Undo the following change. Not correct, after all:
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include "gdb_stat.h"
63
64 #include "memory-map.h"
65
66 /* The size to align memory write packets, when practical. The protocol
67 does not guarantee any alignment, and gdb will generate short
68 writes and unaligned writes, but even as a best-effort attempt this
69 can improve bulk transfers. For instance, if a write is misaligned
70 relative to the target's data bus, the stub may need to make an extra
71 round trip fetching data from the target. This doesn't make a
72 huge difference, but it's easy to do, so we try to be helpful.
73
74 The alignment chosen is arbitrary; usually data bus width is
75 important here, not the possibly larger cache line size. */
76 enum { REMOTE_ALIGN_WRITES = 16 };
77
78 /* Prototypes for local functions. */
79 static void cleanup_sigint_signal_handler (void *dummy);
80 static void initialize_sigint_signal_handler (void);
81 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
82 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
83 int forever);
84
85 static void handle_remote_sigint (int);
86 static void handle_remote_sigint_twice (int);
87 static void async_remote_interrupt (gdb_client_data);
88 void async_remote_interrupt_twice (gdb_client_data);
89
90 static void remote_files_info (struct target_ops *ignore);
91
92 static void remote_prepare_to_store (struct regcache *regcache);
93
94 static void remote_open (char *name, int from_tty);
95
96 static void extended_remote_open (char *name, int from_tty);
97
98 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
99
100 static void remote_close (int quitting);
101
102 static void remote_mourn (struct target_ops *ops);
103
104 static void extended_remote_restart (void);
105
106 static void extended_remote_mourn (struct target_ops *);
107
108 static void remote_mourn_1 (struct target_ops *);
109
110 static void remote_send (char **buf, long *sizeof_buf_p);
111
112 static int readchar (int timeout);
113
114 static void remote_kill (struct target_ops *ops);
115
116 static int tohex (int nib);
117
118 static int remote_can_async_p (void);
119
120 static int remote_is_async_p (void);
121
122 static void remote_async (void (*callback) (enum inferior_event_type event_type,
123 void *context), void *context);
124
125 static int remote_async_mask (int new_mask);
126
127 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
128
129 static void remote_interrupt (int signo);
130
131 static void remote_interrupt_twice (int signo);
132
133 static void interrupt_query (void);
134
135 static void set_general_thread (struct ptid ptid);
136 static void set_continue_thread (struct ptid ptid);
137
138 static void get_offsets (void);
139
140 static void skip_frame (void);
141
142 static long read_frame (char **buf_p, long *sizeof_buf);
143
144 static int hexnumlen (ULONGEST num);
145
146 static void init_remote_ops (void);
147
148 static void init_extended_remote_ops (void);
149
150 static void remote_stop (ptid_t);
151
152 static int ishex (int ch, int *val);
153
154 static int stubhex (int ch);
155
156 static int hexnumstr (char *, ULONGEST);
157
158 static int hexnumnstr (char *, ULONGEST, int);
159
160 static CORE_ADDR remote_address_masked (CORE_ADDR);
161
162 static void print_packet (char *);
163
164 static unsigned long crc32 (unsigned char *, int, unsigned int);
165
166 static void compare_sections_command (char *, int);
167
168 static void packet_command (char *, int);
169
170 static int stub_unpack_int (char *buff, int fieldlength);
171
172 static ptid_t remote_current_thread (ptid_t oldptid);
173
174 static void remote_find_new_threads (void);
175
176 static void record_currthread (ptid_t currthread);
177
178 static int fromhex (int a);
179
180 static int hex2bin (const char *hex, gdb_byte *bin, int count);
181
182 static int bin2hex (const gdb_byte *bin, char *hex, int count);
183
184 static int putpkt_binary (char *buf, int cnt);
185
186 static void check_binary_download (CORE_ADDR addr);
187
188 struct packet_config;
189
190 static void show_packet_config_cmd (struct packet_config *config);
191
192 static void update_packet_config (struct packet_config *config);
193
194 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
195 struct cmd_list_element *c);
196
197 static void show_remote_protocol_packet_cmd (struct ui_file *file,
198 int from_tty,
199 struct cmd_list_element *c,
200 const char *value);
201
202 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
203 static ptid_t read_ptid (char *buf, char **obuf);
204
205 static void remote_query_supported (void);
206
207 static void remote_check_symbols (struct objfile *objfile);
208
209 void _initialize_remote (void);
210
211 struct stop_reply;
212 static struct stop_reply *stop_reply_xmalloc (void);
213 static void stop_reply_xfree (struct stop_reply *);
214 static void do_stop_reply_xfree (void *arg);
215 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
216 static void push_stop_reply (struct stop_reply *);
217 static void remote_get_pending_stop_replies (void);
218 static void discard_pending_stop_replies (int pid);
219 static int peek_stop_reply (ptid_t ptid);
220
221 static void remote_async_inferior_event_handler (gdb_client_data);
222 static void remote_async_get_pending_events_handler (gdb_client_data);
223
224 static void remote_terminal_ours (void);
225
226 static int remote_read_description_p (struct target_ops *target);
227
228 /* The non-stop remote protocol provisions for one pending stop reply.
229 This is where we keep it until it is acknowledged. */
230
231 static struct stop_reply *pending_stop_reply = NULL;
232
233 /* For "remote". */
234
235 static struct cmd_list_element *remote_cmdlist;
236
237 /* For "set remote" and "show remote". */
238
239 static struct cmd_list_element *remote_set_cmdlist;
240 static struct cmd_list_element *remote_show_cmdlist;
241
242 /* Description of the remote protocol state for the currently
243 connected target. This is per-target state, and independent of the
244 selected architecture. */
245
246 struct remote_state
247 {
248 /* A buffer to use for incoming packets, and its current size. The
249 buffer is grown dynamically for larger incoming packets.
250 Outgoing packets may also be constructed in this buffer.
251 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
252 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
253 packets. */
254 char *buf;
255 long buf_size;
256
257 /* If we negotiated packet size explicitly (and thus can bypass
258 heuristics for the largest packet size that will not overflow
259 a buffer in the stub), this will be set to that packet size.
260 Otherwise zero, meaning to use the guessed size. */
261 long explicit_packet_size;
262
263 /* remote_wait is normally called when the target is running and
264 waits for a stop reply packet. But sometimes we need to call it
265 when the target is already stopped. We can send a "?" packet
266 and have remote_wait read the response. Or, if we already have
267 the response, we can stash it in BUF and tell remote_wait to
268 skip calling getpkt. This flag is set when BUF contains a
269 stop reply packet and the target is not waiting. */
270 int cached_wait_status;
271
272 /* True, if in no ack mode. That is, neither GDB nor the stub will
273 expect acks from each other. The connection is assumed to be
274 reliable. */
275 int noack_mode;
276
277 /* True if we're connected in extended remote mode. */
278 int extended;
279
280 /* True if the stub reported support for multi-process
281 extensions. */
282 int multi_process_aware;
283
284 /* True if we resumed the target and we're waiting for the target to
285 stop. In the mean time, we can't start another command/query.
286 The remote server wouldn't be ready to process it, so we'd
287 timeout waiting for a reply that would never come and eventually
288 we'd close the connection. This can happen in asynchronous mode
289 because we allow GDB commands while the target is running. */
290 int waiting_for_stop_reply;
291
292 /* True if the stub reports support for non-stop mode. */
293 int non_stop_aware;
294
295 /* True if the stub reports support for vCont;t. */
296 int support_vCont_t;
297 };
298
299 /* Returns true if the multi-process extensions are in effect. */
300 static int
301 remote_multi_process_p (struct remote_state *rs)
302 {
303 return rs->extended && rs->multi_process_aware;
304 }
305
306 /* This data could be associated with a target, but we do not always
307 have access to the current target when we need it, so for now it is
308 static. This will be fine for as long as only one target is in use
309 at a time. */
310 static struct remote_state remote_state;
311
312 static struct remote_state *
313 get_remote_state_raw (void)
314 {
315 return &remote_state;
316 }
317
318 /* Description of the remote protocol for a given architecture. */
319
320 struct packet_reg
321 {
322 long offset; /* Offset into G packet. */
323 long regnum; /* GDB's internal register number. */
324 LONGEST pnum; /* Remote protocol register number. */
325 int in_g_packet; /* Always part of G packet. */
326 /* long size in bytes; == register_size (target_gdbarch, regnum);
327 at present. */
328 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
329 at present. */
330 };
331
332 struct remote_arch_state
333 {
334 /* Description of the remote protocol registers. */
335 long sizeof_g_packet;
336
337 /* Description of the remote protocol registers indexed by REGNUM
338 (making an array gdbarch_num_regs in size). */
339 struct packet_reg *regs;
340
341 /* This is the size (in chars) of the first response to the ``g''
342 packet. It is used as a heuristic when determining the maximum
343 size of memory-read and memory-write packets. A target will
344 typically only reserve a buffer large enough to hold the ``g''
345 packet. The size does not include packet overhead (headers and
346 trailers). */
347 long actual_register_packet_size;
348
349 /* This is the maximum size (in chars) of a non read/write packet.
350 It is also used as a cap on the size of read/write packets. */
351 long remote_packet_size;
352 };
353
354
355 /* Handle for retreving the remote protocol data from gdbarch. */
356 static struct gdbarch_data *remote_gdbarch_data_handle;
357
358 static struct remote_arch_state *
359 get_remote_arch_state (void)
360 {
361 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
362 }
363
364 /* Fetch the global remote target state. */
365
366 static struct remote_state *
367 get_remote_state (void)
368 {
369 /* Make sure that the remote architecture state has been
370 initialized, because doing so might reallocate rs->buf. Any
371 function which calls getpkt also needs to be mindful of changes
372 to rs->buf, but this call limits the number of places which run
373 into trouble. */
374 get_remote_arch_state ();
375
376 return get_remote_state_raw ();
377 }
378
379 static int
380 compare_pnums (const void *lhs_, const void *rhs_)
381 {
382 const struct packet_reg * const *lhs = lhs_;
383 const struct packet_reg * const *rhs = rhs_;
384
385 if ((*lhs)->pnum < (*rhs)->pnum)
386 return -1;
387 else if ((*lhs)->pnum == (*rhs)->pnum)
388 return 0;
389 else
390 return 1;
391 }
392
393 static void *
394 init_remote_state (struct gdbarch *gdbarch)
395 {
396 int regnum, num_remote_regs, offset;
397 struct remote_state *rs = get_remote_state_raw ();
398 struct remote_arch_state *rsa;
399 struct packet_reg **remote_regs;
400
401 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
402
403 /* Use the architecture to build a regnum<->pnum table, which will be
404 1:1 unless a feature set specifies otherwise. */
405 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
406 gdbarch_num_regs (gdbarch),
407 struct packet_reg);
408 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
409 {
410 struct packet_reg *r = &rsa->regs[regnum];
411
412 if (register_size (gdbarch, regnum) == 0)
413 /* Do not try to fetch zero-sized (placeholder) registers. */
414 r->pnum = -1;
415 else
416 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
417
418 r->regnum = regnum;
419 }
420
421 /* Define the g/G packet format as the contents of each register
422 with a remote protocol number, in order of ascending protocol
423 number. */
424
425 remote_regs = alloca (gdbarch_num_regs (gdbarch)
426 * sizeof (struct packet_reg *));
427 for (num_remote_regs = 0, regnum = 0;
428 regnum < gdbarch_num_regs (gdbarch);
429 regnum++)
430 if (rsa->regs[regnum].pnum != -1)
431 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
432
433 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
434 compare_pnums);
435
436 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
437 {
438 remote_regs[regnum]->in_g_packet = 1;
439 remote_regs[regnum]->offset = offset;
440 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
441 }
442
443 /* Record the maximum possible size of the g packet - it may turn out
444 to be smaller. */
445 rsa->sizeof_g_packet = offset;
446
447 /* Default maximum number of characters in a packet body. Many
448 remote stubs have a hardwired buffer size of 400 bytes
449 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
450 as the maximum packet-size to ensure that the packet and an extra
451 NUL character can always fit in the buffer. This stops GDB
452 trashing stubs that try to squeeze an extra NUL into what is
453 already a full buffer (As of 1999-12-04 that was most stubs). */
454 rsa->remote_packet_size = 400 - 1;
455
456 /* This one is filled in when a ``g'' packet is received. */
457 rsa->actual_register_packet_size = 0;
458
459 /* Should rsa->sizeof_g_packet needs more space than the
460 default, adjust the size accordingly. Remember that each byte is
461 encoded as two characters. 32 is the overhead for the packet
462 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
463 (``$NN:G...#NN'') is a better guess, the below has been padded a
464 little. */
465 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
466 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
467
468 /* Make sure that the packet buffer is plenty big enough for
469 this architecture. */
470 if (rs->buf_size < rsa->remote_packet_size)
471 {
472 rs->buf_size = 2 * rsa->remote_packet_size;
473 rs->buf = xrealloc (rs->buf, rs->buf_size);
474 }
475
476 return rsa;
477 }
478
479 /* Return the current allowed size of a remote packet. This is
480 inferred from the current architecture, and should be used to
481 limit the length of outgoing packets. */
482 static long
483 get_remote_packet_size (void)
484 {
485 struct remote_state *rs = get_remote_state ();
486 struct remote_arch_state *rsa = get_remote_arch_state ();
487
488 if (rs->explicit_packet_size)
489 return rs->explicit_packet_size;
490
491 return rsa->remote_packet_size;
492 }
493
494 static struct packet_reg *
495 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
496 {
497 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
498 return NULL;
499 else
500 {
501 struct packet_reg *r = &rsa->regs[regnum];
502 gdb_assert (r->regnum == regnum);
503 return r;
504 }
505 }
506
507 static struct packet_reg *
508 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
509 {
510 int i;
511 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
512 {
513 struct packet_reg *r = &rsa->regs[i];
514 if (r->pnum == pnum)
515 return r;
516 }
517 return NULL;
518 }
519
520 /* FIXME: graces/2002-08-08: These variables should eventually be
521 bound to an instance of the target object (as in gdbarch-tdep()),
522 when such a thing exists. */
523
524 /* This is set to the data address of the access causing the target
525 to stop for a watchpoint. */
526 static CORE_ADDR remote_watch_data_address;
527
528 /* This is non-zero if target stopped for a watchpoint. */
529 static int remote_stopped_by_watchpoint_p;
530
531 static struct target_ops remote_ops;
532
533 static struct target_ops extended_remote_ops;
534
535 static int remote_async_mask_value = 1;
536
537 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
538 ``forever'' still use the normal timeout mechanism. This is
539 currently used by the ASYNC code to guarentee that target reads
540 during the initial connect always time-out. Once getpkt has been
541 modified to return a timeout indication and, in turn
542 remote_wait()/wait_for_inferior() have gained a timeout parameter
543 this can go away. */
544 static int wait_forever_enabled_p = 1;
545
546
547 /* This variable chooses whether to send a ^C or a break when the user
548 requests program interruption. Although ^C is usually what remote
549 systems expect, and that is the default here, sometimes a break is
550 preferable instead. */
551
552 static int remote_break;
553
554 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
555 remote_open knows that we don't have a file open when the program
556 starts. */
557 static struct serial *remote_desc = NULL;
558
559 /* This variable sets the number of bits in an address that are to be
560 sent in a memory ("M" or "m") packet. Normally, after stripping
561 leading zeros, the entire address would be sent. This variable
562 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
563 initial implementation of remote.c restricted the address sent in
564 memory packets to ``host::sizeof long'' bytes - (typically 32
565 bits). Consequently, for 64 bit targets, the upper 32 bits of an
566 address was never sent. Since fixing this bug may cause a break in
567 some remote targets this variable is principly provided to
568 facilitate backward compatibility. */
569
570 static int remote_address_size;
571
572 /* Temporary to track who currently owns the terminal. See
573 remote_terminal_* for more details. */
574
575 static int remote_async_terminal_ours_p;
576
577 /* The executable file to use for "run" on the remote side. */
578
579 static char *remote_exec_file = "";
580
581 \f
582 /* User configurable variables for the number of characters in a
583 memory read/write packet. MIN (rsa->remote_packet_size,
584 rsa->sizeof_g_packet) is the default. Some targets need smaller
585 values (fifo overruns, et.al.) and some users need larger values
586 (speed up transfers). The variables ``preferred_*'' (the user
587 request), ``current_*'' (what was actually set) and ``forced_*''
588 (Positive - a soft limit, negative - a hard limit). */
589
590 struct memory_packet_config
591 {
592 char *name;
593 long size;
594 int fixed_p;
595 };
596
597 /* Compute the current size of a read/write packet. Since this makes
598 use of ``actual_register_packet_size'' the computation is dynamic. */
599
600 static long
601 get_memory_packet_size (struct memory_packet_config *config)
602 {
603 struct remote_state *rs = get_remote_state ();
604 struct remote_arch_state *rsa = get_remote_arch_state ();
605
606 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
607 law?) that some hosts don't cope very well with large alloca()
608 calls. Eventually the alloca() code will be replaced by calls to
609 xmalloc() and make_cleanups() allowing this restriction to either
610 be lifted or removed. */
611 #ifndef MAX_REMOTE_PACKET_SIZE
612 #define MAX_REMOTE_PACKET_SIZE 16384
613 #endif
614 /* NOTE: 20 ensures we can write at least one byte. */
615 #ifndef MIN_REMOTE_PACKET_SIZE
616 #define MIN_REMOTE_PACKET_SIZE 20
617 #endif
618 long what_they_get;
619 if (config->fixed_p)
620 {
621 if (config->size <= 0)
622 what_they_get = MAX_REMOTE_PACKET_SIZE;
623 else
624 what_they_get = config->size;
625 }
626 else
627 {
628 what_they_get = get_remote_packet_size ();
629 /* Limit the packet to the size specified by the user. */
630 if (config->size > 0
631 && what_they_get > config->size)
632 what_they_get = config->size;
633
634 /* Limit it to the size of the targets ``g'' response unless we have
635 permission from the stub to use a larger packet size. */
636 if (rs->explicit_packet_size == 0
637 && rsa->actual_register_packet_size > 0
638 && what_they_get > rsa->actual_register_packet_size)
639 what_they_get = rsa->actual_register_packet_size;
640 }
641 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
642 what_they_get = MAX_REMOTE_PACKET_SIZE;
643 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
644 what_they_get = MIN_REMOTE_PACKET_SIZE;
645
646 /* Make sure there is room in the global buffer for this packet
647 (including its trailing NUL byte). */
648 if (rs->buf_size < what_they_get + 1)
649 {
650 rs->buf_size = 2 * what_they_get;
651 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
652 }
653
654 return what_they_get;
655 }
656
657 /* Update the size of a read/write packet. If they user wants
658 something really big then do a sanity check. */
659
660 static void
661 set_memory_packet_size (char *args, struct memory_packet_config *config)
662 {
663 int fixed_p = config->fixed_p;
664 long size = config->size;
665 if (args == NULL)
666 error (_("Argument required (integer, `fixed' or `limited')."));
667 else if (strcmp (args, "hard") == 0
668 || strcmp (args, "fixed") == 0)
669 fixed_p = 1;
670 else if (strcmp (args, "soft") == 0
671 || strcmp (args, "limit") == 0)
672 fixed_p = 0;
673 else
674 {
675 char *end;
676 size = strtoul (args, &end, 0);
677 if (args == end)
678 error (_("Invalid %s (bad syntax)."), config->name);
679 #if 0
680 /* Instead of explicitly capping the size of a packet to
681 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
682 instead allowed to set the size to something arbitrarily
683 large. */
684 if (size > MAX_REMOTE_PACKET_SIZE)
685 error (_("Invalid %s (too large)."), config->name);
686 #endif
687 }
688 /* Extra checks? */
689 if (fixed_p && !config->fixed_p)
690 {
691 if (! query (_("The target may not be able to correctly handle a %s\n"
692 "of %ld bytes. Change the packet size? "),
693 config->name, size))
694 error (_("Packet size not changed."));
695 }
696 /* Update the config. */
697 config->fixed_p = fixed_p;
698 config->size = size;
699 }
700
701 static void
702 show_memory_packet_size (struct memory_packet_config *config)
703 {
704 printf_filtered (_("The %s is %ld. "), config->name, config->size);
705 if (config->fixed_p)
706 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
707 get_memory_packet_size (config));
708 else
709 printf_filtered (_("Packets are limited to %ld bytes.\n"),
710 get_memory_packet_size (config));
711 }
712
713 static struct memory_packet_config memory_write_packet_config =
714 {
715 "memory-write-packet-size",
716 };
717
718 static void
719 set_memory_write_packet_size (char *args, int from_tty)
720 {
721 set_memory_packet_size (args, &memory_write_packet_config);
722 }
723
724 static void
725 show_memory_write_packet_size (char *args, int from_tty)
726 {
727 show_memory_packet_size (&memory_write_packet_config);
728 }
729
730 static long
731 get_memory_write_packet_size (void)
732 {
733 return get_memory_packet_size (&memory_write_packet_config);
734 }
735
736 static struct memory_packet_config memory_read_packet_config =
737 {
738 "memory-read-packet-size",
739 };
740
741 static void
742 set_memory_read_packet_size (char *args, int from_tty)
743 {
744 set_memory_packet_size (args, &memory_read_packet_config);
745 }
746
747 static void
748 show_memory_read_packet_size (char *args, int from_tty)
749 {
750 show_memory_packet_size (&memory_read_packet_config);
751 }
752
753 static long
754 get_memory_read_packet_size (void)
755 {
756 long size = get_memory_packet_size (&memory_read_packet_config);
757 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
758 extra buffer size argument before the memory read size can be
759 increased beyond this. */
760 if (size > get_remote_packet_size ())
761 size = get_remote_packet_size ();
762 return size;
763 }
764
765 \f
766 /* Generic configuration support for packets the stub optionally
767 supports. Allows the user to specify the use of the packet as well
768 as allowing GDB to auto-detect support in the remote stub. */
769
770 enum packet_support
771 {
772 PACKET_SUPPORT_UNKNOWN = 0,
773 PACKET_ENABLE,
774 PACKET_DISABLE
775 };
776
777 struct packet_config
778 {
779 const char *name;
780 const char *title;
781 enum auto_boolean detect;
782 enum packet_support support;
783 };
784
785 /* Analyze a packet's return value and update the packet config
786 accordingly. */
787
788 enum packet_result
789 {
790 PACKET_ERROR,
791 PACKET_OK,
792 PACKET_UNKNOWN
793 };
794
795 static void
796 update_packet_config (struct packet_config *config)
797 {
798 switch (config->detect)
799 {
800 case AUTO_BOOLEAN_TRUE:
801 config->support = PACKET_ENABLE;
802 break;
803 case AUTO_BOOLEAN_FALSE:
804 config->support = PACKET_DISABLE;
805 break;
806 case AUTO_BOOLEAN_AUTO:
807 config->support = PACKET_SUPPORT_UNKNOWN;
808 break;
809 }
810 }
811
812 static void
813 show_packet_config_cmd (struct packet_config *config)
814 {
815 char *support = "internal-error";
816 switch (config->support)
817 {
818 case PACKET_ENABLE:
819 support = "enabled";
820 break;
821 case PACKET_DISABLE:
822 support = "disabled";
823 break;
824 case PACKET_SUPPORT_UNKNOWN:
825 support = "unknown";
826 break;
827 }
828 switch (config->detect)
829 {
830 case AUTO_BOOLEAN_AUTO:
831 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
832 config->name, support);
833 break;
834 case AUTO_BOOLEAN_TRUE:
835 case AUTO_BOOLEAN_FALSE:
836 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
837 config->name, support);
838 break;
839 }
840 }
841
842 static void
843 add_packet_config_cmd (struct packet_config *config, const char *name,
844 const char *title, int legacy)
845 {
846 char *set_doc;
847 char *show_doc;
848 char *cmd_name;
849
850 config->name = name;
851 config->title = title;
852 config->detect = AUTO_BOOLEAN_AUTO;
853 config->support = PACKET_SUPPORT_UNKNOWN;
854 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
855 name, title);
856 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
857 name, title);
858 /* set/show TITLE-packet {auto,on,off} */
859 cmd_name = xstrprintf ("%s-packet", title);
860 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
861 &config->detect, set_doc, show_doc, NULL, /* help_doc */
862 set_remote_protocol_packet_cmd,
863 show_remote_protocol_packet_cmd,
864 &remote_set_cmdlist, &remote_show_cmdlist);
865 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
866 if (legacy)
867 {
868 char *legacy_name;
869 legacy_name = xstrprintf ("%s-packet", name);
870 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
871 &remote_set_cmdlist);
872 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
873 &remote_show_cmdlist);
874 }
875 }
876
877 static enum packet_result
878 packet_check_result (const char *buf)
879 {
880 if (buf[0] != '\0')
881 {
882 /* The stub recognized the packet request. Check that the
883 operation succeeded. */
884 if (buf[0] == 'E'
885 && isxdigit (buf[1]) && isxdigit (buf[2])
886 && buf[3] == '\0')
887 /* "Enn" - definitly an error. */
888 return PACKET_ERROR;
889
890 /* Always treat "E." as an error. This will be used for
891 more verbose error messages, such as E.memtypes. */
892 if (buf[0] == 'E' && buf[1] == '.')
893 return PACKET_ERROR;
894
895 /* The packet may or may not be OK. Just assume it is. */
896 return PACKET_OK;
897 }
898 else
899 /* The stub does not support the packet. */
900 return PACKET_UNKNOWN;
901 }
902
903 static enum packet_result
904 packet_ok (const char *buf, struct packet_config *config)
905 {
906 enum packet_result result;
907
908 result = packet_check_result (buf);
909 switch (result)
910 {
911 case PACKET_OK:
912 case PACKET_ERROR:
913 /* The stub recognized the packet request. */
914 switch (config->support)
915 {
916 case PACKET_SUPPORT_UNKNOWN:
917 if (remote_debug)
918 fprintf_unfiltered (gdb_stdlog,
919 "Packet %s (%s) is supported\n",
920 config->name, config->title);
921 config->support = PACKET_ENABLE;
922 break;
923 case PACKET_DISABLE:
924 internal_error (__FILE__, __LINE__,
925 _("packet_ok: attempt to use a disabled packet"));
926 break;
927 case PACKET_ENABLE:
928 break;
929 }
930 break;
931 case PACKET_UNKNOWN:
932 /* The stub does not support the packet. */
933 switch (config->support)
934 {
935 case PACKET_ENABLE:
936 if (config->detect == AUTO_BOOLEAN_AUTO)
937 /* If the stub previously indicated that the packet was
938 supported then there is a protocol error.. */
939 error (_("Protocol error: %s (%s) conflicting enabled responses."),
940 config->name, config->title);
941 else
942 /* The user set it wrong. */
943 error (_("Enabled packet %s (%s) not recognized by stub"),
944 config->name, config->title);
945 break;
946 case PACKET_SUPPORT_UNKNOWN:
947 if (remote_debug)
948 fprintf_unfiltered (gdb_stdlog,
949 "Packet %s (%s) is NOT supported\n",
950 config->name, config->title);
951 config->support = PACKET_DISABLE;
952 break;
953 case PACKET_DISABLE:
954 break;
955 }
956 break;
957 }
958
959 return result;
960 }
961
962 enum {
963 PACKET_vCont = 0,
964 PACKET_X,
965 PACKET_qSymbol,
966 PACKET_P,
967 PACKET_p,
968 PACKET_Z0,
969 PACKET_Z1,
970 PACKET_Z2,
971 PACKET_Z3,
972 PACKET_Z4,
973 PACKET_vFile_open,
974 PACKET_vFile_pread,
975 PACKET_vFile_pwrite,
976 PACKET_vFile_close,
977 PACKET_vFile_unlink,
978 PACKET_qXfer_auxv,
979 PACKET_qXfer_features,
980 PACKET_qXfer_libraries,
981 PACKET_qXfer_memory_map,
982 PACKET_qXfer_spu_read,
983 PACKET_qXfer_spu_write,
984 PACKET_qXfer_osdata,
985 PACKET_qGetTLSAddr,
986 PACKET_qSupported,
987 PACKET_QPassSignals,
988 PACKET_qSearch_memory,
989 PACKET_vAttach,
990 PACKET_vRun,
991 PACKET_QStartNoAckMode,
992 PACKET_vKill,
993 PACKET_qXfer_siginfo_read,
994 PACKET_qXfer_siginfo_write,
995 PACKET_qAttached,
996 PACKET_MAX
997 };
998
999 static struct packet_config remote_protocol_packets[PACKET_MAX];
1000
1001 static void
1002 set_remote_protocol_packet_cmd (char *args, int from_tty,
1003 struct cmd_list_element *c)
1004 {
1005 struct packet_config *packet;
1006
1007 for (packet = remote_protocol_packets;
1008 packet < &remote_protocol_packets[PACKET_MAX];
1009 packet++)
1010 {
1011 if (&packet->detect == c->var)
1012 {
1013 update_packet_config (packet);
1014 return;
1015 }
1016 }
1017 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1018 c->name);
1019 }
1020
1021 static void
1022 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1023 struct cmd_list_element *c,
1024 const char *value)
1025 {
1026 struct packet_config *packet;
1027
1028 for (packet = remote_protocol_packets;
1029 packet < &remote_protocol_packets[PACKET_MAX];
1030 packet++)
1031 {
1032 if (&packet->detect == c->var)
1033 {
1034 show_packet_config_cmd (packet);
1035 return;
1036 }
1037 }
1038 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1039 c->name);
1040 }
1041
1042 /* Should we try one of the 'Z' requests? */
1043
1044 enum Z_packet_type
1045 {
1046 Z_PACKET_SOFTWARE_BP,
1047 Z_PACKET_HARDWARE_BP,
1048 Z_PACKET_WRITE_WP,
1049 Z_PACKET_READ_WP,
1050 Z_PACKET_ACCESS_WP,
1051 NR_Z_PACKET_TYPES
1052 };
1053
1054 /* For compatibility with older distributions. Provide a ``set remote
1055 Z-packet ...'' command that updates all the Z packet types. */
1056
1057 static enum auto_boolean remote_Z_packet_detect;
1058
1059 static void
1060 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1061 struct cmd_list_element *c)
1062 {
1063 int i;
1064 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1065 {
1066 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1067 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1068 }
1069 }
1070
1071 static void
1072 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1073 struct cmd_list_element *c,
1074 const char *value)
1075 {
1076 int i;
1077 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1078 {
1079 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1080 }
1081 }
1082
1083 /* Should we try the 'ThreadInfo' query packet?
1084
1085 This variable (NOT available to the user: auto-detect only!)
1086 determines whether GDB will use the new, simpler "ThreadInfo"
1087 query or the older, more complex syntax for thread queries.
1088 This is an auto-detect variable (set to true at each connect,
1089 and set to false when the target fails to recognize it). */
1090
1091 static int use_threadinfo_query;
1092 static int use_threadextra_query;
1093
1094 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1095 static struct async_signal_handler *sigint_remote_twice_token;
1096 static struct async_signal_handler *sigint_remote_token;
1097
1098 \f
1099 /* Asynchronous signal handle registered as event loop source for
1100 when we have pending events ready to be passed to the core. */
1101
1102 static struct async_event_handler *remote_async_inferior_event_token;
1103
1104 /* Asynchronous signal handle registered as event loop source for when
1105 the remote sent us a %Stop notification. The registered callback
1106 will do a vStopped sequence to pull the rest of the events out of
1107 the remote side into our event queue. */
1108
1109 static struct async_event_handler *remote_async_get_pending_events_token;
1110 \f
1111
1112 static ptid_t magic_null_ptid;
1113 static ptid_t not_sent_ptid;
1114 static ptid_t any_thread_ptid;
1115
1116 /* These are the threads which we last sent to the remote system. The
1117 TID member will be -1 for all or -2 for not sent yet. */
1118
1119 static ptid_t general_thread;
1120 static ptid_t continue_thread;
1121
1122 /* Find out if the stub attached to PID (and hence GDB should offer to
1123 detach instead of killing it when bailing out). */
1124
1125 static int
1126 remote_query_attached (int pid)
1127 {
1128 struct remote_state *rs = get_remote_state ();
1129
1130 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1131 return 0;
1132
1133 if (remote_multi_process_p (rs))
1134 sprintf (rs->buf, "qAttached:%x", pid);
1135 else
1136 sprintf (rs->buf, "qAttached");
1137
1138 putpkt (rs->buf);
1139 getpkt (&rs->buf, &rs->buf_size, 0);
1140
1141 switch (packet_ok (rs->buf,
1142 &remote_protocol_packets[PACKET_qAttached]) == PACKET_OK)
1143 {
1144 case PACKET_OK:
1145 if (strcmp (rs->buf, "1") == 0)
1146 return 1;
1147 break;
1148 case PACKET_ERROR:
1149 warning (_("Remote failure reply: %s"), rs->buf);
1150 break;
1151 case PACKET_UNKNOWN:
1152 break;
1153 }
1154
1155 return 0;
1156 }
1157
1158 /* Add PID to GDB's inferior table. Since we can be connected to a
1159 remote system before before knowing about any inferior, mark the
1160 target with execution when we find the first inferior. If ATTACHED
1161 is 1, then we had just attached to this inferior. If it is 0, then
1162 we just created this inferior. If it is -1, then try querying the
1163 remote stub to find out if it had attached to the inferior or
1164 not. */
1165
1166 static struct inferior *
1167 remote_add_inferior (int pid, int attached)
1168 {
1169 struct remote_state *rs = get_remote_state ();
1170 struct inferior *inf;
1171
1172 /* Check whether this process we're learning about is to be
1173 considered attached, or if is to be considered to have been
1174 spawned by the stub. */
1175 if (attached == -1)
1176 attached = remote_query_attached (pid);
1177
1178 inf = add_inferior (pid);
1179
1180 inf->attach_flag = attached;
1181
1182 /* This may be the first inferior we hear about. */
1183 if (!target_has_execution)
1184 {
1185 if (rs->extended)
1186 target_mark_running (&extended_remote_ops);
1187 else
1188 target_mark_running (&remote_ops);
1189 }
1190
1191 return inf;
1192 }
1193
1194 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1195 according to RUNNING. */
1196
1197 static void
1198 remote_add_thread (ptid_t ptid, int running)
1199 {
1200 add_thread (ptid);
1201
1202 set_executing (ptid, running);
1203 set_running (ptid, running);
1204 }
1205
1206 /* Come here when we learn about a thread id from the remote target.
1207 It may be the first time we hear about such thread, so take the
1208 opportunity to add it to GDB's thread list. In case this is the
1209 first time we're noticing its corresponding inferior, add it to
1210 GDB's inferior list as well. */
1211
1212 static void
1213 remote_notice_new_inferior (ptid_t currthread, int running)
1214 {
1215 struct remote_state *rs = get_remote_state ();
1216
1217 /* If this is a new thread, add it to GDB's thread list.
1218 If we leave it up to WFI to do this, bad things will happen. */
1219
1220 if (in_thread_list (currthread) && is_exited (currthread))
1221 {
1222 /* We're seeing an event on a thread id we knew had exited.
1223 This has to be a new thread reusing the old id. Add it. */
1224 remote_add_thread (currthread, running);
1225 return;
1226 }
1227
1228 if (!in_thread_list (currthread))
1229 {
1230 struct inferior *inf = NULL;
1231 int pid = ptid_get_pid (currthread);
1232
1233 if (ptid_is_pid (inferior_ptid)
1234 && pid == ptid_get_pid (inferior_ptid))
1235 {
1236 /* inferior_ptid has no thread member yet. This can happen
1237 with the vAttach -> remote_wait,"TAAthread:" path if the
1238 stub doesn't support qC. This is the first stop reported
1239 after an attach, so this is the main thread. Update the
1240 ptid in the thread list. */
1241 if (in_thread_list (pid_to_ptid (pid)))
1242 thread_change_ptid (inferior_ptid, currthread);
1243 else
1244 {
1245 remote_add_thread (currthread, running);
1246 inferior_ptid = currthread;
1247 }
1248 return;
1249 }
1250
1251 if (ptid_equal (magic_null_ptid, inferior_ptid))
1252 {
1253 /* inferior_ptid is not set yet. This can happen with the
1254 vRun -> remote_wait,"TAAthread:" path if the stub
1255 doesn't support qC. This is the first stop reported
1256 after an attach, so this is the main thread. Update the
1257 ptid in the thread list. */
1258 thread_change_ptid (inferior_ptid, currthread);
1259 return;
1260 }
1261
1262 /* When connecting to a target remote, or to a target
1263 extended-remote which already was debugging an inferior, we
1264 may not know about it yet. Add it before adding its child
1265 thread, so notifications are emitted in a sensible order. */
1266 if (!in_inferior_list (ptid_get_pid (currthread)))
1267 inf = remote_add_inferior (ptid_get_pid (currthread), -1);
1268
1269 /* This is really a new thread. Add it. */
1270 remote_add_thread (currthread, running);
1271
1272 /* If we found a new inferior, let the common code do whatever
1273 it needs to with it (e.g., read shared libraries, insert
1274 breakpoints). */
1275 if (inf != NULL)
1276 notice_new_inferior (currthread, running, 0);
1277 }
1278 }
1279
1280 /* Call this function as a result of
1281 1) A halt indication (T packet) containing a thread id
1282 2) A direct query of currthread
1283 3) Successful execution of set thread
1284 */
1285
1286 static void
1287 record_currthread (ptid_t currthread)
1288 {
1289 general_thread = currthread;
1290
1291 if (ptid_equal (currthread, minus_one_ptid))
1292 /* We're just invalidating the local thread mirror. */
1293 return;
1294
1295 remote_notice_new_inferior (currthread, 0);
1296 }
1297
1298 static char *last_pass_packet;
1299
1300 /* If 'QPassSignals' is supported, tell the remote stub what signals
1301 it can simply pass through to the inferior without reporting. */
1302
1303 static void
1304 remote_pass_signals (void)
1305 {
1306 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1307 {
1308 char *pass_packet, *p;
1309 int numsigs = (int) TARGET_SIGNAL_LAST;
1310 int count = 0, i;
1311
1312 gdb_assert (numsigs < 256);
1313 for (i = 0; i < numsigs; i++)
1314 {
1315 if (signal_stop_state (i) == 0
1316 && signal_print_state (i) == 0
1317 && signal_pass_state (i) == 1)
1318 count++;
1319 }
1320 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1321 strcpy (pass_packet, "QPassSignals:");
1322 p = pass_packet + strlen (pass_packet);
1323 for (i = 0; i < numsigs; i++)
1324 {
1325 if (signal_stop_state (i) == 0
1326 && signal_print_state (i) == 0
1327 && signal_pass_state (i) == 1)
1328 {
1329 if (i >= 16)
1330 *p++ = tohex (i >> 4);
1331 *p++ = tohex (i & 15);
1332 if (count)
1333 *p++ = ';';
1334 else
1335 break;
1336 count--;
1337 }
1338 }
1339 *p = 0;
1340 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1341 {
1342 struct remote_state *rs = get_remote_state ();
1343 char *buf = rs->buf;
1344
1345 putpkt (pass_packet);
1346 getpkt (&rs->buf, &rs->buf_size, 0);
1347 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1348 if (last_pass_packet)
1349 xfree (last_pass_packet);
1350 last_pass_packet = pass_packet;
1351 }
1352 else
1353 xfree (pass_packet);
1354 }
1355 }
1356
1357 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1358 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1359 thread. If GEN is set, set the general thread, if not, then set
1360 the step/continue thread. */
1361 static void
1362 set_thread (struct ptid ptid, int gen)
1363 {
1364 struct remote_state *rs = get_remote_state ();
1365 ptid_t state = gen ? general_thread : continue_thread;
1366 char *buf = rs->buf;
1367 char *endbuf = rs->buf + get_remote_packet_size ();
1368
1369 if (ptid_equal (state, ptid))
1370 return;
1371
1372 *buf++ = 'H';
1373 *buf++ = gen ? 'g' : 'c';
1374 if (ptid_equal (ptid, magic_null_ptid))
1375 xsnprintf (buf, endbuf - buf, "0");
1376 else if (ptid_equal (ptid, any_thread_ptid))
1377 xsnprintf (buf, endbuf - buf, "0");
1378 else if (ptid_equal (ptid, minus_one_ptid))
1379 xsnprintf (buf, endbuf - buf, "-1");
1380 else
1381 write_ptid (buf, endbuf, ptid);
1382 putpkt (rs->buf);
1383 getpkt (&rs->buf, &rs->buf_size, 0);
1384 if (gen)
1385 general_thread = ptid;
1386 else
1387 continue_thread = ptid;
1388 }
1389
1390 static void
1391 set_general_thread (struct ptid ptid)
1392 {
1393 set_thread (ptid, 1);
1394 }
1395
1396 static void
1397 set_continue_thread (struct ptid ptid)
1398 {
1399 set_thread (ptid, 0);
1400 }
1401
1402 /* Change the remote current process. Which thread within the process
1403 ends up selected isn't important, as long as it is the same process
1404 as what INFERIOR_PTID points to.
1405
1406 This comes from that fact that there is no explicit notion of
1407 "selected process" in the protocol. The selected process for
1408 general operations is the process the selected general thread
1409 belongs to. */
1410
1411 static void
1412 set_general_process (void)
1413 {
1414 struct remote_state *rs = get_remote_state ();
1415
1416 /* If the remote can't handle multiple processes, don't bother. */
1417 if (!remote_multi_process_p (rs))
1418 return;
1419
1420 /* We only need to change the remote current thread if it's pointing
1421 at some other process. */
1422 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1423 set_general_thread (inferior_ptid);
1424 }
1425
1426 \f
1427 /* Return nonzero if the thread PTID is still alive on the remote
1428 system. */
1429
1430 static int
1431 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1432 {
1433 struct remote_state *rs = get_remote_state ();
1434 int tid = ptid_get_tid (ptid);
1435 char *p, *endp;
1436
1437 if (ptid_equal (ptid, magic_null_ptid))
1438 /* The main thread is always alive. */
1439 return 1;
1440
1441 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1442 /* The main thread is always alive. This can happen after a
1443 vAttach, if the remote side doesn't support
1444 multi-threading. */
1445 return 1;
1446
1447 p = rs->buf;
1448 endp = rs->buf + get_remote_packet_size ();
1449
1450 *p++ = 'T';
1451 write_ptid (p, endp, ptid);
1452
1453 putpkt (rs->buf);
1454 getpkt (&rs->buf, &rs->buf_size, 0);
1455 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1456 }
1457
1458 /* About these extended threadlist and threadinfo packets. They are
1459 variable length packets but, the fields within them are often fixed
1460 length. They are redundent enough to send over UDP as is the
1461 remote protocol in general. There is a matching unit test module
1462 in libstub. */
1463
1464 #define OPAQUETHREADBYTES 8
1465
1466 /* a 64 bit opaque identifier */
1467 typedef unsigned char threadref[OPAQUETHREADBYTES];
1468
1469 /* WARNING: This threadref data structure comes from the remote O.S.,
1470 libstub protocol encoding, and remote.c. it is not particularly
1471 changable. */
1472
1473 /* Right now, the internal structure is int. We want it to be bigger.
1474 Plan to fix this.
1475 */
1476
1477 typedef int gdb_threadref; /* Internal GDB thread reference. */
1478
1479 /* gdb_ext_thread_info is an internal GDB data structure which is
1480 equivalent to the reply of the remote threadinfo packet. */
1481
1482 struct gdb_ext_thread_info
1483 {
1484 threadref threadid; /* External form of thread reference. */
1485 int active; /* Has state interesting to GDB?
1486 regs, stack. */
1487 char display[256]; /* Brief state display, name,
1488 blocked/suspended. */
1489 char shortname[32]; /* To be used to name threads. */
1490 char more_display[256]; /* Long info, statistics, queue depth,
1491 whatever. */
1492 };
1493
1494 /* The volume of remote transfers can be limited by submitting
1495 a mask containing bits specifying the desired information.
1496 Use a union of these values as the 'selection' parameter to
1497 get_thread_info. FIXME: Make these TAG names more thread specific.
1498 */
1499
1500 #define TAG_THREADID 1
1501 #define TAG_EXISTS 2
1502 #define TAG_DISPLAY 4
1503 #define TAG_THREADNAME 8
1504 #define TAG_MOREDISPLAY 16
1505
1506 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1507
1508 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1509
1510 static char *unpack_nibble (char *buf, int *val);
1511
1512 static char *pack_nibble (char *buf, int nibble);
1513
1514 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1515
1516 static char *unpack_byte (char *buf, int *value);
1517
1518 static char *pack_int (char *buf, int value);
1519
1520 static char *unpack_int (char *buf, int *value);
1521
1522 static char *unpack_string (char *src, char *dest, int length);
1523
1524 static char *pack_threadid (char *pkt, threadref *id);
1525
1526 static char *unpack_threadid (char *inbuf, threadref *id);
1527
1528 void int_to_threadref (threadref *id, int value);
1529
1530 static int threadref_to_int (threadref *ref);
1531
1532 static void copy_threadref (threadref *dest, threadref *src);
1533
1534 static int threadmatch (threadref *dest, threadref *src);
1535
1536 static char *pack_threadinfo_request (char *pkt, int mode,
1537 threadref *id);
1538
1539 static int remote_unpack_thread_info_response (char *pkt,
1540 threadref *expectedref,
1541 struct gdb_ext_thread_info
1542 *info);
1543
1544
1545 static int remote_get_threadinfo (threadref *threadid,
1546 int fieldset, /*TAG mask */
1547 struct gdb_ext_thread_info *info);
1548
1549 static char *pack_threadlist_request (char *pkt, int startflag,
1550 int threadcount,
1551 threadref *nextthread);
1552
1553 static int parse_threadlist_response (char *pkt,
1554 int result_limit,
1555 threadref *original_echo,
1556 threadref *resultlist,
1557 int *doneflag);
1558
1559 static int remote_get_threadlist (int startflag,
1560 threadref *nextthread,
1561 int result_limit,
1562 int *done,
1563 int *result_count,
1564 threadref *threadlist);
1565
1566 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1567
1568 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1569 void *context, int looplimit);
1570
1571 static int remote_newthread_step (threadref *ref, void *context);
1572
1573
1574 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1575 buffer we're allowed to write to. Returns
1576 BUF+CHARACTERS_WRITTEN. */
1577
1578 static char *
1579 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1580 {
1581 int pid, tid;
1582 struct remote_state *rs = get_remote_state ();
1583
1584 if (remote_multi_process_p (rs))
1585 {
1586 pid = ptid_get_pid (ptid);
1587 if (pid < 0)
1588 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1589 else
1590 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1591 }
1592 tid = ptid_get_tid (ptid);
1593 if (tid < 0)
1594 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1595 else
1596 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1597
1598 return buf;
1599 }
1600
1601 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1602 passed the last parsed char. Returns null_ptid on error. */
1603
1604 static ptid_t
1605 read_ptid (char *buf, char **obuf)
1606 {
1607 char *p = buf;
1608 char *pp;
1609 ULONGEST pid = 0, tid = 0;
1610 ptid_t ptid;
1611
1612 if (*p == 'p')
1613 {
1614 /* Multi-process ptid. */
1615 pp = unpack_varlen_hex (p + 1, &pid);
1616 if (*pp != '.')
1617 error (_("invalid remote ptid: %s\n"), p);
1618
1619 p = pp;
1620 pp = unpack_varlen_hex (p + 1, &tid);
1621 if (obuf)
1622 *obuf = pp;
1623 return ptid_build (pid, 0, tid);
1624 }
1625
1626 /* No multi-process. Just a tid. */
1627 pp = unpack_varlen_hex (p, &tid);
1628
1629 /* Since the stub is not sending a process id, then default to
1630 what's in inferior_ptid, unless it's null at this point. If so,
1631 then since there's no way to know the pid of the reported
1632 threads, use the magic number. */
1633 if (ptid_equal (inferior_ptid, null_ptid))
1634 pid = ptid_get_pid (magic_null_ptid);
1635 else
1636 pid = ptid_get_pid (inferior_ptid);
1637
1638 if (obuf)
1639 *obuf = pp;
1640 return ptid_build (pid, 0, tid);
1641 }
1642
1643 /* Encode 64 bits in 16 chars of hex. */
1644
1645 static const char hexchars[] = "0123456789abcdef";
1646
1647 static int
1648 ishex (int ch, int *val)
1649 {
1650 if ((ch >= 'a') && (ch <= 'f'))
1651 {
1652 *val = ch - 'a' + 10;
1653 return 1;
1654 }
1655 if ((ch >= 'A') && (ch <= 'F'))
1656 {
1657 *val = ch - 'A' + 10;
1658 return 1;
1659 }
1660 if ((ch >= '0') && (ch <= '9'))
1661 {
1662 *val = ch - '0';
1663 return 1;
1664 }
1665 return 0;
1666 }
1667
1668 static int
1669 stubhex (int ch)
1670 {
1671 if (ch >= 'a' && ch <= 'f')
1672 return ch - 'a' + 10;
1673 if (ch >= '0' && ch <= '9')
1674 return ch - '0';
1675 if (ch >= 'A' && ch <= 'F')
1676 return ch - 'A' + 10;
1677 return -1;
1678 }
1679
1680 static int
1681 stub_unpack_int (char *buff, int fieldlength)
1682 {
1683 int nibble;
1684 int retval = 0;
1685
1686 while (fieldlength)
1687 {
1688 nibble = stubhex (*buff++);
1689 retval |= nibble;
1690 fieldlength--;
1691 if (fieldlength)
1692 retval = retval << 4;
1693 }
1694 return retval;
1695 }
1696
1697 char *
1698 unpack_varlen_hex (char *buff, /* packet to parse */
1699 ULONGEST *result)
1700 {
1701 int nibble;
1702 ULONGEST retval = 0;
1703
1704 while (ishex (*buff, &nibble))
1705 {
1706 buff++;
1707 retval = retval << 4;
1708 retval |= nibble & 0x0f;
1709 }
1710 *result = retval;
1711 return buff;
1712 }
1713
1714 static char *
1715 unpack_nibble (char *buf, int *val)
1716 {
1717 *val = fromhex (*buf++);
1718 return buf;
1719 }
1720
1721 static char *
1722 pack_nibble (char *buf, int nibble)
1723 {
1724 *buf++ = hexchars[(nibble & 0x0f)];
1725 return buf;
1726 }
1727
1728 static char *
1729 pack_hex_byte (char *pkt, int byte)
1730 {
1731 *pkt++ = hexchars[(byte >> 4) & 0xf];
1732 *pkt++ = hexchars[(byte & 0xf)];
1733 return pkt;
1734 }
1735
1736 static char *
1737 unpack_byte (char *buf, int *value)
1738 {
1739 *value = stub_unpack_int (buf, 2);
1740 return buf + 2;
1741 }
1742
1743 static char *
1744 pack_int (char *buf, int value)
1745 {
1746 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1747 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1748 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1749 buf = pack_hex_byte (buf, (value & 0xff));
1750 return buf;
1751 }
1752
1753 static char *
1754 unpack_int (char *buf, int *value)
1755 {
1756 *value = stub_unpack_int (buf, 8);
1757 return buf + 8;
1758 }
1759
1760 #if 0 /* Currently unused, uncomment when needed. */
1761 static char *pack_string (char *pkt, char *string);
1762
1763 static char *
1764 pack_string (char *pkt, char *string)
1765 {
1766 char ch;
1767 int len;
1768
1769 len = strlen (string);
1770 if (len > 200)
1771 len = 200; /* Bigger than most GDB packets, junk??? */
1772 pkt = pack_hex_byte (pkt, len);
1773 while (len-- > 0)
1774 {
1775 ch = *string++;
1776 if ((ch == '\0') || (ch == '#'))
1777 ch = '*'; /* Protect encapsulation. */
1778 *pkt++ = ch;
1779 }
1780 return pkt;
1781 }
1782 #endif /* 0 (unused) */
1783
1784 static char *
1785 unpack_string (char *src, char *dest, int length)
1786 {
1787 while (length--)
1788 *dest++ = *src++;
1789 *dest = '\0';
1790 return src;
1791 }
1792
1793 static char *
1794 pack_threadid (char *pkt, threadref *id)
1795 {
1796 char *limit;
1797 unsigned char *altid;
1798
1799 altid = (unsigned char *) id;
1800 limit = pkt + BUF_THREAD_ID_SIZE;
1801 while (pkt < limit)
1802 pkt = pack_hex_byte (pkt, *altid++);
1803 return pkt;
1804 }
1805
1806
1807 static char *
1808 unpack_threadid (char *inbuf, threadref *id)
1809 {
1810 char *altref;
1811 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1812 int x, y;
1813
1814 altref = (char *) id;
1815
1816 while (inbuf < limit)
1817 {
1818 x = stubhex (*inbuf++);
1819 y = stubhex (*inbuf++);
1820 *altref++ = (x << 4) | y;
1821 }
1822 return inbuf;
1823 }
1824
1825 /* Externally, threadrefs are 64 bits but internally, they are still
1826 ints. This is due to a mismatch of specifications. We would like
1827 to use 64bit thread references internally. This is an adapter
1828 function. */
1829
1830 void
1831 int_to_threadref (threadref *id, int value)
1832 {
1833 unsigned char *scan;
1834
1835 scan = (unsigned char *) id;
1836 {
1837 int i = 4;
1838 while (i--)
1839 *scan++ = 0;
1840 }
1841 *scan++ = (value >> 24) & 0xff;
1842 *scan++ = (value >> 16) & 0xff;
1843 *scan++ = (value >> 8) & 0xff;
1844 *scan++ = (value & 0xff);
1845 }
1846
1847 static int
1848 threadref_to_int (threadref *ref)
1849 {
1850 int i, value = 0;
1851 unsigned char *scan;
1852
1853 scan = *ref;
1854 scan += 4;
1855 i = 4;
1856 while (i-- > 0)
1857 value = (value << 8) | ((*scan++) & 0xff);
1858 return value;
1859 }
1860
1861 static void
1862 copy_threadref (threadref *dest, threadref *src)
1863 {
1864 int i;
1865 unsigned char *csrc, *cdest;
1866
1867 csrc = (unsigned char *) src;
1868 cdest = (unsigned char *) dest;
1869 i = 8;
1870 while (i--)
1871 *cdest++ = *csrc++;
1872 }
1873
1874 static int
1875 threadmatch (threadref *dest, threadref *src)
1876 {
1877 /* Things are broken right now, so just assume we got a match. */
1878 #if 0
1879 unsigned char *srcp, *destp;
1880 int i, result;
1881 srcp = (char *) src;
1882 destp = (char *) dest;
1883
1884 result = 1;
1885 while (i-- > 0)
1886 result &= (*srcp++ == *destp++) ? 1 : 0;
1887 return result;
1888 #endif
1889 return 1;
1890 }
1891
1892 /*
1893 threadid:1, # always request threadid
1894 context_exists:2,
1895 display:4,
1896 unique_name:8,
1897 more_display:16
1898 */
1899
1900 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1901
1902 static char *
1903 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1904 {
1905 *pkt++ = 'q'; /* Info Query */
1906 *pkt++ = 'P'; /* process or thread info */
1907 pkt = pack_int (pkt, mode); /* mode */
1908 pkt = pack_threadid (pkt, id); /* threadid */
1909 *pkt = '\0'; /* terminate */
1910 return pkt;
1911 }
1912
1913 /* These values tag the fields in a thread info response packet. */
1914 /* Tagging the fields allows us to request specific fields and to
1915 add more fields as time goes by. */
1916
1917 #define TAG_THREADID 1 /* Echo the thread identifier. */
1918 #define TAG_EXISTS 2 /* Is this process defined enough to
1919 fetch registers and its stack? */
1920 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1921 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1922 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1923 the process. */
1924
1925 static int
1926 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1927 struct gdb_ext_thread_info *info)
1928 {
1929 struct remote_state *rs = get_remote_state ();
1930 int mask, length;
1931 int tag;
1932 threadref ref;
1933 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1934 int retval = 1;
1935
1936 /* info->threadid = 0; FIXME: implement zero_threadref. */
1937 info->active = 0;
1938 info->display[0] = '\0';
1939 info->shortname[0] = '\0';
1940 info->more_display[0] = '\0';
1941
1942 /* Assume the characters indicating the packet type have been
1943 stripped. */
1944 pkt = unpack_int (pkt, &mask); /* arg mask */
1945 pkt = unpack_threadid (pkt, &ref);
1946
1947 if (mask == 0)
1948 warning (_("Incomplete response to threadinfo request."));
1949 if (!threadmatch (&ref, expectedref))
1950 { /* This is an answer to a different request. */
1951 warning (_("ERROR RMT Thread info mismatch."));
1952 return 0;
1953 }
1954 copy_threadref (&info->threadid, &ref);
1955
1956 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1957
1958 /* Packets are terminated with nulls. */
1959 while ((pkt < limit) && mask && *pkt)
1960 {
1961 pkt = unpack_int (pkt, &tag); /* tag */
1962 pkt = unpack_byte (pkt, &length); /* length */
1963 if (!(tag & mask)) /* Tags out of synch with mask. */
1964 {
1965 warning (_("ERROR RMT: threadinfo tag mismatch."));
1966 retval = 0;
1967 break;
1968 }
1969 if (tag == TAG_THREADID)
1970 {
1971 if (length != 16)
1972 {
1973 warning (_("ERROR RMT: length of threadid is not 16."));
1974 retval = 0;
1975 break;
1976 }
1977 pkt = unpack_threadid (pkt, &ref);
1978 mask = mask & ~TAG_THREADID;
1979 continue;
1980 }
1981 if (tag == TAG_EXISTS)
1982 {
1983 info->active = stub_unpack_int (pkt, length);
1984 pkt += length;
1985 mask = mask & ~(TAG_EXISTS);
1986 if (length > 8)
1987 {
1988 warning (_("ERROR RMT: 'exists' length too long."));
1989 retval = 0;
1990 break;
1991 }
1992 continue;
1993 }
1994 if (tag == TAG_THREADNAME)
1995 {
1996 pkt = unpack_string (pkt, &info->shortname[0], length);
1997 mask = mask & ~TAG_THREADNAME;
1998 continue;
1999 }
2000 if (tag == TAG_DISPLAY)
2001 {
2002 pkt = unpack_string (pkt, &info->display[0], length);
2003 mask = mask & ~TAG_DISPLAY;
2004 continue;
2005 }
2006 if (tag == TAG_MOREDISPLAY)
2007 {
2008 pkt = unpack_string (pkt, &info->more_display[0], length);
2009 mask = mask & ~TAG_MOREDISPLAY;
2010 continue;
2011 }
2012 warning (_("ERROR RMT: unknown thread info tag."));
2013 break; /* Not a tag we know about. */
2014 }
2015 return retval;
2016 }
2017
2018 static int
2019 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2020 struct gdb_ext_thread_info *info)
2021 {
2022 struct remote_state *rs = get_remote_state ();
2023 int result;
2024
2025 pack_threadinfo_request (rs->buf, fieldset, threadid);
2026 putpkt (rs->buf);
2027 getpkt (&rs->buf, &rs->buf_size, 0);
2028
2029 if (rs->buf[0] == '\0')
2030 return 0;
2031
2032 result = remote_unpack_thread_info_response (rs->buf + 2,
2033 threadid, info);
2034 return result;
2035 }
2036
2037 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2038
2039 static char *
2040 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2041 threadref *nextthread)
2042 {
2043 *pkt++ = 'q'; /* info query packet */
2044 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2045 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2046 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2047 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2048 *pkt = '\0';
2049 return pkt;
2050 }
2051
2052 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2053
2054 static int
2055 parse_threadlist_response (char *pkt, int result_limit,
2056 threadref *original_echo, threadref *resultlist,
2057 int *doneflag)
2058 {
2059 struct remote_state *rs = get_remote_state ();
2060 char *limit;
2061 int count, resultcount, done;
2062
2063 resultcount = 0;
2064 /* Assume the 'q' and 'M chars have been stripped. */
2065 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2066 /* done parse past here */
2067 pkt = unpack_byte (pkt, &count); /* count field */
2068 pkt = unpack_nibble (pkt, &done);
2069 /* The first threadid is the argument threadid. */
2070 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2071 while ((count-- > 0) && (pkt < limit))
2072 {
2073 pkt = unpack_threadid (pkt, resultlist++);
2074 if (resultcount++ >= result_limit)
2075 break;
2076 }
2077 if (doneflag)
2078 *doneflag = done;
2079 return resultcount;
2080 }
2081
2082 static int
2083 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2084 int *done, int *result_count, threadref *threadlist)
2085 {
2086 struct remote_state *rs = get_remote_state ();
2087 static threadref echo_nextthread;
2088 int result = 1;
2089
2090 /* Trancate result limit to be smaller than the packet size. */
2091 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
2092 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2093
2094 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2095 putpkt (rs->buf);
2096 getpkt (&rs->buf, &rs->buf_size, 0);
2097
2098 if (*rs->buf == '\0')
2099 *result_count = 0;
2100 else
2101 *result_count =
2102 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2103 threadlist, done);
2104
2105 if (!threadmatch (&echo_nextthread, nextthread))
2106 {
2107 /* FIXME: This is a good reason to drop the packet. */
2108 /* Possably, there is a duplicate response. */
2109 /* Possabilities :
2110 retransmit immediatly - race conditions
2111 retransmit after timeout - yes
2112 exit
2113 wait for packet, then exit
2114 */
2115 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2116 return 0; /* I choose simply exiting. */
2117 }
2118 if (*result_count <= 0)
2119 {
2120 if (*done != 1)
2121 {
2122 warning (_("RMT ERROR : failed to get remote thread list."));
2123 result = 0;
2124 }
2125 return result; /* break; */
2126 }
2127 if (*result_count > result_limit)
2128 {
2129 *result_count = 0;
2130 warning (_("RMT ERROR: threadlist response longer than requested."));
2131 return 0;
2132 }
2133 return result;
2134 }
2135
2136 /* This is the interface between remote and threads, remotes upper
2137 interface. */
2138
2139 /* remote_find_new_threads retrieves the thread list and for each
2140 thread in the list, looks up the thread in GDB's internal list,
2141 adding the thread if it does not already exist. This involves
2142 getting partial thread lists from the remote target so, polling the
2143 quit_flag is required. */
2144
2145
2146 /* About this many threadisds fit in a packet. */
2147
2148 #define MAXTHREADLISTRESULTS 32
2149
2150 static int
2151 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2152 int looplimit)
2153 {
2154 int done, i, result_count;
2155 int startflag = 1;
2156 int result = 1;
2157 int loopcount = 0;
2158 static threadref nextthread;
2159 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2160
2161 done = 0;
2162 while (!done)
2163 {
2164 if (loopcount++ > looplimit)
2165 {
2166 result = 0;
2167 warning (_("Remote fetch threadlist -infinite loop-."));
2168 break;
2169 }
2170 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2171 &done, &result_count, resultthreadlist))
2172 {
2173 result = 0;
2174 break;
2175 }
2176 /* Clear for later iterations. */
2177 startflag = 0;
2178 /* Setup to resume next batch of thread references, set nextthread. */
2179 if (result_count >= 1)
2180 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2181 i = 0;
2182 while (result_count--)
2183 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2184 break;
2185 }
2186 return result;
2187 }
2188
2189 static int
2190 remote_newthread_step (threadref *ref, void *context)
2191 {
2192 int pid = ptid_get_pid (inferior_ptid);
2193 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2194
2195 if (!in_thread_list (ptid))
2196 add_thread (ptid);
2197 return 1; /* continue iterator */
2198 }
2199
2200 #define CRAZY_MAX_THREADS 1000
2201
2202 static ptid_t
2203 remote_current_thread (ptid_t oldpid)
2204 {
2205 struct remote_state *rs = get_remote_state ();
2206 char *p = rs->buf;
2207 int tid;
2208 int pid;
2209
2210 putpkt ("qC");
2211 getpkt (&rs->buf, &rs->buf_size, 0);
2212 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2213 return read_ptid (&rs->buf[2], NULL);
2214 else
2215 return oldpid;
2216 }
2217
2218 /* Find new threads for info threads command.
2219 * Original version, using John Metzler's thread protocol.
2220 */
2221
2222 static void
2223 remote_find_new_threads (void)
2224 {
2225 remote_threadlist_iterator (remote_newthread_step, 0,
2226 CRAZY_MAX_THREADS);
2227 }
2228
2229 /*
2230 * Find all threads for info threads command.
2231 * Uses new thread protocol contributed by Cisco.
2232 * Falls back and attempts to use the older method (above)
2233 * if the target doesn't respond to the new method.
2234 */
2235
2236 static void
2237 remote_threads_info (struct target_ops *ops)
2238 {
2239 struct remote_state *rs = get_remote_state ();
2240 char *bufp;
2241 ptid_t new_thread;
2242
2243 if (remote_desc == 0) /* paranoia */
2244 error (_("Command can only be used when connected to the remote target."));
2245
2246 if (use_threadinfo_query)
2247 {
2248 putpkt ("qfThreadInfo");
2249 getpkt (&rs->buf, &rs->buf_size, 0);
2250 bufp = rs->buf;
2251 if (bufp[0] != '\0') /* q packet recognized */
2252 {
2253 while (*bufp++ == 'm') /* reply contains one or more TID */
2254 {
2255 do
2256 {
2257 new_thread = read_ptid (bufp, &bufp);
2258 if (!ptid_equal (new_thread, null_ptid))
2259 {
2260 /* In non-stop mode, we assume new found threads
2261 are running until proven otherwise with a
2262 stop reply. In all-stop, we can only get
2263 here if all threads are stopped. */
2264 int running = non_stop ? 1 : 0;
2265
2266 remote_notice_new_inferior (new_thread, running);
2267 }
2268 }
2269 while (*bufp++ == ','); /* comma-separated list */
2270 putpkt ("qsThreadInfo");
2271 getpkt (&rs->buf, &rs->buf_size, 0);
2272 bufp = rs->buf;
2273 }
2274 return; /* done */
2275 }
2276 }
2277
2278 /* Only qfThreadInfo is supported in non-stop mode. */
2279 if (non_stop)
2280 return;
2281
2282 /* Else fall back to old method based on jmetzler protocol. */
2283 use_threadinfo_query = 0;
2284 remote_find_new_threads ();
2285 return;
2286 }
2287
2288 /*
2289 * Collect a descriptive string about the given thread.
2290 * The target may say anything it wants to about the thread
2291 * (typically info about its blocked / runnable state, name, etc.).
2292 * This string will appear in the info threads display.
2293 *
2294 * Optional: targets are not required to implement this function.
2295 */
2296
2297 static char *
2298 remote_threads_extra_info (struct thread_info *tp)
2299 {
2300 struct remote_state *rs = get_remote_state ();
2301 int result;
2302 int set;
2303 threadref id;
2304 struct gdb_ext_thread_info threadinfo;
2305 static char display_buf[100]; /* arbitrary... */
2306 int n = 0; /* position in display_buf */
2307
2308 if (remote_desc == 0) /* paranoia */
2309 internal_error (__FILE__, __LINE__,
2310 _("remote_threads_extra_info"));
2311
2312 if (ptid_equal (tp->ptid, magic_null_ptid)
2313 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2314 /* This is the main thread which was added by GDB. The remote
2315 server doesn't know about it. */
2316 return NULL;
2317
2318 if (use_threadextra_query)
2319 {
2320 char *b = rs->buf;
2321 char *endb = rs->buf + get_remote_packet_size ();
2322
2323 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2324 b += strlen (b);
2325 write_ptid (b, endb, tp->ptid);
2326
2327 putpkt (rs->buf);
2328 getpkt (&rs->buf, &rs->buf_size, 0);
2329 if (rs->buf[0] != 0)
2330 {
2331 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2332 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2333 display_buf [result] = '\0';
2334 return display_buf;
2335 }
2336 }
2337
2338 /* If the above query fails, fall back to the old method. */
2339 use_threadextra_query = 0;
2340 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2341 | TAG_MOREDISPLAY | TAG_DISPLAY;
2342 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2343 if (remote_get_threadinfo (&id, set, &threadinfo))
2344 if (threadinfo.active)
2345 {
2346 if (*threadinfo.shortname)
2347 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2348 " Name: %s,", threadinfo.shortname);
2349 if (*threadinfo.display)
2350 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2351 " State: %s,", threadinfo.display);
2352 if (*threadinfo.more_display)
2353 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2354 " Priority: %s", threadinfo.more_display);
2355
2356 if (n > 0)
2357 {
2358 /* For purely cosmetic reasons, clear up trailing commas. */
2359 if (',' == display_buf[n-1])
2360 display_buf[n-1] = ' ';
2361 return display_buf;
2362 }
2363 }
2364 return NULL;
2365 }
2366 \f
2367
2368 /* Restart the remote side; this is an extended protocol operation. */
2369
2370 static void
2371 extended_remote_restart (void)
2372 {
2373 struct remote_state *rs = get_remote_state ();
2374
2375 /* Send the restart command; for reasons I don't understand the
2376 remote side really expects a number after the "R". */
2377 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2378 putpkt (rs->buf);
2379
2380 remote_fileio_reset ();
2381 }
2382 \f
2383 /* Clean up connection to a remote debugger. */
2384
2385 static void
2386 remote_close (int quitting)
2387 {
2388 if (remote_desc == NULL)
2389 return; /* already closed */
2390
2391 /* Make sure we leave stdin registered in the event loop, and we
2392 don't leave the async SIGINT signal handler installed. */
2393 remote_terminal_ours ();
2394
2395 serial_close (remote_desc);
2396 remote_desc = NULL;
2397
2398 /* We don't have a connection to the remote stub anymore. Get rid
2399 of all the inferiors and their threads we were controlling. */
2400 discard_all_inferiors ();
2401
2402 /* We're no longer interested in any of these events. */
2403 discard_pending_stop_replies (-1);
2404
2405 if (remote_async_inferior_event_token)
2406 delete_async_event_handler (&remote_async_inferior_event_token);
2407 if (remote_async_get_pending_events_token)
2408 delete_async_event_handler (&remote_async_get_pending_events_token);
2409 }
2410
2411 /* Query the remote side for the text, data and bss offsets. */
2412
2413 static void
2414 get_offsets (void)
2415 {
2416 struct remote_state *rs = get_remote_state ();
2417 char *buf;
2418 char *ptr;
2419 int lose, num_segments = 0, do_sections, do_segments;
2420 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2421 struct section_offsets *offs;
2422 struct symfile_segment_data *data;
2423
2424 if (symfile_objfile == NULL)
2425 return;
2426
2427 putpkt ("qOffsets");
2428 getpkt (&rs->buf, &rs->buf_size, 0);
2429 buf = rs->buf;
2430
2431 if (buf[0] == '\000')
2432 return; /* Return silently. Stub doesn't support
2433 this command. */
2434 if (buf[0] == 'E')
2435 {
2436 warning (_("Remote failure reply: %s"), buf);
2437 return;
2438 }
2439
2440 /* Pick up each field in turn. This used to be done with scanf, but
2441 scanf will make trouble if CORE_ADDR size doesn't match
2442 conversion directives correctly. The following code will work
2443 with any size of CORE_ADDR. */
2444 text_addr = data_addr = bss_addr = 0;
2445 ptr = buf;
2446 lose = 0;
2447
2448 if (strncmp (ptr, "Text=", 5) == 0)
2449 {
2450 ptr += 5;
2451 /* Don't use strtol, could lose on big values. */
2452 while (*ptr && *ptr != ';')
2453 text_addr = (text_addr << 4) + fromhex (*ptr++);
2454
2455 if (strncmp (ptr, ";Data=", 6) == 0)
2456 {
2457 ptr += 6;
2458 while (*ptr && *ptr != ';')
2459 data_addr = (data_addr << 4) + fromhex (*ptr++);
2460 }
2461 else
2462 lose = 1;
2463
2464 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2465 {
2466 ptr += 5;
2467 while (*ptr && *ptr != ';')
2468 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2469
2470 if (bss_addr != data_addr)
2471 warning (_("Target reported unsupported offsets: %s"), buf);
2472 }
2473 else
2474 lose = 1;
2475 }
2476 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2477 {
2478 ptr += 8;
2479 /* Don't use strtol, could lose on big values. */
2480 while (*ptr && *ptr != ';')
2481 text_addr = (text_addr << 4) + fromhex (*ptr++);
2482 num_segments = 1;
2483
2484 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2485 {
2486 ptr += 9;
2487 while (*ptr && *ptr != ';')
2488 data_addr = (data_addr << 4) + fromhex (*ptr++);
2489 num_segments++;
2490 }
2491 }
2492 else
2493 lose = 1;
2494
2495 if (lose)
2496 error (_("Malformed response to offset query, %s"), buf);
2497 else if (*ptr != '\0')
2498 warning (_("Target reported unsupported offsets: %s"), buf);
2499
2500 offs = ((struct section_offsets *)
2501 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2502 memcpy (offs, symfile_objfile->section_offsets,
2503 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2504
2505 data = get_symfile_segment_data (symfile_objfile->obfd);
2506 do_segments = (data != NULL);
2507 do_sections = num_segments == 0;
2508
2509 if (num_segments > 0)
2510 {
2511 segments[0] = text_addr;
2512 segments[1] = data_addr;
2513 }
2514 /* If we have two segments, we can still try to relocate everything
2515 by assuming that the .text and .data offsets apply to the whole
2516 text and data segments. Convert the offsets given in the packet
2517 to base addresses for symfile_map_offsets_to_segments. */
2518 else if (data && data->num_segments == 2)
2519 {
2520 segments[0] = data->segment_bases[0] + text_addr;
2521 segments[1] = data->segment_bases[1] + data_addr;
2522 num_segments = 2;
2523 }
2524 /* If the object file has only one segment, assume that it is text
2525 rather than data; main programs with no writable data are rare,
2526 but programs with no code are useless. Of course the code might
2527 have ended up in the data segment... to detect that we would need
2528 the permissions here. */
2529 else if (data && data->num_segments == 1)
2530 {
2531 segments[0] = data->segment_bases[0] + text_addr;
2532 num_segments = 1;
2533 }
2534 /* There's no way to relocate by segment. */
2535 else
2536 do_segments = 0;
2537
2538 if (do_segments)
2539 {
2540 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2541 offs, num_segments, segments);
2542
2543 if (ret == 0 && !do_sections)
2544 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2545
2546 if (ret > 0)
2547 do_sections = 0;
2548 }
2549
2550 if (data)
2551 free_symfile_segment_data (data);
2552
2553 if (do_sections)
2554 {
2555 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2556
2557 /* This is a temporary kludge to force data and bss to use the same offsets
2558 because that's what nlmconv does now. The real solution requires changes
2559 to the stub and remote.c that I don't have time to do right now. */
2560
2561 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2562 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2563 }
2564
2565 objfile_relocate (symfile_objfile, offs);
2566 }
2567
2568 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
2569 threads we know are stopped already. This is used during the
2570 initial remote connection in non-stop mode --- threads that are
2571 reported as already being stopped are left stopped. */
2572
2573 static int
2574 set_stop_requested_callback (struct thread_info *thread, void *data)
2575 {
2576 /* If we have a stop reply for this thread, it must be stopped. */
2577 if (peek_stop_reply (thread->ptid))
2578 set_stop_requested (thread->ptid, 1);
2579
2580 return 0;
2581 }
2582
2583 /* Stub for catch_exception. */
2584
2585 struct start_remote_args
2586 {
2587 int from_tty;
2588
2589 /* The current target. */
2590 struct target_ops *target;
2591
2592 /* Non-zero if this is an extended-remote target. */
2593 int extended_p;
2594 };
2595
2596 static void
2597 remote_start_remote (struct ui_out *uiout, void *opaque)
2598 {
2599 struct start_remote_args *args = opaque;
2600 struct remote_state *rs = get_remote_state ();
2601 struct packet_config *noack_config;
2602 char *wait_status = NULL;
2603
2604 immediate_quit++; /* Allow user to interrupt it. */
2605
2606 /* Ack any packet which the remote side has already sent. */
2607 serial_write (remote_desc, "+", 1);
2608
2609 /* The first packet we send to the target is the optional "supported
2610 packets" request. If the target can answer this, it will tell us
2611 which later probes to skip. */
2612 remote_query_supported ();
2613
2614 /* Next, we possibly activate noack mode.
2615
2616 If the QStartNoAckMode packet configuration is set to AUTO,
2617 enable noack mode if the stub reported a wish for it with
2618 qSupported.
2619
2620 If set to TRUE, then enable noack mode even if the stub didn't
2621 report it in qSupported. If the stub doesn't reply OK, the
2622 session ends with an error.
2623
2624 If FALSE, then don't activate noack mode, regardless of what the
2625 stub claimed should be the default with qSupported. */
2626
2627 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
2628
2629 if (noack_config->detect == AUTO_BOOLEAN_TRUE
2630 || (noack_config->detect == AUTO_BOOLEAN_AUTO
2631 && noack_config->support == PACKET_ENABLE))
2632 {
2633 putpkt ("QStartNoAckMode");
2634 getpkt (&rs->buf, &rs->buf_size, 0);
2635 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
2636 rs->noack_mode = 1;
2637 }
2638
2639 if (args->extended_p)
2640 {
2641 /* Tell the remote that we are using the extended protocol. */
2642 putpkt ("!");
2643 getpkt (&rs->buf, &rs->buf_size, 0);
2644 }
2645
2646 /* Next, if the target can specify a description, read it. We do
2647 this before anything involving memory or registers. */
2648 target_find_description ();
2649
2650 /* On OSs where the list of libraries is global to all
2651 processes, we fetch them early. */
2652 if (gdbarch_has_global_solist (target_gdbarch))
2653 solib_add (NULL, args->from_tty, args->target, auto_solib_add);
2654
2655 if (non_stop)
2656 {
2657 if (!rs->non_stop_aware)
2658 error (_("Non-stop mode requested, but remote does not support non-stop"));
2659
2660 putpkt ("QNonStop:1");
2661 getpkt (&rs->buf, &rs->buf_size, 0);
2662
2663 if (strcmp (rs->buf, "OK") != 0)
2664 error ("Remote refused setting non-stop mode with: %s", rs->buf);
2665
2666 /* Find about threads and processes the stub is already
2667 controlling. We default to adding them in the running state.
2668 The '?' query below will then tell us about which threads are
2669 stopped. */
2670 remote_threads_info (args->target);
2671 }
2672 else if (rs->non_stop_aware)
2673 {
2674 /* Don't assume that the stub can operate in all-stop mode.
2675 Request it explicitely. */
2676 putpkt ("QNonStop:0");
2677 getpkt (&rs->buf, &rs->buf_size, 0);
2678
2679 if (strcmp (rs->buf, "OK") != 0)
2680 error ("Remote refused setting all-stop mode with: %s", rs->buf);
2681 }
2682
2683 /* Check whether the target is running now. */
2684 putpkt ("?");
2685 getpkt (&rs->buf, &rs->buf_size, 0);
2686
2687 if (!non_stop)
2688 {
2689 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
2690 {
2691 if (args->extended_p)
2692 {
2693 /* We're connected, but not running. Drop out before we
2694 call start_remote. */
2695 target_mark_exited (args->target);
2696 return;
2697 }
2698 else
2699 error (_("The target is not running (try extended-remote?)"));
2700 }
2701 else
2702 {
2703 /* Save the reply for later. */
2704 wait_status = alloca (strlen (rs->buf) + 1);
2705 strcpy (wait_status, rs->buf);
2706 }
2707
2708 /* Let the stub know that we want it to return the thread. */
2709 set_continue_thread (minus_one_ptid);
2710
2711 /* Without this, some commands which require an active target
2712 (such as kill) won't work. This variable serves (at least)
2713 double duty as both the pid of the target process (if it has
2714 such), and as a flag indicating that a target is active.
2715 These functions should be split out into seperate variables,
2716 especially since GDB will someday have a notion of debugging
2717 several processes. */
2718 inferior_ptid = magic_null_ptid;
2719
2720 /* Now, if we have thread information, update inferior_ptid. */
2721 inferior_ptid = remote_current_thread (inferior_ptid);
2722
2723 remote_add_inferior (ptid_get_pid (inferior_ptid), -1);
2724
2725 /* Always add the main thread. */
2726 add_thread_silent (inferior_ptid);
2727
2728 get_offsets (); /* Get text, data & bss offsets. */
2729
2730 /* If we could not find a description using qXfer, and we know
2731 how to do it some other way, try again. This is not
2732 supported for non-stop; it could be, but it is tricky if
2733 there are no stopped threads when we connect. */
2734 if (remote_read_description_p (args->target)
2735 && gdbarch_target_desc (target_gdbarch) == NULL)
2736 {
2737 target_clear_description ();
2738 target_find_description ();
2739 }
2740
2741 /* Use the previously fetched status. */
2742 gdb_assert (wait_status != NULL);
2743 strcpy (rs->buf, wait_status);
2744 rs->cached_wait_status = 1;
2745
2746 immediate_quit--;
2747 start_remote (args->from_tty); /* Initialize gdb process mechanisms. */
2748 }
2749 else
2750 {
2751 /* Clear WFI global state. Do this before finding about new
2752 threads and inferiors, and setting the current inferior.
2753 Otherwise we would clear the proceed status of the current
2754 inferior when we want its stop_soon state to be preserved
2755 (see notice_new_inferior). */
2756 init_wait_for_inferior ();
2757
2758 /* In non-stop, we will either get an "OK", meaning that there
2759 are no stopped threads at this time; or, a regular stop
2760 reply. In the latter case, there may be more than one thread
2761 stopped --- we pull them all out using the vStopped
2762 mechanism. */
2763 if (strcmp (rs->buf, "OK") != 0)
2764 {
2765 struct stop_reply *stop_reply;
2766 struct cleanup *old_chain;
2767
2768 stop_reply = stop_reply_xmalloc ();
2769 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
2770
2771 remote_parse_stop_reply (rs->buf, stop_reply);
2772 discard_cleanups (old_chain);
2773
2774 /* get_pending_stop_replies acks this one, and gets the rest
2775 out. */
2776 pending_stop_reply = stop_reply;
2777 remote_get_pending_stop_replies ();
2778
2779 /* Make sure that threads that were stopped remain
2780 stopped. */
2781 iterate_over_threads (set_stop_requested_callback, NULL);
2782 }
2783
2784 if (target_can_async_p ())
2785 target_async (inferior_event_handler, 0);
2786
2787 if (thread_count () == 0)
2788 {
2789 if (args->extended_p)
2790 {
2791 /* We're connected, but not running. Drop out before we
2792 call start_remote. */
2793 target_mark_exited (args->target);
2794 return;
2795 }
2796 else
2797 error (_("The target is not running (try extended-remote?)"));
2798 }
2799
2800 if (args->extended_p)
2801 target_mark_running (args->target);
2802
2803 /* Let the stub know that we want it to return the thread. */
2804
2805 /* Force the stub to choose a thread. */
2806 set_general_thread (null_ptid);
2807
2808 /* Query it. */
2809 inferior_ptid = remote_current_thread (minus_one_ptid);
2810 if (ptid_equal (inferior_ptid, minus_one_ptid))
2811 error (_("remote didn't report the current thread in non-stop mode"));
2812
2813 get_offsets (); /* Get text, data & bss offsets. */
2814
2815 /* In non-stop mode, any cached wait status will be stored in
2816 the stop reply queue. */
2817 gdb_assert (wait_status == NULL);
2818 }
2819
2820 /* If we connected to a live target, do some additional setup. */
2821 if (target_has_execution)
2822 {
2823 if (exec_bfd) /* No use without an exec file. */
2824 remote_check_symbols (symfile_objfile);
2825 }
2826
2827 /* If code is shared between processes, then breakpoints are global
2828 too; Insert them now. */
2829 if (gdbarch_has_global_solist (target_gdbarch)
2830 && breakpoints_always_inserted_mode ())
2831 insert_breakpoints ();
2832 }
2833
2834 /* Open a connection to a remote debugger.
2835 NAME is the filename used for communication. */
2836
2837 static void
2838 remote_open (char *name, int from_tty)
2839 {
2840 remote_open_1 (name, from_tty, &remote_ops, 0);
2841 }
2842
2843 /* Open a connection to a remote debugger using the extended
2844 remote gdb protocol. NAME is the filename used for communication. */
2845
2846 static void
2847 extended_remote_open (char *name, int from_tty)
2848 {
2849 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
2850 }
2851
2852 /* Generic code for opening a connection to a remote target. */
2853
2854 static void
2855 init_all_packet_configs (void)
2856 {
2857 int i;
2858 for (i = 0; i < PACKET_MAX; i++)
2859 update_packet_config (&remote_protocol_packets[i]);
2860 }
2861
2862 /* Symbol look-up. */
2863
2864 static void
2865 remote_check_symbols (struct objfile *objfile)
2866 {
2867 struct remote_state *rs = get_remote_state ();
2868 char *msg, *reply, *tmp;
2869 struct minimal_symbol *sym;
2870 int end;
2871
2872 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2873 return;
2874
2875 /* Make sure the remote is pointing at the right process. */
2876 set_general_process ();
2877
2878 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2879 because we need both at the same time. */
2880 msg = alloca (get_remote_packet_size ());
2881
2882 /* Invite target to request symbol lookups. */
2883
2884 putpkt ("qSymbol::");
2885 getpkt (&rs->buf, &rs->buf_size, 0);
2886 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2887 reply = rs->buf;
2888
2889 while (strncmp (reply, "qSymbol:", 8) == 0)
2890 {
2891 tmp = &reply[8];
2892 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2893 msg[end] = '\0';
2894 sym = lookup_minimal_symbol (msg, NULL, NULL);
2895 if (sym == NULL)
2896 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2897 else
2898 {
2899 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
2900
2901 /* If this is a function address, return the start of code
2902 instead of any data function descriptor. */
2903 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2904 sym_addr,
2905 &current_target);
2906
2907 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2908 paddr_nz (sym_addr), &reply[8]);
2909 }
2910
2911 putpkt (msg);
2912 getpkt (&rs->buf, &rs->buf_size, 0);
2913 reply = rs->buf;
2914 }
2915 }
2916
2917 static struct serial *
2918 remote_serial_open (char *name)
2919 {
2920 static int udp_warning = 0;
2921
2922 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2923 of in ser-tcp.c, because it is the remote protocol assuming that the
2924 serial connection is reliable and not the serial connection promising
2925 to be. */
2926 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2927 {
2928 warning (_("\
2929 The remote protocol may be unreliable over UDP.\n\
2930 Some events may be lost, rendering further debugging impossible."));
2931 udp_warning = 1;
2932 }
2933
2934 return serial_open (name);
2935 }
2936
2937 /* This type describes each known response to the qSupported
2938 packet. */
2939 struct protocol_feature
2940 {
2941 /* The name of this protocol feature. */
2942 const char *name;
2943
2944 /* The default for this protocol feature. */
2945 enum packet_support default_support;
2946
2947 /* The function to call when this feature is reported, or after
2948 qSupported processing if the feature is not supported.
2949 The first argument points to this structure. The second
2950 argument indicates whether the packet requested support be
2951 enabled, disabled, or probed (or the default, if this function
2952 is being called at the end of processing and this feature was
2953 not reported). The third argument may be NULL; if not NULL, it
2954 is a NUL-terminated string taken from the packet following
2955 this feature's name and an equals sign. */
2956 void (*func) (const struct protocol_feature *, enum packet_support,
2957 const char *);
2958
2959 /* The corresponding packet for this feature. Only used if
2960 FUNC is remote_supported_packet. */
2961 int packet;
2962 };
2963
2964 static void
2965 remote_supported_packet (const struct protocol_feature *feature,
2966 enum packet_support support,
2967 const char *argument)
2968 {
2969 if (argument)
2970 {
2971 warning (_("Remote qSupported response supplied an unexpected value for"
2972 " \"%s\"."), feature->name);
2973 return;
2974 }
2975
2976 if (remote_protocol_packets[feature->packet].support
2977 == PACKET_SUPPORT_UNKNOWN)
2978 remote_protocol_packets[feature->packet].support = support;
2979 }
2980
2981 static void
2982 remote_packet_size (const struct protocol_feature *feature,
2983 enum packet_support support, const char *value)
2984 {
2985 struct remote_state *rs = get_remote_state ();
2986
2987 int packet_size;
2988 char *value_end;
2989
2990 if (support != PACKET_ENABLE)
2991 return;
2992
2993 if (value == NULL || *value == '\0')
2994 {
2995 warning (_("Remote target reported \"%s\" without a size."),
2996 feature->name);
2997 return;
2998 }
2999
3000 errno = 0;
3001 packet_size = strtol (value, &value_end, 16);
3002 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3003 {
3004 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3005 feature->name, value);
3006 return;
3007 }
3008
3009 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3010 {
3011 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3012 packet_size, MAX_REMOTE_PACKET_SIZE);
3013 packet_size = MAX_REMOTE_PACKET_SIZE;
3014 }
3015
3016 /* Record the new maximum packet size. */
3017 rs->explicit_packet_size = packet_size;
3018 }
3019
3020 static void
3021 remote_multi_process_feature (const struct protocol_feature *feature,
3022 enum packet_support support, const char *value)
3023 {
3024 struct remote_state *rs = get_remote_state ();
3025 rs->multi_process_aware = (support == PACKET_ENABLE);
3026 }
3027
3028 static void
3029 remote_non_stop_feature (const struct protocol_feature *feature,
3030 enum packet_support support, const char *value)
3031 {
3032 struct remote_state *rs = get_remote_state ();
3033 rs->non_stop_aware = (support == PACKET_ENABLE);
3034 }
3035
3036 static struct protocol_feature remote_protocol_features[] = {
3037 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3038 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3039 PACKET_qXfer_auxv },
3040 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3041 PACKET_qXfer_features },
3042 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3043 PACKET_qXfer_libraries },
3044 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
3045 PACKET_qXfer_memory_map },
3046 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
3047 PACKET_qXfer_spu_read },
3048 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
3049 PACKET_qXfer_spu_write },
3050 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
3051 PACKET_qXfer_osdata },
3052 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
3053 PACKET_QPassSignals },
3054 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
3055 PACKET_QStartNoAckMode },
3056 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
3057 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
3058 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
3059 PACKET_qXfer_siginfo_read },
3060 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
3061 PACKET_qXfer_siginfo_write },
3062 };
3063
3064 static void
3065 remote_query_supported (void)
3066 {
3067 struct remote_state *rs = get_remote_state ();
3068 char *next;
3069 int i;
3070 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
3071
3072 /* The packet support flags are handled differently for this packet
3073 than for most others. We treat an error, a disabled packet, and
3074 an empty response identically: any features which must be reported
3075 to be used will be automatically disabled. An empty buffer
3076 accomplishes this, since that is also the representation for a list
3077 containing no features. */
3078
3079 rs->buf[0] = 0;
3080 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
3081 {
3082 if (rs->extended)
3083 putpkt ("qSupported:multiprocess+");
3084 else
3085 putpkt ("qSupported");
3086
3087 getpkt (&rs->buf, &rs->buf_size, 0);
3088
3089 /* If an error occured, warn, but do not return - just reset the
3090 buffer to empty and go on to disable features. */
3091 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
3092 == PACKET_ERROR)
3093 {
3094 warning (_("Remote failure reply: %s"), rs->buf);
3095 rs->buf[0] = 0;
3096 }
3097 }
3098
3099 memset (seen, 0, sizeof (seen));
3100
3101 next = rs->buf;
3102 while (*next)
3103 {
3104 enum packet_support is_supported;
3105 char *p, *end, *name_end, *value;
3106
3107 /* First separate out this item from the rest of the packet. If
3108 there's another item after this, we overwrite the separator
3109 (terminated strings are much easier to work with). */
3110 p = next;
3111 end = strchr (p, ';');
3112 if (end == NULL)
3113 {
3114 end = p + strlen (p);
3115 next = end;
3116 }
3117 else
3118 {
3119 *end = '\0';
3120 next = end + 1;
3121
3122 if (end == p)
3123 {
3124 warning (_("empty item in \"qSupported\" response"));
3125 continue;
3126 }
3127 }
3128
3129 name_end = strchr (p, '=');
3130 if (name_end)
3131 {
3132 /* This is a name=value entry. */
3133 is_supported = PACKET_ENABLE;
3134 value = name_end + 1;
3135 *name_end = '\0';
3136 }
3137 else
3138 {
3139 value = NULL;
3140 switch (end[-1])
3141 {
3142 case '+':
3143 is_supported = PACKET_ENABLE;
3144 break;
3145
3146 case '-':
3147 is_supported = PACKET_DISABLE;
3148 break;
3149
3150 case '?':
3151 is_supported = PACKET_SUPPORT_UNKNOWN;
3152 break;
3153
3154 default:
3155 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
3156 continue;
3157 }
3158 end[-1] = '\0';
3159 }
3160
3161 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3162 if (strcmp (remote_protocol_features[i].name, p) == 0)
3163 {
3164 const struct protocol_feature *feature;
3165
3166 seen[i] = 1;
3167 feature = &remote_protocol_features[i];
3168 feature->func (feature, is_supported, value);
3169 break;
3170 }
3171 }
3172
3173 /* If we increased the packet size, make sure to increase the global
3174 buffer size also. We delay this until after parsing the entire
3175 qSupported packet, because this is the same buffer we were
3176 parsing. */
3177 if (rs->buf_size < rs->explicit_packet_size)
3178 {
3179 rs->buf_size = rs->explicit_packet_size;
3180 rs->buf = xrealloc (rs->buf, rs->buf_size);
3181 }
3182
3183 /* Handle the defaults for unmentioned features. */
3184 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3185 if (!seen[i])
3186 {
3187 const struct protocol_feature *feature;
3188
3189 feature = &remote_protocol_features[i];
3190 feature->func (feature, feature->default_support, NULL);
3191 }
3192 }
3193
3194
3195 static void
3196 remote_open_1 (char *name, int from_tty, struct target_ops *target, int extended_p)
3197 {
3198 struct remote_state *rs = get_remote_state ();
3199
3200 if (name == 0)
3201 error (_("To open a remote debug connection, you need to specify what\n"
3202 "serial device is attached to the remote system\n"
3203 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
3204
3205 /* See FIXME above. */
3206 if (!target_async_permitted)
3207 wait_forever_enabled_p = 1;
3208
3209 /* If we're connected to a running target, target_preopen will kill it.
3210 But if we're connected to a target system with no running process,
3211 then we will still be connected when it returns. Ask this question
3212 first, before target_preopen has a chance to kill anything. */
3213 if (remote_desc != NULL && !target_has_execution)
3214 {
3215 if (!from_tty
3216 || query (_("Already connected to a remote target. Disconnect? ")))
3217 pop_target ();
3218 else
3219 error (_("Still connected."));
3220 }
3221
3222 target_preopen (from_tty);
3223
3224 unpush_target (target);
3225
3226 /* This time without a query. If we were connected to an
3227 extended-remote target and target_preopen killed the running
3228 process, we may still be connected. If we are starting "target
3229 remote" now, the extended-remote target will not have been
3230 removed by unpush_target. */
3231 if (remote_desc != NULL && !target_has_execution)
3232 pop_target ();
3233
3234 /* Make sure we send the passed signals list the next time we resume. */
3235 xfree (last_pass_packet);
3236 last_pass_packet = NULL;
3237
3238 remote_fileio_reset ();
3239 reopen_exec_file ();
3240 reread_symbols ();
3241
3242 remote_desc = remote_serial_open (name);
3243 if (!remote_desc)
3244 perror_with_name (name);
3245
3246 if (baud_rate != -1)
3247 {
3248 if (serial_setbaudrate (remote_desc, baud_rate))
3249 {
3250 /* The requested speed could not be set. Error out to
3251 top level after closing remote_desc. Take care to
3252 set remote_desc to NULL to avoid closing remote_desc
3253 more than once. */
3254 serial_close (remote_desc);
3255 remote_desc = NULL;
3256 perror_with_name (name);
3257 }
3258 }
3259
3260 serial_raw (remote_desc);
3261
3262 /* If there is something sitting in the buffer we might take it as a
3263 response to a command, which would be bad. */
3264 serial_flush_input (remote_desc);
3265
3266 if (from_tty)
3267 {
3268 puts_filtered ("Remote debugging using ");
3269 puts_filtered (name);
3270 puts_filtered ("\n");
3271 }
3272 push_target (target); /* Switch to using remote target now. */
3273
3274 /* Assume that the target is not running, until we learn otherwise. */
3275 if (extended_p)
3276 target_mark_exited (target);
3277
3278 /* Register extra event sources in the event loop. */
3279 remote_async_inferior_event_token
3280 = create_async_event_handler (remote_async_inferior_event_handler,
3281 NULL);
3282 remote_async_get_pending_events_token
3283 = create_async_event_handler (remote_async_get_pending_events_handler,
3284 NULL);
3285
3286 /* Reset the target state; these things will be queried either by
3287 remote_query_supported or as they are needed. */
3288 init_all_packet_configs ();
3289 rs->cached_wait_status = 0;
3290 rs->explicit_packet_size = 0;
3291 rs->noack_mode = 0;
3292 rs->multi_process_aware = 0;
3293 rs->extended = extended_p;
3294 rs->non_stop_aware = 0;
3295 rs->waiting_for_stop_reply = 0;
3296
3297 general_thread = not_sent_ptid;
3298 continue_thread = not_sent_ptid;
3299
3300 /* Probe for ability to use "ThreadInfo" query, as required. */
3301 use_threadinfo_query = 1;
3302 use_threadextra_query = 1;
3303
3304 if (target_async_permitted)
3305 {
3306 /* With this target we start out by owning the terminal. */
3307 remote_async_terminal_ours_p = 1;
3308
3309 /* FIXME: cagney/1999-09-23: During the initial connection it is
3310 assumed that the target is already ready and able to respond to
3311 requests. Unfortunately remote_start_remote() eventually calls
3312 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
3313 around this. Eventually a mechanism that allows
3314 wait_for_inferior() to expect/get timeouts will be
3315 implemented. */
3316 wait_forever_enabled_p = 0;
3317 }
3318
3319 /* First delete any symbols previously loaded from shared libraries. */
3320 no_shared_libraries (NULL, 0);
3321
3322 /* Start afresh. */
3323 init_thread_list ();
3324
3325 /* Start the remote connection. If error() or QUIT, discard this
3326 target (we'd otherwise be in an inconsistent state) and then
3327 propogate the error on up the exception chain. This ensures that
3328 the caller doesn't stumble along blindly assuming that the
3329 function succeeded. The CLI doesn't have this problem but other
3330 UI's, such as MI do.
3331
3332 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
3333 this function should return an error indication letting the
3334 caller restore the previous state. Unfortunately the command
3335 ``target remote'' is directly wired to this function making that
3336 impossible. On a positive note, the CLI side of this problem has
3337 been fixed - the function set_cmd_context() makes it possible for
3338 all the ``target ....'' commands to share a common callback
3339 function. See cli-dump.c. */
3340 {
3341 struct gdb_exception ex;
3342 struct start_remote_args args;
3343
3344 args.from_tty = from_tty;
3345 args.target = target;
3346 args.extended_p = extended_p;
3347
3348 ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
3349 if (ex.reason < 0)
3350 {
3351 /* Pop the partially set up target - unless something else did
3352 already before throwing the exception. */
3353 if (remote_desc != NULL)
3354 pop_target ();
3355 if (target_async_permitted)
3356 wait_forever_enabled_p = 1;
3357 throw_exception (ex);
3358 }
3359 }
3360
3361 if (target_async_permitted)
3362 wait_forever_enabled_p = 1;
3363 }
3364
3365 /* This takes a program previously attached to and detaches it. After
3366 this is done, GDB can be used to debug some other program. We
3367 better not have left any breakpoints in the target program or it'll
3368 die when it hits one. */
3369
3370 static void
3371 remote_detach_1 (char *args, int from_tty, int extended)
3372 {
3373 int pid = ptid_get_pid (inferior_ptid);
3374 struct remote_state *rs = get_remote_state ();
3375
3376 if (args)
3377 error (_("Argument given to \"detach\" when remotely debugging."));
3378
3379 if (!target_has_execution)
3380 error (_("No process to detach from."));
3381
3382 /* Tell the remote target to detach. */
3383 if (remote_multi_process_p (rs))
3384 sprintf (rs->buf, "D;%x", pid);
3385 else
3386 strcpy (rs->buf, "D");
3387
3388 putpkt (rs->buf);
3389 getpkt (&rs->buf, &rs->buf_size, 0);
3390
3391 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
3392 ;
3393 else if (rs->buf[0] == '\0')
3394 error (_("Remote doesn't know how to detach"));
3395 else
3396 error (_("Can't detach process."));
3397
3398 if (from_tty)
3399 {
3400 if (remote_multi_process_p (rs))
3401 printf_filtered (_("Detached from remote %s.\n"),
3402 target_pid_to_str (pid_to_ptid (pid)));
3403 else
3404 {
3405 if (extended)
3406 puts_filtered (_("Detached from remote process.\n"));
3407 else
3408 puts_filtered (_("Ending remote debugging.\n"));
3409 }
3410 }
3411
3412 discard_pending_stop_replies (pid);
3413 target_mourn_inferior ();
3414 }
3415
3416 static void
3417 remote_detach (struct target_ops *ops, char *args, int from_tty)
3418 {
3419 remote_detach_1 (args, from_tty, 0);
3420 }
3421
3422 static void
3423 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
3424 {
3425 remote_detach_1 (args, from_tty, 1);
3426 }
3427
3428 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
3429
3430 static void
3431 remote_disconnect (struct target_ops *target, char *args, int from_tty)
3432 {
3433 if (args)
3434 error (_("Argument given to \"disconnect\" when remotely debugging."));
3435
3436 /* Make sure we unpush even the extended remote targets; mourn
3437 won't do it. So call remote_mourn_1 directly instead of
3438 target_mourn_inferior. */
3439 remote_mourn_1 (target);
3440
3441 if (from_tty)
3442 puts_filtered ("Ending remote debugging.\n");
3443 }
3444
3445 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
3446 be chatty about it. */
3447
3448 static void
3449 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
3450 {
3451 struct remote_state *rs = get_remote_state ();
3452 int pid;
3453 char *dummy;
3454 char *wait_status = NULL;
3455
3456 if (!args)
3457 error_no_arg (_("process-id to attach"));
3458
3459 dummy = args;
3460 pid = strtol (args, &dummy, 0);
3461 /* Some targets don't set errno on errors, grrr! */
3462 if (pid == 0 && args == dummy)
3463 error (_("Illegal process-id: %s."), args);
3464
3465 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3466 error (_("This target does not support attaching to a process"));
3467
3468 sprintf (rs->buf, "vAttach;%x", pid);
3469 putpkt (rs->buf);
3470 getpkt (&rs->buf, &rs->buf_size, 0);
3471
3472 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
3473 {
3474 if (from_tty)
3475 printf_unfiltered (_("Attached to %s\n"),
3476 target_pid_to_str (pid_to_ptid (pid)));
3477
3478 if (!non_stop)
3479 {
3480 /* Save the reply for later. */
3481 wait_status = alloca (strlen (rs->buf) + 1);
3482 strcpy (wait_status, rs->buf);
3483 }
3484 else if (strcmp (rs->buf, "OK") != 0)
3485 error (_("Attaching to %s failed with: %s"),
3486 target_pid_to_str (pid_to_ptid (pid)),
3487 rs->buf);
3488 }
3489 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3490 error (_("This target does not support attaching to a process"));
3491 else
3492 error (_("Attaching to %s failed"),
3493 target_pid_to_str (pid_to_ptid (pid)));
3494
3495 remote_add_inferior (pid, 1);
3496
3497 inferior_ptid = pid_to_ptid (pid);
3498
3499 if (non_stop)
3500 {
3501 struct thread_info *thread;
3502
3503 /* Get list of threads. */
3504 remote_threads_info (target);
3505
3506 thread = first_thread_of_process (pid);
3507 if (thread)
3508 inferior_ptid = thread->ptid;
3509 else
3510 inferior_ptid = pid_to_ptid (pid);
3511
3512 /* Invalidate our notion of the remote current thread. */
3513 record_currthread (minus_one_ptid);
3514 }
3515 else
3516 {
3517 /* Now, if we have thread information, update inferior_ptid. */
3518 inferior_ptid = remote_current_thread (inferior_ptid);
3519
3520 /* Add the main thread to the thread list. */
3521 add_thread_silent (inferior_ptid);
3522 }
3523
3524 /* Next, if the target can specify a description, read it. We do
3525 this before anything involving memory or registers. */
3526 target_find_description ();
3527
3528 if (!non_stop)
3529 {
3530 /* Use the previously fetched status. */
3531 gdb_assert (wait_status != NULL);
3532
3533 if (target_can_async_p ())
3534 {
3535 struct stop_reply *stop_reply;
3536 struct cleanup *old_chain;
3537
3538 stop_reply = stop_reply_xmalloc ();
3539 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3540 remote_parse_stop_reply (wait_status, stop_reply);
3541 discard_cleanups (old_chain);
3542 push_stop_reply (stop_reply);
3543
3544 target_async (inferior_event_handler, 0);
3545 }
3546 else
3547 {
3548 gdb_assert (wait_status != NULL);
3549 strcpy (rs->buf, wait_status);
3550 rs->cached_wait_status = 1;
3551 }
3552 }
3553 else
3554 gdb_assert (wait_status == NULL);
3555 }
3556
3557 static void
3558 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
3559 {
3560 extended_remote_attach_1 (ops, args, from_tty);
3561 }
3562
3563 /* Convert hex digit A to a number. */
3564
3565 static int
3566 fromhex (int a)
3567 {
3568 if (a >= '0' && a <= '9')
3569 return a - '0';
3570 else if (a >= 'a' && a <= 'f')
3571 return a - 'a' + 10;
3572 else if (a >= 'A' && a <= 'F')
3573 return a - 'A' + 10;
3574 else
3575 error (_("Reply contains invalid hex digit %d"), a);
3576 }
3577
3578 static int
3579 hex2bin (const char *hex, gdb_byte *bin, int count)
3580 {
3581 int i;
3582
3583 for (i = 0; i < count; i++)
3584 {
3585 if (hex[0] == 0 || hex[1] == 0)
3586 {
3587 /* Hex string is short, or of uneven length.
3588 Return the count that has been converted so far. */
3589 return i;
3590 }
3591 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
3592 hex += 2;
3593 }
3594 return i;
3595 }
3596
3597 /* Convert number NIB to a hex digit. */
3598
3599 static int
3600 tohex (int nib)
3601 {
3602 if (nib < 10)
3603 return '0' + nib;
3604 else
3605 return 'a' + nib - 10;
3606 }
3607
3608 static int
3609 bin2hex (const gdb_byte *bin, char *hex, int count)
3610 {
3611 int i;
3612 /* May use a length, or a nul-terminated string as input. */
3613 if (count == 0)
3614 count = strlen ((char *) bin);
3615
3616 for (i = 0; i < count; i++)
3617 {
3618 *hex++ = tohex ((*bin >> 4) & 0xf);
3619 *hex++ = tohex (*bin++ & 0xf);
3620 }
3621 *hex = 0;
3622 return i;
3623 }
3624 \f
3625 /* Check for the availability of vCont. This function should also check
3626 the response. */
3627
3628 static void
3629 remote_vcont_probe (struct remote_state *rs)
3630 {
3631 char *buf;
3632
3633 strcpy (rs->buf, "vCont?");
3634 putpkt (rs->buf);
3635 getpkt (&rs->buf, &rs->buf_size, 0);
3636 buf = rs->buf;
3637
3638 /* Make sure that the features we assume are supported. */
3639 if (strncmp (buf, "vCont", 5) == 0)
3640 {
3641 char *p = &buf[5];
3642 int support_s, support_S, support_c, support_C;
3643
3644 support_s = 0;
3645 support_S = 0;
3646 support_c = 0;
3647 support_C = 0;
3648 rs->support_vCont_t = 0;
3649 while (p && *p == ';')
3650 {
3651 p++;
3652 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
3653 support_s = 1;
3654 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
3655 support_S = 1;
3656 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
3657 support_c = 1;
3658 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
3659 support_C = 1;
3660 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
3661 rs->support_vCont_t = 1;
3662
3663 p = strchr (p, ';');
3664 }
3665
3666 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
3667 BUF will make packet_ok disable the packet. */
3668 if (!support_s || !support_S || !support_c || !support_C)
3669 buf[0] = 0;
3670 }
3671
3672 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
3673 }
3674
3675 /* Helper function for building "vCont" resumptions. Write a
3676 resumption to P. ENDP points to one-passed-the-end of the buffer
3677 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
3678 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
3679 resumed thread should be single-stepped and/or signalled. If PTID
3680 equals minus_one_ptid, then all threads are resumed; if PTID
3681 represents a process, then all threads of the process are resumed;
3682 the thread to be stepped and/or signalled is given in the global
3683 INFERIOR_PTID. */
3684
3685 static char *
3686 append_resumption (char *p, char *endp,
3687 ptid_t ptid, int step, enum target_signal siggnal)
3688 {
3689 struct remote_state *rs = get_remote_state ();
3690
3691 if (step && siggnal != TARGET_SIGNAL_0)
3692 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
3693 else if (step)
3694 p += xsnprintf (p, endp - p, ";s");
3695 else if (siggnal != TARGET_SIGNAL_0)
3696 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
3697 else
3698 p += xsnprintf (p, endp - p, ";c");
3699
3700 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
3701 {
3702 ptid_t nptid;
3703
3704 /* All (-1) threads of process. */
3705 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
3706
3707 p += xsnprintf (p, endp - p, ":");
3708 p = write_ptid (p, endp, nptid);
3709 }
3710 else if (!ptid_equal (ptid, minus_one_ptid))
3711 {
3712 p += xsnprintf (p, endp - p, ":");
3713 p = write_ptid (p, endp, ptid);
3714 }
3715
3716 return p;
3717 }
3718
3719 /* Resume the remote inferior by using a "vCont" packet. The thread
3720 to be resumed is PTID; STEP and SIGGNAL indicate whether the
3721 resumed thread should be single-stepped and/or signalled. If PTID
3722 equals minus_one_ptid, then all threads are resumed; the thread to
3723 be stepped and/or signalled is given in the global INFERIOR_PTID.
3724 This function returns non-zero iff it resumes the inferior.
3725
3726 This function issues a strict subset of all possible vCont commands at the
3727 moment. */
3728
3729 static int
3730 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
3731 {
3732 struct remote_state *rs = get_remote_state ();
3733 char *p;
3734 char *endp;
3735
3736 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3737 remote_vcont_probe (rs);
3738
3739 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
3740 return 0;
3741
3742 p = rs->buf;
3743 endp = rs->buf + get_remote_packet_size ();
3744
3745 /* If we could generate a wider range of packets, we'd have to worry
3746 about overflowing BUF. Should there be a generic
3747 "multi-part-packet" packet? */
3748
3749 p += xsnprintf (p, endp - p, "vCont");
3750
3751 if (ptid_equal (ptid, magic_null_ptid))
3752 {
3753 /* MAGIC_NULL_PTID means that we don't have any active threads,
3754 so we don't have any TID numbers the inferior will
3755 understand. Make sure to only send forms that do not specify
3756 a TID. */
3757 p = append_resumption (p, endp, minus_one_ptid, step, siggnal);
3758 }
3759 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3760 {
3761 /* Resume all threads (of all processes, or of a single
3762 process), with preference for INFERIOR_PTID. This assumes
3763 inferior_ptid belongs to the set of all threads we are about
3764 to resume. */
3765 if (step || siggnal != TARGET_SIGNAL_0)
3766 {
3767 /* Step inferior_ptid, with or without signal. */
3768 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
3769 }
3770
3771 /* And continue others without a signal. */
3772 p = append_resumption (p, endp, ptid, /*step=*/ 0, TARGET_SIGNAL_0);
3773 }
3774 else
3775 {
3776 /* Scheduler locking; resume only PTID. */
3777 p = append_resumption (p, endp, ptid, step, siggnal);
3778 }
3779
3780 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
3781 putpkt (rs->buf);
3782
3783 if (non_stop)
3784 {
3785 /* In non-stop, the stub replies to vCont with "OK". The stop
3786 reply will be reported asynchronously by means of a `%Stop'
3787 notification. */
3788 getpkt (&rs->buf, &rs->buf_size, 0);
3789 if (strcmp (rs->buf, "OK") != 0)
3790 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
3791 }
3792
3793 return 1;
3794 }
3795
3796 /* Tell the remote machine to resume. */
3797
3798 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
3799
3800 static int last_sent_step;
3801
3802 static void
3803 remote_resume (struct target_ops *ops,
3804 ptid_t ptid, int step, enum target_signal siggnal)
3805 {
3806 struct remote_state *rs = get_remote_state ();
3807 char *buf;
3808
3809 last_sent_signal = siggnal;
3810 last_sent_step = step;
3811
3812 /* Update the inferior on signals to silently pass, if they've changed. */
3813 remote_pass_signals ();
3814
3815 /* The vCont packet doesn't need to specify threads via Hc. */
3816 if (remote_vcont_resume (ptid, step, siggnal))
3817 goto done;
3818
3819 /* All other supported resume packets do use Hc, so set the continue
3820 thread. */
3821 if (ptid_equal (ptid, minus_one_ptid))
3822 set_continue_thread (any_thread_ptid);
3823 else
3824 set_continue_thread (ptid);
3825
3826 buf = rs->buf;
3827 if (execution_direction == EXEC_REVERSE)
3828 {
3829 /* We don't pass signals to the target in reverse exec mode. */
3830 if (info_verbose && siggnal != TARGET_SIGNAL_0)
3831 warning (" - Can't pass signal %d to target in reverse: ignored.\n",
3832 siggnal);
3833 strcpy (buf, step ? "bs" : "bc");
3834 }
3835 else if (siggnal != TARGET_SIGNAL_0)
3836 {
3837 buf[0] = step ? 'S' : 'C';
3838 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
3839 buf[2] = tohex (((int) siggnal) & 0xf);
3840 buf[3] = '\0';
3841 }
3842 else
3843 strcpy (buf, step ? "s" : "c");
3844
3845 putpkt (buf);
3846
3847 done:
3848 /* We are about to start executing the inferior, let's register it
3849 with the event loop. NOTE: this is the one place where all the
3850 execution commands end up. We could alternatively do this in each
3851 of the execution commands in infcmd.c. */
3852 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
3853 into infcmd.c in order to allow inferior function calls to work
3854 NOT asynchronously. */
3855 if (target_can_async_p ())
3856 target_async (inferior_event_handler, 0);
3857
3858 /* We've just told the target to resume. The remote server will
3859 wait for the inferior to stop, and then send a stop reply. In
3860 the mean time, we can't start another command/query ourselves
3861 because the stub wouldn't be ready to process it. This applies
3862 only to the base all-stop protocol, however. In non-stop (which
3863 only supports vCont), the stub replies with an "OK", and is
3864 immediate able to process further serial input. */
3865 if (!non_stop)
3866 rs->waiting_for_stop_reply = 1;
3867 }
3868 \f
3869
3870 /* Set up the signal handler for SIGINT, while the target is
3871 executing, ovewriting the 'regular' SIGINT signal handler. */
3872 static void
3873 initialize_sigint_signal_handler (void)
3874 {
3875 signal (SIGINT, handle_remote_sigint);
3876 }
3877
3878 /* Signal handler for SIGINT, while the target is executing. */
3879 static void
3880 handle_remote_sigint (int sig)
3881 {
3882 signal (sig, handle_remote_sigint_twice);
3883 mark_async_signal_handler_wrapper (sigint_remote_token);
3884 }
3885
3886 /* Signal handler for SIGINT, installed after SIGINT has already been
3887 sent once. It will take effect the second time that the user sends
3888 a ^C. */
3889 static void
3890 handle_remote_sigint_twice (int sig)
3891 {
3892 signal (sig, handle_remote_sigint);
3893 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3894 }
3895
3896 /* Perform the real interruption of the target execution, in response
3897 to a ^C. */
3898 static void
3899 async_remote_interrupt (gdb_client_data arg)
3900 {
3901 if (remote_debug)
3902 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3903
3904 target_stop (inferior_ptid);
3905 }
3906
3907 /* Perform interrupt, if the first attempt did not succeed. Just give
3908 up on the target alltogether. */
3909 void
3910 async_remote_interrupt_twice (gdb_client_data arg)
3911 {
3912 if (remote_debug)
3913 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3914
3915 interrupt_query ();
3916 }
3917
3918 /* Reinstall the usual SIGINT handlers, after the target has
3919 stopped. */
3920 static void
3921 cleanup_sigint_signal_handler (void *dummy)
3922 {
3923 signal (SIGINT, handle_sigint);
3924 }
3925
3926 /* Send ^C to target to halt it. Target will respond, and send us a
3927 packet. */
3928 static void (*ofunc) (int);
3929
3930 /* The command line interface's stop routine. This function is installed
3931 as a signal handler for SIGINT. The first time a user requests a
3932 stop, we call remote_stop to send a break or ^C. If there is no
3933 response from the target (it didn't stop when the user requested it),
3934 we ask the user if he'd like to detach from the target. */
3935 static void
3936 remote_interrupt (int signo)
3937 {
3938 /* If this doesn't work, try more severe steps. */
3939 signal (signo, remote_interrupt_twice);
3940
3941 gdb_call_async_signal_handler (sigint_remote_token, 1);
3942 }
3943
3944 /* The user typed ^C twice. */
3945
3946 static void
3947 remote_interrupt_twice (int signo)
3948 {
3949 signal (signo, ofunc);
3950 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
3951 signal (signo, remote_interrupt);
3952 }
3953
3954 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
3955 thread, all threads of a remote process, or all threads of all
3956 processes. */
3957
3958 static void
3959 remote_stop_ns (ptid_t ptid)
3960 {
3961 struct remote_state *rs = get_remote_state ();
3962 char *p = rs->buf;
3963 char *endp = rs->buf + get_remote_packet_size ();
3964 struct stop_reply *reply, *next;
3965
3966 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3967 remote_vcont_probe (rs);
3968
3969 if (!rs->support_vCont_t)
3970 error (_("Remote server does not support stopping threads"));
3971
3972 if (ptid_equal (ptid, minus_one_ptid)
3973 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
3974 p += xsnprintf (p, endp - p, "vCont;t");
3975 else
3976 {
3977 ptid_t nptid;
3978
3979 p += xsnprintf (p, endp - p, "vCont;t:");
3980
3981 if (ptid_is_pid (ptid))
3982 /* All (-1) threads of process. */
3983 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
3984 else
3985 {
3986 /* Small optimization: if we already have a stop reply for
3987 this thread, no use in telling the stub we want this
3988 stopped. */
3989 if (peek_stop_reply (ptid))
3990 return;
3991
3992 nptid = ptid;
3993 }
3994
3995 p = write_ptid (p, endp, nptid);
3996 }
3997
3998 /* In non-stop, we get an immediate OK reply. The stop reply will
3999 come in asynchronously by notification. */
4000 putpkt (rs->buf);
4001 getpkt (&rs->buf, &rs->buf_size, 0);
4002 if (strcmp (rs->buf, "OK") != 0)
4003 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
4004 }
4005
4006 /* All-stop version of target_stop. Sends a break or a ^C to stop the
4007 remote target. It is undefined which thread of which process
4008 reports the stop. */
4009
4010 static void
4011 remote_stop_as (ptid_t ptid)
4012 {
4013 struct remote_state *rs = get_remote_state ();
4014
4015 /* If the inferior is stopped already, but the core didn't know
4016 about it yet, just ignore the request. The cached wait status
4017 will be collected in remote_wait. */
4018 if (rs->cached_wait_status)
4019 return;
4020
4021 /* Send a break or a ^C, depending on user preference. */
4022
4023 if (remote_break)
4024 serial_send_break (remote_desc);
4025 else
4026 serial_write (remote_desc, "\003", 1);
4027 }
4028
4029 /* This is the generic stop called via the target vector. When a target
4030 interrupt is requested, either by the command line or the GUI, we
4031 will eventually end up here. */
4032
4033 static void
4034 remote_stop (ptid_t ptid)
4035 {
4036 if (remote_debug)
4037 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
4038
4039 if (non_stop)
4040 remote_stop_ns (ptid);
4041 else
4042 remote_stop_as (ptid);
4043 }
4044
4045 /* Ask the user what to do when an interrupt is received. */
4046
4047 static void
4048 interrupt_query (void)
4049 {
4050 target_terminal_ours ();
4051
4052 if (target_can_async_p ())
4053 {
4054 signal (SIGINT, handle_sigint);
4055 deprecated_throw_reason (RETURN_QUIT);
4056 }
4057 else
4058 {
4059 if (query (_("Interrupted while waiting for the program.\n\
4060 Give up (and stop debugging it)? ")))
4061 {
4062 pop_target ();
4063 deprecated_throw_reason (RETURN_QUIT);
4064 }
4065 }
4066
4067 target_terminal_inferior ();
4068 }
4069
4070 /* Enable/disable target terminal ownership. Most targets can use
4071 terminal groups to control terminal ownership. Remote targets are
4072 different in that explicit transfer of ownership to/from GDB/target
4073 is required. */
4074
4075 static void
4076 remote_terminal_inferior (void)
4077 {
4078 if (!target_async_permitted)
4079 /* Nothing to do. */
4080 return;
4081
4082 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
4083 sync_execution here. This function should only be called when
4084 GDB is resuming the inferior in the forground. A background
4085 resume (``run&'') should leave GDB in control of the terminal and
4086 consequently should not call this code. */
4087 if (!sync_execution)
4088 return;
4089 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
4090 calls target_terminal_*() idenpotent. The event-loop GDB talking
4091 to an asynchronous target with a synchronous command calls this
4092 function from both event-top.c and infrun.c/infcmd.c. Once GDB
4093 stops trying to transfer the terminal to the target when it
4094 shouldn't this guard can go away. */
4095 if (!remote_async_terminal_ours_p)
4096 return;
4097 delete_file_handler (input_fd);
4098 remote_async_terminal_ours_p = 0;
4099 initialize_sigint_signal_handler ();
4100 /* NOTE: At this point we could also register our selves as the
4101 recipient of all input. Any characters typed could then be
4102 passed on down to the target. */
4103 }
4104
4105 static void
4106 remote_terminal_ours (void)
4107 {
4108 if (!target_async_permitted)
4109 /* Nothing to do. */
4110 return;
4111
4112 /* See FIXME in remote_terminal_inferior. */
4113 if (!sync_execution)
4114 return;
4115 /* See FIXME in remote_terminal_inferior. */
4116 if (remote_async_terminal_ours_p)
4117 return;
4118 cleanup_sigint_signal_handler (NULL);
4119 add_file_handler (input_fd, stdin_event_handler, 0);
4120 remote_async_terminal_ours_p = 1;
4121 }
4122
4123 void
4124 remote_console_output (char *msg)
4125 {
4126 char *p;
4127
4128 for (p = msg; p[0] && p[1]; p += 2)
4129 {
4130 char tb[2];
4131 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
4132 tb[0] = c;
4133 tb[1] = 0;
4134 fputs_unfiltered (tb, gdb_stdtarg);
4135 }
4136 gdb_flush (gdb_stdtarg);
4137 }
4138
4139 typedef struct cached_reg
4140 {
4141 int num;
4142 gdb_byte data[MAX_REGISTER_SIZE];
4143 } cached_reg_t;
4144
4145 DEF_VEC_O(cached_reg_t);
4146
4147 struct stop_reply
4148 {
4149 struct stop_reply *next;
4150
4151 ptid_t ptid;
4152
4153 struct target_waitstatus ws;
4154
4155 VEC(cached_reg_t) *regcache;
4156
4157 int stopped_by_watchpoint_p;
4158 CORE_ADDR watch_data_address;
4159
4160 int solibs_changed;
4161 int replay_event;
4162 };
4163
4164 /* The list of already fetched and acknowledged stop events. */
4165 static struct stop_reply *stop_reply_queue;
4166
4167 static struct stop_reply *
4168 stop_reply_xmalloc (void)
4169 {
4170 struct stop_reply *r = XMALLOC (struct stop_reply);
4171 r->next = NULL;
4172 return r;
4173 }
4174
4175 static void
4176 stop_reply_xfree (struct stop_reply *r)
4177 {
4178 if (r != NULL)
4179 {
4180 VEC_free (cached_reg_t, r->regcache);
4181 xfree (r);
4182 }
4183 }
4184
4185 /* Discard all pending stop replies of inferior PID. If PID is -1,
4186 discard everything. */
4187
4188 static void
4189 discard_pending_stop_replies (int pid)
4190 {
4191 struct stop_reply *prev = NULL, *reply, *next;
4192
4193 /* Discard the in-flight notification. */
4194 if (pending_stop_reply != NULL
4195 && (pid == -1
4196 || ptid_get_pid (pending_stop_reply->ptid) == pid))
4197 {
4198 stop_reply_xfree (pending_stop_reply);
4199 pending_stop_reply = NULL;
4200 }
4201
4202 /* Discard the stop replies we have already pulled with
4203 vStopped. */
4204 for (reply = stop_reply_queue; reply; reply = next)
4205 {
4206 next = reply->next;
4207 if (pid == -1
4208 || ptid_get_pid (reply->ptid) == pid)
4209 {
4210 if (reply == stop_reply_queue)
4211 stop_reply_queue = reply->next;
4212 else
4213 prev->next = reply->next;
4214
4215 stop_reply_xfree (reply);
4216 }
4217 else
4218 prev = reply;
4219 }
4220 }
4221
4222 /* Cleanup wrapper. */
4223
4224 static void
4225 do_stop_reply_xfree (void *arg)
4226 {
4227 struct stop_reply *r = arg;
4228 stop_reply_xfree (r);
4229 }
4230
4231 /* Look for a queued stop reply belonging to PTID. If one is found,
4232 remove it from the queue, and return it. Returns NULL if none is
4233 found. If there are still queued events left to process, tell the
4234 event loop to get back to target_wait soon. */
4235
4236 static struct stop_reply *
4237 queued_stop_reply (ptid_t ptid)
4238 {
4239 struct stop_reply *it, *prev;
4240 struct stop_reply head;
4241
4242 head.next = stop_reply_queue;
4243 prev = &head;
4244
4245 it = head.next;
4246
4247 if (!ptid_equal (ptid, minus_one_ptid))
4248 for (; it; prev = it, it = it->next)
4249 if (ptid_equal (ptid, it->ptid))
4250 break;
4251
4252 if (it)
4253 {
4254 prev->next = it->next;
4255 it->next = NULL;
4256 }
4257
4258 stop_reply_queue = head.next;
4259
4260 if (stop_reply_queue)
4261 /* There's still at least an event left. */
4262 mark_async_event_handler (remote_async_inferior_event_token);
4263
4264 return it;
4265 }
4266
4267 /* Push a fully parsed stop reply in the stop reply queue. Since we
4268 know that we now have at least one queued event left to pass to the
4269 core side, tell the event loop to get back to target_wait soon. */
4270
4271 static void
4272 push_stop_reply (struct stop_reply *new_event)
4273 {
4274 struct stop_reply *event;
4275
4276 if (stop_reply_queue)
4277 {
4278 for (event = stop_reply_queue;
4279 event && event->next;
4280 event = event->next)
4281 ;
4282
4283 event->next = new_event;
4284 }
4285 else
4286 stop_reply_queue = new_event;
4287
4288 mark_async_event_handler (remote_async_inferior_event_token);
4289 }
4290
4291 /* Returns true if we have a stop reply for PTID. */
4292
4293 static int
4294 peek_stop_reply (ptid_t ptid)
4295 {
4296 struct stop_reply *it;
4297
4298 for (it = stop_reply_queue; it; it = it->next)
4299 if (ptid_equal (ptid, it->ptid))
4300 {
4301 if (it->ws.kind == TARGET_WAITKIND_STOPPED)
4302 return 1;
4303 }
4304
4305 return 0;
4306 }
4307
4308 /* Parse the stop reply in BUF. Either the function succeeds, and the
4309 result is stored in EVENT, or throws an error. */
4310
4311 static void
4312 remote_parse_stop_reply (char *buf, struct stop_reply *event)
4313 {
4314 struct remote_arch_state *rsa = get_remote_arch_state ();
4315 ULONGEST addr;
4316 char *p;
4317
4318 event->ptid = null_ptid;
4319 event->ws.kind = TARGET_WAITKIND_IGNORE;
4320 event->ws.value.integer = 0;
4321 event->solibs_changed = 0;
4322 event->replay_event = 0;
4323 event->stopped_by_watchpoint_p = 0;
4324 event->regcache = NULL;
4325
4326 switch (buf[0])
4327 {
4328 case 'T': /* Status with PC, SP, FP, ... */
4329 {
4330 gdb_byte regs[MAX_REGISTER_SIZE];
4331
4332 /* Expedited reply, containing Signal, {regno, reg} repeat. */
4333 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
4334 ss = signal number
4335 n... = register number
4336 r... = register contents
4337 */
4338
4339 p = &buf[3]; /* after Txx */
4340 while (*p)
4341 {
4342 char *p1;
4343 char *p_temp;
4344 int fieldsize;
4345 LONGEST pnum = 0;
4346
4347 /* If the packet contains a register number, save it in
4348 pnum and set p1 to point to the character following it.
4349 Otherwise p1 points to p. */
4350
4351 /* If this packet is an awatch packet, don't parse the 'a'
4352 as a register number. */
4353
4354 if (strncmp (p, "awatch", strlen("awatch")) != 0)
4355 {
4356 /* Read the ``P'' register number. */
4357 pnum = strtol (p, &p_temp, 16);
4358 p1 = p_temp;
4359 }
4360 else
4361 p1 = p;
4362
4363 if (p1 == p) /* No register number present here. */
4364 {
4365 p1 = strchr (p, ':');
4366 if (p1 == NULL)
4367 error (_("Malformed packet(a) (missing colon): %s\n\
4368 Packet: '%s'\n"),
4369 p, buf);
4370 if (strncmp (p, "thread", p1 - p) == 0)
4371 event->ptid = read_ptid (++p1, &p);
4372 else if ((strncmp (p, "watch", p1 - p) == 0)
4373 || (strncmp (p, "rwatch", p1 - p) == 0)
4374 || (strncmp (p, "awatch", p1 - p) == 0))
4375 {
4376 event->stopped_by_watchpoint_p = 1;
4377 p = unpack_varlen_hex (++p1, &addr);
4378 event->watch_data_address = (CORE_ADDR) addr;
4379 }
4380 else if (strncmp (p, "library", p1 - p) == 0)
4381 {
4382 p1++;
4383 p_temp = p1;
4384 while (*p_temp && *p_temp != ';')
4385 p_temp++;
4386
4387 event->solibs_changed = 1;
4388 p = p_temp;
4389 }
4390 else if (strncmp (p, "replaylog", p1 - p) == 0)
4391 {
4392 /* NO_HISTORY event.
4393 p1 will indicate "begin" or "end", but
4394 it makes no difference for now, so ignore it. */
4395 event->replay_event = 1;
4396 p_temp = strchr (p1 + 1, ';');
4397 if (p_temp)
4398 p = p_temp;
4399 }
4400 else
4401 {
4402 /* Silently skip unknown optional info. */
4403 p_temp = strchr (p1 + 1, ';');
4404 if (p_temp)
4405 p = p_temp;
4406 }
4407 }
4408 else
4409 {
4410 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
4411 cached_reg_t cached_reg;
4412
4413 p = p1;
4414
4415 if (*p != ':')
4416 error (_("Malformed packet(b) (missing colon): %s\n\
4417 Packet: '%s'\n"),
4418 p, buf);
4419 ++p;
4420
4421 if (reg == NULL)
4422 error (_("Remote sent bad register number %s: %s\n\
4423 Packet: '%s'\n"),
4424 phex_nz (pnum, 0), p, buf);
4425
4426 cached_reg.num = reg->regnum;
4427
4428 fieldsize = hex2bin (p, cached_reg.data,
4429 register_size (target_gdbarch,
4430 reg->regnum));
4431 p += 2 * fieldsize;
4432 if (fieldsize < register_size (target_gdbarch,
4433 reg->regnum))
4434 warning (_("Remote reply is too short: %s"), buf);
4435
4436 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
4437 }
4438
4439 if (*p != ';')
4440 error (_("Remote register badly formatted: %s\nhere: %s"),
4441 buf, p);
4442 ++p;
4443 }
4444 }
4445 /* fall through */
4446 case 'S': /* Old style status, just signal only. */
4447 if (event->solibs_changed)
4448 event->ws.kind = TARGET_WAITKIND_LOADED;
4449 else if (event->replay_event)
4450 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
4451 else
4452 {
4453 event->ws.kind = TARGET_WAITKIND_STOPPED;
4454 event->ws.value.sig = (enum target_signal)
4455 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
4456 }
4457 break;
4458 case 'W': /* Target exited. */
4459 case 'X':
4460 {
4461 char *p;
4462 int pid;
4463 ULONGEST value;
4464
4465 /* GDB used to accept only 2 hex chars here. Stubs should
4466 only send more if they detect GDB supports multi-process
4467 support. */
4468 p = unpack_varlen_hex (&buf[1], &value);
4469
4470 if (buf[0] == 'W')
4471 {
4472 /* The remote process exited. */
4473 event->ws.kind = TARGET_WAITKIND_EXITED;
4474 event->ws.value.integer = value;
4475 }
4476 else
4477 {
4478 /* The remote process exited with a signal. */
4479 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
4480 event->ws.value.sig = (enum target_signal) value;
4481 }
4482
4483 /* If no process is specified, assume inferior_ptid. */
4484 pid = ptid_get_pid (inferior_ptid);
4485 if (*p == '\0')
4486 ;
4487 else if (*p == ';')
4488 {
4489 p++;
4490
4491 if (p == '\0')
4492 ;
4493 else if (strncmp (p,
4494 "process:", sizeof ("process:") - 1) == 0)
4495 {
4496 ULONGEST upid;
4497 p += sizeof ("process:") - 1;
4498 unpack_varlen_hex (p, &upid);
4499 pid = upid;
4500 }
4501 else
4502 error (_("unknown stop reply packet: %s"), buf);
4503 }
4504 else
4505 error (_("unknown stop reply packet: %s"), buf);
4506 event->ptid = pid_to_ptid (pid);
4507 }
4508 break;
4509 }
4510
4511 if (non_stop && ptid_equal (event->ptid, null_ptid))
4512 error (_("No process or thread specified in stop reply: %s"), buf);
4513 }
4514
4515 /* When the stub wants to tell GDB about a new stop reply, it sends a
4516 stop notification (%Stop). Those can come it at any time, hence,
4517 we have to make sure that any pending putpkt/getpkt sequence we're
4518 making is finished, before querying the stub for more events with
4519 vStopped. E.g., if we started a vStopped sequence immediatelly
4520 upon receiving the %Stop notification, something like this could
4521 happen:
4522
4523 1.1) --> Hg 1
4524 1.2) <-- OK
4525 1.3) --> g
4526 1.4) <-- %Stop
4527 1.5) --> vStopped
4528 1.6) <-- (registers reply to step #1.3)
4529
4530 Obviously, the reply in step #1.6 would be unexpected to a vStopped
4531 query.
4532
4533 To solve this, whenever we parse a %Stop notification sucessfully,
4534 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
4535 doing whatever we were doing:
4536
4537 2.1) --> Hg 1
4538 2.2) <-- OK
4539 2.3) --> g
4540 2.4) <-- %Stop
4541 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
4542 2.5) <-- (registers reply to step #2.3)
4543
4544 Eventualy after step #2.5, we return to the event loop, which
4545 notices there's an event on the
4546 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
4547 associated callback --- the function below. At this point, we're
4548 always safe to start a vStopped sequence. :
4549
4550 2.6) --> vStopped
4551 2.7) <-- T05 thread:2
4552 2.8) --> vStopped
4553 2.9) --> OK
4554 */
4555
4556 static void
4557 remote_get_pending_stop_replies (void)
4558 {
4559 struct remote_state *rs = get_remote_state ();
4560 int ret;
4561
4562 if (pending_stop_reply)
4563 {
4564 /* acknowledge */
4565 putpkt ("vStopped");
4566
4567 /* Now we can rely on it. */
4568 push_stop_reply (pending_stop_reply);
4569 pending_stop_reply = NULL;
4570
4571 while (1)
4572 {
4573 getpkt (&rs->buf, &rs->buf_size, 0);
4574 if (strcmp (rs->buf, "OK") == 0)
4575 break;
4576 else
4577 {
4578 struct cleanup *old_chain;
4579 struct stop_reply *stop_reply = stop_reply_xmalloc ();
4580
4581 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4582 remote_parse_stop_reply (rs->buf, stop_reply);
4583
4584 /* acknowledge */
4585 putpkt ("vStopped");
4586
4587 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
4588 {
4589 /* Now we can rely on it. */
4590 discard_cleanups (old_chain);
4591 push_stop_reply (stop_reply);
4592 }
4593 else
4594 /* We got an unknown stop reply. */
4595 do_cleanups (old_chain);
4596 }
4597 }
4598 }
4599 }
4600
4601
4602 /* Called when it is decided that STOP_REPLY holds the info of the
4603 event that is to be returned to the core. This function always
4604 destroys STOP_REPLY. */
4605
4606 static ptid_t
4607 process_stop_reply (struct stop_reply *stop_reply,
4608 struct target_waitstatus *status)
4609 {
4610 ptid_t ptid;
4611
4612 *status = stop_reply->ws;
4613 ptid = stop_reply->ptid;
4614
4615 /* If no thread/process was reported by the stub, assume the current
4616 inferior. */
4617 if (ptid_equal (ptid, null_ptid))
4618 ptid = inferior_ptid;
4619
4620 if (status->kind != TARGET_WAITKIND_EXITED
4621 && status->kind != TARGET_WAITKIND_SIGNALLED)
4622 {
4623 /* Expedited registers. */
4624 if (stop_reply->regcache)
4625 {
4626 cached_reg_t *reg;
4627 int ix;
4628
4629 for (ix = 0;
4630 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
4631 ix++)
4632 regcache_raw_supply (get_thread_regcache (ptid),
4633 reg->num, reg->data);
4634 VEC_free (cached_reg_t, stop_reply->regcache);
4635 }
4636
4637 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
4638 remote_watch_data_address = stop_reply->watch_data_address;
4639
4640 remote_notice_new_inferior (ptid, 0);
4641 }
4642
4643 stop_reply_xfree (stop_reply);
4644 return ptid;
4645 }
4646
4647 /* The non-stop mode version of target_wait. */
4648
4649 static ptid_t
4650 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status)
4651 {
4652 struct remote_state *rs = get_remote_state ();
4653 struct remote_arch_state *rsa = get_remote_arch_state ();
4654 ptid_t event_ptid = null_ptid;
4655 struct stop_reply *stop_reply;
4656 int ret;
4657
4658 /* If in non-stop mode, get out of getpkt even if a
4659 notification is received. */
4660
4661 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
4662 0 /* forever */);
4663 while (1)
4664 {
4665 if (ret != -1)
4666 switch (rs->buf[0])
4667 {
4668 case 'E': /* Error of some sort. */
4669 /* We're out of sync with the target now. Did it continue
4670 or not? We can't tell which thread it was in non-stop,
4671 so just ignore this. */
4672 warning (_("Remote failure reply: %s"), rs->buf);
4673 break;
4674 case 'O': /* Console output. */
4675 remote_console_output (rs->buf + 1);
4676 break;
4677 default:
4678 warning (_("Invalid remote reply: %s"), rs->buf);
4679 break;
4680 }
4681
4682 /* Acknowledge a pending stop reply that may have arrived in the
4683 mean time. */
4684 if (pending_stop_reply != NULL)
4685 remote_get_pending_stop_replies ();
4686
4687 /* If indeed we noticed a stop reply, we're done. */
4688 stop_reply = queued_stop_reply (ptid);
4689 if (stop_reply != NULL)
4690 return process_stop_reply (stop_reply, status);
4691
4692 /* Still no event. If we're in asynchronous mode, then just
4693 return to the event loop. */
4694 if (remote_is_async_p ())
4695 {
4696 status->kind = TARGET_WAITKIND_IGNORE;
4697 return minus_one_ptid;
4698 }
4699
4700 /* Otherwise, asynchronous mode is masked, so do a blocking
4701 wait. */
4702 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
4703 1 /* forever */);
4704 }
4705 }
4706
4707 /* Wait until the remote machine stops, then return, storing status in
4708 STATUS just as `wait' would. */
4709
4710 static ptid_t
4711 remote_wait_as (ptid_t ptid, struct target_waitstatus *status)
4712 {
4713 struct remote_state *rs = get_remote_state ();
4714 struct remote_arch_state *rsa = get_remote_arch_state ();
4715 ptid_t event_ptid = null_ptid;
4716 ULONGEST addr;
4717 int solibs_changed = 0;
4718 char *buf, *p;
4719 struct stop_reply *stop_reply;
4720
4721 status->kind = TARGET_WAITKIND_IGNORE;
4722 status->value.integer = 0;
4723
4724 stop_reply = queued_stop_reply (ptid);
4725 if (stop_reply != NULL)
4726 return process_stop_reply (stop_reply, status);
4727
4728 if (rs->cached_wait_status)
4729 /* Use the cached wait status, but only once. */
4730 rs->cached_wait_status = 0;
4731 else
4732 {
4733 int ret;
4734
4735 if (!target_is_async_p ())
4736 {
4737 ofunc = signal (SIGINT, remote_interrupt);
4738 /* If the user hit C-c before this packet, or between packets,
4739 pretend that it was hit right here. */
4740 if (quit_flag)
4741 {
4742 quit_flag = 0;
4743 remote_interrupt (SIGINT);
4744 }
4745 }
4746
4747 /* FIXME: cagney/1999-09-27: If we're in async mode we should
4748 _never_ wait for ever -> test on target_is_async_p().
4749 However, before we do that we need to ensure that the caller
4750 knows how to take the target into/out of async mode. */
4751 ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
4752 if (!target_is_async_p ())
4753 signal (SIGINT, ofunc);
4754 }
4755
4756 buf = rs->buf;
4757
4758 remote_stopped_by_watchpoint_p = 0;
4759
4760 /* We got something. */
4761 rs->waiting_for_stop_reply = 0;
4762
4763 switch (buf[0])
4764 {
4765 case 'E': /* Error of some sort. */
4766 /* We're out of sync with the target now. Did it continue or
4767 not? Not is more likely, so report a stop. */
4768 warning (_("Remote failure reply: %s"), buf);
4769 status->kind = TARGET_WAITKIND_STOPPED;
4770 status->value.sig = TARGET_SIGNAL_0;
4771 break;
4772 case 'F': /* File-I/O request. */
4773 remote_fileio_request (buf);
4774 break;
4775 case 'T': case 'S': case 'X': case 'W':
4776 {
4777 struct stop_reply *stop_reply;
4778 struct cleanup *old_chain;
4779
4780 stop_reply = stop_reply_xmalloc ();
4781 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4782 remote_parse_stop_reply (buf, stop_reply);
4783 discard_cleanups (old_chain);
4784 event_ptid = process_stop_reply (stop_reply, status);
4785 break;
4786 }
4787 case 'O': /* Console output. */
4788 remote_console_output (buf + 1);
4789
4790 /* The target didn't really stop; keep waiting. */
4791 rs->waiting_for_stop_reply = 1;
4792
4793 break;
4794 case '\0':
4795 if (last_sent_signal != TARGET_SIGNAL_0)
4796 {
4797 /* Zero length reply means that we tried 'S' or 'C' and the
4798 remote system doesn't support it. */
4799 target_terminal_ours_for_output ();
4800 printf_filtered
4801 ("Can't send signals to this remote system. %s not sent.\n",
4802 target_signal_to_name (last_sent_signal));
4803 last_sent_signal = TARGET_SIGNAL_0;
4804 target_terminal_inferior ();
4805
4806 strcpy ((char *) buf, last_sent_step ? "s" : "c");
4807 putpkt ((char *) buf);
4808
4809 /* We just told the target to resume, so a stop reply is in
4810 order. */
4811 rs->waiting_for_stop_reply = 1;
4812 break;
4813 }
4814 /* else fallthrough */
4815 default:
4816 warning (_("Invalid remote reply: %s"), buf);
4817 /* Keep waiting. */
4818 rs->waiting_for_stop_reply = 1;
4819 break;
4820 }
4821
4822 if (status->kind == TARGET_WAITKIND_IGNORE)
4823 /* Nothing interesting happened. */
4824 return minus_one_ptid;
4825 else if (status->kind != TARGET_WAITKIND_EXITED
4826 && status->kind != TARGET_WAITKIND_SIGNALLED)
4827 {
4828 if (!ptid_equal (event_ptid, null_ptid))
4829 record_currthread (event_ptid);
4830 else
4831 event_ptid = inferior_ptid;
4832 }
4833 else
4834 /* A process exit. Invalidate our notion of current thread. */
4835 record_currthread (minus_one_ptid);
4836
4837 return event_ptid;
4838 }
4839
4840 /* Wait until the remote machine stops, then return, storing status in
4841 STATUS just as `wait' would. */
4842
4843 static ptid_t
4844 remote_wait (struct target_ops *ops,
4845 ptid_t ptid, struct target_waitstatus *status)
4846 {
4847 ptid_t event_ptid;
4848
4849 if (non_stop)
4850 event_ptid = remote_wait_ns (ptid, status);
4851 else
4852 {
4853 /* In synchronous mode, keep waiting until the target stops. In
4854 asynchronous mode, always return to the event loop. */
4855
4856 do
4857 {
4858 event_ptid = remote_wait_as (ptid, status);
4859 }
4860 while (status->kind == TARGET_WAITKIND_IGNORE
4861 && !target_can_async_p ());
4862 }
4863
4864 if (target_can_async_p ())
4865 {
4866 /* If there are are events left in the queue tell the event loop
4867 to return here. */
4868 if (stop_reply_queue)
4869 mark_async_event_handler (remote_async_inferior_event_token);
4870 }
4871
4872 return event_ptid;
4873 }
4874
4875 /* Fetch a single register using a 'p' packet. */
4876
4877 static int
4878 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
4879 {
4880 struct remote_state *rs = get_remote_state ();
4881 char *buf, *p;
4882 char regp[MAX_REGISTER_SIZE];
4883 int i;
4884
4885 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
4886 return 0;
4887
4888 if (reg->pnum == -1)
4889 return 0;
4890
4891 p = rs->buf;
4892 *p++ = 'p';
4893 p += hexnumstr (p, reg->pnum);
4894 *p++ = '\0';
4895 remote_send (&rs->buf, &rs->buf_size);
4896
4897 buf = rs->buf;
4898
4899 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
4900 {
4901 case PACKET_OK:
4902 break;
4903 case PACKET_UNKNOWN:
4904 return 0;
4905 case PACKET_ERROR:
4906 error (_("Could not fetch register \"%s\""),
4907 gdbarch_register_name (get_regcache_arch (regcache), reg->regnum));
4908 }
4909
4910 /* If this register is unfetchable, tell the regcache. */
4911 if (buf[0] == 'x')
4912 {
4913 regcache_raw_supply (regcache, reg->regnum, NULL);
4914 return 1;
4915 }
4916
4917 /* Otherwise, parse and supply the value. */
4918 p = buf;
4919 i = 0;
4920 while (p[0] != 0)
4921 {
4922 if (p[1] == 0)
4923 error (_("fetch_register_using_p: early buf termination"));
4924
4925 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
4926 p += 2;
4927 }
4928 regcache_raw_supply (regcache, reg->regnum, regp);
4929 return 1;
4930 }
4931
4932 /* Fetch the registers included in the target's 'g' packet. */
4933
4934 static int
4935 send_g_packet (void)
4936 {
4937 struct remote_state *rs = get_remote_state ();
4938 int i, buf_len;
4939 char *p;
4940 char *regs;
4941
4942 sprintf (rs->buf, "g");
4943 remote_send (&rs->buf, &rs->buf_size);
4944
4945 /* We can get out of synch in various cases. If the first character
4946 in the buffer is not a hex character, assume that has happened
4947 and try to fetch another packet to read. */
4948 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
4949 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
4950 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
4951 && rs->buf[0] != 'x') /* New: unavailable register value. */
4952 {
4953 if (remote_debug)
4954 fprintf_unfiltered (gdb_stdlog,
4955 "Bad register packet; fetching a new packet\n");
4956 getpkt (&rs->buf, &rs->buf_size, 0);
4957 }
4958
4959 buf_len = strlen (rs->buf);
4960
4961 /* Sanity check the received packet. */
4962 if (buf_len % 2 != 0)
4963 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
4964
4965 return buf_len / 2;
4966 }
4967
4968 static void
4969 process_g_packet (struct regcache *regcache)
4970 {
4971 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4972 struct remote_state *rs = get_remote_state ();
4973 struct remote_arch_state *rsa = get_remote_arch_state ();
4974 int i, buf_len;
4975 char *p;
4976 char *regs;
4977
4978 buf_len = strlen (rs->buf);
4979
4980 /* Further sanity checks, with knowledge of the architecture. */
4981 if (buf_len > 2 * rsa->sizeof_g_packet)
4982 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
4983
4984 /* Save the size of the packet sent to us by the target. It is used
4985 as a heuristic when determining the max size of packets that the
4986 target can safely receive. */
4987 if (rsa->actual_register_packet_size == 0)
4988 rsa->actual_register_packet_size = buf_len;
4989
4990 /* If this is smaller than we guessed the 'g' packet would be,
4991 update our records. A 'g' reply that doesn't include a register's
4992 value implies either that the register is not available, or that
4993 the 'p' packet must be used. */
4994 if (buf_len < 2 * rsa->sizeof_g_packet)
4995 {
4996 rsa->sizeof_g_packet = buf_len / 2;
4997
4998 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
4999 {
5000 if (rsa->regs[i].pnum == -1)
5001 continue;
5002
5003 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
5004 rsa->regs[i].in_g_packet = 0;
5005 else
5006 rsa->regs[i].in_g_packet = 1;
5007 }
5008 }
5009
5010 regs = alloca (rsa->sizeof_g_packet);
5011
5012 /* Unimplemented registers read as all bits zero. */
5013 memset (regs, 0, rsa->sizeof_g_packet);
5014
5015 /* Reply describes registers byte by byte, each byte encoded as two
5016 hex characters. Suck them all up, then supply them to the
5017 register cacheing/storage mechanism. */
5018
5019 p = rs->buf;
5020 for (i = 0; i < rsa->sizeof_g_packet; i++)
5021 {
5022 if (p[0] == 0 || p[1] == 0)
5023 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
5024 internal_error (__FILE__, __LINE__,
5025 "unexpected end of 'g' packet reply");
5026
5027 if (p[0] == 'x' && p[1] == 'x')
5028 regs[i] = 0; /* 'x' */
5029 else
5030 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
5031 p += 2;
5032 }
5033
5034 {
5035 int i;
5036 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5037 {
5038 struct packet_reg *r = &rsa->regs[i];
5039 if (r->in_g_packet)
5040 {
5041 if (r->offset * 2 >= strlen (rs->buf))
5042 /* This shouldn't happen - we adjusted in_g_packet above. */
5043 internal_error (__FILE__, __LINE__,
5044 "unexpected end of 'g' packet reply");
5045 else if (rs->buf[r->offset * 2] == 'x')
5046 {
5047 gdb_assert (r->offset * 2 < strlen (rs->buf));
5048 /* The register isn't available, mark it as such (at
5049 the same time setting the value to zero). */
5050 regcache_raw_supply (regcache, r->regnum, NULL);
5051 }
5052 else
5053 regcache_raw_supply (regcache, r->regnum,
5054 regs + r->offset);
5055 }
5056 }
5057 }
5058 }
5059
5060 static void
5061 fetch_registers_using_g (struct regcache *regcache)
5062 {
5063 send_g_packet ();
5064 process_g_packet (regcache);
5065 }
5066
5067 static void
5068 remote_fetch_registers (struct target_ops *ops,
5069 struct regcache *regcache, int regnum)
5070 {
5071 struct remote_state *rs = get_remote_state ();
5072 struct remote_arch_state *rsa = get_remote_arch_state ();
5073 int i;
5074
5075 set_general_thread (inferior_ptid);
5076
5077 if (regnum >= 0)
5078 {
5079 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5080 gdb_assert (reg != NULL);
5081
5082 /* If this register might be in the 'g' packet, try that first -
5083 we are likely to read more than one register. If this is the
5084 first 'g' packet, we might be overly optimistic about its
5085 contents, so fall back to 'p'. */
5086 if (reg->in_g_packet)
5087 {
5088 fetch_registers_using_g (regcache);
5089 if (reg->in_g_packet)
5090 return;
5091 }
5092
5093 if (fetch_register_using_p (regcache, reg))
5094 return;
5095
5096 /* This register is not available. */
5097 regcache_raw_supply (regcache, reg->regnum, NULL);
5098
5099 return;
5100 }
5101
5102 fetch_registers_using_g (regcache);
5103
5104 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5105 if (!rsa->regs[i].in_g_packet)
5106 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
5107 {
5108 /* This register is not available. */
5109 regcache_raw_supply (regcache, i, NULL);
5110 }
5111 }
5112
5113 /* Prepare to store registers. Since we may send them all (using a
5114 'G' request), we have to read out the ones we don't want to change
5115 first. */
5116
5117 static void
5118 remote_prepare_to_store (struct regcache *regcache)
5119 {
5120 struct remote_arch_state *rsa = get_remote_arch_state ();
5121 int i;
5122 gdb_byte buf[MAX_REGISTER_SIZE];
5123
5124 /* Make sure the entire registers array is valid. */
5125 switch (remote_protocol_packets[PACKET_P].support)
5126 {
5127 case PACKET_DISABLE:
5128 case PACKET_SUPPORT_UNKNOWN:
5129 /* Make sure all the necessary registers are cached. */
5130 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5131 if (rsa->regs[i].in_g_packet)
5132 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
5133 break;
5134 case PACKET_ENABLE:
5135 break;
5136 }
5137 }
5138
5139 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
5140 packet was not recognized. */
5141
5142 static int
5143 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
5144 {
5145 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5146 struct remote_state *rs = get_remote_state ();
5147 struct remote_arch_state *rsa = get_remote_arch_state ();
5148 /* Try storing a single register. */
5149 char *buf = rs->buf;
5150 gdb_byte regp[MAX_REGISTER_SIZE];
5151 char *p;
5152
5153 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
5154 return 0;
5155
5156 if (reg->pnum == -1)
5157 return 0;
5158
5159 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
5160 p = buf + strlen (buf);
5161 regcache_raw_collect (regcache, reg->regnum, regp);
5162 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
5163 remote_send (&rs->buf, &rs->buf_size);
5164
5165 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
5166 {
5167 case PACKET_OK:
5168 return 1;
5169 case PACKET_ERROR:
5170 error (_("Could not write register \"%s\""),
5171 gdbarch_register_name (gdbarch, reg->regnum));
5172 case PACKET_UNKNOWN:
5173 return 0;
5174 default:
5175 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
5176 }
5177 }
5178
5179 /* Store register REGNUM, or all registers if REGNUM == -1, from the
5180 contents of the register cache buffer. FIXME: ignores errors. */
5181
5182 static void
5183 store_registers_using_G (const struct regcache *regcache)
5184 {
5185 struct remote_state *rs = get_remote_state ();
5186 struct remote_arch_state *rsa = get_remote_arch_state ();
5187 gdb_byte *regs;
5188 char *p;
5189
5190 /* Extract all the registers in the regcache copying them into a
5191 local buffer. */
5192 {
5193 int i;
5194 regs = alloca (rsa->sizeof_g_packet);
5195 memset (regs, 0, rsa->sizeof_g_packet);
5196 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5197 {
5198 struct packet_reg *r = &rsa->regs[i];
5199 if (r->in_g_packet)
5200 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
5201 }
5202 }
5203
5204 /* Command describes registers byte by byte,
5205 each byte encoded as two hex characters. */
5206 p = rs->buf;
5207 *p++ = 'G';
5208 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
5209 updated. */
5210 bin2hex (regs, p, rsa->sizeof_g_packet);
5211 remote_send (&rs->buf, &rs->buf_size);
5212 }
5213
5214 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
5215 of the register cache buffer. FIXME: ignores errors. */
5216
5217 static void
5218 remote_store_registers (struct target_ops *ops,
5219 struct regcache *regcache, int regnum)
5220 {
5221 struct remote_state *rs = get_remote_state ();
5222 struct remote_arch_state *rsa = get_remote_arch_state ();
5223 int i;
5224
5225 set_general_thread (inferior_ptid);
5226
5227 if (regnum >= 0)
5228 {
5229 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5230 gdb_assert (reg != NULL);
5231
5232 /* Always prefer to store registers using the 'P' packet if
5233 possible; we often change only a small number of registers.
5234 Sometimes we change a larger number; we'd need help from a
5235 higher layer to know to use 'G'. */
5236 if (store_register_using_P (regcache, reg))
5237 return;
5238
5239 /* For now, don't complain if we have no way to write the
5240 register. GDB loses track of unavailable registers too
5241 easily. Some day, this may be an error. We don't have
5242 any way to read the register, either... */
5243 if (!reg->in_g_packet)
5244 return;
5245
5246 store_registers_using_G (regcache);
5247 return;
5248 }
5249
5250 store_registers_using_G (regcache);
5251
5252 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5253 if (!rsa->regs[i].in_g_packet)
5254 if (!store_register_using_P (regcache, &rsa->regs[i]))
5255 /* See above for why we do not issue an error here. */
5256 continue;
5257 }
5258 \f
5259
5260 /* Return the number of hex digits in num. */
5261
5262 static int
5263 hexnumlen (ULONGEST num)
5264 {
5265 int i;
5266
5267 for (i = 0; num != 0; i++)
5268 num >>= 4;
5269
5270 return max (i, 1);
5271 }
5272
5273 /* Set BUF to the minimum number of hex digits representing NUM. */
5274
5275 static int
5276 hexnumstr (char *buf, ULONGEST num)
5277 {
5278 int len = hexnumlen (num);
5279 return hexnumnstr (buf, num, len);
5280 }
5281
5282
5283 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
5284
5285 static int
5286 hexnumnstr (char *buf, ULONGEST num, int width)
5287 {
5288 int i;
5289
5290 buf[width] = '\0';
5291
5292 for (i = width - 1; i >= 0; i--)
5293 {
5294 buf[i] = "0123456789abcdef"[(num & 0xf)];
5295 num >>= 4;
5296 }
5297
5298 return width;
5299 }
5300
5301 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
5302
5303 static CORE_ADDR
5304 remote_address_masked (CORE_ADDR addr)
5305 {
5306 int address_size = remote_address_size;
5307 /* If "remoteaddresssize" was not set, default to target address size. */
5308 if (!address_size)
5309 address_size = gdbarch_addr_bit (target_gdbarch);
5310
5311 if (address_size > 0
5312 && address_size < (sizeof (ULONGEST) * 8))
5313 {
5314 /* Only create a mask when that mask can safely be constructed
5315 in a ULONGEST variable. */
5316 ULONGEST mask = 1;
5317 mask = (mask << address_size) - 1;
5318 addr &= mask;
5319 }
5320 return addr;
5321 }
5322
5323 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
5324 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
5325 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
5326 (which may be more than *OUT_LEN due to escape characters). The
5327 total number of bytes in the output buffer will be at most
5328 OUT_MAXLEN. */
5329
5330 static int
5331 remote_escape_output (const gdb_byte *buffer, int len,
5332 gdb_byte *out_buf, int *out_len,
5333 int out_maxlen)
5334 {
5335 int input_index, output_index;
5336
5337 output_index = 0;
5338 for (input_index = 0; input_index < len; input_index++)
5339 {
5340 gdb_byte b = buffer[input_index];
5341
5342 if (b == '$' || b == '#' || b == '}')
5343 {
5344 /* These must be escaped. */
5345 if (output_index + 2 > out_maxlen)
5346 break;
5347 out_buf[output_index++] = '}';
5348 out_buf[output_index++] = b ^ 0x20;
5349 }
5350 else
5351 {
5352 if (output_index + 1 > out_maxlen)
5353 break;
5354 out_buf[output_index++] = b;
5355 }
5356 }
5357
5358 *out_len = input_index;
5359 return output_index;
5360 }
5361
5362 /* Convert BUFFER, escaped data LEN bytes long, into binary data
5363 in OUT_BUF. Return the number of bytes written to OUT_BUF.
5364 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
5365
5366 This function reverses remote_escape_output. It allows more
5367 escaped characters than that function does, in particular because
5368 '*' must be escaped to avoid the run-length encoding processing
5369 in reading packets. */
5370
5371 static int
5372 remote_unescape_input (const gdb_byte *buffer, int len,
5373 gdb_byte *out_buf, int out_maxlen)
5374 {
5375 int input_index, output_index;
5376 int escaped;
5377
5378 output_index = 0;
5379 escaped = 0;
5380 for (input_index = 0; input_index < len; input_index++)
5381 {
5382 gdb_byte b = buffer[input_index];
5383
5384 if (output_index + 1 > out_maxlen)
5385 {
5386 warning (_("Received too much data from remote target;"
5387 " ignoring overflow."));
5388 return output_index;
5389 }
5390
5391 if (escaped)
5392 {
5393 out_buf[output_index++] = b ^ 0x20;
5394 escaped = 0;
5395 }
5396 else if (b == '}')
5397 escaped = 1;
5398 else
5399 out_buf[output_index++] = b;
5400 }
5401
5402 if (escaped)
5403 error (_("Unmatched escape character in target response."));
5404
5405 return output_index;
5406 }
5407
5408 /* Determine whether the remote target supports binary downloading.
5409 This is accomplished by sending a no-op memory write of zero length
5410 to the target at the specified address. It does not suffice to send
5411 the whole packet, since many stubs strip the eighth bit and
5412 subsequently compute a wrong checksum, which causes real havoc with
5413 remote_write_bytes.
5414
5415 NOTE: This can still lose if the serial line is not eight-bit
5416 clean. In cases like this, the user should clear "remote
5417 X-packet". */
5418
5419 static void
5420 check_binary_download (CORE_ADDR addr)
5421 {
5422 struct remote_state *rs = get_remote_state ();
5423
5424 switch (remote_protocol_packets[PACKET_X].support)
5425 {
5426 case PACKET_DISABLE:
5427 break;
5428 case PACKET_ENABLE:
5429 break;
5430 case PACKET_SUPPORT_UNKNOWN:
5431 {
5432 char *p;
5433
5434 p = rs->buf;
5435 *p++ = 'X';
5436 p += hexnumstr (p, (ULONGEST) addr);
5437 *p++ = ',';
5438 p += hexnumstr (p, (ULONGEST) 0);
5439 *p++ = ':';
5440 *p = '\0';
5441
5442 putpkt_binary (rs->buf, (int) (p - rs->buf));
5443 getpkt (&rs->buf, &rs->buf_size, 0);
5444
5445 if (rs->buf[0] == '\0')
5446 {
5447 if (remote_debug)
5448 fprintf_unfiltered (gdb_stdlog,
5449 "binary downloading NOT suppported by target\n");
5450 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
5451 }
5452 else
5453 {
5454 if (remote_debug)
5455 fprintf_unfiltered (gdb_stdlog,
5456 "binary downloading suppported by target\n");
5457 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
5458 }
5459 break;
5460 }
5461 }
5462 }
5463
5464 /* Write memory data directly to the remote machine.
5465 This does not inform the data cache; the data cache uses this.
5466 HEADER is the starting part of the packet.
5467 MEMADDR is the address in the remote memory space.
5468 MYADDR is the address of the buffer in our space.
5469 LEN is the number of bytes.
5470 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
5471 should send data as binary ('X'), or hex-encoded ('M').
5472
5473 The function creates packet of the form
5474 <HEADER><ADDRESS>,<LENGTH>:<DATA>
5475
5476 where encoding of <DATA> is termined by PACKET_FORMAT.
5477
5478 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
5479 are omitted.
5480
5481 Returns the number of bytes transferred, or 0 (setting errno) for
5482 error. Only transfer a single packet. */
5483
5484 static int
5485 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
5486 const gdb_byte *myaddr, int len,
5487 char packet_format, int use_length)
5488 {
5489 struct remote_state *rs = get_remote_state ();
5490 char *p;
5491 char *plen = NULL;
5492 int plenlen = 0;
5493 int todo;
5494 int nr_bytes;
5495 int payload_size;
5496 int payload_length;
5497 int header_length;
5498
5499 if (packet_format != 'X' && packet_format != 'M')
5500 internal_error (__FILE__, __LINE__,
5501 "remote_write_bytes_aux: bad packet format");
5502
5503 if (len <= 0)
5504 return 0;
5505
5506 payload_size = get_memory_write_packet_size ();
5507
5508 /* The packet buffer will be large enough for the payload;
5509 get_memory_packet_size ensures this. */
5510 rs->buf[0] = '\0';
5511
5512 /* Compute the size of the actual payload by subtracting out the
5513 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
5514 */
5515 payload_size -= strlen ("$,:#NN");
5516 if (!use_length)
5517 /* The comma won't be used. */
5518 payload_size += 1;
5519 header_length = strlen (header);
5520 payload_size -= header_length;
5521 payload_size -= hexnumlen (memaddr);
5522
5523 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
5524
5525 strcat (rs->buf, header);
5526 p = rs->buf + strlen (header);
5527
5528 /* Compute a best guess of the number of bytes actually transfered. */
5529 if (packet_format == 'X')
5530 {
5531 /* Best guess at number of bytes that will fit. */
5532 todo = min (len, payload_size);
5533 if (use_length)
5534 payload_size -= hexnumlen (todo);
5535 todo = min (todo, payload_size);
5536 }
5537 else
5538 {
5539 /* Num bytes that will fit. */
5540 todo = min (len, payload_size / 2);
5541 if (use_length)
5542 payload_size -= hexnumlen (todo);
5543 todo = min (todo, payload_size / 2);
5544 }
5545
5546 if (todo <= 0)
5547 internal_error (__FILE__, __LINE__,
5548 _("minumum packet size too small to write data"));
5549
5550 /* If we already need another packet, then try to align the end
5551 of this packet to a useful boundary. */
5552 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
5553 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
5554
5555 /* Append "<memaddr>". */
5556 memaddr = remote_address_masked (memaddr);
5557 p += hexnumstr (p, (ULONGEST) memaddr);
5558
5559 if (use_length)
5560 {
5561 /* Append ",". */
5562 *p++ = ',';
5563
5564 /* Append <len>. Retain the location/size of <len>. It may need to
5565 be adjusted once the packet body has been created. */
5566 plen = p;
5567 plenlen = hexnumstr (p, (ULONGEST) todo);
5568 p += plenlen;
5569 }
5570
5571 /* Append ":". */
5572 *p++ = ':';
5573 *p = '\0';
5574
5575 /* Append the packet body. */
5576 if (packet_format == 'X')
5577 {
5578 /* Binary mode. Send target system values byte by byte, in
5579 increasing byte addresses. Only escape certain critical
5580 characters. */
5581 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
5582 payload_size);
5583
5584 /* If not all TODO bytes fit, then we'll need another packet. Make
5585 a second try to keep the end of the packet aligned. Don't do
5586 this if the packet is tiny. */
5587 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
5588 {
5589 int new_nr_bytes;
5590
5591 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
5592 - memaddr);
5593 if (new_nr_bytes != nr_bytes)
5594 payload_length = remote_escape_output (myaddr, new_nr_bytes,
5595 p, &nr_bytes,
5596 payload_size);
5597 }
5598
5599 p += payload_length;
5600 if (use_length && nr_bytes < todo)
5601 {
5602 /* Escape chars have filled up the buffer prematurely,
5603 and we have actually sent fewer bytes than planned.
5604 Fix-up the length field of the packet. Use the same
5605 number of characters as before. */
5606 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
5607 *plen = ':'; /* overwrite \0 from hexnumnstr() */
5608 }
5609 }
5610 else
5611 {
5612 /* Normal mode: Send target system values byte by byte, in
5613 increasing byte addresses. Each byte is encoded as a two hex
5614 value. */
5615 nr_bytes = bin2hex (myaddr, p, todo);
5616 p += 2 * nr_bytes;
5617 }
5618
5619 putpkt_binary (rs->buf, (int) (p - rs->buf));
5620 getpkt (&rs->buf, &rs->buf_size, 0);
5621
5622 if (rs->buf[0] == 'E')
5623 {
5624 /* There is no correspondance between what the remote protocol
5625 uses for errors and errno codes. We would like a cleaner way
5626 of representing errors (big enough to include errno codes,
5627 bfd_error codes, and others). But for now just return EIO. */
5628 errno = EIO;
5629 return 0;
5630 }
5631
5632 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
5633 fewer bytes than we'd planned. */
5634 return nr_bytes;
5635 }
5636
5637 /* Write memory data directly to the remote machine.
5638 This does not inform the data cache; the data cache uses this.
5639 MEMADDR is the address in the remote memory space.
5640 MYADDR is the address of the buffer in our space.
5641 LEN is the number of bytes.
5642
5643 Returns number of bytes transferred, or 0 (setting errno) for
5644 error. Only transfer a single packet. */
5645
5646 int
5647 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
5648 {
5649 char *packet_format = 0;
5650
5651 /* Check whether the target supports binary download. */
5652 check_binary_download (memaddr);
5653
5654 switch (remote_protocol_packets[PACKET_X].support)
5655 {
5656 case PACKET_ENABLE:
5657 packet_format = "X";
5658 break;
5659 case PACKET_DISABLE:
5660 packet_format = "M";
5661 break;
5662 case PACKET_SUPPORT_UNKNOWN:
5663 internal_error (__FILE__, __LINE__,
5664 _("remote_write_bytes: bad internal state"));
5665 default:
5666 internal_error (__FILE__, __LINE__, _("bad switch"));
5667 }
5668
5669 return remote_write_bytes_aux (packet_format,
5670 memaddr, myaddr, len, packet_format[0], 1);
5671 }
5672
5673 /* Read memory data directly from the remote machine.
5674 This does not use the data cache; the data cache uses this.
5675 MEMADDR is the address in the remote memory space.
5676 MYADDR is the address of the buffer in our space.
5677 LEN is the number of bytes.
5678
5679 Returns number of bytes transferred, or 0 for error. */
5680
5681 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
5682 remote targets) shouldn't attempt to read the entire buffer.
5683 Instead it should read a single packet worth of data and then
5684 return the byte size of that packet to the caller. The caller (its
5685 caller and its callers caller ;-) already contains code for
5686 handling partial reads. */
5687
5688 int
5689 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
5690 {
5691 struct remote_state *rs = get_remote_state ();
5692 int max_buf_size; /* Max size of packet output buffer. */
5693 int origlen;
5694
5695 if (len <= 0)
5696 return 0;
5697
5698 max_buf_size = get_memory_read_packet_size ();
5699 /* The packet buffer will be large enough for the payload;
5700 get_memory_packet_size ensures this. */
5701
5702 origlen = len;
5703 while (len > 0)
5704 {
5705 char *p;
5706 int todo;
5707 int i;
5708
5709 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
5710
5711 /* construct "m"<memaddr>","<len>" */
5712 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
5713 memaddr = remote_address_masked (memaddr);
5714 p = rs->buf;
5715 *p++ = 'm';
5716 p += hexnumstr (p, (ULONGEST) memaddr);
5717 *p++ = ',';
5718 p += hexnumstr (p, (ULONGEST) todo);
5719 *p = '\0';
5720
5721 putpkt (rs->buf);
5722 getpkt (&rs->buf, &rs->buf_size, 0);
5723
5724 if (rs->buf[0] == 'E'
5725 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
5726 && rs->buf[3] == '\0')
5727 {
5728 /* There is no correspondance between what the remote
5729 protocol uses for errors and errno codes. We would like
5730 a cleaner way of representing errors (big enough to
5731 include errno codes, bfd_error codes, and others). But
5732 for now just return EIO. */
5733 errno = EIO;
5734 return 0;
5735 }
5736
5737 /* Reply describes memory byte by byte,
5738 each byte encoded as two hex characters. */
5739
5740 p = rs->buf;
5741 if ((i = hex2bin (p, myaddr, todo)) < todo)
5742 {
5743 /* Reply is short. This means that we were able to read
5744 only part of what we wanted to. */
5745 return i + (origlen - len);
5746 }
5747 myaddr += todo;
5748 memaddr += todo;
5749 len -= todo;
5750 }
5751 return origlen;
5752 }
5753 \f
5754
5755 /* Remote notification handler. */
5756
5757 static void
5758 handle_notification (char *buf, size_t length)
5759 {
5760 if (strncmp (buf, "Stop:", 5) == 0)
5761 {
5762 if (pending_stop_reply)
5763 /* We've already parsed the in-flight stop-reply, but the stub
5764 for some reason thought we didn't, possibly due to timeout
5765 on its side. Just ignore it. */
5766 ;
5767 else
5768 {
5769 struct cleanup *old_chain;
5770 struct stop_reply *reply = stop_reply_xmalloc ();
5771 old_chain = make_cleanup (do_stop_reply_xfree, reply);
5772
5773 remote_parse_stop_reply (buf + 5, reply);
5774
5775 discard_cleanups (old_chain);
5776
5777 /* Be careful to only set it after parsing, since an error
5778 may be thrown then. */
5779 pending_stop_reply = reply;
5780
5781 /* Notify the event loop there's a stop reply to acknowledge
5782 and that there may be more events to fetch. */
5783 mark_async_event_handler (remote_async_get_pending_events_token);
5784 }
5785 }
5786 else
5787 /* We ignore notifications we don't recognize, for compatibility
5788 with newer stubs. */
5789 ;
5790 }
5791
5792 \f
5793 /* Read or write LEN bytes from inferior memory at MEMADDR,
5794 transferring to or from debugger address BUFFER. Write to inferior
5795 if SHOULD_WRITE is nonzero. Returns length of data written or
5796 read; 0 for error. TARGET is unused. */
5797
5798 static int
5799 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
5800 int should_write, struct mem_attrib *attrib,
5801 struct target_ops *target)
5802 {
5803 int res;
5804
5805 set_general_thread (inferior_ptid);
5806
5807 if (should_write)
5808 res = remote_write_bytes (mem_addr, buffer, mem_len);
5809 else
5810 res = remote_read_bytes (mem_addr, buffer, mem_len);
5811
5812 return res;
5813 }
5814
5815 /* Sends a packet with content determined by the printf format string
5816 FORMAT and the remaining arguments, then gets the reply. Returns
5817 whether the packet was a success, a failure, or unknown. */
5818
5819 static enum packet_result
5820 remote_send_printf (const char *format, ...)
5821 {
5822 struct remote_state *rs = get_remote_state ();
5823 int max_size = get_remote_packet_size ();
5824
5825 va_list ap;
5826 va_start (ap, format);
5827
5828 rs->buf[0] = '\0';
5829 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
5830 internal_error (__FILE__, __LINE__, "Too long remote packet.");
5831
5832 if (putpkt (rs->buf) < 0)
5833 error (_("Communication problem with target."));
5834
5835 rs->buf[0] = '\0';
5836 getpkt (&rs->buf, &rs->buf_size, 0);
5837
5838 return packet_check_result (rs->buf);
5839 }
5840
5841 static void
5842 restore_remote_timeout (void *p)
5843 {
5844 int value = *(int *)p;
5845 remote_timeout = value;
5846 }
5847
5848 /* Flash writing can take quite some time. We'll set
5849 effectively infinite timeout for flash operations.
5850 In future, we'll need to decide on a better approach. */
5851 static const int remote_flash_timeout = 1000;
5852
5853 static void
5854 remote_flash_erase (struct target_ops *ops,
5855 ULONGEST address, LONGEST length)
5856 {
5857 int saved_remote_timeout = remote_timeout;
5858 enum packet_result ret;
5859
5860 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5861 &saved_remote_timeout);
5862 remote_timeout = remote_flash_timeout;
5863
5864 ret = remote_send_printf ("vFlashErase:%s,%s",
5865 paddr (address),
5866 phex (length, 4));
5867 switch (ret)
5868 {
5869 case PACKET_UNKNOWN:
5870 error (_("Remote target does not support flash erase"));
5871 case PACKET_ERROR:
5872 error (_("Error erasing flash with vFlashErase packet"));
5873 default:
5874 break;
5875 }
5876
5877 do_cleanups (back_to);
5878 }
5879
5880 static LONGEST
5881 remote_flash_write (struct target_ops *ops,
5882 ULONGEST address, LONGEST length,
5883 const gdb_byte *data)
5884 {
5885 int saved_remote_timeout = remote_timeout;
5886 int ret;
5887 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5888 &saved_remote_timeout);
5889
5890 remote_timeout = remote_flash_timeout;
5891 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
5892 do_cleanups (back_to);
5893
5894 return ret;
5895 }
5896
5897 static void
5898 remote_flash_done (struct target_ops *ops)
5899 {
5900 int saved_remote_timeout = remote_timeout;
5901 int ret;
5902 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5903 &saved_remote_timeout);
5904
5905 remote_timeout = remote_flash_timeout;
5906 ret = remote_send_printf ("vFlashDone");
5907 do_cleanups (back_to);
5908
5909 switch (ret)
5910 {
5911 case PACKET_UNKNOWN:
5912 error (_("Remote target does not support vFlashDone"));
5913 case PACKET_ERROR:
5914 error (_("Error finishing flash operation"));
5915 default:
5916 break;
5917 }
5918 }
5919
5920 static void
5921 remote_files_info (struct target_ops *ignore)
5922 {
5923 puts_filtered ("Debugging a target over a serial line.\n");
5924 }
5925 \f
5926 /* Stuff for dealing with the packets which are part of this protocol.
5927 See comment at top of file for details. */
5928
5929 /* Read a single character from the remote end. */
5930
5931 static int
5932 readchar (int timeout)
5933 {
5934 int ch;
5935
5936 ch = serial_readchar (remote_desc, timeout);
5937
5938 if (ch >= 0)
5939 return ch;
5940
5941 switch ((enum serial_rc) ch)
5942 {
5943 case SERIAL_EOF:
5944 pop_target ();
5945 error (_("Remote connection closed"));
5946 /* no return */
5947 case SERIAL_ERROR:
5948 perror_with_name (_("Remote communication error"));
5949 /* no return */
5950 case SERIAL_TIMEOUT:
5951 break;
5952 }
5953 return ch;
5954 }
5955
5956 /* Send the command in *BUF to the remote machine, and read the reply
5957 into *BUF. Report an error if we get an error reply. Resize
5958 *BUF using xrealloc if necessary to hold the result, and update
5959 *SIZEOF_BUF. */
5960
5961 static void
5962 remote_send (char **buf,
5963 long *sizeof_buf)
5964 {
5965 putpkt (*buf);
5966 getpkt (buf, sizeof_buf, 0);
5967
5968 if ((*buf)[0] == 'E')
5969 error (_("Remote failure reply: %s"), *buf);
5970 }
5971
5972 /* Return a pointer to an xmalloc'ed string representing an escaped
5973 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
5974 etc. The caller is responsible for releasing the returned
5975 memory. */
5976
5977 static char *
5978 escape_buffer (const char *buf, int n)
5979 {
5980 struct cleanup *old_chain;
5981 struct ui_file *stb;
5982 char *str;
5983 long length;
5984
5985 stb = mem_fileopen ();
5986 old_chain = make_cleanup_ui_file_delete (stb);
5987
5988 fputstrn_unfiltered (buf, n, 0, stb);
5989 str = ui_file_xstrdup (stb, &length);
5990 do_cleanups (old_chain);
5991 return str;
5992 }
5993
5994 /* Display a null-terminated packet on stdout, for debugging, using C
5995 string notation. */
5996
5997 static void
5998 print_packet (char *buf)
5999 {
6000 puts_filtered ("\"");
6001 fputstr_filtered (buf, '"', gdb_stdout);
6002 puts_filtered ("\"");
6003 }
6004
6005 int
6006 putpkt (char *buf)
6007 {
6008 return putpkt_binary (buf, strlen (buf));
6009 }
6010
6011 /* Send a packet to the remote machine, with error checking. The data
6012 of the packet is in BUF. The string in BUF can be at most
6013 get_remote_packet_size () - 5 to account for the $, # and checksum,
6014 and for a possible /0 if we are debugging (remote_debug) and want
6015 to print the sent packet as a string. */
6016
6017 static int
6018 putpkt_binary (char *buf, int cnt)
6019 {
6020 struct remote_state *rs = get_remote_state ();
6021 int i;
6022 unsigned char csum = 0;
6023 char *buf2 = alloca (cnt + 6);
6024
6025 int ch;
6026 int tcount = 0;
6027 char *p;
6028
6029 /* Catch cases like trying to read memory or listing threads while
6030 we're waiting for a stop reply. The remote server wouldn't be
6031 ready to handle this request, so we'd hang and timeout. We don't
6032 have to worry about this in synchronous mode, because in that
6033 case it's not possible to issue a command while the target is
6034 running. This is not a problem in non-stop mode, because in that
6035 case, the stub is always ready to process serial input. */
6036 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
6037 error (_("Cannot execute this command while the target is running."));
6038
6039 /* We're sending out a new packet. Make sure we don't look at a
6040 stale cached response. */
6041 rs->cached_wait_status = 0;
6042
6043 /* Copy the packet into buffer BUF2, encapsulating it
6044 and giving it a checksum. */
6045
6046 p = buf2;
6047 *p++ = '$';
6048
6049 for (i = 0; i < cnt; i++)
6050 {
6051 csum += buf[i];
6052 *p++ = buf[i];
6053 }
6054 *p++ = '#';
6055 *p++ = tohex ((csum >> 4) & 0xf);
6056 *p++ = tohex (csum & 0xf);
6057
6058 /* Send it over and over until we get a positive ack. */
6059
6060 while (1)
6061 {
6062 int started_error_output = 0;
6063
6064 if (remote_debug)
6065 {
6066 struct cleanup *old_chain;
6067 char *str;
6068
6069 *p = '\0';
6070 str = escape_buffer (buf2, p - buf2);
6071 old_chain = make_cleanup (xfree, str);
6072 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
6073 gdb_flush (gdb_stdlog);
6074 do_cleanups (old_chain);
6075 }
6076 if (serial_write (remote_desc, buf2, p - buf2))
6077 perror_with_name (_("putpkt: write failed"));
6078
6079 /* If this is a no acks version of the remote protocol, send the
6080 packet and move on. */
6081 if (rs->noack_mode)
6082 break;
6083
6084 /* Read until either a timeout occurs (-2) or '+' is read.
6085 Handle any notification that arrives in the mean time. */
6086 while (1)
6087 {
6088 ch = readchar (remote_timeout);
6089
6090 if (remote_debug)
6091 {
6092 switch (ch)
6093 {
6094 case '+':
6095 case '-':
6096 case SERIAL_TIMEOUT:
6097 case '$':
6098 case '%':
6099 if (started_error_output)
6100 {
6101 putchar_unfiltered ('\n');
6102 started_error_output = 0;
6103 }
6104 }
6105 }
6106
6107 switch (ch)
6108 {
6109 case '+':
6110 if (remote_debug)
6111 fprintf_unfiltered (gdb_stdlog, "Ack\n");
6112 return 1;
6113 case '-':
6114 if (remote_debug)
6115 fprintf_unfiltered (gdb_stdlog, "Nak\n");
6116 case SERIAL_TIMEOUT:
6117 tcount++;
6118 if (tcount > 3)
6119 return 0;
6120 break; /* Retransmit buffer. */
6121 case '$':
6122 {
6123 if (remote_debug)
6124 fprintf_unfiltered (gdb_stdlog,
6125 "Packet instead of Ack, ignoring it\n");
6126 /* It's probably an old response sent because an ACK
6127 was lost. Gobble up the packet and ack it so it
6128 doesn't get retransmitted when we resend this
6129 packet. */
6130 skip_frame ();
6131 serial_write (remote_desc, "+", 1);
6132 continue; /* Now, go look for +. */
6133 }
6134
6135 case '%':
6136 {
6137 int val;
6138
6139 /* If we got a notification, handle it, and go back to looking
6140 for an ack. */
6141 /* We've found the start of a notification. Now
6142 collect the data. */
6143 val = read_frame (&rs->buf, &rs->buf_size);
6144 if (val >= 0)
6145 {
6146 if (remote_debug)
6147 {
6148 struct cleanup *old_chain;
6149 char *str;
6150
6151 str = escape_buffer (rs->buf, val);
6152 old_chain = make_cleanup (xfree, str);
6153 fprintf_unfiltered (gdb_stdlog,
6154 " Notification received: %s\n",
6155 str);
6156 do_cleanups (old_chain);
6157 }
6158 handle_notification (rs->buf, val);
6159 /* We're in sync now, rewait for the ack. */
6160 tcount = 0;
6161 }
6162 else
6163 {
6164 if (remote_debug)
6165 {
6166 if (!started_error_output)
6167 {
6168 started_error_output = 1;
6169 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6170 }
6171 fputc_unfiltered (ch & 0177, gdb_stdlog);
6172 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
6173 }
6174 }
6175 continue;
6176 }
6177 /* fall-through */
6178 default:
6179 if (remote_debug)
6180 {
6181 if (!started_error_output)
6182 {
6183 started_error_output = 1;
6184 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6185 }
6186 fputc_unfiltered (ch & 0177, gdb_stdlog);
6187 }
6188 continue;
6189 }
6190 break; /* Here to retransmit. */
6191 }
6192
6193 #if 0
6194 /* This is wrong. If doing a long backtrace, the user should be
6195 able to get out next time we call QUIT, without anything as
6196 violent as interrupt_query. If we want to provide a way out of
6197 here without getting to the next QUIT, it should be based on
6198 hitting ^C twice as in remote_wait. */
6199 if (quit_flag)
6200 {
6201 quit_flag = 0;
6202 interrupt_query ();
6203 }
6204 #endif
6205 }
6206 return 0;
6207 }
6208
6209 /* Come here after finding the start of a frame when we expected an
6210 ack. Do our best to discard the rest of this packet. */
6211
6212 static void
6213 skip_frame (void)
6214 {
6215 int c;
6216
6217 while (1)
6218 {
6219 c = readchar (remote_timeout);
6220 switch (c)
6221 {
6222 case SERIAL_TIMEOUT:
6223 /* Nothing we can do. */
6224 return;
6225 case '#':
6226 /* Discard the two bytes of checksum and stop. */
6227 c = readchar (remote_timeout);
6228 if (c >= 0)
6229 c = readchar (remote_timeout);
6230
6231 return;
6232 case '*': /* Run length encoding. */
6233 /* Discard the repeat count. */
6234 c = readchar (remote_timeout);
6235 if (c < 0)
6236 return;
6237 break;
6238 default:
6239 /* A regular character. */
6240 break;
6241 }
6242 }
6243 }
6244
6245 /* Come here after finding the start of the frame. Collect the rest
6246 into *BUF, verifying the checksum, length, and handling run-length
6247 compression. NUL terminate the buffer. If there is not enough room,
6248 expand *BUF using xrealloc.
6249
6250 Returns -1 on error, number of characters in buffer (ignoring the
6251 trailing NULL) on success. (could be extended to return one of the
6252 SERIAL status indications). */
6253
6254 static long
6255 read_frame (char **buf_p,
6256 long *sizeof_buf)
6257 {
6258 unsigned char csum;
6259 long bc;
6260 int c;
6261 char *buf = *buf_p;
6262 struct remote_state *rs = get_remote_state ();
6263
6264 csum = 0;
6265 bc = 0;
6266
6267 while (1)
6268 {
6269 c = readchar (remote_timeout);
6270 switch (c)
6271 {
6272 case SERIAL_TIMEOUT:
6273 if (remote_debug)
6274 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
6275 return -1;
6276 case '$':
6277 if (remote_debug)
6278 fputs_filtered ("Saw new packet start in middle of old one\n",
6279 gdb_stdlog);
6280 return -1; /* Start a new packet, count retries. */
6281 case '#':
6282 {
6283 unsigned char pktcsum;
6284 int check_0 = 0;
6285 int check_1 = 0;
6286
6287 buf[bc] = '\0';
6288
6289 check_0 = readchar (remote_timeout);
6290 if (check_0 >= 0)
6291 check_1 = readchar (remote_timeout);
6292
6293 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
6294 {
6295 if (remote_debug)
6296 fputs_filtered ("Timeout in checksum, retrying\n",
6297 gdb_stdlog);
6298 return -1;
6299 }
6300 else if (check_0 < 0 || check_1 < 0)
6301 {
6302 if (remote_debug)
6303 fputs_filtered ("Communication error in checksum\n",
6304 gdb_stdlog);
6305 return -1;
6306 }
6307
6308 /* Don't recompute the checksum; with no ack packets we
6309 don't have any way to indicate a packet retransmission
6310 is necessary. */
6311 if (rs->noack_mode)
6312 return bc;
6313
6314 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
6315 if (csum == pktcsum)
6316 return bc;
6317
6318 if (remote_debug)
6319 {
6320 struct cleanup *old_chain;
6321 char *str;
6322
6323 str = escape_buffer (buf, bc);
6324 old_chain = make_cleanup (xfree, str);
6325 fprintf_unfiltered (gdb_stdlog,
6326 "\
6327 Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s\n",
6328 pktcsum, csum, str);
6329 do_cleanups (old_chain);
6330 }
6331 /* Number of characters in buffer ignoring trailing
6332 NULL. */
6333 return -1;
6334 }
6335 case '*': /* Run length encoding. */
6336 {
6337 int repeat;
6338 csum += c;
6339
6340 c = readchar (remote_timeout);
6341 csum += c;
6342 repeat = c - ' ' + 3; /* Compute repeat count. */
6343
6344 /* The character before ``*'' is repeated. */
6345
6346 if (repeat > 0 && repeat <= 255 && bc > 0)
6347 {
6348 if (bc + repeat - 1 >= *sizeof_buf - 1)
6349 {
6350 /* Make some more room in the buffer. */
6351 *sizeof_buf += repeat;
6352 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6353 buf = *buf_p;
6354 }
6355
6356 memset (&buf[bc], buf[bc - 1], repeat);
6357 bc += repeat;
6358 continue;
6359 }
6360
6361 buf[bc] = '\0';
6362 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
6363 return -1;
6364 }
6365 default:
6366 if (bc >= *sizeof_buf - 1)
6367 {
6368 /* Make some more room in the buffer. */
6369 *sizeof_buf *= 2;
6370 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6371 buf = *buf_p;
6372 }
6373
6374 buf[bc++] = c;
6375 csum += c;
6376 continue;
6377 }
6378 }
6379 }
6380
6381 /* Read a packet from the remote machine, with error checking, and
6382 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6383 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6384 rather than timing out; this is used (in synchronous mode) to wait
6385 for a target that is is executing user code to stop. */
6386 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
6387 don't have to change all the calls to getpkt to deal with the
6388 return value, because at the moment I don't know what the right
6389 thing to do it for those. */
6390 void
6391 getpkt (char **buf,
6392 long *sizeof_buf,
6393 int forever)
6394 {
6395 int timed_out;
6396
6397 timed_out = getpkt_sane (buf, sizeof_buf, forever);
6398 }
6399
6400
6401 /* Read a packet from the remote machine, with error checking, and
6402 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6403 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6404 rather than timing out; this is used (in synchronous mode) to wait
6405 for a target that is is executing user code to stop. If FOREVER ==
6406 0, this function is allowed to time out gracefully and return an
6407 indication of this to the caller. Otherwise return the number of
6408 bytes read. If EXPECTING_NOTIF, consider receiving a notification
6409 enough reason to return to the caller. */
6410
6411 static int
6412 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
6413 int expecting_notif)
6414 {
6415 struct remote_state *rs = get_remote_state ();
6416 int c;
6417 int tries;
6418 int timeout;
6419 int val;
6420
6421 /* We're reading a new response. Make sure we don't look at a
6422 previously cached response. */
6423 rs->cached_wait_status = 0;
6424
6425 strcpy (*buf, "timeout");
6426
6427 if (forever)
6428 timeout = watchdog > 0 ? watchdog : -1;
6429 else if (expecting_notif)
6430 timeout = 0; /* There should already be a char in the buffer. If
6431 not, bail out. */
6432 else
6433 timeout = remote_timeout;
6434
6435 #define MAX_TRIES 3
6436
6437 /* Process any number of notifications, and then return when
6438 we get a packet. */
6439 for (;;)
6440 {
6441 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
6442 times. */
6443 for (tries = 1; tries <= MAX_TRIES; tries++)
6444 {
6445 /* This can loop forever if the remote side sends us
6446 characters continuously, but if it pauses, we'll get
6447 SERIAL_TIMEOUT from readchar because of timeout. Then
6448 we'll count that as a retry.
6449
6450 Note that even when forever is set, we will only wait
6451 forever prior to the start of a packet. After that, we
6452 expect characters to arrive at a brisk pace. They should
6453 show up within remote_timeout intervals. */
6454 do
6455 c = readchar (timeout);
6456 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
6457
6458 if (c == SERIAL_TIMEOUT)
6459 {
6460 if (expecting_notif)
6461 return -1; /* Don't complain, it's normal to not get
6462 anything in this case. */
6463
6464 if (forever) /* Watchdog went off? Kill the target. */
6465 {
6466 QUIT;
6467 pop_target ();
6468 error (_("Watchdog timeout has expired. Target detached."));
6469 }
6470 if (remote_debug)
6471 fputs_filtered ("Timed out.\n", gdb_stdlog);
6472 }
6473 else
6474 {
6475 /* We've found the start of a packet or notification.
6476 Now collect the data. */
6477 val = read_frame (buf, sizeof_buf);
6478 if (val >= 0)
6479 break;
6480 }
6481
6482 serial_write (remote_desc, "-", 1);
6483 }
6484
6485 if (tries > MAX_TRIES)
6486 {
6487 /* We have tried hard enough, and just can't receive the
6488 packet/notification. Give up. */
6489 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
6490
6491 /* Skip the ack char if we're in no-ack mode. */
6492 if (!rs->noack_mode)
6493 serial_write (remote_desc, "+", 1);
6494 return -1;
6495 }
6496
6497 /* If we got an ordinary packet, return that to our caller. */
6498 if (c == '$')
6499 {
6500 if (remote_debug)
6501 {
6502 struct cleanup *old_chain;
6503 char *str;
6504
6505 str = escape_buffer (*buf, val);
6506 old_chain = make_cleanup (xfree, str);
6507 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
6508 do_cleanups (old_chain);
6509 }
6510
6511 /* Skip the ack char if we're in no-ack mode. */
6512 if (!rs->noack_mode)
6513 serial_write (remote_desc, "+", 1);
6514 return val;
6515 }
6516
6517 /* If we got a notification, handle it, and go back to looking
6518 for a packet. */
6519 else
6520 {
6521 gdb_assert (c == '%');
6522
6523 if (remote_debug)
6524 {
6525 struct cleanup *old_chain;
6526 char *str;
6527
6528 str = escape_buffer (*buf, val);
6529 old_chain = make_cleanup (xfree, str);
6530 fprintf_unfiltered (gdb_stdlog,
6531 " Notification received: %s\n",
6532 str);
6533 do_cleanups (old_chain);
6534 }
6535
6536 handle_notification (*buf, val);
6537
6538 /* Notifications require no acknowledgement. */
6539
6540 if (expecting_notif)
6541 return -1;
6542 }
6543 }
6544 }
6545
6546 static int
6547 getpkt_sane (char **buf, long *sizeof_buf, int forever)
6548 {
6549 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
6550 }
6551
6552 static int
6553 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
6554 {
6555 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
6556 }
6557
6558 \f
6559 static void
6560 remote_kill (struct target_ops *ops)
6561 {
6562 /* Use catch_errors so the user can quit from gdb even when we
6563 aren't on speaking terms with the remote system. */
6564 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
6565
6566 /* Don't wait for it to die. I'm not really sure it matters whether
6567 we do or not. For the existing stubs, kill is a noop. */
6568 target_mourn_inferior ();
6569 }
6570
6571 static int
6572 remote_vkill (int pid, struct remote_state *rs)
6573 {
6574 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6575 return -1;
6576
6577 /* Tell the remote target to detach. */
6578 sprintf (rs->buf, "vKill;%x", pid);
6579 putpkt (rs->buf);
6580 getpkt (&rs->buf, &rs->buf_size, 0);
6581
6582 if (packet_ok (rs->buf,
6583 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
6584 return 0;
6585 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6586 return -1;
6587 else
6588 return 1;
6589 }
6590
6591 static void
6592 extended_remote_kill (struct target_ops *ops)
6593 {
6594 int res;
6595 int pid = ptid_get_pid (inferior_ptid);
6596 struct remote_state *rs = get_remote_state ();
6597
6598 res = remote_vkill (pid, rs);
6599 if (res == -1 && !remote_multi_process_p (rs))
6600 {
6601 /* Don't try 'k' on a multi-process aware stub -- it has no way
6602 to specify the pid. */
6603
6604 putpkt ("k");
6605 #if 0
6606 getpkt (&rs->buf, &rs->buf_size, 0);
6607 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
6608 res = 1;
6609 #else
6610 /* Don't wait for it to die. I'm not really sure it matters whether
6611 we do or not. For the existing stubs, kill is a noop. */
6612 res = 0;
6613 #endif
6614 }
6615
6616 if (res != 0)
6617 error (_("Can't kill process"));
6618
6619 target_mourn_inferior ();
6620 }
6621
6622 static void
6623 remote_mourn (struct target_ops *ops)
6624 {
6625 remote_mourn_1 (ops);
6626 }
6627
6628 /* Worker function for remote_mourn. */
6629 static void
6630 remote_mourn_1 (struct target_ops *target)
6631 {
6632 unpush_target (target);
6633
6634 /* remote_close takes care of doing most of the clean up. */
6635 generic_mourn_inferior ();
6636 }
6637
6638 static void
6639 extended_remote_mourn_1 (struct target_ops *target)
6640 {
6641 struct remote_state *rs = get_remote_state ();
6642
6643 /* In case we got here due to an error, but we're going to stay
6644 connected. */
6645 rs->waiting_for_stop_reply = 0;
6646
6647 /* We're no longer interested in these events. */
6648 discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
6649
6650 /* If the current general thread belonged to the process we just
6651 detached from or has exited, the remote side current general
6652 thread becomes undefined. Considering a case like this:
6653
6654 - We just got here due to a detach.
6655 - The process that we're detaching from happens to immediately
6656 report a global breakpoint being hit in non-stop mode, in the
6657 same thread we had selected before.
6658 - GDB attaches to this process again.
6659 - This event happens to be the next event we handle.
6660
6661 GDB would consider that the current general thread didn't need to
6662 be set on the stub side (with Hg), since for all it knew,
6663 GENERAL_THREAD hadn't changed.
6664
6665 Notice that although in all-stop mode, the remote server always
6666 sets the current thread to the thread reporting the stop event,
6667 that doesn't happen in non-stop mode; in non-stop, the stub *must
6668 not* change the current thread when reporting a breakpoint hit,
6669 due to the decoupling of event reporting and event handling.
6670
6671 To keep things simple, we always invalidate our notion of the
6672 current thread. */
6673 record_currthread (minus_one_ptid);
6674
6675 /* Unlike "target remote", we do not want to unpush the target; then
6676 the next time the user says "run", we won't be connected. */
6677
6678 /* Call common code to mark the inferior as not running. */
6679 generic_mourn_inferior ();
6680
6681 if (!have_inferiors ())
6682 {
6683 if (!remote_multi_process_p (rs))
6684 {
6685 /* Check whether the target is running now - some remote stubs
6686 automatically restart after kill. */
6687 putpkt ("?");
6688 getpkt (&rs->buf, &rs->buf_size, 0);
6689
6690 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
6691 {
6692 /* Assume that the target has been restarted. Set inferior_ptid
6693 so that bits of core GDB realizes there's something here, e.g.,
6694 so that the user can say "kill" again. */
6695 inferior_ptid = magic_null_ptid;
6696 }
6697 else
6698 {
6699 /* Mark this (still pushed) target as not executable until we
6700 restart it. */
6701 target_mark_exited (target);
6702 }
6703 }
6704 else
6705 /* Always remove execution if this was the last process. */
6706 target_mark_exited (target);
6707 }
6708 }
6709
6710 static void
6711 extended_remote_mourn (struct target_ops *ops)
6712 {
6713 extended_remote_mourn_1 (ops);
6714 }
6715
6716 static int
6717 extended_remote_run (char *args)
6718 {
6719 struct remote_state *rs = get_remote_state ();
6720 char *p;
6721 int len;
6722
6723 /* If the user has disabled vRun support, or we have detected that
6724 support is not available, do not try it. */
6725 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
6726 return -1;
6727
6728 strcpy (rs->buf, "vRun;");
6729 len = strlen (rs->buf);
6730
6731 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
6732 error (_("Remote file name too long for run packet"));
6733 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
6734
6735 gdb_assert (args != NULL);
6736 if (*args)
6737 {
6738 struct cleanup *back_to;
6739 int i;
6740 char **argv;
6741
6742 argv = gdb_buildargv (args);
6743 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
6744 for (i = 0; argv[i] != NULL; i++)
6745 {
6746 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
6747 error (_("Argument list too long for run packet"));
6748 rs->buf[len++] = ';';
6749 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
6750 }
6751 do_cleanups (back_to);
6752 }
6753
6754 rs->buf[len++] = '\0';
6755
6756 putpkt (rs->buf);
6757 getpkt (&rs->buf, &rs->buf_size, 0);
6758
6759 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
6760 {
6761 /* We have a wait response; we don't need it, though. All is well. */
6762 return 0;
6763 }
6764 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
6765 /* It wasn't disabled before, but it is now. */
6766 return -1;
6767 else
6768 {
6769 if (remote_exec_file[0] == '\0')
6770 error (_("Running the default executable on the remote target failed; "
6771 "try \"set remote exec-file\"?"));
6772 else
6773 error (_("Running \"%s\" on the remote target failed"),
6774 remote_exec_file);
6775 }
6776 }
6777
6778 /* In the extended protocol we want to be able to do things like
6779 "run" and have them basically work as expected. So we need
6780 a special create_inferior function. We support changing the
6781 executable file and the command line arguments, but not the
6782 environment. */
6783
6784 static void
6785 extended_remote_create_inferior_1 (char *exec_file, char *args,
6786 char **env, int from_tty)
6787 {
6788 /* If running asynchronously, register the target file descriptor
6789 with the event loop. */
6790 if (target_can_async_p ())
6791 target_async (inferior_event_handler, 0);
6792
6793 /* Now restart the remote server. */
6794 if (extended_remote_run (args) == -1)
6795 {
6796 /* vRun was not supported. Fail if we need it to do what the
6797 user requested. */
6798 if (remote_exec_file[0])
6799 error (_("Remote target does not support \"set remote exec-file\""));
6800 if (args[0])
6801 error (_("Remote target does not support \"set args\" or run <ARGS>"));
6802
6803 /* Fall back to "R". */
6804 extended_remote_restart ();
6805 }
6806
6807 /* Clean up from the last time we ran, before we mark the target
6808 running again. This will mark breakpoints uninserted, and
6809 get_offsets may insert breakpoints. */
6810 init_thread_list ();
6811 init_wait_for_inferior ();
6812
6813 /* Now mark the inferior as running before we do anything else. */
6814 inferior_ptid = magic_null_ptid;
6815
6816 /* Now, if we have thread information, update inferior_ptid. */
6817 inferior_ptid = remote_current_thread (inferior_ptid);
6818
6819 remote_add_inferior (ptid_get_pid (inferior_ptid), 0);
6820 add_thread_silent (inferior_ptid);
6821
6822 /* Get updated offsets, if the stub uses qOffsets. */
6823 get_offsets ();
6824 }
6825
6826 static void
6827 extended_remote_create_inferior (struct target_ops *ops,
6828 char *exec_file, char *args,
6829 char **env, int from_tty)
6830 {
6831 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
6832 }
6833 \f
6834
6835 /* Insert a breakpoint. On targets that have software breakpoint
6836 support, we ask the remote target to do the work; on targets
6837 which don't, we insert a traditional memory breakpoint. */
6838
6839 static int
6840 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
6841 {
6842 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
6843 If it succeeds, then set the support to PACKET_ENABLE. If it
6844 fails, and the user has explicitly requested the Z support then
6845 report an error, otherwise, mark it disabled and go on. */
6846
6847 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
6848 {
6849 CORE_ADDR addr = bp_tgt->placed_address;
6850 struct remote_state *rs;
6851 char *p;
6852 int bpsize;
6853
6854 gdbarch_breakpoint_from_pc (target_gdbarch, &addr, &bpsize);
6855
6856 rs = get_remote_state ();
6857 p = rs->buf;
6858
6859 *(p++) = 'Z';
6860 *(p++) = '0';
6861 *(p++) = ',';
6862 addr = (ULONGEST) remote_address_masked (addr);
6863 p += hexnumstr (p, addr);
6864 sprintf (p, ",%d", bpsize);
6865
6866 putpkt (rs->buf);
6867 getpkt (&rs->buf, &rs->buf_size, 0);
6868
6869 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
6870 {
6871 case PACKET_ERROR:
6872 return -1;
6873 case PACKET_OK:
6874 bp_tgt->placed_address = addr;
6875 bp_tgt->placed_size = bpsize;
6876 return 0;
6877 case PACKET_UNKNOWN:
6878 break;
6879 }
6880 }
6881
6882 return memory_insert_breakpoint (bp_tgt);
6883 }
6884
6885 static int
6886 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
6887 {
6888 CORE_ADDR addr = bp_tgt->placed_address;
6889 struct remote_state *rs = get_remote_state ();
6890 int bp_size;
6891
6892 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
6893 {
6894 char *p = rs->buf;
6895
6896 *(p++) = 'z';
6897 *(p++) = '0';
6898 *(p++) = ',';
6899
6900 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
6901 p += hexnumstr (p, addr);
6902 sprintf (p, ",%d", bp_tgt->placed_size);
6903
6904 putpkt (rs->buf);
6905 getpkt (&rs->buf, &rs->buf_size, 0);
6906
6907 return (rs->buf[0] == 'E');
6908 }
6909
6910 return memory_remove_breakpoint (bp_tgt);
6911 }
6912
6913 static int
6914 watchpoint_to_Z_packet (int type)
6915 {
6916 switch (type)
6917 {
6918 case hw_write:
6919 return Z_PACKET_WRITE_WP;
6920 break;
6921 case hw_read:
6922 return Z_PACKET_READ_WP;
6923 break;
6924 case hw_access:
6925 return Z_PACKET_ACCESS_WP;
6926 break;
6927 default:
6928 internal_error (__FILE__, __LINE__,
6929 _("hw_bp_to_z: bad watchpoint type %d"), type);
6930 }
6931 }
6932
6933 static int
6934 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
6935 {
6936 struct remote_state *rs = get_remote_state ();
6937 char *p;
6938 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
6939
6940 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
6941 return -1;
6942
6943 sprintf (rs->buf, "Z%x,", packet);
6944 p = strchr (rs->buf, '\0');
6945 addr = remote_address_masked (addr);
6946 p += hexnumstr (p, (ULONGEST) addr);
6947 sprintf (p, ",%x", len);
6948
6949 putpkt (rs->buf);
6950 getpkt (&rs->buf, &rs->buf_size, 0);
6951
6952 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
6953 {
6954 case PACKET_ERROR:
6955 case PACKET_UNKNOWN:
6956 return -1;
6957 case PACKET_OK:
6958 return 0;
6959 }
6960 internal_error (__FILE__, __LINE__,
6961 _("remote_insert_watchpoint: reached end of function"));
6962 }
6963
6964
6965 static int
6966 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
6967 {
6968 struct remote_state *rs = get_remote_state ();
6969 char *p;
6970 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
6971
6972 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
6973 return -1;
6974
6975 sprintf (rs->buf, "z%x,", packet);
6976 p = strchr (rs->buf, '\0');
6977 addr = remote_address_masked (addr);
6978 p += hexnumstr (p, (ULONGEST) addr);
6979 sprintf (p, ",%x", len);
6980 putpkt (rs->buf);
6981 getpkt (&rs->buf, &rs->buf_size, 0);
6982
6983 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
6984 {
6985 case PACKET_ERROR:
6986 case PACKET_UNKNOWN:
6987 return -1;
6988 case PACKET_OK:
6989 return 0;
6990 }
6991 internal_error (__FILE__, __LINE__,
6992 _("remote_remove_watchpoint: reached end of function"));
6993 }
6994
6995
6996 int remote_hw_watchpoint_limit = -1;
6997 int remote_hw_breakpoint_limit = -1;
6998
6999 static int
7000 remote_check_watch_resources (int type, int cnt, int ot)
7001 {
7002 if (type == bp_hardware_breakpoint)
7003 {
7004 if (remote_hw_breakpoint_limit == 0)
7005 return 0;
7006 else if (remote_hw_breakpoint_limit < 0)
7007 return 1;
7008 else if (cnt <= remote_hw_breakpoint_limit)
7009 return 1;
7010 }
7011 else
7012 {
7013 if (remote_hw_watchpoint_limit == 0)
7014 return 0;
7015 else if (remote_hw_watchpoint_limit < 0)
7016 return 1;
7017 else if (ot)
7018 return -1;
7019 else if (cnt <= remote_hw_watchpoint_limit)
7020 return 1;
7021 }
7022 return -1;
7023 }
7024
7025 static int
7026 remote_stopped_by_watchpoint (void)
7027 {
7028 return remote_stopped_by_watchpoint_p;
7029 }
7030
7031 static int
7032 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
7033 {
7034 int rc = 0;
7035 if (remote_stopped_by_watchpoint ())
7036 {
7037 *addr_p = remote_watch_data_address;
7038 rc = 1;
7039 }
7040
7041 return rc;
7042 }
7043
7044
7045 static int
7046 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
7047 {
7048 CORE_ADDR addr;
7049 struct remote_state *rs;
7050 char *p;
7051
7052 /* The length field should be set to the size of a breakpoint
7053 instruction, even though we aren't inserting one ourselves. */
7054
7055 gdbarch_breakpoint_from_pc
7056 (target_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
7057
7058 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7059 return -1;
7060
7061 rs = get_remote_state ();
7062 p = rs->buf;
7063
7064 *(p++) = 'Z';
7065 *(p++) = '1';
7066 *(p++) = ',';
7067
7068 addr = remote_address_masked (bp_tgt->placed_address);
7069 p += hexnumstr (p, (ULONGEST) addr);
7070 sprintf (p, ",%x", bp_tgt->placed_size);
7071
7072 putpkt (rs->buf);
7073 getpkt (&rs->buf, &rs->buf_size, 0);
7074
7075 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7076 {
7077 case PACKET_ERROR:
7078 case PACKET_UNKNOWN:
7079 return -1;
7080 case PACKET_OK:
7081 return 0;
7082 }
7083 internal_error (__FILE__, __LINE__,
7084 _("remote_insert_hw_breakpoint: reached end of function"));
7085 }
7086
7087
7088 static int
7089 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
7090 {
7091 CORE_ADDR addr;
7092 struct remote_state *rs = get_remote_state ();
7093 char *p = rs->buf;
7094
7095 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7096 return -1;
7097
7098 *(p++) = 'z';
7099 *(p++) = '1';
7100 *(p++) = ',';
7101
7102 addr = remote_address_masked (bp_tgt->placed_address);
7103 p += hexnumstr (p, (ULONGEST) addr);
7104 sprintf (p, ",%x", bp_tgt->placed_size);
7105
7106 putpkt (rs->buf);
7107 getpkt (&rs->buf, &rs->buf_size, 0);
7108
7109 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7110 {
7111 case PACKET_ERROR:
7112 case PACKET_UNKNOWN:
7113 return -1;
7114 case PACKET_OK:
7115 return 0;
7116 }
7117 internal_error (__FILE__, __LINE__,
7118 _("remote_remove_hw_breakpoint: reached end of function"));
7119 }
7120
7121 /* Table used by the crc32 function to calcuate the checksum. */
7122
7123 static unsigned long crc32_table[256] =
7124 {0, 0};
7125
7126 static unsigned long
7127 crc32 (unsigned char *buf, int len, unsigned int crc)
7128 {
7129 if (!crc32_table[1])
7130 {
7131 /* Initialize the CRC table and the decoding table. */
7132 int i, j;
7133 unsigned int c;
7134
7135 for (i = 0; i < 256; i++)
7136 {
7137 for (c = i << 24, j = 8; j > 0; --j)
7138 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
7139 crc32_table[i] = c;
7140 }
7141 }
7142
7143 while (len--)
7144 {
7145 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
7146 buf++;
7147 }
7148 return crc;
7149 }
7150
7151 /* compare-sections command
7152
7153 With no arguments, compares each loadable section in the exec bfd
7154 with the same memory range on the target, and reports mismatches.
7155 Useful for verifying the image on the target against the exec file.
7156 Depends on the target understanding the new "qCRC:" request. */
7157
7158 /* FIXME: cagney/1999-10-26: This command should be broken down into a
7159 target method (target verify memory) and generic version of the
7160 actual command. This will allow other high-level code (especially
7161 generic_load()) to make use of this target functionality. */
7162
7163 static void
7164 compare_sections_command (char *args, int from_tty)
7165 {
7166 struct remote_state *rs = get_remote_state ();
7167 asection *s;
7168 unsigned long host_crc, target_crc;
7169 extern bfd *exec_bfd;
7170 struct cleanup *old_chain;
7171 char *tmp;
7172 char *sectdata;
7173 const char *sectname;
7174 bfd_size_type size;
7175 bfd_vma lma;
7176 int matched = 0;
7177 int mismatched = 0;
7178
7179 if (!exec_bfd)
7180 error (_("command cannot be used without an exec file"));
7181 if (!current_target.to_shortname ||
7182 strcmp (current_target.to_shortname, "remote") != 0)
7183 error (_("command can only be used with remote target"));
7184
7185 for (s = exec_bfd->sections; s; s = s->next)
7186 {
7187 if (!(s->flags & SEC_LOAD))
7188 continue; /* skip non-loadable section */
7189
7190 size = bfd_get_section_size (s);
7191 if (size == 0)
7192 continue; /* skip zero-length section */
7193
7194 sectname = bfd_get_section_name (exec_bfd, s);
7195 if (args && strcmp (args, sectname) != 0)
7196 continue; /* not the section selected by user */
7197
7198 matched = 1; /* do this section */
7199 lma = s->lma;
7200 /* FIXME: assumes lma can fit into long. */
7201 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
7202 (long) lma, (long) size);
7203 putpkt (rs->buf);
7204
7205 /* Be clever; compute the host_crc before waiting for target
7206 reply. */
7207 sectdata = xmalloc (size);
7208 old_chain = make_cleanup (xfree, sectdata);
7209 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
7210 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
7211
7212 getpkt (&rs->buf, &rs->buf_size, 0);
7213 if (rs->buf[0] == 'E')
7214 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
7215 sectname, paddr (lma), paddr (lma + size));
7216 if (rs->buf[0] != 'C')
7217 error (_("remote target does not support this operation"));
7218
7219 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
7220 target_crc = target_crc * 16 + fromhex (*tmp);
7221
7222 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
7223 sectname, paddr (lma), paddr (lma + size));
7224 if (host_crc == target_crc)
7225 printf_filtered ("matched.\n");
7226 else
7227 {
7228 printf_filtered ("MIS-MATCHED!\n");
7229 mismatched++;
7230 }
7231
7232 do_cleanups (old_chain);
7233 }
7234 if (mismatched > 0)
7235 warning (_("One or more sections of the remote executable does not match\n\
7236 the loaded file\n"));
7237 if (args && !matched)
7238 printf_filtered (_("No loaded section named '%s'.\n"), args);
7239 }
7240
7241 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
7242 into remote target. The number of bytes written to the remote
7243 target is returned, or -1 for error. */
7244
7245 static LONGEST
7246 remote_write_qxfer (struct target_ops *ops, const char *object_name,
7247 const char *annex, const gdb_byte *writebuf,
7248 ULONGEST offset, LONGEST len,
7249 struct packet_config *packet)
7250 {
7251 int i, buf_len;
7252 ULONGEST n;
7253 gdb_byte *wbuf;
7254 struct remote_state *rs = get_remote_state ();
7255 int max_size = get_memory_write_packet_size ();
7256
7257 if (packet->support == PACKET_DISABLE)
7258 return -1;
7259
7260 /* Insert header. */
7261 i = snprintf (rs->buf, max_size,
7262 "qXfer:%s:write:%s:%s:",
7263 object_name, annex ? annex : "",
7264 phex_nz (offset, sizeof offset));
7265 max_size -= (i + 1);
7266
7267 /* Escape as much data as fits into rs->buf. */
7268 buf_len = remote_escape_output
7269 (writebuf, len, (rs->buf + i), &max_size, max_size);
7270
7271 if (putpkt_binary (rs->buf, i + buf_len) < 0
7272 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
7273 || packet_ok (rs->buf, packet) != PACKET_OK)
7274 return -1;
7275
7276 unpack_varlen_hex (rs->buf, &n);
7277 return n;
7278 }
7279
7280 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
7281 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
7282 number of bytes read is returned, or 0 for EOF, or -1 for error.
7283 The number of bytes read may be less than LEN without indicating an
7284 EOF. PACKET is checked and updated to indicate whether the remote
7285 target supports this object. */
7286
7287 static LONGEST
7288 remote_read_qxfer (struct target_ops *ops, const char *object_name,
7289 const char *annex,
7290 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
7291 struct packet_config *packet)
7292 {
7293 static char *finished_object;
7294 static char *finished_annex;
7295 static ULONGEST finished_offset;
7296
7297 struct remote_state *rs = get_remote_state ();
7298 unsigned int total = 0;
7299 LONGEST i, n, packet_len;
7300
7301 if (packet->support == PACKET_DISABLE)
7302 return -1;
7303
7304 /* Check whether we've cached an end-of-object packet that matches
7305 this request. */
7306 if (finished_object)
7307 {
7308 if (strcmp (object_name, finished_object) == 0
7309 && strcmp (annex ? annex : "", finished_annex) == 0
7310 && offset == finished_offset)
7311 return 0;
7312
7313 /* Otherwise, we're now reading something different. Discard
7314 the cache. */
7315 xfree (finished_object);
7316 xfree (finished_annex);
7317 finished_object = NULL;
7318 finished_annex = NULL;
7319 }
7320
7321 /* Request only enough to fit in a single packet. The actual data
7322 may not, since we don't know how much of it will need to be escaped;
7323 the target is free to respond with slightly less data. We subtract
7324 five to account for the response type and the protocol frame. */
7325 n = min (get_remote_packet_size () - 5, len);
7326 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
7327 object_name, annex ? annex : "",
7328 phex_nz (offset, sizeof offset),
7329 phex_nz (n, sizeof n));
7330 i = putpkt (rs->buf);
7331 if (i < 0)
7332 return -1;
7333
7334 rs->buf[0] = '\0';
7335 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
7336 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
7337 return -1;
7338
7339 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
7340 error (_("Unknown remote qXfer reply: %s"), rs->buf);
7341
7342 /* 'm' means there is (or at least might be) more data after this
7343 batch. That does not make sense unless there's at least one byte
7344 of data in this reply. */
7345 if (rs->buf[0] == 'm' && packet_len == 1)
7346 error (_("Remote qXfer reply contained no data."));
7347
7348 /* Got some data. */
7349 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
7350
7351 /* 'l' is an EOF marker, possibly including a final block of data,
7352 or possibly empty. If we have the final block of a non-empty
7353 object, record this fact to bypass a subsequent partial read. */
7354 if (rs->buf[0] == 'l' && offset + i > 0)
7355 {
7356 finished_object = xstrdup (object_name);
7357 finished_annex = xstrdup (annex ? annex : "");
7358 finished_offset = offset + i;
7359 }
7360
7361 return i;
7362 }
7363
7364 static LONGEST
7365 remote_xfer_partial (struct target_ops *ops, enum target_object object,
7366 const char *annex, gdb_byte *readbuf,
7367 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
7368 {
7369 struct remote_state *rs;
7370 int i;
7371 char *p2;
7372 char query_type;
7373
7374 set_general_thread (inferior_ptid);
7375
7376 rs = get_remote_state ();
7377
7378 /* Handle memory using the standard memory routines. */
7379 if (object == TARGET_OBJECT_MEMORY)
7380 {
7381 int xfered;
7382 errno = 0;
7383
7384 /* If the remote target is connected but not running, we should
7385 pass this request down to a lower stratum (e.g. the executable
7386 file). */
7387 if (!target_has_execution)
7388 return 0;
7389
7390 if (writebuf != NULL)
7391 xfered = remote_write_bytes (offset, writebuf, len);
7392 else
7393 xfered = remote_read_bytes (offset, readbuf, len);
7394
7395 if (xfered > 0)
7396 return xfered;
7397 else if (xfered == 0 && errno == 0)
7398 return 0;
7399 else
7400 return -1;
7401 }
7402
7403 /* Handle SPU memory using qxfer packets. */
7404 if (object == TARGET_OBJECT_SPU)
7405 {
7406 if (readbuf)
7407 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
7408 &remote_protocol_packets
7409 [PACKET_qXfer_spu_read]);
7410 else
7411 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
7412 &remote_protocol_packets
7413 [PACKET_qXfer_spu_write]);
7414 }
7415
7416 /* Handle extra signal info using qxfer packets. */
7417 if (object == TARGET_OBJECT_SIGNAL_INFO)
7418 {
7419 if (readbuf)
7420 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
7421 &remote_protocol_packets
7422 [PACKET_qXfer_siginfo_read]);
7423 else
7424 return remote_write_qxfer (ops, "siginfo", annex, writebuf, offset, len,
7425 &remote_protocol_packets
7426 [PACKET_qXfer_siginfo_write]);
7427 }
7428
7429 /* Only handle flash writes. */
7430 if (writebuf != NULL)
7431 {
7432 LONGEST xfered;
7433
7434 switch (object)
7435 {
7436 case TARGET_OBJECT_FLASH:
7437 xfered = remote_flash_write (ops, offset, len, writebuf);
7438
7439 if (xfered > 0)
7440 return xfered;
7441 else if (xfered == 0 && errno == 0)
7442 return 0;
7443 else
7444 return -1;
7445
7446 default:
7447 return -1;
7448 }
7449 }
7450
7451 /* Map pre-existing objects onto letters. DO NOT do this for new
7452 objects!!! Instead specify new query packets. */
7453 switch (object)
7454 {
7455 case TARGET_OBJECT_AVR:
7456 query_type = 'R';
7457 break;
7458
7459 case TARGET_OBJECT_AUXV:
7460 gdb_assert (annex == NULL);
7461 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
7462 &remote_protocol_packets[PACKET_qXfer_auxv]);
7463
7464 case TARGET_OBJECT_AVAILABLE_FEATURES:
7465 return remote_read_qxfer
7466 (ops, "features", annex, readbuf, offset, len,
7467 &remote_protocol_packets[PACKET_qXfer_features]);
7468
7469 case TARGET_OBJECT_LIBRARIES:
7470 return remote_read_qxfer
7471 (ops, "libraries", annex, readbuf, offset, len,
7472 &remote_protocol_packets[PACKET_qXfer_libraries]);
7473
7474 case TARGET_OBJECT_MEMORY_MAP:
7475 gdb_assert (annex == NULL);
7476 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
7477 &remote_protocol_packets[PACKET_qXfer_memory_map]);
7478
7479 case TARGET_OBJECT_OSDATA:
7480 /* Should only get here if we're connected. */
7481 gdb_assert (remote_desc);
7482 return remote_read_qxfer
7483 (ops, "osdata", annex, readbuf, offset, len,
7484 &remote_protocol_packets[PACKET_qXfer_osdata]);
7485
7486 default:
7487 return -1;
7488 }
7489
7490 /* Note: a zero OFFSET and LEN can be used to query the minimum
7491 buffer size. */
7492 if (offset == 0 && len == 0)
7493 return (get_remote_packet_size ());
7494 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
7495 large enough let the caller deal with it. */
7496 if (len < get_remote_packet_size ())
7497 return -1;
7498 len = get_remote_packet_size ();
7499
7500 /* Except for querying the minimum buffer size, target must be open. */
7501 if (!remote_desc)
7502 error (_("remote query is only available after target open"));
7503
7504 gdb_assert (annex != NULL);
7505 gdb_assert (readbuf != NULL);
7506
7507 p2 = rs->buf;
7508 *p2++ = 'q';
7509 *p2++ = query_type;
7510
7511 /* We used one buffer char for the remote protocol q command and
7512 another for the query type. As the remote protocol encapsulation
7513 uses 4 chars plus one extra in case we are debugging
7514 (remote_debug), we have PBUFZIZ - 7 left to pack the query
7515 string. */
7516 i = 0;
7517 while (annex[i] && (i < (get_remote_packet_size () - 8)))
7518 {
7519 /* Bad caller may have sent forbidden characters. */
7520 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
7521 *p2++ = annex[i];
7522 i++;
7523 }
7524 *p2 = '\0';
7525 gdb_assert (annex[i] == '\0');
7526
7527 i = putpkt (rs->buf);
7528 if (i < 0)
7529 return i;
7530
7531 getpkt (&rs->buf, &rs->buf_size, 0);
7532 strcpy ((char *) readbuf, rs->buf);
7533
7534 return strlen ((char *) readbuf);
7535 }
7536
7537 static int
7538 remote_search_memory (struct target_ops* ops,
7539 CORE_ADDR start_addr, ULONGEST search_space_len,
7540 const gdb_byte *pattern, ULONGEST pattern_len,
7541 CORE_ADDR *found_addrp)
7542 {
7543 struct remote_state *rs = get_remote_state ();
7544 int max_size = get_memory_write_packet_size ();
7545 struct packet_config *packet =
7546 &remote_protocol_packets[PACKET_qSearch_memory];
7547 /* number of packet bytes used to encode the pattern,
7548 this could be more than PATTERN_LEN due to escape characters */
7549 int escaped_pattern_len;
7550 /* amount of pattern that was encodable in the packet */
7551 int used_pattern_len;
7552 int i;
7553 int found;
7554 ULONGEST found_addr;
7555
7556 /* Don't go to the target if we don't have to.
7557 This is done before checking packet->support to avoid the possibility that
7558 a success for this edge case means the facility works in general. */
7559 if (pattern_len > search_space_len)
7560 return 0;
7561 if (pattern_len == 0)
7562 {
7563 *found_addrp = start_addr;
7564 return 1;
7565 }
7566
7567 /* If we already know the packet isn't supported, fall back to the simple
7568 way of searching memory. */
7569
7570 if (packet->support == PACKET_DISABLE)
7571 {
7572 /* Target doesn't provided special support, fall back and use the
7573 standard support (copy memory and do the search here). */
7574 return simple_search_memory (ops, start_addr, search_space_len,
7575 pattern, pattern_len, found_addrp);
7576 }
7577
7578 /* Insert header. */
7579 i = snprintf (rs->buf, max_size,
7580 "qSearch:memory:%s;%s;",
7581 paddr_nz (start_addr),
7582 phex_nz (search_space_len, sizeof (search_space_len)));
7583 max_size -= (i + 1);
7584
7585 /* Escape as much data as fits into rs->buf. */
7586 escaped_pattern_len =
7587 remote_escape_output (pattern, pattern_len, (rs->buf + i),
7588 &used_pattern_len, max_size);
7589
7590 /* Bail if the pattern is too large. */
7591 if (used_pattern_len != pattern_len)
7592 error ("Pattern is too large to transmit to remote target.");
7593
7594 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
7595 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
7596 || packet_ok (rs->buf, packet) != PACKET_OK)
7597 {
7598 /* The request may not have worked because the command is not
7599 supported. If so, fall back to the simple way. */
7600 if (packet->support == PACKET_DISABLE)
7601 {
7602 return simple_search_memory (ops, start_addr, search_space_len,
7603 pattern, pattern_len, found_addrp);
7604 }
7605 return -1;
7606 }
7607
7608 if (rs->buf[0] == '0')
7609 found = 0;
7610 else if (rs->buf[0] == '1')
7611 {
7612 found = 1;
7613 if (rs->buf[1] != ',')
7614 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
7615 unpack_varlen_hex (rs->buf + 2, &found_addr);
7616 *found_addrp = found_addr;
7617 }
7618 else
7619 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
7620
7621 return found;
7622 }
7623
7624 static void
7625 remote_rcmd (char *command,
7626 struct ui_file *outbuf)
7627 {
7628 struct remote_state *rs = get_remote_state ();
7629 char *p = rs->buf;
7630
7631 if (!remote_desc)
7632 error (_("remote rcmd is only available after target open"));
7633
7634 /* Send a NULL command across as an empty command. */
7635 if (command == NULL)
7636 command = "";
7637
7638 /* The query prefix. */
7639 strcpy (rs->buf, "qRcmd,");
7640 p = strchr (rs->buf, '\0');
7641
7642 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
7643 error (_("\"monitor\" command ``%s'' is too long."), command);
7644
7645 /* Encode the actual command. */
7646 bin2hex ((gdb_byte *) command, p, 0);
7647
7648 if (putpkt (rs->buf) < 0)
7649 error (_("Communication problem with target."));
7650
7651 /* get/display the response */
7652 while (1)
7653 {
7654 char *buf;
7655
7656 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
7657 rs->buf[0] = '\0';
7658 getpkt (&rs->buf, &rs->buf_size, 0);
7659 buf = rs->buf;
7660 if (buf[0] == '\0')
7661 error (_("Target does not support this command."));
7662 if (buf[0] == 'O' && buf[1] != 'K')
7663 {
7664 remote_console_output (buf + 1); /* 'O' message from stub. */
7665 continue;
7666 }
7667 if (strcmp (buf, "OK") == 0)
7668 break;
7669 if (strlen (buf) == 3 && buf[0] == 'E'
7670 && isdigit (buf[1]) && isdigit (buf[2]))
7671 {
7672 error (_("Protocol error with Rcmd"));
7673 }
7674 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
7675 {
7676 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
7677 fputc_unfiltered (c, outbuf);
7678 }
7679 break;
7680 }
7681 }
7682
7683 static VEC(mem_region_s) *
7684 remote_memory_map (struct target_ops *ops)
7685 {
7686 VEC(mem_region_s) *result = NULL;
7687 char *text = target_read_stralloc (&current_target,
7688 TARGET_OBJECT_MEMORY_MAP, NULL);
7689
7690 if (text)
7691 {
7692 struct cleanup *back_to = make_cleanup (xfree, text);
7693 result = parse_memory_map (text);
7694 do_cleanups (back_to);
7695 }
7696
7697 return result;
7698 }
7699
7700 static void
7701 packet_command (char *args, int from_tty)
7702 {
7703 struct remote_state *rs = get_remote_state ();
7704
7705 if (!remote_desc)
7706 error (_("command can only be used with remote target"));
7707
7708 if (!args)
7709 error (_("remote-packet command requires packet text as argument"));
7710
7711 puts_filtered ("sending: ");
7712 print_packet (args);
7713 puts_filtered ("\n");
7714 putpkt (args);
7715
7716 getpkt (&rs->buf, &rs->buf_size, 0);
7717 puts_filtered ("received: ");
7718 print_packet (rs->buf);
7719 puts_filtered ("\n");
7720 }
7721
7722 #if 0
7723 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
7724
7725 static void display_thread_info (struct gdb_ext_thread_info *info);
7726
7727 static void threadset_test_cmd (char *cmd, int tty);
7728
7729 static void threadalive_test (char *cmd, int tty);
7730
7731 static void threadlist_test_cmd (char *cmd, int tty);
7732
7733 int get_and_display_threadinfo (threadref *ref);
7734
7735 static void threadinfo_test_cmd (char *cmd, int tty);
7736
7737 static int thread_display_step (threadref *ref, void *context);
7738
7739 static void threadlist_update_test_cmd (char *cmd, int tty);
7740
7741 static void init_remote_threadtests (void);
7742
7743 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
7744
7745 static void
7746 threadset_test_cmd (char *cmd, int tty)
7747 {
7748 int sample_thread = SAMPLE_THREAD;
7749
7750 printf_filtered (_("Remote threadset test\n"));
7751 set_general_thread (sample_thread);
7752 }
7753
7754
7755 static void
7756 threadalive_test (char *cmd, int tty)
7757 {
7758 int sample_thread = SAMPLE_THREAD;
7759 int pid = ptid_get_pid (inferior_ptid);
7760 ptid_t ptid = ptid_build (pid, 0, sample_thread);
7761
7762 if (remote_thread_alive (ptid))
7763 printf_filtered ("PASS: Thread alive test\n");
7764 else
7765 printf_filtered ("FAIL: Thread alive test\n");
7766 }
7767
7768 void output_threadid (char *title, threadref *ref);
7769
7770 void
7771 output_threadid (char *title, threadref *ref)
7772 {
7773 char hexid[20];
7774
7775 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
7776 hexid[16] = 0;
7777 printf_filtered ("%s %s\n", title, (&hexid[0]));
7778 }
7779
7780 static void
7781 threadlist_test_cmd (char *cmd, int tty)
7782 {
7783 int startflag = 1;
7784 threadref nextthread;
7785 int done, result_count;
7786 threadref threadlist[3];
7787
7788 printf_filtered ("Remote Threadlist test\n");
7789 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
7790 &result_count, &threadlist[0]))
7791 printf_filtered ("FAIL: threadlist test\n");
7792 else
7793 {
7794 threadref *scan = threadlist;
7795 threadref *limit = scan + result_count;
7796
7797 while (scan < limit)
7798 output_threadid (" thread ", scan++);
7799 }
7800 }
7801
7802 void
7803 display_thread_info (struct gdb_ext_thread_info *info)
7804 {
7805 output_threadid ("Threadid: ", &info->threadid);
7806 printf_filtered ("Name: %s\n ", info->shortname);
7807 printf_filtered ("State: %s\n", info->display);
7808 printf_filtered ("other: %s\n\n", info->more_display);
7809 }
7810
7811 int
7812 get_and_display_threadinfo (threadref *ref)
7813 {
7814 int result;
7815 int set;
7816 struct gdb_ext_thread_info threadinfo;
7817
7818 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
7819 | TAG_MOREDISPLAY | TAG_DISPLAY;
7820 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
7821 display_thread_info (&threadinfo);
7822 return result;
7823 }
7824
7825 static void
7826 threadinfo_test_cmd (char *cmd, int tty)
7827 {
7828 int athread = SAMPLE_THREAD;
7829 threadref thread;
7830 int set;
7831
7832 int_to_threadref (&thread, athread);
7833 printf_filtered ("Remote Threadinfo test\n");
7834 if (!get_and_display_threadinfo (&thread))
7835 printf_filtered ("FAIL cannot get thread info\n");
7836 }
7837
7838 static int
7839 thread_display_step (threadref *ref, void *context)
7840 {
7841 /* output_threadid(" threadstep ",ref); *//* simple test */
7842 return get_and_display_threadinfo (ref);
7843 }
7844
7845 static void
7846 threadlist_update_test_cmd (char *cmd, int tty)
7847 {
7848 printf_filtered ("Remote Threadlist update test\n");
7849 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
7850 }
7851
7852 static void
7853 init_remote_threadtests (void)
7854 {
7855 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
7856 Fetch and print the remote list of thread identifiers, one pkt only"));
7857 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
7858 _("Fetch and display info about one thread"));
7859 add_com ("tset", class_obscure, threadset_test_cmd,
7860 _("Test setting to a different thread"));
7861 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
7862 _("Iterate through updating all remote thread info"));
7863 add_com ("talive", class_obscure, threadalive_test,
7864 _(" Remote thread alive test "));
7865 }
7866
7867 #endif /* 0 */
7868
7869 /* Convert a thread ID to a string. Returns the string in a static
7870 buffer. */
7871
7872 static char *
7873 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
7874 {
7875 static char buf[64];
7876 struct remote_state *rs = get_remote_state ();
7877
7878 if (ptid_equal (magic_null_ptid, ptid))
7879 {
7880 xsnprintf (buf, sizeof buf, "Thread <main>");
7881 return buf;
7882 }
7883 else if (remote_multi_process_p (rs)
7884 && ptid_get_tid (ptid) != 0 && ptid_get_pid (ptid) != 0)
7885 {
7886 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
7887 ptid_get_pid (ptid), ptid_get_tid (ptid));
7888 return buf;
7889 }
7890 else if (ptid_get_tid (ptid) != 0)
7891 {
7892 xsnprintf (buf, sizeof buf, "Thread %ld",
7893 ptid_get_tid (ptid));
7894 return buf;
7895 }
7896
7897 return normal_pid_to_str (ptid);
7898 }
7899
7900 /* Get the address of the thread local variable in OBJFILE which is
7901 stored at OFFSET within the thread local storage for thread PTID. */
7902
7903 static CORE_ADDR
7904 remote_get_thread_local_address (struct target_ops *ops,
7905 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
7906 {
7907 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
7908 {
7909 struct remote_state *rs = get_remote_state ();
7910 char *p = rs->buf;
7911 char *endp = rs->buf + get_remote_packet_size ();
7912 enum packet_result result;
7913
7914 strcpy (p, "qGetTLSAddr:");
7915 p += strlen (p);
7916 p = write_ptid (p, endp, ptid);
7917 *p++ = ',';
7918 p += hexnumstr (p, offset);
7919 *p++ = ',';
7920 p += hexnumstr (p, lm);
7921 *p++ = '\0';
7922
7923 putpkt (rs->buf);
7924 getpkt (&rs->buf, &rs->buf_size, 0);
7925 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
7926 if (result == PACKET_OK)
7927 {
7928 ULONGEST result;
7929
7930 unpack_varlen_hex (rs->buf, &result);
7931 return result;
7932 }
7933 else if (result == PACKET_UNKNOWN)
7934 throw_error (TLS_GENERIC_ERROR,
7935 _("Remote target doesn't support qGetTLSAddr packet"));
7936 else
7937 throw_error (TLS_GENERIC_ERROR,
7938 _("Remote target failed to process qGetTLSAddr request"));
7939 }
7940 else
7941 throw_error (TLS_GENERIC_ERROR,
7942 _("TLS not supported or disabled on this target"));
7943 /* Not reached. */
7944 return 0;
7945 }
7946
7947 /* Support for inferring a target description based on the current
7948 architecture and the size of a 'g' packet. While the 'g' packet
7949 can have any size (since optional registers can be left off the
7950 end), some sizes are easily recognizable given knowledge of the
7951 approximate architecture. */
7952
7953 struct remote_g_packet_guess
7954 {
7955 int bytes;
7956 const struct target_desc *tdesc;
7957 };
7958 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
7959 DEF_VEC_O(remote_g_packet_guess_s);
7960
7961 struct remote_g_packet_data
7962 {
7963 VEC(remote_g_packet_guess_s) *guesses;
7964 };
7965
7966 static struct gdbarch_data *remote_g_packet_data_handle;
7967
7968 static void *
7969 remote_g_packet_data_init (struct obstack *obstack)
7970 {
7971 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
7972 }
7973
7974 void
7975 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
7976 const struct target_desc *tdesc)
7977 {
7978 struct remote_g_packet_data *data
7979 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
7980 struct remote_g_packet_guess new_guess, *guess;
7981 int ix;
7982
7983 gdb_assert (tdesc != NULL);
7984
7985 for (ix = 0;
7986 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
7987 ix++)
7988 if (guess->bytes == bytes)
7989 internal_error (__FILE__, __LINE__,
7990 "Duplicate g packet description added for size %d",
7991 bytes);
7992
7993 new_guess.bytes = bytes;
7994 new_guess.tdesc = tdesc;
7995 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
7996 }
7997
7998 /* Return 1 if remote_read_description would do anything on this target
7999 and architecture, 0 otherwise. */
8000
8001 static int
8002 remote_read_description_p (struct target_ops *target)
8003 {
8004 struct remote_g_packet_data *data
8005 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8006
8007 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8008 return 1;
8009
8010 return 0;
8011 }
8012
8013 static const struct target_desc *
8014 remote_read_description (struct target_ops *target)
8015 {
8016 struct remote_g_packet_data *data
8017 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8018
8019 /* Do not try this during initial connection, when we do not know
8020 whether there is a running but stopped thread. */
8021 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
8022 return NULL;
8023
8024 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8025 {
8026 struct remote_g_packet_guess *guess;
8027 int ix;
8028 int bytes = send_g_packet ();
8029
8030 for (ix = 0;
8031 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8032 ix++)
8033 if (guess->bytes == bytes)
8034 return guess->tdesc;
8035
8036 /* We discard the g packet. A minor optimization would be to
8037 hold on to it, and fill the register cache once we have selected
8038 an architecture, but it's too tricky to do safely. */
8039 }
8040
8041 return NULL;
8042 }
8043
8044 /* Remote file transfer support. This is host-initiated I/O, not
8045 target-initiated; for target-initiated, see remote-fileio.c. */
8046
8047 /* If *LEFT is at least the length of STRING, copy STRING to
8048 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8049 decrease *LEFT. Otherwise raise an error. */
8050
8051 static void
8052 remote_buffer_add_string (char **buffer, int *left, char *string)
8053 {
8054 int len = strlen (string);
8055
8056 if (len > *left)
8057 error (_("Packet too long for target."));
8058
8059 memcpy (*buffer, string, len);
8060 *buffer += len;
8061 *left -= len;
8062
8063 /* NUL-terminate the buffer as a convenience, if there is
8064 room. */
8065 if (*left)
8066 **buffer = '\0';
8067 }
8068
8069 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
8070 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8071 decrease *LEFT. Otherwise raise an error. */
8072
8073 static void
8074 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
8075 int len)
8076 {
8077 if (2 * len > *left)
8078 error (_("Packet too long for target."));
8079
8080 bin2hex (bytes, *buffer, len);
8081 *buffer += 2 * len;
8082 *left -= 2 * len;
8083
8084 /* NUL-terminate the buffer as a convenience, if there is
8085 room. */
8086 if (*left)
8087 **buffer = '\0';
8088 }
8089
8090 /* If *LEFT is large enough, convert VALUE to hex and add it to
8091 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8092 decrease *LEFT. Otherwise raise an error. */
8093
8094 static void
8095 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
8096 {
8097 int len = hexnumlen (value);
8098
8099 if (len > *left)
8100 error (_("Packet too long for target."));
8101
8102 hexnumstr (*buffer, value);
8103 *buffer += len;
8104 *left -= len;
8105
8106 /* NUL-terminate the buffer as a convenience, if there is
8107 room. */
8108 if (*left)
8109 **buffer = '\0';
8110 }
8111
8112 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
8113 value, *REMOTE_ERRNO to the remote error number or zero if none
8114 was included, and *ATTACHMENT to point to the start of the annex
8115 if any. The length of the packet isn't needed here; there may
8116 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
8117
8118 Return 0 if the packet could be parsed, -1 if it could not. If
8119 -1 is returned, the other variables may not be initialized. */
8120
8121 static int
8122 remote_hostio_parse_result (char *buffer, int *retcode,
8123 int *remote_errno, char **attachment)
8124 {
8125 char *p, *p2;
8126
8127 *remote_errno = 0;
8128 *attachment = NULL;
8129
8130 if (buffer[0] != 'F')
8131 return -1;
8132
8133 errno = 0;
8134 *retcode = strtol (&buffer[1], &p, 16);
8135 if (errno != 0 || p == &buffer[1])
8136 return -1;
8137
8138 /* Check for ",errno". */
8139 if (*p == ',')
8140 {
8141 errno = 0;
8142 *remote_errno = strtol (p + 1, &p2, 16);
8143 if (errno != 0 || p + 1 == p2)
8144 return -1;
8145 p = p2;
8146 }
8147
8148 /* Check for ";attachment". If there is no attachment, the
8149 packet should end here. */
8150 if (*p == ';')
8151 {
8152 *attachment = p + 1;
8153 return 0;
8154 }
8155 else if (*p == '\0')
8156 return 0;
8157 else
8158 return -1;
8159 }
8160
8161 /* Send a prepared I/O packet to the target and read its response.
8162 The prepared packet is in the global RS->BUF before this function
8163 is called, and the answer is there when we return.
8164
8165 COMMAND_BYTES is the length of the request to send, which may include
8166 binary data. WHICH_PACKET is the packet configuration to check
8167 before attempting a packet. If an error occurs, *REMOTE_ERRNO
8168 is set to the error number and -1 is returned. Otherwise the value
8169 returned by the function is returned.
8170
8171 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
8172 attachment is expected; an error will be reported if there's a
8173 mismatch. If one is found, *ATTACHMENT will be set to point into
8174 the packet buffer and *ATTACHMENT_LEN will be set to the
8175 attachment's length. */
8176
8177 static int
8178 remote_hostio_send_command (int command_bytes, int which_packet,
8179 int *remote_errno, char **attachment,
8180 int *attachment_len)
8181 {
8182 struct remote_state *rs = get_remote_state ();
8183 int ret, bytes_read;
8184 char *attachment_tmp;
8185
8186 if (!remote_desc
8187 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
8188 {
8189 *remote_errno = FILEIO_ENOSYS;
8190 return -1;
8191 }
8192
8193 putpkt_binary (rs->buf, command_bytes);
8194 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8195
8196 /* If it timed out, something is wrong. Don't try to parse the
8197 buffer. */
8198 if (bytes_read < 0)
8199 {
8200 *remote_errno = FILEIO_EINVAL;
8201 return -1;
8202 }
8203
8204 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
8205 {
8206 case PACKET_ERROR:
8207 *remote_errno = FILEIO_EINVAL;
8208 return -1;
8209 case PACKET_UNKNOWN:
8210 *remote_errno = FILEIO_ENOSYS;
8211 return -1;
8212 case PACKET_OK:
8213 break;
8214 }
8215
8216 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
8217 &attachment_tmp))
8218 {
8219 *remote_errno = FILEIO_EINVAL;
8220 return -1;
8221 }
8222
8223 /* Make sure we saw an attachment if and only if we expected one. */
8224 if ((attachment_tmp == NULL && attachment != NULL)
8225 || (attachment_tmp != NULL && attachment == NULL))
8226 {
8227 *remote_errno = FILEIO_EINVAL;
8228 return -1;
8229 }
8230
8231 /* If an attachment was found, it must point into the packet buffer;
8232 work out how many bytes there were. */
8233 if (attachment_tmp != NULL)
8234 {
8235 *attachment = attachment_tmp;
8236 *attachment_len = bytes_read - (*attachment - rs->buf);
8237 }
8238
8239 return ret;
8240 }
8241
8242 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
8243 remote file descriptor, or -1 if an error occurs (and set
8244 *REMOTE_ERRNO). */
8245
8246 static int
8247 remote_hostio_open (const char *filename, int flags, int mode,
8248 int *remote_errno)
8249 {
8250 struct remote_state *rs = get_remote_state ();
8251 char *p = rs->buf;
8252 int left = get_remote_packet_size () - 1;
8253
8254 remote_buffer_add_string (&p, &left, "vFile:open:");
8255
8256 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8257 strlen (filename));
8258 remote_buffer_add_string (&p, &left, ",");
8259
8260 remote_buffer_add_int (&p, &left, flags);
8261 remote_buffer_add_string (&p, &left, ",");
8262
8263 remote_buffer_add_int (&p, &left, mode);
8264
8265 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
8266 remote_errno, NULL, NULL);
8267 }
8268
8269 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
8270 Return the number of bytes written, or -1 if an error occurs (and
8271 set *REMOTE_ERRNO). */
8272
8273 static int
8274 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
8275 ULONGEST offset, int *remote_errno)
8276 {
8277 struct remote_state *rs = get_remote_state ();
8278 char *p = rs->buf;
8279 int left = get_remote_packet_size ();
8280 int out_len;
8281
8282 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
8283
8284 remote_buffer_add_int (&p, &left, fd);
8285 remote_buffer_add_string (&p, &left, ",");
8286
8287 remote_buffer_add_int (&p, &left, offset);
8288 remote_buffer_add_string (&p, &left, ",");
8289
8290 p += remote_escape_output (write_buf, len, p, &out_len,
8291 get_remote_packet_size () - (p - rs->buf));
8292
8293 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
8294 remote_errno, NULL, NULL);
8295 }
8296
8297 /* Read up to LEN bytes FD on the remote target into READ_BUF
8298 Return the number of bytes read, or -1 if an error occurs (and
8299 set *REMOTE_ERRNO). */
8300
8301 static int
8302 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
8303 ULONGEST offset, int *remote_errno)
8304 {
8305 struct remote_state *rs = get_remote_state ();
8306 char *p = rs->buf;
8307 char *attachment;
8308 int left = get_remote_packet_size ();
8309 int ret, attachment_len;
8310 int read_len;
8311
8312 remote_buffer_add_string (&p, &left, "vFile:pread:");
8313
8314 remote_buffer_add_int (&p, &left, fd);
8315 remote_buffer_add_string (&p, &left, ",");
8316
8317 remote_buffer_add_int (&p, &left, len);
8318 remote_buffer_add_string (&p, &left, ",");
8319
8320 remote_buffer_add_int (&p, &left, offset);
8321
8322 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
8323 remote_errno, &attachment,
8324 &attachment_len);
8325
8326 if (ret < 0)
8327 return ret;
8328
8329 read_len = remote_unescape_input (attachment, attachment_len,
8330 read_buf, len);
8331 if (read_len != ret)
8332 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
8333
8334 return ret;
8335 }
8336
8337 /* Close FD on the remote target. Return 0, or -1 if an error occurs
8338 (and set *REMOTE_ERRNO). */
8339
8340 static int
8341 remote_hostio_close (int fd, int *remote_errno)
8342 {
8343 struct remote_state *rs = get_remote_state ();
8344 char *p = rs->buf;
8345 int left = get_remote_packet_size () - 1;
8346
8347 remote_buffer_add_string (&p, &left, "vFile:close:");
8348
8349 remote_buffer_add_int (&p, &left, fd);
8350
8351 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
8352 remote_errno, NULL, NULL);
8353 }
8354
8355 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
8356 occurs (and set *REMOTE_ERRNO). */
8357
8358 static int
8359 remote_hostio_unlink (const char *filename, int *remote_errno)
8360 {
8361 struct remote_state *rs = get_remote_state ();
8362 char *p = rs->buf;
8363 int left = get_remote_packet_size () - 1;
8364
8365 remote_buffer_add_string (&p, &left, "vFile:unlink:");
8366
8367 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8368 strlen (filename));
8369
8370 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
8371 remote_errno, NULL, NULL);
8372 }
8373
8374 static int
8375 remote_fileio_errno_to_host (int errnum)
8376 {
8377 switch (errnum)
8378 {
8379 case FILEIO_EPERM:
8380 return EPERM;
8381 case FILEIO_ENOENT:
8382 return ENOENT;
8383 case FILEIO_EINTR:
8384 return EINTR;
8385 case FILEIO_EIO:
8386 return EIO;
8387 case FILEIO_EBADF:
8388 return EBADF;
8389 case FILEIO_EACCES:
8390 return EACCES;
8391 case FILEIO_EFAULT:
8392 return EFAULT;
8393 case FILEIO_EBUSY:
8394 return EBUSY;
8395 case FILEIO_EEXIST:
8396 return EEXIST;
8397 case FILEIO_ENODEV:
8398 return ENODEV;
8399 case FILEIO_ENOTDIR:
8400 return ENOTDIR;
8401 case FILEIO_EISDIR:
8402 return EISDIR;
8403 case FILEIO_EINVAL:
8404 return EINVAL;
8405 case FILEIO_ENFILE:
8406 return ENFILE;
8407 case FILEIO_EMFILE:
8408 return EMFILE;
8409 case FILEIO_EFBIG:
8410 return EFBIG;
8411 case FILEIO_ENOSPC:
8412 return ENOSPC;
8413 case FILEIO_ESPIPE:
8414 return ESPIPE;
8415 case FILEIO_EROFS:
8416 return EROFS;
8417 case FILEIO_ENOSYS:
8418 return ENOSYS;
8419 case FILEIO_ENAMETOOLONG:
8420 return ENAMETOOLONG;
8421 }
8422 return -1;
8423 }
8424
8425 static char *
8426 remote_hostio_error (int errnum)
8427 {
8428 int host_error = remote_fileio_errno_to_host (errnum);
8429
8430 if (host_error == -1)
8431 error (_("Unknown remote I/O error %d"), errnum);
8432 else
8433 error (_("Remote I/O error: %s"), safe_strerror (host_error));
8434 }
8435
8436 static void
8437 remote_hostio_close_cleanup (void *opaque)
8438 {
8439 int fd = *(int *) opaque;
8440 int remote_errno;
8441
8442 remote_hostio_close (fd, &remote_errno);
8443 }
8444
8445
8446 static void *
8447 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
8448 {
8449 const char *filename = bfd_get_filename (abfd);
8450 int fd, remote_errno;
8451 int *stream;
8452
8453 gdb_assert (remote_filename_p (filename));
8454
8455 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
8456 if (fd == -1)
8457 {
8458 errno = remote_fileio_errno_to_host (remote_errno);
8459 bfd_set_error (bfd_error_system_call);
8460 return NULL;
8461 }
8462
8463 stream = xmalloc (sizeof (int));
8464 *stream = fd;
8465 return stream;
8466 }
8467
8468 static int
8469 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
8470 {
8471 int fd = *(int *)stream;
8472 int remote_errno;
8473
8474 xfree (stream);
8475
8476 /* Ignore errors on close; these may happen if the remote
8477 connection was already torn down. */
8478 remote_hostio_close (fd, &remote_errno);
8479
8480 return 1;
8481 }
8482
8483 static file_ptr
8484 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
8485 file_ptr nbytes, file_ptr offset)
8486 {
8487 int fd = *(int *)stream;
8488 int remote_errno;
8489 file_ptr pos, bytes;
8490
8491 pos = 0;
8492 while (nbytes > pos)
8493 {
8494 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
8495 offset + pos, &remote_errno);
8496 if (bytes == 0)
8497 /* Success, but no bytes, means end-of-file. */
8498 break;
8499 if (bytes == -1)
8500 {
8501 errno = remote_fileio_errno_to_host (remote_errno);
8502 bfd_set_error (bfd_error_system_call);
8503 return -1;
8504 }
8505
8506 pos += bytes;
8507 }
8508
8509 return pos;
8510 }
8511
8512 static int
8513 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
8514 {
8515 /* FIXME: We should probably implement remote_hostio_stat. */
8516 sb->st_size = INT_MAX;
8517 return 0;
8518 }
8519
8520 int
8521 remote_filename_p (const char *filename)
8522 {
8523 return strncmp (filename, "remote:", 7) == 0;
8524 }
8525
8526 bfd *
8527 remote_bfd_open (const char *remote_file, const char *target)
8528 {
8529 return bfd_openr_iovec (remote_file, target,
8530 remote_bfd_iovec_open, NULL,
8531 remote_bfd_iovec_pread,
8532 remote_bfd_iovec_close,
8533 remote_bfd_iovec_stat);
8534 }
8535
8536 void
8537 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
8538 {
8539 struct cleanup *back_to, *close_cleanup;
8540 int retcode, fd, remote_errno, bytes, io_size;
8541 FILE *file;
8542 gdb_byte *buffer;
8543 int bytes_in_buffer;
8544 int saw_eof;
8545 ULONGEST offset;
8546
8547 if (!remote_desc)
8548 error (_("command can only be used with remote target"));
8549
8550 file = fopen (local_file, "rb");
8551 if (file == NULL)
8552 perror_with_name (local_file);
8553 back_to = make_cleanup_fclose (file);
8554
8555 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
8556 | FILEIO_O_TRUNC),
8557 0700, &remote_errno);
8558 if (fd == -1)
8559 remote_hostio_error (remote_errno);
8560
8561 /* Send up to this many bytes at once. They won't all fit in the
8562 remote packet limit, so we'll transfer slightly fewer. */
8563 io_size = get_remote_packet_size ();
8564 buffer = xmalloc (io_size);
8565 make_cleanup (xfree, buffer);
8566
8567 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
8568
8569 bytes_in_buffer = 0;
8570 saw_eof = 0;
8571 offset = 0;
8572 while (bytes_in_buffer || !saw_eof)
8573 {
8574 if (!saw_eof)
8575 {
8576 bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer,
8577 file);
8578 if (bytes == 0)
8579 {
8580 if (ferror (file))
8581 error (_("Error reading %s."), local_file);
8582 else
8583 {
8584 /* EOF. Unless there is something still in the
8585 buffer from the last iteration, we are done. */
8586 saw_eof = 1;
8587 if (bytes_in_buffer == 0)
8588 break;
8589 }
8590 }
8591 }
8592 else
8593 bytes = 0;
8594
8595 bytes += bytes_in_buffer;
8596 bytes_in_buffer = 0;
8597
8598 retcode = remote_hostio_pwrite (fd, buffer, bytes, offset, &remote_errno);
8599
8600 if (retcode < 0)
8601 remote_hostio_error (remote_errno);
8602 else if (retcode == 0)
8603 error (_("Remote write of %d bytes returned 0!"), bytes);
8604 else if (retcode < bytes)
8605 {
8606 /* Short write. Save the rest of the read data for the next
8607 write. */
8608 bytes_in_buffer = bytes - retcode;
8609 memmove (buffer, buffer + retcode, bytes_in_buffer);
8610 }
8611
8612 offset += retcode;
8613 }
8614
8615 discard_cleanups (close_cleanup);
8616 if (remote_hostio_close (fd, &remote_errno))
8617 remote_hostio_error (remote_errno);
8618
8619 if (from_tty)
8620 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
8621 do_cleanups (back_to);
8622 }
8623
8624 void
8625 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
8626 {
8627 struct cleanup *back_to, *close_cleanup;
8628 int retcode, fd, remote_errno, bytes, io_size;
8629 FILE *file;
8630 gdb_byte *buffer;
8631 ULONGEST offset;
8632
8633 if (!remote_desc)
8634 error (_("command can only be used with remote target"));
8635
8636 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
8637 if (fd == -1)
8638 remote_hostio_error (remote_errno);
8639
8640 file = fopen (local_file, "wb");
8641 if (file == NULL)
8642 perror_with_name (local_file);
8643 back_to = make_cleanup_fclose (file);
8644
8645 /* Send up to this many bytes at once. They won't all fit in the
8646 remote packet limit, so we'll transfer slightly fewer. */
8647 io_size = get_remote_packet_size ();
8648 buffer = xmalloc (io_size);
8649 make_cleanup (xfree, buffer);
8650
8651 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
8652
8653 offset = 0;
8654 while (1)
8655 {
8656 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
8657 if (bytes == 0)
8658 /* Success, but no bytes, means end-of-file. */
8659 break;
8660 if (bytes == -1)
8661 remote_hostio_error (remote_errno);
8662
8663 offset += bytes;
8664
8665 bytes = fwrite (buffer, 1, bytes, file);
8666 if (bytes == 0)
8667 perror_with_name (local_file);
8668 }
8669
8670 discard_cleanups (close_cleanup);
8671 if (remote_hostio_close (fd, &remote_errno))
8672 remote_hostio_error (remote_errno);
8673
8674 if (from_tty)
8675 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
8676 do_cleanups (back_to);
8677 }
8678
8679 void
8680 remote_file_delete (const char *remote_file, int from_tty)
8681 {
8682 int retcode, remote_errno;
8683
8684 if (!remote_desc)
8685 error (_("command can only be used with remote target"));
8686
8687 retcode = remote_hostio_unlink (remote_file, &remote_errno);
8688 if (retcode == -1)
8689 remote_hostio_error (remote_errno);
8690
8691 if (from_tty)
8692 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
8693 }
8694
8695 static void
8696 remote_put_command (char *args, int from_tty)
8697 {
8698 struct cleanup *back_to;
8699 char **argv;
8700
8701 if (args == NULL)
8702 error_no_arg (_("file to put"));
8703
8704 argv = gdb_buildargv (args);
8705 back_to = make_cleanup_freeargv (argv);
8706 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
8707 error (_("Invalid parameters to remote put"));
8708
8709 remote_file_put (argv[0], argv[1], from_tty);
8710
8711 do_cleanups (back_to);
8712 }
8713
8714 static void
8715 remote_get_command (char *args, int from_tty)
8716 {
8717 struct cleanup *back_to;
8718 char **argv;
8719
8720 if (args == NULL)
8721 error_no_arg (_("file to get"));
8722
8723 argv = gdb_buildargv (args);
8724 back_to = make_cleanup_freeargv (argv);
8725 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
8726 error (_("Invalid parameters to remote get"));
8727
8728 remote_file_get (argv[0], argv[1], from_tty);
8729
8730 do_cleanups (back_to);
8731 }
8732
8733 static void
8734 remote_delete_command (char *args, int from_tty)
8735 {
8736 struct cleanup *back_to;
8737 char **argv;
8738
8739 if (args == NULL)
8740 error_no_arg (_("file to delete"));
8741
8742 argv = gdb_buildargv (args);
8743 back_to = make_cleanup_freeargv (argv);
8744 if (argv[0] == NULL || argv[1] != NULL)
8745 error (_("Invalid parameters to remote delete"));
8746
8747 remote_file_delete (argv[0], from_tty);
8748
8749 do_cleanups (back_to);
8750 }
8751
8752 static void
8753 remote_command (char *args, int from_tty)
8754 {
8755 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
8756 }
8757
8758 static int remote_target_can_reverse = 1;
8759
8760 static int
8761 remote_can_execute_reverse (void)
8762 {
8763 return remote_target_can_reverse;
8764 }
8765
8766 static int
8767 remote_supports_non_stop (void)
8768 {
8769 return 1;
8770 }
8771
8772 static int
8773 remote_supports_multi_process (void)
8774 {
8775 struct remote_state *rs = get_remote_state ();
8776 return remote_multi_process_p (rs);
8777 }
8778
8779 static void
8780 init_remote_ops (void)
8781 {
8782 remote_ops.to_shortname = "remote";
8783 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
8784 remote_ops.to_doc =
8785 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
8786 Specify the serial device it is connected to\n\
8787 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
8788 remote_ops.to_open = remote_open;
8789 remote_ops.to_close = remote_close;
8790 remote_ops.to_detach = remote_detach;
8791 remote_ops.to_disconnect = remote_disconnect;
8792 remote_ops.to_resume = remote_resume;
8793 remote_ops.to_wait = remote_wait;
8794 remote_ops.to_fetch_registers = remote_fetch_registers;
8795 remote_ops.to_store_registers = remote_store_registers;
8796 remote_ops.to_prepare_to_store = remote_prepare_to_store;
8797 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
8798 remote_ops.to_files_info = remote_files_info;
8799 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
8800 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
8801 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
8802 remote_ops.to_stopped_data_address = remote_stopped_data_address;
8803 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
8804 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
8805 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
8806 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
8807 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
8808 remote_ops.to_kill = remote_kill;
8809 remote_ops.to_load = generic_load;
8810 remote_ops.to_mourn_inferior = remote_mourn;
8811 remote_ops.to_thread_alive = remote_thread_alive;
8812 remote_ops.to_find_new_threads = remote_threads_info;
8813 remote_ops.to_pid_to_str = remote_pid_to_str;
8814 remote_ops.to_extra_thread_info = remote_threads_extra_info;
8815 remote_ops.to_stop = remote_stop;
8816 remote_ops.to_xfer_partial = remote_xfer_partial;
8817 remote_ops.to_rcmd = remote_rcmd;
8818 remote_ops.to_log_command = serial_log_command;
8819 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
8820 remote_ops.to_stratum = process_stratum;
8821 remote_ops.to_has_all_memory = 1;
8822 remote_ops.to_has_memory = 1;
8823 remote_ops.to_has_stack = 1;
8824 remote_ops.to_has_registers = 1;
8825 remote_ops.to_has_execution = 1;
8826 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
8827 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
8828 remote_ops.to_magic = OPS_MAGIC;
8829 remote_ops.to_memory_map = remote_memory_map;
8830 remote_ops.to_flash_erase = remote_flash_erase;
8831 remote_ops.to_flash_done = remote_flash_done;
8832 remote_ops.to_read_description = remote_read_description;
8833 remote_ops.to_search_memory = remote_search_memory;
8834 remote_ops.to_can_async_p = remote_can_async_p;
8835 remote_ops.to_is_async_p = remote_is_async_p;
8836 remote_ops.to_async = remote_async;
8837 remote_ops.to_async_mask = remote_async_mask;
8838 remote_ops.to_terminal_inferior = remote_terminal_inferior;
8839 remote_ops.to_terminal_ours = remote_terminal_ours;
8840 remote_ops.to_supports_non_stop = remote_supports_non_stop;
8841 remote_ops.to_supports_multi_process = remote_supports_multi_process;
8842 }
8843
8844 /* Set up the extended remote vector by making a copy of the standard
8845 remote vector and adding to it. */
8846
8847 static void
8848 init_extended_remote_ops (void)
8849 {
8850 extended_remote_ops = remote_ops;
8851
8852 extended_remote_ops.to_shortname = "extended-remote";
8853 extended_remote_ops.to_longname =
8854 "Extended remote serial target in gdb-specific protocol";
8855 extended_remote_ops.to_doc =
8856 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
8857 Specify the serial device it is connected to (e.g. /dev/ttya).";
8858 extended_remote_ops.to_open = extended_remote_open;
8859 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
8860 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
8861 extended_remote_ops.to_detach = extended_remote_detach;
8862 extended_remote_ops.to_attach = extended_remote_attach;
8863 extended_remote_ops.to_kill = extended_remote_kill;
8864 }
8865
8866 static int
8867 remote_can_async_p (void)
8868 {
8869 if (!target_async_permitted)
8870 /* We only enable async when the user specifically asks for it. */
8871 return 0;
8872
8873 /* We're async whenever the serial device is. */
8874 return remote_async_mask_value && serial_can_async_p (remote_desc);
8875 }
8876
8877 static int
8878 remote_is_async_p (void)
8879 {
8880 if (!target_async_permitted)
8881 /* We only enable async when the user specifically asks for it. */
8882 return 0;
8883
8884 /* We're async whenever the serial device is. */
8885 return remote_async_mask_value && serial_is_async_p (remote_desc);
8886 }
8887
8888 /* Pass the SERIAL event on and up to the client. One day this code
8889 will be able to delay notifying the client of an event until the
8890 point where an entire packet has been received. */
8891
8892 static void (*async_client_callback) (enum inferior_event_type event_type,
8893 void *context);
8894 static void *async_client_context;
8895 static serial_event_ftype remote_async_serial_handler;
8896
8897 static void
8898 remote_async_serial_handler (struct serial *scb, void *context)
8899 {
8900 /* Don't propogate error information up to the client. Instead let
8901 the client find out about the error by querying the target. */
8902 async_client_callback (INF_REG_EVENT, async_client_context);
8903 }
8904
8905 static void
8906 remote_async_inferior_event_handler (gdb_client_data data)
8907 {
8908 inferior_event_handler (INF_REG_EVENT, NULL);
8909 }
8910
8911 static void
8912 remote_async_get_pending_events_handler (gdb_client_data data)
8913 {
8914 remote_get_pending_stop_replies ();
8915 }
8916
8917 static void
8918 remote_async (void (*callback) (enum inferior_event_type event_type,
8919 void *context), void *context)
8920 {
8921 if (remote_async_mask_value == 0)
8922 internal_error (__FILE__, __LINE__,
8923 _("Calling remote_async when async is masked"));
8924
8925 if (callback != NULL)
8926 {
8927 serial_async (remote_desc, remote_async_serial_handler, NULL);
8928 async_client_callback = callback;
8929 async_client_context = context;
8930 }
8931 else
8932 serial_async (remote_desc, NULL, NULL);
8933 }
8934
8935 static int
8936 remote_async_mask (int new_mask)
8937 {
8938 int curr_mask = remote_async_mask_value;
8939 remote_async_mask_value = new_mask;
8940 return curr_mask;
8941 }
8942
8943 static void
8944 set_remote_cmd (char *args, int from_tty)
8945 {
8946 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
8947 }
8948
8949 static void
8950 show_remote_cmd (char *args, int from_tty)
8951 {
8952 /* We can't just use cmd_show_list here, because we want to skip
8953 the redundant "show remote Z-packet" and the legacy aliases. */
8954 struct cleanup *showlist_chain;
8955 struct cmd_list_element *list = remote_show_cmdlist;
8956
8957 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
8958 for (; list != NULL; list = list->next)
8959 if (strcmp (list->name, "Z-packet") == 0)
8960 continue;
8961 else if (list->type == not_set_cmd)
8962 /* Alias commands are exactly like the original, except they
8963 don't have the normal type. */
8964 continue;
8965 else
8966 {
8967 struct cleanup *option_chain
8968 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
8969 ui_out_field_string (uiout, "name", list->name);
8970 ui_out_text (uiout, ": ");
8971 if (list->type == show_cmd)
8972 do_setshow_command ((char *) NULL, from_tty, list);
8973 else
8974 cmd_func (list, NULL, from_tty);
8975 /* Close the tuple. */
8976 do_cleanups (option_chain);
8977 }
8978
8979 /* Close the tuple. */
8980 do_cleanups (showlist_chain);
8981 }
8982
8983
8984 /* Function to be called whenever a new objfile (shlib) is detected. */
8985 static void
8986 remote_new_objfile (struct objfile *objfile)
8987 {
8988 if (remote_desc != 0) /* Have a remote connection. */
8989 remote_check_symbols (objfile);
8990 }
8991
8992 void
8993 _initialize_remote (void)
8994 {
8995 struct remote_state *rs;
8996
8997 /* architecture specific data */
8998 remote_gdbarch_data_handle =
8999 gdbarch_data_register_post_init (init_remote_state);
9000 remote_g_packet_data_handle =
9001 gdbarch_data_register_pre_init (remote_g_packet_data_init);
9002
9003 /* Initialize the per-target state. At the moment there is only one
9004 of these, not one per target. Only one target is active at a
9005 time. The default buffer size is unimportant; it will be expanded
9006 whenever a larger buffer is needed. */
9007 rs = get_remote_state_raw ();
9008 rs->buf_size = 400;
9009 rs->buf = xmalloc (rs->buf_size);
9010
9011 init_remote_ops ();
9012 add_target (&remote_ops);
9013
9014 init_extended_remote_ops ();
9015 add_target (&extended_remote_ops);
9016
9017 /* Hook into new objfile notification. */
9018 observer_attach_new_objfile (remote_new_objfile);
9019
9020 /* Set up signal handlers. */
9021 sigint_remote_token =
9022 create_async_signal_handler (async_remote_interrupt, NULL);
9023 sigint_remote_twice_token =
9024 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
9025
9026 #if 0
9027 init_remote_threadtests ();
9028 #endif
9029
9030 /* set/show remote ... */
9031
9032 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
9033 Remote protocol specific variables\n\
9034 Configure various remote-protocol specific variables such as\n\
9035 the packets being used"),
9036 &remote_set_cmdlist, "set remote ",
9037 0 /* allow-unknown */, &setlist);
9038 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
9039 Remote protocol specific variables\n\
9040 Configure various remote-protocol specific variables such as\n\
9041 the packets being used"),
9042 &remote_show_cmdlist, "show remote ",
9043 0 /* allow-unknown */, &showlist);
9044
9045 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
9046 Compare section data on target to the exec file.\n\
9047 Argument is a single section name (default: all loaded sections)."),
9048 &cmdlist);
9049
9050 add_cmd ("packet", class_maintenance, packet_command, _("\
9051 Send an arbitrary packet to a remote target.\n\
9052 maintenance packet TEXT\n\
9053 If GDB is talking to an inferior via the GDB serial protocol, then\n\
9054 this command sends the string TEXT to the inferior, and displays the\n\
9055 response packet. GDB supplies the initial `$' character, and the\n\
9056 terminating `#' character and checksum."),
9057 &maintenancelist);
9058
9059 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
9060 Set whether to send break if interrupted."), _("\
9061 Show whether to send break if interrupted."), _("\
9062 If set, a break, instead of a cntrl-c, is sent to the remote target."),
9063 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
9064 &setlist, &showlist);
9065
9066 /* Install commands for configuring memory read/write packets. */
9067
9068 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
9069 Set the maximum number of bytes per memory write packet (deprecated)."),
9070 &setlist);
9071 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
9072 Show the maximum number of bytes per memory write packet (deprecated)."),
9073 &showlist);
9074 add_cmd ("memory-write-packet-size", no_class,
9075 set_memory_write_packet_size, _("\
9076 Set the maximum number of bytes per memory-write packet.\n\
9077 Specify the number of bytes in a packet or 0 (zero) for the\n\
9078 default packet size. The actual limit is further reduced\n\
9079 dependent on the target. Specify ``fixed'' to disable the\n\
9080 further restriction and ``limit'' to enable that restriction."),
9081 &remote_set_cmdlist);
9082 add_cmd ("memory-read-packet-size", no_class,
9083 set_memory_read_packet_size, _("\
9084 Set the maximum number of bytes per memory-read packet.\n\
9085 Specify the number of bytes in a packet or 0 (zero) for the\n\
9086 default packet size. The actual limit is further reduced\n\
9087 dependent on the target. Specify ``fixed'' to disable the\n\
9088 further restriction and ``limit'' to enable that restriction."),
9089 &remote_set_cmdlist);
9090 add_cmd ("memory-write-packet-size", no_class,
9091 show_memory_write_packet_size,
9092 _("Show the maximum number of bytes per memory-write packet."),
9093 &remote_show_cmdlist);
9094 add_cmd ("memory-read-packet-size", no_class,
9095 show_memory_read_packet_size,
9096 _("Show the maximum number of bytes per memory-read packet."),
9097 &remote_show_cmdlist);
9098
9099 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
9100 &remote_hw_watchpoint_limit, _("\
9101 Set the maximum number of target hardware watchpoints."), _("\
9102 Show the maximum number of target hardware watchpoints."), _("\
9103 Specify a negative limit for unlimited."),
9104 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
9105 &remote_set_cmdlist, &remote_show_cmdlist);
9106 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
9107 &remote_hw_breakpoint_limit, _("\
9108 Set the maximum number of target hardware breakpoints."), _("\
9109 Show the maximum number of target hardware breakpoints."), _("\
9110 Specify a negative limit for unlimited."),
9111 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
9112 &remote_set_cmdlist, &remote_show_cmdlist);
9113
9114 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
9115 &remote_address_size, _("\
9116 Set the maximum size of the address (in bits) in a memory packet."), _("\
9117 Show the maximum size of the address (in bits) in a memory packet."), NULL,
9118 NULL,
9119 NULL, /* FIXME: i18n: */
9120 &setlist, &showlist);
9121
9122 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
9123 "X", "binary-download", 1);
9124
9125 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
9126 "vCont", "verbose-resume", 0);
9127
9128 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
9129 "QPassSignals", "pass-signals", 0);
9130
9131 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
9132 "qSymbol", "symbol-lookup", 0);
9133
9134 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
9135 "P", "set-register", 1);
9136
9137 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
9138 "p", "fetch-register", 1);
9139
9140 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
9141 "Z0", "software-breakpoint", 0);
9142
9143 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
9144 "Z1", "hardware-breakpoint", 0);
9145
9146 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
9147 "Z2", "write-watchpoint", 0);
9148
9149 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
9150 "Z3", "read-watchpoint", 0);
9151
9152 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
9153 "Z4", "access-watchpoint", 0);
9154
9155 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
9156 "qXfer:auxv:read", "read-aux-vector", 0);
9157
9158 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
9159 "qXfer:features:read", "target-features", 0);
9160
9161 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
9162 "qXfer:libraries:read", "library-info", 0);
9163
9164 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
9165 "qXfer:memory-map:read", "memory-map", 0);
9166
9167 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
9168 "qXfer:spu:read", "read-spu-object", 0);
9169
9170 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
9171 "qXfer:spu:write", "write-spu-object", 0);
9172
9173 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
9174 "qXfer:osdata:read", "osdata", 0);
9175
9176 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
9177 "qXfer:siginfo:read", "read-siginfo-object", 0);
9178
9179 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
9180 "qXfer:siginfo:write", "write-siginfo-object", 0);
9181
9182 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
9183 "qGetTLSAddr", "get-thread-local-storage-address",
9184 0);
9185
9186 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
9187 "qSupported", "supported-packets", 0);
9188
9189 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
9190 "qSearch:memory", "search-memory", 0);
9191
9192 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
9193 "vFile:open", "hostio-open", 0);
9194
9195 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
9196 "vFile:pread", "hostio-pread", 0);
9197
9198 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
9199 "vFile:pwrite", "hostio-pwrite", 0);
9200
9201 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
9202 "vFile:close", "hostio-close", 0);
9203
9204 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
9205 "vFile:unlink", "hostio-unlink", 0);
9206
9207 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
9208 "vAttach", "attach", 0);
9209
9210 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
9211 "vRun", "run", 0);
9212
9213 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
9214 "QStartNoAckMode", "noack", 0);
9215
9216 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
9217 "vKill", "kill", 0);
9218
9219 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
9220 "qAttached", "query-attached", 0);
9221
9222 /* Keep the old ``set remote Z-packet ...'' working. Each individual
9223 Z sub-packet has its own set and show commands, but users may
9224 have sets to this variable in their .gdbinit files (or in their
9225 documentation). */
9226 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
9227 &remote_Z_packet_detect, _("\
9228 Set use of remote protocol `Z' packets"), _("\
9229 Show use of remote protocol `Z' packets "), _("\
9230 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
9231 packets."),
9232 set_remote_protocol_Z_packet_cmd,
9233 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
9234 &remote_set_cmdlist, &remote_show_cmdlist);
9235
9236 add_prefix_cmd ("remote", class_files, remote_command, _("\
9237 Manipulate files on the remote system\n\
9238 Transfer files to and from the remote target system."),
9239 &remote_cmdlist, "remote ",
9240 0 /* allow-unknown */, &cmdlist);
9241
9242 add_cmd ("put", class_files, remote_put_command,
9243 _("Copy a local file to the remote system."),
9244 &remote_cmdlist);
9245
9246 add_cmd ("get", class_files, remote_get_command,
9247 _("Copy a remote file to the local system."),
9248 &remote_cmdlist);
9249
9250 add_cmd ("delete", class_files, remote_delete_command,
9251 _("Delete a remote file."),
9252 &remote_cmdlist);
9253
9254 remote_exec_file = xstrdup ("");
9255 add_setshow_string_noescape_cmd ("exec-file", class_files,
9256 &remote_exec_file, _("\
9257 Set the remote pathname for \"run\""), _("\
9258 Show the remote pathname for \"run\""), NULL, NULL, NULL,
9259 &remote_set_cmdlist, &remote_show_cmdlist);
9260
9261 /* Eventually initialize fileio. See fileio.c */
9262 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
9263
9264 /* Take advantage of the fact that the LWP field is not used, to tag
9265 special ptids with it set to != 0. */
9266 magic_null_ptid = ptid_build (42000, 1, -1);
9267 not_sent_ptid = ptid_build (42000, 1, -2);
9268 any_thread_ptid = ptid_build (42000, 1, 0);
9269 }
This page took 0.334502 seconds and 5 git commands to generate.