* cli/cli-decode.c (do_cfunc, set_cmd_cfunc): New functions.
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* See the GDB User Guide for details of the GDB remote protocol. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include <fcntl.h>
29 #include "inferior.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42
43 #include <ctype.h>
44 #include <sys/time.h>
45 #ifdef USG
46 #include <sys/types.h>
47 #endif
48
49 #include "event-loop.h"
50 #include "event-top.h"
51 #include "inf-loop.h"
52
53 #include <signal.h>
54 #include "serial.h"
55
56 #include "gdbcore.h" /* for exec_bfd */
57
58 /* Prototypes for local functions */
59 static void cleanup_sigint_signal_handler (void *dummy);
60 static void initialize_sigint_signal_handler (void);
61 static int getpkt_sane (char *buf, long sizeof_buf, int forever);
62
63 static void handle_remote_sigint (int);
64 static void handle_remote_sigint_twice (int);
65 static void async_remote_interrupt (gdb_client_data);
66 void async_remote_interrupt_twice (gdb_client_data);
67
68 static void build_remote_gdbarch_data (void);
69
70 static int remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len);
71
72 static int remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len);
73
74 static void remote_files_info (struct target_ops *ignore);
75
76 static int remote_xfer_memory (CORE_ADDR memaddr, char *myaddr,
77 int len, int should_write,
78 struct mem_attrib *attrib,
79 struct target_ops *target);
80
81 static void remote_prepare_to_store (void);
82
83 static void remote_fetch_registers (int regno);
84
85 static void remote_resume (ptid_t ptid, int step,
86 enum target_signal siggnal);
87 static void remote_async_resume (ptid_t ptid, int step,
88 enum target_signal siggnal);
89 static int remote_start_remote (PTR);
90
91 static void remote_open (char *name, int from_tty);
92 static void remote_async_open (char *name, int from_tty);
93
94 static void extended_remote_open (char *name, int from_tty);
95 static void extended_remote_async_open (char *name, int from_tty);
96
97 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
98 static void remote_async_open_1 (char *, int, struct target_ops *,
99 int extended_p);
100
101 static void remote_close (int quitting);
102
103 static void remote_store_registers (int regno);
104
105 static void remote_mourn (void);
106 static void remote_async_mourn (void);
107
108 static void extended_remote_restart (void);
109
110 static void extended_remote_mourn (void);
111
112 static void extended_remote_create_inferior (char *, char *, char **);
113 static void extended_remote_async_create_inferior (char *, char *, char **);
114
115 static void remote_mourn_1 (struct target_ops *);
116
117 static void remote_send (char *buf, long sizeof_buf);
118
119 static int readchar (int timeout);
120
121 static ptid_t remote_wait (ptid_t ptid,
122 struct target_waitstatus *status);
123 static ptid_t remote_async_wait (ptid_t ptid,
124 struct target_waitstatus *status);
125
126 static void remote_kill (void);
127 static void remote_async_kill (void);
128
129 static int tohex (int nib);
130
131 static void remote_detach (char *args, int from_tty);
132 static void remote_async_detach (char *args, int from_tty);
133
134 static void remote_interrupt (int signo);
135
136 static void remote_interrupt_twice (int signo);
137
138 static void interrupt_query (void);
139
140 static void set_thread (int, int);
141
142 static int remote_thread_alive (ptid_t);
143
144 static void get_offsets (void);
145
146 static long read_frame (char *buf, long sizeof_buf);
147
148 static int remote_insert_breakpoint (CORE_ADDR, char *);
149
150 static int remote_remove_breakpoint (CORE_ADDR, char *);
151
152 static int hexnumlen (ULONGEST num);
153
154 static void init_remote_ops (void);
155
156 static void init_extended_remote_ops (void);
157
158 static void init_remote_cisco_ops (void);
159
160 static struct target_ops remote_cisco_ops;
161
162 static void remote_stop (void);
163
164 static int ishex (int ch, int *val);
165
166 static int stubhex (int ch);
167
168 static int remote_query (int /*char */ , char *, char *, int *);
169
170 static int hexnumstr (char *, ULONGEST);
171
172 static int hexnumnstr (char *, ULONGEST, int);
173
174 static CORE_ADDR remote_address_masked (CORE_ADDR);
175
176 static void print_packet (char *);
177
178 static unsigned long crc32 (unsigned char *, int, unsigned int);
179
180 static void compare_sections_command (char *, int);
181
182 static void packet_command (char *, int);
183
184 static int stub_unpack_int (char *buff, int fieldlength);
185
186 static ptid_t remote_current_thread (ptid_t oldptid);
187
188 static void remote_find_new_threads (void);
189
190 static void record_currthread (int currthread);
191
192 static int fromhex (int a);
193
194 static int hex2bin (const char *hex, char *bin, int count);
195
196 static int bin2hex (const char *bin, char *hex, int count);
197
198 static int putpkt_binary (char *buf, int cnt);
199
200 static void check_binary_download (CORE_ADDR addr);
201
202 struct packet_config;
203
204 static void show_packet_config_cmd (struct packet_config *config);
205
206 static void update_packet_config (struct packet_config *config);
207
208 /* Define the target subroutine names */
209
210 void open_remote_target (char *, int, struct target_ops *, int);
211
212 void _initialize_remote (void);
213
214 /* Description of the remote protocol. Strictly speeking, when the
215 target is open()ed, remote.c should create a per-target description
216 of the remote protocol using that target's architecture.
217 Unfortunatly, the target stack doesn't include local state. For
218 the moment keep the information in the target's architecture
219 object. Sigh.. */
220
221 struct packet_reg
222 {
223 long offset; /* Offset into G packet. */
224 long regnum; /* GDB's internal register number. */
225 LONGEST pnum; /* Remote protocol register number. */
226 int in_g_packet; /* Always part of G packet. */
227 /* long size in bytes; == REGISTER_RAW_SIZE (regnum); at present. */
228 /* char *name; == REGISTER_NAME (regnum); at present. */
229 };
230
231 struct remote_state
232 {
233 /* Description of the remote protocol registers. */
234 long sizeof_g_packet;
235
236 /* Description of the remote protocol registers indexed by REGNUM
237 (making an array of NUM_REGS + NUM_PSEUDO_REGS in size). */
238 struct packet_reg *regs;
239
240 /* This is the size (in chars) of the first response to the ``g''
241 packet. It is used as a heuristic when determining the maximum
242 size of memory-read and memory-write packets. A target will
243 typically only reserve a buffer large enough to hold the ``g''
244 packet. The size does not include packet overhead (headers and
245 trailers). */
246 long actual_register_packet_size;
247
248 /* This is the maximum size (in chars) of a non read/write packet.
249 It is also used as a cap on the size of read/write packets. */
250 long remote_packet_size;
251 };
252
253 /* Handle for retreving the remote protocol data from gdbarch. */
254 static struct gdbarch_data *remote_gdbarch_data_handle;
255
256 static struct remote_state *
257 get_remote_state ()
258 {
259 return gdbarch_data (remote_gdbarch_data_handle);
260 }
261
262 static void *
263 init_remote_state (struct gdbarch *gdbarch)
264 {
265 int regnum;
266 struct remote_state *rs = xmalloc (sizeof (struct remote_state));
267
268 /* Start out by having the remote protocol mimic the existing
269 behavour - just copy in the description of the register cache. */
270 rs->sizeof_g_packet = REGISTER_BYTES; /* OK use. */
271
272 /* Assume a 1:1 regnum<->pnum table. */
273 rs->regs = xcalloc (NUM_REGS + NUM_PSEUDO_REGS, sizeof (struct packet_reg));
274 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
275 {
276 struct packet_reg *r = &rs->regs[regnum];
277 r->pnum = regnum;
278 r->regnum = regnum;
279 r->offset = REGISTER_BYTE (regnum);
280 r->in_g_packet = (regnum < NUM_REGS);
281 /* ...size = REGISTER_RAW_SIZE (regnum); */
282 /* ...name = REGISTER_NAME (regnum); */
283 }
284
285 /* Default maximum number of characters in a packet body. Many
286 remote stubs have a hardwired buffer size of 400 bytes
287 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
288 as the maximum packet-size to ensure that the packet and an extra
289 NUL character can always fit in the buffer. This stops GDB
290 trashing stubs that try to squeeze an extra NUL into what is
291 already a full buffer (As of 1999-12-04 that was most stubs. */
292 rs->remote_packet_size = 400 - 1;
293
294 /* Should rs->sizeof_g_packet needs more space than the
295 default, adjust the size accordingly. Remember that each byte is
296 encoded as two characters. 32 is the overhead for the packet
297 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
298 (``$NN:G...#NN'') is a better guess, the below has been padded a
299 little. */
300 if (rs->sizeof_g_packet > ((rs->remote_packet_size - 32) / 2))
301 rs->remote_packet_size = (rs->sizeof_g_packet * 2 + 32);
302
303 /* This one is filled in when a ``g'' packet is received. */
304 rs->actual_register_packet_size = 0;
305
306 return rs;
307 }
308
309 static void
310 free_remote_state (struct gdbarch *gdbarch, void *pointer)
311 {
312 struct remote_state *data = pointer;
313 xfree (data->regs);
314 xfree (data);
315 }
316
317 static struct packet_reg *
318 packet_reg_from_regnum (struct remote_state *rs, long regnum)
319 {
320 if (regnum < 0 && regnum >= NUM_REGS + NUM_PSEUDO_REGS)
321 return NULL;
322 else
323 {
324 struct packet_reg *r = &rs->regs[regnum];
325 gdb_assert (r->regnum == regnum);
326 return r;
327 }
328 }
329
330 static struct packet_reg *
331 packet_reg_from_pnum (struct remote_state *rs, LONGEST pnum)
332 {
333 int i;
334 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
335 {
336 struct packet_reg *r = &rs->regs[i];
337 if (r->pnum == pnum)
338 return r;
339 }
340 return NULL;
341 }
342
343 /* */
344
345 static struct target_ops remote_ops;
346
347 static struct target_ops extended_remote_ops;
348
349 /* Temporary target ops. Just like the remote_ops and
350 extended_remote_ops, but with asynchronous support. */
351 static struct target_ops remote_async_ops;
352
353 static struct target_ops extended_async_remote_ops;
354
355 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
356 ``forever'' still use the normal timeout mechanism. This is
357 currently used by the ASYNC code to guarentee that target reads
358 during the initial connect always time-out. Once getpkt has been
359 modified to return a timeout indication and, in turn
360 remote_wait()/wait_for_inferior() have gained a timeout parameter
361 this can go away. */
362 static int wait_forever_enabled_p = 1;
363
364
365 /* This variable chooses whether to send a ^C or a break when the user
366 requests program interruption. Although ^C is usually what remote
367 systems expect, and that is the default here, sometimes a break is
368 preferable instead. */
369
370 static int remote_break;
371
372 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
373 remote_open knows that we don't have a file open when the program
374 starts. */
375 static struct serial *remote_desc = NULL;
376
377 /* This is set by the target (thru the 'S' message)
378 to denote that the target is in kernel mode. */
379 static int cisco_kernel_mode = 0;
380
381 /* This variable sets the number of bits in an address that are to be
382 sent in a memory ("M" or "m") packet. Normally, after stripping
383 leading zeros, the entire address would be sent. This variable
384 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
385 initial implementation of remote.c restricted the address sent in
386 memory packets to ``host::sizeof long'' bytes - (typically 32
387 bits). Consequently, for 64 bit targets, the upper 32 bits of an
388 address was never sent. Since fixing this bug may cause a break in
389 some remote targets this variable is principly provided to
390 facilitate backward compatibility. */
391
392 static int remote_address_size;
393
394 /* Tempoary to track who currently owns the terminal. See
395 target_async_terminal_* for more details. */
396
397 static int remote_async_terminal_ours_p;
398
399 \f
400 /* User configurable variables for the number of characters in a
401 memory read/write packet. MIN ((rs->remote_packet_size),
402 rs->sizeof_g_packet) is the default. Some targets need smaller
403 values (fifo overruns, et.al.) and some users need larger values
404 (speed up transfers). The variables ``preferred_*'' (the user
405 request), ``current_*'' (what was actually set) and ``forced_*''
406 (Positive - a soft limit, negative - a hard limit). */
407
408 struct memory_packet_config
409 {
410 char *name;
411 long size;
412 int fixed_p;
413 };
414
415 /* Compute the current size of a read/write packet. Since this makes
416 use of ``actual_register_packet_size'' the computation is dynamic. */
417
418 static long
419 get_memory_packet_size (struct memory_packet_config *config)
420 {
421 struct remote_state *rs = get_remote_state ();
422 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
423 law?) that some hosts don't cope very well with large alloca()
424 calls. Eventually the alloca() code will be replaced by calls to
425 xmalloc() and make_cleanups() allowing this restriction to either
426 be lifted or removed. */
427 #ifndef MAX_REMOTE_PACKET_SIZE
428 #define MAX_REMOTE_PACKET_SIZE 16384
429 #endif
430 /* NOTE: 16 is just chosen at random. */
431 #ifndef MIN_REMOTE_PACKET_SIZE
432 #define MIN_REMOTE_PACKET_SIZE 16
433 #endif
434 long what_they_get;
435 if (config->fixed_p)
436 {
437 if (config->size <= 0)
438 what_they_get = MAX_REMOTE_PACKET_SIZE;
439 else
440 what_they_get = config->size;
441 }
442 else
443 {
444 what_they_get = (rs->remote_packet_size);
445 /* Limit the packet to the size specified by the user. */
446 if (config->size > 0
447 && what_they_get > config->size)
448 what_they_get = config->size;
449 /* Limit it to the size of the targets ``g'' response. */
450 if ((rs->actual_register_packet_size) > 0
451 && what_they_get > (rs->actual_register_packet_size))
452 what_they_get = (rs->actual_register_packet_size);
453 }
454 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
455 what_they_get = MAX_REMOTE_PACKET_SIZE;
456 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
457 what_they_get = MIN_REMOTE_PACKET_SIZE;
458 return what_they_get;
459 }
460
461 /* Update the size of a read/write packet. If they user wants
462 something really big then do a sanity check. */
463
464 static void
465 set_memory_packet_size (char *args, struct memory_packet_config *config)
466 {
467 int fixed_p = config->fixed_p;
468 long size = config->size;
469 if (args == NULL)
470 error ("Argument required (integer, `fixed' or `limited').");
471 else if (strcmp (args, "hard") == 0
472 || strcmp (args, "fixed") == 0)
473 fixed_p = 1;
474 else if (strcmp (args, "soft") == 0
475 || strcmp (args, "limit") == 0)
476 fixed_p = 0;
477 else
478 {
479 char *end;
480 size = strtoul (args, &end, 0);
481 if (args == end)
482 error ("Invalid %s (bad syntax).", config->name);
483 #if 0
484 /* Instead of explicitly capping the size of a packet to
485 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
486 instead allowed to set the size to something arbitrarily
487 large. */
488 if (size > MAX_REMOTE_PACKET_SIZE)
489 error ("Invalid %s (too large).", config->name);
490 #endif
491 }
492 /* Extra checks? */
493 if (fixed_p && !config->fixed_p)
494 {
495 if (! query ("The target may not be able to correctly handle a %s\n"
496 "of %ld bytes. Change the packet size? ",
497 config->name, size))
498 error ("Packet size not changed.");
499 }
500 /* Update the config. */
501 config->fixed_p = fixed_p;
502 config->size = size;
503 }
504
505 static void
506 show_memory_packet_size (struct memory_packet_config *config)
507 {
508 printf_filtered ("The %s is %ld. ", config->name, config->size);
509 if (config->fixed_p)
510 printf_filtered ("Packets are fixed at %ld bytes.\n",
511 get_memory_packet_size (config));
512 else
513 printf_filtered ("Packets are limited to %ld bytes.\n",
514 get_memory_packet_size (config));
515 }
516
517 static struct memory_packet_config memory_write_packet_config =
518 {
519 "memory-write-packet-size",
520 };
521
522 static void
523 set_memory_write_packet_size (char *args, int from_tty)
524 {
525 set_memory_packet_size (args, &memory_write_packet_config);
526 }
527
528 static void
529 show_memory_write_packet_size (char *args, int from_tty)
530 {
531 show_memory_packet_size (&memory_write_packet_config);
532 }
533
534 static long
535 get_memory_write_packet_size (void)
536 {
537 return get_memory_packet_size (&memory_write_packet_config);
538 }
539
540 static struct memory_packet_config memory_read_packet_config =
541 {
542 "memory-read-packet-size",
543 };
544
545 static void
546 set_memory_read_packet_size (char *args, int from_tty)
547 {
548 set_memory_packet_size (args, &memory_read_packet_config);
549 }
550
551 static void
552 show_memory_read_packet_size (char *args, int from_tty)
553 {
554 show_memory_packet_size (&memory_read_packet_config);
555 }
556
557 static long
558 get_memory_read_packet_size (void)
559 {
560 struct remote_state *rs = get_remote_state ();
561 long size = get_memory_packet_size (&memory_read_packet_config);
562 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
563 extra buffer size argument before the memory read size can be
564 increased beyond (rs->remote_packet_size). */
565 if (size > (rs->remote_packet_size))
566 size = (rs->remote_packet_size);
567 return size;
568 }
569
570 \f
571 /* Generic configuration support for packets the stub optionally
572 supports. Allows the user to specify the use of the packet as well
573 as allowing GDB to auto-detect support in the remote stub. */
574
575 enum packet_support
576 {
577 PACKET_SUPPORT_UNKNOWN = 0,
578 PACKET_ENABLE,
579 PACKET_DISABLE
580 };
581
582 struct packet_config
583 {
584 char *name;
585 char *title;
586 enum cmd_auto_boolean detect;
587 enum packet_support support;
588 };
589
590 /* Analyze a packet's return value and update the packet config
591 accordingly. */
592
593 enum packet_result
594 {
595 PACKET_ERROR,
596 PACKET_OK,
597 PACKET_UNKNOWN
598 };
599
600 static void
601 update_packet_config (struct packet_config *config)
602 {
603 switch (config->detect)
604 {
605 case CMD_AUTO_BOOLEAN_TRUE:
606 config->support = PACKET_ENABLE;
607 break;
608 case CMD_AUTO_BOOLEAN_FALSE:
609 config->support = PACKET_DISABLE;
610 break;
611 case CMD_AUTO_BOOLEAN_AUTO:
612 config->support = PACKET_SUPPORT_UNKNOWN;
613 break;
614 }
615 }
616
617 static void
618 show_packet_config_cmd (struct packet_config *config)
619 {
620 char *support = "internal-error";
621 switch (config->support)
622 {
623 case PACKET_ENABLE:
624 support = "enabled";
625 break;
626 case PACKET_DISABLE:
627 support = "disabled";
628 break;
629 case PACKET_SUPPORT_UNKNOWN:
630 support = "unknown";
631 break;
632 }
633 switch (config->detect)
634 {
635 case CMD_AUTO_BOOLEAN_AUTO:
636 printf_filtered ("Support for remote protocol `%s' (%s) packet is auto-detected, currently %s.\n",
637 config->name, config->title, support);
638 break;
639 case CMD_AUTO_BOOLEAN_TRUE:
640 case CMD_AUTO_BOOLEAN_FALSE:
641 printf_filtered ("Support for remote protocol `%s' (%s) packet is currently %s.\n",
642 config->name, config->title, support);
643 break;
644 }
645 }
646
647 static void
648 add_packet_config_cmd (struct packet_config *config,
649 char *name,
650 char *title,
651 void (*set_func) (char *args, int from_tty,
652 struct cmd_list_element *
653 c),
654 void (*show_func) (char *name,
655 int from_tty),
656 struct cmd_list_element **set_remote_list,
657 struct cmd_list_element **show_remote_list,
658 int legacy)
659 {
660 struct cmd_list_element *set_cmd;
661 struct cmd_list_element *show_cmd;
662 char *set_doc;
663 char *show_doc;
664 char *cmd_name;
665 config->name = name;
666 config->title = title;
667 config->detect = CMD_AUTO_BOOLEAN_AUTO;
668 config->support = PACKET_SUPPORT_UNKNOWN;
669 xasprintf (&set_doc, "Set use of remote protocol `%s' (%s) packet",
670 name, title);
671 xasprintf (&show_doc, "Show current use of remote protocol `%s' (%s) packet",
672 name, title);
673 /* set/show TITLE-packet {auto,on,off} */
674 xasprintf (&cmd_name, "%s-packet", title);
675 set_cmd = add_set_auto_boolean_cmd (cmd_name, class_obscure,
676 &config->detect, set_doc,
677 set_remote_list);
678 set_cmd_sfunc (set_cmd, set_func);
679 show_cmd = add_cmd (cmd_name, class_obscure, show_func, show_doc,
680 show_remote_list);
681 /* set/show remote NAME-packet {auto,on,off} -- legacy */
682 if (legacy)
683 {
684 char *legacy_name;
685 xasprintf (&legacy_name, "%s-packet", name);
686 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
687 set_remote_list);
688 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
689 show_remote_list);
690 }
691 }
692
693 static enum packet_result
694 packet_ok (const char *buf, struct packet_config *config)
695 {
696 if (buf[0] != '\0')
697 {
698 /* The stub recognized the packet request. Check that the
699 operation succeeded. */
700 switch (config->support)
701 {
702 case PACKET_SUPPORT_UNKNOWN:
703 if (remote_debug)
704 fprintf_unfiltered (gdb_stdlog,
705 "Packet %s (%s) is supported\n",
706 config->name, config->title);
707 config->support = PACKET_ENABLE;
708 break;
709 case PACKET_DISABLE:
710 internal_error (__FILE__, __LINE__,
711 "packet_ok: attempt to use a disabled packet");
712 break;
713 case PACKET_ENABLE:
714 break;
715 }
716 if (buf[0] == 'O' && buf[1] == 'K' && buf[2] == '\0')
717 /* "OK" - definitly OK. */
718 return PACKET_OK;
719 if (buf[0] == 'E'
720 && isxdigit (buf[1]) && isxdigit (buf[2])
721 && buf[3] == '\0')
722 /* "Enn" - definitly an error. */
723 return PACKET_ERROR;
724 /* The packet may or may not be OK. Just assume it is */
725 return PACKET_OK;
726 }
727 else
728 {
729 /* The stub does not support the packet. */
730 switch (config->support)
731 {
732 case PACKET_ENABLE:
733 if (config->detect == CMD_AUTO_BOOLEAN_AUTO)
734 /* If the stub previously indicated that the packet was
735 supported then there is a protocol error.. */
736 error ("Protocol error: %s (%s) conflicting enabled responses.",
737 config->name, config->title);
738 else
739 /* The user set it wrong. */
740 error ("Enabled packet %s (%s) not recognized by stub",
741 config->name, config->title);
742 break;
743 case PACKET_SUPPORT_UNKNOWN:
744 if (remote_debug)
745 fprintf_unfiltered (gdb_stdlog,
746 "Packet %s (%s) is NOT supported\n",
747 config->name, config->title);
748 config->support = PACKET_DISABLE;
749 break;
750 case PACKET_DISABLE:
751 break;
752 }
753 return PACKET_UNKNOWN;
754 }
755 }
756
757 /* Should we try the 'qSymbol' (target symbol lookup service) request? */
758 static struct packet_config remote_protocol_qSymbol;
759
760 static void
761 set_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
762 struct cmd_list_element *c)
763 {
764 update_packet_config (&remote_protocol_qSymbol);
765 }
766
767 static void
768 show_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty)
769 {
770 show_packet_config_cmd (&remote_protocol_qSymbol);
771 }
772
773 /* Should we try the 'e' (step over range) request? */
774 static struct packet_config remote_protocol_e;
775
776 static void
777 set_remote_protocol_e_packet_cmd (char *args, int from_tty,
778 struct cmd_list_element *c)
779 {
780 update_packet_config (&remote_protocol_e);
781 }
782
783 static void
784 show_remote_protocol_e_packet_cmd (char *args, int from_tty)
785 {
786 show_packet_config_cmd (&remote_protocol_e);
787 }
788
789
790 /* Should we try the 'E' (step over range / w signal #) request? */
791 static struct packet_config remote_protocol_E;
792
793 static void
794 set_remote_protocol_E_packet_cmd (char *args, int from_tty,
795 struct cmd_list_element *c)
796 {
797 update_packet_config (&remote_protocol_E);
798 }
799
800 static void
801 show_remote_protocol_E_packet_cmd (char *args, int from_tty)
802 {
803 show_packet_config_cmd (&remote_protocol_E);
804 }
805
806
807 /* Should we try the 'P' (set register) request? */
808
809 static struct packet_config remote_protocol_P;
810
811 static void
812 set_remote_protocol_P_packet_cmd (char *args, int from_tty,
813 struct cmd_list_element *c)
814 {
815 update_packet_config (&remote_protocol_P);
816 }
817
818 static void
819 show_remote_protocol_P_packet_cmd (char *args, int from_tty)
820 {
821 show_packet_config_cmd (&remote_protocol_P);
822 }
823
824 /* Should we try one of the 'Z' requests? */
825
826 enum Z_packet_type
827 {
828 Z_PACKET_SOFTWARE_BP,
829 Z_PACKET_HARDWARE_BP,
830 Z_PACKET_WRITE_WP,
831 Z_PACKET_READ_WP,
832 Z_PACKET_ACCESS_WP,
833 NR_Z_PACKET_TYPES
834 };
835
836 static struct packet_config remote_protocol_Z[NR_Z_PACKET_TYPES];
837
838 /* FIXME: Instead of having all these boiler plate functions, the
839 command callback should include a context argument. */
840
841 static void
842 set_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
843 struct cmd_list_element *c)
844 {
845 update_packet_config (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
846 }
847
848 static void
849 show_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty)
850 {
851 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
852 }
853
854 static void
855 set_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
856 struct cmd_list_element *c)
857 {
858 update_packet_config (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
859 }
860
861 static void
862 show_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty)
863 {
864 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
865 }
866
867 static void
868 set_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
869 struct cmd_list_element *c)
870 {
871 update_packet_config (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
872 }
873
874 static void
875 show_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty)
876 {
877 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
878 }
879
880 static void
881 set_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
882 struct cmd_list_element *c)
883 {
884 update_packet_config (&remote_protocol_Z[Z_PACKET_READ_WP]);
885 }
886
887 static void
888 show_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty)
889 {
890 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP]);
891 }
892
893 static void
894 set_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
895 struct cmd_list_element *c)
896 {
897 update_packet_config (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
898 }
899
900 static void
901 show_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty)
902 {
903 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
904 }
905
906 /* For compatibility with older distributions. Provide a ``set remote
907 Z-packet ...'' command that updates all the Z packet types. */
908
909 static enum cmd_auto_boolean remote_Z_packet_detect;
910
911 static void
912 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
913 struct cmd_list_element *c)
914 {
915 int i;
916 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
917 {
918 remote_protocol_Z[i].detect = remote_Z_packet_detect;
919 update_packet_config (&remote_protocol_Z[i]);
920 }
921 }
922
923 static void
924 show_remote_protocol_Z_packet_cmd (char *args, int from_tty)
925 {
926 int i;
927 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
928 {
929 show_packet_config_cmd (&remote_protocol_Z[i]);
930 }
931 }
932
933 /* Should we try the 'X' (remote binary download) packet?
934
935 This variable (available to the user via "set remote X-packet")
936 dictates whether downloads are sent in binary (via the 'X' packet).
937 We assume that the stub can, and attempt to do it. This will be
938 cleared if the stub does not understand it. This switch is still
939 needed, though in cases when the packet is supported in the stub,
940 but the connection does not allow it (i.e., 7-bit serial connection
941 only). */
942
943 static struct packet_config remote_protocol_binary_download;
944
945 /* Should we try the 'ThreadInfo' query packet?
946
947 This variable (NOT available to the user: auto-detect only!)
948 determines whether GDB will use the new, simpler "ThreadInfo"
949 query or the older, more complex syntax for thread queries.
950 This is an auto-detect variable (set to true at each connect,
951 and set to false when the target fails to recognize it). */
952
953 static int use_threadinfo_query;
954 static int use_threadextra_query;
955
956 static void
957 set_remote_protocol_binary_download_cmd (char *args,
958 int from_tty,
959 struct cmd_list_element *c)
960 {
961 update_packet_config (&remote_protocol_binary_download);
962 }
963
964 static void
965 show_remote_protocol_binary_download_cmd (char *args,
966 int from_tty)
967 {
968 show_packet_config_cmd (&remote_protocol_binary_download);
969 }
970
971
972 /* Tokens for use by the asynchronous signal handlers for SIGINT */
973 PTR sigint_remote_twice_token;
974 PTR sigint_remote_token;
975
976 /* These are pointers to hook functions that may be set in order to
977 modify resume/wait behavior for a particular architecture. */
978
979 void (*target_resume_hook) (void);
980 void (*target_wait_loop_hook) (void);
981 \f
982
983
984 /* These are the threads which we last sent to the remote system.
985 -1 for all or -2 for not sent yet. */
986 static int general_thread;
987 static int continue_thread;
988
989 /* Call this function as a result of
990 1) A halt indication (T packet) containing a thread id
991 2) A direct query of currthread
992 3) Successful execution of set thread
993 */
994
995 static void
996 record_currthread (int currthread)
997 {
998 general_thread = currthread;
999
1000 /* If this is a new thread, add it to GDB's thread list.
1001 If we leave it up to WFI to do this, bad things will happen. */
1002 if (!in_thread_list (pid_to_ptid (currthread)))
1003 {
1004 add_thread (pid_to_ptid (currthread));
1005 ui_out_text (uiout, "[New ");
1006 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1007 ui_out_text (uiout, "]\n");
1008 }
1009 }
1010
1011 #define MAGIC_NULL_PID 42000
1012
1013 static void
1014 set_thread (int th, int gen)
1015 {
1016 struct remote_state *rs = get_remote_state ();
1017 char *buf = alloca (rs->remote_packet_size);
1018 int state = gen ? general_thread : continue_thread;
1019
1020 if (state == th)
1021 return;
1022
1023 buf[0] = 'H';
1024 buf[1] = gen ? 'g' : 'c';
1025 if (th == MAGIC_NULL_PID)
1026 {
1027 buf[2] = '0';
1028 buf[3] = '\0';
1029 }
1030 else if (th < 0)
1031 sprintf (&buf[2], "-%x", -th);
1032 else
1033 sprintf (&buf[2], "%x", th);
1034 putpkt (buf);
1035 getpkt (buf, (rs->remote_packet_size), 0);
1036 if (gen)
1037 general_thread = th;
1038 else
1039 continue_thread = th;
1040 }
1041 \f
1042 /* Return nonzero if the thread TH is still alive on the remote system. */
1043
1044 static int
1045 remote_thread_alive (ptid_t ptid)
1046 {
1047 int tid = PIDGET (ptid);
1048 char buf[16];
1049
1050 if (tid < 0)
1051 sprintf (buf, "T-%08x", -tid);
1052 else
1053 sprintf (buf, "T%08x", tid);
1054 putpkt (buf);
1055 getpkt (buf, sizeof (buf), 0);
1056 return (buf[0] == 'O' && buf[1] == 'K');
1057 }
1058
1059 /* About these extended threadlist and threadinfo packets. They are
1060 variable length packets but, the fields within them are often fixed
1061 length. They are redundent enough to send over UDP as is the
1062 remote protocol in general. There is a matching unit test module
1063 in libstub. */
1064
1065 #define OPAQUETHREADBYTES 8
1066
1067 /* a 64 bit opaque identifier */
1068 typedef unsigned char threadref[OPAQUETHREADBYTES];
1069
1070 /* WARNING: This threadref data structure comes from the remote O.S., libstub
1071 protocol encoding, and remote.c. it is not particularly changable */
1072
1073 /* Right now, the internal structure is int. We want it to be bigger.
1074 Plan to fix this.
1075 */
1076
1077 typedef int gdb_threadref; /* internal GDB thread reference */
1078
1079 /* gdb_ext_thread_info is an internal GDB data structure which is
1080 equivalint to the reply of the remote threadinfo packet */
1081
1082 struct gdb_ext_thread_info
1083 {
1084 threadref threadid; /* External form of thread reference */
1085 int active; /* Has state interesting to GDB? , regs, stack */
1086 char display[256]; /* Brief state display, name, blocked/syspended */
1087 char shortname[32]; /* To be used to name threads */
1088 char more_display[256]; /* Long info, statistics, queue depth, whatever */
1089 };
1090
1091 /* The volume of remote transfers can be limited by submitting
1092 a mask containing bits specifying the desired information.
1093 Use a union of these values as the 'selection' parameter to
1094 get_thread_info. FIXME: Make these TAG names more thread specific.
1095 */
1096
1097 #define TAG_THREADID 1
1098 #define TAG_EXISTS 2
1099 #define TAG_DISPLAY 4
1100 #define TAG_THREADNAME 8
1101 #define TAG_MOREDISPLAY 16
1102
1103 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES*2)
1104
1105 char *unpack_varlen_hex (char *buff, int *result);
1106
1107 static char *unpack_nibble (char *buf, int *val);
1108
1109 static char *pack_nibble (char *buf, int nibble);
1110
1111 static char *pack_hex_byte (char *pkt, int /*unsigned char */ byte);
1112
1113 static char *unpack_byte (char *buf, int *value);
1114
1115 static char *pack_int (char *buf, int value);
1116
1117 static char *unpack_int (char *buf, int *value);
1118
1119 static char *unpack_string (char *src, char *dest, int length);
1120
1121 static char *pack_threadid (char *pkt, threadref * id);
1122
1123 static char *unpack_threadid (char *inbuf, threadref * id);
1124
1125 void int_to_threadref (threadref * id, int value);
1126
1127 static int threadref_to_int (threadref * ref);
1128
1129 static void copy_threadref (threadref * dest, threadref * src);
1130
1131 static int threadmatch (threadref * dest, threadref * src);
1132
1133 static char *pack_threadinfo_request (char *pkt, int mode, threadref * id);
1134
1135 static int remote_unpack_thread_info_response (char *pkt,
1136 threadref * expectedref,
1137 struct gdb_ext_thread_info
1138 *info);
1139
1140
1141 static int remote_get_threadinfo (threadref * threadid, int fieldset, /*TAG mask */
1142 struct gdb_ext_thread_info *info);
1143
1144 static int adapt_remote_get_threadinfo (gdb_threadref * ref,
1145 int selection,
1146 struct gdb_ext_thread_info *info);
1147
1148 static char *pack_threadlist_request (char *pkt, int startflag,
1149 int threadcount,
1150 threadref * nextthread);
1151
1152 static int parse_threadlist_response (char *pkt,
1153 int result_limit,
1154 threadref * original_echo,
1155 threadref * resultlist, int *doneflag);
1156
1157 static int remote_get_threadlist (int startflag,
1158 threadref * nextthread,
1159 int result_limit,
1160 int *done,
1161 int *result_count, threadref * threadlist);
1162
1163 typedef int (*rmt_thread_action) (threadref * ref, void *context);
1164
1165 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1166 void *context, int looplimit);
1167
1168 static int remote_newthread_step (threadref * ref, void *context);
1169
1170 /* encode 64 bits in 16 chars of hex */
1171
1172 static const char hexchars[] = "0123456789abcdef";
1173
1174 static int
1175 ishex (int ch, int *val)
1176 {
1177 if ((ch >= 'a') && (ch <= 'f'))
1178 {
1179 *val = ch - 'a' + 10;
1180 return 1;
1181 }
1182 if ((ch >= 'A') && (ch <= 'F'))
1183 {
1184 *val = ch - 'A' + 10;
1185 return 1;
1186 }
1187 if ((ch >= '0') && (ch <= '9'))
1188 {
1189 *val = ch - '0';
1190 return 1;
1191 }
1192 return 0;
1193 }
1194
1195 static int
1196 stubhex (int ch)
1197 {
1198 if (ch >= 'a' && ch <= 'f')
1199 return ch - 'a' + 10;
1200 if (ch >= '0' && ch <= '9')
1201 return ch - '0';
1202 if (ch >= 'A' && ch <= 'F')
1203 return ch - 'A' + 10;
1204 return -1;
1205 }
1206
1207 static int
1208 stub_unpack_int (char *buff, int fieldlength)
1209 {
1210 int nibble;
1211 int retval = 0;
1212
1213 while (fieldlength)
1214 {
1215 nibble = stubhex (*buff++);
1216 retval |= nibble;
1217 fieldlength--;
1218 if (fieldlength)
1219 retval = retval << 4;
1220 }
1221 return retval;
1222 }
1223
1224 char *
1225 unpack_varlen_hex (char *buff, /* packet to parse */
1226 int *result)
1227 {
1228 int nibble;
1229 int retval = 0;
1230
1231 while (ishex (*buff, &nibble))
1232 {
1233 buff++;
1234 retval = retval << 4;
1235 retval |= nibble & 0x0f;
1236 }
1237 *result = retval;
1238 return buff;
1239 }
1240
1241 static char *
1242 unpack_nibble (char *buf, int *val)
1243 {
1244 ishex (*buf++, val);
1245 return buf;
1246 }
1247
1248 static char *
1249 pack_nibble (char *buf, int nibble)
1250 {
1251 *buf++ = hexchars[(nibble & 0x0f)];
1252 return buf;
1253 }
1254
1255 static char *
1256 pack_hex_byte (char *pkt, int byte)
1257 {
1258 *pkt++ = hexchars[(byte >> 4) & 0xf];
1259 *pkt++ = hexchars[(byte & 0xf)];
1260 return pkt;
1261 }
1262
1263 static char *
1264 unpack_byte (char *buf, int *value)
1265 {
1266 *value = stub_unpack_int (buf, 2);
1267 return buf + 2;
1268 }
1269
1270 static char *
1271 pack_int (char *buf, int value)
1272 {
1273 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1274 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1275 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1276 buf = pack_hex_byte (buf, (value & 0xff));
1277 return buf;
1278 }
1279
1280 static char *
1281 unpack_int (char *buf, int *value)
1282 {
1283 *value = stub_unpack_int (buf, 8);
1284 return buf + 8;
1285 }
1286
1287 #if 0 /* currently unused, uncomment when needed */
1288 static char *pack_string (char *pkt, char *string);
1289
1290 static char *
1291 pack_string (char *pkt, char *string)
1292 {
1293 char ch;
1294 int len;
1295
1296 len = strlen (string);
1297 if (len > 200)
1298 len = 200; /* Bigger than most GDB packets, junk??? */
1299 pkt = pack_hex_byte (pkt, len);
1300 while (len-- > 0)
1301 {
1302 ch = *string++;
1303 if ((ch == '\0') || (ch == '#'))
1304 ch = '*'; /* Protect encapsulation */
1305 *pkt++ = ch;
1306 }
1307 return pkt;
1308 }
1309 #endif /* 0 (unused) */
1310
1311 static char *
1312 unpack_string (char *src, char *dest, int length)
1313 {
1314 while (length--)
1315 *dest++ = *src++;
1316 *dest = '\0';
1317 return src;
1318 }
1319
1320 static char *
1321 pack_threadid (char *pkt, threadref *id)
1322 {
1323 char *limit;
1324 unsigned char *altid;
1325
1326 altid = (unsigned char *) id;
1327 limit = pkt + BUF_THREAD_ID_SIZE;
1328 while (pkt < limit)
1329 pkt = pack_hex_byte (pkt, *altid++);
1330 return pkt;
1331 }
1332
1333
1334 static char *
1335 unpack_threadid (char *inbuf, threadref *id)
1336 {
1337 char *altref;
1338 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1339 int x, y;
1340
1341 altref = (char *) id;
1342
1343 while (inbuf < limit)
1344 {
1345 x = stubhex (*inbuf++);
1346 y = stubhex (*inbuf++);
1347 *altref++ = (x << 4) | y;
1348 }
1349 return inbuf;
1350 }
1351
1352 /* Externally, threadrefs are 64 bits but internally, they are still
1353 ints. This is due to a mismatch of specifications. We would like
1354 to use 64bit thread references internally. This is an adapter
1355 function. */
1356
1357 void
1358 int_to_threadref (threadref *id, int value)
1359 {
1360 unsigned char *scan;
1361
1362 scan = (unsigned char *) id;
1363 {
1364 int i = 4;
1365 while (i--)
1366 *scan++ = 0;
1367 }
1368 *scan++ = (value >> 24) & 0xff;
1369 *scan++ = (value >> 16) & 0xff;
1370 *scan++ = (value >> 8) & 0xff;
1371 *scan++ = (value & 0xff);
1372 }
1373
1374 static int
1375 threadref_to_int (threadref *ref)
1376 {
1377 int i, value = 0;
1378 unsigned char *scan;
1379
1380 scan = (char *) ref;
1381 scan += 4;
1382 i = 4;
1383 while (i-- > 0)
1384 value = (value << 8) | ((*scan++) & 0xff);
1385 return value;
1386 }
1387
1388 static void
1389 copy_threadref (threadref *dest, threadref *src)
1390 {
1391 int i;
1392 unsigned char *csrc, *cdest;
1393
1394 csrc = (unsigned char *) src;
1395 cdest = (unsigned char *) dest;
1396 i = 8;
1397 while (i--)
1398 *cdest++ = *csrc++;
1399 }
1400
1401 static int
1402 threadmatch (threadref *dest, threadref *src)
1403 {
1404 /* things are broken right now, so just assume we got a match */
1405 #if 0
1406 unsigned char *srcp, *destp;
1407 int i, result;
1408 srcp = (char *) src;
1409 destp = (char *) dest;
1410
1411 result = 1;
1412 while (i-- > 0)
1413 result &= (*srcp++ == *destp++) ? 1 : 0;
1414 return result;
1415 #endif
1416 return 1;
1417 }
1418
1419 /*
1420 threadid:1, # always request threadid
1421 context_exists:2,
1422 display:4,
1423 unique_name:8,
1424 more_display:16
1425 */
1426
1427 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1428
1429 static char *
1430 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1431 {
1432 *pkt++ = 'q'; /* Info Query */
1433 *pkt++ = 'P'; /* process or thread info */
1434 pkt = pack_int (pkt, mode); /* mode */
1435 pkt = pack_threadid (pkt, id); /* threadid */
1436 *pkt = '\0'; /* terminate */
1437 return pkt;
1438 }
1439
1440 /* These values tag the fields in a thread info response packet */
1441 /* Tagging the fields allows us to request specific fields and to
1442 add more fields as time goes by */
1443
1444 #define TAG_THREADID 1 /* Echo the thread identifier */
1445 #define TAG_EXISTS 2 /* Is this process defined enough to
1446 fetch registers and its stack */
1447 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1448 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is */
1449 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1450 the process */
1451
1452 static int
1453 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1454 struct gdb_ext_thread_info *info)
1455 {
1456 struct remote_state *rs = get_remote_state ();
1457 int mask, length;
1458 unsigned int tag;
1459 threadref ref;
1460 char *limit = pkt + (rs->remote_packet_size); /* plausable parsing limit */
1461 int retval = 1;
1462
1463 /* info->threadid = 0; FIXME: implement zero_threadref */
1464 info->active = 0;
1465 info->display[0] = '\0';
1466 info->shortname[0] = '\0';
1467 info->more_display[0] = '\0';
1468
1469 /* Assume the characters indicating the packet type have been stripped */
1470 pkt = unpack_int (pkt, &mask); /* arg mask */
1471 pkt = unpack_threadid (pkt, &ref);
1472
1473 if (mask == 0)
1474 warning ("Incomplete response to threadinfo request\n");
1475 if (!threadmatch (&ref, expectedref))
1476 { /* This is an answer to a different request */
1477 warning ("ERROR RMT Thread info mismatch\n");
1478 return 0;
1479 }
1480 copy_threadref (&info->threadid, &ref);
1481
1482 /* Loop on tagged fields , try to bail if somthing goes wrong */
1483
1484 while ((pkt < limit) && mask && *pkt) /* packets are terminated with nulls */
1485 {
1486 pkt = unpack_int (pkt, &tag); /* tag */
1487 pkt = unpack_byte (pkt, &length); /* length */
1488 if (!(tag & mask)) /* tags out of synch with mask */
1489 {
1490 warning ("ERROR RMT: threadinfo tag mismatch\n");
1491 retval = 0;
1492 break;
1493 }
1494 if (tag == TAG_THREADID)
1495 {
1496 if (length != 16)
1497 {
1498 warning ("ERROR RMT: length of threadid is not 16\n");
1499 retval = 0;
1500 break;
1501 }
1502 pkt = unpack_threadid (pkt, &ref);
1503 mask = mask & ~TAG_THREADID;
1504 continue;
1505 }
1506 if (tag == TAG_EXISTS)
1507 {
1508 info->active = stub_unpack_int (pkt, length);
1509 pkt += length;
1510 mask = mask & ~(TAG_EXISTS);
1511 if (length > 8)
1512 {
1513 warning ("ERROR RMT: 'exists' length too long\n");
1514 retval = 0;
1515 break;
1516 }
1517 continue;
1518 }
1519 if (tag == TAG_THREADNAME)
1520 {
1521 pkt = unpack_string (pkt, &info->shortname[0], length);
1522 mask = mask & ~TAG_THREADNAME;
1523 continue;
1524 }
1525 if (tag == TAG_DISPLAY)
1526 {
1527 pkt = unpack_string (pkt, &info->display[0], length);
1528 mask = mask & ~TAG_DISPLAY;
1529 continue;
1530 }
1531 if (tag == TAG_MOREDISPLAY)
1532 {
1533 pkt = unpack_string (pkt, &info->more_display[0], length);
1534 mask = mask & ~TAG_MOREDISPLAY;
1535 continue;
1536 }
1537 warning ("ERROR RMT: unknown thread info tag\n");
1538 break; /* Not a tag we know about */
1539 }
1540 return retval;
1541 }
1542
1543 static int
1544 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1545 struct gdb_ext_thread_info *info)
1546 {
1547 struct remote_state *rs = get_remote_state ();
1548 int result;
1549 char *threadinfo_pkt = alloca (rs->remote_packet_size);
1550
1551 pack_threadinfo_request (threadinfo_pkt, fieldset, threadid);
1552 putpkt (threadinfo_pkt);
1553 getpkt (threadinfo_pkt, (rs->remote_packet_size), 0);
1554 result = remote_unpack_thread_info_response (threadinfo_pkt + 2, threadid,
1555 info);
1556 return result;
1557 }
1558
1559 /* Unfortunately, 61 bit thread-ids are bigger than the internal
1560 representation of a threadid. */
1561
1562 static int
1563 adapt_remote_get_threadinfo (gdb_threadref *ref, int selection,
1564 struct gdb_ext_thread_info *info)
1565 {
1566 threadref lclref;
1567
1568 int_to_threadref (&lclref, *ref);
1569 return remote_get_threadinfo (&lclref, selection, info);
1570 }
1571
1572 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1573
1574 static char *
1575 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1576 threadref *nextthread)
1577 {
1578 *pkt++ = 'q'; /* info query packet */
1579 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1580 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1581 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1582 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1583 *pkt = '\0';
1584 return pkt;
1585 }
1586
1587 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1588
1589 static int
1590 parse_threadlist_response (char *pkt, int result_limit,
1591 threadref *original_echo, threadref *resultlist,
1592 int *doneflag)
1593 {
1594 struct remote_state *rs = get_remote_state ();
1595 char *limit;
1596 int count, resultcount, done;
1597
1598 resultcount = 0;
1599 /* Assume the 'q' and 'M chars have been stripped. */
1600 limit = pkt + ((rs->remote_packet_size) - BUF_THREAD_ID_SIZE); /* done parse past here */
1601 pkt = unpack_byte (pkt, &count); /* count field */
1602 pkt = unpack_nibble (pkt, &done);
1603 /* The first threadid is the argument threadid. */
1604 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1605 while ((count-- > 0) && (pkt < limit))
1606 {
1607 pkt = unpack_threadid (pkt, resultlist++);
1608 if (resultcount++ >= result_limit)
1609 break;
1610 }
1611 if (doneflag)
1612 *doneflag = done;
1613 return resultcount;
1614 }
1615
1616 static int
1617 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1618 int *done, int *result_count, threadref *threadlist)
1619 {
1620 struct remote_state *rs = get_remote_state ();
1621 static threadref echo_nextthread;
1622 char *threadlist_packet = alloca (rs->remote_packet_size);
1623 char *t_response = alloca (rs->remote_packet_size);
1624 int result = 1;
1625
1626 /* Trancate result limit to be smaller than the packet size */
1627 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= (rs->remote_packet_size))
1628 result_limit = ((rs->remote_packet_size) / BUF_THREAD_ID_SIZE) - 2;
1629
1630 pack_threadlist_request (threadlist_packet,
1631 startflag, result_limit, nextthread);
1632 putpkt (threadlist_packet);
1633 getpkt (t_response, (rs->remote_packet_size), 0);
1634
1635 *result_count =
1636 parse_threadlist_response (t_response + 2, result_limit, &echo_nextthread,
1637 threadlist, done);
1638
1639 if (!threadmatch (&echo_nextthread, nextthread))
1640 {
1641 /* FIXME: This is a good reason to drop the packet */
1642 /* Possably, there is a duplicate response */
1643 /* Possabilities :
1644 retransmit immediatly - race conditions
1645 retransmit after timeout - yes
1646 exit
1647 wait for packet, then exit
1648 */
1649 warning ("HMM: threadlist did not echo arg thread, dropping it\n");
1650 return 0; /* I choose simply exiting */
1651 }
1652 if (*result_count <= 0)
1653 {
1654 if (*done != 1)
1655 {
1656 warning ("RMT ERROR : failed to get remote thread list\n");
1657 result = 0;
1658 }
1659 return result; /* break; */
1660 }
1661 if (*result_count > result_limit)
1662 {
1663 *result_count = 0;
1664 warning ("RMT ERROR: threadlist response longer than requested\n");
1665 return 0;
1666 }
1667 return result;
1668 }
1669
1670 /* This is the interface between remote and threads, remotes upper interface */
1671
1672 /* remote_find_new_threads retrieves the thread list and for each
1673 thread in the list, looks up the thread in GDB's internal list,
1674 ading the thread if it does not already exist. This involves
1675 getting partial thread lists from the remote target so, polling the
1676 quit_flag is required. */
1677
1678
1679 /* About this many threadisds fit in a packet. */
1680
1681 #define MAXTHREADLISTRESULTS 32
1682
1683 static int
1684 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1685 int looplimit)
1686 {
1687 int done, i, result_count;
1688 int startflag = 1;
1689 int result = 1;
1690 int loopcount = 0;
1691 static threadref nextthread;
1692 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1693
1694 done = 0;
1695 while (!done)
1696 {
1697 if (loopcount++ > looplimit)
1698 {
1699 result = 0;
1700 warning ("Remote fetch threadlist -infinite loop-\n");
1701 break;
1702 }
1703 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1704 &done, &result_count, resultthreadlist))
1705 {
1706 result = 0;
1707 break;
1708 }
1709 /* clear for later iterations */
1710 startflag = 0;
1711 /* Setup to resume next batch of thread references, set nextthread. */
1712 if (result_count >= 1)
1713 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1714 i = 0;
1715 while (result_count--)
1716 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1717 break;
1718 }
1719 return result;
1720 }
1721
1722 static int
1723 remote_newthread_step (threadref *ref, void *context)
1724 {
1725 ptid_t ptid;
1726
1727 ptid = pid_to_ptid (threadref_to_int (ref));
1728
1729 if (!in_thread_list (ptid))
1730 add_thread (ptid);
1731 return 1; /* continue iterator */
1732 }
1733
1734 #define CRAZY_MAX_THREADS 1000
1735
1736 static ptid_t
1737 remote_current_thread (ptid_t oldpid)
1738 {
1739 struct remote_state *rs = get_remote_state ();
1740 char *buf = alloca (rs->remote_packet_size);
1741
1742 putpkt ("qC");
1743 getpkt (buf, (rs->remote_packet_size), 0);
1744 if (buf[0] == 'Q' && buf[1] == 'C')
1745 return pid_to_ptid (strtol (&buf[2], NULL, 16));
1746 else
1747 return oldpid;
1748 }
1749
1750 /* Find new threads for info threads command.
1751 * Original version, using John Metzler's thread protocol.
1752 */
1753
1754 static void
1755 remote_find_new_threads (void)
1756 {
1757 remote_threadlist_iterator (remote_newthread_step, 0,
1758 CRAZY_MAX_THREADS);
1759 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1760 inferior_ptid = remote_current_thread (inferior_ptid);
1761 }
1762
1763 /*
1764 * Find all threads for info threads command.
1765 * Uses new thread protocol contributed by Cisco.
1766 * Falls back and attempts to use the older method (above)
1767 * if the target doesn't respond to the new method.
1768 */
1769
1770 static void
1771 remote_threads_info (void)
1772 {
1773 struct remote_state *rs = get_remote_state ();
1774 char *buf = alloca (rs->remote_packet_size);
1775 char *bufp;
1776 int tid;
1777
1778 if (remote_desc == 0) /* paranoia */
1779 error ("Command can only be used when connected to the remote target.");
1780
1781 if (use_threadinfo_query)
1782 {
1783 putpkt ("qfThreadInfo");
1784 bufp = buf;
1785 getpkt (bufp, (rs->remote_packet_size), 0);
1786 if (bufp[0] != '\0') /* q packet recognized */
1787 {
1788 while (*bufp++ == 'm') /* reply contains one or more TID */
1789 {
1790 do
1791 {
1792 tid = strtol (bufp, &bufp, 16);
1793 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1794 add_thread (pid_to_ptid (tid));
1795 }
1796 while (*bufp++ == ','); /* comma-separated list */
1797 putpkt ("qsThreadInfo");
1798 bufp = buf;
1799 getpkt (bufp, (rs->remote_packet_size), 0);
1800 }
1801 return; /* done */
1802 }
1803 }
1804
1805 /* Else fall back to old method based on jmetzler protocol. */
1806 use_threadinfo_query = 0;
1807 remote_find_new_threads ();
1808 return;
1809 }
1810
1811 /*
1812 * Collect a descriptive string about the given thread.
1813 * The target may say anything it wants to about the thread
1814 * (typically info about its blocked / runnable state, name, etc.).
1815 * This string will appear in the info threads display.
1816 *
1817 * Optional: targets are not required to implement this function.
1818 */
1819
1820 static char *
1821 remote_threads_extra_info (struct thread_info *tp)
1822 {
1823 struct remote_state *rs = get_remote_state ();
1824 int result;
1825 int set;
1826 threadref id;
1827 struct gdb_ext_thread_info threadinfo;
1828 static char display_buf[100]; /* arbitrary... */
1829 char *bufp = alloca (rs->remote_packet_size);
1830 int n = 0; /* position in display_buf */
1831
1832 if (remote_desc == 0) /* paranoia */
1833 internal_error (__FILE__, __LINE__,
1834 "remote_threads_extra_info");
1835
1836 if (use_threadextra_query)
1837 {
1838 sprintf (bufp, "qThreadExtraInfo,%x", PIDGET (tp->ptid));
1839 putpkt (bufp);
1840 getpkt (bufp, (rs->remote_packet_size), 0);
1841 if (bufp[0] != 0)
1842 {
1843 n = min (strlen (bufp) / 2, sizeof (display_buf));
1844 result = hex2bin (bufp, display_buf, n);
1845 display_buf [result] = '\0';
1846 return display_buf;
1847 }
1848 }
1849
1850 /* If the above query fails, fall back to the old method. */
1851 use_threadextra_query = 0;
1852 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1853 | TAG_MOREDISPLAY | TAG_DISPLAY;
1854 int_to_threadref (&id, PIDGET (tp->ptid));
1855 if (remote_get_threadinfo (&id, set, &threadinfo))
1856 if (threadinfo.active)
1857 {
1858 if (*threadinfo.shortname)
1859 n += sprintf(&display_buf[0], " Name: %s,", threadinfo.shortname);
1860 if (*threadinfo.display)
1861 n += sprintf(&display_buf[n], " State: %s,", threadinfo.display);
1862 if (*threadinfo.more_display)
1863 n += sprintf(&display_buf[n], " Priority: %s",
1864 threadinfo.more_display);
1865
1866 if (n > 0)
1867 {
1868 /* for purely cosmetic reasons, clear up trailing commas */
1869 if (',' == display_buf[n-1])
1870 display_buf[n-1] = ' ';
1871 return display_buf;
1872 }
1873 }
1874 return NULL;
1875 }
1876
1877 \f
1878
1879 /* Restart the remote side; this is an extended protocol operation. */
1880
1881 static void
1882 extended_remote_restart (void)
1883 {
1884 struct remote_state *rs = get_remote_state ();
1885 char *buf = alloca (rs->remote_packet_size);
1886
1887 /* Send the restart command; for reasons I don't understand the
1888 remote side really expects a number after the "R". */
1889 buf[0] = 'R';
1890 sprintf (&buf[1], "%x", 0);
1891 putpkt (buf);
1892
1893 /* Now query for status so this looks just like we restarted
1894 gdbserver from scratch. */
1895 putpkt ("?");
1896 getpkt (buf, (rs->remote_packet_size), 0);
1897 }
1898 \f
1899 /* Clean up connection to a remote debugger. */
1900
1901 /* ARGSUSED */
1902 static void
1903 remote_close (int quitting)
1904 {
1905 if (remote_desc)
1906 serial_close (remote_desc);
1907 remote_desc = NULL;
1908 }
1909
1910 /* Query the remote side for the text, data and bss offsets. */
1911
1912 static void
1913 get_offsets (void)
1914 {
1915 struct remote_state *rs = get_remote_state ();
1916 char *buf = alloca (rs->remote_packet_size);
1917 char *ptr;
1918 int lose;
1919 CORE_ADDR text_addr, data_addr, bss_addr;
1920 struct section_offsets *offs;
1921
1922 putpkt ("qOffsets");
1923
1924 getpkt (buf, (rs->remote_packet_size), 0);
1925
1926 if (buf[0] == '\000')
1927 return; /* Return silently. Stub doesn't support
1928 this command. */
1929 if (buf[0] == 'E')
1930 {
1931 warning ("Remote failure reply: %s", buf);
1932 return;
1933 }
1934
1935 /* Pick up each field in turn. This used to be done with scanf, but
1936 scanf will make trouble if CORE_ADDR size doesn't match
1937 conversion directives correctly. The following code will work
1938 with any size of CORE_ADDR. */
1939 text_addr = data_addr = bss_addr = 0;
1940 ptr = buf;
1941 lose = 0;
1942
1943 if (strncmp (ptr, "Text=", 5) == 0)
1944 {
1945 ptr += 5;
1946 /* Don't use strtol, could lose on big values. */
1947 while (*ptr && *ptr != ';')
1948 text_addr = (text_addr << 4) + fromhex (*ptr++);
1949 }
1950 else
1951 lose = 1;
1952
1953 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
1954 {
1955 ptr += 6;
1956 while (*ptr && *ptr != ';')
1957 data_addr = (data_addr << 4) + fromhex (*ptr++);
1958 }
1959 else
1960 lose = 1;
1961
1962 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
1963 {
1964 ptr += 5;
1965 while (*ptr && *ptr != ';')
1966 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
1967 }
1968 else
1969 lose = 1;
1970
1971 if (lose)
1972 error ("Malformed response to offset query, %s", buf);
1973
1974 if (symfile_objfile == NULL)
1975 return;
1976
1977 offs = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1978 memcpy (offs, symfile_objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1979
1980 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
1981
1982 /* This is a temporary kludge to force data and bss to use the same offsets
1983 because that's what nlmconv does now. The real solution requires changes
1984 to the stub and remote.c that I don't have time to do right now. */
1985
1986 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
1987 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
1988
1989 objfile_relocate (symfile_objfile, offs);
1990 }
1991
1992 /*
1993 * Cisco version of section offsets:
1994 *
1995 * Instead of having GDB query the target for the section offsets,
1996 * Cisco lets the target volunteer the information! It's also in
1997 * a different format, so here are the functions that will decode
1998 * a section offset packet from a Cisco target.
1999 */
2000
2001 /*
2002 * Function: remote_cisco_section_offsets
2003 *
2004 * Returns: zero for success, non-zero for failure
2005 */
2006
2007 static int
2008 remote_cisco_section_offsets (bfd_vma text_addr,
2009 bfd_vma data_addr,
2010 bfd_vma bss_addr,
2011 bfd_signed_vma *text_offs,
2012 bfd_signed_vma *data_offs,
2013 bfd_signed_vma *bss_offs)
2014 {
2015 bfd_vma text_base, data_base, bss_base;
2016 struct minimal_symbol *start;
2017 asection *sect;
2018 bfd *abfd;
2019 int len;
2020
2021 if (symfile_objfile == NULL)
2022 return -1; /* no can do nothin' */
2023
2024 start = lookup_minimal_symbol ("_start", NULL, NULL);
2025 if (start == NULL)
2026 return -1; /* Can't find "_start" symbol */
2027
2028 data_base = bss_base = 0;
2029 text_base = SYMBOL_VALUE_ADDRESS (start);
2030
2031 abfd = symfile_objfile->obfd;
2032 for (sect = abfd->sections;
2033 sect != 0;
2034 sect = sect->next)
2035 {
2036 const char *p = bfd_get_section_name (abfd, sect);
2037 len = strlen (p);
2038 if (strcmp (p + len - 4, "data") == 0) /* ends in "data" */
2039 if (data_base == 0 ||
2040 data_base > bfd_get_section_vma (abfd, sect))
2041 data_base = bfd_get_section_vma (abfd, sect);
2042 if (strcmp (p + len - 3, "bss") == 0) /* ends in "bss" */
2043 if (bss_base == 0 ||
2044 bss_base > bfd_get_section_vma (abfd, sect))
2045 bss_base = bfd_get_section_vma (abfd, sect);
2046 }
2047 *text_offs = text_addr - text_base;
2048 *data_offs = data_addr - data_base;
2049 *bss_offs = bss_addr - bss_base;
2050 if (remote_debug)
2051 {
2052 char tmp[128];
2053
2054 sprintf (tmp, "VMA: text = 0x");
2055 sprintf_vma (tmp + strlen (tmp), text_addr);
2056 sprintf (tmp + strlen (tmp), " data = 0x");
2057 sprintf_vma (tmp + strlen (tmp), data_addr);
2058 sprintf (tmp + strlen (tmp), " bss = 0x");
2059 sprintf_vma (tmp + strlen (tmp), bss_addr);
2060 fprintf_filtered (gdb_stdlog, tmp);
2061 fprintf_filtered (gdb_stdlog,
2062 "Reloc offset: text = 0x%s data = 0x%s bss = 0x%s\n",
2063 paddr_nz (*text_offs),
2064 paddr_nz (*data_offs),
2065 paddr_nz (*bss_offs));
2066 }
2067
2068 return 0;
2069 }
2070
2071 /*
2072 * Function: remote_cisco_objfile_relocate
2073 *
2074 * Relocate the symbol file for a remote target.
2075 */
2076
2077 void
2078 remote_cisco_objfile_relocate (bfd_signed_vma text_off, bfd_signed_vma data_off,
2079 bfd_signed_vma bss_off)
2080 {
2081 struct section_offsets *offs;
2082
2083 if (text_off != 0 || data_off != 0 || bss_off != 0)
2084 {
2085 /* FIXME: This code assumes gdb-stabs.h is being used; it's
2086 broken for xcoff, dwarf, sdb-coff, etc. But there is no
2087 simple canonical representation for this stuff. */
2088
2089 offs = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
2090 memcpy (offs, symfile_objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
2091
2092 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_off;
2093 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_off;
2094 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = bss_off;
2095
2096 /* First call the standard objfile_relocate. */
2097 objfile_relocate (symfile_objfile, offs);
2098
2099 /* Now we need to fix up the section entries already attached to
2100 the exec target. These entries will control memory transfers
2101 from the exec file. */
2102
2103 exec_set_section_offsets (text_off, data_off, bss_off);
2104 }
2105 }
2106
2107 /* Stub for catch_errors. */
2108
2109 static int
2110 remote_start_remote_dummy (void *dummy)
2111 {
2112 start_remote (); /* Initialize gdb process mechanisms */
2113 return 1;
2114 }
2115
2116 static int
2117 remote_start_remote (PTR dummy)
2118 {
2119 immediate_quit++; /* Allow user to interrupt it */
2120
2121 /* Ack any packet which the remote side has already sent. */
2122 serial_write (remote_desc, "+", 1);
2123
2124 /* Let the stub know that we want it to return the thread. */
2125 set_thread (-1, 0);
2126
2127 inferior_ptid = remote_current_thread (inferior_ptid);
2128
2129 get_offsets (); /* Get text, data & bss offsets */
2130
2131 putpkt ("?"); /* initiate a query from remote machine */
2132 immediate_quit--;
2133
2134 return remote_start_remote_dummy (dummy);
2135 }
2136
2137 /* Open a connection to a remote debugger.
2138 NAME is the filename used for communication. */
2139
2140 static void
2141 remote_open (char *name, int from_tty)
2142 {
2143 remote_open_1 (name, from_tty, &remote_ops, 0);
2144 }
2145
2146 /* Just like remote_open, but with asynchronous support. */
2147 static void
2148 remote_async_open (char *name, int from_tty)
2149 {
2150 remote_async_open_1 (name, from_tty, &remote_async_ops, 0);
2151 }
2152
2153 /* Open a connection to a remote debugger using the extended
2154 remote gdb protocol. NAME is the filename used for communication. */
2155
2156 static void
2157 extended_remote_open (char *name, int from_tty)
2158 {
2159 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */ );
2160 }
2161
2162 /* Just like extended_remote_open, but with asynchronous support. */
2163 static void
2164 extended_remote_async_open (char *name, int from_tty)
2165 {
2166 remote_async_open_1 (name, from_tty, &extended_async_remote_ops, 1 /*extended_p */ );
2167 }
2168
2169 /* Generic code for opening a connection to a remote target. */
2170
2171 static void
2172 init_all_packet_configs (void)
2173 {
2174 int i;
2175 update_packet_config (&remote_protocol_e);
2176 update_packet_config (&remote_protocol_E);
2177 update_packet_config (&remote_protocol_P);
2178 update_packet_config (&remote_protocol_qSymbol);
2179 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2180 update_packet_config (&remote_protocol_Z[i]);
2181 /* Force remote_write_bytes to check whether target supports binary
2182 downloading. */
2183 update_packet_config (&remote_protocol_binary_download);
2184 }
2185
2186 /* Symbol look-up. */
2187
2188 static void
2189 remote_check_symbols (struct objfile *objfile)
2190 {
2191 struct remote_state *rs = get_remote_state ();
2192 char *msg, *reply, *tmp;
2193 struct minimal_symbol *sym;
2194 int end;
2195
2196 if (remote_protocol_qSymbol.support == PACKET_DISABLE)
2197 return;
2198
2199 msg = alloca (rs->remote_packet_size);
2200 reply = alloca (rs->remote_packet_size);
2201
2202 /* Invite target to request symbol lookups. */
2203
2204 putpkt ("qSymbol::");
2205 getpkt (reply, (rs->remote_packet_size), 0);
2206 packet_ok (reply, &remote_protocol_qSymbol);
2207
2208 while (strncmp (reply, "qSymbol:", 8) == 0)
2209 {
2210 tmp = &reply[8];
2211 end = hex2bin (tmp, msg, strlen (tmp) / 2);
2212 msg[end] = '\0';
2213 sym = lookup_minimal_symbol (msg, NULL, NULL);
2214 if (sym == NULL)
2215 sprintf (msg, "qSymbol::%s", &reply[8]);
2216 else
2217 sprintf (msg, "qSymbol:%s:%s",
2218 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2219 &reply[8]);
2220 putpkt (msg);
2221 getpkt (reply, (rs->remote_packet_size), 0);
2222 }
2223 }
2224
2225 static void
2226 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2227 int extended_p)
2228 {
2229 struct remote_state *rs = get_remote_state ();
2230 if (name == 0)
2231 error ("To open a remote debug connection, you need to specify what\n"
2232 "serial device is attached to the remote system\n"
2233 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
2234
2235 /* See FIXME above */
2236 wait_forever_enabled_p = 1;
2237
2238 target_preopen (from_tty);
2239
2240 unpush_target (target);
2241
2242 remote_desc = serial_open (name);
2243 if (!remote_desc)
2244 perror_with_name (name);
2245
2246 if (baud_rate != -1)
2247 {
2248 if (serial_setbaudrate (remote_desc, baud_rate))
2249 {
2250 serial_close (remote_desc);
2251 perror_with_name (name);
2252 }
2253 }
2254
2255 serial_raw (remote_desc);
2256
2257 /* If there is something sitting in the buffer we might take it as a
2258 response to a command, which would be bad. */
2259 serial_flush_input (remote_desc);
2260
2261 if (from_tty)
2262 {
2263 puts_filtered ("Remote debugging using ");
2264 puts_filtered (name);
2265 puts_filtered ("\n");
2266 }
2267 push_target (target); /* Switch to using remote target now */
2268
2269 init_all_packet_configs ();
2270
2271 general_thread = -2;
2272 continue_thread = -2;
2273
2274 /* Probe for ability to use "ThreadInfo" query, as required. */
2275 use_threadinfo_query = 1;
2276 use_threadextra_query = 1;
2277
2278 /* Without this, some commands which require an active target (such
2279 as kill) won't work. This variable serves (at least) double duty
2280 as both the pid of the target process (if it has such), and as a
2281 flag indicating that a target is active. These functions should
2282 be split out into seperate variables, especially since GDB will
2283 someday have a notion of debugging several processes. */
2284
2285 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2286 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2287 /* First delete any symbols previously loaded from shared libraries. */
2288 no_shared_libraries (NULL, 0);
2289 #endif
2290
2291 /* Start the remote connection; if error (0), discard this target.
2292 In particular, if the user quits, be sure to discard it
2293 (we'd be in an inconsistent state otherwise). */
2294 if (!catch_errors (remote_start_remote, NULL,
2295 "Couldn't establish connection to remote target\n",
2296 RETURN_MASK_ALL))
2297 {
2298 pop_target ();
2299 return;
2300 }
2301
2302 if (extended_p)
2303 {
2304 /* Tell the remote that we are using the extended protocol. */
2305 char *buf = alloca (rs->remote_packet_size);
2306 putpkt ("!");
2307 getpkt (buf, (rs->remote_packet_size), 0);
2308 }
2309 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2310 /* FIXME: need a master target_open vector from which all
2311 remote_opens can be called, so that stuff like this can
2312 go there. Failing that, the following code must be copied
2313 to the open function for any remote target that wants to
2314 support svr4 shared libraries. */
2315
2316 /* Set up to detect and load shared libraries. */
2317 if (exec_bfd) /* No use without an exec file. */
2318 {
2319 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
2320 remote_check_symbols (symfile_objfile);
2321 }
2322 #endif
2323 }
2324
2325 /* Just like remote_open but with asynchronous support. */
2326 static void
2327 remote_async_open_1 (char *name, int from_tty, struct target_ops *target,
2328 int extended_p)
2329 {
2330 struct remote_state *rs = get_remote_state ();
2331 if (name == 0)
2332 error ("To open a remote debug connection, you need to specify what\n"
2333 "serial device is attached to the remote system\n"
2334 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
2335
2336 target_preopen (from_tty);
2337
2338 unpush_target (target);
2339
2340 remote_desc = serial_open (name);
2341 if (!remote_desc)
2342 perror_with_name (name);
2343
2344 if (baud_rate != -1)
2345 {
2346 if (serial_setbaudrate (remote_desc, baud_rate))
2347 {
2348 serial_close (remote_desc);
2349 perror_with_name (name);
2350 }
2351 }
2352
2353 serial_raw (remote_desc);
2354
2355 /* If there is something sitting in the buffer we might take it as a
2356 response to a command, which would be bad. */
2357 serial_flush_input (remote_desc);
2358
2359 if (from_tty)
2360 {
2361 puts_filtered ("Remote debugging using ");
2362 puts_filtered (name);
2363 puts_filtered ("\n");
2364 }
2365
2366 push_target (target); /* Switch to using remote target now */
2367
2368 init_all_packet_configs ();
2369
2370 general_thread = -2;
2371 continue_thread = -2;
2372
2373 /* Probe for ability to use "ThreadInfo" query, as required. */
2374 use_threadinfo_query = 1;
2375 use_threadextra_query = 1;
2376
2377 /* Without this, some commands which require an active target (such
2378 as kill) won't work. This variable serves (at least) double duty
2379 as both the pid of the target process (if it has such), and as a
2380 flag indicating that a target is active. These functions should
2381 be split out into seperate variables, especially since GDB will
2382 someday have a notion of debugging several processes. */
2383 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2384
2385 /* With this target we start out by owning the terminal. */
2386 remote_async_terminal_ours_p = 1;
2387
2388 /* FIXME: cagney/1999-09-23: During the initial connection it is
2389 assumed that the target is already ready and able to respond to
2390 requests. Unfortunately remote_start_remote() eventually calls
2391 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2392 around this. Eventually a mechanism that allows
2393 wait_for_inferior() to expect/get timeouts will be
2394 implemented. */
2395 wait_forever_enabled_p = 0;
2396
2397 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2398 /* First delete any symbols previously loaded from shared libraries. */
2399 no_shared_libraries (NULL, 0);
2400 #endif
2401
2402 /* Start the remote connection; if error (0), discard this target.
2403 In particular, if the user quits, be sure to discard it
2404 (we'd be in an inconsistent state otherwise). */
2405 if (!catch_errors (remote_start_remote, NULL,
2406 "Couldn't establish connection to remote target\n",
2407 RETURN_MASK_ALL))
2408 {
2409 pop_target ();
2410 wait_forever_enabled_p = 1;
2411 return;
2412 }
2413
2414 wait_forever_enabled_p = 1;
2415
2416 if (extended_p)
2417 {
2418 /* Tell the remote that we are using the extended protocol. */
2419 char *buf = alloca (rs->remote_packet_size);
2420 putpkt ("!");
2421 getpkt (buf, (rs->remote_packet_size), 0);
2422 }
2423 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2424 /* FIXME: need a master target_open vector from which all
2425 remote_opens can be called, so that stuff like this can
2426 go there. Failing that, the following code must be copied
2427 to the open function for any remote target that wants to
2428 support svr4 shared libraries. */
2429
2430 /* Set up to detect and load shared libraries. */
2431 if (exec_bfd) /* No use without an exec file. */
2432 {
2433 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
2434 remote_check_symbols (symfile_objfile);
2435 }
2436 #endif
2437 }
2438
2439 /* This takes a program previously attached to and detaches it. After
2440 this is done, GDB can be used to debug some other program. We
2441 better not have left any breakpoints in the target program or it'll
2442 die when it hits one. */
2443
2444 static void
2445 remote_detach (char *args, int from_tty)
2446 {
2447 struct remote_state *rs = get_remote_state ();
2448 char *buf = alloca (rs->remote_packet_size);
2449
2450 if (args)
2451 error ("Argument given to \"detach\" when remotely debugging.");
2452
2453 /* Tell the remote target to detach. */
2454 strcpy (buf, "D");
2455 remote_send (buf, (rs->remote_packet_size));
2456
2457 target_mourn_inferior ();
2458 if (from_tty)
2459 puts_filtered ("Ending remote debugging.\n");
2460
2461 }
2462
2463 /* Same as remote_detach, but with async support. */
2464 static void
2465 remote_async_detach (char *args, int from_tty)
2466 {
2467 struct remote_state *rs = get_remote_state ();
2468 char *buf = alloca (rs->remote_packet_size);
2469
2470 if (args)
2471 error ("Argument given to \"detach\" when remotely debugging.");
2472
2473 /* Tell the remote target to detach. */
2474 strcpy (buf, "D");
2475 remote_send (buf, (rs->remote_packet_size));
2476
2477 /* Unregister the file descriptor from the event loop. */
2478 if (target_is_async_p ())
2479 serial_async (remote_desc, NULL, 0);
2480
2481 target_mourn_inferior ();
2482 if (from_tty)
2483 puts_filtered ("Ending remote debugging.\n");
2484 }
2485
2486 /* Convert hex digit A to a number. */
2487
2488 static int
2489 fromhex (int a)
2490 {
2491 if (a >= '0' && a <= '9')
2492 return a - '0';
2493 else if (a >= 'a' && a <= 'f')
2494 return a - 'a' + 10;
2495 else if (a >= 'A' && a <= 'F')
2496 return a - 'A' + 10;
2497 else
2498 error ("Reply contains invalid hex digit %d", a);
2499 }
2500
2501 static int
2502 hex2bin (const char *hex, char *bin, int count)
2503 {
2504 int i;
2505
2506 for (i = 0; i < count; i++)
2507 {
2508 if (hex[0] == 0 || hex[1] == 0)
2509 {
2510 /* Hex string is short, or of uneven length.
2511 Return the count that has been converted so far. */
2512 return i;
2513 }
2514 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2515 hex += 2;
2516 }
2517 return i;
2518 }
2519
2520 /* Convert number NIB to a hex digit. */
2521
2522 static int
2523 tohex (int nib)
2524 {
2525 if (nib < 10)
2526 return '0' + nib;
2527 else
2528 return 'a' + nib - 10;
2529 }
2530
2531 static int
2532 bin2hex (const char *bin, char *hex, int count)
2533 {
2534 int i;
2535 /* May use a length, or a nul-terminated string as input. */
2536 if (count == 0)
2537 count = strlen (bin);
2538
2539 for (i = 0; i < count; i++)
2540 {
2541 *hex++ = tohex ((*bin >> 4) & 0xf);
2542 *hex++ = tohex (*bin++ & 0xf);
2543 }
2544 *hex = 0;
2545 return i;
2546 }
2547 \f
2548 /* Tell the remote machine to resume. */
2549
2550 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2551
2552 static int last_sent_step;
2553
2554 static void
2555 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2556 {
2557 struct remote_state *rs = get_remote_state ();
2558 char *buf = alloca (rs->remote_packet_size);
2559 int pid = PIDGET (ptid);
2560 char *p;
2561
2562 if (pid == -1)
2563 set_thread (0, 0); /* run any thread */
2564 else
2565 set_thread (pid, 0); /* run this thread */
2566
2567 last_sent_signal = siggnal;
2568 last_sent_step = step;
2569
2570 /* A hook for when we need to do something at the last moment before
2571 resumption. */
2572 if (target_resume_hook)
2573 (*target_resume_hook) ();
2574
2575
2576 /* The s/S/c/C packets do not return status. So if the target does
2577 not support the S or C packets, the debug agent returns an empty
2578 string which is detected in remote_wait(). This protocol defect
2579 is fixed in the e/E packets. */
2580
2581 if (step && step_range_end)
2582 {
2583 /* If the target does not support the 'E' packet, we try the 'S'
2584 packet. Ideally we would fall back to the 'e' packet if that
2585 too is not supported. But that would require another copy of
2586 the code to issue the 'e' packet (and fall back to 's' if not
2587 supported) in remote_wait(). */
2588
2589 if (siggnal != TARGET_SIGNAL_0)
2590 {
2591 if (remote_protocol_E.support != PACKET_DISABLE)
2592 {
2593 p = buf;
2594 *p++ = 'E';
2595 *p++ = tohex (((int) siggnal >> 4) & 0xf);
2596 *p++ = tohex (((int) siggnal) & 0xf);
2597 *p++ = ',';
2598 p += hexnumstr (p, (ULONGEST) step_range_start);
2599 *p++ = ',';
2600 p += hexnumstr (p, (ULONGEST) step_range_end);
2601 *p++ = 0;
2602
2603 putpkt (buf);
2604 getpkt (buf, (rs->remote_packet_size), 0);
2605
2606 if (packet_ok (buf, &remote_protocol_E) == PACKET_OK)
2607 return;
2608 }
2609 }
2610 else
2611 {
2612 if (remote_protocol_e.support != PACKET_DISABLE)
2613 {
2614 p = buf;
2615 *p++ = 'e';
2616 p += hexnumstr (p, (ULONGEST) step_range_start);
2617 *p++ = ',';
2618 p += hexnumstr (p, (ULONGEST) step_range_end);
2619 *p++ = 0;
2620
2621 putpkt (buf);
2622 getpkt (buf, (rs->remote_packet_size), 0);
2623
2624 if (packet_ok (buf, &remote_protocol_e) == PACKET_OK)
2625 return;
2626 }
2627 }
2628 }
2629
2630 if (siggnal != TARGET_SIGNAL_0)
2631 {
2632 buf[0] = step ? 'S' : 'C';
2633 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2634 buf[2] = tohex (((int) siggnal) & 0xf);
2635 buf[3] = '\0';
2636 }
2637 else
2638 strcpy (buf, step ? "s" : "c");
2639
2640 putpkt (buf);
2641 }
2642
2643 /* Same as remote_resume, but with async support. */
2644 static void
2645 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2646 {
2647 struct remote_state *rs = get_remote_state ();
2648 char *buf = alloca (rs->remote_packet_size);
2649 int pid = PIDGET (ptid);
2650 char *p;
2651
2652 if (pid == -1)
2653 set_thread (0, 0); /* run any thread */
2654 else
2655 set_thread (pid, 0); /* run this thread */
2656
2657 last_sent_signal = siggnal;
2658 last_sent_step = step;
2659
2660 /* A hook for when we need to do something at the last moment before
2661 resumption. */
2662 if (target_resume_hook)
2663 (*target_resume_hook) ();
2664
2665 /* The s/S/c/C packets do not return status. So if the target does
2666 not support the S or C packets, the debug agent returns an empty
2667 string which is detected in remote_wait(). This protocol defect
2668 is fixed in the e/E packets. */
2669
2670 if (step && step_range_end)
2671 {
2672 /* If the target does not support the 'E' packet, we try the 'S'
2673 packet. Ideally we would fall back to the 'e' packet if that
2674 too is not supported. But that would require another copy of
2675 the code to issue the 'e' packet (and fall back to 's' if not
2676 supported) in remote_wait(). */
2677
2678 if (siggnal != TARGET_SIGNAL_0)
2679 {
2680 if (remote_protocol_E.support != PACKET_DISABLE)
2681 {
2682 p = buf;
2683 *p++ = 'E';
2684 *p++ = tohex (((int) siggnal >> 4) & 0xf);
2685 *p++ = tohex (((int) siggnal) & 0xf);
2686 *p++ = ',';
2687 p += hexnumstr (p, (ULONGEST) step_range_start);
2688 *p++ = ',';
2689 p += hexnumstr (p, (ULONGEST) step_range_end);
2690 *p++ = 0;
2691
2692 putpkt (buf);
2693 getpkt (buf, (rs->remote_packet_size), 0);
2694
2695 if (packet_ok (buf, &remote_protocol_E) == PACKET_OK)
2696 goto register_event_loop;
2697 }
2698 }
2699 else
2700 {
2701 if (remote_protocol_e.support != PACKET_DISABLE)
2702 {
2703 p = buf;
2704 *p++ = 'e';
2705 p += hexnumstr (p, (ULONGEST) step_range_start);
2706 *p++ = ',';
2707 p += hexnumstr (p, (ULONGEST) step_range_end);
2708 *p++ = 0;
2709
2710 putpkt (buf);
2711 getpkt (buf, (rs->remote_packet_size), 0);
2712
2713 if (packet_ok (buf, &remote_protocol_e) == PACKET_OK)
2714 goto register_event_loop;
2715 }
2716 }
2717 }
2718
2719 if (siggnal != TARGET_SIGNAL_0)
2720 {
2721 buf[0] = step ? 'S' : 'C';
2722 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2723 buf[2] = tohex ((int) siggnal & 0xf);
2724 buf[3] = '\0';
2725 }
2726 else
2727 strcpy (buf, step ? "s" : "c");
2728
2729 putpkt (buf);
2730
2731 register_event_loop:
2732 /* We are about to start executing the inferior, let's register it
2733 with the event loop. NOTE: this is the one place where all the
2734 execution commands end up. We could alternatively do this in each
2735 of the execution commands in infcmd.c.*/
2736 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2737 into infcmd.c in order to allow inferior function calls to work
2738 NOT asynchronously. */
2739 if (event_loop_p && target_can_async_p ())
2740 target_async (inferior_event_handler, 0);
2741 /* Tell the world that the target is now executing. */
2742 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2743 this? Instead, should the client of target just assume (for
2744 async targets) that the target is going to start executing? Is
2745 this information already found in the continuation block? */
2746 if (target_is_async_p ())
2747 target_executing = 1;
2748 }
2749 \f
2750
2751 /* Set up the signal handler for SIGINT, while the target is
2752 executing, ovewriting the 'regular' SIGINT signal handler. */
2753 static void
2754 initialize_sigint_signal_handler (void)
2755 {
2756 sigint_remote_token =
2757 create_async_signal_handler (async_remote_interrupt, NULL);
2758 signal (SIGINT, handle_remote_sigint);
2759 }
2760
2761 /* Signal handler for SIGINT, while the target is executing. */
2762 static void
2763 handle_remote_sigint (int sig)
2764 {
2765 signal (sig, handle_remote_sigint_twice);
2766 sigint_remote_twice_token =
2767 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2768 mark_async_signal_handler_wrapper (sigint_remote_token);
2769 }
2770
2771 /* Signal handler for SIGINT, installed after SIGINT has already been
2772 sent once. It will take effect the second time that the user sends
2773 a ^C. */
2774 static void
2775 handle_remote_sigint_twice (int sig)
2776 {
2777 signal (sig, handle_sigint);
2778 sigint_remote_twice_token =
2779 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2780 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2781 }
2782
2783 /* Perform the real interruption of the target execution, in response
2784 to a ^C. */
2785 static void
2786 async_remote_interrupt (gdb_client_data arg)
2787 {
2788 if (remote_debug)
2789 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2790
2791 target_stop ();
2792 }
2793
2794 /* Perform interrupt, if the first attempt did not succeed. Just give
2795 up on the target alltogether. */
2796 void
2797 async_remote_interrupt_twice (gdb_client_data arg)
2798 {
2799 if (remote_debug)
2800 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2801 /* Do something only if the target was not killed by the previous
2802 cntl-C. */
2803 if (target_executing)
2804 {
2805 interrupt_query ();
2806 signal (SIGINT, handle_remote_sigint);
2807 }
2808 }
2809
2810 /* Reinstall the usual SIGINT handlers, after the target has
2811 stopped. */
2812 static void
2813 cleanup_sigint_signal_handler (void *dummy)
2814 {
2815 signal (SIGINT, handle_sigint);
2816 if (sigint_remote_twice_token)
2817 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_twice_token);
2818 if (sigint_remote_token)
2819 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_token);
2820 }
2821
2822 /* Send ^C to target to halt it. Target will respond, and send us a
2823 packet. */
2824 static void (*ofunc) (int);
2825
2826 /* The command line interface's stop routine. This function is installed
2827 as a signal handler for SIGINT. The first time a user requests a
2828 stop, we call remote_stop to send a break or ^C. If there is no
2829 response from the target (it didn't stop when the user requested it),
2830 we ask the user if he'd like to detach from the target. */
2831 static void
2832 remote_interrupt (int signo)
2833 {
2834 /* If this doesn't work, try more severe steps. */
2835 signal (signo, remote_interrupt_twice);
2836
2837 if (remote_debug)
2838 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2839
2840 target_stop ();
2841 }
2842
2843 /* The user typed ^C twice. */
2844
2845 static void
2846 remote_interrupt_twice (int signo)
2847 {
2848 signal (signo, ofunc);
2849 interrupt_query ();
2850 signal (signo, remote_interrupt);
2851 }
2852
2853 /* This is the generic stop called via the target vector. When a target
2854 interrupt is requested, either by the command line or the GUI, we
2855 will eventually end up here. */
2856 static void
2857 remote_stop (void)
2858 {
2859 /* Send a break or a ^C, depending on user preference. */
2860 if (remote_debug)
2861 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2862
2863 if (remote_break)
2864 serial_send_break (remote_desc);
2865 else
2866 serial_write (remote_desc, "\003", 1);
2867 }
2868
2869 /* Ask the user what to do when an interrupt is received. */
2870
2871 static void
2872 interrupt_query (void)
2873 {
2874 target_terminal_ours ();
2875
2876 if (query ("Interrupted while waiting for the program.\n\
2877 Give up (and stop debugging it)? "))
2878 {
2879 target_mourn_inferior ();
2880 return_to_top_level (RETURN_QUIT);
2881 }
2882
2883 target_terminal_inferior ();
2884 }
2885
2886 /* Enable/disable target terminal ownership. Most targets can use
2887 terminal groups to control terminal ownership. Remote targets are
2888 different in that explicit transfer of ownership to/from GDB/target
2889 is required. */
2890
2891 static void
2892 remote_async_terminal_inferior (void)
2893 {
2894 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
2895 sync_execution here. This function should only be called when
2896 GDB is resuming the inferior in the forground. A background
2897 resume (``run&'') should leave GDB in control of the terminal and
2898 consequently should not call this code. */
2899 if (!sync_execution)
2900 return;
2901 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
2902 calls target_terminal_*() idenpotent. The event-loop GDB talking
2903 to an asynchronous target with a synchronous command calls this
2904 function from both event-top.c and infrun.c/infcmd.c. Once GDB
2905 stops trying to transfer the terminal to the target when it
2906 shouldn't this guard can go away. */
2907 if (!remote_async_terminal_ours_p)
2908 return;
2909 delete_file_handler (input_fd);
2910 remote_async_terminal_ours_p = 0;
2911 initialize_sigint_signal_handler ();
2912 /* NOTE: At this point we could also register our selves as the
2913 recipient of all input. Any characters typed could then be
2914 passed on down to the target. */
2915 }
2916
2917 static void
2918 remote_async_terminal_ours (void)
2919 {
2920 /* See FIXME in remote_async_terminal_inferior. */
2921 if (!sync_execution)
2922 return;
2923 /* See FIXME in remote_async_terminal_inferior. */
2924 if (remote_async_terminal_ours_p)
2925 return;
2926 cleanup_sigint_signal_handler (NULL);
2927 add_file_handler (input_fd, stdin_event_handler, 0);
2928 remote_async_terminal_ours_p = 1;
2929 }
2930
2931 /* If nonzero, ignore the next kill. */
2932
2933 int kill_kludge;
2934
2935 void
2936 remote_console_output (char *msg)
2937 {
2938 char *p;
2939
2940 for (p = msg; p[0] && p[1]; p += 2)
2941 {
2942 char tb[2];
2943 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
2944 tb[0] = c;
2945 tb[1] = 0;
2946 fputs_unfiltered (tb, gdb_stdtarg);
2947 }
2948 gdb_flush (gdb_stdtarg);
2949 }
2950
2951 /* Wait until the remote machine stops, then return,
2952 storing status in STATUS just as `wait' would.
2953 Returns "pid", which in the case of a multi-threaded
2954 remote OS, is the thread-id. */
2955
2956 static ptid_t
2957 remote_wait (ptid_t ptid, struct target_waitstatus *status)
2958 {
2959 struct remote_state *rs = get_remote_state ();
2960 unsigned char *buf = alloca (rs->remote_packet_size);
2961 int thread_num = -1;
2962
2963 status->kind = TARGET_WAITKIND_EXITED;
2964 status->value.integer = 0;
2965
2966 while (1)
2967 {
2968 unsigned char *p;
2969
2970 ofunc = signal (SIGINT, remote_interrupt);
2971 getpkt (buf, (rs->remote_packet_size), 1);
2972 signal (SIGINT, ofunc);
2973
2974 /* This is a hook for when we need to do something (perhaps the
2975 collection of trace data) every time the target stops. */
2976 if (target_wait_loop_hook)
2977 (*target_wait_loop_hook) ();
2978
2979 switch (buf[0])
2980 {
2981 case 'E': /* Error of some sort */
2982 warning ("Remote failure reply: %s", buf);
2983 continue;
2984 case 'T': /* Status with PC, SP, FP, ... */
2985 {
2986 int i;
2987 char* regs = (char*) alloca (MAX_REGISTER_RAW_SIZE);
2988
2989 /* Expedited reply, containing Signal, {regno, reg} repeat */
2990 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
2991 ss = signal number
2992 n... = register number
2993 r... = register contents
2994 */
2995 p = &buf[3]; /* after Txx */
2996
2997 while (*p)
2998 {
2999 unsigned char *p1;
3000 char *p_temp;
3001 int fieldsize;
3002
3003 /* Read the ``P'' register number. */
3004 LONGEST pnum = strtol ((const char *) p, &p_temp, 16);
3005 p1 = (unsigned char *) p_temp;
3006
3007 if (p1 == p) /* No register number present here */
3008 {
3009 p1 = (unsigned char *) strchr ((const char *) p, ':');
3010 if (p1 == NULL)
3011 warning ("Malformed packet(a) (missing colon): %s\n\
3012 Packet: '%s'\n",
3013 p, buf);
3014 if (strncmp ((const char *) p, "thread", p1 - p) == 0)
3015 {
3016 p_temp = unpack_varlen_hex (++p1, &thread_num);
3017 record_currthread (thread_num);
3018 p = (unsigned char *) p_temp;
3019 }
3020 }
3021 else
3022 {
3023 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3024 p = p1;
3025
3026 if (*p++ != ':')
3027 warning ("Malformed packet(b) (missing colon): %s\n\
3028 Packet: '%s'\n",
3029 p, buf);
3030
3031 if (reg == NULL)
3032 warning ("Remote sent bad register number %s: %s\n\
3033 Packet: '%s'\n",
3034 phex_nz (pnum, 0), p, buf);
3035
3036 fieldsize = hex2bin (p, regs, REGISTER_RAW_SIZE (reg->regnum));
3037 p += 2 * fieldsize;
3038 if (fieldsize < REGISTER_RAW_SIZE (reg->regnum))
3039 warning ("Remote reply is too short: %s", buf);
3040 supply_register (reg->regnum, regs);
3041 }
3042
3043 if (*p++ != ';')
3044 {
3045 warning ("Remote register badly formatted: %s", buf);
3046 warning (" here: %s", p);
3047 }
3048 }
3049 }
3050 /* fall through */
3051 case 'S': /* Old style status, just signal only */
3052 status->kind = TARGET_WAITKIND_STOPPED;
3053 status->value.sig = (enum target_signal)
3054 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3055
3056 if (buf[3] == 'p')
3057 {
3058 /* Export Cisco kernel mode as a convenience variable
3059 (so that it can be used in the GDB prompt if desired). */
3060
3061 if (cisco_kernel_mode == 1)
3062 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3063 value_from_string ("PDEBUG-"));
3064 cisco_kernel_mode = 0;
3065 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3066 record_currthread (thread_num);
3067 }
3068 else if (buf[3] == 'k')
3069 {
3070 /* Export Cisco kernel mode as a convenience variable
3071 (so that it can be used in the GDB prompt if desired). */
3072
3073 if (cisco_kernel_mode == 1)
3074 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3075 value_from_string ("KDEBUG-"));
3076 cisco_kernel_mode = 1;
3077 }
3078 goto got_status;
3079 case 'N': /* Cisco special: status and offsets */
3080 {
3081 bfd_vma text_addr, data_addr, bss_addr;
3082 bfd_signed_vma text_off, data_off, bss_off;
3083 unsigned char *p1;
3084
3085 status->kind = TARGET_WAITKIND_STOPPED;
3086 status->value.sig = (enum target_signal)
3087 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3088
3089 if (symfile_objfile == NULL)
3090 {
3091 warning ("Relocation packet received with no symbol file. \
3092 Packet Dropped");
3093 goto got_status;
3094 }
3095
3096 /* Relocate object file. Buffer format is NAATT;DD;BB
3097 * where AA is the signal number, TT is the new text
3098 * address, DD * is the new data address, and BB is the
3099 * new bss address. */
3100
3101 p = &buf[3];
3102 text_addr = strtoul (p, (char **) &p1, 16);
3103 if (p1 == p || *p1 != ';')
3104 warning ("Malformed relocation packet: Packet '%s'", buf);
3105 p = p1 + 1;
3106 data_addr = strtoul (p, (char **) &p1, 16);
3107 if (p1 == p || *p1 != ';')
3108 warning ("Malformed relocation packet: Packet '%s'", buf);
3109 p = p1 + 1;
3110 bss_addr = strtoul (p, (char **) &p1, 16);
3111 if (p1 == p)
3112 warning ("Malformed relocation packet: Packet '%s'", buf);
3113
3114 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
3115 &text_off, &data_off, &bss_off)
3116 == 0)
3117 if (text_off != 0 || data_off != 0 || bss_off != 0)
3118 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
3119
3120 goto got_status;
3121 }
3122 case 'W': /* Target exited */
3123 {
3124 /* The remote process exited. */
3125 status->kind = TARGET_WAITKIND_EXITED;
3126 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3127 goto got_status;
3128 }
3129 case 'X':
3130 status->kind = TARGET_WAITKIND_SIGNALLED;
3131 status->value.sig = (enum target_signal)
3132 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3133 kill_kludge = 1;
3134
3135 goto got_status;
3136 case 'O': /* Console output */
3137 remote_console_output (buf + 1);
3138 continue;
3139 case '\0':
3140 if (last_sent_signal != TARGET_SIGNAL_0)
3141 {
3142 /* Zero length reply means that we tried 'S' or 'C' and
3143 the remote system doesn't support it. */
3144 target_terminal_ours_for_output ();
3145 printf_filtered
3146 ("Can't send signals to this remote system. %s not sent.\n",
3147 target_signal_to_name (last_sent_signal));
3148 last_sent_signal = TARGET_SIGNAL_0;
3149 target_terminal_inferior ();
3150
3151 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3152 putpkt ((char *) buf);
3153 continue;
3154 }
3155 /* else fallthrough */
3156 default:
3157 warning ("Invalid remote reply: %s", buf);
3158 continue;
3159 }
3160 }
3161 got_status:
3162 if (thread_num != -1)
3163 {
3164 return pid_to_ptid (thread_num);
3165 }
3166 return inferior_ptid;
3167 }
3168
3169 /* Async version of remote_wait. */
3170 static ptid_t
3171 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3172 {
3173 struct remote_state *rs = get_remote_state ();
3174 unsigned char *buf = alloca (rs->remote_packet_size);
3175 int thread_num = -1;
3176
3177 status->kind = TARGET_WAITKIND_EXITED;
3178 status->value.integer = 0;
3179
3180 while (1)
3181 {
3182 unsigned char *p;
3183
3184 if (!target_is_async_p ())
3185 ofunc = signal (SIGINT, remote_interrupt);
3186 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3187 _never_ wait for ever -> test on target_is_async_p().
3188 However, before we do that we need to ensure that the caller
3189 knows how to take the target into/out of async mode. */
3190 getpkt (buf, (rs->remote_packet_size), wait_forever_enabled_p);
3191 if (!target_is_async_p ())
3192 signal (SIGINT, ofunc);
3193
3194 /* This is a hook for when we need to do something (perhaps the
3195 collection of trace data) every time the target stops. */
3196 if (target_wait_loop_hook)
3197 (*target_wait_loop_hook) ();
3198
3199 switch (buf[0])
3200 {
3201 case 'E': /* Error of some sort */
3202 warning ("Remote failure reply: %s", buf);
3203 continue;
3204 case 'T': /* Status with PC, SP, FP, ... */
3205 {
3206 int i;
3207 char* regs = (char*) alloca (MAX_REGISTER_RAW_SIZE);
3208
3209 /* Expedited reply, containing Signal, {regno, reg} repeat */
3210 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3211 ss = signal number
3212 n... = register number
3213 r... = register contents
3214 */
3215 p = &buf[3]; /* after Txx */
3216
3217 while (*p)
3218 {
3219 unsigned char *p1;
3220 char *p_temp;
3221 int fieldsize;
3222
3223 /* Read the register number */
3224 long pnum = strtol ((const char *) p, &p_temp, 16);
3225 p1 = (unsigned char *) p_temp;
3226
3227 if (p1 == p) /* No register number present here */
3228 {
3229 p1 = (unsigned char *) strchr ((const char *) p, ':');
3230 if (p1 == NULL)
3231 warning ("Malformed packet(a) (missing colon): %s\n\
3232 Packet: '%s'\n",
3233 p, buf);
3234 if (strncmp ((const char *) p, "thread", p1 - p) == 0)
3235 {
3236 p_temp = unpack_varlen_hex (++p1, &thread_num);
3237 record_currthread (thread_num);
3238 p = (unsigned char *) p_temp;
3239 }
3240 }
3241 else
3242 {
3243 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3244 p = p1;
3245 if (*p++ != ':')
3246 warning ("Malformed packet(b) (missing colon): %s\n\
3247 Packet: '%s'\n",
3248 p, buf);
3249
3250 if (reg == NULL)
3251 warning ("Remote sent bad register number %ld: %s\n\
3252 Packet: '%s'\n",
3253 pnum, p, buf);
3254
3255 fieldsize = hex2bin (p, regs, REGISTER_RAW_SIZE (reg->regnum));
3256 p += 2 * fieldsize;
3257 if (fieldsize < REGISTER_RAW_SIZE (reg->regnum))
3258 warning ("Remote reply is too short: %s", buf);
3259 supply_register (reg->regnum, regs);
3260 }
3261
3262 if (*p++ != ';')
3263 {
3264 warning ("Remote register badly formatted: %s", buf);
3265 warning (" here: %s", p);
3266 }
3267 }
3268 }
3269 /* fall through */
3270 case 'S': /* Old style status, just signal only */
3271 status->kind = TARGET_WAITKIND_STOPPED;
3272 status->value.sig = (enum target_signal)
3273 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3274
3275 if (buf[3] == 'p')
3276 {
3277 /* Export Cisco kernel mode as a convenience variable
3278 (so that it can be used in the GDB prompt if desired). */
3279
3280 if (cisco_kernel_mode == 1)
3281 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3282 value_from_string ("PDEBUG-"));
3283 cisco_kernel_mode = 0;
3284 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3285 record_currthread (thread_num);
3286 }
3287 else if (buf[3] == 'k')
3288 {
3289 /* Export Cisco kernel mode as a convenience variable
3290 (so that it can be used in the GDB prompt if desired). */
3291
3292 if (cisco_kernel_mode == 1)
3293 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3294 value_from_string ("KDEBUG-"));
3295 cisco_kernel_mode = 1;
3296 }
3297 goto got_status;
3298 case 'N': /* Cisco special: status and offsets */
3299 {
3300 bfd_vma text_addr, data_addr, bss_addr;
3301 bfd_signed_vma text_off, data_off, bss_off;
3302 unsigned char *p1;
3303
3304 status->kind = TARGET_WAITKIND_STOPPED;
3305 status->value.sig = (enum target_signal)
3306 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3307
3308 if (symfile_objfile == NULL)
3309 {
3310 warning ("Relocation packet recieved with no symbol file. \
3311 Packet Dropped");
3312 goto got_status;
3313 }
3314
3315 /* Relocate object file. Buffer format is NAATT;DD;BB
3316 * where AA is the signal number, TT is the new text
3317 * address, DD * is the new data address, and BB is the
3318 * new bss address. */
3319
3320 p = &buf[3];
3321 text_addr = strtoul (p, (char **) &p1, 16);
3322 if (p1 == p || *p1 != ';')
3323 warning ("Malformed relocation packet: Packet '%s'", buf);
3324 p = p1 + 1;
3325 data_addr = strtoul (p, (char **) &p1, 16);
3326 if (p1 == p || *p1 != ';')
3327 warning ("Malformed relocation packet: Packet '%s'", buf);
3328 p = p1 + 1;
3329 bss_addr = strtoul (p, (char **) &p1, 16);
3330 if (p1 == p)
3331 warning ("Malformed relocation packet: Packet '%s'", buf);
3332
3333 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
3334 &text_off, &data_off, &bss_off)
3335 == 0)
3336 if (text_off != 0 || data_off != 0 || bss_off != 0)
3337 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
3338
3339 goto got_status;
3340 }
3341 case 'W': /* Target exited */
3342 {
3343 /* The remote process exited. */
3344 status->kind = TARGET_WAITKIND_EXITED;
3345 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3346 goto got_status;
3347 }
3348 case 'X':
3349 status->kind = TARGET_WAITKIND_SIGNALLED;
3350 status->value.sig = (enum target_signal)
3351 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3352 kill_kludge = 1;
3353
3354 goto got_status;
3355 case 'O': /* Console output */
3356 remote_console_output (buf + 1);
3357 /* Return immediately to the event loop. The event loop will
3358 still be waiting on the inferior afterwards. */
3359 status->kind = TARGET_WAITKIND_IGNORE;
3360 goto got_status;
3361 case '\0':
3362 if (last_sent_signal != TARGET_SIGNAL_0)
3363 {
3364 /* Zero length reply means that we tried 'S' or 'C' and
3365 the remote system doesn't support it. */
3366 target_terminal_ours_for_output ();
3367 printf_filtered
3368 ("Can't send signals to this remote system. %s not sent.\n",
3369 target_signal_to_name (last_sent_signal));
3370 last_sent_signal = TARGET_SIGNAL_0;
3371 target_terminal_inferior ();
3372
3373 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3374 putpkt ((char *) buf);
3375 continue;
3376 }
3377 /* else fallthrough */
3378 default:
3379 warning ("Invalid remote reply: %s", buf);
3380 continue;
3381 }
3382 }
3383 got_status:
3384 if (thread_num != -1)
3385 {
3386 return pid_to_ptid (thread_num);
3387 }
3388 return inferior_ptid;
3389 }
3390
3391 /* Number of bytes of registers this stub implements. */
3392
3393 static int register_bytes_found;
3394
3395 /* Read the remote registers into the block REGS. */
3396 /* Currently we just read all the registers, so we don't use regnum. */
3397
3398 /* ARGSUSED */
3399 static void
3400 remote_fetch_registers (int regnum)
3401 {
3402 struct remote_state *rs = get_remote_state ();
3403 char *buf = alloca (rs->remote_packet_size);
3404 int i;
3405 char *p;
3406 char *regs = alloca (rs->sizeof_g_packet);
3407
3408 set_thread (PIDGET (inferior_ptid), 1);
3409
3410 if (regnum >= 0)
3411 {
3412 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3413 gdb_assert (reg != NULL);
3414 if (!reg->in_g_packet)
3415 internal_error (__FILE__, __LINE__,
3416 "Attempt to fetch a non G-packet register when this "
3417 "remote.c does not support the p-packet.");
3418 }
3419
3420 sprintf (buf, "g");
3421 remote_send (buf, (rs->remote_packet_size));
3422
3423 /* Save the size of the packet sent to us by the target. Its used
3424 as a heuristic when determining the max size of packets that the
3425 target can safely receive. */
3426 if ((rs->actual_register_packet_size) == 0)
3427 (rs->actual_register_packet_size) = strlen (buf);
3428
3429 /* Unimplemented registers read as all bits zero. */
3430 memset (regs, 0, rs->sizeof_g_packet);
3431
3432 /* We can get out of synch in various cases. If the first character
3433 in the buffer is not a hex character, assume that has happened
3434 and try to fetch another packet to read. */
3435 while ((buf[0] < '0' || buf[0] > '9')
3436 && (buf[0] < 'a' || buf[0] > 'f')
3437 && buf[0] != 'x') /* New: unavailable register value */
3438 {
3439 if (remote_debug)
3440 fprintf_unfiltered (gdb_stdlog,
3441 "Bad register packet; fetching a new packet\n");
3442 getpkt (buf, (rs->remote_packet_size), 0);
3443 }
3444
3445 /* Reply describes registers byte by byte, each byte encoded as two
3446 hex characters. Suck them all up, then supply them to the
3447 register cacheing/storage mechanism. */
3448
3449 p = buf;
3450 for (i = 0; i < rs->sizeof_g_packet; i++)
3451 {
3452 if (p[0] == 0)
3453 break;
3454 if (p[1] == 0)
3455 {
3456 warning ("Remote reply is of odd length: %s", buf);
3457 /* Don't change register_bytes_found in this case, and don't
3458 print a second warning. */
3459 goto supply_them;
3460 }
3461 if (p[0] == 'x' && p[1] == 'x')
3462 regs[i] = 0; /* 'x' */
3463 else
3464 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3465 p += 2;
3466 }
3467
3468 if (i != register_bytes_found)
3469 {
3470 register_bytes_found = i;
3471 if (REGISTER_BYTES_OK_P ()
3472 && !REGISTER_BYTES_OK (i))
3473 warning ("Remote reply is too short: %s", buf);
3474 }
3475
3476 supply_them:
3477 {
3478 int i;
3479 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3480 {
3481 struct packet_reg *r = &rs->regs[i];
3482 if (r->in_g_packet)
3483 {
3484 supply_register (r->regnum, regs + r->offset);
3485 if (buf[r->offset * 2] == 'x')
3486 set_register_cached (i, -1);
3487 }
3488 }
3489 }
3490 }
3491
3492 /* Prepare to store registers. Since we may send them all (using a
3493 'G' request), we have to read out the ones we don't want to change
3494 first. */
3495
3496 static void
3497 remote_prepare_to_store (void)
3498 {
3499 /* Make sure the entire registers array is valid. */
3500 switch (remote_protocol_P.support)
3501 {
3502 case PACKET_DISABLE:
3503 case PACKET_SUPPORT_UNKNOWN:
3504 /* NOTE: This isn't rs->sizeof_g_packet because here, we are
3505 forcing the register cache to read its and not the target
3506 registers. */
3507 read_register_bytes (0, (char *) NULL, REGISTER_BYTES); /* OK use. */
3508 break;
3509 case PACKET_ENABLE:
3510 break;
3511 }
3512 }
3513
3514 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3515 packet was not recognized. */
3516
3517 static int
3518 store_register_using_P (int regnum)
3519 {
3520 struct remote_state *rs = get_remote_state ();
3521 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3522 /* Try storing a single register. */
3523 char *buf = alloca (rs->remote_packet_size);
3524 char *regp = alloca (MAX_REGISTER_RAW_SIZE);
3525 char *p;
3526 int i;
3527
3528 sprintf (buf, "P%s=", phex_nz (reg->pnum, 0));
3529 p = buf + strlen (buf);
3530 regcache_collect (reg->regnum, regp);
3531 bin2hex (regp, p, REGISTER_RAW_SIZE (reg->regnum));
3532 remote_send (buf, rs->remote_packet_size);
3533
3534 return buf[0] != '\0';
3535 }
3536
3537
3538 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3539 of the register cache buffer. FIXME: ignores errors. */
3540
3541 static void
3542 remote_store_registers (int regnum)
3543 {
3544 struct remote_state *rs = get_remote_state ();
3545 char *buf;
3546 char *regs;
3547 int i;
3548 char *p;
3549
3550 set_thread (PIDGET (inferior_ptid), 1);
3551
3552 if (regnum >= 0)
3553 {
3554 switch (remote_protocol_P.support)
3555 {
3556 case PACKET_DISABLE:
3557 break;
3558 case PACKET_ENABLE:
3559 if (store_register_using_P (regnum))
3560 return;
3561 else
3562 error ("Protocol error: P packet not recognized by stub");
3563 case PACKET_SUPPORT_UNKNOWN:
3564 if (store_register_using_P (regnum))
3565 {
3566 /* The stub recognized the 'P' packet. Remember this. */
3567 remote_protocol_P.support = PACKET_ENABLE;
3568 return;
3569 }
3570 else
3571 {
3572 /* The stub does not support the 'P' packet. Use 'G'
3573 instead, and don't try using 'P' in the future (it
3574 will just waste our time). */
3575 remote_protocol_P.support = PACKET_DISABLE;
3576 break;
3577 }
3578 }
3579 }
3580
3581 /* Extract all the registers in the regcache copying them into a
3582 local buffer. */
3583 {
3584 int i;
3585 regs = alloca (rs->sizeof_g_packet);
3586 memset (regs, rs->sizeof_g_packet, 0);
3587 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3588 {
3589 struct packet_reg *r = &rs->regs[i];
3590 if (r->in_g_packet)
3591 regcache_collect (r->regnum, regs + r->offset);
3592 }
3593 }
3594
3595 /* Command describes registers byte by byte,
3596 each byte encoded as two hex characters. */
3597 buf = alloca (rs->remote_packet_size);
3598 p = buf;
3599 *p++ = 'G';
3600 /* remote_prepare_to_store insures that register_bytes_found gets set. */
3601 bin2hex (regs, p, register_bytes_found);
3602 remote_send (buf, (rs->remote_packet_size));
3603 }
3604 \f
3605
3606 /* Return the number of hex digits in num. */
3607
3608 static int
3609 hexnumlen (ULONGEST num)
3610 {
3611 int i;
3612
3613 for (i = 0; num != 0; i++)
3614 num >>= 4;
3615
3616 return max (i, 1);
3617 }
3618
3619 /* Set BUF to the minimum number of hex digits representing NUM. */
3620
3621 static int
3622 hexnumstr (char *buf, ULONGEST num)
3623 {
3624 int len = hexnumlen (num);
3625 return hexnumnstr (buf, num, len);
3626 }
3627
3628
3629 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3630
3631 static int
3632 hexnumnstr (char *buf, ULONGEST num, int width)
3633 {
3634 int i;
3635
3636 buf[width] = '\0';
3637
3638 for (i = width - 1; i >= 0; i--)
3639 {
3640 buf[i] = "0123456789abcdef"[(num & 0xf)];
3641 num >>= 4;
3642 }
3643
3644 return width;
3645 }
3646
3647 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3648
3649 static CORE_ADDR
3650 remote_address_masked (CORE_ADDR addr)
3651 {
3652 if (remote_address_size > 0
3653 && remote_address_size < (sizeof (ULONGEST) * 8))
3654 {
3655 /* Only create a mask when that mask can safely be constructed
3656 in a ULONGEST variable. */
3657 ULONGEST mask = 1;
3658 mask = (mask << remote_address_size) - 1;
3659 addr &= mask;
3660 }
3661 return addr;
3662 }
3663
3664 /* Determine whether the remote target supports binary downloading.
3665 This is accomplished by sending a no-op memory write of zero length
3666 to the target at the specified address. It does not suffice to send
3667 the whole packet, since many stubs strip the eighth bit and subsequently
3668 compute a wrong checksum, which causes real havoc with remote_write_bytes.
3669
3670 NOTE: This can still lose if the serial line is not eight-bit
3671 clean. In cases like this, the user should clear "remote
3672 X-packet". */
3673
3674 static void
3675 check_binary_download (CORE_ADDR addr)
3676 {
3677 struct remote_state *rs = get_remote_state ();
3678 switch (remote_protocol_binary_download.support)
3679 {
3680 case PACKET_DISABLE:
3681 break;
3682 case PACKET_ENABLE:
3683 break;
3684 case PACKET_SUPPORT_UNKNOWN:
3685 {
3686 char *buf = alloca (rs->remote_packet_size);
3687 char *p;
3688
3689 p = buf;
3690 *p++ = 'X';
3691 p += hexnumstr (p, (ULONGEST) addr);
3692 *p++ = ',';
3693 p += hexnumstr (p, (ULONGEST) 0);
3694 *p++ = ':';
3695 *p = '\0';
3696
3697 putpkt_binary (buf, (int) (p - buf));
3698 getpkt (buf, (rs->remote_packet_size), 0);
3699
3700 if (buf[0] == '\0')
3701 {
3702 if (remote_debug)
3703 fprintf_unfiltered (gdb_stdlog,
3704 "binary downloading NOT suppported by target\n");
3705 remote_protocol_binary_download.support = PACKET_DISABLE;
3706 }
3707 else
3708 {
3709 if (remote_debug)
3710 fprintf_unfiltered (gdb_stdlog,
3711 "binary downloading suppported by target\n");
3712 remote_protocol_binary_download.support = PACKET_ENABLE;
3713 }
3714 break;
3715 }
3716 }
3717 }
3718
3719 /* Write memory data directly to the remote machine.
3720 This does not inform the data cache; the data cache uses this.
3721 MEMADDR is the address in the remote memory space.
3722 MYADDR is the address of the buffer in our space.
3723 LEN is the number of bytes.
3724
3725 Returns number of bytes transferred, or 0 (setting errno) for
3726 error. Only transfer a single packet. */
3727
3728 static int
3729 remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3730 {
3731 unsigned char *buf;
3732 int max_buf_size; /* Max size of packet output buffer */
3733 unsigned char *p;
3734 unsigned char *plen;
3735 long sizeof_buf;
3736 int plenlen;
3737 int todo;
3738 int nr_bytes;
3739
3740 /* Verify that the target can support a binary download */
3741 check_binary_download (memaddr);
3742
3743 /* Determine the max packet size. */
3744 max_buf_size = get_memory_write_packet_size ();
3745 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3746 buf = alloca (sizeof_buf);
3747
3748 /* Subtract header overhead from max payload size - $M<memaddr>,<len>:#nn */
3749 max_buf_size -= 2 + hexnumlen (memaddr + len - 1) + 1 + hexnumlen (len) + 4;
3750
3751 /* construct "M"<memaddr>","<len>":" */
3752 /* sprintf (buf, "M%lx,%x:", (unsigned long) memaddr, todo); */
3753 p = buf;
3754
3755 /* Append [XM]. Compute a best guess of the number of bytes
3756 actually transfered. */
3757 switch (remote_protocol_binary_download.support)
3758 {
3759 case PACKET_ENABLE:
3760 *p++ = 'X';
3761 /* Best guess at number of bytes that will fit. */
3762 todo = min (len, max_buf_size);
3763 break;
3764 case PACKET_DISABLE:
3765 *p++ = 'M';
3766 /* num bytes that will fit */
3767 todo = min (len, max_buf_size / 2);
3768 break;
3769 case PACKET_SUPPORT_UNKNOWN:
3770 internal_error (__FILE__, __LINE__,
3771 "remote_write_bytes: bad internal state");
3772 default:
3773 internal_error (__FILE__, __LINE__, "bad switch");
3774 }
3775
3776 /* Append <memaddr> */
3777 memaddr = remote_address_masked (memaddr);
3778 p += hexnumstr (p, (ULONGEST) memaddr);
3779 *p++ = ',';
3780
3781 /* Append <len>. Retain the location/size of <len>. It may
3782 need to be adjusted once the packet body has been created. */
3783 plen = p;
3784 plenlen = hexnumstr (p, (ULONGEST) todo);
3785 p += plenlen;
3786 *p++ = ':';
3787 *p = '\0';
3788
3789 /* Append the packet body. */
3790 switch (remote_protocol_binary_download.support)
3791 {
3792 case PACKET_ENABLE:
3793 /* Binary mode. Send target system values byte by byte, in
3794 increasing byte addresses. Only escape certain critical
3795 characters. */
3796 for (nr_bytes = 0;
3797 (nr_bytes < todo) && (p - buf) < (max_buf_size - 2);
3798 nr_bytes++)
3799 {
3800 switch (myaddr[nr_bytes] & 0xff)
3801 {
3802 case '$':
3803 case '#':
3804 case 0x7d:
3805 /* These must be escaped */
3806 *p++ = 0x7d;
3807 *p++ = (myaddr[nr_bytes] & 0xff) ^ 0x20;
3808 break;
3809 default:
3810 *p++ = myaddr[nr_bytes] & 0xff;
3811 break;
3812 }
3813 }
3814 if (nr_bytes < todo)
3815 {
3816 /* Escape chars have filled up the buffer prematurely,
3817 and we have actually sent fewer bytes than planned.
3818 Fix-up the length field of the packet. Use the same
3819 number of characters as before. */
3820
3821 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
3822 *plen = ':'; /* overwrite \0 from hexnumnstr() */
3823 }
3824 break;
3825 case PACKET_DISABLE:
3826 /* Normal mode: Send target system values byte by byte, in
3827 increasing byte addresses. Each byte is encoded as a two hex
3828 value. */
3829 nr_bytes = bin2hex (myaddr, p, todo);
3830 p += 2 * nr_bytes;
3831 break;
3832 case PACKET_SUPPORT_UNKNOWN:
3833 internal_error (__FILE__, __LINE__,
3834 "remote_write_bytes: bad internal state");
3835 default:
3836 internal_error (__FILE__, __LINE__, "bad switch");
3837 }
3838
3839 putpkt_binary (buf, (int) (p - buf));
3840 getpkt (buf, sizeof_buf, 0);
3841
3842 if (buf[0] == 'E')
3843 {
3844 /* There is no correspondance between what the remote protocol
3845 uses for errors and errno codes. We would like a cleaner way
3846 of representing errors (big enough to include errno codes,
3847 bfd_error codes, and others). But for now just return EIO. */
3848 errno = EIO;
3849 return 0;
3850 }
3851
3852 /* Return NR_BYTES, not TODO, in case escape chars caused us to send fewer
3853 bytes than we'd planned. */
3854 return nr_bytes;
3855 }
3856
3857 /* Read memory data directly from the remote machine.
3858 This does not use the data cache; the data cache uses this.
3859 MEMADDR is the address in the remote memory space.
3860 MYADDR is the address of the buffer in our space.
3861 LEN is the number of bytes.
3862
3863 Returns number of bytes transferred, or 0 for error. */
3864
3865 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
3866 remote targets) shouldn't attempt to read the entire buffer.
3867 Instead it should read a single packet worth of data and then
3868 return the byte size of that packet to the caller. The caller (its
3869 caller and its callers caller ;-) already contains code for
3870 handling partial reads. */
3871
3872 static int
3873 remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3874 {
3875 char *buf;
3876 int max_buf_size; /* Max size of packet output buffer */
3877 long sizeof_buf;
3878 int origlen;
3879
3880 /* Create a buffer big enough for this packet. */
3881 max_buf_size = get_memory_read_packet_size ();
3882 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3883 buf = alloca (sizeof_buf);
3884
3885 origlen = len;
3886 while (len > 0)
3887 {
3888 char *p;
3889 int todo;
3890 int i;
3891
3892 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
3893
3894 /* construct "m"<memaddr>","<len>" */
3895 /* sprintf (buf, "m%lx,%x", (unsigned long) memaddr, todo); */
3896 memaddr = remote_address_masked (memaddr);
3897 p = buf;
3898 *p++ = 'm';
3899 p += hexnumstr (p, (ULONGEST) memaddr);
3900 *p++ = ',';
3901 p += hexnumstr (p, (ULONGEST) todo);
3902 *p = '\0';
3903
3904 putpkt (buf);
3905 getpkt (buf, sizeof_buf, 0);
3906
3907 if (buf[0] == 'E')
3908 {
3909 /* There is no correspondance between what the remote protocol uses
3910 for errors and errno codes. We would like a cleaner way of
3911 representing errors (big enough to include errno codes, bfd_error
3912 codes, and others). But for now just return EIO. */
3913 errno = EIO;
3914 return 0;
3915 }
3916
3917 /* Reply describes memory byte by byte,
3918 each byte encoded as two hex characters. */
3919
3920 p = buf;
3921 if ((i = hex2bin (p, myaddr, todo)) < todo)
3922 {
3923 /* Reply is short. This means that we were able to read
3924 only part of what we wanted to. */
3925 return i + (origlen - len);
3926 }
3927 myaddr += todo;
3928 memaddr += todo;
3929 len -= todo;
3930 }
3931 return origlen;
3932 }
3933 \f
3934 /* Read or write LEN bytes from inferior memory at MEMADDR,
3935 transferring to or from debugger address BUFFER. Write to inferior if
3936 SHOULD_WRITE is nonzero. Returns length of data written or read; 0
3937 for error. TARGET is unused. */
3938
3939 /* ARGSUSED */
3940 static int
3941 remote_xfer_memory (CORE_ADDR mem_addr, char *buffer, int mem_len,
3942 int should_write, struct mem_attrib *attrib,
3943 struct target_ops *target)
3944 {
3945 CORE_ADDR targ_addr;
3946 int targ_len;
3947 int res;
3948
3949 REMOTE_TRANSLATE_XFER_ADDRESS (mem_addr, mem_len, &targ_addr, &targ_len);
3950 if (targ_len <= 0)
3951 return 0;
3952
3953 if (should_write)
3954 res = remote_write_bytes (targ_addr, buffer, targ_len);
3955 else
3956 res = remote_read_bytes (targ_addr, buffer, targ_len);
3957
3958 return res;
3959 }
3960
3961
3962 #if 0
3963 /* Enable after 4.12. */
3964
3965 void
3966 remote_search (int len, char *data, char *mask, CORE_ADDR startaddr,
3967 int increment, CORE_ADDR lorange, CORE_ADDR hirange,
3968 CORE_ADDR *addr_found, char *data_found)
3969 {
3970 if (increment == -4 && len == 4)
3971 {
3972 long mask_long, data_long;
3973 long data_found_long;
3974 CORE_ADDR addr_we_found;
3975 char *buf = alloca (rs->remote_packet_size);
3976 long returned_long[2];
3977 char *p;
3978
3979 mask_long = extract_unsigned_integer (mask, len);
3980 data_long = extract_unsigned_integer (data, len);
3981 sprintf (buf, "t%x:%x,%x", startaddr, data_long, mask_long);
3982 putpkt (buf);
3983 getpkt (buf, (rs->remote_packet_size), 0);
3984 if (buf[0] == '\0')
3985 {
3986 /* The stub doesn't support the 't' request. We might want to
3987 remember this fact, but on the other hand the stub could be
3988 switched on us. Maybe we should remember it only until
3989 the next "target remote". */
3990 generic_search (len, data, mask, startaddr, increment, lorange,
3991 hirange, addr_found, data_found);
3992 return;
3993 }
3994
3995 if (buf[0] == 'E')
3996 /* There is no correspondance between what the remote protocol uses
3997 for errors and errno codes. We would like a cleaner way of
3998 representing errors (big enough to include errno codes, bfd_error
3999 codes, and others). But for now just use EIO. */
4000 memory_error (EIO, startaddr);
4001 p = buf;
4002 addr_we_found = 0;
4003 while (*p != '\0' && *p != ',')
4004 addr_we_found = (addr_we_found << 4) + fromhex (*p++);
4005 if (*p == '\0')
4006 error ("Protocol error: short return for search");
4007
4008 data_found_long = 0;
4009 while (*p != '\0' && *p != ',')
4010 data_found_long = (data_found_long << 4) + fromhex (*p++);
4011 /* Ignore anything after this comma, for future extensions. */
4012
4013 if (addr_we_found < lorange || addr_we_found >= hirange)
4014 {
4015 *addr_found = 0;
4016 return;
4017 }
4018
4019 *addr_found = addr_we_found;
4020 *data_found = store_unsigned_integer (data_we_found, len);
4021 return;
4022 }
4023 generic_search (len, data, mask, startaddr, increment, lorange,
4024 hirange, addr_found, data_found);
4025 }
4026 #endif /* 0 */
4027 \f
4028 static void
4029 remote_files_info (struct target_ops *ignore)
4030 {
4031 puts_filtered ("Debugging a target over a serial line.\n");
4032 }
4033 \f
4034 /* Stuff for dealing with the packets which are part of this protocol.
4035 See comment at top of file for details. */
4036
4037 /* Read a single character from the remote end, masking it down to 7 bits. */
4038
4039 static int
4040 readchar (int timeout)
4041 {
4042 int ch;
4043
4044 ch = serial_readchar (remote_desc, timeout);
4045
4046 if (ch >= 0)
4047 return (ch & 0x7f);
4048
4049 switch ((enum serial_rc) ch)
4050 {
4051 case SERIAL_EOF:
4052 target_mourn_inferior ();
4053 error ("Remote connection closed");
4054 /* no return */
4055 case SERIAL_ERROR:
4056 perror_with_name ("Remote communication error");
4057 /* no return */
4058 case SERIAL_TIMEOUT:
4059 break;
4060 }
4061 return ch;
4062 }
4063
4064 /* Send the command in BUF to the remote machine, and read the reply
4065 into BUF. Report an error if we get an error reply. */
4066
4067 static void
4068 remote_send (char *buf,
4069 long sizeof_buf)
4070 {
4071 putpkt (buf);
4072 getpkt (buf, sizeof_buf, 0);
4073
4074 if (buf[0] == 'E')
4075 error ("Remote failure reply: %s", buf);
4076 }
4077
4078 /* Display a null-terminated packet on stdout, for debugging, using C
4079 string notation. */
4080
4081 static void
4082 print_packet (char *buf)
4083 {
4084 puts_filtered ("\"");
4085 fputstr_filtered (buf, '"', gdb_stdout);
4086 puts_filtered ("\"");
4087 }
4088
4089 int
4090 putpkt (char *buf)
4091 {
4092 return putpkt_binary (buf, strlen (buf));
4093 }
4094
4095 /* Send a packet to the remote machine, with error checking. The data
4096 of the packet is in BUF. The string in BUF can be at most (rs->remote_packet_size) - 5
4097 to account for the $, # and checksum, and for a possible /0 if we are
4098 debugging (remote_debug) and want to print the sent packet as a string */
4099
4100 static int
4101 putpkt_binary (char *buf, int cnt)
4102 {
4103 struct remote_state *rs = get_remote_state ();
4104 int i;
4105 unsigned char csum = 0;
4106 char *buf2 = alloca (cnt + 6);
4107 long sizeof_junkbuf = (rs->remote_packet_size);
4108 char *junkbuf = alloca (sizeof_junkbuf);
4109
4110 int ch;
4111 int tcount = 0;
4112 char *p;
4113
4114 /* Copy the packet into buffer BUF2, encapsulating it
4115 and giving it a checksum. */
4116
4117 p = buf2;
4118 *p++ = '$';
4119
4120 for (i = 0; i < cnt; i++)
4121 {
4122 csum += buf[i];
4123 *p++ = buf[i];
4124 }
4125 *p++ = '#';
4126 *p++ = tohex ((csum >> 4) & 0xf);
4127 *p++ = tohex (csum & 0xf);
4128
4129 /* Send it over and over until we get a positive ack. */
4130
4131 while (1)
4132 {
4133 int started_error_output = 0;
4134
4135 if (remote_debug)
4136 {
4137 *p = '\0';
4138 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4139 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4140 fprintf_unfiltered (gdb_stdlog, "...");
4141 gdb_flush (gdb_stdlog);
4142 }
4143 if (serial_write (remote_desc, buf2, p - buf2))
4144 perror_with_name ("putpkt: write failed");
4145
4146 /* read until either a timeout occurs (-2) or '+' is read */
4147 while (1)
4148 {
4149 ch = readchar (remote_timeout);
4150
4151 if (remote_debug)
4152 {
4153 switch (ch)
4154 {
4155 case '+':
4156 case '-':
4157 case SERIAL_TIMEOUT:
4158 case '$':
4159 if (started_error_output)
4160 {
4161 putchar_unfiltered ('\n');
4162 started_error_output = 0;
4163 }
4164 }
4165 }
4166
4167 switch (ch)
4168 {
4169 case '+':
4170 if (remote_debug)
4171 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4172 return 1;
4173 case '-':
4174 if (remote_debug)
4175 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4176 case SERIAL_TIMEOUT:
4177 tcount++;
4178 if (tcount > 3)
4179 return 0;
4180 break; /* Retransmit buffer */
4181 case '$':
4182 {
4183 if (remote_debug)
4184 fprintf_unfiltered (gdb_stdlog, "Packet instead of Ack, ignoring it\n");
4185 /* It's probably an old response, and we're out of sync.
4186 Just gobble up the packet and ignore it. */
4187 read_frame (junkbuf, sizeof_junkbuf);
4188 continue; /* Now, go look for + */
4189 }
4190 default:
4191 if (remote_debug)
4192 {
4193 if (!started_error_output)
4194 {
4195 started_error_output = 1;
4196 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4197 }
4198 fputc_unfiltered (ch & 0177, gdb_stdlog);
4199 }
4200 continue;
4201 }
4202 break; /* Here to retransmit */
4203 }
4204
4205 #if 0
4206 /* This is wrong. If doing a long backtrace, the user should be
4207 able to get out next time we call QUIT, without anything as
4208 violent as interrupt_query. If we want to provide a way out of
4209 here without getting to the next QUIT, it should be based on
4210 hitting ^C twice as in remote_wait. */
4211 if (quit_flag)
4212 {
4213 quit_flag = 0;
4214 interrupt_query ();
4215 }
4216 #endif
4217 }
4218 }
4219
4220 static int remote_cisco_mode;
4221
4222 /* Come here after finding the start of the frame. Collect the rest
4223 into BUF, verifying the checksum, length, and handling run-length
4224 compression. No more than sizeof_buf-1 characters are read so that
4225 the buffer can be NUL terminated.
4226
4227 Returns -1 on error, number of characters in buffer (ignoring the
4228 trailing NULL) on success. (could be extended to return one of the
4229 SERIAL status indications). */
4230
4231 static long
4232 read_frame (char *buf,
4233 long sizeof_buf)
4234 {
4235 unsigned char csum;
4236 long bc;
4237 int c;
4238
4239 csum = 0;
4240 bc = 0;
4241
4242 while (1)
4243 {
4244 /* ASSERT (bc < sizeof_buf - 1) - space for trailing NUL */
4245 c = readchar (remote_timeout);
4246 switch (c)
4247 {
4248 case SERIAL_TIMEOUT:
4249 if (remote_debug)
4250 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4251 return -1;
4252 case '$':
4253 if (remote_debug)
4254 fputs_filtered ("Saw new packet start in middle of old one\n",
4255 gdb_stdlog);
4256 return -1; /* Start a new packet, count retries */
4257 case '#':
4258 {
4259 unsigned char pktcsum;
4260 int check_0 = 0;
4261 int check_1 = 0;
4262
4263 buf[bc] = '\0';
4264
4265 check_0 = readchar (remote_timeout);
4266 if (check_0 >= 0)
4267 check_1 = readchar (remote_timeout);
4268
4269 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4270 {
4271 if (remote_debug)
4272 fputs_filtered ("Timeout in checksum, retrying\n", gdb_stdlog);
4273 return -1;
4274 }
4275 else if (check_0 < 0 || check_1 < 0)
4276 {
4277 if (remote_debug)
4278 fputs_filtered ("Communication error in checksum\n", gdb_stdlog);
4279 return -1;
4280 }
4281
4282 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4283 if (csum == pktcsum)
4284 return bc;
4285
4286 if (remote_debug)
4287 {
4288 fprintf_filtered (gdb_stdlog,
4289 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4290 pktcsum, csum);
4291 fputs_filtered (buf, gdb_stdlog);
4292 fputs_filtered ("\n", gdb_stdlog);
4293 }
4294 /* Number of characters in buffer ignoring trailing
4295 NUL. */
4296 return -1;
4297 }
4298 case '*': /* Run length encoding */
4299 {
4300 int repeat;
4301 csum += c;
4302
4303 if (remote_cisco_mode == 0)
4304 {
4305 c = readchar (remote_timeout);
4306 csum += c;
4307 repeat = c - ' ' + 3; /* Compute repeat count */
4308 }
4309 else
4310 {
4311 /* Cisco's run-length encoding variant uses two
4312 hex chars to represent the repeat count. */
4313
4314 c = readchar (remote_timeout);
4315 csum += c;
4316 repeat = fromhex (c) << 4;
4317 c = readchar (remote_timeout);
4318 csum += c;
4319 repeat += fromhex (c);
4320 }
4321
4322 /* The character before ``*'' is repeated. */
4323
4324 if (repeat > 0 && repeat <= 255
4325 && bc > 0
4326 && bc + repeat - 1 < sizeof_buf - 1)
4327 {
4328 memset (&buf[bc], buf[bc - 1], repeat);
4329 bc += repeat;
4330 continue;
4331 }
4332
4333 buf[bc] = '\0';
4334 printf_filtered ("Repeat count %d too large for buffer: ", repeat);
4335 puts_filtered (buf);
4336 puts_filtered ("\n");
4337 return -1;
4338 }
4339 default:
4340 if (bc < sizeof_buf - 1)
4341 {
4342 buf[bc++] = c;
4343 csum += c;
4344 continue;
4345 }
4346
4347 buf[bc] = '\0';
4348 puts_filtered ("Remote packet too long: ");
4349 puts_filtered (buf);
4350 puts_filtered ("\n");
4351
4352 return -1;
4353 }
4354 }
4355 }
4356
4357 /* Read a packet from the remote machine, with error checking, and
4358 store it in BUF. If FOREVER, wait forever rather than timing out;
4359 this is used (in synchronous mode) to wait for a target that is is
4360 executing user code to stop. */
4361 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4362 don't have to change all the calls to getpkt to deal with the
4363 return value, because at the moment I don't know what the right
4364 thing to do it for those. */
4365 void
4366 getpkt (char *buf,
4367 long sizeof_buf,
4368 int forever)
4369 {
4370 int timed_out;
4371
4372 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4373 }
4374
4375
4376 /* Read a packet from the remote machine, with error checking, and
4377 store it in BUF. If FOREVER, wait forever rather than timing out;
4378 this is used (in synchronous mode) to wait for a target that is is
4379 executing user code to stop. If FOREVER == 0, this function is
4380 allowed to time out gracefully and return an indication of this to
4381 the caller. */
4382 static int
4383 getpkt_sane (char *buf,
4384 long sizeof_buf,
4385 int forever)
4386 {
4387 int c;
4388 int tries;
4389 int timeout;
4390 int val;
4391
4392 strcpy (buf, "timeout");
4393
4394 if (forever)
4395 {
4396 timeout = watchdog > 0 ? watchdog : -1;
4397 }
4398
4399 else
4400 timeout = remote_timeout;
4401
4402 #define MAX_TRIES 3
4403
4404 for (tries = 1; tries <= MAX_TRIES; tries++)
4405 {
4406 /* This can loop forever if the remote side sends us characters
4407 continuously, but if it pauses, we'll get a zero from readchar
4408 because of timeout. Then we'll count that as a retry. */
4409
4410 /* Note that we will only wait forever prior to the start of a packet.
4411 After that, we expect characters to arrive at a brisk pace. They
4412 should show up within remote_timeout intervals. */
4413
4414 do
4415 {
4416 c = readchar (timeout);
4417
4418 if (c == SERIAL_TIMEOUT)
4419 {
4420 if (forever) /* Watchdog went off? Kill the target. */
4421 {
4422 QUIT;
4423 target_mourn_inferior ();
4424 error ("Watchdog has expired. Target detached.\n");
4425 }
4426 if (remote_debug)
4427 fputs_filtered ("Timed out.\n", gdb_stdlog);
4428 goto retry;
4429 }
4430 }
4431 while (c != '$');
4432
4433 /* We've found the start of a packet, now collect the data. */
4434
4435 val = read_frame (buf, sizeof_buf);
4436
4437 if (val >= 0)
4438 {
4439 if (remote_debug)
4440 {
4441 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4442 fputstr_unfiltered (buf, 0, gdb_stdlog);
4443 fprintf_unfiltered (gdb_stdlog, "\n");
4444 }
4445 serial_write (remote_desc, "+", 1);
4446 return 0;
4447 }
4448
4449 /* Try the whole thing again. */
4450 retry:
4451 serial_write (remote_desc, "-", 1);
4452 }
4453
4454 /* We have tried hard enough, and just can't receive the packet. Give up. */
4455
4456 printf_unfiltered ("Ignoring packet error, continuing...\n");
4457 serial_write (remote_desc, "+", 1);
4458 return 1;
4459 }
4460 \f
4461 static void
4462 remote_kill (void)
4463 {
4464 /* For some mysterious reason, wait_for_inferior calls kill instead of
4465 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4466 if (kill_kludge)
4467 {
4468 kill_kludge = 0;
4469 target_mourn_inferior ();
4470 return;
4471 }
4472
4473 /* Use catch_errors so the user can quit from gdb even when we aren't on
4474 speaking terms with the remote system. */
4475 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4476
4477 /* Don't wait for it to die. I'm not really sure it matters whether
4478 we do or not. For the existing stubs, kill is a noop. */
4479 target_mourn_inferior ();
4480 }
4481
4482 /* Async version of remote_kill. */
4483 static void
4484 remote_async_kill (void)
4485 {
4486 /* Unregister the file descriptor from the event loop. */
4487 if (target_is_async_p ())
4488 serial_async (remote_desc, NULL, 0);
4489
4490 /* For some mysterious reason, wait_for_inferior calls kill instead of
4491 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4492 if (kill_kludge)
4493 {
4494 kill_kludge = 0;
4495 target_mourn_inferior ();
4496 return;
4497 }
4498
4499 /* Use catch_errors so the user can quit from gdb even when we aren't on
4500 speaking terms with the remote system. */
4501 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4502
4503 /* Don't wait for it to die. I'm not really sure it matters whether
4504 we do or not. For the existing stubs, kill is a noop. */
4505 target_mourn_inferior ();
4506 }
4507
4508 static void
4509 remote_mourn (void)
4510 {
4511 remote_mourn_1 (&remote_ops);
4512 }
4513
4514 static void
4515 remote_async_mourn (void)
4516 {
4517 remote_mourn_1 (&remote_async_ops);
4518 }
4519
4520 static void
4521 extended_remote_mourn (void)
4522 {
4523 /* We do _not_ want to mourn the target like this; this will
4524 remove the extended remote target from the target stack,
4525 and the next time the user says "run" it'll fail.
4526
4527 FIXME: What is the right thing to do here? */
4528 #if 0
4529 remote_mourn_1 (&extended_remote_ops);
4530 #endif
4531 }
4532
4533 /* Worker function for remote_mourn. */
4534 static void
4535 remote_mourn_1 (struct target_ops *target)
4536 {
4537 unpush_target (target);
4538 generic_mourn_inferior ();
4539 }
4540
4541 /* In the extended protocol we want to be able to do things like
4542 "run" and have them basically work as expected. So we need
4543 a special create_inferior function.
4544
4545 FIXME: One day add support for changing the exec file
4546 we're debugging, arguments and an environment. */
4547
4548 static void
4549 extended_remote_create_inferior (char *exec_file, char *args, char **env)
4550 {
4551 /* Rip out the breakpoints; we'll reinsert them after restarting
4552 the remote server. */
4553 remove_breakpoints ();
4554
4555 /* Now restart the remote server. */
4556 extended_remote_restart ();
4557
4558 /* Now put the breakpoints back in. This way we're safe if the
4559 restart function works via a unix fork on the remote side. */
4560 insert_breakpoints ();
4561
4562 /* Clean up from the last time we were running. */
4563 clear_proceed_status ();
4564
4565 /* Let the remote process run. */
4566 proceed (-1, TARGET_SIGNAL_0, 0);
4567 }
4568
4569 /* Async version of extended_remote_create_inferior. */
4570 static void
4571 extended_remote_async_create_inferior (char *exec_file, char *args, char **env)
4572 {
4573 /* Rip out the breakpoints; we'll reinsert them after restarting
4574 the remote server. */
4575 remove_breakpoints ();
4576
4577 /* If running asynchronously, register the target file descriptor
4578 with the event loop. */
4579 if (event_loop_p && target_can_async_p ())
4580 target_async (inferior_event_handler, 0);
4581
4582 /* Now restart the remote server. */
4583 extended_remote_restart ();
4584
4585 /* Now put the breakpoints back in. This way we're safe if the
4586 restart function works via a unix fork on the remote side. */
4587 insert_breakpoints ();
4588
4589 /* Clean up from the last time we were running. */
4590 clear_proceed_status ();
4591
4592 /* Let the remote process run. */
4593 proceed (-1, TARGET_SIGNAL_0, 0);
4594 }
4595 \f
4596
4597 /* On some machines, e.g. 68k, we may use a different breakpoint instruction
4598 than other targets; in those use REMOTE_BREAKPOINT instead of just
4599 BREAKPOINT. Also, bi-endian targets may define LITTLE_REMOTE_BREAKPOINT
4600 and BIG_REMOTE_BREAKPOINT. If none of these are defined, we just call
4601 the standard routines that are in mem-break.c. */
4602
4603 /* FIXME, these ought to be done in a more dynamic fashion. For instance,
4604 the choice of breakpoint instruction affects target program design and
4605 vice versa, and by making it user-tweakable, the special code here
4606 goes away and we need fewer special GDB configurations. */
4607
4608 #if defined (LITTLE_REMOTE_BREAKPOINT) && defined (BIG_REMOTE_BREAKPOINT) && !defined(REMOTE_BREAKPOINT)
4609 #define REMOTE_BREAKPOINT
4610 #endif
4611
4612 #ifdef REMOTE_BREAKPOINT
4613
4614 /* If the target isn't bi-endian, just pretend it is. */
4615 #if !defined (LITTLE_REMOTE_BREAKPOINT) && !defined (BIG_REMOTE_BREAKPOINT)
4616 #define LITTLE_REMOTE_BREAKPOINT REMOTE_BREAKPOINT
4617 #define BIG_REMOTE_BREAKPOINT REMOTE_BREAKPOINT
4618 #endif
4619
4620 static unsigned char big_break_insn[] = BIG_REMOTE_BREAKPOINT;
4621 static unsigned char little_break_insn[] = LITTLE_REMOTE_BREAKPOINT;
4622
4623 #endif /* REMOTE_BREAKPOINT */
4624
4625 /* Insert a breakpoint on targets that don't have any better breakpoint
4626 support. We read the contents of the target location and stash it,
4627 then overwrite it with a breakpoint instruction. ADDR is the target
4628 location in the target machine. CONTENTS_CACHE is a pointer to
4629 memory allocated for saving the target contents. It is guaranteed
4630 by the caller to be long enough to save sizeof BREAKPOINT bytes (this
4631 is accomplished via BREAKPOINT_MAX). */
4632
4633 static int
4634 remote_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
4635 {
4636 struct remote_state *rs = get_remote_state ();
4637 #ifdef REMOTE_BREAKPOINT
4638 int val;
4639 #endif
4640 int bp_size;
4641
4642 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
4643 If it succeeds, then set the support to PACKET_ENABLE. If it
4644 fails, and the user has explicitly requested the Z support then
4645 report an error, otherwise, mark it disabled and go on. */
4646
4647 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4648 {
4649 char *buf = alloca (rs->remote_packet_size);
4650 char *p = buf;
4651
4652 addr = remote_address_masked (addr);
4653 *(p++) = 'Z';
4654 *(p++) = '0';
4655 *(p++) = ',';
4656 p += hexnumstr (p, (ULONGEST) addr);
4657 BREAKPOINT_FROM_PC (&addr, &bp_size);
4658 sprintf (p, ",%d", bp_size);
4659
4660 putpkt (buf);
4661 getpkt (buf, (rs->remote_packet_size), 0);
4662
4663 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_SOFTWARE_BP]))
4664 {
4665 case PACKET_ERROR:
4666 return -1;
4667 case PACKET_OK:
4668 return 0;
4669 case PACKET_UNKNOWN:
4670 break;
4671 }
4672 }
4673
4674 #ifdef REMOTE_BREAKPOINT
4675 val = target_read_memory (addr, contents_cache, sizeof big_break_insn);
4676
4677 if (val == 0)
4678 {
4679 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4680 val = target_write_memory (addr, (char *) big_break_insn,
4681 sizeof big_break_insn);
4682 else
4683 val = target_write_memory (addr, (char *) little_break_insn,
4684 sizeof little_break_insn);
4685 }
4686
4687 return val;
4688 #else
4689 return memory_insert_breakpoint (addr, contents_cache);
4690 #endif /* REMOTE_BREAKPOINT */
4691 }
4692
4693 static int
4694 remote_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
4695 {
4696 struct remote_state *rs = get_remote_state ();
4697 int bp_size;
4698
4699 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4700 {
4701 char *buf = alloca (rs->remote_packet_size);
4702 char *p = buf;
4703
4704 *(p++) = 'z';
4705 *(p++) = '0';
4706 *(p++) = ',';
4707
4708 addr = remote_address_masked (addr);
4709 p += hexnumstr (p, (ULONGEST) addr);
4710 BREAKPOINT_FROM_PC (&addr, &bp_size);
4711 sprintf (p, ",%d", bp_size);
4712
4713 putpkt (buf);
4714 getpkt (buf, (rs->remote_packet_size), 0);
4715
4716 return (buf[0] == 'E');
4717 }
4718
4719 #ifdef REMOTE_BREAKPOINT
4720 return target_write_memory (addr, contents_cache, sizeof big_break_insn);
4721 #else
4722 return memory_remove_breakpoint (addr, contents_cache);
4723 #endif /* REMOTE_BREAKPOINT */
4724 }
4725
4726 static int
4727 watchpoint_to_Z_packet (int type)
4728 {
4729 switch (type)
4730 {
4731 case hw_write:
4732 return 2;
4733 break;
4734 case hw_read:
4735 return 3;
4736 break;
4737 case hw_access:
4738 return 4;
4739 break;
4740 default:
4741 internal_error (__FILE__, __LINE__,
4742 "hw_bp_to_z: bad watchpoint type %d", type);
4743 }
4744 }
4745
4746 /* FIXME: This function should be static and a member of the remote
4747 target vector. */
4748
4749 int
4750 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
4751 {
4752 struct remote_state *rs = get_remote_state ();
4753 char *buf = alloca (rs->remote_packet_size);
4754 char *p;
4755 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4756
4757 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4758 error ("Can't set hardware watchpoints without the '%s' (%s) packet\n",
4759 remote_protocol_Z[packet].name,
4760 remote_protocol_Z[packet].title);
4761
4762 sprintf (buf, "Z%x,", packet);
4763 p = strchr (buf, '\0');
4764 addr = remote_address_masked (addr);
4765 p += hexnumstr (p, (ULONGEST) addr);
4766 sprintf (p, ",%x", len);
4767
4768 putpkt (buf);
4769 getpkt (buf, (rs->remote_packet_size), 0);
4770
4771 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4772 {
4773 case PACKET_ERROR:
4774 case PACKET_UNKNOWN:
4775 return -1;
4776 case PACKET_OK:
4777 return 0;
4778 }
4779 internal_error (__FILE__, __LINE__,
4780 "remote_insert_watchpoint: reached end of function");
4781 }
4782
4783 /* FIXME: This function should be static and a member of the remote
4784 target vector. */
4785
4786 int
4787 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
4788 {
4789 struct remote_state *rs = get_remote_state ();
4790 char *buf = alloca (rs->remote_packet_size);
4791 char *p;
4792 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4793
4794 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4795 error ("Can't clear hardware watchpoints without the '%s' (%s) packet\n",
4796 remote_protocol_Z[packet].name,
4797 remote_protocol_Z[packet].title);
4798
4799 sprintf (buf, "z%x,", packet);
4800 p = strchr (buf, '\0');
4801 addr = remote_address_masked (addr);
4802 p += hexnumstr (p, (ULONGEST) addr);
4803 sprintf (p, ",%x", len);
4804 putpkt (buf);
4805 getpkt (buf, (rs->remote_packet_size), 0);
4806
4807 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4808 {
4809 case PACKET_ERROR:
4810 case PACKET_UNKNOWN:
4811 return -1;
4812 case PACKET_OK:
4813 return 0;
4814 }
4815 internal_error (__FILE__, __LINE__,
4816 "remote_remove_watchpoint: reached end of function");
4817 }
4818
4819 /* FIXME: This function should be static and a member of the remote
4820 target vector. */
4821
4822 int
4823 remote_insert_hw_breakpoint (CORE_ADDR addr, int len)
4824 {
4825 struct remote_state *rs = get_remote_state ();
4826 char *buf = alloca (rs->remote_packet_size);
4827 char *p = buf;
4828
4829 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4830 error ("Can't set hardware breakpoint without the '%s' (%s) packet\n",
4831 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4832 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4833
4834 *(p++) = 'Z';
4835 *(p++) = '1';
4836 *(p++) = ',';
4837
4838 addr = remote_address_masked (addr);
4839 p += hexnumstr (p, (ULONGEST) addr);
4840 sprintf (p, ",%x", len);
4841
4842 putpkt (buf);
4843 getpkt (buf, (rs->remote_packet_size), 0);
4844
4845 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4846 {
4847 case PACKET_ERROR:
4848 case PACKET_UNKNOWN:
4849 return -1;
4850 case PACKET_OK:
4851 return 0;
4852 }
4853 internal_error (__FILE__, __LINE__,
4854 "remote_remove_watchpoint: reached end of function");
4855 }
4856
4857 /* FIXME: This function should be static and a member of the remote
4858 target vector. */
4859
4860 int
4861 remote_remove_hw_breakpoint (CORE_ADDR addr, int len)
4862 {
4863 struct remote_state *rs = get_remote_state ();
4864 char *buf = alloca (rs->remote_packet_size);
4865 char *p = buf;
4866
4867 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4868 error ("Can't clear hardware breakpoint without the '%s' (%s) packet\n",
4869 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4870 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4871
4872 *(p++) = 'z';
4873 *(p++) = '1';
4874 *(p++) = ',';
4875
4876 addr = remote_address_masked (addr);
4877 p += hexnumstr (p, (ULONGEST) addr);
4878 sprintf (p, ",%x", len);
4879
4880 putpkt(buf);
4881 getpkt (buf, (rs->remote_packet_size), 0);
4882
4883 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4884 {
4885 case PACKET_ERROR:
4886 case PACKET_UNKNOWN:
4887 return -1;
4888 case PACKET_OK:
4889 return 0;
4890 }
4891 internal_error (__FILE__, __LINE__,
4892 "remote_remove_watchpoint: reached end of function");
4893 }
4894
4895 /* Some targets are only capable of doing downloads, and afterwards
4896 they switch to the remote serial protocol. This function provides
4897 a clean way to get from the download target to the remote target.
4898 It's basically just a wrapper so that we don't have to expose any
4899 of the internal workings of remote.c.
4900
4901 Prior to calling this routine, you should shutdown the current
4902 target code, else you will get the "A program is being debugged
4903 already..." message. Usually a call to pop_target() suffices. */
4904
4905 void
4906 push_remote_target (char *name, int from_tty)
4907 {
4908 printf_filtered ("Switching to remote protocol\n");
4909 remote_open (name, from_tty);
4910 }
4911
4912 /* Other targets want to use the entire remote serial module but with
4913 certain remote_ops overridden. */
4914
4915 void
4916 open_remote_target (char *name, int from_tty, struct target_ops *target,
4917 int extended_p)
4918 {
4919 printf_filtered ("Selecting the %sremote protocol\n",
4920 (extended_p ? "extended-" : ""));
4921 remote_open_1 (name, from_tty, target, extended_p);
4922 }
4923
4924 /* Table used by the crc32 function to calcuate the checksum. */
4925
4926 static unsigned long crc32_table[256] =
4927 {0, 0};
4928
4929 static unsigned long
4930 crc32 (unsigned char *buf, int len, unsigned int crc)
4931 {
4932 if (!crc32_table[1])
4933 {
4934 /* Initialize the CRC table and the decoding table. */
4935 int i, j;
4936 unsigned int c;
4937
4938 for (i = 0; i < 256; i++)
4939 {
4940 for (c = i << 24, j = 8; j > 0; --j)
4941 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
4942 crc32_table[i] = c;
4943 }
4944 }
4945
4946 while (len--)
4947 {
4948 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
4949 buf++;
4950 }
4951 return crc;
4952 }
4953
4954 /* compare-sections command
4955
4956 With no arguments, compares each loadable section in the exec bfd
4957 with the same memory range on the target, and reports mismatches.
4958 Useful for verifying the image on the target against the exec file.
4959 Depends on the target understanding the new "qCRC:" request. */
4960
4961 /* FIXME: cagney/1999-10-26: This command should be broken down into a
4962 target method (target verify memory) and generic version of the
4963 actual command. This will allow other high-level code (especially
4964 generic_load()) to make use of this target functionality. */
4965
4966 static void
4967 compare_sections_command (char *args, int from_tty)
4968 {
4969 struct remote_state *rs = get_remote_state ();
4970 asection *s;
4971 unsigned long host_crc, target_crc;
4972 extern bfd *exec_bfd;
4973 struct cleanup *old_chain;
4974 char *tmp;
4975 char *sectdata;
4976 const char *sectname;
4977 char *buf = alloca (rs->remote_packet_size);
4978 bfd_size_type size;
4979 bfd_vma lma;
4980 int matched = 0;
4981 int mismatched = 0;
4982
4983 if (!exec_bfd)
4984 error ("command cannot be used without an exec file");
4985 if (!current_target.to_shortname ||
4986 strcmp (current_target.to_shortname, "remote") != 0)
4987 error ("command can only be used with remote target");
4988
4989 for (s = exec_bfd->sections; s; s = s->next)
4990 {
4991 if (!(s->flags & SEC_LOAD))
4992 continue; /* skip non-loadable section */
4993
4994 size = bfd_get_section_size_before_reloc (s);
4995 if (size == 0)
4996 continue; /* skip zero-length section */
4997
4998 sectname = bfd_get_section_name (exec_bfd, s);
4999 if (args && strcmp (args, sectname) != 0)
5000 continue; /* not the section selected by user */
5001
5002 matched = 1; /* do this section */
5003 lma = s->lma;
5004 /* FIXME: assumes lma can fit into long */
5005 sprintf (buf, "qCRC:%lx,%lx", (long) lma, (long) size);
5006 putpkt (buf);
5007
5008 /* be clever; compute the host_crc before waiting for target reply */
5009 sectdata = xmalloc (size);
5010 old_chain = make_cleanup (xfree, sectdata);
5011 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5012 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5013
5014 getpkt (buf, (rs->remote_packet_size), 0);
5015 if (buf[0] == 'E')
5016 error ("target memory fault, section %s, range 0x%08x -- 0x%08x",
5017 sectname, lma, lma + size);
5018 if (buf[0] != 'C')
5019 error ("remote target does not support this operation");
5020
5021 for (target_crc = 0, tmp = &buf[1]; *tmp; tmp++)
5022 target_crc = target_crc * 16 + fromhex (*tmp);
5023
5024 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5025 sectname, paddr (lma), paddr (lma + size));
5026 if (host_crc == target_crc)
5027 printf_filtered ("matched.\n");
5028 else
5029 {
5030 printf_filtered ("MIS-MATCHED!\n");
5031 mismatched++;
5032 }
5033
5034 do_cleanups (old_chain);
5035 }
5036 if (mismatched > 0)
5037 warning ("One or more sections of the remote executable does not match\n\
5038 the loaded file\n");
5039 if (args && !matched)
5040 printf_filtered ("No loaded section named '%s'.\n", args);
5041 }
5042
5043 static int
5044 remote_query (int query_type, char *buf, char *outbuf, int *bufsiz)
5045 {
5046 struct remote_state *rs = get_remote_state ();
5047 int i;
5048 char *buf2 = alloca (rs->remote_packet_size);
5049 char *p2 = &buf2[0];
5050
5051 if (!bufsiz)
5052 error ("null pointer to remote bufer size specified");
5053
5054 /* minimum outbuf size is (rs->remote_packet_size) - if bufsiz is not large enough let
5055 the caller know and return what the minimum size is */
5056 /* Note: a zero bufsiz can be used to query the minimum buffer size */
5057 if (*bufsiz < (rs->remote_packet_size))
5058 {
5059 *bufsiz = (rs->remote_packet_size);
5060 return -1;
5061 }
5062
5063 /* except for querying the minimum buffer size, target must be open */
5064 if (!remote_desc)
5065 error ("remote query is only available after target open");
5066
5067 /* we only take uppercase letters as query types, at least for now */
5068 if ((query_type < 'A') || (query_type > 'Z'))
5069 error ("invalid remote query type");
5070
5071 if (!buf)
5072 error ("null remote query specified");
5073
5074 if (!outbuf)
5075 error ("remote query requires a buffer to receive data");
5076
5077 outbuf[0] = '\0';
5078
5079 *p2++ = 'q';
5080 *p2++ = query_type;
5081
5082 /* we used one buffer char for the remote protocol q command and another
5083 for the query type. As the remote protocol encapsulation uses 4 chars
5084 plus one extra in case we are debugging (remote_debug),
5085 we have PBUFZIZ - 7 left to pack the query string */
5086 i = 0;
5087 while (buf[i] && (i < ((rs->remote_packet_size) - 8)))
5088 {
5089 /* bad caller may have sent forbidden characters */
5090 if ((!isprint (buf[i])) || (buf[i] == '$') || (buf[i] == '#'))
5091 error ("illegal characters in query string");
5092
5093 *p2++ = buf[i];
5094 i++;
5095 }
5096 *p2 = buf[i];
5097
5098 if (buf[i])
5099 error ("query larger than available buffer");
5100
5101 i = putpkt (buf2);
5102 if (i < 0)
5103 return i;
5104
5105 getpkt (outbuf, *bufsiz, 0);
5106
5107 return 0;
5108 }
5109
5110 static void
5111 remote_rcmd (char *command,
5112 struct ui_file *outbuf)
5113 {
5114 struct remote_state *rs = get_remote_state ();
5115 int i;
5116 char *buf = alloca (rs->remote_packet_size);
5117 char *p = buf;
5118
5119 if (!remote_desc)
5120 error ("remote rcmd is only available after target open");
5121
5122 /* Send a NULL command across as an empty command */
5123 if (command == NULL)
5124 command = "";
5125
5126 /* The query prefix */
5127 strcpy (buf, "qRcmd,");
5128 p = strchr (buf, '\0');
5129
5130 if ((strlen (buf) + strlen (command) * 2 + 8/*misc*/) > (rs->remote_packet_size))
5131 error ("\"monitor\" command ``%s'' is too long\n", command);
5132
5133 /* Encode the actual command */
5134 bin2hex (command, p, 0);
5135
5136 if (putpkt (buf) < 0)
5137 error ("Communication problem with target\n");
5138
5139 /* get/display the response */
5140 while (1)
5141 {
5142 /* XXX - see also tracepoint.c:remote_get_noisy_reply() */
5143 buf[0] = '\0';
5144 getpkt (buf, (rs->remote_packet_size), 0);
5145 if (buf[0] == '\0')
5146 error ("Target does not support this command\n");
5147 if (buf[0] == 'O' && buf[1] != 'K')
5148 {
5149 remote_console_output (buf + 1); /* 'O' message from stub */
5150 continue;
5151 }
5152 if (strcmp (buf, "OK") == 0)
5153 break;
5154 if (strlen (buf) == 3 && buf[0] == 'E'
5155 && isdigit (buf[1]) && isdigit (buf[2]))
5156 {
5157 error ("Protocol error with Rcmd");
5158 }
5159 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5160 {
5161 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5162 fputc_unfiltered (c, outbuf);
5163 }
5164 break;
5165 }
5166 }
5167
5168 static void
5169 packet_command (char *args, int from_tty)
5170 {
5171 struct remote_state *rs = get_remote_state ();
5172 char *buf = alloca (rs->remote_packet_size);
5173
5174 if (!remote_desc)
5175 error ("command can only be used with remote target");
5176
5177 if (!args)
5178 error ("remote-packet command requires packet text as argument");
5179
5180 puts_filtered ("sending: ");
5181 print_packet (args);
5182 puts_filtered ("\n");
5183 putpkt (args);
5184
5185 getpkt (buf, (rs->remote_packet_size), 0);
5186 puts_filtered ("received: ");
5187 print_packet (buf);
5188 puts_filtered ("\n");
5189 }
5190
5191 #if 0
5192 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------------- */
5193
5194 static void display_thread_info (struct gdb_ext_thread_info *info);
5195
5196 static void threadset_test_cmd (char *cmd, int tty);
5197
5198 static void threadalive_test (char *cmd, int tty);
5199
5200 static void threadlist_test_cmd (char *cmd, int tty);
5201
5202 int get_and_display_threadinfo (threadref * ref);
5203
5204 static void threadinfo_test_cmd (char *cmd, int tty);
5205
5206 static int thread_display_step (threadref * ref, void *context);
5207
5208 static void threadlist_update_test_cmd (char *cmd, int tty);
5209
5210 static void init_remote_threadtests (void);
5211
5212 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid */
5213
5214 static void
5215 threadset_test_cmd (char *cmd, int tty)
5216 {
5217 int sample_thread = SAMPLE_THREAD;
5218
5219 printf_filtered ("Remote threadset test\n");
5220 set_thread (sample_thread, 1);
5221 }
5222
5223
5224 static void
5225 threadalive_test (char *cmd, int tty)
5226 {
5227 int sample_thread = SAMPLE_THREAD;
5228
5229 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5230 printf_filtered ("PASS: Thread alive test\n");
5231 else
5232 printf_filtered ("FAIL: Thread alive test\n");
5233 }
5234
5235 void output_threadid (char *title, threadref * ref);
5236
5237 void
5238 output_threadid (char *title, threadref *ref)
5239 {
5240 char hexid[20];
5241
5242 pack_threadid (&hexid[0], ref); /* Convert threead id into hex */
5243 hexid[16] = 0;
5244 printf_filtered ("%s %s\n", title, (&hexid[0]));
5245 }
5246
5247 static void
5248 threadlist_test_cmd (char *cmd, int tty)
5249 {
5250 int startflag = 1;
5251 threadref nextthread;
5252 int done, result_count;
5253 threadref threadlist[3];
5254
5255 printf_filtered ("Remote Threadlist test\n");
5256 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5257 &result_count, &threadlist[0]))
5258 printf_filtered ("FAIL: threadlist test\n");
5259 else
5260 {
5261 threadref *scan = threadlist;
5262 threadref *limit = scan + result_count;
5263
5264 while (scan < limit)
5265 output_threadid (" thread ", scan++);
5266 }
5267 }
5268
5269 void
5270 display_thread_info (struct gdb_ext_thread_info *info)
5271 {
5272 output_threadid ("Threadid: ", &info->threadid);
5273 printf_filtered ("Name: %s\n ", info->shortname);
5274 printf_filtered ("State: %s\n", info->display);
5275 printf_filtered ("other: %s\n\n", info->more_display);
5276 }
5277
5278 int
5279 get_and_display_threadinfo (threadref *ref)
5280 {
5281 int result;
5282 int set;
5283 struct gdb_ext_thread_info threadinfo;
5284
5285 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5286 | TAG_MOREDISPLAY | TAG_DISPLAY;
5287 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5288 display_thread_info (&threadinfo);
5289 return result;
5290 }
5291
5292 static void
5293 threadinfo_test_cmd (char *cmd, int tty)
5294 {
5295 int athread = SAMPLE_THREAD;
5296 threadref thread;
5297 int set;
5298
5299 int_to_threadref (&thread, athread);
5300 printf_filtered ("Remote Threadinfo test\n");
5301 if (!get_and_display_threadinfo (&thread))
5302 printf_filtered ("FAIL cannot get thread info\n");
5303 }
5304
5305 static int
5306 thread_display_step (threadref *ref, void *context)
5307 {
5308 /* output_threadid(" threadstep ",ref); *//* simple test */
5309 return get_and_display_threadinfo (ref);
5310 }
5311
5312 static void
5313 threadlist_update_test_cmd (char *cmd, int tty)
5314 {
5315 printf_filtered ("Remote Threadlist update test\n");
5316 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5317 }
5318
5319 static void
5320 init_remote_threadtests (void)
5321 {
5322 add_com ("tlist", class_obscure, threadlist_test_cmd,
5323 "Fetch and print the remote list of thread identifiers, one pkt only");
5324 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
5325 "Fetch and display info about one thread");
5326 add_com ("tset", class_obscure, threadset_test_cmd,
5327 "Test setting to a different thread");
5328 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
5329 "Iterate through updating all remote thread info");
5330 add_com ("talive", class_obscure, threadalive_test,
5331 " Remote thread alive test ");
5332 }
5333
5334 #endif /* 0 */
5335
5336 /* Convert a thread ID to a string. Returns the string in a static
5337 buffer. */
5338
5339 static char *
5340 remote_pid_to_str (ptid_t ptid)
5341 {
5342 static char buf[30];
5343
5344 sprintf (buf, "Thread %d", PIDGET (ptid));
5345 return buf;
5346 }
5347
5348 static void
5349 init_remote_ops (void)
5350 {
5351 remote_ops.to_shortname = "remote";
5352 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
5353 remote_ops.to_doc =
5354 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5355 Specify the serial device it is connected to\n\
5356 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
5357 remote_ops.to_open = remote_open;
5358 remote_ops.to_close = remote_close;
5359 remote_ops.to_detach = remote_detach;
5360 remote_ops.to_resume = remote_resume;
5361 remote_ops.to_wait = remote_wait;
5362 remote_ops.to_fetch_registers = remote_fetch_registers;
5363 remote_ops.to_store_registers = remote_store_registers;
5364 remote_ops.to_prepare_to_store = remote_prepare_to_store;
5365 remote_ops.to_xfer_memory = remote_xfer_memory;
5366 remote_ops.to_files_info = remote_files_info;
5367 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
5368 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
5369 remote_ops.to_kill = remote_kill;
5370 remote_ops.to_load = generic_load;
5371 remote_ops.to_mourn_inferior = remote_mourn;
5372 remote_ops.to_thread_alive = remote_thread_alive;
5373 remote_ops.to_find_new_threads = remote_threads_info;
5374 remote_ops.to_pid_to_str = remote_pid_to_str;
5375 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5376 remote_ops.to_stop = remote_stop;
5377 remote_ops.to_query = remote_query;
5378 remote_ops.to_rcmd = remote_rcmd;
5379 remote_ops.to_stratum = process_stratum;
5380 remote_ops.to_has_all_memory = 1;
5381 remote_ops.to_has_memory = 1;
5382 remote_ops.to_has_stack = 1;
5383 remote_ops.to_has_registers = 1;
5384 remote_ops.to_has_execution = 1;
5385 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5386 remote_ops.to_magic = OPS_MAGIC;
5387 }
5388
5389 /* Set up the extended remote vector by making a copy of the standard
5390 remote vector and adding to it. */
5391
5392 static void
5393 init_extended_remote_ops (void)
5394 {
5395 extended_remote_ops = remote_ops;
5396
5397 extended_remote_ops.to_shortname = "extended-remote";
5398 extended_remote_ops.to_longname =
5399 "Extended remote serial target in gdb-specific protocol";
5400 extended_remote_ops.to_doc =
5401 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5402 Specify the serial device it is connected to (e.g. /dev/ttya).",
5403 extended_remote_ops.to_open = extended_remote_open;
5404 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
5405 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
5406 }
5407
5408 /*
5409 * Command: info remote-process
5410 *
5411 * This implements Cisco's version of the "info proc" command.
5412 *
5413 * This query allows the target stub to return an arbitrary string
5414 * (or strings) giving arbitrary information about the target process.
5415 * This is optional; the target stub isn't required to implement it.
5416 *
5417 * Syntax: qfProcessInfo request first string
5418 * qsProcessInfo request subsequent string
5419 * reply: 'O'<hex-encoded-string>
5420 * 'l' last reply (empty)
5421 */
5422
5423 static void
5424 remote_info_process (char *args, int from_tty)
5425 {
5426 struct remote_state *rs = get_remote_state ();
5427 char *buf = alloca (rs->remote_packet_size);
5428
5429 if (remote_desc == 0)
5430 error ("Command can only be used when connected to the remote target.");
5431
5432 putpkt ("qfProcessInfo");
5433 getpkt (buf, (rs->remote_packet_size), 0);
5434 if (buf[0] == 0)
5435 return; /* Silently: target does not support this feature. */
5436
5437 if (buf[0] == 'E')
5438 error ("info proc: target error.");
5439
5440 while (buf[0] == 'O') /* Capitol-O packet */
5441 {
5442 remote_console_output (&buf[1]);
5443 putpkt ("qsProcessInfo");
5444 getpkt (buf, (rs->remote_packet_size), 0);
5445 }
5446 }
5447
5448 /*
5449 * Target Cisco
5450 */
5451
5452 static void
5453 remote_cisco_open (char *name, int from_tty)
5454 {
5455 if (name == 0)
5456 error ("To open a remote debug connection, you need to specify what \n"
5457 "device is attached to the remote system (e.g. host:port).");
5458
5459 /* See FIXME above */
5460 wait_forever_enabled_p = 1;
5461
5462 target_preopen (from_tty);
5463
5464 unpush_target (&remote_cisco_ops);
5465
5466 remote_desc = serial_open (name);
5467 if (!remote_desc)
5468 perror_with_name (name);
5469
5470 /*
5471 * If a baud rate was specified on the gdb command line it will
5472 * be greater than the initial value of -1. If it is, use it otherwise
5473 * default to 9600
5474 */
5475
5476 baud_rate = (baud_rate > 0) ? baud_rate : 9600;
5477 if (serial_setbaudrate (remote_desc, baud_rate))
5478 {
5479 serial_close (remote_desc);
5480 perror_with_name (name);
5481 }
5482
5483 serial_raw (remote_desc);
5484
5485 /* If there is something sitting in the buffer we might take it as a
5486 response to a command, which would be bad. */
5487 serial_flush_input (remote_desc);
5488
5489 if (from_tty)
5490 {
5491 puts_filtered ("Remote debugging using ");
5492 puts_filtered (name);
5493 puts_filtered ("\n");
5494 }
5495
5496 remote_cisco_mode = 1;
5497
5498 push_target (&remote_cisco_ops); /* Switch to using cisco target now */
5499
5500 init_all_packet_configs ();
5501
5502 general_thread = -2;
5503 continue_thread = -2;
5504
5505 /* Probe for ability to use "ThreadInfo" query, as required. */
5506 use_threadinfo_query = 1;
5507 use_threadextra_query = 1;
5508
5509 /* Without this, some commands which require an active target (such
5510 as kill) won't work. This variable serves (at least) double duty
5511 as both the pid of the target process (if it has such), and as a
5512 flag indicating that a target is active. These functions should
5513 be split out into seperate variables, especially since GDB will
5514 someday have a notion of debugging several processes. */
5515 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
5516
5517 /* Start the remote connection; if error (0), discard this target. */
5518
5519 if (!catch_errors (remote_start_remote_dummy, (char *) 0,
5520 "Couldn't establish connection to remote target\n",
5521 RETURN_MASK_ALL))
5522 {
5523 pop_target ();
5524 return;
5525 }
5526 }
5527
5528 static void
5529 remote_cisco_close (int quitting)
5530 {
5531 remote_cisco_mode = 0;
5532 remote_close (quitting);
5533 }
5534
5535 static void
5536 remote_cisco_mourn (void)
5537 {
5538 remote_mourn_1 (&remote_cisco_ops);
5539 }
5540
5541 enum
5542 {
5543 READ_MORE,
5544 FATAL_ERROR,
5545 ENTER_DEBUG,
5546 DISCONNECT_TELNET
5547 }
5548 minitelnet_return;
5549
5550 /* Shared between readsocket() and readtty(). The size is arbitrary,
5551 however all targets are known to support a 400 character packet. */
5552 static char tty_input[400];
5553
5554 static int escape_count;
5555 static int echo_check;
5556 extern int quit_flag;
5557
5558 static int
5559 readsocket (void)
5560 {
5561 int data;
5562
5563 /* Loop until the socket doesn't have any more data */
5564
5565 while ((data = readchar (0)) >= 0)
5566 {
5567 /* Check for the escape sequence */
5568 if (data == '|')
5569 {
5570 /* If this is the fourth escape, get out */
5571 if (++escape_count == 4)
5572 {
5573 return ENTER_DEBUG;
5574 }
5575 else
5576 { /* This is a '|', but not the fourth in a row.
5577 Continue without echoing it. If it isn't actually
5578 one of four in a row, it'll be echoed later. */
5579 continue;
5580 }
5581 }
5582 else
5583 /* Not a '|' */
5584 {
5585 /* Ensure any pending '|'s are flushed. */
5586
5587 for (; escape_count > 0; escape_count--)
5588 putchar ('|');
5589 }
5590
5591 if (data == '\r') /* If this is a return character, */
5592 continue; /* - just supress it. */
5593
5594 if (echo_check != -1) /* Check for echo of user input. */
5595 {
5596 if (tty_input[echo_check] == data)
5597 {
5598 gdb_assert (echo_check <= sizeof (tty_input));
5599 echo_check++; /* Character matched user input: */
5600 continue; /* Continue without echoing it. */
5601 }
5602 else if ((data == '\n') && (tty_input[echo_check] == '\r'))
5603 { /* End of the line (and of echo checking). */
5604 echo_check = -1; /* No more echo supression */
5605 continue; /* Continue without echoing. */
5606 }
5607 else
5608 { /* Failed check for echo of user input.
5609 We now have some suppressed output to flush! */
5610 int j;
5611
5612 for (j = 0; j < echo_check; j++)
5613 putchar (tty_input[j]);
5614 echo_check = -1;
5615 }
5616 }
5617 putchar (data); /* Default case: output the char. */
5618 }
5619
5620 if (data == SERIAL_TIMEOUT) /* Timeout returned from readchar. */
5621 return READ_MORE; /* Try to read some more */
5622 else
5623 return FATAL_ERROR; /* Trouble, bail out */
5624 }
5625
5626 static int
5627 readtty (void)
5628 {
5629 int tty_bytecount;
5630
5631 /* First, read a buffer full from the terminal */
5632 tty_bytecount = read (fileno (stdin), tty_input, sizeof (tty_input) - 1);
5633 if (tty_bytecount == -1)
5634 {
5635 perror ("readtty: read failed");
5636 return FATAL_ERROR;
5637 }
5638
5639 /* Remove a quoted newline. */
5640 if (tty_input[tty_bytecount - 1] == '\n' &&
5641 tty_input[tty_bytecount - 2] == '\\') /* line ending in backslash */
5642 {
5643 tty_input[--tty_bytecount] = 0; /* remove newline */
5644 tty_input[--tty_bytecount] = 0; /* remove backslash */
5645 }
5646
5647 /* Turn trailing newlines into returns */
5648 if (tty_input[tty_bytecount - 1] == '\n')
5649 tty_input[tty_bytecount - 1] = '\r';
5650
5651 /* If the line consists of a ~, enter debugging mode. */
5652 if ((tty_input[0] == '~') && (tty_bytecount == 2))
5653 return ENTER_DEBUG;
5654
5655 /* Make this a zero terminated string and write it out */
5656 tty_input[tty_bytecount] = 0;
5657 if (serial_write (remote_desc, tty_input, tty_bytecount))
5658 {
5659 perror_with_name ("readtty: write failed");
5660 return FATAL_ERROR;
5661 }
5662
5663 return READ_MORE;
5664 }
5665
5666 static int
5667 minitelnet (void)
5668 {
5669 fd_set input; /* file descriptors for select */
5670 int tablesize; /* max number of FDs for select */
5671 int status;
5672 int quit_count = 0;
5673
5674 extern int escape_count; /* global shared by readsocket */
5675 extern int echo_check; /* ditto */
5676
5677 escape_count = 0;
5678 echo_check = -1;
5679
5680 tablesize = 8 * sizeof (input);
5681
5682 for (;;)
5683 {
5684 /* Check for anything from our socket - doesn't block. Note that
5685 this must be done *before* the select as there may be
5686 buffered I/O waiting to be processed. */
5687
5688 if ((status = readsocket ()) == FATAL_ERROR)
5689 {
5690 error ("Debugging terminated by communications error");
5691 }
5692 else if (status != READ_MORE)
5693 {
5694 return (status);
5695 }
5696
5697 fflush (stdout); /* Flush output before blocking */
5698
5699 /* Now block on more socket input or TTY input */
5700
5701 FD_ZERO (&input);
5702 FD_SET (fileno (stdin), &input);
5703 FD_SET (deprecated_serial_fd (remote_desc), &input);
5704
5705 status = select (tablesize, &input, 0, 0, 0);
5706 if ((status == -1) && (errno != EINTR))
5707 {
5708 error ("Communications error on select %d", errno);
5709 }
5710
5711 /* Handle Control-C typed */
5712
5713 if (quit_flag)
5714 {
5715 if ((++quit_count) == 2)
5716 {
5717 if (query ("Interrupt GDB? "))
5718 {
5719 printf_filtered ("Interrupted by user.\n");
5720 return_to_top_level (RETURN_QUIT);
5721 }
5722 quit_count = 0;
5723 }
5724 quit_flag = 0;
5725
5726 if (remote_break)
5727 serial_send_break (remote_desc);
5728 else
5729 serial_write (remote_desc, "\003", 1);
5730
5731 continue;
5732 }
5733
5734 /* Handle console input */
5735
5736 if (FD_ISSET (fileno (stdin), &input))
5737 {
5738 quit_count = 0;
5739 echo_check = 0;
5740 status = readtty ();
5741 if (status == READ_MORE)
5742 continue;
5743
5744 return status; /* telnet session ended */
5745 }
5746 }
5747 }
5748
5749 static ptid_t
5750 remote_cisco_wait (ptid_t ptid, struct target_waitstatus *status)
5751 {
5752 if (minitelnet () != ENTER_DEBUG)
5753 {
5754 error ("Debugging session terminated by protocol error");
5755 }
5756 putpkt ("?");
5757 return remote_wait (ptid, status);
5758 }
5759
5760 static void
5761 init_remote_cisco_ops (void)
5762 {
5763 remote_cisco_ops.to_shortname = "cisco";
5764 remote_cisco_ops.to_longname = "Remote serial target in cisco-specific protocol";
5765 remote_cisco_ops.to_doc =
5766 "Use a remote machine via TCP, using a cisco-specific protocol.\n\
5767 Specify the serial device it is connected to (e.g. host:2020).";
5768 remote_cisco_ops.to_open = remote_cisco_open;
5769 remote_cisco_ops.to_close = remote_cisco_close;
5770 remote_cisco_ops.to_detach = remote_detach;
5771 remote_cisco_ops.to_resume = remote_resume;
5772 remote_cisco_ops.to_wait = remote_cisco_wait;
5773 remote_cisco_ops.to_fetch_registers = remote_fetch_registers;
5774 remote_cisco_ops.to_store_registers = remote_store_registers;
5775 remote_cisco_ops.to_prepare_to_store = remote_prepare_to_store;
5776 remote_cisco_ops.to_xfer_memory = remote_xfer_memory;
5777 remote_cisco_ops.to_files_info = remote_files_info;
5778 remote_cisco_ops.to_insert_breakpoint = remote_insert_breakpoint;
5779 remote_cisco_ops.to_remove_breakpoint = remote_remove_breakpoint;
5780 remote_cisco_ops.to_kill = remote_kill;
5781 remote_cisco_ops.to_load = generic_load;
5782 remote_cisco_ops.to_mourn_inferior = remote_cisco_mourn;
5783 remote_cisco_ops.to_thread_alive = remote_thread_alive;
5784 remote_cisco_ops.to_find_new_threads = remote_threads_info;
5785 remote_cisco_ops.to_pid_to_str = remote_pid_to_str;
5786 remote_cisco_ops.to_extra_thread_info = remote_threads_extra_info;
5787 remote_cisco_ops.to_stratum = process_stratum;
5788 remote_cisco_ops.to_has_all_memory = 1;
5789 remote_cisco_ops.to_has_memory = 1;
5790 remote_cisco_ops.to_has_stack = 1;
5791 remote_cisco_ops.to_has_registers = 1;
5792 remote_cisco_ops.to_has_execution = 1;
5793 remote_cisco_ops.to_magic = OPS_MAGIC;
5794 }
5795
5796 static int
5797 remote_can_async_p (void)
5798 {
5799 /* We're async whenever the serial device is. */
5800 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
5801 }
5802
5803 static int
5804 remote_is_async_p (void)
5805 {
5806 /* We're async whenever the serial device is. */
5807 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
5808 }
5809
5810 /* Pass the SERIAL event on and up to the client. One day this code
5811 will be able to delay notifying the client of an event until the
5812 point where an entire packet has been received. */
5813
5814 static void (*async_client_callback) (enum inferior_event_type event_type, void *context);
5815 static void *async_client_context;
5816 static serial_event_ftype remote_async_serial_handler;
5817
5818 static void
5819 remote_async_serial_handler (struct serial *scb, void *context)
5820 {
5821 /* Don't propogate error information up to the client. Instead let
5822 the client find out about the error by querying the target. */
5823 async_client_callback (INF_REG_EVENT, async_client_context);
5824 }
5825
5826 static void
5827 remote_async (void (*callback) (enum inferior_event_type event_type, void *context), void *context)
5828 {
5829 if (current_target.to_async_mask_value == 0)
5830 internal_error (__FILE__, __LINE__,
5831 "Calling remote_async when async is masked");
5832
5833 if (callback != NULL)
5834 {
5835 serial_async (remote_desc, remote_async_serial_handler, NULL);
5836 async_client_callback = callback;
5837 async_client_context = context;
5838 }
5839 else
5840 serial_async (remote_desc, NULL, NULL);
5841 }
5842
5843 /* Target async and target extended-async.
5844
5845 This are temporary targets, until it is all tested. Eventually
5846 async support will be incorporated int the usual 'remote'
5847 target. */
5848
5849 static void
5850 init_remote_async_ops (void)
5851 {
5852 remote_async_ops.to_shortname = "async";
5853 remote_async_ops.to_longname = "Remote serial target in async version of the gdb-specific protocol";
5854 remote_async_ops.to_doc =
5855 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5856 Specify the serial device it is connected to (e.g. /dev/ttya).";
5857 remote_async_ops.to_open = remote_async_open;
5858 remote_async_ops.to_close = remote_close;
5859 remote_async_ops.to_detach = remote_async_detach;
5860 remote_async_ops.to_resume = remote_async_resume;
5861 remote_async_ops.to_wait = remote_async_wait;
5862 remote_async_ops.to_fetch_registers = remote_fetch_registers;
5863 remote_async_ops.to_store_registers = remote_store_registers;
5864 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
5865 remote_async_ops.to_xfer_memory = remote_xfer_memory;
5866 remote_async_ops.to_files_info = remote_files_info;
5867 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
5868 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
5869 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
5870 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
5871 remote_async_ops.to_kill = remote_async_kill;
5872 remote_async_ops.to_load = generic_load;
5873 remote_async_ops.to_mourn_inferior = remote_async_mourn;
5874 remote_async_ops.to_thread_alive = remote_thread_alive;
5875 remote_async_ops.to_find_new_threads = remote_threads_info;
5876 remote_async_ops.to_pid_to_str = remote_pid_to_str;
5877 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
5878 remote_async_ops.to_stop = remote_stop;
5879 remote_async_ops.to_query = remote_query;
5880 remote_async_ops.to_rcmd = remote_rcmd;
5881 remote_async_ops.to_stratum = process_stratum;
5882 remote_async_ops.to_has_all_memory = 1;
5883 remote_async_ops.to_has_memory = 1;
5884 remote_async_ops.to_has_stack = 1;
5885 remote_async_ops.to_has_registers = 1;
5886 remote_async_ops.to_has_execution = 1;
5887 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5888 remote_async_ops.to_can_async_p = remote_can_async_p;
5889 remote_async_ops.to_is_async_p = remote_is_async_p;
5890 remote_async_ops.to_async = remote_async;
5891 remote_async_ops.to_async_mask_value = 1;
5892 remote_async_ops.to_magic = OPS_MAGIC;
5893 }
5894
5895 /* Set up the async extended remote vector by making a copy of the standard
5896 remote vector and adding to it. */
5897
5898 static void
5899 init_extended_async_remote_ops (void)
5900 {
5901 extended_async_remote_ops = remote_async_ops;
5902
5903 extended_async_remote_ops.to_shortname = "extended-async";
5904 extended_async_remote_ops.to_longname =
5905 "Extended remote serial target in async gdb-specific protocol";
5906 extended_async_remote_ops.to_doc =
5907 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
5908 Specify the serial device it is connected to (e.g. /dev/ttya).",
5909 extended_async_remote_ops.to_open = extended_remote_async_open;
5910 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
5911 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
5912 }
5913
5914 static void
5915 set_remote_cmd (char *args, int from_tty)
5916 {
5917 }
5918
5919 static void
5920 show_remote_cmd (char *args, int from_tty)
5921 {
5922
5923 show_remote_protocol_Z_packet_cmd (args, from_tty);
5924 show_remote_protocol_e_packet_cmd (args, from_tty);
5925 show_remote_protocol_E_packet_cmd (args, from_tty);
5926 show_remote_protocol_P_packet_cmd (args, from_tty);
5927 show_remote_protocol_qSymbol_packet_cmd (args, from_tty);
5928 show_remote_protocol_binary_download_cmd (args, from_tty);
5929 }
5930
5931 static void
5932 build_remote_gdbarch_data (void)
5933 {
5934 remote_address_size = TARGET_ADDR_BIT;
5935 }
5936
5937 /* Saved pointer to previous owner of the new_objfile event. */
5938 static void (*remote_new_objfile_chain) (struct objfile *);
5939
5940 /* Function to be called whenever a new objfile (shlib) is detected. */
5941 static void
5942 remote_new_objfile (struct objfile *objfile)
5943 {
5944 if (remote_desc != 0) /* Have a remote connection */
5945 {
5946 remote_check_symbols (objfile);
5947 }
5948 /* Call predecessor on chain, if any. */
5949 if (remote_new_objfile_chain != 0 &&
5950 remote_desc == 0)
5951 remote_new_objfile_chain (objfile);
5952 }
5953
5954 void
5955 _initialize_remote (void)
5956 {
5957 static struct cmd_list_element *remote_set_cmdlist;
5958 static struct cmd_list_element *remote_show_cmdlist;
5959 struct cmd_list_element *tmpcmd;
5960
5961 /* architecture specific data */
5962 remote_gdbarch_data_handle = register_gdbarch_data (init_remote_state,
5963 free_remote_state);
5964
5965 /* Old tacky stuff. NOTE: This comes after the remote protocol so
5966 that the remote protocol has been initialized. */
5967 register_gdbarch_swap (&remote_address_size,
5968 sizeof (&remote_address_size), NULL);
5969 register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
5970
5971 init_remote_ops ();
5972 add_target (&remote_ops);
5973
5974 init_extended_remote_ops ();
5975 add_target (&extended_remote_ops);
5976
5977 init_remote_async_ops ();
5978 add_target (&remote_async_ops);
5979
5980 init_extended_async_remote_ops ();
5981 add_target (&extended_async_remote_ops);
5982
5983 init_remote_cisco_ops ();
5984 add_target (&remote_cisco_ops);
5985
5986 /* Hook into new objfile notification. */
5987 remote_new_objfile_chain = target_new_objfile_hook;
5988 target_new_objfile_hook = remote_new_objfile;
5989
5990 #if 0
5991 init_remote_threadtests ();
5992 #endif
5993
5994 /* set/show remote ... */
5995
5996 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, "\
5997 Remote protocol specific variables\n\
5998 Configure various remote-protocol specific variables such as\n\
5999 the packets being used",
6000 &remote_set_cmdlist, "set remote ",
6001 0/*allow-unknown*/, &setlist);
6002 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, "\
6003 Remote protocol specific variables\n\
6004 Configure various remote-protocol specific variables such as\n\
6005 the packets being used",
6006 &remote_show_cmdlist, "show remote ",
6007 0/*allow-unknown*/, &showlist);
6008
6009 add_cmd ("compare-sections", class_obscure, compare_sections_command,
6010 "Compare section data on target to the exec file.\n\
6011 Argument is a single section name (default: all loaded sections).",
6012 &cmdlist);
6013
6014 add_cmd ("packet", class_maintenance, packet_command,
6015 "Send an arbitrary packet to a remote target.\n\
6016 maintenance packet TEXT\n\
6017 If GDB is talking to an inferior via the GDB serial protocol, then\n\
6018 this command sends the string TEXT to the inferior, and displays the\n\
6019 response packet. GDB supplies the initial `$' character, and the\n\
6020 terminating `#' character and checksum.",
6021 &maintenancelist);
6022
6023 add_show_from_set
6024 (add_set_boolean_cmd ("remotebreak", no_class, &remote_break,
6025 "Set whether to send break if interrupted.\n",
6026 &setlist),
6027 &showlist);
6028
6029 /* Install commands for configuring memory read/write packets. */
6030
6031 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size,
6032 "Set the maximum number of bytes per memory write packet (deprecated).\n",
6033 &setlist);
6034 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size,
6035 "Show the maximum number of bytes per memory write packet (deprecated).\n",
6036 &showlist);
6037 add_cmd ("memory-write-packet-size", no_class,
6038 set_memory_write_packet_size,
6039 "Set the maximum number of bytes per memory-write packet.\n"
6040 "Specify the number of bytes in a packet or 0 (zero) for the\n"
6041 "default packet size. The actual limit is further reduced\n"
6042 "dependent on the target. Specify ``fixed'' to disable the\n"
6043 "further restriction and ``limit'' to enable that restriction\n",
6044 &remote_set_cmdlist);
6045 add_cmd ("memory-read-packet-size", no_class,
6046 set_memory_read_packet_size,
6047 "Set the maximum number of bytes per memory-read packet.\n"
6048 "Specify the number of bytes in a packet or 0 (zero) for the\n"
6049 "default packet size. The actual limit is further reduced\n"
6050 "dependent on the target. Specify ``fixed'' to disable the\n"
6051 "further restriction and ``limit'' to enable that restriction\n",
6052 &remote_set_cmdlist);
6053 add_cmd ("memory-write-packet-size", no_class,
6054 show_memory_write_packet_size,
6055 "Show the maximum number of bytes per memory-write packet.\n",
6056 &remote_show_cmdlist);
6057 add_cmd ("memory-read-packet-size", no_class,
6058 show_memory_read_packet_size,
6059 "Show the maximum number of bytes per memory-read packet.\n",
6060 &remote_show_cmdlist);
6061
6062 add_show_from_set
6063 (add_set_cmd ("remoteaddresssize", class_obscure,
6064 var_integer, (char *) &remote_address_size,
6065 "Set the maximum size of the address (in bits) \
6066 in a memory packet.\n",
6067 &setlist),
6068 &showlist);
6069
6070 add_packet_config_cmd (&remote_protocol_binary_download,
6071 "X", "binary-download",
6072 set_remote_protocol_binary_download_cmd,
6073 show_remote_protocol_binary_download_cmd,
6074 &remote_set_cmdlist, &remote_show_cmdlist,
6075 1);
6076 #if 0
6077 /* XXXX - should ``set remotebinarydownload'' be retained for
6078 compatibility. */
6079 add_show_from_set
6080 (add_set_cmd ("remotebinarydownload", no_class,
6081 var_boolean, (char *) &remote_binary_download,
6082 "Set binary downloads.\n", &setlist),
6083 &showlist);
6084 #endif
6085
6086 add_info ("remote-process", remote_info_process,
6087 "Query the remote system for process info.");
6088
6089 add_packet_config_cmd (&remote_protocol_qSymbol,
6090 "qSymbol", "symbol-lookup",
6091 set_remote_protocol_qSymbol_packet_cmd,
6092 show_remote_protocol_qSymbol_packet_cmd,
6093 &remote_set_cmdlist, &remote_show_cmdlist,
6094 0);
6095
6096 add_packet_config_cmd (&remote_protocol_e,
6097 "e", "step-over-range",
6098 set_remote_protocol_e_packet_cmd,
6099 show_remote_protocol_e_packet_cmd,
6100 &remote_set_cmdlist, &remote_show_cmdlist,
6101 0);
6102
6103 add_packet_config_cmd (&remote_protocol_E,
6104 "E", "step-over-range-w-signal",
6105 set_remote_protocol_E_packet_cmd,
6106 show_remote_protocol_E_packet_cmd,
6107 &remote_set_cmdlist, &remote_show_cmdlist,
6108 0);
6109
6110 add_packet_config_cmd (&remote_protocol_P,
6111 "P", "set-register",
6112 set_remote_protocol_P_packet_cmd,
6113 show_remote_protocol_P_packet_cmd,
6114 &remote_set_cmdlist, &remote_show_cmdlist,
6115 1);
6116
6117 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP],
6118 "Z0", "software-breakpoint",
6119 set_remote_protocol_Z_software_bp_packet_cmd,
6120 show_remote_protocol_Z_software_bp_packet_cmd,
6121 &remote_set_cmdlist, &remote_show_cmdlist,
6122 0);
6123
6124 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP],
6125 "Z1", "hardware-breakpoint",
6126 set_remote_protocol_Z_hardware_bp_packet_cmd,
6127 show_remote_protocol_Z_hardware_bp_packet_cmd,
6128 &remote_set_cmdlist, &remote_show_cmdlist,
6129 0);
6130
6131 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP],
6132 "Z2", "write-watchpoint",
6133 set_remote_protocol_Z_write_wp_packet_cmd,
6134 show_remote_protocol_Z_write_wp_packet_cmd,
6135 &remote_set_cmdlist, &remote_show_cmdlist,
6136 0);
6137
6138 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP],
6139 "Z3", "read-watchpoint",
6140 set_remote_protocol_Z_read_wp_packet_cmd,
6141 show_remote_protocol_Z_read_wp_packet_cmd,
6142 &remote_set_cmdlist, &remote_show_cmdlist,
6143 0);
6144
6145 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP],
6146 "Z4", "access-watchpoint",
6147 set_remote_protocol_Z_access_wp_packet_cmd,
6148 show_remote_protocol_Z_access_wp_packet_cmd,
6149 &remote_set_cmdlist, &remote_show_cmdlist,
6150 0);
6151
6152 /* Keep the old ``set remote Z-packet ...'' working. */
6153 tmpcmd = add_set_auto_boolean_cmd ("Z-packet", class_obscure,
6154 &remote_Z_packet_detect,
6155 "\
6156 Set use of remote protocol `Z' packets", &remote_set_cmdlist);
6157 set_cmd_sfunc (tmpcmd, set_remote_protocol_Z_packet_cmd);
6158 add_cmd ("Z-packet", class_obscure, show_remote_protocol_Z_packet_cmd,
6159 "Show use of remote protocol `Z' packets ",
6160 &remote_show_cmdlist);
6161 }
This page took 0.171604 seconds and 5 git commands to generate.