829 {
7830 putpkt ("k");
7831 }
7832 if (ex.reason < 0)
7833 {
7834 if (ex.error == TARGET_CLOSE_ERROR)
7835 {
7836 /* If we got an (EOF) error that caused the target
7837 to go away, then we're done, that's what we wanted.
7838 "k" is susceptible to cause a premature EOF, given
7839 that the remote server isn't actually required to
7840 reply to "k", and it can happen that it doesn't
7841 even get to reply ACK to the "k". */
7842 return;
7843 }
7844
7845 /* Otherwise, something went wrong. We didn't actually kill
7846 the target. Just propagate the exception, and let the
7847 user or higher layers decide what to do. */
7848 throw_exception (ex);
7849 }
7850
7851 /* We've killed the remote end, we get to mourn it. Since this is
7852 target remote, single-process, mourning the inferior also
7853 unpushes remote_ops. */
7854 target_mourn_inferior ();
7855 }
7856
7857 static int
7858 remote_vkill (int pid, struct remote_state *rs)
7859 {
7860 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7861 return -1;
7862
7863 /* Tell the remote target to detach. */
7864 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
7865 putpkt (rs->buf);
7866 getpkt (&rs->buf, &rs->buf_size, 0);
7867
7868 if (packet_ok (rs->buf,
7869 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
7870 return 0;
7871 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7872 return -1;
7873 else
7874 return 1;
7875 }
7876
7877 static void
7878 extended_remote_kill (struct target_ops *ops)
7879 {
7880 int res;
7881 int pid = ptid_get_pid (inferior_ptid);
7882 struct remote_state *rs = get_remote_state ();
7883
7884 res = remote_vkill (pid, rs);
7885 if (res == -1 && !(rs->extended && remote_multi_process_p (rs)))
7886 {
7887 /* Don't try 'k' on a multi-process aware stub -- it has no way
7888 to specify the pid. */
7889
7890 putpkt ("k");
7891 #if 0
7892 getpkt (&rs->buf, &rs->buf_size, 0);
7893 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
7894 res = 1;
7895 #else
7896 /* Don't wait for it to die. I'm not really sure it matters whether
7897 we do or not. For the existing stubs, kill is a noop. */
7898 res = 0;
7899 #endif
7900 }
7901
7902 if (res != 0)
7903 error (_("Can't kill process"));
7904
7905 target_mourn_inferior ();
7906 }
7907
7908 static void
7909 remote_mourn (struct target_ops *ops)
7910 {
7911 remote_mourn_1 (ops);
7912 }
7913
7914 /* Worker function for remote_mourn. */
7915 static void
7916 remote_mourn_1 (struct target_ops *target)
7917 {
7918 unpush_target (target);
7919
7920 /* remote_close takes care of doing most of the clean up. */
7921 generic_mourn_inferior ();
7922 }
7923
7924 static void
7925 extended_remote_mourn_1 (struct target_ops *target)
7926 {
7927 struct remote_state *rs = get_remote_state ();
7928
7929 /* In case we got here due to an error, but we're going to stay
7930 connected. */
7931 rs->waiting_for_stop_reply = 0;
7932
7933 /* If the current general thread belonged to the process we just
7934 detached from or has exited, the remote side current general
7935 thread becomes undefined. Considering a case like this:
7936
7937 - We just got here due to a detach.
7938 - The process that we're detaching from happens to immediately
7939 report a global breakpoint being hit in non-stop mode, in the
7940 same thread we had selected before.
7941 - GDB attaches to this process again.
7942 - This event happens to be the next event we handle.
7943
7944 GDB would consider that the current general thread didn't need to
7945 be set on the stub side (with Hg), since for all it knew,
7946 GENERAL_THREAD hadn't changed.
7947
7948 Notice that although in all-stop mode, the remote server always
7949 sets the current thread to the thread reporting the stop event,
7950 that doesn't happen in non-stop mode; in non-stop, the stub *must
7951 not* change the current thread when reporting a breakpoint hit,
7952 due to the decoupling of event reporting and event handling.
7953
7954 To keep things simple, we always invalidate our notion of the
7955 current thread. */
7956 record_currthread (rs, minus_one_ptid);
7957
7958 /* Unlike "target remote", we do not want to unpush the target; then
7959 the next time the user says "run", we won't be connected. */
7960
7961 /* Call common code to mark the inferior as not running. */
7962 generic_mourn_inferior ();
7963
7964 if (!have_inferiors ())
7965 {
7966 if (!remote_multi_process_p (rs))
7967 {
7968 /* Check whether the target is running now - some remote stubs
7969 automatically restart after kill. */
7970 putpkt ("?");
7971 getpkt (&rs->buf, &rs->buf_size, 0);
7972
7973 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
7974 {
7975 /* Assume that the target has been restarted. Set
7976 inferior_ptid so that bits of core GDB realizes
7977 there's something here, e.g., so that the user can
7978 say "kill" again. */
7979 inferior_ptid = magic_null_ptid;
7980 }
7981 }
7982 }
7983 }
7984
7985 static void
7986 extended_remote_mourn (struct target_ops *ops)
7987 {
7988 extended_remote_mourn_1 (ops);
7989 }
7990
7991 static int
7992 extended_remote_supports_disable_randomization (struct target_ops *self)
7993 {
7994 return (remote_protocol_packets[PACKET_QDisableRandomization].support
7995 == PACKET_ENABLE);
7996 }
7997
7998 static void
7999 extended_remote_disable_randomization (int val)
8000 {
8001 struct remote_state *rs = get_remote_state ();
8002 char *reply;
8003
8004 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
8005 val);
8006 putpkt (rs->buf);
8007 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
8008 if (*reply == '\0')
8009 error (_("Target does not support QDisableRandomization."));
8010 if (strcmp (reply, "OK") != 0)
8011 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
8012 }
8013
8014 static int
8015 extended_remote_run (char *args)
8016 {
8017 struct remote_state *rs = get_remote_state ();
8018 int len;
8019
8020 /* If the user has disabled vRun support, or we have detected that
8021 support is not available, do not try it. */
8022 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
8023 return -1;
8024
8025 strcpy (rs->buf, "vRun;");
8026 len = strlen (rs->buf);
8027
8028 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
8029 error (_("Remote file name too long for run packet"));
8030 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len,
8031 strlen (remote_exec_file));
8032
8033 gdb_assert (args != NULL);
8034 if (*args)
8035 {
8036 struct cleanup *back_to;
8037 int i;
8038 char **argv;
8039
8040 argv = gdb_buildargv (args);
8041 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
8042 for (i = 0; argv[i] != NULL; i++)
8043 {
8044 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
8045 error (_("Argument list too long for run packet"));
8046 rs->buf[len++] = ';';
8047 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len,
8048 strlen (argv[i]));
8049 }
8050 do_cleanups (back_to);
8051 }
8052
8053 rs->buf[len++] = '\0';
8054
8055 putpkt (rs->buf);
8056 getpkt (&rs->buf, &rs->buf_size, 0);
8057
8058 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
8059 {
8060 /* We have a wait response. All is well. */
8061 return 0;
8062 }
8063 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
8064 /* It wasn't disabled before, but it is now. */
8065 return -1;
8066 else
8067 {
8068 if (remote_exec_file[0] == '\0')
8069 error (_("Running the default executable on the remote target failed; "
8070 "try \"set remote exec-file\"?"));
8071 else
8072 error (_("Running \"%s\" on the remote target failed"),
8073 remote_exec_file);
8074 }
8075 }
8076
8077 /* In the extended protocol we want to be able to do things like
8078 "run" and have them basically work as expected. So we need
8079 a special create_inferior function. We support changing the
8080 executable file and the command line arguments, but not the
8081 environment. */
8082
8083 static void
8084 extended_remote_create_inferior (struct target_ops *ops,
8085 char *exec_file, char *args,
8086 char **env, int from_tty)
8087 {
8088 int run_worked;
8089 char *stop_reply;
8090 struct remote_state *rs = get_remote_state ();
8091
8092 /* If running asynchronously, register the target file descriptor
8093 with the event loop. */
8094 if (target_can_async_p ())
8095 target_async (inferior_event_handler, 0);
8096
8097 /* Disable address space randomization if requested (and supported). */
8098 if (extended_remote_supports_disable_randomization (ops))
8099 extended_remote_disable_randomization (disable_randomization);
8100
8101 /* Now restart the remote server. */
8102 run_worked = extended_remote_run (args) != -1;
8103 if (!run_worked)
8104 {
8105 /* vRun was not supported. Fail if we need it to do what the
8106 user requested. */
8107 if (remote_exec_file[0])
8108 error (_("Remote target does not support \"set remote exec-file\""));
8109 if (args[0])
8110 error (_("Remote target does not support \"set args\" or run <ARGS>"));
8111
8112 /* Fall back to "R". */
8113 extended_remote_restart ();
8114 }
8115
8116 if (!have_inferiors ())
8117 {
8118 /* Clean up from the last time we ran, before we mark the target
8119 running again. This will mark breakpoints uninserted, and
8120 get_offsets may insert breakpoints. */
8121 init_thread_list ();
8122 init_wait_for_inferior ();
8123 }
8124
8125 /* vRun's success return is a stop reply. */
8126 stop_reply = run_worked ? rs->buf : NULL;
8127 add_current_inferior_and_thread (stop_reply);
8128
8129 /* Get updated offsets, if the stub uses qOffsets. */
8130 get_offsets ();
8131 }
8132 \f
8133
8134 /* Given a location's target info BP_TGT and the packet buffer BUF, output
8135 the list of conditions (in agent expression bytecode format), if any, the
8136 target needs to evaluate. The output is placed into the packet buffer
8137 started from BUF and ended at BUF_END. */
8138
8139 static int
8140 remote_add_target_side_condition (struct gdbarch *gdbarch,
8141 struct bp_target_info *bp_tgt, char *buf,
8142 char *buf_end)
8143 {
8144 struct agent_expr *aexpr = NULL;
8145 int i, ix;
8146 char *pkt;
8147 char *buf_start = buf;
8148
8149 if (VEC_empty (agent_expr_p, bp_tgt->conditions))
8150 return 0;
8151
8152 buf += strlen (buf);
8153 xsnprintf (buf, buf_end - buf, "%s", ";");
8154 buf++;
8155
8156 /* Send conditions to the target and free the vector. */
8157 for (ix = 0;
8158 VEC_iterate (agent_expr_p, bp_tgt->conditions, ix, aexpr);
8159 ix++)
8160 {
8161 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
8162 buf += strlen (buf);
8163 for (i = 0; i < aexpr->len; ++i)
8164 buf = pack_hex_byte (buf, aexpr->buf[i]);
8165 *buf = '\0';
8166 }
8167 return 0;
8168 }
8169
8170 static void
8171 remote_add_target_side_commands (struct gdbarch *gdbarch,
8172 struct bp_target_info *bp_tgt, char *buf)
8173 {
8174 struct agent_expr *aexpr = NULL;
8175 int i, ix;
8176
8177 if (VEC_empty (agent_expr_p, bp_tgt->tcommands))
8178 return;
8179
8180 buf += strlen (buf);
8181
8182 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
8183 buf += strlen (buf);
8184
8185 /* Concatenate all the agent expressions that are commands into the
8186 cmds parameter. */
8187 for (ix = 0;
8188 VEC_iterate (agent_expr_p, bp_tgt->tcommands, ix, aexpr);
8189 ix++)
8190 {
8191 sprintf (buf, "X%x,", aexpr->len);
8192 buf += strlen (buf);
8193 for (i = 0; i < aexpr->len; ++i)
8194 buf = pack_hex_byte (buf, aexpr->buf[i]);
8195 *buf = '\0';
8196 }
8197 }
8198
8199 /* Insert a breakpoint. On targets that have software breakpoint
8200 support, we ask the remote target to do the work; on targets
8201 which don't, we insert a traditional memory breakpoint. */
8202
8203 static int
8204 remote_insert_breakpoint (struct target_ops *ops,
8205 struct gdbarch *gdbarch,
8206 struct bp_target_info *bp_tgt)
8207 {
8208 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
8209 If it succeeds, then set the support to PACKET_ENABLE. If it
8210 fails, and the user has explicitly requested the Z support then
8211 report an error, otherwise, mark it disabled and go on. */
8212
8213 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
8214 {
8215 CORE_ADDR addr = bp_tgt->placed_address;
8216 struct remote_state *rs;
8217 char *p, *endbuf;
8218 int bpsize;
8219 struct condition_list *cond = NULL;
8220
8221 /* Make sure the remote is pointing at the right process, if
8222 necessary. */
8223 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8224 set_general_process ();
8225
8226 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
8227
8228 rs = get_remote_state ();
8229 p = rs->buf;
8230 endbuf = rs->buf + get_remote_packet_size ();
8231
8232 *(p++) = 'Z';
8233 *(p++) = '0';
8234 *(p++) = ',';
8235 addr = (ULONGEST) remote_address_masked (addr);
8236 p += hexnumstr (p, addr);
8237 xsnprintf (p, endbuf - p, ",%d", bpsize);
8238
8239 if (remote_supports_cond_breakpoints (ops))
8240 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
8241
8242 if (remote_can_run_breakpoint_commands (ops))
8243 remote_add_target_side_commands (gdbarch, bp_tgt, p);
8244
8245 putpkt (rs->buf);
8246 getpkt (&rs->buf, &rs->buf_size, 0);
8247
8248 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
8249 {
8250 case PACKET_ERROR:
8251 return -1;
8252 case PACKET_OK:
8253 bp_tgt->placed_address = addr;
8254 bp_tgt->placed_size = bpsize;
8255 return 0;
8256 case PACKET_UNKNOWN:
8257 break;
8258 }
8259 }
8260
8261 /* If this breakpoint has target-side commands but this stub doesn't
8262 support Z0 packets, throw error. */
8263 if (!VEC_empty (agent_expr_p, bp_tgt->tcommands))
8264 throw_error (NOT_SUPPORTED_ERROR, _("\
8265 Target doesn't support breakpoints that have target side commands."));
8266
8267 return memory_insert_breakpoint (ops, gdbarch, bp_tgt);
8268 }
8269
8270 static int
8271 remote_remove_breakpoint (struct target_ops *ops,
8272 struct gdbarch *gdbarch,
8273 struct bp_target_info *bp_tgt)
8274 {
8275 CORE_ADDR addr = bp_tgt->placed_address;
8276 struct remote_state *rs = get_remote_state ();
8277
8278 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
8279 {
8280 char *p = rs->buf;
8281 char *endbuf = rs->buf + get_remote_packet_size ();
8282
8283 /* Make sure the remote is pointing at the right process, if
8284 necessary. */
8285 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8286 set_general_process ();
8287
8288 *(p++) = 'z';
8289 *(p++) = '0';
8290 *(p++) = ',';
8291
8292 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
8293 p += hexnumstr (p, addr);
8294 xsnprintf (p, endbuf - p, ",%d", bp_tgt->placed_size);
8295
8296 putpkt (rs->buf);
8297 getpkt (&rs->buf, &rs->buf_size, 0);
8298
8299 return (rs->buf[0] == 'E');
8300 }
8301
8302 return memory_remove_breakpoint (ops, gdbarch, bp_tgt);
8303 }
8304
8305 static int
8306 watchpoint_to_Z_packet (int type)
8307 {
8308 switch (type)
8309 {
8310 case hw_write:
8311 return Z_PACKET_WRITE_WP;
8312 break;
8313 case hw_read:
8314 return Z_PACKET_READ_WP;
8315 break;
8316 case hw_access:
8317 return Z_PACKET_ACCESS_WP;
8318 break;
8319 default:
8320 internal_error (__FILE__, __LINE__,
8321 _("hw_bp_to_z: bad watchpoint type %d"), type);
8322 }
8323 }
8324
8325 static int
8326 remote_insert_watchpoint (struct target_ops *self,
8327 CORE_ADDR addr, int len, int type,
8328 struct expression *cond)
8329 {
8330 struct remote_state *rs = get_remote_state ();
8331 char *endbuf = rs->buf + get_remote_packet_size ();
8332 char *p;
8333 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
8334
8335 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
8336 return 1;
8337
8338 /* Make sure the remote is pointing at the right process, if
8339 necessary. */
8340 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8341 set_general_process ();
8342
8343 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
8344 p = strchr (rs->buf, '\0');
8345 addr = remote_address_masked (addr);
8346 p += hexnumstr (p, (ULONGEST) addr);
8347 xsnprintf (p, endbuf - p, ",%x", len);
8348
8349 putpkt (rs->buf);
8350 getpkt (&rs->buf, &rs->buf_size, 0);
8351
8352 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
8353 {
8354 case PACKET_ERROR:
8355 return -1;
8356 case PACKET_UNKNOWN:
8357 return 1;
8358 case PACKET_OK:
8359 return 0;
8360 }
8361 internal_error (__FILE__, __LINE__,
8362 _("remote_insert_watchpoint: reached end of function"));
8363 }
8364
8365 static int
8366 remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
8367 CORE_ADDR start, int length)
8368 {
8369 CORE_ADDR diff = remote_address_masked (addr - start);
8370
8371 return diff < length;
8372 }
8373
8374
8375 static int
8376 remote_remove_watchpoint (struct target_ops *self,
8377 CORE_ADDR addr, int len, int type,
8378 struct expression *cond)
8379 {
8380 struct remote_state *rs = get_remote_state ();
8381 char *endbuf = rs->buf + get_remote_packet_size ();
8382 char *p;
8383 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
8384
8385 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
8386 return -1;
8387
8388 /* Make sure the remote is pointing at the right process, if
8389 necessary. */
8390 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8391 set_general_process ();
8392
8393 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
8394 p = strchr (rs->buf, '\0');
8395 addr = remote_address_masked (addr);
8396 p += hexnumstr (p, (ULONGEST) addr);
8397 xsnprintf (p, endbuf - p, ",%x", len);
8398 putpkt (rs->buf);
8399 getpkt (&rs->buf, &rs->buf_size, 0);
8400
8401 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
8402 {
8403 case PACKET_ERROR:
8404 case PACKET_UNKNOWN:
8405 return -1;
8406 case PACKET_OK:
8407 return 0;
8408 }
8409 internal_error (__FILE__, __LINE__,
8410 _("remote_remove_watchpoint: reached end of function"));
8411 }
8412
8413
8414 int remote_hw_watchpoint_limit = -1;
8415 int remote_hw_watchpoint_length_limit = -1;
8416 int remote_hw_breakpoint_limit = -1;
8417
8418 static int
8419 remote_region_ok_for_hw_watchpoint (struct target_ops *self,
8420 CORE_ADDR addr, int len)
8421 {
8422 if (remote_hw_watchpoint_length_limit == 0)
8423 return 0;
8424 else if (remote_hw_watchpoint_length_limit < 0)
8425 return 1;
8426 else if (len <= remote_hw_watchpoint_length_limit)
8427 return 1;
8428 else
8429 return 0;
8430 }
8431
8432 static int
8433 remote_check_watch_resources (struct target_ops *self,
8434 int type, int cnt, int ot)
8435 {
8436 if (type == bp_hardware_breakpoint)
8437 {
8438 if (remote_hw_breakpoint_limit == 0)
8439 return 0;
8440 else if (remote_hw_breakpoint_limit < 0)
8441 return 1;
8442 else if (cnt <= remote_hw_breakpoint_limit)
8443 return 1;
8444 }
8445 else
8446 {
8447 if (remote_hw_watchpoint_limit == 0)
8448 return 0;
8449 else if (remote_hw_watchpoint_limit < 0)
8450 return 1;
8451 else if (ot)
8452 return -1;
8453 else if (cnt <= remote_hw_watchpoint_limit)
8454 return 1;
8455 }
8456 return -1;
8457 }
8458
8459 static int
8460 remote_stopped_by_watchpoint (struct target_ops *ops)
8461 {
8462 struct remote_state *rs = get_remote_state ();
8463
8464 return rs->remote_stopped_by_watchpoint_p;
8465 }
8466
8467 static int
8468 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
8469 {
8470 struct remote_state *rs = get_remote_state ();
8471 int rc = 0;
8472
8473 if (remote_stopped_by_watchpoint (target))
8474 {
8475 *addr_p = rs->remote_watch_data_address;
8476 rc = 1;
8477 }
8478
8479 return rc;
8480 }
8481
8482
8483 static int
8484 remote_insert_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
8485 struct bp_target_info *bp_tgt)
8486 {
8487 CORE_ADDR addr;
8488 struct remote_state *rs;
8489 char *p, *endbuf;
8490 char *message;
8491
8492 /* The length field should be set to the size of a breakpoint
8493 instruction, even though we aren't inserting one ourselves. */
8494
8495 gdbarch_remote_breakpoint_from_pc
8496 (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
8497
8498 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8499 return -1;
8500
8501 /* Make sure the remote is pointing at the right process, if
8502 necessary. */
8503 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8504 set_general_process ();
8505
8506 rs = get_remote_state ();
8507 p = rs->buf;
8508 endbuf = rs->buf + get_remote_packet_size ();
8509
8510 *(p++) = 'Z';
8511 *(p++) = '1';
8512 *(p++) = ',';
8513
8514 addr = remote_address_masked (bp_tgt->placed_address);
8515 p += hexnumstr (p, (ULONGEST) addr);
8516 xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size);
8517
8518 if (remote_supports_cond_breakpoints (self))
8519 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
8520
8521 if (remote_can_run_breakpoint_commands (self))
8522 remote_add_target_side_commands (gdbarch, bp_tgt, p);
8523
8524 putpkt (rs->buf);
8525 getpkt (&rs->buf, &rs->buf_size, 0);
8526
8527 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8528 {
8529 case PACKET_ERROR:
8530 if (rs->buf[1] == '.')
8531 {
8532 message = strchr (rs->buf + 2, '.');
8533 if (message)
8534 error (_("Remote failure reply: %s"), message + 1);
8535 }
8536 return -1;
8537 case PACKET_UNKNOWN:
8538 return -1;
8539 case PACKET_OK:
8540 return 0;
8541 }
8542 internal_error (__FILE__, __LINE__,
8543 _("remote_insert_hw_breakpoint: reached end of function"));
8544 }
8545
8546
8547 static int
8548 remote_remove_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
8549 struct bp_target_info *bp_tgt)
8550 {
8551 CORE_ADDR addr;
8552 struct remote_state *rs = get_remote_state ();
8553 char *p = rs->buf;
8554 char *endbuf = rs->buf + get_remote_packet_size ();
8555
8556 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8557 return -1;
8558
8559 /* Make sure the remote is pointing at the right process, if
8560 necessary. */
8561 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8562 set_general_process ();
8563
8564 *(p++) = 'z';
8565 *(p++) = '1';
8566 *(p++) = ',';
8567
8568 addr = remote_address_masked (bp_tgt->placed_address);
8569 p += hexnumstr (p, (ULONGEST) addr);
8570 xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size);
8571
8572 putpkt (rs->buf);
8573 getpkt (&rs->buf, &rs->buf_size, 0);
8574
8575 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8576 {
8577 case PACKET_ERROR:
8578 case PACKET_UNKNOWN:
8579 return -1;
8580 case PACKET_OK:
8581 return 0;
8582 }
8583 internal_error (__FILE__, __LINE__,
8584 _("remote_remove_hw_breakpoint: reached end of function"));
8585 }
8586
8587 /* Verify memory using the "qCRC:" request. */
8588
8589 static int
8590 remote_verify_memory (struct target_ops *ops,
8591 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
8592 {
8593 struct remote_state *rs = get_remote_state ();
8594 unsigned long host_crc, target_crc;
8595 char *tmp;
8596
8597 /* Make sure the remote is pointing at the right process. */
8598 set_general_process ();
8599
8600 /* FIXME: assumes lma can fit into long. */
8601 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
8602 (long) lma, (long) size);
8603 putpkt (rs->buf);
8604
8605 /* Be clever; compute the host_crc before waiting for target
8606 reply. */
8607 host_crc = xcrc32 (data, size, 0xffffffff);
8608
8609 getpkt (&rs->buf, &rs->buf_size, 0);
8610 if (rs->buf[0] == 'E')
8611 return -1;
8612
8613 if (rs->buf[0] != 'C')
8614 error (_("remote target does not support this operation"));
8615
8616 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
8617 target_crc = target_crc * 16 + fromhex (*tmp);
8618
8619 return (host_crc == target_crc);
8620 }
8621
8622 /* compare-sections command
8623
8624 With no arguments, compares each loadable section in the exec bfd
8625 with the same memory range on the target, and reports mismatches.
8626 Useful for verifying the image on the target against the exec file. */
8627
8628 static void
8629 compare_sections_command (char *args, int from_tty)
8630 {
8631 asection *s;
8632 struct cleanup *old_chain;
8633 gdb_byte *sectdata;
8634 const char *sectname;
8635 bfd_size_type size;
8636 bfd_vma lma;
8637 int matched = 0;
8638 int mismatched = 0;
8639 int res;
8640
8641 if (!exec_bfd)
8642 error (_("command cannot be used without an exec file"));
8643
8644 /* Make sure the remote is pointing at the right process. */
8645 set_general_process ();
8646
8647 for (s = exec_bfd->sections; s; s = s->next)
8648 {
8649 if (!(s->flags & SEC_LOAD))
8650 continue; /* Skip non-loadable section. */
8651
8652 size = bfd_get_section_size (s);
8653 if (size == 0)
8654 continue; /* Skip zero-length section. */
8655
8656 sectname = bfd_get_section_name (exec_bfd, s);
8657 if (args && strcmp (args, sectname) != 0)
8658 continue; /* Not the section selected by user. */
8659
8660 matched = 1; /* Do this section. */
8661 lma = s->lma;
8662
8663 sectdata = xmalloc (size);
8664 old_chain = make_cleanup (xfree, sectdata);
8665 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
8666
8667 res = target_verify_memory (sectdata, lma, size);
8668
8669 if (res == -1)
8670 error (_("target memory fault, section %s, range %s -- %s"), sectname,
8671 paddress (target_gdbarch (), lma),
8672 paddress (target_gdbarch (), lma + size));
8673
8674 printf_filtered ("Section %s, range %s -- %s: ", sectname,
8675 paddress (target_gdbarch (), lma),
8676 paddress (target_gdbarch (), lma + size));
8677 if (res)
8678 printf_filtered ("matched.\n");
8679 else
8680 {
8681 printf_filtered ("MIS-MATCHED!\n");
8682 mismatched++;
8683 }
8684
8685 do_cleanups (old_chain);
8686 }
8687 if (mismatched > 0)
8688 warning (_("One or more sections of the remote executable does not match\n\
8689 the loaded file\n"));
8690 if (args && !matched)
8691 printf_filtered (_("No loaded section named '%s'.\n"), args);
8692 }
8693
8694 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
8695 into remote target. The number of bytes written to the remote
8696 target is returned, or -1 for error. */
8697
8698 static enum target_xfer_status
8699 remote_write_qxfer (struct target_ops *ops, const char *object_name,
8700 const char *annex, const gdb_byte *writebuf,
8701 ULONGEST offset, LONGEST len, ULONGEST *xfered_len,
8702 struct packet_config *packet)
8703 {
8704 int i, buf_len;
8705 ULONGEST n;
8706 struct remote_state *rs = get_remote_state ();
8707 int max_size = get_memory_write_packet_size ();
8708
8709 if (packet->support == PACKET_DISABLE)
8710 return TARGET_XFER_E_IO;
8711
8712 /* Insert header. */
8713 i = snprintf (rs->buf, max_size,
8714 "qXfer:%s:write:%s:%s:",
8715 object_name, annex ? annex : "",
8716 phex_nz (offset, sizeof offset));
8717 max_size -= (i + 1);
8718
8719 /* Escape as much data as fits into rs->buf. */
8720 buf_len = remote_escape_output
8721 (writebuf, len, (gdb_byte *) rs->buf + i, &max_size, max_size);
8722
8723 if (putpkt_binary (rs->buf, i + buf_len) < 0
8724 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8725 || packet_ok (rs->buf, packet) != PACKET_OK)
8726 return TARGET_XFER_E_IO;
8727
8728 unpack_varlen_hex (rs->buf, &n);
8729
8730 *xfered_len = n;
8731 return TARGET_XFER_OK;
8732 }
8733
8734 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
8735 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
8736 number of bytes read is returned, or 0 for EOF, or -1 for error.
8737 The number of bytes read may be less than LEN without indicating an
8738 EOF. PACKET is checked and updated to indicate whether the remote
8739 target supports this object. */
8740
8741 static enum target_xfer_status
8742 remote_read_qxfer (struct target_ops *ops, const char *object_name,
8743 const char *annex,
8744 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
8745 ULONGEST *xfered_len,
8746 struct packet_config *packet)
8747 {
8748 struct remote_state *rs = get_remote_state ();
8749 LONGEST i, n, packet_len;
8750
8751 if (packet->support == PACKET_DISABLE)
8752 return TARGET_XFER_E_IO;
8753
8754 /* Check whether we've cached an end-of-object packet that matches
8755 this request. */
8756 if (rs->finished_object)
8757 {
8758 if (strcmp (object_name, rs->finished_object) == 0
8759 && strcmp (annex ? annex : "", rs->finished_annex) == 0
8760 && offset == rs->finished_offset)
8761 return TARGET_XFER_EOF;
8762
8763
8764 /* Otherwise, we're now reading something different. Discard
8765 the cache. */
8766 xfree (rs->finished_object);
8767 xfree (rs->finished_annex);
8768 rs->finished_object = NULL;
8769 rs->finished_annex = NULL;
8770 }
8771
8772 /* Request only enough to fit in a single packet. The actual data
8773 may not, since we don't know how much of it will need to be escaped;
8774 the target is free to respond with slightly less data. We subtract
8775 five to account for the response type and the protocol frame. */
8776 n = min (get_remote_packet_size () - 5, len);
8777 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
8778 object_name, annex ? annex : "",
8779 phex_nz (offset, sizeof offset),
8780 phex_nz (n, sizeof n));
8781 i = putpkt (rs->buf);
8782 if (i < 0)
8783 return TARGET_XFER_E_IO;
8784
8785 rs->buf[0] = '\0';
8786 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8787 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
8788 return TARGET_XFER_E_IO;
8789
8790 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
8791 error (_("Unknown remote qXfer reply: %s"), rs->buf);
8792
8793 /* 'm' means there is (or at least might be) more data after this
8794 batch. That does not make sense unless there's at least one byte
8795 of data in this reply. */
8796 if (rs->buf[0] == 'm' && packet_len == 1)
8797 error (_("Remote qXfer reply contained no data."));
8798
8799 /* Got some data. */
8800 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
8801 packet_len - 1, readbuf, n);
8802
8803 /* 'l' is an EOF marker, possibly including a final block of data,
8804 or possibly empty. If we have the final block of a non-empty
8805 object, record this fact to bypass a subsequent partial read. */
8806 if (rs->buf[0] == 'l' && offset + i > 0)
8807 {
8808 rs->finished_object = xstrdup (object_name);
8809 rs->finished_annex = xstrdup (annex ? annex : "");
8810 rs->finished_offset = offset + i;
8811 }
8812
8813 if (i == 0)
8814 return TARGET_XFER_EOF;
8815 else
8816 {
8817 *xfered_len = i;
8818 return TARGET_XFER_OK;
8819 }
8820 }
8821
8822 static enum target_xfer_status
8823 remote_xfer_partial (struct target_ops *ops, enum target_object object,
8824 const char *annex, gdb_byte *readbuf,
8825 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
8826 ULONGEST *xfered_len)
8827 {
8828 struct remote_state *rs;
8829 int i;
8830 char *p2;
8831 char query_type;
8832
8833 set_remote_traceframe ();
8834 set_general_thread (inferior_ptid);
8835
8836 rs = get_remote_state ();
8837
8838 /* Handle memory using the standard memory routines. */
8839 if (object == TARGET_OBJECT_MEMORY)
8840 {
8841 /* If the remote target is connected but not running, we should
8842 pass this request down to a lower stratum (e.g. the executable
8843 file). */
8844 if (!target_has_execution)
8845 return TARGET_XFER_EOF;
8846
8847 if (writebuf != NULL)
8848 return remote_write_bytes (offset, writebuf, len, xfered_len);
8849 else
8850 return remote_read_bytes (ops, offset, readbuf, len, xfered_len);
8851 }
8852
8853 /* Handle SPU memory using qxfer packets. */
8854 if (object == TARGET_OBJECT_SPU)
8855 {
8856 if (readbuf)
8857 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
8858 xfered_len, &remote_protocol_packets
8859 [PACKET_qXfer_spu_read]);
8860 else
8861 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
8862 xfered_len, &remote_protocol_packets
8863 [PACKET_qXfer_spu_write]);
8864 }
8865
8866 /* Handle extra signal info using qxfer packets. */
8867 if (object == TARGET_OBJECT_SIGNAL_INFO)
8868 {
8869 if (readbuf)
8870 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
8871 xfered_len, &remote_protocol_packets
8872 [PACKET_qXfer_siginfo_read]);
8873 else
8874 return remote_write_qxfer (ops, "siginfo", annex,
8875 writebuf, offset, len, xfered_len,
8876 &remote_protocol_packets
8877 [PACKET_qXfer_siginfo_write]);
8878 }
8879
8880 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
8881 {
8882 if (readbuf)
8883 return remote_read_qxfer (ops, "statictrace", annex,
8884 readbuf, offset, len, xfered_len,
8885 &remote_protocol_packets
8886 [PACKET_qXfer_statictrace_read]);
8887 else
8888 return TARGET_XFER_E_IO;
8889 }
8890
8891 /* Only handle flash writes. */
8892 if (writebuf != NULL)
8893 {
8894 LONGEST xfered;
8895
8896 switch (object)
8897 {
8898 case TARGET_OBJECT_FLASH:
8899 return remote_flash_write (ops, offset, len, xfered_len,
8900 writebuf);
8901
8902 default:
8903 return TARGET_XFER_E_IO;
8904 }
8905 }
8906
8907 /* Map pre-existing objects onto letters. DO NOT do this for new
8908 objects!!! Instead specify new query packets. */
8909 switch (object)
8910 {
8911 case TARGET_OBJECT_AVR:
8912 query_type = 'R';
8913 break;
8914
8915 case TARGET_OBJECT_AUXV:
8916 gdb_assert (annex == NULL);
8917 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
8918 xfered_len,
8919 &remote_protocol_packets[PACKET_qXfer_auxv]);
8920
8921 case TARGET_OBJECT_AVAILABLE_FEATURES:
8922 return remote_read_qxfer
8923 (ops, "features", annex, readbuf, offset, len, xfered_len,
8924 &remote_protocol_packets[PACKET_qXfer_features]);
8925
8926 case TARGET_OBJECT_LIBRARIES:
8927 return remote_read_qxfer
8928 (ops, "libraries", annex, readbuf, offset, len, xfered_len,
8929 &remote_protocol_packets[PACKET_qXfer_libraries]);
8930
8931 case TARGET_OBJECT_LIBRARIES_SVR4:
8932 return remote_read_qxfer
8933 (ops, "libraries-svr4", annex, readbuf, offset, len, xfered_len,
8934 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
8935
8936 case TARGET_OBJECT_MEMORY_MAP:
8937 gdb_assert (annex == NULL);
8938 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
8939 xfered_len,
8940 &remote_protocol_packets[PACKET_qXfer_memory_map]);
8941
8942 case TARGET_OBJECT_OSDATA:
8943 /* Should only get here if we're connected. */
8944 gdb_assert (rs->remote_desc);
8945 return remote_read_qxfer
8946 (ops, "osdata", annex, readbuf, offset, len, xfered_len,
8947 &remote_protocol_packets[PACKET_qXfer_osdata]);
8948
8949 case TARGET_OBJECT_THREADS:
8950 gdb_assert (annex == NULL);
8951 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
8952 xfered_len,
8953 &remote_protocol_packets[PACKET_qXfer_threads]);
8954
8955 case TARGET_OBJECT_TRACEFRAME_INFO:
8956 gdb_assert (annex == NULL);
8957 return remote_read_qxfer
8958 (ops, "traceframe-info", annex, readbuf, offset, len, xfered_len,
8959 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
8960
8961 case TARGET_OBJECT_FDPIC:
8962 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
8963 xfered_len,
8964 &remote_protocol_packets[PACKET_qXfer_fdpic]);
8965
8966 case TARGET_OBJECT_OPENVMS_UIB:
8967 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
8968 xfered_len,
8969 &remote_protocol_packets[PACKET_qXfer_uib]);
8970
8971 case TARGET_OBJECT_BTRACE:
8972 return remote_read_qxfer (ops, "btrace", annex, readbuf, offset, len,
8973 xfered_len,
8974 &remote_protocol_packets[PACKET_qXfer_btrace]);
8975
8976 default:
8977 return TARGET_XFER_E_IO;
8978 }
8979
8980 /* Note: a zero OFFSET and LEN can be used to query the minimum
8981 buffer size. */
8982 if (offset == 0 && len == 0)
8983 return (get_remote_packet_size ());
8984 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
8985 large enough let the caller deal with it. */
8986 if (len < get_remote_packet_size ())
8987 return TARGET_XFER_E_IO;
8988 len = get_remote_packet_size ();
8989
8990 /* Except for querying the minimum buffer size, target must be open. */
8991 if (!rs->remote_desc)
8992 error (_("remote query is only available after target open"));
8993
8994 gdb_assert (annex != NULL);
8995 gdb_assert (readbuf != NULL);
8996
8997 p2 = rs->buf;
8998 *p2++ = 'q';
8999 *p2++ = query_type;
9000
9001 /* We used one buffer char for the remote protocol q command and
9002 another for the query type. As the remote protocol encapsulation
9003 uses 4 chars plus one extra in case we are debugging
9004 (remote_debug), we have PBUFZIZ - 7 left to pack the query
9005 string. */
9006 i = 0;
9007 while (annex[i] && (i < (get_remote_packet_size () - 8)))
9008 {
9009 /* Bad caller may have sent forbidden characters. */
9010 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
9011 *p2++ = annex[i];
9012 i++;
9013 }
9014 *p2 = '\0';
9015 gdb_assert (annex[i] == '\0');
9016
9017 i = putpkt (rs->buf);
9018 if (i < 0)
9019 return TARGET_XFER_E_IO;
9020
9021 getpkt (&rs->buf, &rs->buf_size, 0);
9022 strcpy ((char *) readbuf, rs->buf);
9023
9024 *xfered_len = strlen ((char *) readbuf);
9025 return TARGET_XFER_OK;
9026 }
9027
9028 static int
9029 remote_search_memory (struct target_ops* ops,
9030 CORE_ADDR start_addr, ULONGEST search_space_len,
9031 const gdb_byte *pattern, ULONGEST pattern_len,
9032 CORE_ADDR *found_addrp)
9033 {
9034 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
9035 struct remote_state *rs = get_remote_state ();
9036 int max_size = get_memory_write_packet_size ();
9037 struct packet_config *packet =
9038 &remote_protocol_packets[PACKET_qSearch_memory];
9039 /* Number of packet bytes used to encode the pattern;
9040 this could be more than PATTERN_LEN due to escape characters. */
9041 int escaped_pattern_len;
9042 /* Amount of pattern that was encodable in the packet. */
9043 int used_pattern_len;
9044 int i;
9045 int found;
9046 ULONGEST found_addr;
9047
9048 /* Don't go to the target if we don't have to.
9049 This is done before checking packet->support to avoid the possibility that
9050 a success for this edge case means the facility works in general. */
9051 if (pattern_len > search_space_len)
9052 return 0;
9053 if (pattern_len == 0)
9054 {
9055 *found_addrp = start_addr;
9056 return 1;
9057 }
9058
9059 /* If we already know the packet isn't supported, fall back to the simple
9060 way of searching memory. */
9061
9062 if (packet->support == PACKET_DISABLE)
9063 {
9064 /* Target doesn't provided special support, fall back and use the
9065 standard support (copy memory and do the search here). */
9066 return simple_search_memory (ops, start_addr, search_space_len,
9067 pattern, pattern_len, found_addrp);
9068 }
9069
9070 /* Make sure the remote is pointing at the right process. */
9071 set_general_process ();
9072
9073 /* Insert header. */
9074 i = snprintf (rs->buf, max_size,
9075 "qSearch:memory:%s;%s;",
9076 phex_nz (start_addr, addr_size),
9077 phex_nz (search_space_len, sizeof (search_space_len)));
9078 max_size -= (i + 1);
9079
9080 /* Escape as much data as fits into rs->buf. */
9081 escaped_pattern_len =
9082 remote_escape_output (pattern, pattern_len, (gdb_byte *) rs->buf + i,
9083 &used_pattern_len, max_size);
9084
9085 /* Bail if the pattern is too large. */
9086 if (used_pattern_len != pattern_len)
9087 error (_("Pattern is too large to transmit to remote target."));
9088
9089 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
9090 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
9091 || packet_ok (rs->buf, packet) != PACKET_OK)
9092 {
9093 /* The request may not have worked because the command is not
9094 supported. If so, fall back to the simple way. */
9095 if (packet->support == PACKET_DISABLE)
9096 {
9097 return simple_search_memory (ops, start_addr, search_space_len,
9098 pattern, pattern_len, found_addrp);
9099 }
9100 return -1;
9101 }
9102
9103 if (rs->buf[0] == '0')
9104 found = 0;
9105 else if (rs->buf[0] == '1')
9106 {
9107 found = 1;
9108 if (rs->buf[1] != ',')
9109 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
9110 unpack_varlen_hex (rs->buf + 2, &found_addr);
9111 *found_addrp = found_addr;
9112 }
9113 else
9114 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
9115
9116 return found;
9117 }
9118
9119 static void
9120 remote_rcmd (struct target_ops *self, char *command,
9121 struct ui_file *outbuf)
9122 {
9123 struct remote_state *rs = get_remote_state ();
9124 char *p = rs->buf;
9125
9126 if (!rs->remote_desc)
9127 error (_("remote rcmd is only available after target open"));
9128
9129 /* Send a NULL command across as an empty command. */
9130 if (command == NULL)
9131 command = "";
9132
9133 /* The query prefix. */
9134 strcpy (rs->buf, "qRcmd,");
9135 p = strchr (rs->buf, '\0');
9136
9137 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
9138 > get_remote_packet_size ())
9139 error (_("\"monitor\" command ``%s'' is too long."), command);
9140
9141 /* Encode the actual command. */
9142 bin2hex ((gdb_byte *) command, p, strlen (command));
9143
9144 if (putpkt (rs->buf) < 0)
9145 error (_("Communication problem with target."));
9146
9147 /* get/display the response */
9148 while (1)
9149 {
9150 char *buf;
9151
9152 /* XXX - see also remote_get_noisy_reply(). */
9153 QUIT; /* Allow user to bail out with ^C. */
9154 rs->buf[0] = '\0';
9155 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
9156 {
9157 /* Timeout. Continue to (try to) read responses.
9158 This is better than stopping with an error, assuming the stub
9159 is still executing the (long) monitor command.
9160 If needed, the user can interrupt gdb using C-c, obtaining
9161 an effect similar to stop on timeout. */
9162 continue;
9163 }
9164 buf = rs->buf;
9165 if (buf[0] == '\0')
9166 error (_("Target does not support this command."));
9167 if (buf[0] == 'O' && buf[1] != 'K')
9168 {
9169 remote_console_output (buf + 1); /* 'O' message from stub. */
9170 continue;
9171 }
9172 if (strcmp (buf, "OK") == 0)
9173 break;
9174 if (strlen (buf) == 3 && buf[0] == 'E'
9175 && isdigit (buf[1]) && isdigit (buf[2]))
9176 {
9177 error (_("Protocol error with Rcmd"));
9178 }
9179 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
9180 {
9181 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
9182
9183 fputc_unfiltered (c, outbuf);
9184 }
9185 break;
9186 }
9187 }
9188
9189 static VEC(mem_region_s) *
9190 remote_memory_map (struct target_ops *ops)
9191 {
9192 VEC(mem_region_s) *result = NULL;
9193 char *text = target_read_stralloc (&current_target,
9194 TARGET_OBJECT_MEMORY_MAP, NULL);
9195
9196 if (text)
9197 {
9198 struct cleanup *back_to = make_cleanup (xfree, text);
9199
9200 result = parse_memory_map (text);
9201 do_cleanups (back_to);
9202 }
9203
9204 return result;
9205 }
9206
9207 static void
9208 packet_command (char *args, int from_tty)
9209 {
9210 struct remote_state *rs = get_remote_state ();
9211
9212 if (!rs->remote_desc)
9213 error (_("command can only be used with remote target"));
9214
9215 if (!args)
9216 error (_("remote-packet command requires packet text as argument"));
9217
9218 puts_filtered ("sending: ");
9219 print_packet (args);
9220 puts_filtered ("\n");
9221 putpkt (args);
9222
9223 getpkt (&rs->buf, &rs->buf_size, 0);
9224 puts_filtered ("received: ");
9225 print_packet (rs->buf);
9226 puts_filtered ("\n");
9227 }
9228
9229 #if 0
9230 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
9231
9232 static void display_thread_info (struct gdb_ext_thread_info *info);
9233
9234 static void threadset_test_cmd (char *cmd, int tty);
9235
9236 static void threadalive_test (char *cmd, int tty);
9237
9238 static void threadlist_test_cmd (char *cmd, int tty);
9239
9240 int get_and_display_threadinfo (threadref *ref);
9241
9242 static void threadinfo_test_cmd (char *cmd, int tty);
9243
9244 static int thread_display_step (threadref *ref, void *context);
9245
9246 static void threadlist_update_test_cmd (char *cmd, int tty);
9247
9248 static void init_remote_threadtests (void);
9249
9250 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
9251
9252 static void
9253 threadset_test_cmd (char *cmd, int tty)
9254 {
9255 int sample_thread = SAMPLE_THREAD;
9256
9257 printf_filtered (_("Remote threadset test\n"));
9258 set_general_thread (sample_thread);
9259 }
9260
9261
9262 static void
9263 threadalive_test (char *cmd, int tty)
9264 {
9265 int sample_thread = SAMPLE_THREAD;
9266 int pid = ptid_get_pid (inferior_ptid);
9267 ptid_t ptid = ptid_build (pid, sample_thread, 0);
9268
9269 if (remote_thread_alive (ptid))
9270 printf_filtered ("PASS: Thread alive test\n");
9271 else
9272 printf_filtered ("FAIL: Thread alive test\n");
9273 }
9274
9275 void output_threadid (char *title, threadref *ref);
9276
9277 void
9278 output_threadid (char *title, threadref *ref)
9279 {
9280 char hexid[20];
9281
9282 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
9283 hexid[16] = 0;
9284 printf_filtered ("%s %s\n", title, (&hexid[0]));
9285 }
9286
9287 static void
9288 threadlist_test_cmd (char *cmd, int tty)
9289 {
9290 int startflag = 1;
9291 threadref nextthread;
9292 int done, result_count;
9293 threadref threadlist[3];
9294
9295 printf_filtered ("Remote Threadlist test\n");
9296 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
9297 &result_count, &threadlist[0]))
9298 printf_filtered ("FAIL: threadlist test\n");
9299 else
9300 {
9301 threadref *scan = threadlist;
9302 threadref *limit = scan + result_count;
9303
9304 while (scan < limit)
9305 output_threadid (" thread ", scan++);
9306 }
9307 }
9308
9309 void
9310 display_thread_info (struct gdb_ext_thread_info *info)
9311 {
9312 output_threadid ("Threadid: ", &info->threadid);
9313 printf_filtered ("Name: %s\n ", info->shortname);
9314 printf_filtered ("State: %s\n", info->display);
9315 printf_filtered ("other: %s\n\n", info->more_display);
9316 }
9317
9318 int
9319 get_and_display_threadinfo (threadref *ref)
9320 {
9321 int result;
9322 int set;
9323 struct gdb_ext_thread_info threadinfo;
9324
9325 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
9326 | TAG_MOREDISPLAY | TAG_DISPLAY;
9327 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
9328 display_thread_info (&threadinfo);
9329 return result;
9330 }
9331
9332 static void
9333 threadinfo_test_cmd (char *cmd, int tty)
9334 {
9335 int athread = SAMPLE_THREAD;
9336 threadref thread;
9337 int set;
9338
9339 int_to_threadref (&thread, athread);
9340 printf_filtered ("Remote Threadinfo test\n");
9341 if (!get_and_display_threadinfo (&thread))
9342 printf_filtered ("FAIL cannot get thread info\n");
9343 }
9344
9345 static int
9346 thread_display_step (threadref *ref, void *context)
9347 {
9348 /* output_threadid(" threadstep ",ref); *//* simple test */
9349 return get_and_display_threadinfo (ref);
9350 }
9351
9352 static void
9353 threadlist_update_test_cmd (char *cmd, int tty)
9354 {
9355 printf_filtered ("Remote Threadlist update test\n");
9356 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
9357 }
9358
9359 static void
9360 init_remote_threadtests (void)
9361 {
9362 add_com ("tlist", class_obscure, threadlist_test_cmd,
9363 _("Fetch and print the remote list of "
9364 "thread identifiers, one pkt only"));
9365 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
9366 _("Fetch and display info about one thread"));
9367 add_com ("tset", class_obscure, threadset_test_cmd,
9368 _("Test setting to a different thread"));
9369 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
9370 _("Iterate through updating all remote thread info"));
9371 add_com ("talive", class_obscure, threadalive_test,
9372 _(" Remote thread alive test "));
9373 }
9374
9375 #endif /* 0 */
9376
9377 /* Convert a thread ID to a string. Returns the string in a static
9378 buffer. */
9379
9380 static char *
9381 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
9382 {
9383 static char buf[64];
9384 struct remote_state *rs = get_remote_state ();
9385
9386 if (ptid_equal (ptid, null_ptid))
9387 return normal_pid_to_str (ptid);
9388 else if (ptid_is_pid (ptid))
9389 {
9390 /* Printing an inferior target id. */
9391
9392 /* When multi-process extensions are off, there's no way in the
9393 remote protocol to know the remote process id, if there's any
9394 at all. There's one exception --- when we're connected with
9395 target extended-remote, and we manually attached to a process
9396 with "attach PID". We don't record anywhere a flag that
9397 allows us to distinguish that case from the case of
9398 connecting with extended-remote and the stub already being
9399 attached to a process, and reporting yes to qAttached, hence
9400 no smart special casing here. */
9401 if (!remote_multi_process_p (rs))
9402 {
9403 xsnprintf (buf, sizeof buf, "Remote target");
9404 return buf;
9405 }
9406
9407 return normal_pid_to_str (ptid);
9408 }
9409 else
9410 {
9411 if (ptid_equal (magic_null_ptid, ptid))
9412 xsnprintf (buf, sizeof buf, "Thread <main>");
9413 else if (rs->extended && remote_multi_process_p (rs))
9414 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
9415 ptid_get_pid (ptid), ptid_get_lwp (ptid));
9416 else
9417 xsnprintf (buf, sizeof buf, "Thread %ld",
9418 ptid_get_lwp (ptid));
9419 return buf;
9420 }
9421 }
9422
9423 /* Get the address of the thread local variable in OBJFILE which is
9424 stored at OFFSET within the thread local storage for thread PTID. */
9425
9426 static CORE_ADDR
9427 remote_get_thread_local_address (struct target_ops *ops,
9428 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
9429 {
9430 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
9431 {
9432 struct remote_state *rs = get_remote_state ();
9433 char *p = rs->buf;
9434 char *endp = rs->buf + get_remote_packet_size ();
9435 enum packet_result result;
9436
9437 strcpy (p, "qGetTLSAddr:");
9438 p += strlen (p);
9439 p = write_ptid (p, endp, ptid);
9440 *p++ = ',';
9441 p += hexnumstr (p, offset);
9442 *p++ = ',';
9443 p += hexnumstr (p, lm);
9444 *p++ = '\0';
9445
9446 putpkt (rs->buf);
9447 getpkt (&rs->buf, &rs->buf_size, 0);
9448 result = packet_ok (rs->buf,
9449 &remote_protocol_packets[PACKET_qGetTLSAddr]);
9450 if (result == PACKET_OK)
9451 {
9452 ULONGEST result;
9453
9454 unpack_varlen_hex (rs->buf, &result);
9455 return result;
9456 }
9457 else if (result == PACKET_UNKNOWN)
9458 throw_error (TLS_GENERIC_ERROR,
9459 _("Remote target doesn't support qGetTLSAddr packet"));
9460 else
9461 throw_error (TLS_GENERIC_ERROR,
9462 _("Remote target failed to process qGetTLSAddr request"));
9463 }
9464 else
9465 throw_error (TLS_GENERIC_ERROR,
9466 _("TLS not supported or disabled on this target"));
9467 /* Not reached. */
9468 return 0;
9469 }
9470
9471 /* Provide thread local base, i.e. Thread Information Block address.
9472 Returns 1 if ptid is found and thread_local_base is non zero. */
9473
9474 static int
9475 remote_get_tib_address (struct target_ops *self, ptid_t ptid, CORE_ADDR *addr)
9476 {
9477 if (remote_protocol_packets[PACKET_qGetTIBAddr].support != PACKET_DISABLE)
9478 {
9479 struct remote_state *rs = get_remote_state ();
9480 char *p = rs->buf;
9481 char *endp = rs->buf + get_remote_packet_size ();
9482 enum packet_result result;
9483
9484 strcpy (p, "qGetTIBAddr:");
9485 p += strlen (p);
9486 p = write_ptid (p, endp, ptid);
9487 *p++ = '\0';
9488
9489 putpkt (rs->buf);
9490 getpkt (&rs->buf, &rs->buf_size, 0);
9491 result = packet_ok (rs->buf,
9492 &remote_protocol_packets[PACKET_qGetTIBAddr]);
9493 if (result == PACKET_OK)
9494 {
9495 ULONGEST result;
9496
9497 unpack_varlen_hex (rs->buf, &result);
9498 if (addr)
9499 *addr = (CORE_ADDR) result;
9500 return 1;
9501 }
9502 else if (result == PACKET_UNKNOWN)
9503 error (_("Remote target doesn't support qGetTIBAddr packet"));
9504 else
9505 error (_("Remote target failed to process qGetTIBAddr request"));
9506 }
9507 else
9508 error (_("qGetTIBAddr not supported or disabled on this target"));
9509 /* Not reached. */
9510 return 0;
9511 }
9512
9513 /* Support for inferring a target description based on the current
9514 architecture and the size of a 'g' packet. While the 'g' packet
9515 can have any size (since optional registers can be left off the
9516 end), some sizes are easily recognizable given knowledge of the
9517 approximate architecture. */
9518
9519 struct remote_g_packet_guess
9520 {
9521 int bytes;
9522 const struct target_desc *tdesc;
9523 };
9524 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
9525 DEF_VEC_O(remote_g_packet_guess_s);
9526
9527 struct remote_g_packet_data
9528 {
9529 VEC(remote_g_packet_guess_s) *guesses;
9530 };
9531
9532 static struct gdbarch_data *remote_g_packet_data_handle;
9533
9534 static void *
9535 remote_g_packet_data_init (struct obstack *obstack)
9536 {
9537 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
9538 }
9539
9540 void
9541 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
9542 const struct target_desc *tdesc)
9543 {
9544 struct remote_g_packet_data *data
9545 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
9546 struct remote_g_packet_guess new_guess, *guess;
9547 int ix;
9548
9549 gdb_assert (tdesc != NULL);
9550
9551 for (ix = 0;
9552 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9553 ix++)
9554 if (guess->bytes == bytes)
9555 internal_error (__FILE__, __LINE__,
9556 _("Duplicate g packet description added for size %d"),
9557 bytes);
9558
9559 new_guess.bytes = bytes;
9560 new_guess.tdesc = tdesc;
9561 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
9562 }
9563
9564 /* Return 1 if remote_read_description would do anything on this target
9565 and architecture, 0 otherwise. */
9566
9567 static int
9568 remote_read_description_p (struct target_ops *target)
9569 {
9570 struct remote_g_packet_data *data
9571 = gdbarch_data (target_gdbarch (), remote_g_packet_data_handle);
9572
9573 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9574 return 1;
9575
9576 return 0;
9577 }
9578
9579 static const struct target_desc *
9580 remote_read_description (struct target_ops *target)
9581 {
9582 struct remote_g_packet_data *data
9583 = gdbarch_data (target_gdbarch (), remote_g_packet_data_handle);
9584
9585 /* Do not try this during initial connection, when we do not know
9586 whether there is a running but stopped thread. */
9587 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
9588 return target->beneath->to_read_description (target->beneath);
9589
9590 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9591 {
9592 struct remote_g_packet_guess *guess;
9593 int ix;
9594 int bytes = send_g_packet ();
9595
9596 for (ix = 0;
9597 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9598 ix++)
9599 if (guess->bytes == bytes)
9600 return guess->tdesc;
9601
9602 /* We discard the g packet. A minor optimization would be to
9603 hold on to it, and fill the register cache once we have selected
9604 an architecture, but it's too tricky to do safely. */
9605 }
9606
9607 return target->beneath->to_read_description (target->beneath);
9608 }
9609
9610 /* Remote file transfer support. This is host-initiated I/O, not
9611 target-initiated; for target-initiated, see remote-fileio.c. */
9612
9613 /* If *LEFT is at least the length of STRING, copy STRING to
9614 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9615 decrease *LEFT. Otherwise raise an error. */
9616
9617 static void
9618 remote_buffer_add_string (char **buffer, int *left, char *string)
9619 {
9620 int len = strlen (string);
9621
9622 if (len > *left)
9623 error (_("Packet too long for target."));
9624
9625 memcpy (*buffer, string, len);
9626 *buffer += len;
9627 *left -= len;
9628
9629 /* NUL-terminate the buffer as a convenience, if there is
9630 room. */
9631 if (*left)
9632 **buffer = '\0';
9633 }
9634
9635 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
9636 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9637 decrease *LEFT. Otherwise raise an error. */
9638
9639 static void
9640 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
9641 int len)
9642 {
9643 if (2 * len > *left)
9644 error (_("Packet too long for target."));
9645
9646 bin2hex (bytes, *buffer, len);
9647 *buffer += 2 * len;
9648 *left -= 2 * len;
9649
9650 /* NUL-terminate the buffer as a convenience, if there is
9651 room. */
9652 if (*left)
9653 **buffer = '\0';
9654 }
9655
9656 /* If *LEFT is large enough, convert VALUE to hex and add it to
9657 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9658 decrease *LEFT. Otherwise raise an error. */
9659
9660 static void
9661 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
9662 {
9663 int len = hexnumlen (value);
9664
9665 if (len > *left)
9666 error (_("Packet too long for target."));
9667
9668 hexnumstr (*buffer, value);
9669 *buffer += len;
9670 *left -= len;
9671
9672 /* NUL-terminate the buffer as a convenience, if there is
9673 room. */
9674 if (*left)
9675 **buffer = '\0';
9676 }
9677
9678 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
9679 value, *REMOTE_ERRNO to the remote error number or zero if none
9680 was included, and *ATTACHMENT to point to the start of the annex
9681 if any. The length of the packet isn't needed here; there may
9682 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
9683
9684 Return 0 if the packet could be parsed, -1 if it could not. If
9685 -1 is returned, the other variables may not be initialized. */
9686
9687 static int
9688 remote_hostio_parse_result (char *buffer, int *retcode,
9689 int *remote_errno, char **attachment)
9690 {
9691 char *p, *p2;
9692
9693 *remote_errno = 0;
9694 *attachment = NULL;
9695
9696 if (buffer[0] != 'F')
9697 return -1;
9698
9699 errno = 0;
9700 *retcode = strtol (&buffer[1], &p, 16);
9701 if (errno != 0 || p == &buffer[1])
9702 return -1;
9703
9704 /* Check for ",errno". */
9705 if (*p == ',')
9706 {
9707 errno = 0;
9708 *remote_errno = strtol (p + 1, &p2, 16);
9709 if (errno != 0 || p + 1 == p2)
9710 return -1;
9711 p = p2;
9712 }
9713
9714 /* Check for ";attachment". If there is no attachment, the
9715 packet should end here. */
9716 if (*p == ';')
9717 {
9718 *attachment = p + 1;
9719 return 0;
9720 }
9721 else if (*p == '\0')
9722 return 0;
9723 else
9724 return -1;
9725 }
9726
9727 /* Send a prepared I/O packet to the target and read its response.
9728 The prepared packet is in the global RS->BUF before this function
9729 is called, and the answer is there when we return.
9730
9731 COMMAND_BYTES is the length of the request to send, which may include
9732 binary data. WHICH_PACKET is the packet configuration to check
9733 before attempting a packet. If an error occurs, *REMOTE_ERRNO
9734 is set to the error number and -1 is returned. Otherwise the value
9735 returned by the function is returned.
9736
9737 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
9738 attachment is expected; an error will be reported if there's a
9739 mismatch. If one is found, *ATTACHMENT will be set to point into
9740 the packet buffer and *ATTACHMENT_LEN will be set to the
9741 attachment's length. */
9742
9743 static int
9744 remote_hostio_send_command (int command_bytes, int which_packet,
9745 int *remote_errno, char **attachment,
9746 int *attachment_len)
9747 {
9748 struct remote_state *rs = get_remote_state ();
9749 int ret, bytes_read;
9750 char *attachment_tmp;
9751
9752 if (!rs->remote_desc
9753 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
9754 {
9755 *remote_errno = FILEIO_ENOSYS;
9756 return -1;
9757 }
9758
9759 putpkt_binary (rs->buf, command_bytes);
9760 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
9761
9762 /* If it timed out, something is wrong. Don't try to parse the
9763 buffer. */
9764 if (bytes_read < 0)
9765 {
9766 *remote_errno = FILEIO_EINVAL;
9767 return -1;
9768 }
9769
9770 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
9771 {
9772 case PACKET_ERROR:
9773 *remote_errno = FILEIO_EINVAL;
9774 return -1;
9775 case PACKET_UNKNOWN:
9776 *remote_errno = FILEIO_ENOSYS;
9777 return -1;
9778 case PACKET_OK:
9779 break;
9780 }
9781
9782 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
9783 &attachment_tmp))
9784 {
9785 *remote_errno = FILEIO_EINVAL;
9786 return -1;
9787 }
9788
9789 /* Make sure we saw an attachment if and only if we expected one. */
9790 if ((attachment_tmp == NULL && attachment != NULL)
9791 || (attachment_tmp != NULL && attachment == NULL))
9792 {
9793 *remote_errno = FILEIO_EINVAL;
9794 return -1;
9795 }
9796
9797 /* If an attachment was found, it must point into the packet buffer;
9798 work out how many bytes there were. */
9799 if (attachment_tmp != NULL)
9800 {
9801 *attachment = attachment_tmp;
9802 *attachment_len = bytes_read - (*attachment - rs->buf);
9803 }
9804
9805 return ret;
9806 }
9807
9808 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
9809 remote file descriptor, or -1 if an error occurs (and set
9810 *REMOTE_ERRNO). */
9811
9812 static int
9813 remote_hostio_open (struct target_ops *self,
9814 const char *filename, int flags, int mode,
9815 int *remote_errno)
9816 {
9817 struct remote_state *rs = get_remote_state ();
9818 char *p = rs->buf;
9819 int left = get_remote_packet_size () - 1;
9820
9821 remote_buffer_add_string (&p, &left, "vFile:open:");
9822
9823 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9824 strlen (filename));
9825 remote_buffer_add_string (&p, &left, ",");
9826
9827 remote_buffer_add_int (&p, &left, flags);
9828 remote_buffer_add_string (&p, &left, ",");
9829
9830 remote_buffer_add_int (&p, &left, mode);
9831
9832 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
9833 remote_errno, NULL, NULL);
9834 }
9835
9836 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
9837 Return the number of bytes written, or -1 if an error occurs (and
9838 set *REMOTE_ERRNO). */
9839
9840 static int
9841 remote_hostio_pwrite (struct target_ops *self,
9842 int fd, const gdb_byte *write_buf, int len,
9843 ULONGEST offset, int *remote_errno)
9844 {
9845 struct remote_state *rs = get_remote_state ();
9846 char *p = rs->buf;
9847 int left = get_remote_packet_size ();
9848 int out_len;
9849
9850 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
9851
9852 remote_buffer_add_int (&p, &left, fd);
9853 remote_buffer_add_string (&p, &left, ",");
9854
9855 remote_buffer_add_int (&p, &left, offset);
9856 remote_buffer_add_string (&p, &left, ",");
9857
9858 p += remote_escape_output (write_buf, len, (gdb_byte *) p, &out_len,
9859 get_remote_packet_size () - (p - rs->buf));
9860
9861 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
9862 remote_errno, NULL, NULL);
9863 }
9864
9865 /* Read up to LEN bytes FD on the remote target into READ_BUF
9866 Return the number of bytes read, or -1 if an error occurs (and
9867 set *REMOTE_ERRNO). */
9868
9869 static int
9870 remote_hostio_pread (struct target_ops *self,
9871 int fd, gdb_byte *read_buf, int len,
9872 ULONGEST offset, int *remote_errno)
9873 {
9874 struct remote_state *rs = get_remote_state ();
9875 char *p = rs->buf;
9876 char *attachment;
9877 int left = get_remote_packet_size ();
9878 int ret, attachment_len;
9879 int read_len;
9880
9881 remote_buffer_add_string (&p, &left, "vFile:pread:");
9882
9883 remote_buffer_add_int (&p, &left, fd);
9884 remote_buffer_add_string (&p, &left, ",");
9885
9886 remote_buffer_add_int (&p, &left, len);
9887 remote_buffer_add_string (&p, &left, ",");
9888
9889 remote_buffer_add_int (&p, &left, offset);
9890
9891 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
9892 remote_errno, &attachment,
9893 &attachment_len);
9894
9895 if (ret < 0)
9896 return ret;
9897
9898 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
9899 read_buf, len);
9900 if (read_len != ret)
9901 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
9902
9903 return ret;
9904 }
9905
9906 /* Close FD on the remote target. Return 0, or -1 if an error occurs
9907 (and set *REMOTE_ERRNO). */
9908
9909 static int
9910 remote_hostio_close (struct target_ops *self, int fd, int *remote_errno)
9911 {
9912 struct remote_state *rs = get_remote_state ();
9913 char *p = rs->buf;
9914 int left = get_remote_packet_size () - 1;
9915
9916 remote_buffer_add_string (&p, &left, "vFile:close:");
9917
9918 remote_buffer_add_int (&p, &left, fd);
9919
9920 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
9921 remote_errno, NULL, NULL);
9922 }
9923
9924 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
9925 occurs (and set *REMOTE_ERRNO). */
9926
9927 static int
9928 remote_hostio_unlink (struct target_ops *self,
9929 const char *filename, int *remote_errno)
9930 {
9931 struct remote_state *rs = get_remote_state ();
9932 char *p = rs->buf;
9933 int left = get_remote_packet_size () - 1;
9934
9935 remote_buffer_add_string (&p, &left, "vFile:unlink:");
9936
9937 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9938 strlen (filename));
9939
9940 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
9941 remote_errno, NULL, NULL);
9942 }
9943
9944 /* Read value of symbolic link FILENAME on the remote target. Return
9945 a null-terminated string allocated via xmalloc, or NULL if an error
9946 occurs (and set *REMOTE_ERRNO). */
9947
9948 static char *
9949 remote_hostio_readlink (struct target_ops *self,
9950 const char *filename, int *remote_errno)
9951 {
9952 struct remote_state *rs = get_remote_state ();
9953 char *p = rs->buf;
9954 char *attachment;
9955 int left = get_remote_packet_size ();
9956 int len, attachment_len;
9957 int read_len;
9958 char *ret;
9959
9960 remote_buffer_add_string (&p, &left, "vFile:readlink:");
9961
9962 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9963 strlen (filename));
9964
9965 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
9966 remote_errno, &attachment,
9967 &attachment_len);
9968
9969 if (len < 0)
9970 return NULL;
9971
9972 ret = xmalloc (len + 1);
9973
9974 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
9975 (gdb_byte *) ret, len);
9976 if (read_len != len)
9977 error (_("Readlink returned %d, but %d bytes."), len, read_len);
9978
9979 ret[len] = '\0';
9980 return ret;
9981 }
9982
9983 static int
9984 remote_fileio_errno_to_host (int errnum)
9985 {
9986 switch (errnum)
9987 {
9988 case FILEIO_EPERM:
9989 return EPERM;
9990 case FILEIO_ENOENT:
9991 return ENOENT;
9992 case FILEIO_EINTR:
9993 return EINTR;
9994 case FILEIO_EIO:
9995 return EIO;
9996 case FILEIO_EBADF:
9997 return EBADF;
9998 case FILEIO_EACCES:
9999 return EACCES;
10000 case FILEIO_EFAULT:
10001 return EFAULT;
10002 case FILEIO_EBUSY:
10003 return EBUSY;
10004 case FILEIO_EEXIST:
10005 return EEXIST;
10006 case FILEIO_ENODEV:
10007 return ENODEV;
10008 case FILEIO_ENOTDIR:
10009 return ENOTDIR;
10010 case FILEIO_EISDIR:
10011 return EISDIR;
10012 case FILEIO_EINVAL:
10013 return EINVAL;
10014 case FILEIO_ENFILE:
10015 return ENFILE;
10016 case FILEIO_EMFILE:
10017 return EMFILE;
10018 case FILEIO_EFBIG:
10019 return EFBIG;
10020 case FILEIO_ENOSPC:
10021 return ENOSPC;
10022 case FILEIO_ESPIPE:
10023 return ESPIPE;
10024 case FILEIO_EROFS:
10025 return EROFS;
10026 case FILEIO_ENOSYS:
10027 return ENOSYS;
10028 case FILEIO_ENAMETOOLONG:
10029 return ENAMETOOLONG;
10030 }
10031 return -1;
10032 }
10033
10034 static char *
10035 remote_hostio_error (int errnum)
10036 {
10037 int host_error = remote_fileio_errno_to_host (errnum);
10038
10039 if (host_error == -1)
10040 error (_("Unknown remote I/O error %d"), errnum);
10041 else
10042 error (_("Remote I/O error: %s"), safe_strerror (host_error));
10043 }
10044
10045 static void
10046 remote_hostio_close_cleanup (void *opaque)
10047 {
10048 int fd = *(int *) opaque;
10049 int remote_errno;
10050
10051 remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno);
10052 }
10053
10054
10055 static void *
10056 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
10057 {
10058 const char *filename = bfd_get_filename (abfd);
10059 int fd, remote_errno;
10060 int *stream;
10061
10062 gdb_assert (remote_filename_p (filename));
10063
10064 fd = remote_hostio_open (find_target_at (process_stratum),
10065 filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
10066 if (fd == -1)
10067 {
10068 errno = remote_fileio_errno_to_host (remote_errno);
10069 bfd_set_error (bfd_error_system_call);
10070 return NULL;
10071 }
10072
10073 stream = xmalloc (sizeof (int));
10074 *stream = fd;
10075 return stream;
10076 }
10077
10078 static int
10079 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
10080 {
10081 int fd = *(int *)stream;
10082 int remote_errno;
10083
10084 xfree (stream);
10085
10086 /* Ignore errors on close; these may happen if the remote
10087 connection was already torn down. */
10088 remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno);
10089
10090 /* Zero means success. */
10091 return 0;
10092 }
10093
10094 static file_ptr
10095 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
10096 file_ptr nbytes, file_ptr offset)
10097 {
10098 int fd = *(int *)stream;
10099 int remote_errno;
10100 file_ptr pos, bytes;
10101
10102 pos = 0;
10103 while (nbytes > pos)
10104 {
10105 bytes = remote_hostio_pread (find_target_at (process_stratum),
10106 fd, (gdb_byte *) buf + pos, nbytes - pos,
10107 offset + pos, &remote_errno);
10108 if (bytes == 0)
10109 /* Success, but no bytes, means end-of-file. */
10110 break;
10111 if (bytes == -1)
10112 {
10113 errno = remote_fileio_errno_to_host (remote_errno);
10114 bfd_set_error (bfd_error_system_call);
10115 return -1;
10116 }
10117
10118 pos += bytes;
10119 }
10120
10121 return pos;
10122 }
10123
10124 static int
10125 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
10126 {
10127 /* FIXME: We should probably implement remote_hostio_stat. */
10128 sb->st_size = INT_MAX;
10129 return 0;
10130 }
10131
10132 int
10133 remote_filename_p (const char *filename)
10134 {
10135 return strncmp (filename,
10136 REMOTE_SYSROOT_PREFIX,
10137 sizeof (REMOTE_SYSROOT_PREFIX) - 1) == 0;
10138 }
10139
10140 bfd *
10141 remote_bfd_open (const char *remote_file, const char *target)
10142 {
10143 bfd *abfd = gdb_bfd_openr_iovec (remote_file, target,
10144 remote_bfd_iovec_open, NULL,
10145 remote_bfd_iovec_pread,
10146 remote_bfd_iovec_close,
10147 remote_bfd_iovec_stat);
10148
10149 return abfd;
10150 }
10151
10152 void
10153 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
10154 {
10155 struct cleanup *back_to, *close_cleanup;
10156 int retcode, fd, remote_errno, bytes, io_size;
10157 FILE *file;
10158 gdb_byte *buffer;
10159 int bytes_in_buffer;
10160 int saw_eof;
10161 ULONGEST offset;
10162 struct remote_state *rs = get_remote_state ();
10163
10164 if (!rs->remote_desc)
10165 error (_("command can only be used with remote target"));
10166
10167 file = gdb_fopen_cloexec (local_file, "rb");
10168 if (file == NULL)
10169 perror_with_name (local_file);
10170 back_to = make_cleanup_fclose (file);
10171
10172 fd = remote_hostio_open (find_target_at (process_stratum),
10173 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
10174 | FILEIO_O_TRUNC),
10175 0700, &remote_errno);
10176 if (fd == -1)
10177 remote_hostio_error (remote_errno);
10178
10179 /* Send up to this many bytes at once. They won't all fit in the
10180 remote packet limit, so we'll transfer slightly fewer. */
10181 io_size = get_remote_packet_size ();
10182 buffer = xmalloc (io_size);
10183 make_cleanup (xfree, buffer);
10184
10185 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
10186
10187 bytes_in_buffer = 0;
10188 saw_eof = 0;
10189 offset = 0;
10190 while (bytes_in_buffer || !saw_eof)
10191 {
10192 if (!saw_eof)
10193 {
10194 bytes = fread (buffer + bytes_in_buffer, 1,
10195 io_size - bytes_in_buffer,
10196 file);
10197 if (bytes == 0)
10198 {
10199 if (ferror (file))
10200 error (_("Error reading %s."), local_file);
10201 else
10202 {
10203 /* EOF. Unless there is something still in the
10204 buffer from the last iteration, we are done. */
10205 saw_eof = 1;
10206 if (bytes_in_buffer == 0)
10207 break;
10208 }
10209 }
10210 }
10211 else
10212 bytes = 0;
10213
10214 bytes += bytes_in_buffer;
10215 bytes_in_buffer = 0;
10216
10217 retcode = remote_hostio_pwrite (find_target_at (process_stratum),
10218 fd, buffer, bytes,
10219 offset, &remote_errno);
10220
10221 if (retcode < 0)
10222 remote_hostio_error (remote_errno);
10223 else if (retcode == 0)
10224 error (_("Remote write of %d bytes returned 0!"), bytes);
10225 else if (retcode < bytes)
10226 {
10227 /* Short write. Save the rest of the read data for the next
10228 write. */
10229 bytes_in_buffer = bytes - retcode;
10230 memmove (buffer, buffer + retcode, bytes_in_buffer);
10231 }
10232
10233 offset += retcode;
10234 }
10235
10236 discard_cleanups (close_cleanup);
10237 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
10238 remote_hostio_error (remote_errno);
10239
10240 if (from_tty)
10241 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
10242 do_cleanups (back_to);
10243 }
10244
10245 void
10246 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
10247 {
10248 struct cleanup *back_to, *close_cleanup;
10249 int fd, remote_errno, bytes, io_size;
10250 FILE *file;
10251 gdb_byte *buffer;
10252 ULONGEST offset;
10253 struct remote_state *rs = get_remote_state ();
10254
10255 if (!rs->remote_desc)
10256 error (_("command can only be used with remote target"));
10257
10258 fd = remote_hostio_open (find_target_at (process_stratum),
10259 remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
10260 if (fd == -1)
10261 remote_hostio_error (remote_errno);
10262
10263 file = gdb_fopen_cloexec (local_file, "wb");
10264 if (file == NULL)
10265 perror_with_name (local_file);
10266 back_to = make_cleanup_fclose (file);
10267
10268 /* Send up to this many bytes at once. They won't all fit in the
10269 remote packet limit, so we'll transfer slightly fewer. */
10270 io_size = get_remote_packet_size ();
10271 buffer = xmalloc (io_size);
10272 make_cleanup (xfree, buffer);
10273
10274 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
10275
10276 offset = 0;
10277 while (1)
10278 {
10279 bytes = remote_hostio_pread (find_target_at (process_stratum),
10280 fd, buffer, io_size, offset, &remote_errno);
10281 if (bytes == 0)
10282 /* Success, but no bytes, means end-of-file. */
10283 break;
10284 if (bytes == -1)
10285 remote_hostio_error (remote_errno);
10286
10287 offset += bytes;
10288
10289 bytes = fwrite (buffer, 1, bytes, file);
10290 if (bytes == 0)
10291 perror_with_name (local_file);
10292 }
10293
10294 discard_cleanups (close_cleanup);
10295 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
10296 remote_hostio_error (remote_errno);
10297
10298 if (from_tty)
10299 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
10300 do_cleanups (back_to);
10301 }
10302
10303 void
10304 remote_file_delete (const char *remote_file, int from_tty)
10305 {
10306 int retcode, remote_errno;
10307 struct remote_state *rs = get_remote_state ();
10308
10309 if (!rs->remote_desc)
10310 error (_("command can only be used with remote target"));
10311
10312 retcode = remote_hostio_unlink (find_target_at (process_stratum),
10313 remote_file, &remote_errno);
10314 if (retcode == -1)
10315 remote_hostio_error (remote_errno);
10316
10317 if (from_tty)
10318 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
10319 }
10320
10321 static void
10322 remote_put_command (char *args, int from_tty)
10323 {
10324 struct cleanup *back_to;
10325 char **argv;
10326
10327 if (args == NULL)
10328 error_no_arg (_("file to put"));
10329
10330 argv = gdb_buildargv (args);
10331 back_to = make_cleanup_freeargv (argv);
10332 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
10333 error (_("Invalid parameters to remote put"));
10334
10335 remote_file_put (argv[0], argv[1], from_tty);
10336
10337 do_cleanups (back_to);
10338 }
10339
10340 static void
10341 remote_get_command (char *args, int from_tty)
10342 {
10343 struct cleanup *back_to;
10344 char **argv;
10345
10346 if (args == NULL)
10347 error_no_arg (_("file to get"));
10348
10349 argv = gdb_buildargv (args);
10350 back_to = make_cleanup_freeargv (argv);
10351 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
10352 error (_("Invalid parameters to remote get"));
10353
10354 remote_file_get (argv[0], argv[1], from_tty);
10355
10356 do_cleanups (back_to);
10357 }
10358
10359 static void
10360 remote_delete_command (char *args, int from_tty)
10361 {
10362 struct cleanup *back_to;
10363 char **argv;
10364
10365 if (args == NULL)
10366 error_no_arg (_("file to delete"));
10367
10368 argv = gdb_buildargv (args);
10369 back_to = make_cleanup_freeargv (argv);
10370 if (argv[0] == NULL || argv[1] != NULL)
10371 error (_("Invalid parameters to remote delete"));
10372
10373 remote_file_delete (argv[0], from_tty);
10374
10375 do_cleanups (back_to);
10376 }
10377
10378 static void
10379 remote_command (char *args, int from_tty)
10380 {
10381 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
10382 }
10383
10384 static int
10385 remote_can_execute_reverse (struct target_ops *self)
10386 {
10387 if (remote_protocol_packets[PACKET_bs].support == PACKET_ENABLE
10388 || remote_protocol_packets[PACKET_bc].support == PACKET_ENABLE)
10389 return 1;
10390 else
10391 return 0;
10392 }
10393
10394 static int
10395 remote_supports_non_stop (struct target_ops *self)
10396 {
10397 return 1;
10398 }
10399
10400 static int
10401 remote_supports_disable_randomization (struct target_ops *self)
10402 {
10403 /* Only supported in extended mode. */
10404 return 0;
10405 }
10406
10407 static int
10408 remote_supports_multi_process (struct target_ops *self)
10409 {
10410 struct remote_state *rs = get_remote_state ();
10411
10412 /* Only extended-remote handles being attached to multiple
10413 processes, even though plain remote can use the multi-process
10414 thread id extensions, so that GDB knows the target process's
10415 PID. */
10416 return rs->extended && remote_multi_process_p (rs);
10417 }
10418
10419 static int
10420 remote_supports_cond_tracepoints (void)
10421 {
10422 struct remote_state *rs = get_remote_state ();
10423
10424 return rs->cond_tracepoints;
10425 }
10426
10427 static int
10428 remote_supports_cond_breakpoints (struct target_ops *self)
10429 {
10430 struct remote_state *rs = get_remote_state ();
10431
10432 return rs->cond_breakpoints;
10433 }
10434
10435 static int
10436 remote_supports_fast_tracepoints (void)
10437 {
10438 struct remote_state *rs = get_remote_state ();
10439
10440 return rs->fast_tracepoints;
10441 }
10442
10443 static int
10444 remote_supports_static_tracepoints (void)
10445 {
10446 struct remote_state *rs = get_remote_state ();
10447
10448 return rs->static_tracepoints;
10449 }
10450
10451 static int
10452 remote_supports_install_in_trace (void)
10453 {
10454 struct remote_state *rs = get_remote_state ();
10455
10456 return rs->install_in_trace;
10457 }
10458
10459 static int
10460 remote_supports_enable_disable_tracepoint (struct target_ops *self)
10461 {
10462 struct remote_state *rs = get_remote_state ();
10463
10464 return rs->enable_disable_tracepoints;
10465 }
10466
10467 static int
10468 remote_supports_string_tracing (struct target_ops *self)
10469 {
10470 struct remote_state *rs = get_remote_state ();
10471
10472 return rs->string_tracing;
10473 }
10474
10475 static int
10476 remote_can_run_breakpoint_commands (struct target_ops *self)
10477 {
10478 struct remote_state *rs = get_remote_state ();
10479
10480 return rs->breakpoint_commands;
10481 }
10482
10483 static void
10484 remote_trace_init (struct target_ops *self)
10485 {
10486 putpkt ("QTinit");
10487 remote_get_noisy_reply (&target_buf, &target_buf_size);
10488 if (strcmp (target_buf, "OK") != 0)
10489 error (_("Target does not support this command."));
10490 }
10491
10492 static void free_actions_list (char **actions_list);
10493 static void free_actions_list_cleanup_wrapper (void *);
10494 static void
10495 free_actions_list_cleanup_wrapper (void *al)
10496 {
10497 free_actions_list (al);
10498 }
10499
10500 static void
10501 free_actions_list (char **actions_list)
10502 {
10503 int ndx;
10504
10505 if (actions_list == 0)
10506 return;
10507
10508 for (ndx = 0; actions_list[ndx]; ndx++)
10509 xfree (actions_list[ndx]);
10510
10511 xfree (actions_list);
10512 }
10513
10514 /* Recursive routine to walk through command list including loops, and
10515 download packets for each command. */
10516
10517 static void
10518 remote_download_command_source (int num, ULONGEST addr,
10519 struct command_line *cmds)
10520 {
10521 struct remote_state *rs = get_remote_state ();
10522 struct command_line *cmd;
10523
10524 for (cmd = cmds; cmd; cmd = cmd->next)
10525 {
10526 QUIT; /* Allow user to bail out with ^C. */
10527 strcpy (rs->buf, "QTDPsrc:");
10528 encode_source_string (num, addr, "cmd", cmd->line,
10529 rs->buf + strlen (rs->buf),
10530 rs->buf_size - strlen (rs->buf));
10531 putpkt (rs->buf);
10532 remote_get_noisy_reply (&target_buf, &target_buf_size);
10533 if (strcmp (target_buf, "OK"))
10534 warning (_("Target does not support source download."));
10535
10536 if (cmd->control_type == while_control
10537 || cmd->control_type == while_stepping_control)
10538 {
10539 remote_download_command_source (num, addr, *cmd->body_list);
10540
10541 QUIT; /* Allow user to bail out with ^C. */
10542 strcpy (rs->buf, "QTDPsrc:");
10543 encode_source_string (num, addr, "cmd", "end",
10544 rs->buf + strlen (rs->buf),
10545 rs->buf_size - strlen (rs->buf));
10546 putpkt (rs->buf);
10547 remote_get_noisy_reply (&target_buf, &target_buf_size);
10548 if (strcmp (target_buf, "OK"))
10549 warning (_("Target does not support source download."));
10550 }
10551 }
10552 }
10553
10554 static void
10555 remote_download_tracepoint (struct target_ops *self, struct bp_location *loc)
10556 {
10557 #define BUF_SIZE 2048
10558
10559 CORE_ADDR tpaddr;
10560 char addrbuf[40];
10561 char buf[BUF_SIZE];
10562 char **tdp_actions;
10563 char **stepping_actions;
10564 int ndx;
10565 struct cleanup *old_chain = NULL;
10566 struct agent_expr *aexpr;
10567 struct cleanup *aexpr_chain = NULL;
10568 char *pkt;
10569 struct breakpoint *b = loc->owner;
10570 struct tracepoint *t = (struct tracepoint *) b;
10571
10572 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
10573 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
10574 tdp_actions);
10575 (void) make_cleanup (free_actions_list_cleanup_wrapper,
10576 stepping_actions);
10577
10578 tpaddr = loc->address;
10579 sprintf_vma (addrbuf, tpaddr);
10580 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
10581 addrbuf, /* address */
10582 (b->enable_state == bp_enabled ? 'E' : 'D'),
10583 t->step_count, t->pass_count);
10584 /* Fast tracepoints are mostly handled by the target, but we can
10585 tell the target how big of an instruction block should be moved
10586 around. */
10587 if (b->type == bp_fast_tracepoint)
10588 {
10589 /* Only test for support at download time; we may not know
10590 target capabilities at definition time. */
10591 if (remote_supports_fast_tracepoints ())
10592 {
10593 int isize;
10594
10595 if (gdbarch_fast_tracepoint_valid_at (target_gdbarch (),
10596 tpaddr, &isize, NULL))
10597 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
10598 isize);
10599 else
10600 /* If it passed validation at definition but fails now,
10601 something is very wrong. */
10602 internal_error (__FILE__, __LINE__,
10603 _("Fast tracepoint not "
10604 "valid during download"));
10605 }
10606 else
10607 /* Fast tracepoints are functionally identical to regular
10608 tracepoints, so don't take lack of support as a reason to
10609 give up on the trace run. */
10610 warning (_("Target does not support fast tracepoints, "
10611 "downloading %d as regular tracepoint"), b->number);
10612 }
10613 else if (b->type == bp_static_tracepoint)
10614 {
10615 /* Only test for support at download time; we may not know
10616 target capabilities at definition time. */
10617 if (remote_supports_static_tracepoints ())
10618 {
10619 struct static_tracepoint_marker marker;
10620
10621 if (target_static_tracepoint_marker_at (tpaddr, &marker))
10622 strcat (buf, ":S");
10623 else
10624 error (_("Static tracepoint not valid during download"));
10625 }
10626 else
10627 /* Fast tracepoints are functionally identical to regular
10628 tracepoints, so don't take lack of support as a reason
10629 to give up on the trace run. */
10630 error (_("Target does not support static tracepoints"));
10631 }
10632 /* If the tracepoint has a conditional, make it into an agent
10633 expression and append to the definition. */
10634 if (loc->cond)
10635 {
10636 /* Only test support at download time, we may not know target
10637 capabilities at definition time. */
10638 if (remote_supports_cond_tracepoints ())
10639 {
10640 aexpr = gen_eval_for_expr (tpaddr, loc->cond);
10641 aexpr_chain = make_cleanup_free_agent_expr (aexpr);
10642 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
10643 aexpr->len);
10644 pkt = buf + strlen (buf);
10645 for (ndx = 0; ndx < aexpr->len; ++ndx)
10646 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
10647 *pkt = '\0';
10648 do_cleanups (aexpr_chain);
10649 }
10650 else
10651 warning (_("Target does not support conditional tracepoints, "
10652 "ignoring tp %d cond"), b->number);
10653 }
10654
10655 if (b->commands || *default_collect)
10656 strcat (buf, "-");
10657 putpkt (buf);
10658 remote_get_noisy_reply (&target_buf, &target_buf_size);
10659 if (strcmp (target_buf, "OK"))
10660 error (_("Target does not support tracepoints."));
10661
10662 /* do_single_steps (t); */
10663 if (tdp_actions)
10664 {
10665 for (ndx = 0; tdp_actions[ndx]; ndx++)
10666 {
10667 QUIT; /* Allow user to bail out with ^C. */
10668 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
10669 b->number, addrbuf, /* address */
10670 tdp_actions[ndx],
10671 ((tdp_actions[ndx + 1] || stepping_actions)
10672 ? '-' : 0));
10673 putpkt (buf);
10674 remote_get_noisy_reply (&target_buf,
10675 &target_buf_size);
10676 if (strcmp (target_buf, "OK"))
10677 error (_("Error on target while setting tracepoints."));
10678 }
10679 }
10680 if (stepping_actions)
10681 {
10682 for (ndx = 0; stepping_actions[ndx]; ndx++)
10683 {
10684 QUIT; /* Allow user to bail out with ^C. */
10685 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
10686 b->number, addrbuf, /* address */
10687 ((ndx == 0) ? "S" : ""),
10688 stepping_actions[ndx],
10689 (stepping_actions[ndx + 1] ? "-" : ""));
10690 putpkt (buf);
10691 remote_get_noisy_reply (&target_buf,
10692 &target_buf_size);
10693 if (strcmp (target_buf, "OK"))
10694 error (_("Error on target while setting tracepoints."));
10695 }
10696 }
10697
10698 if (remote_protocol_packets[PACKET_TracepointSource].support
10699 == PACKET_ENABLE)
10700 {
10701 if (b->addr_string)
10702 {
10703 strcpy (buf, "QTDPsrc:");
10704 encode_source_string (b->number, loc->address,
10705 "at", b->addr_string, buf + strlen (buf),
10706 2048 - strlen (buf));
10707
10708 putpkt (buf);
10709 remote_get_noisy_reply (&target_buf, &target_buf_size);
10710 if (strcmp (target_buf, "OK"))
10711 warning (_("Target does not support source download."));
10712 }
10713 if (b->cond_string)
10714 {
10715 strcpy (buf, "QTDPsrc:");
10716 encode_source_string (b->number, loc->address,
10717 "cond", b->cond_string, buf + strlen (buf),
10718 2048 - strlen (buf));
10719 putpkt (buf);
10720 remote_get_noisy_reply (&target_buf, &target_buf_size);
10721 if (strcmp (target_buf, "OK"))
10722 warning (_("Target does not support source download."));
10723 }
10724 remote_download_command_source (b->number, loc->address,
10725 breakpoint_commands (b));
10726 }
10727
10728 do_cleanups (old_chain);
10729 }
10730
10731 static int
10732 remote_can_download_tracepoint (struct target_ops *self)
10733 {
10734 struct remote_state *rs = get_remote_state ();
10735 struct trace_status *ts;
10736 int status;
10737
10738 /* Don't try to install tracepoints until we've relocated our
10739 symbols, and fetched and merged the target's tracepoint list with
10740 ours. */
10741 if (rs->starting_up)
10742 return 0;
10743
10744 ts = current_trace_status ();
10745 status = remote_get_trace_status (self, ts);
10746
10747 if (status == -1 || !ts->running_known || !ts->running)
10748 return 0;
10749
10750 /* If we are in a tracing experiment, but remote stub doesn't support
10751 installing tracepoint in trace, we have to return. */
10752 if (!remote_supports_install_in_trace ())
10753 return 0;
10754
10755 return 1;
10756 }
10757
10758
10759 static void
10760 remote_download_trace_state_variable (struct target_ops *self,
10761 struct trace_state_variable *tsv)
10762 {
10763 struct remote_state *rs = get_remote_state ();
10764 char *p;
10765
10766 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
10767 tsv->number, phex ((ULONGEST) tsv->initial_value, 8),
10768 tsv->builtin);
10769 p = rs->buf + strlen (rs->buf);
10770 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
10771 error (_("Trace state variable name too long for tsv definition packet"));
10772 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, strlen (tsv->name));
10773 *p++ = '\0';
10774 putpkt (rs->buf);
10775 remote_get_noisy_reply (&target_buf, &target_buf_size);
10776 if (*target_buf == '\0')
10777 error (_("Target does not support this command."));
10778 if (strcmp (target_buf, "OK") != 0)
10779 error (_("Error on target while downloading trace state variable."));
10780 }
10781
10782 static void
10783 remote_enable_tracepoint (struct target_ops *self,
10784 struct bp_location *location)
10785 {
10786 struct remote_state *rs = get_remote_state ();
10787 char addr_buf[40];
10788
10789 sprintf_vma (addr_buf, location->address);
10790 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
10791 location->owner->number, addr_buf);
10792 putpkt (rs->buf);
10793 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10794 if (*rs->buf == '\0')
10795 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
10796 if (strcmp (rs->buf, "OK") != 0)
10797 error (_("Error on target while enabling tracepoint."));
10798 }
10799
10800 static void
10801 remote_disable_tracepoint (struct target_ops *self,
10802 struct bp_location *location)
10803 {
10804 struct remote_state *rs = get_remote_state ();
10805 char addr_buf[40];
10806
10807 sprintf_vma (addr_buf, location->address);
10808 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
10809 location->owner->number, addr_buf);
10810 putpkt (rs->buf);
10811 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10812 if (*rs->buf == '\0')
10813 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
10814 if (strcmp (rs->buf, "OK") != 0)
10815 error (_("Error on target while disabling tracepoint."));
10816 }
10817
10818 static void
10819 remote_trace_set_readonly_regions (struct target_ops *self)
10820 {
10821 asection *s;
10822 bfd *abfd = NULL;
10823 bfd_size_type size;
10824 bfd_vma vma;
10825 int anysecs = 0;
10826 int offset = 0;
10827
10828 if (!exec_bfd)
10829 return; /* No information to give. */
10830
10831 strcpy (target_buf, "QTro");
10832 offset = strlen (target_buf);
10833 for (s = exec_bfd->sections; s; s = s->next)
10834 {
10835 char tmp1[40], tmp2[40];
10836 int sec_length;
10837
10838 if ((s->flags & SEC_LOAD) == 0 ||
10839 /* (s->flags & SEC_CODE) == 0 || */
10840 (s->flags & SEC_READONLY) == 0)
10841 continue;
10842
10843 anysecs = 1;
10844 vma = bfd_get_section_vma (abfd, s);
10845 size = bfd_get_section_size (s);
10846 sprintf_vma (tmp1, vma);
10847 sprintf_vma (tmp2, vma + size);
10848 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
10849 if (offset + sec_length + 1 > target_buf_size)
10850 {
10851 if (remote_protocol_packets[PACKET_qXfer_traceframe_info].support
10852 != PACKET_ENABLE)
10853 warning (_("\
10854 Too many sections for read-only sections definition packet."));
10855 break;
10856 }
10857 xsnprintf (target_buf + offset, target_buf_size - offset, ":%s,%s",
10858 tmp1, tmp2);
10859 offset += sec_length;
10860 }
10861 if (anysecs)
10862 {
10863 putpkt (target_buf);
10864 getpkt (&target_buf, &target_buf_size, 0);
10865 }
10866 }
10867
10868 static void
10869 remote_trace_start (struct target_ops *self)
10870 {
10871 putpkt ("QTStart");
10872 remote_get_noisy_reply (&target_buf, &target_buf_size);
10873 if (*target_buf == '\0')
10874 error (_("Target does not support this command."));
10875 if (strcmp (target_buf, "OK") != 0)
10876 error (_("Bogus reply from target: %s"), target_buf);
10877 }
10878
10879 static int
10880 remote_get_trace_status (struct target_ops *self, struct trace_status *ts)
10881 {
10882 /* Initialize it just to avoid a GCC false warning. */
10883 char *p = NULL;
10884 /* FIXME we need to get register block size some other way. */
10885 extern int trace_regblock_size;
10886 volatile struct gdb_exception ex;
10887 enum packet_result result;
10888
10889 if (remote_protocol_packets[PACKET_qTStatus].support == PACKET_DISABLE)
10890 return -1;
10891
10892 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
10893
10894 putpkt ("qTStatus");
10895
10896 TRY_CATCH (ex, RETURN_MASK_ERROR)
10897 {
10898 p = remote_get_noisy_reply (&target_buf, &target_buf_size);
10899 }
10900 if (ex.reason < 0)
10901 {
10902 if (ex.error != TARGET_CLOSE_ERROR)
10903 {
10904 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
10905 return -1;
10906 }
10907 throw_exception (ex);
10908 }
10909
10910 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
10911
10912 /* If the remote target doesn't do tracing, flag it. */
10913 if (result == PACKET_UNKNOWN)
10914 return -1;
10915
10916 /* We're working with a live target. */
10917 ts->filename = NULL;
10918
10919 if (*p++ != 'T')
10920 error (_("Bogus trace status reply from target: %s"), target_buf);
10921
10922 /* Function 'parse_trace_status' sets default value of each field of
10923 'ts' at first, so we don't have to do it here. */
10924 parse_trace_status (p, ts);
10925
10926 return ts->running;
10927 }
10928
10929 static void
10930 remote_get_tracepoint_status (struct target_ops *self, struct breakpoint *bp,
10931 struct uploaded_tp *utp)
10932 {
10933 struct remote_state *rs = get_remote_state ();
10934 char *reply;
10935 struct bp_location *loc;
10936 struct tracepoint *tp = (struct tracepoint *) bp;
10937 size_t size = get_remote_packet_size ();
10938
10939 if (tp)
10940 {
10941 tp->base.hit_count = 0;
10942 tp->traceframe_usage = 0;
10943 for (loc = tp->base.loc; loc; loc = loc->next)
10944 {
10945 /* If the tracepoint was never downloaded, don't go asking for
10946 any status. */
10947 if (tp->number_on_target == 0)
10948 continue;
10949 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
10950 phex_nz (loc->address, 0));
10951 putpkt (rs->buf);
10952 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10953 if (reply && *reply)
10954 {
10955 if (*reply == 'V')
10956 parse_tracepoint_status (reply + 1, bp, utp);
10957 }
10958 }
10959 }
10960 else if (utp)
10961 {
10962 utp->hit_count = 0;
10963 utp->traceframe_usage = 0;
10964 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
10965 phex_nz (utp->addr, 0));
10966 putpkt (rs->buf);
10967 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10968 if (reply && *reply)
10969 {
10970 if (*reply == 'V')
10971 parse_tracepoint_status (reply + 1, bp, utp);
10972 }
10973 }
10974 }
10975
10976 static void
10977 remote_trace_stop (struct target_ops *self)
10978 {
10979 putpkt ("QTStop");
10980 remote_get_noisy_reply (&target_buf, &target_buf_size);
10981 if (*target_buf == '\0')
10982 error (_("Target does not support this command."));
10983 if (strcmp (target_buf, "OK") != 0)
10984 error (_("Bogus reply from target: %s"), target_buf);
10985 }
10986
10987 static int
10988 remote_trace_find (struct target_ops *self,
10989 enum trace_find_type type, int num,
10990 CORE_ADDR addr1, CORE_ADDR addr2,
10991 int *tpp)
10992 {
10993 struct remote_state *rs = get_remote_state ();
10994 char *endbuf = rs->buf + get_remote_packet_size ();
10995 char *p, *reply;
10996 int target_frameno = -1, target_tracept = -1;
10997
10998 /* Lookups other than by absolute frame number depend on the current
10999 trace selected, so make sure it is correct on the remote end
11000 first. */
11001 if (type != tfind_number)
11002 set_remote_traceframe ();
11003
11004 p = rs->buf;
11005 strcpy (p, "QTFrame:");
11006 p = strchr (p, '\0');
11007 switch (type)
11008 {
11009 case tfind_number:
11010 xsnprintf (p, endbuf - p, "%x", num);
11011 break;
11012 case tfind_pc:
11013 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
11014 break;
11015 case tfind_tp:
11016 xsnprintf (p, endbuf - p, "tdp:%x", num);
11017 break;
11018 case tfind_range:
11019 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
11020 phex_nz (addr2, 0));
11021 break;
11022 case tfind_outside:
11023 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
11024 phex_nz (addr2, 0));
11025 break;
11026 default:
11027 error (_("Unknown trace find type %d"), type);
11028 }
11029
11030 putpkt (rs->buf);
11031 reply = remote_get_noisy_reply (&(rs->buf), &rs->buf_size);
11032 if (*reply == '\0')
11033 error (_("Target does not support this command."));
11034
11035 while (reply && *reply)
11036 switch (*reply)
11037 {
11038 case 'F':
11039 p = ++reply;
11040 target_frameno = (int) strtol (p, &reply, 16);
11041 if (reply == p)
11042 error (_("Unable to parse trace frame number"));
11043 /* Don't update our remote traceframe number cache on failure
11044 to select a remote traceframe. */
11045 if (target_frameno == -1)
11046 return -1;
11047 break;
11048 case 'T':
11049 p = ++reply;
11050 target_tracept = (int) strtol (p, &reply, 16);
11051 if (reply == p)
11052 error (_("Unable to parse tracepoint number"));
11053 break;
11054 case 'O': /* "OK"? */
11055 if (reply[1] == 'K' && reply[2] == '\0')
11056 reply += 2;
11057 else
11058 error (_("Bogus reply from target: %s"), reply);
11059 break;
11060 default:
11061 error (_("Bogus reply from target: %s"), reply);
11062 }
11063 if (tpp)
11064 *tpp = target_tracept;
11065
11066 rs->remote_traceframe_number = target_frameno;
11067 return target_frameno;
11068 }
11069
11070 static int
11071 remote_get_trace_state_variable_value (struct target_ops *self,
11072 int tsvnum, LONGEST *val)
11073 {
11074 struct remote_state *rs = get_remote_state ();
11075 char *reply;
11076 ULONGEST uval;
11077
11078 set_remote_traceframe ();
11079
11080 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
11081 putpkt (rs->buf);
11082 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11083 if (reply && *reply)
11084 {
11085 if (*reply == 'V')
11086 {
11087 unpack_varlen_hex (reply + 1, &uval);
11088 *val = (LONGEST) uval;
11089 return 1;
11090 }
11091 }
11092 return 0;
11093 }
11094
11095 static int
11096 remote_save_trace_data (struct target_ops *self, const char *filename)
11097 {
11098 struct remote_state *rs = get_remote_state ();
11099 char *p, *reply;
11100
11101 p = rs->buf;
11102 strcpy (p, "QTSave:");
11103 p += strlen (p);
11104 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
11105 error (_("Remote file name too long for trace save packet"));
11106 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
11107 *p++ = '\0';
11108 putpkt (rs->buf);
11109 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11110 if (*reply == '\0')
11111 error (_("Target does not support this command."));
11112 if (strcmp (reply, "OK") != 0)
11113 error (_("Bogus reply from target: %s"), reply);
11114 return 0;
11115 }
11116
11117 /* This is basically a memory transfer, but needs to be its own packet
11118 because we don't know how the target actually organizes its trace
11119 memory, plus we want to be able to ask for as much as possible, but
11120 not be unhappy if we don't get as much as we ask for. */
11121
11122 static LONGEST
11123 remote_get_raw_trace_data (struct target_ops *self,
11124 gdb_byte *buf, ULONGEST offset, LONGEST len)
11125 {
11126 struct remote_state *rs = get_remote_state ();
11127 char *reply;
11128 char *p;
11129 int rslt;
11130
11131 p = rs->buf;
11132 strcpy (p, "qTBuffer:");
11133 p += strlen (p);
11134 p += hexnumstr (p, offset);
11135 *p++ = ',';
11136 p += hexnumstr (p, len);
11137 *p++ = '\0';
11138
11139 putpkt (rs->buf);
11140 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11141 if (reply && *reply)
11142 {
11143 /* 'l' by itself means we're at the end of the buffer and
11144 there is nothing more to get. */
11145 if (*reply == 'l')
11146 return 0;
11147
11148 /* Convert the reply into binary. Limit the number of bytes to
11149 convert according to our passed-in buffer size, rather than
11150 what was returned in the packet; if the target is
11151 unexpectedly generous and gives us a bigger reply than we
11152 asked for, we don't want to crash. */
11153 rslt = hex2bin (target_buf, buf, len);
11154 return rslt;
11155 }
11156
11157 /* Something went wrong, flag as an error. */
11158 return -1;
11159 }
11160
11161 static void
11162 remote_set_disconnected_tracing (struct target_ops *self, int val)
11163 {
11164 struct remote_state *rs = get_remote_state ();
11165
11166 if (rs->disconnected_tracing)
11167 {
11168 char *reply;
11169
11170 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
11171 putpkt (rs->buf);
11172 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11173 if (*reply == '\0')
11174 error (_("Target does not support this command."));
11175 if (strcmp (reply, "OK") != 0)
11176 error (_("Bogus reply from target: %s"), reply);
11177 }
11178 else if (val)
11179 warning (_("Target does not support disconnected tracing."));
11180 }
11181
11182 static int
11183 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
11184 {
11185 struct thread_info *info = find_thread_ptid (ptid);
11186
11187 if (info && info->private)
11188 return info->private->core;
11189 return -1;
11190 }
11191
11192 static void
11193 remote_set_circular_trace_buffer (struct target_ops *self, int val)
11194 {
11195 struct remote_state *rs = get_remote_state ();
11196 char *reply;
11197
11198 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
11199 putpkt (rs->buf);
11200 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11201 if (*reply == '\0')
11202 error (_("Target does not support this command."));
11203 if (strcmp (reply, "OK") != 0)
11204 error (_("Bogus reply from target: %s"), reply);
11205 }
11206
11207 static struct traceframe_info *
11208 remote_traceframe_info (struct target_ops *self)
11209 {
11210 char *text;
11211
11212 text = target_read_stralloc (&current_target,
11213 TARGET_OBJECT_TRACEFRAME_INFO, NULL);
11214 if (text != NULL)
11215 {
11216 struct traceframe_info *info;
11217 struct cleanup *back_to = make_cleanup (xfree, text);
11218
11219 info = parse_traceframe_info (text);
11220 do_cleanups (back_to);
11221 return info;
11222 }
11223
11224 return NULL;
11225 }
11226
11227 /* Handle the qTMinFTPILen packet. Returns the minimum length of
11228 instruction on which a fast tracepoint may be placed. Returns -1
11229 if the packet is not supported, and 0 if the minimum instruction
11230 length is unknown. */
11231
11232 static int
11233 remote_get_min_fast_tracepoint_insn_len (struct target_ops *self)
11234 {
11235 struct remote_state *rs = get_remote_state ();
11236 char *reply;
11237
11238 /* If we're not debugging a process yet, the IPA can't be
11239 loaded. */
11240 if (!target_has_execution)
11241 return 0;
11242
11243 /* Make sure the remote is pointing at the right process. */
11244 set_general_process ();
11245
11246 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
11247 putpkt (rs->buf);
11248 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11249 if (*reply == '\0')
11250 return -1;
11251 else
11252 {
11253 ULONGEST min_insn_len;
11254
11255 unpack_varlen_hex (reply, &min_insn_len);
11256
11257 return (int) min_insn_len;
11258 }
11259 }
11260
11261 static void
11262 remote_set_trace_buffer_size (struct target_ops *self, LONGEST val)
11263 {
11264 if (remote_protocol_packets[PACKET_QTBuffer_size].support
11265 != PACKET_DISABLE)
11266 {
11267 struct remote_state *rs = get_remote_state ();
11268 char *buf = rs->buf;
11269 char *endbuf = rs->buf + get_remote_packet_size ();
11270 enum packet_result result;
11271
11272 gdb_assert (val >= 0 || val == -1);
11273 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
11274 /* Send -1 as literal "-1" to avoid host size dependency. */
11275 if (val < 0)
11276 {
11277 *buf++ = '-';
11278 buf += hexnumstr (buf, (ULONGEST) -val);
11279 }
11280 else
11281 buf += hexnumstr (buf, (ULONGEST) val);
11282
11283 putpkt (rs->buf);
11284 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
11285 result = packet_ok (rs->buf,
11286 &remote_protocol_packets[PACKET_QTBuffer_size]);
11287
11288 if (result != PACKET_OK)
11289 warning (_("Bogus reply from target: %s"), rs->buf);
11290 }
11291 }
11292
11293 static int
11294 remote_set_trace_notes (struct target_ops *self,
11295 const char *user, const char *notes,
11296 const char *stop_notes)
11297 {
11298 struct remote_state *rs = get_remote_state ();
11299 char *reply;
11300 char *buf = rs->buf;
11301 char *endbuf = rs->buf + get_remote_packet_size ();
11302 int nbytes;
11303
11304 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
11305 if (user)
11306 {
11307 buf += xsnprintf (buf, endbuf - buf, "user:");
11308 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
11309 buf += 2 * nbytes;
11310 *buf++ = ';';
11311 }
11312 if (notes)
11313 {
11314 buf += xsnprintf (buf, endbuf - buf, "notes:");
11315 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
11316 buf += 2 * nbytes;
11317 *buf++ = ';';
11318 }
11319 if (stop_notes)
11320 {
11321 buf += xsnprintf (buf, endbuf - buf, "tstop:");
11322 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
11323 buf += 2 * nbytes;
11324 *buf++ = ';';
11325 }
11326 /* Ensure the buffer is terminated. */
11327 *buf = '\0';
11328
11329 putpkt (rs->buf);
11330 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11331 if (*reply == '\0')
11332 return 0;
11333
11334 if (strcmp (reply, "OK") != 0)
11335 error (_("Bogus reply from target: %s"), reply);
11336
11337 return 1;
11338 }
11339
11340 static int
11341 remote_use_agent (struct target_ops *self, int use)
11342 {
11343 if (remote_protocol_packets[PACKET_QAgent].support != PACKET_DISABLE)
11344 {
11345 struct remote_state *rs = get_remote_state ();
11346
11347 /* If the stub supports QAgent. */
11348 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
11349 putpkt (rs->buf);
11350 getpkt (&rs->buf, &rs->buf_size, 0);
11351
11352 if (strcmp (rs->buf, "OK") == 0)
11353 {
11354 use_agent = use;
11355 return 1;
11356 }
11357 }
11358
11359 return 0;
11360 }
11361
11362 static int
11363 remote_can_use_agent (struct target_ops *self)
11364 {
11365 return (remote_protocol_packets[PACKET_QAgent].support != PACKET_DISABLE);
11366 }
11367
11368 struct btrace_target_info
11369 {
11370 /* The ptid of the traced thread. */
11371 ptid_t ptid;
11372 };
11373
11374 /* Check whether the target supports branch tracing. */
11375
11376 static int
11377 remote_supports_btrace (struct target_ops *self)
11378 {
11379 if (remote_protocol_packets[PACKET_Qbtrace_off].support != PACKET_ENABLE)
11380 return 0;
11381 if (remote_protocol_packets[PACKET_Qbtrace_bts].support != PACKET_ENABLE)
11382 return 0;
11383 if (remote_protocol_packets[PACKET_qXfer_btrace].support != PACKET_ENABLE)
11384 return 0;
11385
11386 return 1;
11387 }
11388
11389 /* Enable branch tracing. */
11390
11391 static struct btrace_target_info *
11392 remote_enable_btrace (struct target_ops *self, ptid_t ptid)
11393 {
11394 struct btrace_target_info *tinfo = NULL;
11395 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
11396 struct remote_state *rs = get_remote_state ();
11397 char *buf = rs->buf;
11398 char *endbuf = rs->buf + get_remote_packet_size ();
11399
11400 if (packet->support != PACKET_ENABLE)
11401 error (_("Target does not support branch tracing."));
11402
11403 set_general_thread (ptid);
11404
11405 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
11406 putpkt (rs->buf);
11407 getpkt (&rs->buf, &rs->buf_size, 0);
11408
11409 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
11410 {
11411 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
11412 error (_("Could not enable branch tracing for %s: %s"),
11413 target_pid_to_str (ptid), rs->buf + 2);
11414 else
11415 error (_("Could not enable branch tracing for %s."),
11416 target_pid_to_str (ptid));
11417 }
11418
11419 tinfo = xzalloc (sizeof (*tinfo));
11420 tinfo->ptid = ptid;
11421
11422 return tinfo;
11423 }
11424
11425 /* Disable branch tracing. */
11426
11427 static void
11428 remote_disable_btrace (struct target_ops *self,
11429 struct btrace_target_info *tinfo)
11430 {
11431 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
11432 struct remote_state *rs = get_remote_state ();
11433 char *buf = rs->buf;
11434 char *endbuf = rs->buf + get_remote_packet_size ();
11435
11436 if (packet->support != PACKET_ENABLE)
11437 error (_("Target does not support branch tracing."));
11438
11439 set_general_thread (tinfo->ptid);
11440
11441 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
11442 putpkt (rs->buf);
11443 getpkt (&rs->buf, &rs->buf_size, 0);
11444
11445 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
11446 {
11447 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
11448 error (_("Could not disable branch tracing for %s: %s"),
11449 target_pid_to_str (tinfo->ptid), rs->buf + 2);
11450 else
11451 error (_("Could not disable branch tracing for %s."),
11452 target_pid_to_str (tinfo->ptid));
11453 }
11454
11455 xfree (tinfo);
11456 }
11457
11458 /* Teardown branch tracing. */
11459
11460 static void
11461 remote_teardown_btrace (struct target_ops *self,
11462 struct btrace_target_info *tinfo)
11463 {
11464 /* We must not talk to the target during teardown. */
11465 xfree (tinfo);
11466 }
11467
11468 /* Read the branch trace. */
11469
11470 static enum btrace_error
11471 remote_read_btrace (struct target_ops *self,
11472 VEC (btrace_block_s) **btrace,
11473 struct btrace_target_info *tinfo,
11474 enum btrace_read_type type)
11475 {
11476 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
11477 struct remote_state *rs = get_remote_state ();
11478 struct cleanup *cleanup;
11479 const char *annex;
11480 char *xml;
11481
11482 if (packet->support != PACKET_ENABLE)
11483 error (_("Target does not support branch tracing."));
11484
11485 #if !defined(HAVE_LIBEXPAT)
11486 error (_("Cannot process branch tracing result. XML parsing not supported."));
11487 #endif
11488
11489 switch (type)
11490 {
11491 case BTRACE_READ_ALL:
11492 annex = "all";
11493 break;
11494 case BTRACE_READ_NEW:
11495 annex = "new";
11496 break;
11497 case BTRACE_READ_DELTA:
11498 annex = "delta";
11499 break;
11500 default:
11501 internal_error (__FILE__, __LINE__,
11502 _("Bad branch tracing read type: %u."),
11503 (unsigned int) type);
11504 }
11505
11506 xml = target_read_stralloc (&current_target,
11507 TARGET_OBJECT_BTRACE, annex);
11508 if (xml == NULL)
11509 return BTRACE_ERR_UNKNOWN;
11510
11511 cleanup = make_cleanup (xfree, xml);
11512 *btrace = parse_xml_btrace (xml);
11513 do_cleanups (cleanup);
11514
11515 return BTRACE_ERR_NONE;
11516 }
11517
11518 static int
11519 remote_augmented_libraries_svr4_read (struct target_ops *self)
11520 {
11521 struct remote_state *rs = get_remote_state ();
11522
11523 return rs->augmented_libraries_svr4_read;
11524 }
11525
11526 /* Implementation of to_load. */
11527
11528 static void
11529 remote_load (struct target_ops *self, char *name, int from_tty)
11530 {
11531 generic_load (name, from_tty);
11532 }
11533
11534 static void
11535 init_remote_ops (void)
11536 {
11537 remote_ops.to_shortname = "remote";
11538 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
11539 remote_ops.to_doc =
11540 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
11541 Specify the serial device it is connected to\n\
11542 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
11543 remote_ops.to_open = remote_open;
11544 remote_ops.to_close = remote_close;
11545 remote_ops.to_detach = remote_detach;
11546 remote_ops.to_disconnect = remote_disconnect;
11547 remote_ops.to_resume = remote_resume;
11548 remote_ops.to_wait = remote_wait;
11549 remote_ops.to_fetch_registers = remote_fetch_registers;
11550 remote_ops.to_store_registers = remote_store_registers;
11551 remote_ops.to_prepare_to_store = remote_prepare_to_store;
11552 remote_ops.to_files_info = remote_files_info;
11553 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
11554 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
11555 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
11556 remote_ops.to_stopped_data_address = remote_stopped_data_address;
11557 remote_ops.to_watchpoint_addr_within_range =
11558 remote_watchpoint_addr_within_range;
11559 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
11560 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
11561 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
11562 remote_ops.to_region_ok_for_hw_watchpoint
11563 = remote_region_ok_for_hw_watchpoint;
11564 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
11565 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
11566 remote_ops.to_kill = remote_kill;
11567 remote_ops.to_load = remote_load;
11568 remote_ops.to_mourn_inferior = remote_mourn;
11569 remote_ops.to_pass_signals = remote_pass_signals;
11570 remote_ops.to_program_signals = remote_program_signals;
11571 remote_ops.to_thread_alive = remote_thread_alive;
11572 remote_ops.to_find_new_threads = remote_threads_info;
11573 remote_ops.to_pid_to_str = remote_pid_to_str;
11574 remote_ops.to_extra_thread_info = remote_threads_extra_info;
11575 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
11576 remote_ops.to_stop = remote_stop;
11577 remote_ops.to_xfer_partial = remote_xfer_partial;
11578 remote_ops.to_rcmd = remote_rcmd;
11579 remote_ops.to_log_command = serial_log_command;
11580 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
11581 remote_ops.to_stratum = process_stratum;
11582 remote_ops.to_has_all_memory = default_child_has_all_memory;
11583 remote_ops.to_has_memory = default_child_has_memory;
11584 remote_ops.to_has_stack = default_child_has_stack;
11585 remote_ops.to_has_registers = default_child_has_registers;
11586 remote_ops.to_has_execution = default_child_has_execution;
11587 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
11588 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
11589 remote_ops.to_magic = OPS_MAGIC;
11590 remote_ops.to_memory_map = remote_memory_map;
11591 remote_ops.to_flash_erase = remote_flash_erase;
11592 remote_ops.to_flash_done = remote_flash_done;
11593 remote_ops.to_read_description = remote_read_description;
11594 remote_ops.to_search_memory = remote_search_memory;
11595 remote_ops.to_can_async_p = remote_can_async_p;
11596 remote_ops.to_is_async_p = remote_is_async_p;
11597 remote_ops.to_async = remote_async;
11598 remote_ops.to_terminal_inferior = remote_terminal_inferior;
11599 remote_ops.to_terminal_ours = remote_terminal_ours;
11600 remote_ops.to_supports_non_stop = remote_supports_non_stop;
11601 remote_ops.to_supports_multi_process = remote_supports_multi_process;
11602 remote_ops.to_supports_disable_randomization
11603 = remote_supports_disable_randomization;
11604 remote_ops.to_fileio_open = remote_hostio_open;
11605 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
11606 remote_ops.to_fileio_pread = remote_hostio_pread;
11607 remote_ops.to_fileio_close = remote_hostio_close;
11608 remote_ops.to_fileio_unlink = remote_hostio_unlink;
11609 remote_ops.to_fileio_readlink = remote_hostio_readlink;
11610 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
11611 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
11612 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
11613 remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands;
11614 remote_ops.to_trace_init = remote_trace_init;
11615 remote_ops.to_download_tracepoint = remote_download_tracepoint;
11616 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
11617 remote_ops.to_download_trace_state_variable
11618 = remote_download_trace_state_variable;
11619 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
11620 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
11621 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
11622 remote_ops.to_trace_start = remote_trace_start;
11623 remote_ops.to_get_trace_status = remote_get_trace_status;
11624 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
11625 remote_ops.to_trace_stop = remote_trace_stop;
11626 remote_ops.to_trace_find = remote_trace_find;
11627 remote_ops.to_get_trace_state_variable_value
11628 = remote_get_trace_state_variable_value;
11629 remote_ops.to_save_trace_data = remote_save_trace_data;
11630 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
11631 remote_ops.to_upload_trace_state_variables
11632 = remote_upload_trace_state_variables;
11633 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
11634 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
11635 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
11636 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
11637 remote_ops.to_set_trace_buffer_size = remote_set_trace_buffer_size;
11638 remote_ops.to_set_trace_notes = remote_set_trace_notes;
11639 remote_ops.to_core_of_thread = remote_core_of_thread;
11640 remote_ops.to_verify_memory = remote_verify_memory;
11641 remote_ops.to_get_tib_address = remote_get_tib_address;
11642 remote_ops.to_set_permissions = remote_set_permissions;
11643 remote_ops.to_static_tracepoint_marker_at
11644 = remote_static_tracepoint_marker_at;
11645 remote_ops.to_static_tracepoint_markers_by_strid
11646 = remote_static_tracepoint_markers_by_strid;
11647 remote_ops.to_traceframe_info = remote_traceframe_info;
11648 remote_ops.to_use_agent = remote_use_agent;
11649 remote_ops.to_can_use_agent = remote_can_use_agent;
11650 remote_ops.to_supports_btrace = remote_supports_btrace;
11651 remote_ops.to_enable_btrace = remote_enable_btrace;
11652 remote_ops.to_disable_btrace = remote_disable_btrace;
11653 remote_ops.to_teardown_btrace = remote_teardown_btrace;
11654 remote_ops.to_read_btrace = remote_read_btrace;
11655 remote_ops.to_augmented_libraries_svr4_read =
11656 remote_augmented_libraries_svr4_read;
11657 }
11658
11659 /* Set up the extended remote vector by making a copy of the standard
11660 remote vector and adding to it. */
11661
11662 static void
11663 init_extended_remote_ops (void)
11664 {
11665 extended_remote_ops = remote_ops;
11666
11667 extended_remote_ops.to_shortname = "extended-remote";
11668 extended_remote_ops.to_longname =
11669 "Extended remote serial target in gdb-specific protocol";
11670 extended_remote_ops.to_doc =
11671 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
11672 Specify the serial device it is connected to (e.g. /dev/ttya).";
11673 extended_remote_ops.to_open = extended_remote_open;
11674 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
11675 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
11676 extended_remote_ops.to_detach = extended_remote_detach;
11677 extended_remote_ops.to_attach = extended_remote_attach;
11678 extended_remote_ops.to_kill = extended_remote_kill;
11679 extended_remote_ops.to_supports_disable_randomization
11680 = extended_remote_supports_disable_randomization;
11681 }
11682
11683 static int
11684 remote_can_async_p (struct target_ops *ops)
11685 {
11686 struct remote_state *rs = get_remote_state ();
11687
11688 if (!target_async_permitted)
11689 /* We only enable async when the user specifically asks for it. */
11690 return 0;
11691
11692 /* We're async whenever the serial device is. */
11693 return serial_can_async_p (rs->remote_desc);
11694 }
11695
11696 static int
11697 remote_is_async_p (struct target_ops *ops)
11698 {
11699 struct remote_state *rs = get_remote_state ();
11700
11701 if (!target_async_permitted)
11702 /* We only enable async when the user specifically asks for it. */
11703 return 0;
11704
11705 /* We're async whenever the serial device is. */
11706 return serial_is_async_p (rs->remote_desc);
11707 }
11708
11709 /* Pass the SERIAL event on and up to the client. One day this code
11710 will be able to delay notifying the client of an event until the
11711 point where an entire packet has been received. */
11712
11713 static serial_event_ftype remote_async_serial_handler;
11714
11715 static void
11716 remote_async_serial_handler (struct serial *scb, void *context)
11717 {
11718 struct remote_state *rs = context;
11719
11720 /* Don't propogate error information up to the client. Instead let
11721 the client find out about the error by querying the target. */
11722 rs->async_client_callback (INF_REG_EVENT, rs->async_client_context);
11723 }
11724
11725 static void
11726 remote_async_inferior_event_handler (gdb_client_data data)
11727 {
11728 inferior_event_handler (INF_REG_EVENT, NULL);
11729 }
11730
11731 static void
11732 remote_async (struct target_ops *ops,
11733 void (*callback) (enum inferior_event_type event_type,
11734 void *context),
11735 void *context)
11736 {
11737 struct remote_state *rs = get_remote_state ();
11738
11739 if (callback != NULL)
11740 {
11741 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
11742 rs->async_client_callback = callback;
11743 rs->async_client_context = context;
11744 }
11745 else
11746 serial_async (rs->remote_desc, NULL, NULL);
11747 }
11748
11749 static void
11750 set_remote_cmd (char *args, int from_tty)
11751 {
11752 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
11753 }
11754
11755 static void
11756 show_remote_cmd (char *args, int from_tty)
11757 {
11758 /* We can't just use cmd_show_list here, because we want to skip
11759 the redundant "show remote Z-packet" and the legacy aliases. */
11760 struct cleanup *showlist_chain;
11761 struct cmd_list_element *list = remote_show_cmdlist;
11762 struct ui_out *uiout = current_uiout;
11763
11764 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
11765 for (; list != NULL; list = list->next)
11766 if (strcmp (list->name, "Z-packet") == 0)
11767 continue;
11768 else if (list->type == not_set_cmd)
11769 /* Alias commands are exactly like the original, except they
11770 don't have the normal type. */
11771 continue;
11772 else
11773 {
11774 struct cleanup *option_chain
11775 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
11776
11777 ui_out_field_string (uiout, "name", list->name);
11778 ui_out_text (uiout, ": ");
11779 if (list->type == show_cmd)
11780 do_show_command ((char *) NULL, from_tty, list);
11781 else
11782 cmd_func (list, NULL, from_tty);
11783 /* Close the tuple. */
11784 do_cleanups (option_chain);
11785 }
11786
11787 /* Close the tuple. */
11788 do_cleanups (showlist_chain);
11789 }
11790
11791
11792 /* Function to be called whenever a new objfile (shlib) is detected. */
11793 static void
11794 remote_new_objfile (struct objfile *objfile)
11795 {
11796 struct remote_state *rs = get_remote_state ();
11797
11798 if (rs->remote_desc != 0) /* Have a remote connection. */
11799 remote_check_symbols ();
11800 }
11801
11802 /* Pull all the tracepoints defined on the target and create local
11803 data structures representing them. We don't want to create real
11804 tracepoints yet, we don't want to mess up the user's existing
11805 collection. */
11806
11807 static int
11808 remote_upload_tracepoints (struct target_ops *self, struct uploaded_tp **utpp)
11809 {
11810 struct remote_state *rs = get_remote_state ();
11811 char *p;
11812
11813 /* Ask for a first packet of tracepoint definition. */
11814 putpkt ("qTfP");
11815 getpkt (&rs->buf, &rs->buf_size, 0);
11816 p = rs->buf;
11817 while (*p && *p != 'l')
11818 {
11819 parse_tracepoint_definition (p, utpp);
11820 /* Ask for another packet of tracepoint definition. */
11821 putpkt ("qTsP");
11822 getpkt (&rs->buf, &rs->buf_size, 0);
11823 p = rs->buf;
11824 }
11825 return 0;
11826 }
11827
11828 static int
11829 remote_upload_trace_state_variables (struct target_ops *self,
11830 struct uploaded_tsv **utsvp)
11831 {
11832 struct remote_state *rs = get_remote_state ();
11833 char *p;
11834
11835 /* Ask for a first packet of variable definition. */
11836 putpkt ("qTfV");
11837 getpkt (&rs->buf, &rs->buf_size, 0);
11838 p = rs->buf;
11839 while (*p && *p != 'l')
11840 {
11841 parse_tsv_definition (p, utsvp);
11842 /* Ask for another packet of variable definition. */
11843 putpkt ("qTsV");
11844 getpkt (&rs->buf, &rs->buf_size, 0);
11845 p = rs->buf;
11846 }
11847 return 0;
11848 }
11849
11850 /* The "set/show range-stepping" show hook. */
11851
11852 static void
11853 show_range_stepping (struct ui_file *file, int from_tty,
11854 struct cmd_list_element *c,
11855 const char *value)
11856 {
11857 fprintf_filtered (file,
11858 _("Debugger's willingness to use range stepping "
11859 "is %s.\n"), value);
11860 }
11861
11862 /* The "set/show range-stepping" set hook. */
11863
11864 static void
11865 set_range_stepping (char *ignore_args, int from_tty,
11866 struct cmd_list_element *c)
11867 {
11868 struct remote_state *rs = get_remote_state ();
11869
11870 /* Whene enabling, check whether range stepping is actually
11871 supported by the target, and warn if not. */
11872 if (use_range_stepping)
11873 {
11874 if (rs->remote_desc != NULL)
11875 {
11876 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
11877 remote_vcont_probe (rs);
11878
11879 if (remote_protocol_packets[PACKET_vCont].support == PACKET_ENABLE
11880 && rs->supports_vCont.r)
11881 return;
11882 }
11883
11884 warning (_("Range stepping is not supported by the current target"));
11885 }
11886 }
11887
11888 void
11889 _initialize_remote (void)
11890 {
11891 struct remote_state *rs;
11892 struct cmd_list_element *cmd;
11893 const char *cmd_name;
11894
11895 /* architecture specific data */
11896 remote_gdbarch_data_handle =
11897 gdbarch_data_register_post_init (init_remote_state);
11898 remote_g_packet_data_handle =
11899 gdbarch_data_register_pre_init (remote_g_packet_data_init);
11900
11901 /* Initialize the per-target state. At the moment there is only one
11902 of these, not one per target. Only one target is active at a
11903 time. */
11904 remote_state = new_remote_state ();
11905
11906 init_remote_ops ();
11907 add_target (&remote_ops);
11908
11909 init_extended_remote_ops ();
11910 add_target (&extended_remote_ops);
11911
11912 /* Hook into new objfile notification. */
11913 observer_attach_new_objfile (remote_new_objfile);
11914 /* We're no longer interested in notification events of an inferior
11915 when it exits. */
11916 observer_attach_inferior_exit (discard_pending_stop_replies);
11917
11918 /* Set up signal handlers. */
11919 async_sigint_remote_token =
11920 create_async_signal_handler (async_remote_interrupt, NULL);
11921 async_sigint_remote_twice_token =
11922 create_async_signal_handler (async_remote_interrupt_twice, NULL);
11923
11924 #if 0
11925 init_remote_threadtests ();
11926 #endif
11927
11928 stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
11929 /* set/show remote ... */
11930
11931 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
11932 Remote protocol specific variables\n\
11933 Configure various remote-protocol specific variables such as\n\
11934 the packets being used"),
11935 &remote_set_cmdlist, "set remote ",
11936 0 /* allow-unknown */, &setlist);
11937 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
11938 Remote protocol specific variables\n\
11939 Configure various remote-protocol specific variables such as\n\
11940 the packets being used"),
11941 &remote_show_cmdlist, "show remote ",
11942 0 /* allow-unknown */, &showlist);
11943
11944 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
11945 Compare section data on target to the exec file.\n\
11946 Argument is a single section name (default: all loaded sections)."),
11947 &cmdlist);
11948
11949 add_cmd ("packet", class_maintenance, packet_command, _("\
11950 Send an arbitrary packet to a remote target.\n\
11951 maintenance packet TEXT\n\
11952 If GDB is talking to an inferior via the GDB serial protocol, then\n\
11953 this command sends the string TEXT to the inferior, and displays the\n\
11954 response packet. GDB supplies the initial `$' character, and the\n\
11955 terminating `#' character and checksum."),
11956 &maintenancelist);
11957
11958 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
11959 Set whether to send break if interrupted."), _("\
11960 Show whether to send break if interrupted."), _("\
11961 If set, a break, instead of a cntrl-c, is sent to the remote target."),
11962 set_remotebreak, show_remotebreak,
11963 &setlist, &showlist);
11964 cmd_name = "remotebreak";
11965 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
11966 deprecate_cmd (cmd, "set remote interrupt-sequence");
11967 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
11968 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
11969 deprecate_cmd (cmd, "show remote interrupt-sequence");
11970
11971 add_setshow_enum_cmd ("interrupt-sequence", class_support,
11972 interrupt_sequence_modes, &interrupt_sequence_mode,
11973 _("\
11974 Set interrupt sequence to remote target."), _("\
11975 Show interrupt sequence to remote target."), _("\
11976 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
11977 NULL, show_interrupt_sequence,
11978 &remote_set_cmdlist,
11979 &remote_show_cmdlist);
11980
11981 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
11982 &interrupt_on_connect, _("\
11983 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11984 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11985 If set, interrupt sequence is sent to remote target."),
11986 NULL, NULL,
11987 &remote_set_cmdlist, &remote_show_cmdlist);
11988
11989 /* Install commands for configuring memory read/write packets. */
11990
11991 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
11992 Set the maximum number of bytes per memory write packet (deprecated)."),
11993 &setlist);
11994 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
11995 Show the maximum number of bytes per memory write packet (deprecated)."),
11996 &showlist);
11997 add_cmd ("memory-write-packet-size", no_class,
11998 set_memory_write_packet_size, _("\
11999 Set the maximum number of bytes per memory-write packet.\n\
12000 Specify the number of bytes in a packet or 0 (zero) for the\n\
12001 default packet size. The actual limit is further reduced\n\
12002 dependent on the target. Specify ``fixed'' to disable the\n\
12003 further restriction and ``limit'' to enable that restriction."),
12004 &remote_set_cmdlist);
12005 add_cmd ("memory-read-packet-size", no_class,
12006 set_memory_read_packet_size, _("\
12007 Set the maximum number of bytes per memory-read packet.\n\
12008 Specify the number of bytes in a packet or 0 (zero) for the\n\
12009 default packet size. The actual limit is further reduced\n\
12010 dependent on the target. Specify ``fixed'' to disable the\n\
12011 further restriction and ``limit'' to enable that restriction."),
12012 &remote_set_cmdlist);
12013 add_cmd ("memory-write-packet-size", no_class,
12014 show_memory_write_packet_size,
12015 _("Show the maximum number of bytes per memory-write packet."),
12016 &remote_show_cmdlist);
12017 add_cmd ("memory-read-packet-size", no_class,
12018 show_memory_read_packet_size,
12019 _("Show the maximum number of bytes per memory-read packet."),
12020 &remote_show_cmdlist);
12021
12022 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
12023 &remote_hw_watchpoint_limit, _("\
12024 Set the maximum number of target hardware watchpoints."), _("\
12025 Show the maximum number of target hardware watchpoints."), _("\
12026 Specify a negative limit for unlimited."),
12027 NULL, NULL, /* FIXME: i18n: The maximum
12028 number of target hardware
12029 watchpoints is %s. */
12030 &remote_set_cmdlist, &remote_show_cmdlist);
12031 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
12032 &remote_hw_watchpoint_length_limit, _("\
12033 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
12034 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
12035 Specify a negative limit for unlimited."),
12036 NULL, NULL, /* FIXME: i18n: The maximum
12037 length (in bytes) of a target
12038 hardware watchpoint is %s. */
12039 &remote_set_cmdlist, &remote_show_cmdlist);
12040 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
12041 &remote_hw_breakpoint_limit, _("\
12042 Set the maximum number of target hardware breakpoints."), _("\
12043 Show the maximum number of target hardware breakpoints."), _("\
12044 Specify a negative limit for unlimited."),
12045 NULL, NULL, /* FIXME: i18n: The maximum
12046 number of target hardware
12047 breakpoints is %s. */
12048 &remote_set_cmdlist, &remote_show_cmdlist);
12049
12050 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
12051 &remote_address_size, _("\
12052 Set the maximum size of the address (in bits) in a memory packet."), _("\
12053 Show the maximum size of the address (in bits) in a memory packet."), NULL,
12054 NULL,
12055 NULL, /* FIXME: i18n: */
12056 &setlist, &showlist);
12057
12058 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
12059 "X", "binary-download", 1);
12060
12061 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
12062 "vCont", "verbose-resume", 0);
12063
12064 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
12065 "QPassSignals", "pass-signals", 0);
12066
12067 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
12068 "QProgramSignals", "program-signals", 0);
12069
12070 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
12071 "qSymbol", "symbol-lookup", 0);
12072
12073 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
12074 "P", "set-register", 1);
12075
12076 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
12077 "p", "fetch-register", 1);
12078
12079 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
12080 "Z0", "software-breakpoint", 0);
12081
12082 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
12083 "Z1", "hardware-breakpoint", 0);
12084
12085 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
12086 "Z2", "write-watchpoint", 0);
12087
12088 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
12089 "Z3", "read-watchpoint", 0);
12090
12091 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
12092 "Z4", "access-watchpoint", 0);
12093
12094 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
12095 "qXfer:auxv:read", "read-aux-vector", 0);
12096
12097 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
12098 "qXfer:features:read", "target-features", 0);
12099
12100 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
12101 "qXfer:libraries:read", "library-info", 0);
12102
12103 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
12104 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
12105
12106 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
12107 "qXfer:memory-map:read", "memory-map", 0);
12108
12109 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
12110 "qXfer:spu:read", "read-spu-object", 0);
12111
12112 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
12113 "qXfer:spu:write", "write-spu-object", 0);
12114
12115 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
12116 "qXfer:osdata:read", "osdata", 0);
12117
12118 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
12119 "qXfer:threads:read", "threads", 0);
12120
12121 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
12122 "qXfer:siginfo:read", "read-siginfo-object", 0);
12123
12124 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
12125 "qXfer:siginfo:write", "write-siginfo-object", 0);
12126
12127 add_packet_config_cmd
12128 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
12129 "qXfer:traceframe-info:read", "traceframe-info", 0);
12130
12131 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
12132 "qXfer:uib:read", "unwind-info-block", 0);
12133
12134 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
12135 "qGetTLSAddr", "get-thread-local-storage-address",
12136 0);
12137
12138 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
12139 "qGetTIBAddr", "get-thread-information-block-address",
12140 0);
12141
12142 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
12143 "bc", "reverse-continue", 0);
12144
12145 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
12146 "bs", "reverse-step", 0);
12147
12148 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
12149 "qSupported", "supported-packets", 0);
12150
12151 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
12152 "qSearch:memory", "search-memory", 0);
12153
12154 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
12155 "qTStatus", "trace-status", 0);
12156
12157 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
12158 "vFile:open", "hostio-open", 0);
12159
12160 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
12161 "vFile:pread", "hostio-pread", 0);
12162
12163 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
12164 "vFile:pwrite", "hostio-pwrite", 0);
12165
12166 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
12167 "vFile:close", "hostio-close", 0);
12168
12169 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
12170 "vFile:unlink", "hostio-unlink", 0);
12171
12172 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
12173 "vFile:readlink", "hostio-readlink", 0);
12174
12175 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
12176 "vAttach", "attach", 0);
12177
12178 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
12179 "vRun", "run", 0);
12180
12181 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
12182 "QStartNoAckMode", "noack", 0);
12183
12184 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
12185 "vKill", "kill", 0);
12186
12187 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
12188 "qAttached", "query-attached", 0);
12189
12190 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
12191 "ConditionalTracepoints",
12192 "conditional-tracepoints", 0);
12193
12194 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
12195 "ConditionalBreakpoints",
12196 "conditional-breakpoints", 0);
12197
12198 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
12199 "BreakpointCommands",
12200 "breakpoint-commands", 0);
12201
12202 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
12203 "FastTracepoints", "fast-tracepoints", 0);
12204
12205 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
12206 "TracepointSource", "TracepointSource", 0);
12207
12208 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
12209 "QAllow", "allow", 0);
12210
12211 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
12212 "StaticTracepoints", "static-tracepoints", 0);
12213
12214 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
12215 "InstallInTrace", "install-in-trace", 0);
12216
12217 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
12218 "qXfer:statictrace:read", "read-sdata-object", 0);
12219
12220 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
12221 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
12222
12223 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
12224 "QDisableRandomization", "disable-randomization", 0);
12225
12226 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
12227 "QAgent", "agent", 0);
12228
12229 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
12230 "QTBuffer:size", "trace-buffer-size", 0);
12231
12232 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
12233 "Qbtrace:off", "disable-btrace", 0);
12234
12235 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
12236 "Qbtrace:bts", "enable-btrace", 0);
12237
12238 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
12239 "qXfer:btrace", "read-btrace", 0);
12240
12241 /* Keep the old ``set remote Z-packet ...'' working. Each individual
12242 Z sub-packet has its own set and show commands, but users may
12243 have sets to this variable in their .gdbinit files (or in their
12244 documentation). */
12245 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
12246 &remote_Z_packet_detect, _("\
12247 Set use of remote protocol `Z' packets"), _("\
12248 Show use of remote protocol `Z' packets "), _("\
12249 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
12250 packets."),
12251 set_remote_protocol_Z_packet_cmd,
12252 show_remote_protocol_Z_packet_cmd,
12253 /* FIXME: i18n: Use of remote protocol
12254 `Z' packets is %s. */
12255 &remote_set_cmdlist, &remote_show_cmdlist);
12256
12257 add_prefix_cmd ("remote", class_files, remote_command, _("\
12258 Manipulate files on the remote system\n\
12259 Transfer files to and from the remote target system."),
12260 &remote_cmdlist, "remote ",
12261 0 /* allow-unknown */, &cmdlist);
12262
12263 add_cmd ("put", class_files, remote_put_command,
12264 _("Copy a local file to the remote system."),
12265 &remote_cmdlist);
12266
12267 add_cmd ("get", class_files, remote_get_command,
12268 _("Copy a remote file to the local system."),
12269 &remote_cmdlist);
12270
12271 add_cmd ("delete", class_files, remote_delete_command,
12272 _("Delete a remote file."),
12273 &remote_cmdlist);
12274
12275 remote_exec_file = xstrdup ("");
12276 add_setshow_string_noescape_cmd ("exec-file", class_files,
12277 &remote_exec_file, _("\
12278 Set the remote pathname for \"run\""), _("\
12279 Show the remote pathname for \"run\""), NULL, NULL, NULL,
12280 &remote_set_cmdlist, &remote_show_cmdlist);
12281
12282 add_setshow_boolean_cmd ("range-stepping", class_run,
12283 &use_range_stepping, _("\
12284 Enable or disable range stepping."), _("\
12285 Show whether target-assisted range stepping is enabled."), _("\
12286 If on, and the target supports it, when stepping a source line, GDB\n\
12287 tells the target to step the corresponding range of addresses itself instead\n\
12288 of issuing multiple single-steps. This speeds up source level\n\
12289 stepping. If off, GDB always issues single-steps, even if range\n\
12290 stepping is supported by the target. The default is on."),
12291 set_range_stepping,
12292 show_range_stepping,
12293 &setlist,
12294 &showlist);
12295
12296 /* Eventually initialize fileio. See fileio.c */
12297 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
12298
12299 /* Take advantage of the fact that the TID field is not used, to tag
12300 special ptids with it set to != 0. */
12301 magic_null_ptid = ptid_build (42000, -1, 1);
12302 not_sent_ptid = ptid_build (42000, -2, 1);
12303 any_thread_ptid = ptid_build (42000, 0, 1);
12304
12305 target_buf_size = 2048;
12306 target_buf = xmalloc (target_buf_size);
12307 }
12308
This page took 0.316378 seconds and 5 git commands to generate.