* elf.c (swap_out_syms) [USE_STT_COMMON]: Fix syntax error.
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include "gdb_stat.h"
63
64 #include "memory-map.h"
65
66 /* The size to align memory write packets, when practical. The protocol
67 does not guarantee any alignment, and gdb will generate short
68 writes and unaligned writes, but even as a best-effort attempt this
69 can improve bulk transfers. For instance, if a write is misaligned
70 relative to the target's data bus, the stub may need to make an extra
71 round trip fetching data from the target. This doesn't make a
72 huge difference, but it's easy to do, so we try to be helpful.
73
74 The alignment chosen is arbitrary; usually data bus width is
75 important here, not the possibly larger cache line size. */
76 enum { REMOTE_ALIGN_WRITES = 16 };
77
78 /* Prototypes for local functions. */
79 static void cleanup_sigint_signal_handler (void *dummy);
80 static void initialize_sigint_signal_handler (void);
81 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
82 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
83 int forever);
84
85 static void handle_remote_sigint (int);
86 static void handle_remote_sigint_twice (int);
87 static void async_remote_interrupt (gdb_client_data);
88 void async_remote_interrupt_twice (gdb_client_data);
89
90 static void remote_files_info (struct target_ops *ignore);
91
92 static void remote_prepare_to_store (struct regcache *regcache);
93
94 static void remote_fetch_registers (struct regcache *regcache, int regno);
95
96 static void remote_resume (ptid_t ptid, int step,
97 enum target_signal siggnal);
98 static void remote_open (char *name, int from_tty);
99
100 static void extended_remote_open (char *name, int from_tty);
101
102 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
103
104 static void remote_close (int quitting);
105
106 static void remote_store_registers (struct regcache *regcache, int regno);
107
108 static void remote_mourn (struct target_ops *ops);
109
110 static void extended_remote_restart (void);
111
112 static void extended_remote_mourn (struct target_ops *);
113
114 static void remote_mourn_1 (struct target_ops *);
115
116 static void remote_send (char **buf, long *sizeof_buf_p);
117
118 static int readchar (int timeout);
119
120 static ptid_t remote_wait (ptid_t ptid,
121 struct target_waitstatus *status);
122
123 static void remote_kill (void);
124
125 static int tohex (int nib);
126
127 static int remote_can_async_p (void);
128
129 static int remote_is_async_p (void);
130
131 static void remote_async (void (*callback) (enum inferior_event_type event_type,
132 void *context), void *context);
133
134 static int remote_async_mask (int new_mask);
135
136 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
137
138 static void remote_interrupt (int signo);
139
140 static void remote_interrupt_twice (int signo);
141
142 static void interrupt_query (void);
143
144 static void set_general_thread (struct ptid ptid);
145 static void set_continue_thread (struct ptid ptid);
146
147 static int remote_thread_alive (ptid_t);
148
149 static void get_offsets (void);
150
151 static void skip_frame (void);
152
153 static long read_frame (char **buf_p, long *sizeof_buf);
154
155 static int hexnumlen (ULONGEST num);
156
157 static void init_remote_ops (void);
158
159 static void init_extended_remote_ops (void);
160
161 static void remote_stop (ptid_t);
162
163 static int ishex (int ch, int *val);
164
165 static int stubhex (int ch);
166
167 static int hexnumstr (char *, ULONGEST);
168
169 static int hexnumnstr (char *, ULONGEST, int);
170
171 static CORE_ADDR remote_address_masked (CORE_ADDR);
172
173 static void print_packet (char *);
174
175 static unsigned long crc32 (unsigned char *, int, unsigned int);
176
177 static void compare_sections_command (char *, int);
178
179 static void packet_command (char *, int);
180
181 static int stub_unpack_int (char *buff, int fieldlength);
182
183 static ptid_t remote_current_thread (ptid_t oldptid);
184
185 static void remote_find_new_threads (void);
186
187 static void record_currthread (ptid_t currthread);
188
189 static int fromhex (int a);
190
191 static int hex2bin (const char *hex, gdb_byte *bin, int count);
192
193 static int bin2hex (const gdb_byte *bin, char *hex, int count);
194
195 static int putpkt_binary (char *buf, int cnt);
196
197 static void check_binary_download (CORE_ADDR addr);
198
199 struct packet_config;
200
201 static void show_packet_config_cmd (struct packet_config *config);
202
203 static void update_packet_config (struct packet_config *config);
204
205 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
206 struct cmd_list_element *c);
207
208 static void show_remote_protocol_packet_cmd (struct ui_file *file,
209 int from_tty,
210 struct cmd_list_element *c,
211 const char *value);
212
213 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
214 static ptid_t read_ptid (char *buf, char **obuf);
215
216 static void remote_query_supported (void);
217
218 static void remote_check_symbols (struct objfile *objfile);
219
220 void _initialize_remote (void);
221
222 struct stop_reply;
223 static struct stop_reply *stop_reply_xmalloc (void);
224 static void stop_reply_xfree (struct stop_reply *);
225 static void do_stop_reply_xfree (void *arg);
226 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
227 static void push_stop_reply (struct stop_reply *);
228 static void remote_get_pending_stop_replies (void);
229 static void discard_pending_stop_replies (int pid);
230 static int peek_stop_reply (ptid_t ptid);
231
232 static void remote_async_inferior_event_handler (gdb_client_data);
233 static void remote_async_get_pending_events_handler (gdb_client_data);
234
235 static void remote_terminal_ours (void);
236
237 /* The non-stop remote protocol provisions for one pending stop reply.
238 This is where we keep it until it is acknowledged. */
239
240 static struct stop_reply *pending_stop_reply = NULL;
241
242 /* For "remote". */
243
244 static struct cmd_list_element *remote_cmdlist;
245
246 /* For "set remote" and "show remote". */
247
248 static struct cmd_list_element *remote_set_cmdlist;
249 static struct cmd_list_element *remote_show_cmdlist;
250
251 /* Description of the remote protocol state for the currently
252 connected target. This is per-target state, and independent of the
253 selected architecture. */
254
255 struct remote_state
256 {
257 /* A buffer to use for incoming packets, and its current size. The
258 buffer is grown dynamically for larger incoming packets.
259 Outgoing packets may also be constructed in this buffer.
260 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
261 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
262 packets. */
263 char *buf;
264 long buf_size;
265
266 /* If we negotiated packet size explicitly (and thus can bypass
267 heuristics for the largest packet size that will not overflow
268 a buffer in the stub), this will be set to that packet size.
269 Otherwise zero, meaning to use the guessed size. */
270 long explicit_packet_size;
271
272 /* remote_wait is normally called when the target is running and
273 waits for a stop reply packet. But sometimes we need to call it
274 when the target is already stopped. We can send a "?" packet
275 and have remote_wait read the response. Or, if we already have
276 the response, we can stash it in BUF and tell remote_wait to
277 skip calling getpkt. This flag is set when BUF contains a
278 stop reply packet and the target is not waiting. */
279 int cached_wait_status;
280
281 /* True, if in no ack mode. That is, neither GDB nor the stub will
282 expect acks from each other. The connection is assumed to be
283 reliable. */
284 int noack_mode;
285
286 /* True if we're connected in extended remote mode. */
287 int extended;
288
289 /* True if the stub reported support for multi-process
290 extensions. */
291 int multi_process_aware;
292
293 /* True if we resumed the target and we're waiting for the target to
294 stop. In the mean time, we can't start another command/query.
295 The remote server wouldn't be ready to process it, so we'd
296 timeout waiting for a reply that would never come and eventually
297 we'd close the connection. This can happen in asynchronous mode
298 because we allow GDB commands while the target is running. */
299 int waiting_for_stop_reply;
300
301 /* True if the stub reports support for non-stop mode. */
302 int non_stop_aware;
303
304 /* True if the stub reports support for vCont;t. */
305 int support_vCont_t;
306 };
307
308 /* Returns true if the multi-process extensions are in effect. */
309 static int
310 remote_multi_process_p (struct remote_state *rs)
311 {
312 return rs->extended && rs->multi_process_aware;
313 }
314
315 /* This data could be associated with a target, but we do not always
316 have access to the current target when we need it, so for now it is
317 static. This will be fine for as long as only one target is in use
318 at a time. */
319 static struct remote_state remote_state;
320
321 static struct remote_state *
322 get_remote_state_raw (void)
323 {
324 return &remote_state;
325 }
326
327 /* Description of the remote protocol for a given architecture. */
328
329 struct packet_reg
330 {
331 long offset; /* Offset into G packet. */
332 long regnum; /* GDB's internal register number. */
333 LONGEST pnum; /* Remote protocol register number. */
334 int in_g_packet; /* Always part of G packet. */
335 /* long size in bytes; == register_size (target_gdbarch, regnum);
336 at present. */
337 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
338 at present. */
339 };
340
341 struct remote_arch_state
342 {
343 /* Description of the remote protocol registers. */
344 long sizeof_g_packet;
345
346 /* Description of the remote protocol registers indexed by REGNUM
347 (making an array gdbarch_num_regs in size). */
348 struct packet_reg *regs;
349
350 /* This is the size (in chars) of the first response to the ``g''
351 packet. It is used as a heuristic when determining the maximum
352 size of memory-read and memory-write packets. A target will
353 typically only reserve a buffer large enough to hold the ``g''
354 packet. The size does not include packet overhead (headers and
355 trailers). */
356 long actual_register_packet_size;
357
358 /* This is the maximum size (in chars) of a non read/write packet.
359 It is also used as a cap on the size of read/write packets. */
360 long remote_packet_size;
361 };
362
363
364 /* Handle for retreving the remote protocol data from gdbarch. */
365 static struct gdbarch_data *remote_gdbarch_data_handle;
366
367 static struct remote_arch_state *
368 get_remote_arch_state (void)
369 {
370 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
371 }
372
373 /* Fetch the global remote target state. */
374
375 static struct remote_state *
376 get_remote_state (void)
377 {
378 /* Make sure that the remote architecture state has been
379 initialized, because doing so might reallocate rs->buf. Any
380 function which calls getpkt also needs to be mindful of changes
381 to rs->buf, but this call limits the number of places which run
382 into trouble. */
383 get_remote_arch_state ();
384
385 return get_remote_state_raw ();
386 }
387
388 static int
389 compare_pnums (const void *lhs_, const void *rhs_)
390 {
391 const struct packet_reg * const *lhs = lhs_;
392 const struct packet_reg * const *rhs = rhs_;
393
394 if ((*lhs)->pnum < (*rhs)->pnum)
395 return -1;
396 else if ((*lhs)->pnum == (*rhs)->pnum)
397 return 0;
398 else
399 return 1;
400 }
401
402 static void *
403 init_remote_state (struct gdbarch *gdbarch)
404 {
405 int regnum, num_remote_regs, offset;
406 struct remote_state *rs = get_remote_state_raw ();
407 struct remote_arch_state *rsa;
408 struct packet_reg **remote_regs;
409
410 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
411
412 /* Use the architecture to build a regnum<->pnum table, which will be
413 1:1 unless a feature set specifies otherwise. */
414 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
415 gdbarch_num_regs (gdbarch),
416 struct packet_reg);
417 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
418 {
419 struct packet_reg *r = &rsa->regs[regnum];
420
421 if (register_size (gdbarch, regnum) == 0)
422 /* Do not try to fetch zero-sized (placeholder) registers. */
423 r->pnum = -1;
424 else
425 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
426
427 r->regnum = regnum;
428 }
429
430 /* Define the g/G packet format as the contents of each register
431 with a remote protocol number, in order of ascending protocol
432 number. */
433
434 remote_regs = alloca (gdbarch_num_regs (gdbarch)
435 * sizeof (struct packet_reg *));
436 for (num_remote_regs = 0, regnum = 0;
437 regnum < gdbarch_num_regs (gdbarch);
438 regnum++)
439 if (rsa->regs[regnum].pnum != -1)
440 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
441
442 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
443 compare_pnums);
444
445 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
446 {
447 remote_regs[regnum]->in_g_packet = 1;
448 remote_regs[regnum]->offset = offset;
449 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
450 }
451
452 /* Record the maximum possible size of the g packet - it may turn out
453 to be smaller. */
454 rsa->sizeof_g_packet = offset;
455
456 /* Default maximum number of characters in a packet body. Many
457 remote stubs have a hardwired buffer size of 400 bytes
458 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
459 as the maximum packet-size to ensure that the packet and an extra
460 NUL character can always fit in the buffer. This stops GDB
461 trashing stubs that try to squeeze an extra NUL into what is
462 already a full buffer (As of 1999-12-04 that was most stubs). */
463 rsa->remote_packet_size = 400 - 1;
464
465 /* This one is filled in when a ``g'' packet is received. */
466 rsa->actual_register_packet_size = 0;
467
468 /* Should rsa->sizeof_g_packet needs more space than the
469 default, adjust the size accordingly. Remember that each byte is
470 encoded as two characters. 32 is the overhead for the packet
471 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
472 (``$NN:G...#NN'') is a better guess, the below has been padded a
473 little. */
474 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
475 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
476
477 /* Make sure that the packet buffer is plenty big enough for
478 this architecture. */
479 if (rs->buf_size < rsa->remote_packet_size)
480 {
481 rs->buf_size = 2 * rsa->remote_packet_size;
482 rs->buf = xrealloc (rs->buf, rs->buf_size);
483 }
484
485 return rsa;
486 }
487
488 /* Return the current allowed size of a remote packet. This is
489 inferred from the current architecture, and should be used to
490 limit the length of outgoing packets. */
491 static long
492 get_remote_packet_size (void)
493 {
494 struct remote_state *rs = get_remote_state ();
495 struct remote_arch_state *rsa = get_remote_arch_state ();
496
497 if (rs->explicit_packet_size)
498 return rs->explicit_packet_size;
499
500 return rsa->remote_packet_size;
501 }
502
503 static struct packet_reg *
504 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
505 {
506 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
507 return NULL;
508 else
509 {
510 struct packet_reg *r = &rsa->regs[regnum];
511 gdb_assert (r->regnum == regnum);
512 return r;
513 }
514 }
515
516 static struct packet_reg *
517 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
518 {
519 int i;
520 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
521 {
522 struct packet_reg *r = &rsa->regs[i];
523 if (r->pnum == pnum)
524 return r;
525 }
526 return NULL;
527 }
528
529 /* FIXME: graces/2002-08-08: These variables should eventually be
530 bound to an instance of the target object (as in gdbarch-tdep()),
531 when such a thing exists. */
532
533 /* This is set to the data address of the access causing the target
534 to stop for a watchpoint. */
535 static CORE_ADDR remote_watch_data_address;
536
537 /* This is non-zero if target stopped for a watchpoint. */
538 static int remote_stopped_by_watchpoint_p;
539
540 static struct target_ops remote_ops;
541
542 static struct target_ops extended_remote_ops;
543
544 static int remote_async_mask_value = 1;
545
546 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
547 ``forever'' still use the normal timeout mechanism. This is
548 currently used by the ASYNC code to guarentee that target reads
549 during the initial connect always time-out. Once getpkt has been
550 modified to return a timeout indication and, in turn
551 remote_wait()/wait_for_inferior() have gained a timeout parameter
552 this can go away. */
553 static int wait_forever_enabled_p = 1;
554
555
556 /* This variable chooses whether to send a ^C or a break when the user
557 requests program interruption. Although ^C is usually what remote
558 systems expect, and that is the default here, sometimes a break is
559 preferable instead. */
560
561 static int remote_break;
562
563 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
564 remote_open knows that we don't have a file open when the program
565 starts. */
566 static struct serial *remote_desc = NULL;
567
568 /* This variable sets the number of bits in an address that are to be
569 sent in a memory ("M" or "m") packet. Normally, after stripping
570 leading zeros, the entire address would be sent. This variable
571 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
572 initial implementation of remote.c restricted the address sent in
573 memory packets to ``host::sizeof long'' bytes - (typically 32
574 bits). Consequently, for 64 bit targets, the upper 32 bits of an
575 address was never sent. Since fixing this bug may cause a break in
576 some remote targets this variable is principly provided to
577 facilitate backward compatibility. */
578
579 static int remote_address_size;
580
581 /* Temporary to track who currently owns the terminal. See
582 remote_terminal_* for more details. */
583
584 static int remote_async_terminal_ours_p;
585
586 /* The executable file to use for "run" on the remote side. */
587
588 static char *remote_exec_file = "";
589
590 \f
591 /* User configurable variables for the number of characters in a
592 memory read/write packet. MIN (rsa->remote_packet_size,
593 rsa->sizeof_g_packet) is the default. Some targets need smaller
594 values (fifo overruns, et.al.) and some users need larger values
595 (speed up transfers). The variables ``preferred_*'' (the user
596 request), ``current_*'' (what was actually set) and ``forced_*''
597 (Positive - a soft limit, negative - a hard limit). */
598
599 struct memory_packet_config
600 {
601 char *name;
602 long size;
603 int fixed_p;
604 };
605
606 /* Compute the current size of a read/write packet. Since this makes
607 use of ``actual_register_packet_size'' the computation is dynamic. */
608
609 static long
610 get_memory_packet_size (struct memory_packet_config *config)
611 {
612 struct remote_state *rs = get_remote_state ();
613 struct remote_arch_state *rsa = get_remote_arch_state ();
614
615 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
616 law?) that some hosts don't cope very well with large alloca()
617 calls. Eventually the alloca() code will be replaced by calls to
618 xmalloc() and make_cleanups() allowing this restriction to either
619 be lifted or removed. */
620 #ifndef MAX_REMOTE_PACKET_SIZE
621 #define MAX_REMOTE_PACKET_SIZE 16384
622 #endif
623 /* NOTE: 20 ensures we can write at least one byte. */
624 #ifndef MIN_REMOTE_PACKET_SIZE
625 #define MIN_REMOTE_PACKET_SIZE 20
626 #endif
627 long what_they_get;
628 if (config->fixed_p)
629 {
630 if (config->size <= 0)
631 what_they_get = MAX_REMOTE_PACKET_SIZE;
632 else
633 what_they_get = config->size;
634 }
635 else
636 {
637 what_they_get = get_remote_packet_size ();
638 /* Limit the packet to the size specified by the user. */
639 if (config->size > 0
640 && what_they_get > config->size)
641 what_they_get = config->size;
642
643 /* Limit it to the size of the targets ``g'' response unless we have
644 permission from the stub to use a larger packet size. */
645 if (rs->explicit_packet_size == 0
646 && rsa->actual_register_packet_size > 0
647 && what_they_get > rsa->actual_register_packet_size)
648 what_they_get = rsa->actual_register_packet_size;
649 }
650 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
651 what_they_get = MAX_REMOTE_PACKET_SIZE;
652 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
653 what_they_get = MIN_REMOTE_PACKET_SIZE;
654
655 /* Make sure there is room in the global buffer for this packet
656 (including its trailing NUL byte). */
657 if (rs->buf_size < what_they_get + 1)
658 {
659 rs->buf_size = 2 * what_they_get;
660 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
661 }
662
663 return what_they_get;
664 }
665
666 /* Update the size of a read/write packet. If they user wants
667 something really big then do a sanity check. */
668
669 static void
670 set_memory_packet_size (char *args, struct memory_packet_config *config)
671 {
672 int fixed_p = config->fixed_p;
673 long size = config->size;
674 if (args == NULL)
675 error (_("Argument required (integer, `fixed' or `limited')."));
676 else if (strcmp (args, "hard") == 0
677 || strcmp (args, "fixed") == 0)
678 fixed_p = 1;
679 else if (strcmp (args, "soft") == 0
680 || strcmp (args, "limit") == 0)
681 fixed_p = 0;
682 else
683 {
684 char *end;
685 size = strtoul (args, &end, 0);
686 if (args == end)
687 error (_("Invalid %s (bad syntax)."), config->name);
688 #if 0
689 /* Instead of explicitly capping the size of a packet to
690 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
691 instead allowed to set the size to something arbitrarily
692 large. */
693 if (size > MAX_REMOTE_PACKET_SIZE)
694 error (_("Invalid %s (too large)."), config->name);
695 #endif
696 }
697 /* Extra checks? */
698 if (fixed_p && !config->fixed_p)
699 {
700 if (! query (_("The target may not be able to correctly handle a %s\n"
701 "of %ld bytes. Change the packet size? "),
702 config->name, size))
703 error (_("Packet size not changed."));
704 }
705 /* Update the config. */
706 config->fixed_p = fixed_p;
707 config->size = size;
708 }
709
710 static void
711 show_memory_packet_size (struct memory_packet_config *config)
712 {
713 printf_filtered (_("The %s is %ld. "), config->name, config->size);
714 if (config->fixed_p)
715 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
716 get_memory_packet_size (config));
717 else
718 printf_filtered (_("Packets are limited to %ld bytes.\n"),
719 get_memory_packet_size (config));
720 }
721
722 static struct memory_packet_config memory_write_packet_config =
723 {
724 "memory-write-packet-size",
725 };
726
727 static void
728 set_memory_write_packet_size (char *args, int from_tty)
729 {
730 set_memory_packet_size (args, &memory_write_packet_config);
731 }
732
733 static void
734 show_memory_write_packet_size (char *args, int from_tty)
735 {
736 show_memory_packet_size (&memory_write_packet_config);
737 }
738
739 static long
740 get_memory_write_packet_size (void)
741 {
742 return get_memory_packet_size (&memory_write_packet_config);
743 }
744
745 static struct memory_packet_config memory_read_packet_config =
746 {
747 "memory-read-packet-size",
748 };
749
750 static void
751 set_memory_read_packet_size (char *args, int from_tty)
752 {
753 set_memory_packet_size (args, &memory_read_packet_config);
754 }
755
756 static void
757 show_memory_read_packet_size (char *args, int from_tty)
758 {
759 show_memory_packet_size (&memory_read_packet_config);
760 }
761
762 static long
763 get_memory_read_packet_size (void)
764 {
765 long size = get_memory_packet_size (&memory_read_packet_config);
766 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
767 extra buffer size argument before the memory read size can be
768 increased beyond this. */
769 if (size > get_remote_packet_size ())
770 size = get_remote_packet_size ();
771 return size;
772 }
773
774 \f
775 /* Generic configuration support for packets the stub optionally
776 supports. Allows the user to specify the use of the packet as well
777 as allowing GDB to auto-detect support in the remote stub. */
778
779 enum packet_support
780 {
781 PACKET_SUPPORT_UNKNOWN = 0,
782 PACKET_ENABLE,
783 PACKET_DISABLE
784 };
785
786 struct packet_config
787 {
788 const char *name;
789 const char *title;
790 enum auto_boolean detect;
791 enum packet_support support;
792 };
793
794 /* Analyze a packet's return value and update the packet config
795 accordingly. */
796
797 enum packet_result
798 {
799 PACKET_ERROR,
800 PACKET_OK,
801 PACKET_UNKNOWN
802 };
803
804 static void
805 update_packet_config (struct packet_config *config)
806 {
807 switch (config->detect)
808 {
809 case AUTO_BOOLEAN_TRUE:
810 config->support = PACKET_ENABLE;
811 break;
812 case AUTO_BOOLEAN_FALSE:
813 config->support = PACKET_DISABLE;
814 break;
815 case AUTO_BOOLEAN_AUTO:
816 config->support = PACKET_SUPPORT_UNKNOWN;
817 break;
818 }
819 }
820
821 static void
822 show_packet_config_cmd (struct packet_config *config)
823 {
824 char *support = "internal-error";
825 switch (config->support)
826 {
827 case PACKET_ENABLE:
828 support = "enabled";
829 break;
830 case PACKET_DISABLE:
831 support = "disabled";
832 break;
833 case PACKET_SUPPORT_UNKNOWN:
834 support = "unknown";
835 break;
836 }
837 switch (config->detect)
838 {
839 case AUTO_BOOLEAN_AUTO:
840 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
841 config->name, support);
842 break;
843 case AUTO_BOOLEAN_TRUE:
844 case AUTO_BOOLEAN_FALSE:
845 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
846 config->name, support);
847 break;
848 }
849 }
850
851 static void
852 add_packet_config_cmd (struct packet_config *config, const char *name,
853 const char *title, int legacy)
854 {
855 char *set_doc;
856 char *show_doc;
857 char *cmd_name;
858
859 config->name = name;
860 config->title = title;
861 config->detect = AUTO_BOOLEAN_AUTO;
862 config->support = PACKET_SUPPORT_UNKNOWN;
863 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
864 name, title);
865 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
866 name, title);
867 /* set/show TITLE-packet {auto,on,off} */
868 cmd_name = xstrprintf ("%s-packet", title);
869 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
870 &config->detect, set_doc, show_doc, NULL, /* help_doc */
871 set_remote_protocol_packet_cmd,
872 show_remote_protocol_packet_cmd,
873 &remote_set_cmdlist, &remote_show_cmdlist);
874 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
875 if (legacy)
876 {
877 char *legacy_name;
878 legacy_name = xstrprintf ("%s-packet", name);
879 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
880 &remote_set_cmdlist);
881 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
882 &remote_show_cmdlist);
883 }
884 }
885
886 static enum packet_result
887 packet_check_result (const char *buf)
888 {
889 if (buf[0] != '\0')
890 {
891 /* The stub recognized the packet request. Check that the
892 operation succeeded. */
893 if (buf[0] == 'E'
894 && isxdigit (buf[1]) && isxdigit (buf[2])
895 && buf[3] == '\0')
896 /* "Enn" - definitly an error. */
897 return PACKET_ERROR;
898
899 /* Always treat "E." as an error. This will be used for
900 more verbose error messages, such as E.memtypes. */
901 if (buf[0] == 'E' && buf[1] == '.')
902 return PACKET_ERROR;
903
904 /* The packet may or may not be OK. Just assume it is. */
905 return PACKET_OK;
906 }
907 else
908 /* The stub does not support the packet. */
909 return PACKET_UNKNOWN;
910 }
911
912 static enum packet_result
913 packet_ok (const char *buf, struct packet_config *config)
914 {
915 enum packet_result result;
916
917 result = packet_check_result (buf);
918 switch (result)
919 {
920 case PACKET_OK:
921 case PACKET_ERROR:
922 /* The stub recognized the packet request. */
923 switch (config->support)
924 {
925 case PACKET_SUPPORT_UNKNOWN:
926 if (remote_debug)
927 fprintf_unfiltered (gdb_stdlog,
928 "Packet %s (%s) is supported\n",
929 config->name, config->title);
930 config->support = PACKET_ENABLE;
931 break;
932 case PACKET_DISABLE:
933 internal_error (__FILE__, __LINE__,
934 _("packet_ok: attempt to use a disabled packet"));
935 break;
936 case PACKET_ENABLE:
937 break;
938 }
939 break;
940 case PACKET_UNKNOWN:
941 /* The stub does not support the packet. */
942 switch (config->support)
943 {
944 case PACKET_ENABLE:
945 if (config->detect == AUTO_BOOLEAN_AUTO)
946 /* If the stub previously indicated that the packet was
947 supported then there is a protocol error.. */
948 error (_("Protocol error: %s (%s) conflicting enabled responses."),
949 config->name, config->title);
950 else
951 /* The user set it wrong. */
952 error (_("Enabled packet %s (%s) not recognized by stub"),
953 config->name, config->title);
954 break;
955 case PACKET_SUPPORT_UNKNOWN:
956 if (remote_debug)
957 fprintf_unfiltered (gdb_stdlog,
958 "Packet %s (%s) is NOT supported\n",
959 config->name, config->title);
960 config->support = PACKET_DISABLE;
961 break;
962 case PACKET_DISABLE:
963 break;
964 }
965 break;
966 }
967
968 return result;
969 }
970
971 enum {
972 PACKET_vCont = 0,
973 PACKET_X,
974 PACKET_qSymbol,
975 PACKET_P,
976 PACKET_p,
977 PACKET_Z0,
978 PACKET_Z1,
979 PACKET_Z2,
980 PACKET_Z3,
981 PACKET_Z4,
982 PACKET_vFile_open,
983 PACKET_vFile_pread,
984 PACKET_vFile_pwrite,
985 PACKET_vFile_close,
986 PACKET_vFile_unlink,
987 PACKET_qXfer_auxv,
988 PACKET_qXfer_features,
989 PACKET_qXfer_libraries,
990 PACKET_qXfer_memory_map,
991 PACKET_qXfer_spu_read,
992 PACKET_qXfer_spu_write,
993 PACKET_qGetTLSAddr,
994 PACKET_qSupported,
995 PACKET_QPassSignals,
996 PACKET_qSearch_memory,
997 PACKET_vAttach,
998 PACKET_vRun,
999 PACKET_QStartNoAckMode,
1000 PACKET_vKill,
1001 PACKET_MAX
1002 };
1003
1004 static struct packet_config remote_protocol_packets[PACKET_MAX];
1005
1006 static void
1007 set_remote_protocol_packet_cmd (char *args, int from_tty,
1008 struct cmd_list_element *c)
1009 {
1010 struct packet_config *packet;
1011
1012 for (packet = remote_protocol_packets;
1013 packet < &remote_protocol_packets[PACKET_MAX];
1014 packet++)
1015 {
1016 if (&packet->detect == c->var)
1017 {
1018 update_packet_config (packet);
1019 return;
1020 }
1021 }
1022 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1023 c->name);
1024 }
1025
1026 static void
1027 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1028 struct cmd_list_element *c,
1029 const char *value)
1030 {
1031 struct packet_config *packet;
1032
1033 for (packet = remote_protocol_packets;
1034 packet < &remote_protocol_packets[PACKET_MAX];
1035 packet++)
1036 {
1037 if (&packet->detect == c->var)
1038 {
1039 show_packet_config_cmd (packet);
1040 return;
1041 }
1042 }
1043 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1044 c->name);
1045 }
1046
1047 /* Should we try one of the 'Z' requests? */
1048
1049 enum Z_packet_type
1050 {
1051 Z_PACKET_SOFTWARE_BP,
1052 Z_PACKET_HARDWARE_BP,
1053 Z_PACKET_WRITE_WP,
1054 Z_PACKET_READ_WP,
1055 Z_PACKET_ACCESS_WP,
1056 NR_Z_PACKET_TYPES
1057 };
1058
1059 /* For compatibility with older distributions. Provide a ``set remote
1060 Z-packet ...'' command that updates all the Z packet types. */
1061
1062 static enum auto_boolean remote_Z_packet_detect;
1063
1064 static void
1065 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1066 struct cmd_list_element *c)
1067 {
1068 int i;
1069 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1070 {
1071 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1072 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1073 }
1074 }
1075
1076 static void
1077 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1078 struct cmd_list_element *c,
1079 const char *value)
1080 {
1081 int i;
1082 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1083 {
1084 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1085 }
1086 }
1087
1088 /* Should we try the 'ThreadInfo' query packet?
1089
1090 This variable (NOT available to the user: auto-detect only!)
1091 determines whether GDB will use the new, simpler "ThreadInfo"
1092 query or the older, more complex syntax for thread queries.
1093 This is an auto-detect variable (set to true at each connect,
1094 and set to false when the target fails to recognize it). */
1095
1096 static int use_threadinfo_query;
1097 static int use_threadextra_query;
1098
1099 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1100 static struct async_signal_handler *sigint_remote_twice_token;
1101 static struct async_signal_handler *sigint_remote_token;
1102
1103 \f
1104 /* Asynchronous signal handle registered as event loop source for
1105 when we have pending events ready to be passed to the core. */
1106
1107 static struct async_event_handler *remote_async_inferior_event_token;
1108
1109 /* Asynchronous signal handle registered as event loop source for when
1110 the remote sent us a %Stop notification. The registered callback
1111 will do a vStopped sequence to pull the rest of the events out of
1112 the remote side into our event queue. */
1113
1114 static struct async_event_handler *remote_async_get_pending_events_token;
1115 \f
1116
1117 static ptid_t magic_null_ptid;
1118 static ptid_t not_sent_ptid;
1119 static ptid_t any_thread_ptid;
1120
1121 /* These are the threads which we last sent to the remote system. The
1122 TID member will be -1 for all or -2 for not sent yet. */
1123
1124 static ptid_t general_thread;
1125 static ptid_t continue_thread;
1126
1127 static void
1128 notice_new_inferiors (ptid_t currthread)
1129 {
1130 /* If this is a new thread, add it to GDB's thread list.
1131 If we leave it up to WFI to do this, bad things will happen. */
1132
1133 if (in_thread_list (currthread) && is_exited (currthread))
1134 {
1135 /* We're seeing an event on a thread id we knew had exited.
1136 This has to be a new thread reusing the old id. Add it. */
1137 add_thread (currthread);
1138 return;
1139 }
1140
1141 if (!in_thread_list (currthread))
1142 {
1143 if (ptid_equal (pid_to_ptid (ptid_get_pid (currthread)), inferior_ptid))
1144 {
1145 /* inferior_ptid has no thread member yet. This can happen
1146 with the vAttach -> remote_wait,"TAAthread:" path if the
1147 stub doesn't support qC. This is the first stop reported
1148 after an attach, so this is the main thread. Update the
1149 ptid in the thread list. */
1150 thread_change_ptid (inferior_ptid, currthread);
1151 return;
1152 }
1153
1154 if (ptid_equal (magic_null_ptid, inferior_ptid))
1155 {
1156 /* inferior_ptid is not set yet. This can happen with the
1157 vRun -> remote_wait,"TAAthread:" path if the stub
1158 doesn't support qC. This is the first stop reported
1159 after an attach, so this is the main thread. Update the
1160 ptid in the thread list. */
1161 thread_change_ptid (inferior_ptid, currthread);
1162 return;
1163 }
1164
1165 /* When connecting to a target remote, or to a target
1166 extended-remote which already was debugging an inferior, we
1167 may not know about it yet. Add it before adding its child
1168 thread, so notifications are emitted in a sensible order. */
1169 if (!in_inferior_list (ptid_get_pid (currthread)))
1170 add_inferior (ptid_get_pid (currthread));
1171
1172 /* This is really a new thread. Add it. */
1173 add_thread (currthread);
1174 }
1175 }
1176
1177 /* Call this function as a result of
1178 1) A halt indication (T packet) containing a thread id
1179 2) A direct query of currthread
1180 3) Successful execution of set thread
1181 */
1182
1183 static void
1184 record_currthread (ptid_t currthread)
1185 {
1186 general_thread = currthread;
1187
1188 if (ptid_equal (currthread, minus_one_ptid))
1189 /* We're just invalidating the local thread mirror. */
1190 return;
1191
1192 notice_new_inferiors (currthread);
1193 }
1194
1195 static char *last_pass_packet;
1196
1197 /* If 'QPassSignals' is supported, tell the remote stub what signals
1198 it can simply pass through to the inferior without reporting. */
1199
1200 static void
1201 remote_pass_signals (void)
1202 {
1203 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1204 {
1205 char *pass_packet, *p;
1206 int numsigs = (int) TARGET_SIGNAL_LAST;
1207 int count = 0, i;
1208
1209 gdb_assert (numsigs < 256);
1210 for (i = 0; i < numsigs; i++)
1211 {
1212 if (signal_stop_state (i) == 0
1213 && signal_print_state (i) == 0
1214 && signal_pass_state (i) == 1)
1215 count++;
1216 }
1217 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1218 strcpy (pass_packet, "QPassSignals:");
1219 p = pass_packet + strlen (pass_packet);
1220 for (i = 0; i < numsigs; i++)
1221 {
1222 if (signal_stop_state (i) == 0
1223 && signal_print_state (i) == 0
1224 && signal_pass_state (i) == 1)
1225 {
1226 if (i >= 16)
1227 *p++ = tohex (i >> 4);
1228 *p++ = tohex (i & 15);
1229 if (count)
1230 *p++ = ';';
1231 else
1232 break;
1233 count--;
1234 }
1235 }
1236 *p = 0;
1237 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1238 {
1239 struct remote_state *rs = get_remote_state ();
1240 char *buf = rs->buf;
1241
1242 putpkt (pass_packet);
1243 getpkt (&rs->buf, &rs->buf_size, 0);
1244 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1245 if (last_pass_packet)
1246 xfree (last_pass_packet);
1247 last_pass_packet = pass_packet;
1248 }
1249 else
1250 xfree (pass_packet);
1251 }
1252 }
1253
1254 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1255 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1256 thread. If GEN is set, set the general thread, if not, then set
1257 the step/continue thread. */
1258 static void
1259 set_thread (struct ptid ptid, int gen)
1260 {
1261 struct remote_state *rs = get_remote_state ();
1262 ptid_t state = gen ? general_thread : continue_thread;
1263 char *buf = rs->buf;
1264 char *endbuf = rs->buf + get_remote_packet_size ();
1265
1266 if (ptid_equal (state, ptid))
1267 return;
1268
1269 *buf++ = 'H';
1270 *buf++ = gen ? 'g' : 'c';
1271 if (ptid_equal (ptid, magic_null_ptid))
1272 xsnprintf (buf, endbuf - buf, "0");
1273 else if (ptid_equal (ptid, any_thread_ptid))
1274 xsnprintf (buf, endbuf - buf, "0");
1275 else if (ptid_equal (ptid, minus_one_ptid))
1276 xsnprintf (buf, endbuf - buf, "-1");
1277 else
1278 write_ptid (buf, endbuf, ptid);
1279 putpkt (rs->buf);
1280 getpkt (&rs->buf, &rs->buf_size, 0);
1281 if (gen)
1282 general_thread = ptid;
1283 else
1284 continue_thread = ptid;
1285 }
1286
1287 static void
1288 set_general_thread (struct ptid ptid)
1289 {
1290 set_thread (ptid, 1);
1291 }
1292
1293 static void
1294 set_continue_thread (struct ptid ptid)
1295 {
1296 set_thread (ptid, 0);
1297 }
1298
1299 /* Change the remote current process. Which thread within the process
1300 ends up selected isn't important, as long as it is the same process
1301 as what INFERIOR_PTID points to.
1302
1303 This comes from that fact that there is no explicit notion of
1304 "selected process" in the protocol. The selected process for
1305 general operations is the process the selected general thread
1306 belongs to. */
1307
1308 static void
1309 set_general_process (void)
1310 {
1311 struct remote_state *rs = get_remote_state ();
1312
1313 /* If the remote can't handle multiple processes, don't bother. */
1314 if (!remote_multi_process_p (rs))
1315 return;
1316
1317 /* We only need to change the remote current thread if it's pointing
1318 at some other process. */
1319 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1320 set_general_thread (inferior_ptid);
1321 }
1322
1323 \f
1324 /* Return nonzero if the thread PTID is still alive on the remote
1325 system. */
1326
1327 static int
1328 remote_thread_alive (ptid_t ptid)
1329 {
1330 struct remote_state *rs = get_remote_state ();
1331 int tid = ptid_get_tid (ptid);
1332 char *p, *endp;
1333
1334 if (ptid_equal (ptid, magic_null_ptid))
1335 /* The main thread is always alive. */
1336 return 1;
1337
1338 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1339 /* The main thread is always alive. This can happen after a
1340 vAttach, if the remote side doesn't support
1341 multi-threading. */
1342 return 1;
1343
1344 p = rs->buf;
1345 endp = rs->buf + get_remote_packet_size ();
1346
1347 *p++ = 'T';
1348 write_ptid (p, endp, ptid);
1349
1350 putpkt (rs->buf);
1351 getpkt (&rs->buf, &rs->buf_size, 0);
1352 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1353 }
1354
1355 /* About these extended threadlist and threadinfo packets. They are
1356 variable length packets but, the fields within them are often fixed
1357 length. They are redundent enough to send over UDP as is the
1358 remote protocol in general. There is a matching unit test module
1359 in libstub. */
1360
1361 #define OPAQUETHREADBYTES 8
1362
1363 /* a 64 bit opaque identifier */
1364 typedef unsigned char threadref[OPAQUETHREADBYTES];
1365
1366 /* WARNING: This threadref data structure comes from the remote O.S.,
1367 libstub protocol encoding, and remote.c. it is not particularly
1368 changable. */
1369
1370 /* Right now, the internal structure is int. We want it to be bigger.
1371 Plan to fix this.
1372 */
1373
1374 typedef int gdb_threadref; /* Internal GDB thread reference. */
1375
1376 /* gdb_ext_thread_info is an internal GDB data structure which is
1377 equivalent to the reply of the remote threadinfo packet. */
1378
1379 struct gdb_ext_thread_info
1380 {
1381 threadref threadid; /* External form of thread reference. */
1382 int active; /* Has state interesting to GDB?
1383 regs, stack. */
1384 char display[256]; /* Brief state display, name,
1385 blocked/suspended. */
1386 char shortname[32]; /* To be used to name threads. */
1387 char more_display[256]; /* Long info, statistics, queue depth,
1388 whatever. */
1389 };
1390
1391 /* The volume of remote transfers can be limited by submitting
1392 a mask containing bits specifying the desired information.
1393 Use a union of these values as the 'selection' parameter to
1394 get_thread_info. FIXME: Make these TAG names more thread specific.
1395 */
1396
1397 #define TAG_THREADID 1
1398 #define TAG_EXISTS 2
1399 #define TAG_DISPLAY 4
1400 #define TAG_THREADNAME 8
1401 #define TAG_MOREDISPLAY 16
1402
1403 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1404
1405 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1406
1407 static char *unpack_nibble (char *buf, int *val);
1408
1409 static char *pack_nibble (char *buf, int nibble);
1410
1411 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1412
1413 static char *unpack_byte (char *buf, int *value);
1414
1415 static char *pack_int (char *buf, int value);
1416
1417 static char *unpack_int (char *buf, int *value);
1418
1419 static char *unpack_string (char *src, char *dest, int length);
1420
1421 static char *pack_threadid (char *pkt, threadref *id);
1422
1423 static char *unpack_threadid (char *inbuf, threadref *id);
1424
1425 void int_to_threadref (threadref *id, int value);
1426
1427 static int threadref_to_int (threadref *ref);
1428
1429 static void copy_threadref (threadref *dest, threadref *src);
1430
1431 static int threadmatch (threadref *dest, threadref *src);
1432
1433 static char *pack_threadinfo_request (char *pkt, int mode,
1434 threadref *id);
1435
1436 static int remote_unpack_thread_info_response (char *pkt,
1437 threadref *expectedref,
1438 struct gdb_ext_thread_info
1439 *info);
1440
1441
1442 static int remote_get_threadinfo (threadref *threadid,
1443 int fieldset, /*TAG mask */
1444 struct gdb_ext_thread_info *info);
1445
1446 static char *pack_threadlist_request (char *pkt, int startflag,
1447 int threadcount,
1448 threadref *nextthread);
1449
1450 static int parse_threadlist_response (char *pkt,
1451 int result_limit,
1452 threadref *original_echo,
1453 threadref *resultlist,
1454 int *doneflag);
1455
1456 static int remote_get_threadlist (int startflag,
1457 threadref *nextthread,
1458 int result_limit,
1459 int *done,
1460 int *result_count,
1461 threadref *threadlist);
1462
1463 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1464
1465 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1466 void *context, int looplimit);
1467
1468 static int remote_newthread_step (threadref *ref, void *context);
1469
1470
1471 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1472 buffer we're allowed to write to. Returns
1473 BUF+CHARACTERS_WRITTEN. */
1474
1475 static char *
1476 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1477 {
1478 int pid, tid;
1479 struct remote_state *rs = get_remote_state ();
1480
1481 if (remote_multi_process_p (rs))
1482 {
1483 pid = ptid_get_pid (ptid);
1484 if (pid < 0)
1485 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1486 else
1487 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1488 }
1489 tid = ptid_get_tid (ptid);
1490 if (tid < 0)
1491 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1492 else
1493 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1494
1495 return buf;
1496 }
1497
1498 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1499 passed the last parsed char. Returns null_ptid on error. */
1500
1501 static ptid_t
1502 read_ptid (char *buf, char **obuf)
1503 {
1504 char *p = buf;
1505 char *pp;
1506 ULONGEST pid = 0, tid = 0;
1507 ptid_t ptid;
1508
1509 if (*p == 'p')
1510 {
1511 /* Multi-process ptid. */
1512 pp = unpack_varlen_hex (p + 1, &pid);
1513 if (*pp != '.')
1514 error (_("invalid remote ptid: %s\n"), p);
1515
1516 p = pp;
1517 pp = unpack_varlen_hex (p + 1, &tid);
1518 if (obuf)
1519 *obuf = pp;
1520 return ptid_build (pid, 0, tid);
1521 }
1522
1523 /* No multi-process. Just a tid. */
1524 pp = unpack_varlen_hex (p, &tid);
1525
1526 /* Since the stub is not sending a process id, then default to
1527 what's in inferior_ptid. */
1528 pid = ptid_get_pid (inferior_ptid);
1529
1530 if (obuf)
1531 *obuf = pp;
1532 return ptid_build (pid, 0, tid);
1533 }
1534
1535 /* Encode 64 bits in 16 chars of hex. */
1536
1537 static const char hexchars[] = "0123456789abcdef";
1538
1539 static int
1540 ishex (int ch, int *val)
1541 {
1542 if ((ch >= 'a') && (ch <= 'f'))
1543 {
1544 *val = ch - 'a' + 10;
1545 return 1;
1546 }
1547 if ((ch >= 'A') && (ch <= 'F'))
1548 {
1549 *val = ch - 'A' + 10;
1550 return 1;
1551 }
1552 if ((ch >= '0') && (ch <= '9'))
1553 {
1554 *val = ch - '0';
1555 return 1;
1556 }
1557 return 0;
1558 }
1559
1560 static int
1561 stubhex (int ch)
1562 {
1563 if (ch >= 'a' && ch <= 'f')
1564 return ch - 'a' + 10;
1565 if (ch >= '0' && ch <= '9')
1566 return ch - '0';
1567 if (ch >= 'A' && ch <= 'F')
1568 return ch - 'A' + 10;
1569 return -1;
1570 }
1571
1572 static int
1573 stub_unpack_int (char *buff, int fieldlength)
1574 {
1575 int nibble;
1576 int retval = 0;
1577
1578 while (fieldlength)
1579 {
1580 nibble = stubhex (*buff++);
1581 retval |= nibble;
1582 fieldlength--;
1583 if (fieldlength)
1584 retval = retval << 4;
1585 }
1586 return retval;
1587 }
1588
1589 char *
1590 unpack_varlen_hex (char *buff, /* packet to parse */
1591 ULONGEST *result)
1592 {
1593 int nibble;
1594 ULONGEST retval = 0;
1595
1596 while (ishex (*buff, &nibble))
1597 {
1598 buff++;
1599 retval = retval << 4;
1600 retval |= nibble & 0x0f;
1601 }
1602 *result = retval;
1603 return buff;
1604 }
1605
1606 static char *
1607 unpack_nibble (char *buf, int *val)
1608 {
1609 *val = fromhex (*buf++);
1610 return buf;
1611 }
1612
1613 static char *
1614 pack_nibble (char *buf, int nibble)
1615 {
1616 *buf++ = hexchars[(nibble & 0x0f)];
1617 return buf;
1618 }
1619
1620 static char *
1621 pack_hex_byte (char *pkt, int byte)
1622 {
1623 *pkt++ = hexchars[(byte >> 4) & 0xf];
1624 *pkt++ = hexchars[(byte & 0xf)];
1625 return pkt;
1626 }
1627
1628 static char *
1629 unpack_byte (char *buf, int *value)
1630 {
1631 *value = stub_unpack_int (buf, 2);
1632 return buf + 2;
1633 }
1634
1635 static char *
1636 pack_int (char *buf, int value)
1637 {
1638 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1639 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1640 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1641 buf = pack_hex_byte (buf, (value & 0xff));
1642 return buf;
1643 }
1644
1645 static char *
1646 unpack_int (char *buf, int *value)
1647 {
1648 *value = stub_unpack_int (buf, 8);
1649 return buf + 8;
1650 }
1651
1652 #if 0 /* Currently unused, uncomment when needed. */
1653 static char *pack_string (char *pkt, char *string);
1654
1655 static char *
1656 pack_string (char *pkt, char *string)
1657 {
1658 char ch;
1659 int len;
1660
1661 len = strlen (string);
1662 if (len > 200)
1663 len = 200; /* Bigger than most GDB packets, junk??? */
1664 pkt = pack_hex_byte (pkt, len);
1665 while (len-- > 0)
1666 {
1667 ch = *string++;
1668 if ((ch == '\0') || (ch == '#'))
1669 ch = '*'; /* Protect encapsulation. */
1670 *pkt++ = ch;
1671 }
1672 return pkt;
1673 }
1674 #endif /* 0 (unused) */
1675
1676 static char *
1677 unpack_string (char *src, char *dest, int length)
1678 {
1679 while (length--)
1680 *dest++ = *src++;
1681 *dest = '\0';
1682 return src;
1683 }
1684
1685 static char *
1686 pack_threadid (char *pkt, threadref *id)
1687 {
1688 char *limit;
1689 unsigned char *altid;
1690
1691 altid = (unsigned char *) id;
1692 limit = pkt + BUF_THREAD_ID_SIZE;
1693 while (pkt < limit)
1694 pkt = pack_hex_byte (pkt, *altid++);
1695 return pkt;
1696 }
1697
1698
1699 static char *
1700 unpack_threadid (char *inbuf, threadref *id)
1701 {
1702 char *altref;
1703 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1704 int x, y;
1705
1706 altref = (char *) id;
1707
1708 while (inbuf < limit)
1709 {
1710 x = stubhex (*inbuf++);
1711 y = stubhex (*inbuf++);
1712 *altref++ = (x << 4) | y;
1713 }
1714 return inbuf;
1715 }
1716
1717 /* Externally, threadrefs are 64 bits but internally, they are still
1718 ints. This is due to a mismatch of specifications. We would like
1719 to use 64bit thread references internally. This is an adapter
1720 function. */
1721
1722 void
1723 int_to_threadref (threadref *id, int value)
1724 {
1725 unsigned char *scan;
1726
1727 scan = (unsigned char *) id;
1728 {
1729 int i = 4;
1730 while (i--)
1731 *scan++ = 0;
1732 }
1733 *scan++ = (value >> 24) & 0xff;
1734 *scan++ = (value >> 16) & 0xff;
1735 *scan++ = (value >> 8) & 0xff;
1736 *scan++ = (value & 0xff);
1737 }
1738
1739 static int
1740 threadref_to_int (threadref *ref)
1741 {
1742 int i, value = 0;
1743 unsigned char *scan;
1744
1745 scan = *ref;
1746 scan += 4;
1747 i = 4;
1748 while (i-- > 0)
1749 value = (value << 8) | ((*scan++) & 0xff);
1750 return value;
1751 }
1752
1753 static void
1754 copy_threadref (threadref *dest, threadref *src)
1755 {
1756 int i;
1757 unsigned char *csrc, *cdest;
1758
1759 csrc = (unsigned char *) src;
1760 cdest = (unsigned char *) dest;
1761 i = 8;
1762 while (i--)
1763 *cdest++ = *csrc++;
1764 }
1765
1766 static int
1767 threadmatch (threadref *dest, threadref *src)
1768 {
1769 /* Things are broken right now, so just assume we got a match. */
1770 #if 0
1771 unsigned char *srcp, *destp;
1772 int i, result;
1773 srcp = (char *) src;
1774 destp = (char *) dest;
1775
1776 result = 1;
1777 while (i-- > 0)
1778 result &= (*srcp++ == *destp++) ? 1 : 0;
1779 return result;
1780 #endif
1781 return 1;
1782 }
1783
1784 /*
1785 threadid:1, # always request threadid
1786 context_exists:2,
1787 display:4,
1788 unique_name:8,
1789 more_display:16
1790 */
1791
1792 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1793
1794 static char *
1795 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1796 {
1797 *pkt++ = 'q'; /* Info Query */
1798 *pkt++ = 'P'; /* process or thread info */
1799 pkt = pack_int (pkt, mode); /* mode */
1800 pkt = pack_threadid (pkt, id); /* threadid */
1801 *pkt = '\0'; /* terminate */
1802 return pkt;
1803 }
1804
1805 /* These values tag the fields in a thread info response packet. */
1806 /* Tagging the fields allows us to request specific fields and to
1807 add more fields as time goes by. */
1808
1809 #define TAG_THREADID 1 /* Echo the thread identifier. */
1810 #define TAG_EXISTS 2 /* Is this process defined enough to
1811 fetch registers and its stack? */
1812 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1813 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1814 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1815 the process. */
1816
1817 static int
1818 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1819 struct gdb_ext_thread_info *info)
1820 {
1821 struct remote_state *rs = get_remote_state ();
1822 int mask, length;
1823 int tag;
1824 threadref ref;
1825 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1826 int retval = 1;
1827
1828 /* info->threadid = 0; FIXME: implement zero_threadref. */
1829 info->active = 0;
1830 info->display[0] = '\0';
1831 info->shortname[0] = '\0';
1832 info->more_display[0] = '\0';
1833
1834 /* Assume the characters indicating the packet type have been
1835 stripped. */
1836 pkt = unpack_int (pkt, &mask); /* arg mask */
1837 pkt = unpack_threadid (pkt, &ref);
1838
1839 if (mask == 0)
1840 warning (_("Incomplete response to threadinfo request."));
1841 if (!threadmatch (&ref, expectedref))
1842 { /* This is an answer to a different request. */
1843 warning (_("ERROR RMT Thread info mismatch."));
1844 return 0;
1845 }
1846 copy_threadref (&info->threadid, &ref);
1847
1848 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1849
1850 /* Packets are terminated with nulls. */
1851 while ((pkt < limit) && mask && *pkt)
1852 {
1853 pkt = unpack_int (pkt, &tag); /* tag */
1854 pkt = unpack_byte (pkt, &length); /* length */
1855 if (!(tag & mask)) /* Tags out of synch with mask. */
1856 {
1857 warning (_("ERROR RMT: threadinfo tag mismatch."));
1858 retval = 0;
1859 break;
1860 }
1861 if (tag == TAG_THREADID)
1862 {
1863 if (length != 16)
1864 {
1865 warning (_("ERROR RMT: length of threadid is not 16."));
1866 retval = 0;
1867 break;
1868 }
1869 pkt = unpack_threadid (pkt, &ref);
1870 mask = mask & ~TAG_THREADID;
1871 continue;
1872 }
1873 if (tag == TAG_EXISTS)
1874 {
1875 info->active = stub_unpack_int (pkt, length);
1876 pkt += length;
1877 mask = mask & ~(TAG_EXISTS);
1878 if (length > 8)
1879 {
1880 warning (_("ERROR RMT: 'exists' length too long."));
1881 retval = 0;
1882 break;
1883 }
1884 continue;
1885 }
1886 if (tag == TAG_THREADNAME)
1887 {
1888 pkt = unpack_string (pkt, &info->shortname[0], length);
1889 mask = mask & ~TAG_THREADNAME;
1890 continue;
1891 }
1892 if (tag == TAG_DISPLAY)
1893 {
1894 pkt = unpack_string (pkt, &info->display[0], length);
1895 mask = mask & ~TAG_DISPLAY;
1896 continue;
1897 }
1898 if (tag == TAG_MOREDISPLAY)
1899 {
1900 pkt = unpack_string (pkt, &info->more_display[0], length);
1901 mask = mask & ~TAG_MOREDISPLAY;
1902 continue;
1903 }
1904 warning (_("ERROR RMT: unknown thread info tag."));
1905 break; /* Not a tag we know about. */
1906 }
1907 return retval;
1908 }
1909
1910 static int
1911 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1912 struct gdb_ext_thread_info *info)
1913 {
1914 struct remote_state *rs = get_remote_state ();
1915 int result;
1916
1917 pack_threadinfo_request (rs->buf, fieldset, threadid);
1918 putpkt (rs->buf);
1919 getpkt (&rs->buf, &rs->buf_size, 0);
1920
1921 if (rs->buf[0] == '\0')
1922 return 0;
1923
1924 result = remote_unpack_thread_info_response (rs->buf + 2,
1925 threadid, info);
1926 return result;
1927 }
1928
1929 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1930
1931 static char *
1932 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1933 threadref *nextthread)
1934 {
1935 *pkt++ = 'q'; /* info query packet */
1936 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1937 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1938 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1939 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1940 *pkt = '\0';
1941 return pkt;
1942 }
1943
1944 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1945
1946 static int
1947 parse_threadlist_response (char *pkt, int result_limit,
1948 threadref *original_echo, threadref *resultlist,
1949 int *doneflag)
1950 {
1951 struct remote_state *rs = get_remote_state ();
1952 char *limit;
1953 int count, resultcount, done;
1954
1955 resultcount = 0;
1956 /* Assume the 'q' and 'M chars have been stripped. */
1957 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1958 /* done parse past here */
1959 pkt = unpack_byte (pkt, &count); /* count field */
1960 pkt = unpack_nibble (pkt, &done);
1961 /* The first threadid is the argument threadid. */
1962 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1963 while ((count-- > 0) && (pkt < limit))
1964 {
1965 pkt = unpack_threadid (pkt, resultlist++);
1966 if (resultcount++ >= result_limit)
1967 break;
1968 }
1969 if (doneflag)
1970 *doneflag = done;
1971 return resultcount;
1972 }
1973
1974 static int
1975 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1976 int *done, int *result_count, threadref *threadlist)
1977 {
1978 struct remote_state *rs = get_remote_state ();
1979 static threadref echo_nextthread;
1980 int result = 1;
1981
1982 /* Trancate result limit to be smaller than the packet size. */
1983 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1984 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1985
1986 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1987 putpkt (rs->buf);
1988 getpkt (&rs->buf, &rs->buf_size, 0);
1989
1990 if (*rs->buf == '\0')
1991 *result_count = 0;
1992 else
1993 *result_count =
1994 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1995 threadlist, done);
1996
1997 if (!threadmatch (&echo_nextthread, nextthread))
1998 {
1999 /* FIXME: This is a good reason to drop the packet. */
2000 /* Possably, there is a duplicate response. */
2001 /* Possabilities :
2002 retransmit immediatly - race conditions
2003 retransmit after timeout - yes
2004 exit
2005 wait for packet, then exit
2006 */
2007 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2008 return 0; /* I choose simply exiting. */
2009 }
2010 if (*result_count <= 0)
2011 {
2012 if (*done != 1)
2013 {
2014 warning (_("RMT ERROR : failed to get remote thread list."));
2015 result = 0;
2016 }
2017 return result; /* break; */
2018 }
2019 if (*result_count > result_limit)
2020 {
2021 *result_count = 0;
2022 warning (_("RMT ERROR: threadlist response longer than requested."));
2023 return 0;
2024 }
2025 return result;
2026 }
2027
2028 /* This is the interface between remote and threads, remotes upper
2029 interface. */
2030
2031 /* remote_find_new_threads retrieves the thread list and for each
2032 thread in the list, looks up the thread in GDB's internal list,
2033 adding the thread if it does not already exist. This involves
2034 getting partial thread lists from the remote target so, polling the
2035 quit_flag is required. */
2036
2037
2038 /* About this many threadisds fit in a packet. */
2039
2040 #define MAXTHREADLISTRESULTS 32
2041
2042 static int
2043 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2044 int looplimit)
2045 {
2046 int done, i, result_count;
2047 int startflag = 1;
2048 int result = 1;
2049 int loopcount = 0;
2050 static threadref nextthread;
2051 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2052
2053 done = 0;
2054 while (!done)
2055 {
2056 if (loopcount++ > looplimit)
2057 {
2058 result = 0;
2059 warning (_("Remote fetch threadlist -infinite loop-."));
2060 break;
2061 }
2062 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2063 &done, &result_count, resultthreadlist))
2064 {
2065 result = 0;
2066 break;
2067 }
2068 /* Clear for later iterations. */
2069 startflag = 0;
2070 /* Setup to resume next batch of thread references, set nextthread. */
2071 if (result_count >= 1)
2072 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2073 i = 0;
2074 while (result_count--)
2075 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2076 break;
2077 }
2078 return result;
2079 }
2080
2081 static int
2082 remote_newthread_step (threadref *ref, void *context)
2083 {
2084 int pid = ptid_get_pid (inferior_ptid);
2085 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2086
2087 if (!in_thread_list (ptid))
2088 add_thread (ptid);
2089 return 1; /* continue iterator */
2090 }
2091
2092 #define CRAZY_MAX_THREADS 1000
2093
2094 static ptid_t
2095 remote_current_thread (ptid_t oldpid)
2096 {
2097 struct remote_state *rs = get_remote_state ();
2098 char *p = rs->buf;
2099 int tid;
2100 int pid;
2101
2102 putpkt ("qC");
2103 getpkt (&rs->buf, &rs->buf_size, 0);
2104 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2105 return read_ptid (&rs->buf[2], NULL);
2106 else
2107 return oldpid;
2108 }
2109
2110 /* Find new threads for info threads command.
2111 * Original version, using John Metzler's thread protocol.
2112 */
2113
2114 static void
2115 remote_find_new_threads (void)
2116 {
2117 remote_threadlist_iterator (remote_newthread_step, 0,
2118 CRAZY_MAX_THREADS);
2119 }
2120
2121 /*
2122 * Find all threads for info threads command.
2123 * Uses new thread protocol contributed by Cisco.
2124 * Falls back and attempts to use the older method (above)
2125 * if the target doesn't respond to the new method.
2126 */
2127
2128 static void
2129 remote_threads_info (void)
2130 {
2131 struct remote_state *rs = get_remote_state ();
2132 char *bufp;
2133 ptid_t new_thread;
2134
2135 if (remote_desc == 0) /* paranoia */
2136 error (_("Command can only be used when connected to the remote target."));
2137
2138 if (use_threadinfo_query)
2139 {
2140 putpkt ("qfThreadInfo");
2141 getpkt (&rs->buf, &rs->buf_size, 0);
2142 bufp = rs->buf;
2143 if (bufp[0] != '\0') /* q packet recognized */
2144 {
2145 while (*bufp++ == 'm') /* reply contains one or more TID */
2146 {
2147 do
2148 {
2149 new_thread = read_ptid (bufp, &bufp);
2150 if (!ptid_equal (new_thread, null_ptid)
2151 && (!in_thread_list (new_thread)
2152 || is_exited (new_thread)))
2153 {
2154 /* When connected to a multi-process aware stub,
2155 "info threads" may show up threads of
2156 inferiors we didn't know about yet. Add them
2157 now, and before adding any of its child
2158 threads, so notifications are emitted in a
2159 sensible order. */
2160 if (!in_inferior_list (ptid_get_pid (new_thread)))
2161 add_inferior (ptid_get_pid (new_thread));
2162
2163 add_thread (new_thread);
2164
2165 /* In non-stop mode, we assume new found threads
2166 are running until we proven otherwise with a
2167 stop reply. In all-stop, we can only get
2168 here if all threads are stopped. */
2169 set_executing (new_thread, non_stop ? 1 : 0);
2170 set_running (new_thread, non_stop ? 1 : 0);
2171 }
2172 }
2173 while (*bufp++ == ','); /* comma-separated list */
2174 putpkt ("qsThreadInfo");
2175 getpkt (&rs->buf, &rs->buf_size, 0);
2176 bufp = rs->buf;
2177 }
2178 return; /* done */
2179 }
2180 }
2181
2182 /* Only qfThreadInfo is supported in non-stop mode. */
2183 if (non_stop)
2184 return;
2185
2186 /* Else fall back to old method based on jmetzler protocol. */
2187 use_threadinfo_query = 0;
2188 remote_find_new_threads ();
2189 return;
2190 }
2191
2192 /*
2193 * Collect a descriptive string about the given thread.
2194 * The target may say anything it wants to about the thread
2195 * (typically info about its blocked / runnable state, name, etc.).
2196 * This string will appear in the info threads display.
2197 *
2198 * Optional: targets are not required to implement this function.
2199 */
2200
2201 static char *
2202 remote_threads_extra_info (struct thread_info *tp)
2203 {
2204 struct remote_state *rs = get_remote_state ();
2205 int result;
2206 int set;
2207 threadref id;
2208 struct gdb_ext_thread_info threadinfo;
2209 static char display_buf[100]; /* arbitrary... */
2210 int n = 0; /* position in display_buf */
2211
2212 if (remote_desc == 0) /* paranoia */
2213 internal_error (__FILE__, __LINE__,
2214 _("remote_threads_extra_info"));
2215
2216 if (ptid_equal (tp->ptid, magic_null_ptid)
2217 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2218 /* This is the main thread which was added by GDB. The remote
2219 server doesn't know about it. */
2220 return NULL;
2221
2222 if (use_threadextra_query)
2223 {
2224 char *b = rs->buf;
2225 char *endb = rs->buf + get_remote_packet_size ();
2226
2227 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2228 b += strlen (b);
2229 write_ptid (b, endb, tp->ptid);
2230
2231 putpkt (rs->buf);
2232 getpkt (&rs->buf, &rs->buf_size, 0);
2233 if (rs->buf[0] != 0)
2234 {
2235 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2236 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2237 display_buf [result] = '\0';
2238 return display_buf;
2239 }
2240 }
2241
2242 /* If the above query fails, fall back to the old method. */
2243 use_threadextra_query = 0;
2244 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2245 | TAG_MOREDISPLAY | TAG_DISPLAY;
2246 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2247 if (remote_get_threadinfo (&id, set, &threadinfo))
2248 if (threadinfo.active)
2249 {
2250 if (*threadinfo.shortname)
2251 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2252 " Name: %s,", threadinfo.shortname);
2253 if (*threadinfo.display)
2254 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2255 " State: %s,", threadinfo.display);
2256 if (*threadinfo.more_display)
2257 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2258 " Priority: %s", threadinfo.more_display);
2259
2260 if (n > 0)
2261 {
2262 /* For purely cosmetic reasons, clear up trailing commas. */
2263 if (',' == display_buf[n-1])
2264 display_buf[n-1] = ' ';
2265 return display_buf;
2266 }
2267 }
2268 return NULL;
2269 }
2270 \f
2271
2272 /* Restart the remote side; this is an extended protocol operation. */
2273
2274 static void
2275 extended_remote_restart (void)
2276 {
2277 struct remote_state *rs = get_remote_state ();
2278
2279 /* Send the restart command; for reasons I don't understand the
2280 remote side really expects a number after the "R". */
2281 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2282 putpkt (rs->buf);
2283
2284 remote_fileio_reset ();
2285 }
2286 \f
2287 /* Clean up connection to a remote debugger. */
2288
2289 static void
2290 remote_close (int quitting)
2291 {
2292 if (remote_desc == NULL)
2293 return; /* already closed */
2294
2295 /* Make sure we leave stdin registered in the event loop, and we
2296 don't leave the async SIGINT signal handler installed. */
2297 remote_terminal_ours ();
2298
2299 serial_close (remote_desc);
2300 remote_desc = NULL;
2301
2302 /* We don't have a connection to the remote stub anymore. Get rid
2303 of all the inferiors and their threads we were controlling. */
2304 discard_all_inferiors ();
2305
2306 /* We're no longer interested in any of these events. */
2307 discard_pending_stop_replies (-1);
2308
2309 if (remote_async_inferior_event_token)
2310 delete_async_event_handler (&remote_async_inferior_event_token);
2311 if (remote_async_get_pending_events_token)
2312 delete_async_event_handler (&remote_async_get_pending_events_token);
2313
2314 generic_mourn_inferior ();
2315 }
2316
2317 /* Query the remote side for the text, data and bss offsets. */
2318
2319 static void
2320 get_offsets (void)
2321 {
2322 struct remote_state *rs = get_remote_state ();
2323 char *buf;
2324 char *ptr;
2325 int lose, num_segments = 0, do_sections, do_segments;
2326 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2327 struct section_offsets *offs;
2328 struct symfile_segment_data *data;
2329
2330 if (symfile_objfile == NULL)
2331 return;
2332
2333 putpkt ("qOffsets");
2334 getpkt (&rs->buf, &rs->buf_size, 0);
2335 buf = rs->buf;
2336
2337 if (buf[0] == '\000')
2338 return; /* Return silently. Stub doesn't support
2339 this command. */
2340 if (buf[0] == 'E')
2341 {
2342 warning (_("Remote failure reply: %s"), buf);
2343 return;
2344 }
2345
2346 /* Pick up each field in turn. This used to be done with scanf, but
2347 scanf will make trouble if CORE_ADDR size doesn't match
2348 conversion directives correctly. The following code will work
2349 with any size of CORE_ADDR. */
2350 text_addr = data_addr = bss_addr = 0;
2351 ptr = buf;
2352 lose = 0;
2353
2354 if (strncmp (ptr, "Text=", 5) == 0)
2355 {
2356 ptr += 5;
2357 /* Don't use strtol, could lose on big values. */
2358 while (*ptr && *ptr != ';')
2359 text_addr = (text_addr << 4) + fromhex (*ptr++);
2360
2361 if (strncmp (ptr, ";Data=", 6) == 0)
2362 {
2363 ptr += 6;
2364 while (*ptr && *ptr != ';')
2365 data_addr = (data_addr << 4) + fromhex (*ptr++);
2366 }
2367 else
2368 lose = 1;
2369
2370 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2371 {
2372 ptr += 5;
2373 while (*ptr && *ptr != ';')
2374 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2375
2376 if (bss_addr != data_addr)
2377 warning (_("Target reported unsupported offsets: %s"), buf);
2378 }
2379 else
2380 lose = 1;
2381 }
2382 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2383 {
2384 ptr += 8;
2385 /* Don't use strtol, could lose on big values. */
2386 while (*ptr && *ptr != ';')
2387 text_addr = (text_addr << 4) + fromhex (*ptr++);
2388 num_segments = 1;
2389
2390 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2391 {
2392 ptr += 9;
2393 while (*ptr && *ptr != ';')
2394 data_addr = (data_addr << 4) + fromhex (*ptr++);
2395 num_segments++;
2396 }
2397 }
2398 else
2399 lose = 1;
2400
2401 if (lose)
2402 error (_("Malformed response to offset query, %s"), buf);
2403 else if (*ptr != '\0')
2404 warning (_("Target reported unsupported offsets: %s"), buf);
2405
2406 offs = ((struct section_offsets *)
2407 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2408 memcpy (offs, symfile_objfile->section_offsets,
2409 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2410
2411 data = get_symfile_segment_data (symfile_objfile->obfd);
2412 do_segments = (data != NULL);
2413 do_sections = num_segments == 0;
2414
2415 if (num_segments > 0)
2416 {
2417 segments[0] = text_addr;
2418 segments[1] = data_addr;
2419 }
2420 /* If we have two segments, we can still try to relocate everything
2421 by assuming that the .text and .data offsets apply to the whole
2422 text and data segments. Convert the offsets given in the packet
2423 to base addresses for symfile_map_offsets_to_segments. */
2424 else if (data && data->num_segments == 2)
2425 {
2426 segments[0] = data->segment_bases[0] + text_addr;
2427 segments[1] = data->segment_bases[1] + data_addr;
2428 num_segments = 2;
2429 }
2430 /* If the object file has only one segment, assume that it is text
2431 rather than data; main programs with no writable data are rare,
2432 but programs with no code are useless. Of course the code might
2433 have ended up in the data segment... to detect that we would need
2434 the permissions here. */
2435 else if (data && data->num_segments == 1)
2436 {
2437 segments[0] = data->segment_bases[0] + text_addr;
2438 num_segments = 1;
2439 }
2440 /* There's no way to relocate by segment. */
2441 else
2442 do_segments = 0;
2443
2444 if (do_segments)
2445 {
2446 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2447 offs, num_segments, segments);
2448
2449 if (ret == 0 && !do_sections)
2450 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2451
2452 if (ret > 0)
2453 do_sections = 0;
2454 }
2455
2456 if (data)
2457 free_symfile_segment_data (data);
2458
2459 if (do_sections)
2460 {
2461 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2462
2463 /* This is a temporary kludge to force data and bss to use the same offsets
2464 because that's what nlmconv does now. The real solution requires changes
2465 to the stub and remote.c that I don't have time to do right now. */
2466
2467 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2468 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2469 }
2470
2471 objfile_relocate (symfile_objfile, offs);
2472 }
2473
2474 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
2475 threads we know are stopped already. This is used during the
2476 initial remote connection in non-stop mode --- threads that are
2477 reported as already being stopped are left stopped. */
2478
2479 static int
2480 set_stop_requested_callback (struct thread_info *thread, void *data)
2481 {
2482 /* If we have a stop reply for this thread, it must be stopped. */
2483 if (peek_stop_reply (thread->ptid))
2484 set_stop_requested (thread->ptid, 1);
2485
2486 return 0;
2487 }
2488
2489 /* Stub for catch_exception. */
2490
2491 struct start_remote_args
2492 {
2493 int from_tty;
2494
2495 /* The current target. */
2496 struct target_ops *target;
2497
2498 /* Non-zero if this is an extended-remote target. */
2499 int extended_p;
2500 };
2501
2502 static void
2503 remote_start_remote (struct ui_out *uiout, void *opaque)
2504 {
2505 struct start_remote_args *args = opaque;
2506 struct remote_state *rs = get_remote_state ();
2507 struct packet_config *noack_config;
2508 char *wait_status = NULL;
2509
2510 immediate_quit++; /* Allow user to interrupt it. */
2511
2512 /* Ack any packet which the remote side has already sent. */
2513 serial_write (remote_desc, "+", 1);
2514
2515 /* The first packet we send to the target is the optional "supported
2516 packets" request. If the target can answer this, it will tell us
2517 which later probes to skip. */
2518 remote_query_supported ();
2519
2520 /* Next, we possibly activate noack mode.
2521
2522 If the QStartNoAckMode packet configuration is set to AUTO,
2523 enable noack mode if the stub reported a wish for it with
2524 qSupported.
2525
2526 If set to TRUE, then enable noack mode even if the stub didn't
2527 report it in qSupported. If the stub doesn't reply OK, the
2528 session ends with an error.
2529
2530 If FALSE, then don't activate noack mode, regardless of what the
2531 stub claimed should be the default with qSupported. */
2532
2533 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
2534
2535 if (noack_config->detect == AUTO_BOOLEAN_TRUE
2536 || (noack_config->detect == AUTO_BOOLEAN_AUTO
2537 && noack_config->support == PACKET_ENABLE))
2538 {
2539 putpkt ("QStartNoAckMode");
2540 getpkt (&rs->buf, &rs->buf_size, 0);
2541 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
2542 rs->noack_mode = 1;
2543 }
2544
2545 if (args->extended_p)
2546 {
2547 /* Tell the remote that we are using the extended protocol. */
2548 putpkt ("!");
2549 getpkt (&rs->buf, &rs->buf_size, 0);
2550 }
2551
2552 /* On OSs where the list of libraries is global to all
2553 processes, we fetch them early. */
2554 if (gdbarch_has_global_solist (target_gdbarch))
2555 solib_add (NULL, args->from_tty, args->target, auto_solib_add);
2556
2557 /* Next, if the target can specify a description, read it. We do
2558 this before anything involving memory or registers. */
2559 target_find_description ();
2560
2561 if (non_stop)
2562 {
2563 if (!rs->non_stop_aware)
2564 error (_("Non-stop mode requested, but remote does not support non-stop"));
2565
2566 putpkt ("QNonStop:1");
2567 getpkt (&rs->buf, &rs->buf_size, 0);
2568
2569 if (strcmp (rs->buf, "OK") != 0)
2570 error ("Remote refused setting non-stop mode with: %s", rs->buf);
2571
2572 /* Find about threads and processes the stub is already
2573 controlling. We default to adding them in the running state.
2574 The '?' query below will then tell us about which threads are
2575 stopped. */
2576
2577 /* If we're not using the multi-process extensions, there's no
2578 way to know the pid of the reported threads; use the magic
2579 number. */
2580 if (!remote_multi_process_p (rs))
2581 inferior_ptid = magic_null_ptid;
2582
2583 remote_threads_info ();
2584 }
2585 else if (rs->non_stop_aware)
2586 {
2587 /* Don't assume that the stub can operate in all-stop mode.
2588 Request it explicitely. */
2589 putpkt ("QNonStop:0");
2590 getpkt (&rs->buf, &rs->buf_size, 0);
2591
2592 if (strcmp (rs->buf, "OK") != 0)
2593 error ("Remote refused setting all-stop mode with: %s", rs->buf);
2594 }
2595
2596 /* Check whether the target is running now. */
2597 putpkt ("?");
2598 getpkt (&rs->buf, &rs->buf_size, 0);
2599
2600 if (!non_stop)
2601 {
2602 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
2603 {
2604 if (args->extended_p)
2605 {
2606 /* We're connected, but not running. Drop out before we
2607 call start_remote. */
2608 target_mark_exited (args->target);
2609 return;
2610 }
2611 else
2612 error (_("The target is not running (try extended-remote?)"));
2613 }
2614 else
2615 {
2616 if (args->extended_p)
2617 target_mark_running (args->target);
2618
2619 /* Save the reply for later. */
2620 wait_status = alloca (strlen (rs->buf) + 1);
2621 strcpy (wait_status, rs->buf);
2622 }
2623
2624 /* Let the stub know that we want it to return the thread. */
2625 set_continue_thread (minus_one_ptid);
2626
2627 /* Without this, some commands which require an active target
2628 (such as kill) won't work. This variable serves (at least)
2629 double duty as both the pid of the target process (if it has
2630 such), and as a flag indicating that a target is active.
2631 These functions should be split out into seperate variables,
2632 especially since GDB will someday have a notion of debugging
2633 several processes. */
2634 inferior_ptid = magic_null_ptid;
2635
2636 /* Now, if we have thread information, update inferior_ptid. */
2637 inferior_ptid = remote_current_thread (inferior_ptid);
2638
2639 add_inferior (ptid_get_pid (inferior_ptid));
2640
2641 /* Always add the main thread. */
2642 add_thread_silent (inferior_ptid);
2643
2644 get_offsets (); /* Get text, data & bss offsets. */
2645
2646 /* Use the previously fetched status. */
2647 gdb_assert (wait_status != NULL);
2648 strcpy (rs->buf, wait_status);
2649 rs->cached_wait_status = 1;
2650
2651 immediate_quit--;
2652 start_remote (args->from_tty); /* Initialize gdb process mechanisms. */
2653 }
2654 else
2655 {
2656 /* In non-stop, we will either get an "OK", meaning that there
2657 are no stopped threads at this time; or, a regular stop
2658 reply. In the latter case, there may be more than one thread
2659 stopped --- we pull them all out using the vStopped
2660 mechanism. */
2661 if (strcmp (rs->buf, "OK") != 0)
2662 {
2663 struct stop_reply *stop_reply;
2664 struct cleanup *old_chain;
2665
2666 stop_reply = stop_reply_xmalloc ();
2667 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
2668
2669 remote_parse_stop_reply (rs->buf, stop_reply);
2670 discard_cleanups (old_chain);
2671
2672 /* get_pending_stop_replies acks this one, and gets the rest
2673 out. */
2674 pending_stop_reply = stop_reply;
2675 remote_get_pending_stop_replies ();
2676
2677 /* Make sure that threads that were stopped remain
2678 stopped. */
2679 iterate_over_threads (set_stop_requested_callback, NULL);
2680 }
2681
2682 if (target_can_async_p ())
2683 target_async (inferior_event_handler, 0);
2684
2685 if (thread_count () == 0)
2686 {
2687 if (args->extended_p)
2688 {
2689 /* We're connected, but not running. Drop out before we
2690 call start_remote. */
2691 target_mark_exited (args->target);
2692 return;
2693 }
2694 else
2695 error (_("The target is not running (try extended-remote?)"));
2696 }
2697
2698 if (args->extended_p)
2699 target_mark_running (args->target);
2700
2701 /* Let the stub know that we want it to return the thread. */
2702
2703 /* Force the stub to choose a thread. */
2704 set_general_thread (null_ptid);
2705
2706 /* Query it. */
2707 inferior_ptid = remote_current_thread (minus_one_ptid);
2708 if (ptid_equal (inferior_ptid, minus_one_ptid))
2709 error (_("remote didn't report the current thread in non-stop mode"));
2710
2711 get_offsets (); /* Get text, data & bss offsets. */
2712
2713 /* In non-stop mode, any cached wait status will be stored in
2714 the stop reply queue. */
2715 gdb_assert (wait_status == NULL);
2716 }
2717
2718 /* If we connected to a live target, do some additional setup. */
2719 if (target_has_execution)
2720 {
2721 if (exec_bfd) /* No use without an exec file. */
2722 remote_check_symbols (symfile_objfile);
2723 }
2724
2725 /* If code is shared between processes, then breakpoints are global
2726 too; Insert them now. */
2727 if (gdbarch_has_global_solist (target_gdbarch)
2728 && breakpoints_always_inserted_mode ())
2729 insert_breakpoints ();
2730 }
2731
2732 /* Open a connection to a remote debugger.
2733 NAME is the filename used for communication. */
2734
2735 static void
2736 remote_open (char *name, int from_tty)
2737 {
2738 remote_open_1 (name, from_tty, &remote_ops, 0);
2739 }
2740
2741 /* Open a connection to a remote debugger using the extended
2742 remote gdb protocol. NAME is the filename used for communication. */
2743
2744 static void
2745 extended_remote_open (char *name, int from_tty)
2746 {
2747 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
2748 }
2749
2750 /* Generic code for opening a connection to a remote target. */
2751
2752 static void
2753 init_all_packet_configs (void)
2754 {
2755 int i;
2756 for (i = 0; i < PACKET_MAX; i++)
2757 update_packet_config (&remote_protocol_packets[i]);
2758 }
2759
2760 /* Symbol look-up. */
2761
2762 static void
2763 remote_check_symbols (struct objfile *objfile)
2764 {
2765 struct remote_state *rs = get_remote_state ();
2766 char *msg, *reply, *tmp;
2767 struct minimal_symbol *sym;
2768 int end;
2769
2770 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2771 return;
2772
2773 /* Make sure the remote is pointing at the right process. */
2774 set_general_process ();
2775
2776 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2777 because we need both at the same time. */
2778 msg = alloca (get_remote_packet_size ());
2779
2780 /* Invite target to request symbol lookups. */
2781
2782 putpkt ("qSymbol::");
2783 getpkt (&rs->buf, &rs->buf_size, 0);
2784 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2785 reply = rs->buf;
2786
2787 while (strncmp (reply, "qSymbol:", 8) == 0)
2788 {
2789 tmp = &reply[8];
2790 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2791 msg[end] = '\0';
2792 sym = lookup_minimal_symbol (msg, NULL, NULL);
2793 if (sym == NULL)
2794 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2795 else
2796 {
2797 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
2798
2799 /* If this is a function address, return the start of code
2800 instead of any data function descriptor. */
2801 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2802 sym_addr,
2803 &current_target);
2804
2805 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2806 paddr_nz (sym_addr), &reply[8]);
2807 }
2808
2809 putpkt (msg);
2810 getpkt (&rs->buf, &rs->buf_size, 0);
2811 reply = rs->buf;
2812 }
2813 }
2814
2815 static struct serial *
2816 remote_serial_open (char *name)
2817 {
2818 static int udp_warning = 0;
2819
2820 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2821 of in ser-tcp.c, because it is the remote protocol assuming that the
2822 serial connection is reliable and not the serial connection promising
2823 to be. */
2824 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2825 {
2826 warning (_("\
2827 The remote protocol may be unreliable over UDP.\n\
2828 Some events may be lost, rendering further debugging impossible."));
2829 udp_warning = 1;
2830 }
2831
2832 return serial_open (name);
2833 }
2834
2835 /* This type describes each known response to the qSupported
2836 packet. */
2837 struct protocol_feature
2838 {
2839 /* The name of this protocol feature. */
2840 const char *name;
2841
2842 /* The default for this protocol feature. */
2843 enum packet_support default_support;
2844
2845 /* The function to call when this feature is reported, or after
2846 qSupported processing if the feature is not supported.
2847 The first argument points to this structure. The second
2848 argument indicates whether the packet requested support be
2849 enabled, disabled, or probed (or the default, if this function
2850 is being called at the end of processing and this feature was
2851 not reported). The third argument may be NULL; if not NULL, it
2852 is a NUL-terminated string taken from the packet following
2853 this feature's name and an equals sign. */
2854 void (*func) (const struct protocol_feature *, enum packet_support,
2855 const char *);
2856
2857 /* The corresponding packet for this feature. Only used if
2858 FUNC is remote_supported_packet. */
2859 int packet;
2860 };
2861
2862 static void
2863 remote_supported_packet (const struct protocol_feature *feature,
2864 enum packet_support support,
2865 const char *argument)
2866 {
2867 if (argument)
2868 {
2869 warning (_("Remote qSupported response supplied an unexpected value for"
2870 " \"%s\"."), feature->name);
2871 return;
2872 }
2873
2874 if (remote_protocol_packets[feature->packet].support
2875 == PACKET_SUPPORT_UNKNOWN)
2876 remote_protocol_packets[feature->packet].support = support;
2877 }
2878
2879 static void
2880 remote_packet_size (const struct protocol_feature *feature,
2881 enum packet_support support, const char *value)
2882 {
2883 struct remote_state *rs = get_remote_state ();
2884
2885 int packet_size;
2886 char *value_end;
2887
2888 if (support != PACKET_ENABLE)
2889 return;
2890
2891 if (value == NULL || *value == '\0')
2892 {
2893 warning (_("Remote target reported \"%s\" without a size."),
2894 feature->name);
2895 return;
2896 }
2897
2898 errno = 0;
2899 packet_size = strtol (value, &value_end, 16);
2900 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2901 {
2902 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2903 feature->name, value);
2904 return;
2905 }
2906
2907 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2908 {
2909 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2910 packet_size, MAX_REMOTE_PACKET_SIZE);
2911 packet_size = MAX_REMOTE_PACKET_SIZE;
2912 }
2913
2914 /* Record the new maximum packet size. */
2915 rs->explicit_packet_size = packet_size;
2916 }
2917
2918 static void
2919 remote_multi_process_feature (const struct protocol_feature *feature,
2920 enum packet_support support, const char *value)
2921 {
2922 struct remote_state *rs = get_remote_state ();
2923 rs->multi_process_aware = (support == PACKET_ENABLE);
2924 }
2925
2926 static void
2927 remote_non_stop_feature (const struct protocol_feature *feature,
2928 enum packet_support support, const char *value)
2929 {
2930 struct remote_state *rs = get_remote_state ();
2931 rs->non_stop_aware = (support == PACKET_ENABLE);
2932 }
2933
2934 static struct protocol_feature remote_protocol_features[] = {
2935 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2936 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2937 PACKET_qXfer_auxv },
2938 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
2939 PACKET_qXfer_features },
2940 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
2941 PACKET_qXfer_libraries },
2942 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2943 PACKET_qXfer_memory_map },
2944 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
2945 PACKET_qXfer_spu_read },
2946 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
2947 PACKET_qXfer_spu_write },
2948 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2949 PACKET_QPassSignals },
2950 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
2951 PACKET_QStartNoAckMode },
2952 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
2953 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
2954 };
2955
2956 static void
2957 remote_query_supported (void)
2958 {
2959 struct remote_state *rs = get_remote_state ();
2960 char *next;
2961 int i;
2962 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2963
2964 /* The packet support flags are handled differently for this packet
2965 than for most others. We treat an error, a disabled packet, and
2966 an empty response identically: any features which must be reported
2967 to be used will be automatically disabled. An empty buffer
2968 accomplishes this, since that is also the representation for a list
2969 containing no features. */
2970
2971 rs->buf[0] = 0;
2972 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2973 {
2974 if (rs->extended)
2975 putpkt ("qSupported:multiprocess+");
2976 else
2977 putpkt ("qSupported");
2978
2979 getpkt (&rs->buf, &rs->buf_size, 0);
2980
2981 /* If an error occured, warn, but do not return - just reset the
2982 buffer to empty and go on to disable features. */
2983 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2984 == PACKET_ERROR)
2985 {
2986 warning (_("Remote failure reply: %s"), rs->buf);
2987 rs->buf[0] = 0;
2988 }
2989 }
2990
2991 memset (seen, 0, sizeof (seen));
2992
2993 next = rs->buf;
2994 while (*next)
2995 {
2996 enum packet_support is_supported;
2997 char *p, *end, *name_end, *value;
2998
2999 /* First separate out this item from the rest of the packet. If
3000 there's another item after this, we overwrite the separator
3001 (terminated strings are much easier to work with). */
3002 p = next;
3003 end = strchr (p, ';');
3004 if (end == NULL)
3005 {
3006 end = p + strlen (p);
3007 next = end;
3008 }
3009 else
3010 {
3011 *end = '\0';
3012 next = end + 1;
3013
3014 if (end == p)
3015 {
3016 warning (_("empty item in \"qSupported\" response"));
3017 continue;
3018 }
3019 }
3020
3021 name_end = strchr (p, '=');
3022 if (name_end)
3023 {
3024 /* This is a name=value entry. */
3025 is_supported = PACKET_ENABLE;
3026 value = name_end + 1;
3027 *name_end = '\0';
3028 }
3029 else
3030 {
3031 value = NULL;
3032 switch (end[-1])
3033 {
3034 case '+':
3035 is_supported = PACKET_ENABLE;
3036 break;
3037
3038 case '-':
3039 is_supported = PACKET_DISABLE;
3040 break;
3041
3042 case '?':
3043 is_supported = PACKET_SUPPORT_UNKNOWN;
3044 break;
3045
3046 default:
3047 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
3048 continue;
3049 }
3050 end[-1] = '\0';
3051 }
3052
3053 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3054 if (strcmp (remote_protocol_features[i].name, p) == 0)
3055 {
3056 const struct protocol_feature *feature;
3057
3058 seen[i] = 1;
3059 feature = &remote_protocol_features[i];
3060 feature->func (feature, is_supported, value);
3061 break;
3062 }
3063 }
3064
3065 /* If we increased the packet size, make sure to increase the global
3066 buffer size also. We delay this until after parsing the entire
3067 qSupported packet, because this is the same buffer we were
3068 parsing. */
3069 if (rs->buf_size < rs->explicit_packet_size)
3070 {
3071 rs->buf_size = rs->explicit_packet_size;
3072 rs->buf = xrealloc (rs->buf, rs->buf_size);
3073 }
3074
3075 /* Handle the defaults for unmentioned features. */
3076 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3077 if (!seen[i])
3078 {
3079 const struct protocol_feature *feature;
3080
3081 feature = &remote_protocol_features[i];
3082 feature->func (feature, feature->default_support, NULL);
3083 }
3084 }
3085
3086
3087 static void
3088 remote_open_1 (char *name, int from_tty, struct target_ops *target, int extended_p)
3089 {
3090 struct remote_state *rs = get_remote_state ();
3091
3092 if (name == 0)
3093 error (_("To open a remote debug connection, you need to specify what\n"
3094 "serial device is attached to the remote system\n"
3095 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
3096
3097 /* See FIXME above. */
3098 if (!target_async_permitted)
3099 wait_forever_enabled_p = 1;
3100
3101 /* If we're connected to a running target, target_preopen will kill it.
3102 But if we're connected to a target system with no running process,
3103 then we will still be connected when it returns. Ask this question
3104 first, before target_preopen has a chance to kill anything. */
3105 if (remote_desc != NULL && !target_has_execution)
3106 {
3107 if (!from_tty
3108 || query (_("Already connected to a remote target. Disconnect? ")))
3109 pop_target ();
3110 else
3111 error (_("Still connected."));
3112 }
3113
3114 target_preopen (from_tty);
3115
3116 unpush_target (target);
3117
3118 /* This time without a query. If we were connected to an
3119 extended-remote target and target_preopen killed the running
3120 process, we may still be connected. If we are starting "target
3121 remote" now, the extended-remote target will not have been
3122 removed by unpush_target. */
3123 if (remote_desc != NULL && !target_has_execution)
3124 pop_target ();
3125
3126 /* Make sure we send the passed signals list the next time we resume. */
3127 xfree (last_pass_packet);
3128 last_pass_packet = NULL;
3129
3130 remote_fileio_reset ();
3131 reopen_exec_file ();
3132 reread_symbols ();
3133
3134 remote_desc = remote_serial_open (name);
3135 if (!remote_desc)
3136 perror_with_name (name);
3137
3138 if (baud_rate != -1)
3139 {
3140 if (serial_setbaudrate (remote_desc, baud_rate))
3141 {
3142 /* The requested speed could not be set. Error out to
3143 top level after closing remote_desc. Take care to
3144 set remote_desc to NULL to avoid closing remote_desc
3145 more than once. */
3146 serial_close (remote_desc);
3147 remote_desc = NULL;
3148 perror_with_name (name);
3149 }
3150 }
3151
3152 serial_raw (remote_desc);
3153
3154 /* If there is something sitting in the buffer we might take it as a
3155 response to a command, which would be bad. */
3156 serial_flush_input (remote_desc);
3157
3158 if (from_tty)
3159 {
3160 puts_filtered ("Remote debugging using ");
3161 puts_filtered (name);
3162 puts_filtered ("\n");
3163 }
3164 push_target (target); /* Switch to using remote target now. */
3165
3166 /* Assume that the target is running, unless we learn otherwise. */
3167 target_mark_running (target);
3168
3169 /* Register extra event sources in the event loop. */
3170 remote_async_inferior_event_token
3171 = create_async_event_handler (remote_async_inferior_event_handler,
3172 NULL);
3173 remote_async_get_pending_events_token
3174 = create_async_event_handler (remote_async_get_pending_events_handler,
3175 NULL);
3176
3177 /* Reset the target state; these things will be queried either by
3178 remote_query_supported or as they are needed. */
3179 init_all_packet_configs ();
3180 rs->cached_wait_status = 0;
3181 rs->explicit_packet_size = 0;
3182 rs->noack_mode = 0;
3183 rs->multi_process_aware = 0;
3184 rs->extended = extended_p;
3185 rs->non_stop_aware = 0;
3186 rs->waiting_for_stop_reply = 0;
3187
3188 general_thread = not_sent_ptid;
3189 continue_thread = not_sent_ptid;
3190
3191 /* Probe for ability to use "ThreadInfo" query, as required. */
3192 use_threadinfo_query = 1;
3193 use_threadextra_query = 1;
3194
3195 if (target_async_permitted)
3196 {
3197 /* With this target we start out by owning the terminal. */
3198 remote_async_terminal_ours_p = 1;
3199
3200 /* FIXME: cagney/1999-09-23: During the initial connection it is
3201 assumed that the target is already ready and able to respond to
3202 requests. Unfortunately remote_start_remote() eventually calls
3203 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
3204 around this. Eventually a mechanism that allows
3205 wait_for_inferior() to expect/get timeouts will be
3206 implemented. */
3207 wait_forever_enabled_p = 0;
3208 }
3209
3210 /* First delete any symbols previously loaded from shared libraries. */
3211 no_shared_libraries (NULL, 0);
3212
3213 /* Start afresh. */
3214 init_thread_list ();
3215
3216 /* Start the remote connection. If error() or QUIT, discard this
3217 target (we'd otherwise be in an inconsistent state) and then
3218 propogate the error on up the exception chain. This ensures that
3219 the caller doesn't stumble along blindly assuming that the
3220 function succeeded. The CLI doesn't have this problem but other
3221 UI's, such as MI do.
3222
3223 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
3224 this function should return an error indication letting the
3225 caller restore the previous state. Unfortunately the command
3226 ``target remote'' is directly wired to this function making that
3227 impossible. On a positive note, the CLI side of this problem has
3228 been fixed - the function set_cmd_context() makes it possible for
3229 all the ``target ....'' commands to share a common callback
3230 function. See cli-dump.c. */
3231 {
3232 struct gdb_exception ex;
3233 struct start_remote_args args;
3234
3235 args.from_tty = from_tty;
3236 args.target = target;
3237 args.extended_p = extended_p;
3238
3239 ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
3240 if (ex.reason < 0)
3241 {
3242 /* Pop the partially set up target - unless something else did
3243 already before throwing the exception. */
3244 if (remote_desc != NULL)
3245 pop_target ();
3246 if (target_async_permitted)
3247 wait_forever_enabled_p = 1;
3248 throw_exception (ex);
3249 }
3250 }
3251
3252 if (target_async_permitted)
3253 wait_forever_enabled_p = 1;
3254 }
3255
3256 /* This takes a program previously attached to and detaches it. After
3257 this is done, GDB can be used to debug some other program. We
3258 better not have left any breakpoints in the target program or it'll
3259 die when it hits one. */
3260
3261 static void
3262 remote_detach_1 (char *args, int from_tty, int extended)
3263 {
3264 int pid = ptid_get_pid (inferior_ptid);
3265 struct remote_state *rs = get_remote_state ();
3266
3267 if (args)
3268 error (_("Argument given to \"detach\" when remotely debugging."));
3269
3270 if (!target_has_execution)
3271 error (_("No process to detach from."));
3272
3273 /* Tell the remote target to detach. */
3274 if (remote_multi_process_p (rs))
3275 sprintf (rs->buf, "D;%x", pid);
3276 else
3277 strcpy (rs->buf, "D");
3278
3279 putpkt (rs->buf);
3280 getpkt (&rs->buf, &rs->buf_size, 0);
3281
3282 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
3283 ;
3284 else if (rs->buf[0] == '\0')
3285 error (_("Remote doesn't know how to detach"));
3286 else
3287 error (_("Can't detach process."));
3288
3289 if (from_tty)
3290 {
3291 if (remote_multi_process_p (rs))
3292 printf_filtered (_("Detached from remote %s.\n"),
3293 target_pid_to_str (pid_to_ptid (pid)));
3294 else
3295 {
3296 if (extended)
3297 puts_filtered (_("Detached from remote process.\n"));
3298 else
3299 puts_filtered (_("Ending remote debugging.\n"));
3300 }
3301 }
3302
3303 discard_pending_stop_replies (pid);
3304 detach_inferior (pid);
3305 target_mourn_inferior ();
3306 }
3307
3308 static void
3309 remote_detach (struct target_ops *ops, char *args, int from_tty)
3310 {
3311 remote_detach_1 (args, from_tty, 0);
3312 }
3313
3314 static void
3315 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
3316 {
3317 remote_detach_1 (args, from_tty, 1);
3318 }
3319
3320 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
3321
3322 static void
3323 remote_disconnect (struct target_ops *target, char *args, int from_tty)
3324 {
3325 if (args)
3326 error (_("Argument given to \"disconnect\" when remotely debugging."));
3327
3328 /* Make sure we unpush even the extended remote targets; mourn
3329 won't do it. So call remote_mourn_1 directly instead of
3330 target_mourn_inferior. */
3331 remote_mourn_1 (target);
3332
3333 if (from_tty)
3334 puts_filtered ("Ending remote debugging.\n");
3335 }
3336
3337 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
3338 be chatty about it. */
3339
3340 static void
3341 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
3342 {
3343 struct remote_state *rs = get_remote_state ();
3344 int pid;
3345 char *dummy;
3346 char *wait_status = NULL;
3347 struct inferior *inf;
3348
3349 if (!args)
3350 error_no_arg (_("process-id to attach"));
3351
3352 dummy = args;
3353 pid = strtol (args, &dummy, 0);
3354 /* Some targets don't set errno on errors, grrr! */
3355 if (pid == 0 && args == dummy)
3356 error (_("Illegal process-id: %s."), args);
3357
3358 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3359 error (_("This target does not support attaching to a process"));
3360
3361 sprintf (rs->buf, "vAttach;%x", pid);
3362 putpkt (rs->buf);
3363 getpkt (&rs->buf, &rs->buf_size, 0);
3364
3365 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
3366 {
3367 if (from_tty)
3368 printf_unfiltered (_("Attached to %s\n"),
3369 target_pid_to_str (pid_to_ptid (pid)));
3370
3371 if (!non_stop)
3372 {
3373 /* Save the reply for later. */
3374 wait_status = alloca (strlen (rs->buf) + 1);
3375 strcpy (wait_status, rs->buf);
3376 }
3377 else if (strcmp (rs->buf, "OK") != 0)
3378 error (_("Attaching to %s failed with: %s"),
3379 target_pid_to_str (pid_to_ptid (pid)),
3380 rs->buf);
3381 }
3382 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3383 error (_("This target does not support attaching to a process"));
3384 else
3385 error (_("Attaching to %s failed"),
3386 target_pid_to_str (pid_to_ptid (pid)));
3387
3388 target_mark_running (target);
3389 inferior_ptid = pid_to_ptid (pid);
3390
3391 /* Now, if we have thread information, update inferior_ptid. */
3392 inferior_ptid = remote_current_thread (inferior_ptid);
3393
3394 inf = add_inferior (pid);
3395 inf->attach_flag = 1;
3396
3397 if (non_stop)
3398 /* Get list of threads. */
3399 remote_threads_info ();
3400 else
3401 /* Add the main thread to the thread list. */
3402 add_thread_silent (inferior_ptid);
3403
3404 /* Next, if the target can specify a description, read it. We do
3405 this before anything involving memory or registers. */
3406 target_find_description ();
3407
3408 if (!non_stop)
3409 {
3410 /* Use the previously fetched status. */
3411 gdb_assert (wait_status != NULL);
3412
3413 if (target_can_async_p ())
3414 {
3415 struct stop_reply *stop_reply;
3416 struct cleanup *old_chain;
3417
3418 stop_reply = stop_reply_xmalloc ();
3419 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3420 remote_parse_stop_reply (wait_status, stop_reply);
3421 discard_cleanups (old_chain);
3422 push_stop_reply (stop_reply);
3423
3424 target_async (inferior_event_handler, 0);
3425 }
3426 else
3427 {
3428 gdb_assert (wait_status != NULL);
3429 strcpy (rs->buf, wait_status);
3430 rs->cached_wait_status = 1;
3431 }
3432 }
3433 else
3434 gdb_assert (wait_status == NULL);
3435 }
3436
3437 static void
3438 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
3439 {
3440 extended_remote_attach_1 (ops, args, from_tty);
3441 }
3442
3443 /* Convert hex digit A to a number. */
3444
3445 static int
3446 fromhex (int a)
3447 {
3448 if (a >= '0' && a <= '9')
3449 return a - '0';
3450 else if (a >= 'a' && a <= 'f')
3451 return a - 'a' + 10;
3452 else if (a >= 'A' && a <= 'F')
3453 return a - 'A' + 10;
3454 else
3455 error (_("Reply contains invalid hex digit %d"), a);
3456 }
3457
3458 static int
3459 hex2bin (const char *hex, gdb_byte *bin, int count)
3460 {
3461 int i;
3462
3463 for (i = 0; i < count; i++)
3464 {
3465 if (hex[0] == 0 || hex[1] == 0)
3466 {
3467 /* Hex string is short, or of uneven length.
3468 Return the count that has been converted so far. */
3469 return i;
3470 }
3471 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
3472 hex += 2;
3473 }
3474 return i;
3475 }
3476
3477 /* Convert number NIB to a hex digit. */
3478
3479 static int
3480 tohex (int nib)
3481 {
3482 if (nib < 10)
3483 return '0' + nib;
3484 else
3485 return 'a' + nib - 10;
3486 }
3487
3488 static int
3489 bin2hex (const gdb_byte *bin, char *hex, int count)
3490 {
3491 int i;
3492 /* May use a length, or a nul-terminated string as input. */
3493 if (count == 0)
3494 count = strlen ((char *) bin);
3495
3496 for (i = 0; i < count; i++)
3497 {
3498 *hex++ = tohex ((*bin >> 4) & 0xf);
3499 *hex++ = tohex (*bin++ & 0xf);
3500 }
3501 *hex = 0;
3502 return i;
3503 }
3504 \f
3505 /* Check for the availability of vCont. This function should also check
3506 the response. */
3507
3508 static void
3509 remote_vcont_probe (struct remote_state *rs)
3510 {
3511 char *buf;
3512
3513 strcpy (rs->buf, "vCont?");
3514 putpkt (rs->buf);
3515 getpkt (&rs->buf, &rs->buf_size, 0);
3516 buf = rs->buf;
3517
3518 /* Make sure that the features we assume are supported. */
3519 if (strncmp (buf, "vCont", 5) == 0)
3520 {
3521 char *p = &buf[5];
3522 int support_s, support_S, support_c, support_C;
3523
3524 support_s = 0;
3525 support_S = 0;
3526 support_c = 0;
3527 support_C = 0;
3528 rs->support_vCont_t = 0;
3529 while (p && *p == ';')
3530 {
3531 p++;
3532 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
3533 support_s = 1;
3534 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
3535 support_S = 1;
3536 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
3537 support_c = 1;
3538 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
3539 support_C = 1;
3540 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
3541 rs->support_vCont_t = 1;
3542
3543 p = strchr (p, ';');
3544 }
3545
3546 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
3547 BUF will make packet_ok disable the packet. */
3548 if (!support_s || !support_S || !support_c || !support_C)
3549 buf[0] = 0;
3550 }
3551
3552 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
3553 }
3554
3555 /* Resume the remote inferior by using a "vCont" packet. The thread
3556 to be resumed is PTID; STEP and SIGGNAL indicate whether the
3557 resumed thread should be single-stepped and/or signalled. If PTID
3558 equals minus_one_ptid, then all threads are resumed; the thread to
3559 be stepped and/or signalled is given in the global INFERIOR_PTID.
3560 This function returns non-zero iff it resumes the inferior.
3561
3562 This function issues a strict subset of all possible vCont commands at the
3563 moment. */
3564
3565 static int
3566 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
3567 {
3568 struct remote_state *rs = get_remote_state ();
3569 char *p;
3570 char *endp;
3571
3572 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3573 remote_vcont_probe (rs);
3574
3575 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
3576 return 0;
3577
3578 p = rs->buf;
3579 endp = rs->buf + get_remote_packet_size ();
3580
3581 /* If we could generate a wider range of packets, we'd have to worry
3582 about overflowing BUF. Should there be a generic
3583 "multi-part-packet" packet? */
3584
3585 if (ptid_equal (ptid, magic_null_ptid))
3586 {
3587 /* MAGIC_NULL_PTID means that we don't have any active threads,
3588 so we don't have any TID numbers the inferior will
3589 understand. Make sure to only send forms that do not specify
3590 a TID. */
3591 if (step && siggnal != TARGET_SIGNAL_0)
3592 xsnprintf (p, endp - p, "vCont;S%02x", siggnal);
3593 else if (step)
3594 xsnprintf (p, endp - p, "vCont;s");
3595 else if (siggnal != TARGET_SIGNAL_0)
3596 xsnprintf (p, endp - p, "vCont;C%02x", siggnal);
3597 else
3598 xsnprintf (p, endp - p, "vCont;c");
3599 }
3600 else if (ptid_equal (ptid, minus_one_ptid))
3601 {
3602 /* Resume all threads, with preference for INFERIOR_PTID. */
3603 if (step && siggnal != TARGET_SIGNAL_0)
3604 {
3605 /* Step inferior_ptid with signal. */
3606 p += xsnprintf (p, endp - p, "vCont;S%02x:", siggnal);
3607 p = write_ptid (p, endp, inferior_ptid);
3608 /* And continue others. */
3609 p += xsnprintf (p, endp - p, ";c");
3610 }
3611 else if (step)
3612 {
3613 /* Step inferior_ptid. */
3614 p += xsnprintf (p, endp - p, "vCont;s:");
3615 p = write_ptid (p, endp, inferior_ptid);
3616 /* And continue others. */
3617 p += xsnprintf (p, endp - p, ";c");
3618 }
3619 else if (siggnal != TARGET_SIGNAL_0)
3620 {
3621 /* Continue inferior_ptid with signal. */
3622 p += xsnprintf (p, endp - p, "vCont;C%02x:", siggnal);
3623 p = write_ptid (p, endp, inferior_ptid);
3624 /* And continue others. */
3625 p += xsnprintf (p, endp - p, ";c");
3626 }
3627 else
3628 xsnprintf (p, endp - p, "vCont;c");
3629 }
3630 else
3631 {
3632 /* Scheduler locking; resume only PTID. */
3633 if (step && siggnal != TARGET_SIGNAL_0)
3634 {
3635 /* Step ptid with signal. */
3636 p += xsnprintf (p, endp - p, "vCont;S%02x:", siggnal);
3637 p = write_ptid (p, endp, ptid);
3638 }
3639 else if (step)
3640 {
3641 /* Step ptid. */
3642 p += xsnprintf (p, endp - p, "vCont;s:");
3643 p = write_ptid (p, endp, ptid);
3644 }
3645 else if (siggnal != TARGET_SIGNAL_0)
3646 {
3647 /* Continue ptid with signal. */
3648 p += xsnprintf (p, endp - p, "vCont;C%02x:", siggnal);
3649 p = write_ptid (p, endp, ptid);
3650 }
3651 else
3652 {
3653 /* Continue ptid. */
3654 p += xsnprintf (p, endp - p, "vCont;c:");
3655 p = write_ptid (p, endp, ptid);
3656 }
3657 }
3658
3659 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
3660 putpkt (rs->buf);
3661
3662 if (non_stop)
3663 {
3664 /* In non-stop, the stub replies to vCont with "OK". The stop
3665 reply will be reported asynchronously by means of a `%Stop'
3666 notification. */
3667 getpkt (&rs->buf, &rs->buf_size, 0);
3668 if (strcmp (rs->buf, "OK") != 0)
3669 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
3670 }
3671
3672 return 1;
3673 }
3674
3675 /* Tell the remote machine to resume. */
3676
3677 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
3678
3679 static int last_sent_step;
3680
3681 static void
3682 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
3683 {
3684 struct remote_state *rs = get_remote_state ();
3685 char *buf;
3686
3687 last_sent_signal = siggnal;
3688 last_sent_step = step;
3689
3690 /* Update the inferior on signals to silently pass, if they've changed. */
3691 remote_pass_signals ();
3692
3693 /* The vCont packet doesn't need to specify threads via Hc. */
3694 if (remote_vcont_resume (ptid, step, siggnal))
3695 goto done;
3696
3697 /* All other supported resume packets do use Hc, so set the continue
3698 thread. */
3699 if (ptid_equal (ptid, minus_one_ptid))
3700 set_continue_thread (any_thread_ptid);
3701 else
3702 set_continue_thread (ptid);
3703
3704 buf = rs->buf;
3705 if (execution_direction == EXEC_REVERSE)
3706 {
3707 /* We don't pass signals to the target in reverse exec mode. */
3708 if (info_verbose && siggnal != TARGET_SIGNAL_0)
3709 warning (" - Can't pass signal %d to target in reverse: ignored.\n",
3710 siggnal);
3711 strcpy (buf, step ? "bs" : "bc");
3712 }
3713 else if (siggnal != TARGET_SIGNAL_0)
3714 {
3715 buf[0] = step ? 'S' : 'C';
3716 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
3717 buf[2] = tohex (((int) siggnal) & 0xf);
3718 buf[3] = '\0';
3719 }
3720 else
3721 strcpy (buf, step ? "s" : "c");
3722
3723 putpkt (buf);
3724
3725 done:
3726 /* We are about to start executing the inferior, let's register it
3727 with the event loop. NOTE: this is the one place where all the
3728 execution commands end up. We could alternatively do this in each
3729 of the execution commands in infcmd.c. */
3730 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
3731 into infcmd.c in order to allow inferior function calls to work
3732 NOT asynchronously. */
3733 if (target_can_async_p ())
3734 target_async (inferior_event_handler, 0);
3735
3736 /* We've just told the target to resume. The remote server will
3737 wait for the inferior to stop, and then send a stop reply. In
3738 the mean time, we can't start another command/query ourselves
3739 because the stub wouldn't be ready to process it. This applies
3740 only to the base all-stop protocol, however. In non-stop (which
3741 only supports vCont), the stub replies with an "OK", and is
3742 immediate able to process further serial input. */
3743 if (!non_stop)
3744 rs->waiting_for_stop_reply = 1;
3745 }
3746 \f
3747
3748 /* Set up the signal handler for SIGINT, while the target is
3749 executing, ovewriting the 'regular' SIGINT signal handler. */
3750 static void
3751 initialize_sigint_signal_handler (void)
3752 {
3753 signal (SIGINT, handle_remote_sigint);
3754 }
3755
3756 /* Signal handler for SIGINT, while the target is executing. */
3757 static void
3758 handle_remote_sigint (int sig)
3759 {
3760 signal (sig, handle_remote_sigint_twice);
3761 mark_async_signal_handler_wrapper (sigint_remote_token);
3762 }
3763
3764 /* Signal handler for SIGINT, installed after SIGINT has already been
3765 sent once. It will take effect the second time that the user sends
3766 a ^C. */
3767 static void
3768 handle_remote_sigint_twice (int sig)
3769 {
3770 signal (sig, handle_remote_sigint);
3771 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3772 }
3773
3774 /* Perform the real interruption of the target execution, in response
3775 to a ^C. */
3776 static void
3777 async_remote_interrupt (gdb_client_data arg)
3778 {
3779 if (remote_debug)
3780 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3781
3782 target_stop (inferior_ptid);
3783 }
3784
3785 /* Perform interrupt, if the first attempt did not succeed. Just give
3786 up on the target alltogether. */
3787 void
3788 async_remote_interrupt_twice (gdb_client_data arg)
3789 {
3790 if (remote_debug)
3791 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3792
3793 interrupt_query ();
3794 }
3795
3796 /* Reinstall the usual SIGINT handlers, after the target has
3797 stopped. */
3798 static void
3799 cleanup_sigint_signal_handler (void *dummy)
3800 {
3801 signal (SIGINT, handle_sigint);
3802 }
3803
3804 /* Send ^C to target to halt it. Target will respond, and send us a
3805 packet. */
3806 static void (*ofunc) (int);
3807
3808 /* The command line interface's stop routine. This function is installed
3809 as a signal handler for SIGINT. The first time a user requests a
3810 stop, we call remote_stop to send a break or ^C. If there is no
3811 response from the target (it didn't stop when the user requested it),
3812 we ask the user if he'd like to detach from the target. */
3813 static void
3814 remote_interrupt (int signo)
3815 {
3816 /* If this doesn't work, try more severe steps. */
3817 signal (signo, remote_interrupt_twice);
3818
3819 gdb_call_async_signal_handler (sigint_remote_token, 1);
3820 }
3821
3822 /* The user typed ^C twice. */
3823
3824 static void
3825 remote_interrupt_twice (int signo)
3826 {
3827 signal (signo, ofunc);
3828 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
3829 signal (signo, remote_interrupt);
3830 }
3831
3832 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
3833 thread, all threads of a remote process, or all threads of all
3834 processes. */
3835
3836 static void
3837 remote_stop_ns (ptid_t ptid)
3838 {
3839 struct remote_state *rs = get_remote_state ();
3840 char *p = rs->buf;
3841 char *endp = rs->buf + get_remote_packet_size ();
3842 struct stop_reply *reply, *next;
3843
3844 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3845 remote_vcont_probe (rs);
3846
3847 if (!rs->support_vCont_t)
3848 error (_("Remote server does not support stopping threads"));
3849
3850 if (ptid_equal (ptid, minus_one_ptid))
3851 p += xsnprintf (p, endp - p, "vCont;t");
3852 else
3853 {
3854 ptid_t nptid;
3855
3856 /* Step inferior_ptid. */
3857 p += xsnprintf (p, endp - p, "vCont;t:");
3858
3859 if (ptid_is_pid (ptid))
3860 /* All (-1) threads of process. */
3861 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
3862 else
3863 {
3864 /* Small optimization: if we already have a stop reply for
3865 this thread, no use in telling the stub we want this
3866 stopped. */
3867 if (peek_stop_reply (ptid))
3868 return;
3869
3870 nptid = ptid;
3871 }
3872
3873 p = write_ptid (p, endp, nptid);
3874 }
3875
3876 /* In non-stop, we get an immediate OK reply. The stop reply will
3877 come in asynchronously by notification. */
3878 putpkt (rs->buf);
3879 getpkt (&rs->buf, &rs->buf_size, 0);
3880 if (strcmp (rs->buf, "OK") != 0)
3881 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
3882 }
3883
3884 /* All-stop version of target_stop. Sends a break or a ^C to stop the
3885 remote target. It is undefined which thread of which process
3886 reports the stop. */
3887
3888 static void
3889 remote_stop_as (ptid_t ptid)
3890 {
3891 struct remote_state *rs = get_remote_state ();
3892
3893 /* If the inferior is stopped already, but the core didn't know
3894 about it yet, just ignore the request. The cached wait status
3895 will be collected in remote_wait. */
3896 if (rs->cached_wait_status)
3897 return;
3898
3899 /* Send a break or a ^C, depending on user preference. */
3900
3901 if (remote_break)
3902 serial_send_break (remote_desc);
3903 else
3904 serial_write (remote_desc, "\003", 1);
3905 }
3906
3907 /* This is the generic stop called via the target vector. When a target
3908 interrupt is requested, either by the command line or the GUI, we
3909 will eventually end up here. */
3910
3911 static void
3912 remote_stop (ptid_t ptid)
3913 {
3914 if (remote_debug)
3915 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
3916
3917 if (non_stop)
3918 remote_stop_ns (ptid);
3919 else
3920 remote_stop_as (ptid);
3921 }
3922
3923 /* Ask the user what to do when an interrupt is received. */
3924
3925 static void
3926 interrupt_query (void)
3927 {
3928 target_terminal_ours ();
3929
3930 if (target_can_async_p ())
3931 {
3932 signal (SIGINT, handle_sigint);
3933 deprecated_throw_reason (RETURN_QUIT);
3934 }
3935 else
3936 {
3937 if (query ("Interrupted while waiting for the program.\n\
3938 Give up (and stop debugging it)? "))
3939 {
3940 pop_target ();
3941 deprecated_throw_reason (RETURN_QUIT);
3942 }
3943 }
3944
3945 target_terminal_inferior ();
3946 }
3947
3948 /* Enable/disable target terminal ownership. Most targets can use
3949 terminal groups to control terminal ownership. Remote targets are
3950 different in that explicit transfer of ownership to/from GDB/target
3951 is required. */
3952
3953 static void
3954 remote_terminal_inferior (void)
3955 {
3956 if (!target_async_permitted)
3957 /* Nothing to do. */
3958 return;
3959
3960 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3961 sync_execution here. This function should only be called when
3962 GDB is resuming the inferior in the forground. A background
3963 resume (``run&'') should leave GDB in control of the terminal and
3964 consequently should not call this code. */
3965 if (!sync_execution)
3966 return;
3967 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3968 calls target_terminal_*() idenpotent. The event-loop GDB talking
3969 to an asynchronous target with a synchronous command calls this
3970 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3971 stops trying to transfer the terminal to the target when it
3972 shouldn't this guard can go away. */
3973 if (!remote_async_terminal_ours_p)
3974 return;
3975 delete_file_handler (input_fd);
3976 remote_async_terminal_ours_p = 0;
3977 initialize_sigint_signal_handler ();
3978 /* NOTE: At this point we could also register our selves as the
3979 recipient of all input. Any characters typed could then be
3980 passed on down to the target. */
3981 }
3982
3983 static void
3984 remote_terminal_ours (void)
3985 {
3986 if (!target_async_permitted)
3987 /* Nothing to do. */
3988 return;
3989
3990 /* See FIXME in remote_terminal_inferior. */
3991 if (!sync_execution)
3992 return;
3993 /* See FIXME in remote_terminal_inferior. */
3994 if (remote_async_terminal_ours_p)
3995 return;
3996 cleanup_sigint_signal_handler (NULL);
3997 add_file_handler (input_fd, stdin_event_handler, 0);
3998 remote_async_terminal_ours_p = 1;
3999 }
4000
4001 void
4002 remote_console_output (char *msg)
4003 {
4004 char *p;
4005
4006 for (p = msg; p[0] && p[1]; p += 2)
4007 {
4008 char tb[2];
4009 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
4010 tb[0] = c;
4011 tb[1] = 0;
4012 fputs_unfiltered (tb, gdb_stdtarg);
4013 }
4014 gdb_flush (gdb_stdtarg);
4015 }
4016
4017 typedef struct cached_reg
4018 {
4019 int num;
4020 gdb_byte data[MAX_REGISTER_SIZE];
4021 } cached_reg_t;
4022
4023 DEF_VEC_O(cached_reg_t);
4024
4025 struct stop_reply
4026 {
4027 struct stop_reply *next;
4028
4029 ptid_t ptid;
4030
4031 struct target_waitstatus ws;
4032
4033 VEC(cached_reg_t) *regcache;
4034
4035 int stopped_by_watchpoint_p;
4036 CORE_ADDR watch_data_address;
4037
4038 int solibs_changed;
4039 int replay_event;
4040 };
4041
4042 /* The list of already fetched and acknowledged stop events. */
4043 static struct stop_reply *stop_reply_queue;
4044
4045 static struct stop_reply *
4046 stop_reply_xmalloc (void)
4047 {
4048 struct stop_reply *r = XMALLOC (struct stop_reply);
4049 r->next = NULL;
4050 return r;
4051 }
4052
4053 static void
4054 stop_reply_xfree (struct stop_reply *r)
4055 {
4056 if (r != NULL)
4057 {
4058 VEC_free (cached_reg_t, r->regcache);
4059 xfree (r);
4060 }
4061 }
4062
4063 /* Discard all pending stop replies of inferior PID. If PID is -1,
4064 discard everything. */
4065
4066 static void
4067 discard_pending_stop_replies (int pid)
4068 {
4069 struct stop_reply *prev = NULL, *reply, *next;
4070
4071 /* Discard the in-flight notification. */
4072 if (pending_stop_reply != NULL
4073 && (pid == -1
4074 || ptid_get_pid (pending_stop_reply->ptid) == pid))
4075 {
4076 stop_reply_xfree (pending_stop_reply);
4077 pending_stop_reply = NULL;
4078 }
4079
4080 /* Discard the stop replies we have already pulled with
4081 vStopped. */
4082 for (reply = stop_reply_queue; reply; reply = next)
4083 {
4084 next = reply->next;
4085 if (pid == -1
4086 || ptid_get_pid (reply->ptid) == pid)
4087 {
4088 if (reply == stop_reply_queue)
4089 stop_reply_queue = reply->next;
4090 else
4091 prev->next = reply->next;
4092
4093 stop_reply_xfree (reply);
4094 }
4095 else
4096 prev = reply;
4097 }
4098 }
4099
4100 /* Cleanup wrapper. */
4101
4102 static void
4103 do_stop_reply_xfree (void *arg)
4104 {
4105 struct stop_reply *r = arg;
4106 stop_reply_xfree (r);
4107 }
4108
4109 /* Look for a queued stop reply belonging to PTID. If one is found,
4110 remove it from the queue, and return it. Returns NULL if none is
4111 found. If there are still queued events left to process, tell the
4112 event loop to get back to target_wait soon. */
4113
4114 static struct stop_reply *
4115 queued_stop_reply (ptid_t ptid)
4116 {
4117 struct stop_reply *it, *prev;
4118 struct stop_reply head;
4119
4120 head.next = stop_reply_queue;
4121 prev = &head;
4122
4123 it = head.next;
4124
4125 if (!ptid_equal (ptid, minus_one_ptid))
4126 for (; it; prev = it, it = it->next)
4127 if (ptid_equal (ptid, it->ptid))
4128 break;
4129
4130 if (it)
4131 {
4132 prev->next = it->next;
4133 it->next = NULL;
4134 }
4135
4136 stop_reply_queue = head.next;
4137
4138 if (stop_reply_queue)
4139 /* There's still at least an event left. */
4140 mark_async_event_handler (remote_async_inferior_event_token);
4141
4142 return it;
4143 }
4144
4145 /* Push a fully parsed stop reply in the stop reply queue. Since we
4146 know that we now have at least one queued event left to pass to the
4147 core side, tell the event loop to get back to target_wait soon. */
4148
4149 static void
4150 push_stop_reply (struct stop_reply *new_event)
4151 {
4152 struct stop_reply *event;
4153
4154 if (stop_reply_queue)
4155 {
4156 for (event = stop_reply_queue;
4157 event && event->next;
4158 event = event->next)
4159 ;
4160
4161 event->next = new_event;
4162 }
4163 else
4164 stop_reply_queue = new_event;
4165
4166 mark_async_event_handler (remote_async_inferior_event_token);
4167 }
4168
4169 /* Returns true if we have a stop reply for PTID. */
4170
4171 static int
4172 peek_stop_reply (ptid_t ptid)
4173 {
4174 struct stop_reply *it;
4175
4176 for (it = stop_reply_queue; it; it = it->next)
4177 if (ptid_equal (ptid, it->ptid))
4178 {
4179 if (it->ws.kind == TARGET_WAITKIND_STOPPED)
4180 return 1;
4181 }
4182
4183 return 0;
4184 }
4185
4186 /* Parse the stop reply in BUF. Either the function succeeds, and the
4187 result is stored in EVENT, or throws an error. */
4188
4189 static void
4190 remote_parse_stop_reply (char *buf, struct stop_reply *event)
4191 {
4192 struct remote_arch_state *rsa = get_remote_arch_state ();
4193 ULONGEST addr;
4194 char *p;
4195
4196 event->ptid = null_ptid;
4197 event->ws.kind = TARGET_WAITKIND_IGNORE;
4198 event->ws.value.integer = 0;
4199 event->solibs_changed = 0;
4200 event->replay_event = 0;
4201 event->stopped_by_watchpoint_p = 0;
4202 event->regcache = NULL;
4203
4204 switch (buf[0])
4205 {
4206 case 'T': /* Status with PC, SP, FP, ... */
4207 {
4208 gdb_byte regs[MAX_REGISTER_SIZE];
4209
4210 /* Expedited reply, containing Signal, {regno, reg} repeat. */
4211 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
4212 ss = signal number
4213 n... = register number
4214 r... = register contents
4215 */
4216
4217 p = &buf[3]; /* after Txx */
4218 while (*p)
4219 {
4220 char *p1;
4221 char *p_temp;
4222 int fieldsize;
4223 LONGEST pnum = 0;
4224
4225 /* If the packet contains a register number, save it in
4226 pnum and set p1 to point to the character following it.
4227 Otherwise p1 points to p. */
4228
4229 /* If this packet is an awatch packet, don't parse the 'a'
4230 as a register number. */
4231
4232 if (strncmp (p, "awatch", strlen("awatch")) != 0)
4233 {
4234 /* Read the ``P'' register number. */
4235 pnum = strtol (p, &p_temp, 16);
4236 p1 = p_temp;
4237 }
4238 else
4239 p1 = p;
4240
4241 if (p1 == p) /* No register number present here. */
4242 {
4243 p1 = strchr (p, ':');
4244 if (p1 == NULL)
4245 error (_("Malformed packet(a) (missing colon): %s\n\
4246 Packet: '%s'\n"),
4247 p, buf);
4248 if (strncmp (p, "thread", p1 - p) == 0)
4249 event->ptid = read_ptid (++p1, &p);
4250 else if ((strncmp (p, "watch", p1 - p) == 0)
4251 || (strncmp (p, "rwatch", p1 - p) == 0)
4252 || (strncmp (p, "awatch", p1 - p) == 0))
4253 {
4254 event->stopped_by_watchpoint_p = 1;
4255 p = unpack_varlen_hex (++p1, &addr);
4256 event->watch_data_address = (CORE_ADDR) addr;
4257 }
4258 else if (strncmp (p, "library", p1 - p) == 0)
4259 {
4260 p1++;
4261 p_temp = p1;
4262 while (*p_temp && *p_temp != ';')
4263 p_temp++;
4264
4265 event->solibs_changed = 1;
4266 p = p_temp;
4267 }
4268 else if (strncmp (p, "replaylog", p1 - p) == 0)
4269 {
4270 /* NO_HISTORY event.
4271 p1 will indicate "begin" or "end", but
4272 it makes no difference for now, so ignore it. */
4273 event->replay_event = 1;
4274 p_temp = strchr (p1 + 1, ';');
4275 if (p_temp)
4276 p = p_temp;
4277 }
4278 else
4279 {
4280 /* Silently skip unknown optional info. */
4281 p_temp = strchr (p1 + 1, ';');
4282 if (p_temp)
4283 p = p_temp;
4284 }
4285 }
4286 else
4287 {
4288 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
4289 cached_reg_t cached_reg;
4290
4291 cached_reg.num = reg->regnum;
4292
4293 p = p1;
4294
4295 if (*p != ':')
4296 error (_("Malformed packet(b) (missing colon): %s\n\
4297 Packet: '%s'\n"),
4298 p, buf);
4299 ++p;
4300
4301 if (reg == NULL)
4302 error (_("Remote sent bad register number %s: %s\n\
4303 Packet: '%s'\n"),
4304 phex_nz (pnum, 0), p, buf);
4305
4306 fieldsize = hex2bin (p, cached_reg.data,
4307 register_size (target_gdbarch,
4308 reg->regnum));
4309 p += 2 * fieldsize;
4310 if (fieldsize < register_size (target_gdbarch,
4311 reg->regnum))
4312 warning (_("Remote reply is too short: %s"), buf);
4313
4314 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
4315 }
4316
4317 if (*p != ';')
4318 error (_("Remote register badly formatted: %s\nhere: %s"),
4319 buf, p);
4320 ++p;
4321 }
4322 }
4323 /* fall through */
4324 case 'S': /* Old style status, just signal only. */
4325 if (event->solibs_changed)
4326 event->ws.kind = TARGET_WAITKIND_LOADED;
4327 else if (event->replay_event)
4328 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
4329 else
4330 {
4331 event->ws.kind = TARGET_WAITKIND_STOPPED;
4332 event->ws.value.sig = (enum target_signal)
4333 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
4334 }
4335 break;
4336 case 'W': /* Target exited. */
4337 case 'X':
4338 {
4339 char *p;
4340 int pid;
4341 ULONGEST value;
4342
4343 /* GDB used to accept only 2 hex chars here. Stubs should
4344 only send more if they detect GDB supports multi-process
4345 support. */
4346 p = unpack_varlen_hex (&buf[1], &value);
4347
4348 if (buf[0] == 'W')
4349 {
4350 /* The remote process exited. */
4351 event->ws.kind = TARGET_WAITKIND_EXITED;
4352 event->ws.value.integer = value;
4353 }
4354 else
4355 {
4356 /* The remote process exited with a signal. */
4357 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
4358 event->ws.value.sig = (enum target_signal) value;
4359 }
4360
4361 /* If no process is specified, assume inferior_ptid. */
4362 pid = ptid_get_pid (inferior_ptid);
4363 if (*p == '\0')
4364 ;
4365 else if (*p == ';')
4366 {
4367 p++;
4368
4369 if (p == '\0')
4370 ;
4371 else if (strncmp (p,
4372 "process:", sizeof ("process:") - 1) == 0)
4373 {
4374 ULONGEST upid;
4375 p += sizeof ("process:") - 1;
4376 unpack_varlen_hex (p, &upid);
4377 pid = upid;
4378 }
4379 else
4380 error (_("unknown stop reply packet: %s"), buf);
4381 }
4382 else
4383 error (_("unknown stop reply packet: %s"), buf);
4384 event->ptid = pid_to_ptid (pid);
4385 }
4386 break;
4387 }
4388
4389 if (non_stop && ptid_equal (event->ptid, null_ptid))
4390 error (_("No process or thread specified in stop reply: %s"), buf);
4391 }
4392
4393 /* When the stub wants to tell GDB about a new stop reply, it sends a
4394 stop notification (%Stop). Those can come it at any time, hence,
4395 we have to make sure that any pending putpkt/getpkt sequence we're
4396 making is finished, before querying the stub for more events with
4397 vStopped. E.g., if we started a vStopped sequence immediatelly
4398 upon receiving the %Stop notification, something like this could
4399 happen:
4400
4401 1.1) --> Hg 1
4402 1.2) <-- OK
4403 1.3) --> g
4404 1.4) <-- %Stop
4405 1.5) --> vStopped
4406 1.6) <-- (registers reply to step #1.3)
4407
4408 Obviously, the reply in step #1.6 would be unexpected to a vStopped
4409 query.
4410
4411 To solve this, whenever we parse a %Stop notification sucessfully,
4412 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
4413 doing whatever we were doing:
4414
4415 2.1) --> Hg 1
4416 2.2) <-- OK
4417 2.3) --> g
4418 2.4) <-- %Stop
4419 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
4420 2.5) <-- (registers reply to step #2.3)
4421
4422 Eventualy after step #2.5, we return to the event loop, which
4423 notices there's an event on the
4424 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
4425 associated callback --- the function below. At this point, we're
4426 always safe to start a vStopped sequence. :
4427
4428 2.6) --> vStopped
4429 2.7) <-- T05 thread:2
4430 2.8) --> vStopped
4431 2.9) --> OK
4432 */
4433
4434 static void
4435 remote_get_pending_stop_replies (void)
4436 {
4437 struct remote_state *rs = get_remote_state ();
4438 int ret;
4439
4440 if (pending_stop_reply)
4441 {
4442 /* acknowledge */
4443 putpkt ("vStopped");
4444
4445 /* Now we can rely on it. */
4446 push_stop_reply (pending_stop_reply);
4447 pending_stop_reply = NULL;
4448
4449 while (1)
4450 {
4451 getpkt (&rs->buf, &rs->buf_size, 0);
4452 if (strcmp (rs->buf, "OK") == 0)
4453 break;
4454 else
4455 {
4456 struct cleanup *old_chain;
4457 struct stop_reply *stop_reply = stop_reply_xmalloc ();
4458
4459 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4460 remote_parse_stop_reply (rs->buf, stop_reply);
4461
4462 /* acknowledge */
4463 putpkt ("vStopped");
4464
4465 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
4466 {
4467 /* Now we can rely on it. */
4468 discard_cleanups (old_chain);
4469 push_stop_reply (stop_reply);
4470 }
4471 else
4472 /* We got an unknown stop reply. */
4473 do_cleanups (old_chain);
4474 }
4475 }
4476 }
4477 }
4478
4479
4480 /* Called when it is decided that STOP_REPLY holds the info of the
4481 event that is to be returned to the core. This function always
4482 destroys STOP_REPLY. */
4483
4484 static ptid_t
4485 process_stop_reply (struct stop_reply *stop_reply,
4486 struct target_waitstatus *status)
4487 {
4488 ptid_t ptid;
4489
4490 *status = stop_reply->ws;
4491 ptid = stop_reply->ptid;
4492
4493 /* If no thread/process was reported by the stub, assume the current
4494 inferior. */
4495 if (ptid_equal (ptid, null_ptid))
4496 ptid = inferior_ptid;
4497
4498 if (status->kind == TARGET_WAITKIND_EXITED
4499 || status->kind == TARGET_WAITKIND_SIGNALLED)
4500 {
4501 int pid = ptid_get_pid (ptid);
4502 delete_inferior (pid);
4503 }
4504 else
4505 notice_new_inferiors (ptid);
4506
4507 /* Expedited registers. */
4508 if (stop_reply->regcache)
4509 {
4510 cached_reg_t *reg;
4511 int ix;
4512
4513 for (ix = 0;
4514 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
4515 ix++)
4516 regcache_raw_supply (get_thread_regcache (ptid),
4517 reg->num, reg->data);
4518 VEC_free (cached_reg_t, stop_reply->regcache);
4519 }
4520
4521 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
4522 remote_watch_data_address = stop_reply->watch_data_address;
4523
4524 stop_reply_xfree (stop_reply);
4525 return ptid;
4526 }
4527
4528 /* The non-stop mode version of target_wait. */
4529
4530 static ptid_t
4531 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status)
4532 {
4533 struct remote_state *rs = get_remote_state ();
4534 struct remote_arch_state *rsa = get_remote_arch_state ();
4535 ptid_t event_ptid = null_ptid;
4536 struct stop_reply *stop_reply;
4537 int ret;
4538
4539 /* If in non-stop mode, get out of getpkt even if a
4540 notification is received. */
4541
4542 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
4543 0 /* forever */);
4544 while (1)
4545 {
4546 if (ret != -1)
4547 switch (rs->buf[0])
4548 {
4549 case 'E': /* Error of some sort. */
4550 /* We're out of sync with the target now. Did it continue
4551 or not? We can't tell which thread it was in non-stop,
4552 so just ignore this. */
4553 warning (_("Remote failure reply: %s"), rs->buf);
4554 break;
4555 case 'O': /* Console output. */
4556 remote_console_output (rs->buf + 1);
4557 break;
4558 default:
4559 warning (_("Invalid remote reply: %s"), rs->buf);
4560 break;
4561 }
4562
4563 /* Acknowledge a pending stop reply that may have arrived in the
4564 mean time. */
4565 if (pending_stop_reply != NULL)
4566 remote_get_pending_stop_replies ();
4567
4568 /* If indeed we noticed a stop reply, we're done. */
4569 stop_reply = queued_stop_reply (ptid);
4570 if (stop_reply != NULL)
4571 return process_stop_reply (stop_reply, status);
4572
4573 /* Still no event. If we're in asynchronous mode, then just
4574 return to the event loop. */
4575 if (remote_is_async_p ())
4576 {
4577 status->kind = TARGET_WAITKIND_IGNORE;
4578 return minus_one_ptid;
4579 }
4580
4581 /* Otherwise, asynchronous mode is masked, so do a blocking
4582 wait. */
4583 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
4584 1 /* forever */);
4585 }
4586 }
4587
4588 /* Wait until the remote machine stops, then return, storing status in
4589 STATUS just as `wait' would. */
4590
4591 static ptid_t
4592 remote_wait_as (ptid_t ptid, struct target_waitstatus *status)
4593 {
4594 struct remote_state *rs = get_remote_state ();
4595 struct remote_arch_state *rsa = get_remote_arch_state ();
4596 ptid_t event_ptid = null_ptid;
4597 ULONGEST addr;
4598 int solibs_changed = 0;
4599 char *buf, *p;
4600 struct stop_reply *stop_reply;
4601
4602 status->kind = TARGET_WAITKIND_IGNORE;
4603 status->value.integer = 0;
4604
4605 stop_reply = queued_stop_reply (ptid);
4606 if (stop_reply != NULL)
4607 return process_stop_reply (stop_reply, status);
4608
4609 if (rs->cached_wait_status)
4610 /* Use the cached wait status, but only once. */
4611 rs->cached_wait_status = 0;
4612 else
4613 {
4614 int ret;
4615
4616 if (!target_is_async_p ())
4617 {
4618 ofunc = signal (SIGINT, remote_interrupt);
4619 /* If the user hit C-c before this packet, or between packets,
4620 pretend that it was hit right here. */
4621 if (quit_flag)
4622 {
4623 quit_flag = 0;
4624 remote_interrupt (SIGINT);
4625 }
4626 }
4627
4628 /* FIXME: cagney/1999-09-27: If we're in async mode we should
4629 _never_ wait for ever -> test on target_is_async_p().
4630 However, before we do that we need to ensure that the caller
4631 knows how to take the target into/out of async mode. */
4632 ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
4633 if (!target_is_async_p ())
4634 signal (SIGINT, ofunc);
4635 }
4636
4637 buf = rs->buf;
4638
4639 remote_stopped_by_watchpoint_p = 0;
4640
4641 /* We got something. */
4642 rs->waiting_for_stop_reply = 0;
4643
4644 switch (buf[0])
4645 {
4646 case 'E': /* Error of some sort. */
4647 /* We're out of sync with the target now. Did it continue or
4648 not? Not is more likely, so report a stop. */
4649 warning (_("Remote failure reply: %s"), buf);
4650 status->kind = TARGET_WAITKIND_STOPPED;
4651 status->value.sig = TARGET_SIGNAL_0;
4652 break;
4653 case 'F': /* File-I/O request. */
4654 remote_fileio_request (buf);
4655 break;
4656 case 'T': case 'S': case 'X': case 'W':
4657 {
4658 struct stop_reply *stop_reply;
4659 struct cleanup *old_chain;
4660
4661 stop_reply = stop_reply_xmalloc ();
4662 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4663 remote_parse_stop_reply (buf, stop_reply);
4664 discard_cleanups (old_chain);
4665 event_ptid = process_stop_reply (stop_reply, status);
4666 break;
4667 }
4668 case 'O': /* Console output. */
4669 remote_console_output (buf + 1);
4670
4671 /* The target didn't really stop; keep waiting. */
4672 rs->waiting_for_stop_reply = 1;
4673
4674 break;
4675 case '\0':
4676 if (last_sent_signal != TARGET_SIGNAL_0)
4677 {
4678 /* Zero length reply means that we tried 'S' or 'C' and the
4679 remote system doesn't support it. */
4680 target_terminal_ours_for_output ();
4681 printf_filtered
4682 ("Can't send signals to this remote system. %s not sent.\n",
4683 target_signal_to_name (last_sent_signal));
4684 last_sent_signal = TARGET_SIGNAL_0;
4685 target_terminal_inferior ();
4686
4687 strcpy ((char *) buf, last_sent_step ? "s" : "c");
4688 putpkt ((char *) buf);
4689
4690 /* We just told the target to resume, so a stop reply is in
4691 order. */
4692 rs->waiting_for_stop_reply = 1;
4693 break;
4694 }
4695 /* else fallthrough */
4696 default:
4697 warning (_("Invalid remote reply: %s"), buf);
4698 /* Keep waiting. */
4699 rs->waiting_for_stop_reply = 1;
4700 break;
4701 }
4702
4703 if (status->kind == TARGET_WAITKIND_IGNORE)
4704 /* Nothing interesting happened. */
4705 return minus_one_ptid;
4706 else if (status->kind != TARGET_WAITKIND_EXITED
4707 && status->kind != TARGET_WAITKIND_SIGNALLED)
4708 {
4709 if (!ptid_equal (event_ptid, null_ptid))
4710 record_currthread (event_ptid);
4711 else
4712 event_ptid = inferior_ptid;
4713 }
4714 else
4715 /* A process exit. Invalidate our notion of current thread. */
4716 record_currthread (minus_one_ptid);
4717
4718 return event_ptid;
4719 }
4720
4721 /* Wait until the remote machine stops, then return, storing status in
4722 STATUS just as `wait' would. */
4723
4724 static ptid_t
4725 remote_wait (ptid_t ptid, struct target_waitstatus *status)
4726 {
4727 ptid_t event_ptid;
4728
4729 if (non_stop)
4730 event_ptid = remote_wait_ns (ptid, status);
4731 else
4732 {
4733 /* In synchronous mode, keep waiting until the target stops. In
4734 asynchronous mode, always return to the event loop. */
4735
4736 do
4737 {
4738 event_ptid = remote_wait_as (ptid, status);
4739 }
4740 while (status->kind == TARGET_WAITKIND_IGNORE
4741 && !target_can_async_p ());
4742 }
4743
4744 if (target_can_async_p ())
4745 {
4746 /* If there are are events left in the queue tell the event loop
4747 to return here. */
4748 if (stop_reply_queue)
4749 mark_async_event_handler (remote_async_inferior_event_token);
4750 }
4751
4752 return event_ptid;
4753 }
4754
4755 /* Fetch a single register using a 'p' packet. */
4756
4757 static int
4758 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
4759 {
4760 struct remote_state *rs = get_remote_state ();
4761 char *buf, *p;
4762 char regp[MAX_REGISTER_SIZE];
4763 int i;
4764
4765 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
4766 return 0;
4767
4768 if (reg->pnum == -1)
4769 return 0;
4770
4771 p = rs->buf;
4772 *p++ = 'p';
4773 p += hexnumstr (p, reg->pnum);
4774 *p++ = '\0';
4775 remote_send (&rs->buf, &rs->buf_size);
4776
4777 buf = rs->buf;
4778
4779 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
4780 {
4781 case PACKET_OK:
4782 break;
4783 case PACKET_UNKNOWN:
4784 return 0;
4785 case PACKET_ERROR:
4786 error (_("Could not fetch register \"%s\""),
4787 gdbarch_register_name (get_regcache_arch (regcache), reg->regnum));
4788 }
4789
4790 /* If this register is unfetchable, tell the regcache. */
4791 if (buf[0] == 'x')
4792 {
4793 regcache_raw_supply (regcache, reg->regnum, NULL);
4794 return 1;
4795 }
4796
4797 /* Otherwise, parse and supply the value. */
4798 p = buf;
4799 i = 0;
4800 while (p[0] != 0)
4801 {
4802 if (p[1] == 0)
4803 error (_("fetch_register_using_p: early buf termination"));
4804
4805 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
4806 p += 2;
4807 }
4808 regcache_raw_supply (regcache, reg->regnum, regp);
4809 return 1;
4810 }
4811
4812 /* Fetch the registers included in the target's 'g' packet. */
4813
4814 static int
4815 send_g_packet (void)
4816 {
4817 struct remote_state *rs = get_remote_state ();
4818 int i, buf_len;
4819 char *p;
4820 char *regs;
4821
4822 sprintf (rs->buf, "g");
4823 remote_send (&rs->buf, &rs->buf_size);
4824
4825 /* We can get out of synch in various cases. If the first character
4826 in the buffer is not a hex character, assume that has happened
4827 and try to fetch another packet to read. */
4828 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
4829 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
4830 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
4831 && rs->buf[0] != 'x') /* New: unavailable register value. */
4832 {
4833 if (remote_debug)
4834 fprintf_unfiltered (gdb_stdlog,
4835 "Bad register packet; fetching a new packet\n");
4836 getpkt (&rs->buf, &rs->buf_size, 0);
4837 }
4838
4839 buf_len = strlen (rs->buf);
4840
4841 /* Sanity check the received packet. */
4842 if (buf_len % 2 != 0)
4843 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
4844
4845 return buf_len / 2;
4846 }
4847
4848 static void
4849 process_g_packet (struct regcache *regcache)
4850 {
4851 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4852 struct remote_state *rs = get_remote_state ();
4853 struct remote_arch_state *rsa = get_remote_arch_state ();
4854 int i, buf_len;
4855 char *p;
4856 char *regs;
4857
4858 buf_len = strlen (rs->buf);
4859
4860 /* Further sanity checks, with knowledge of the architecture. */
4861 if (buf_len > 2 * rsa->sizeof_g_packet)
4862 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
4863
4864 /* Save the size of the packet sent to us by the target. It is used
4865 as a heuristic when determining the max size of packets that the
4866 target can safely receive. */
4867 if (rsa->actual_register_packet_size == 0)
4868 rsa->actual_register_packet_size = buf_len;
4869
4870 /* If this is smaller than we guessed the 'g' packet would be,
4871 update our records. A 'g' reply that doesn't include a register's
4872 value implies either that the register is not available, or that
4873 the 'p' packet must be used. */
4874 if (buf_len < 2 * rsa->sizeof_g_packet)
4875 {
4876 rsa->sizeof_g_packet = buf_len / 2;
4877
4878 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
4879 {
4880 if (rsa->regs[i].pnum == -1)
4881 continue;
4882
4883 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
4884 rsa->regs[i].in_g_packet = 0;
4885 else
4886 rsa->regs[i].in_g_packet = 1;
4887 }
4888 }
4889
4890 regs = alloca (rsa->sizeof_g_packet);
4891
4892 /* Unimplemented registers read as all bits zero. */
4893 memset (regs, 0, rsa->sizeof_g_packet);
4894
4895 /* Reply describes registers byte by byte, each byte encoded as two
4896 hex characters. Suck them all up, then supply them to the
4897 register cacheing/storage mechanism. */
4898
4899 p = rs->buf;
4900 for (i = 0; i < rsa->sizeof_g_packet; i++)
4901 {
4902 if (p[0] == 0 || p[1] == 0)
4903 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
4904 internal_error (__FILE__, __LINE__,
4905 "unexpected end of 'g' packet reply");
4906
4907 if (p[0] == 'x' && p[1] == 'x')
4908 regs[i] = 0; /* 'x' */
4909 else
4910 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
4911 p += 2;
4912 }
4913
4914 {
4915 int i;
4916 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
4917 {
4918 struct packet_reg *r = &rsa->regs[i];
4919 if (r->in_g_packet)
4920 {
4921 if (r->offset * 2 >= strlen (rs->buf))
4922 /* This shouldn't happen - we adjusted in_g_packet above. */
4923 internal_error (__FILE__, __LINE__,
4924 "unexpected end of 'g' packet reply");
4925 else if (rs->buf[r->offset * 2] == 'x')
4926 {
4927 gdb_assert (r->offset * 2 < strlen (rs->buf));
4928 /* The register isn't available, mark it as such (at
4929 the same time setting the value to zero). */
4930 regcache_raw_supply (regcache, r->regnum, NULL);
4931 }
4932 else
4933 regcache_raw_supply (regcache, r->regnum,
4934 regs + r->offset);
4935 }
4936 }
4937 }
4938 }
4939
4940 static void
4941 fetch_registers_using_g (struct regcache *regcache)
4942 {
4943 send_g_packet ();
4944 process_g_packet (regcache);
4945 }
4946
4947 static void
4948 remote_fetch_registers (struct regcache *regcache, int regnum)
4949 {
4950 struct remote_state *rs = get_remote_state ();
4951 struct remote_arch_state *rsa = get_remote_arch_state ();
4952 int i;
4953
4954 set_general_thread (inferior_ptid);
4955
4956 if (regnum >= 0)
4957 {
4958 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
4959 gdb_assert (reg != NULL);
4960
4961 /* If this register might be in the 'g' packet, try that first -
4962 we are likely to read more than one register. If this is the
4963 first 'g' packet, we might be overly optimistic about its
4964 contents, so fall back to 'p'. */
4965 if (reg->in_g_packet)
4966 {
4967 fetch_registers_using_g (regcache);
4968 if (reg->in_g_packet)
4969 return;
4970 }
4971
4972 if (fetch_register_using_p (regcache, reg))
4973 return;
4974
4975 /* This register is not available. */
4976 regcache_raw_supply (regcache, reg->regnum, NULL);
4977
4978 return;
4979 }
4980
4981 fetch_registers_using_g (regcache);
4982
4983 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4984 if (!rsa->regs[i].in_g_packet)
4985 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
4986 {
4987 /* This register is not available. */
4988 regcache_raw_supply (regcache, i, NULL);
4989 }
4990 }
4991
4992 /* Prepare to store registers. Since we may send them all (using a
4993 'G' request), we have to read out the ones we don't want to change
4994 first. */
4995
4996 static void
4997 remote_prepare_to_store (struct regcache *regcache)
4998 {
4999 struct remote_arch_state *rsa = get_remote_arch_state ();
5000 int i;
5001 gdb_byte buf[MAX_REGISTER_SIZE];
5002
5003 /* Make sure the entire registers array is valid. */
5004 switch (remote_protocol_packets[PACKET_P].support)
5005 {
5006 case PACKET_DISABLE:
5007 case PACKET_SUPPORT_UNKNOWN:
5008 /* Make sure all the necessary registers are cached. */
5009 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5010 if (rsa->regs[i].in_g_packet)
5011 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
5012 break;
5013 case PACKET_ENABLE:
5014 break;
5015 }
5016 }
5017
5018 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
5019 packet was not recognized. */
5020
5021 static int
5022 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
5023 {
5024 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5025 struct remote_state *rs = get_remote_state ();
5026 struct remote_arch_state *rsa = get_remote_arch_state ();
5027 /* Try storing a single register. */
5028 char *buf = rs->buf;
5029 gdb_byte regp[MAX_REGISTER_SIZE];
5030 char *p;
5031
5032 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
5033 return 0;
5034
5035 if (reg->pnum == -1)
5036 return 0;
5037
5038 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
5039 p = buf + strlen (buf);
5040 regcache_raw_collect (regcache, reg->regnum, regp);
5041 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
5042 remote_send (&rs->buf, &rs->buf_size);
5043
5044 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
5045 {
5046 case PACKET_OK:
5047 return 1;
5048 case PACKET_ERROR:
5049 error (_("Could not write register \"%s\""),
5050 gdbarch_register_name (gdbarch, reg->regnum));
5051 case PACKET_UNKNOWN:
5052 return 0;
5053 default:
5054 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
5055 }
5056 }
5057
5058 /* Store register REGNUM, or all registers if REGNUM == -1, from the
5059 contents of the register cache buffer. FIXME: ignores errors. */
5060
5061 static void
5062 store_registers_using_G (const struct regcache *regcache)
5063 {
5064 struct remote_state *rs = get_remote_state ();
5065 struct remote_arch_state *rsa = get_remote_arch_state ();
5066 gdb_byte *regs;
5067 char *p;
5068
5069 /* Extract all the registers in the regcache copying them into a
5070 local buffer. */
5071 {
5072 int i;
5073 regs = alloca (rsa->sizeof_g_packet);
5074 memset (regs, 0, rsa->sizeof_g_packet);
5075 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5076 {
5077 struct packet_reg *r = &rsa->regs[i];
5078 if (r->in_g_packet)
5079 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
5080 }
5081 }
5082
5083 /* Command describes registers byte by byte,
5084 each byte encoded as two hex characters. */
5085 p = rs->buf;
5086 *p++ = 'G';
5087 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
5088 updated. */
5089 bin2hex (regs, p, rsa->sizeof_g_packet);
5090 remote_send (&rs->buf, &rs->buf_size);
5091 }
5092
5093 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
5094 of the register cache buffer. FIXME: ignores errors. */
5095
5096 static void
5097 remote_store_registers (struct regcache *regcache, int regnum)
5098 {
5099 struct remote_state *rs = get_remote_state ();
5100 struct remote_arch_state *rsa = get_remote_arch_state ();
5101 int i;
5102
5103 set_general_thread (inferior_ptid);
5104
5105 if (regnum >= 0)
5106 {
5107 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5108 gdb_assert (reg != NULL);
5109
5110 /* Always prefer to store registers using the 'P' packet if
5111 possible; we often change only a small number of registers.
5112 Sometimes we change a larger number; we'd need help from a
5113 higher layer to know to use 'G'. */
5114 if (store_register_using_P (regcache, reg))
5115 return;
5116
5117 /* For now, don't complain if we have no way to write the
5118 register. GDB loses track of unavailable registers too
5119 easily. Some day, this may be an error. We don't have
5120 any way to read the register, either... */
5121 if (!reg->in_g_packet)
5122 return;
5123
5124 store_registers_using_G (regcache);
5125 return;
5126 }
5127
5128 store_registers_using_G (regcache);
5129
5130 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5131 if (!rsa->regs[i].in_g_packet)
5132 if (!store_register_using_P (regcache, &rsa->regs[i]))
5133 /* See above for why we do not issue an error here. */
5134 continue;
5135 }
5136 \f
5137
5138 /* Return the number of hex digits in num. */
5139
5140 static int
5141 hexnumlen (ULONGEST num)
5142 {
5143 int i;
5144
5145 for (i = 0; num != 0; i++)
5146 num >>= 4;
5147
5148 return max (i, 1);
5149 }
5150
5151 /* Set BUF to the minimum number of hex digits representing NUM. */
5152
5153 static int
5154 hexnumstr (char *buf, ULONGEST num)
5155 {
5156 int len = hexnumlen (num);
5157 return hexnumnstr (buf, num, len);
5158 }
5159
5160
5161 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
5162
5163 static int
5164 hexnumnstr (char *buf, ULONGEST num, int width)
5165 {
5166 int i;
5167
5168 buf[width] = '\0';
5169
5170 for (i = width - 1; i >= 0; i--)
5171 {
5172 buf[i] = "0123456789abcdef"[(num & 0xf)];
5173 num >>= 4;
5174 }
5175
5176 return width;
5177 }
5178
5179 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
5180
5181 static CORE_ADDR
5182 remote_address_masked (CORE_ADDR addr)
5183 {
5184 int address_size = remote_address_size;
5185 /* If "remoteaddresssize" was not set, default to target address size. */
5186 if (!address_size)
5187 address_size = gdbarch_addr_bit (target_gdbarch);
5188
5189 if (address_size > 0
5190 && address_size < (sizeof (ULONGEST) * 8))
5191 {
5192 /* Only create a mask when that mask can safely be constructed
5193 in a ULONGEST variable. */
5194 ULONGEST mask = 1;
5195 mask = (mask << address_size) - 1;
5196 addr &= mask;
5197 }
5198 return addr;
5199 }
5200
5201 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
5202 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
5203 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
5204 (which may be more than *OUT_LEN due to escape characters). The
5205 total number of bytes in the output buffer will be at most
5206 OUT_MAXLEN. */
5207
5208 static int
5209 remote_escape_output (const gdb_byte *buffer, int len,
5210 gdb_byte *out_buf, int *out_len,
5211 int out_maxlen)
5212 {
5213 int input_index, output_index;
5214
5215 output_index = 0;
5216 for (input_index = 0; input_index < len; input_index++)
5217 {
5218 gdb_byte b = buffer[input_index];
5219
5220 if (b == '$' || b == '#' || b == '}')
5221 {
5222 /* These must be escaped. */
5223 if (output_index + 2 > out_maxlen)
5224 break;
5225 out_buf[output_index++] = '}';
5226 out_buf[output_index++] = b ^ 0x20;
5227 }
5228 else
5229 {
5230 if (output_index + 1 > out_maxlen)
5231 break;
5232 out_buf[output_index++] = b;
5233 }
5234 }
5235
5236 *out_len = input_index;
5237 return output_index;
5238 }
5239
5240 /* Convert BUFFER, escaped data LEN bytes long, into binary data
5241 in OUT_BUF. Return the number of bytes written to OUT_BUF.
5242 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
5243
5244 This function reverses remote_escape_output. It allows more
5245 escaped characters than that function does, in particular because
5246 '*' must be escaped to avoid the run-length encoding processing
5247 in reading packets. */
5248
5249 static int
5250 remote_unescape_input (const gdb_byte *buffer, int len,
5251 gdb_byte *out_buf, int out_maxlen)
5252 {
5253 int input_index, output_index;
5254 int escaped;
5255
5256 output_index = 0;
5257 escaped = 0;
5258 for (input_index = 0; input_index < len; input_index++)
5259 {
5260 gdb_byte b = buffer[input_index];
5261
5262 if (output_index + 1 > out_maxlen)
5263 {
5264 warning (_("Received too much data from remote target;"
5265 " ignoring overflow."));
5266 return output_index;
5267 }
5268
5269 if (escaped)
5270 {
5271 out_buf[output_index++] = b ^ 0x20;
5272 escaped = 0;
5273 }
5274 else if (b == '}')
5275 escaped = 1;
5276 else
5277 out_buf[output_index++] = b;
5278 }
5279
5280 if (escaped)
5281 error (_("Unmatched escape character in target response."));
5282
5283 return output_index;
5284 }
5285
5286 /* Determine whether the remote target supports binary downloading.
5287 This is accomplished by sending a no-op memory write of zero length
5288 to the target at the specified address. It does not suffice to send
5289 the whole packet, since many stubs strip the eighth bit and
5290 subsequently compute a wrong checksum, which causes real havoc with
5291 remote_write_bytes.
5292
5293 NOTE: This can still lose if the serial line is not eight-bit
5294 clean. In cases like this, the user should clear "remote
5295 X-packet". */
5296
5297 static void
5298 check_binary_download (CORE_ADDR addr)
5299 {
5300 struct remote_state *rs = get_remote_state ();
5301
5302 switch (remote_protocol_packets[PACKET_X].support)
5303 {
5304 case PACKET_DISABLE:
5305 break;
5306 case PACKET_ENABLE:
5307 break;
5308 case PACKET_SUPPORT_UNKNOWN:
5309 {
5310 char *p;
5311
5312 p = rs->buf;
5313 *p++ = 'X';
5314 p += hexnumstr (p, (ULONGEST) addr);
5315 *p++ = ',';
5316 p += hexnumstr (p, (ULONGEST) 0);
5317 *p++ = ':';
5318 *p = '\0';
5319
5320 putpkt_binary (rs->buf, (int) (p - rs->buf));
5321 getpkt (&rs->buf, &rs->buf_size, 0);
5322
5323 if (rs->buf[0] == '\0')
5324 {
5325 if (remote_debug)
5326 fprintf_unfiltered (gdb_stdlog,
5327 "binary downloading NOT suppported by target\n");
5328 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
5329 }
5330 else
5331 {
5332 if (remote_debug)
5333 fprintf_unfiltered (gdb_stdlog,
5334 "binary downloading suppported by target\n");
5335 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
5336 }
5337 break;
5338 }
5339 }
5340 }
5341
5342 /* Write memory data directly to the remote machine.
5343 This does not inform the data cache; the data cache uses this.
5344 HEADER is the starting part of the packet.
5345 MEMADDR is the address in the remote memory space.
5346 MYADDR is the address of the buffer in our space.
5347 LEN is the number of bytes.
5348 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
5349 should send data as binary ('X'), or hex-encoded ('M').
5350
5351 The function creates packet of the form
5352 <HEADER><ADDRESS>,<LENGTH>:<DATA>
5353
5354 where encoding of <DATA> is termined by PACKET_FORMAT.
5355
5356 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
5357 are omitted.
5358
5359 Returns the number of bytes transferred, or 0 (setting errno) for
5360 error. Only transfer a single packet. */
5361
5362 static int
5363 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
5364 const gdb_byte *myaddr, int len,
5365 char packet_format, int use_length)
5366 {
5367 struct remote_state *rs = get_remote_state ();
5368 char *p;
5369 char *plen = NULL;
5370 int plenlen = 0;
5371 int todo;
5372 int nr_bytes;
5373 int payload_size;
5374 int payload_length;
5375 int header_length;
5376
5377 if (packet_format != 'X' && packet_format != 'M')
5378 internal_error (__FILE__, __LINE__,
5379 "remote_write_bytes_aux: bad packet format");
5380
5381 if (len <= 0)
5382 return 0;
5383
5384 payload_size = get_memory_write_packet_size ();
5385
5386 /* The packet buffer will be large enough for the payload;
5387 get_memory_packet_size ensures this. */
5388 rs->buf[0] = '\0';
5389
5390 /* Compute the size of the actual payload by subtracting out the
5391 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
5392 */
5393 payload_size -= strlen ("$,:#NN");
5394 if (!use_length)
5395 /* The comma won't be used. */
5396 payload_size += 1;
5397 header_length = strlen (header);
5398 payload_size -= header_length;
5399 payload_size -= hexnumlen (memaddr);
5400
5401 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
5402
5403 strcat (rs->buf, header);
5404 p = rs->buf + strlen (header);
5405
5406 /* Compute a best guess of the number of bytes actually transfered. */
5407 if (packet_format == 'X')
5408 {
5409 /* Best guess at number of bytes that will fit. */
5410 todo = min (len, payload_size);
5411 if (use_length)
5412 payload_size -= hexnumlen (todo);
5413 todo = min (todo, payload_size);
5414 }
5415 else
5416 {
5417 /* Num bytes that will fit. */
5418 todo = min (len, payload_size / 2);
5419 if (use_length)
5420 payload_size -= hexnumlen (todo);
5421 todo = min (todo, payload_size / 2);
5422 }
5423
5424 if (todo <= 0)
5425 internal_error (__FILE__, __LINE__,
5426 _("minumum packet size too small to write data"));
5427
5428 /* If we already need another packet, then try to align the end
5429 of this packet to a useful boundary. */
5430 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
5431 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
5432
5433 /* Append "<memaddr>". */
5434 memaddr = remote_address_masked (memaddr);
5435 p += hexnumstr (p, (ULONGEST) memaddr);
5436
5437 if (use_length)
5438 {
5439 /* Append ",". */
5440 *p++ = ',';
5441
5442 /* Append <len>. Retain the location/size of <len>. It may need to
5443 be adjusted once the packet body has been created. */
5444 plen = p;
5445 plenlen = hexnumstr (p, (ULONGEST) todo);
5446 p += plenlen;
5447 }
5448
5449 /* Append ":". */
5450 *p++ = ':';
5451 *p = '\0';
5452
5453 /* Append the packet body. */
5454 if (packet_format == 'X')
5455 {
5456 /* Binary mode. Send target system values byte by byte, in
5457 increasing byte addresses. Only escape certain critical
5458 characters. */
5459 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
5460 payload_size);
5461
5462 /* If not all TODO bytes fit, then we'll need another packet. Make
5463 a second try to keep the end of the packet aligned. Don't do
5464 this if the packet is tiny. */
5465 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
5466 {
5467 int new_nr_bytes;
5468
5469 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
5470 - memaddr);
5471 if (new_nr_bytes != nr_bytes)
5472 payload_length = remote_escape_output (myaddr, new_nr_bytes,
5473 p, &nr_bytes,
5474 payload_size);
5475 }
5476
5477 p += payload_length;
5478 if (use_length && nr_bytes < todo)
5479 {
5480 /* Escape chars have filled up the buffer prematurely,
5481 and we have actually sent fewer bytes than planned.
5482 Fix-up the length field of the packet. Use the same
5483 number of characters as before. */
5484 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
5485 *plen = ':'; /* overwrite \0 from hexnumnstr() */
5486 }
5487 }
5488 else
5489 {
5490 /* Normal mode: Send target system values byte by byte, in
5491 increasing byte addresses. Each byte is encoded as a two hex
5492 value. */
5493 nr_bytes = bin2hex (myaddr, p, todo);
5494 p += 2 * nr_bytes;
5495 }
5496
5497 putpkt_binary (rs->buf, (int) (p - rs->buf));
5498 getpkt (&rs->buf, &rs->buf_size, 0);
5499
5500 if (rs->buf[0] == 'E')
5501 {
5502 /* There is no correspondance between what the remote protocol
5503 uses for errors and errno codes. We would like a cleaner way
5504 of representing errors (big enough to include errno codes,
5505 bfd_error codes, and others). But for now just return EIO. */
5506 errno = EIO;
5507 return 0;
5508 }
5509
5510 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
5511 fewer bytes than we'd planned. */
5512 return nr_bytes;
5513 }
5514
5515 /* Write memory data directly to the remote machine.
5516 This does not inform the data cache; the data cache uses this.
5517 MEMADDR is the address in the remote memory space.
5518 MYADDR is the address of the buffer in our space.
5519 LEN is the number of bytes.
5520
5521 Returns number of bytes transferred, or 0 (setting errno) for
5522 error. Only transfer a single packet. */
5523
5524 int
5525 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
5526 {
5527 char *packet_format = 0;
5528
5529 /* Check whether the target supports binary download. */
5530 check_binary_download (memaddr);
5531
5532 switch (remote_protocol_packets[PACKET_X].support)
5533 {
5534 case PACKET_ENABLE:
5535 packet_format = "X";
5536 break;
5537 case PACKET_DISABLE:
5538 packet_format = "M";
5539 break;
5540 case PACKET_SUPPORT_UNKNOWN:
5541 internal_error (__FILE__, __LINE__,
5542 _("remote_write_bytes: bad internal state"));
5543 default:
5544 internal_error (__FILE__, __LINE__, _("bad switch"));
5545 }
5546
5547 return remote_write_bytes_aux (packet_format,
5548 memaddr, myaddr, len, packet_format[0], 1);
5549 }
5550
5551 /* Read memory data directly from the remote machine.
5552 This does not use the data cache; the data cache uses this.
5553 MEMADDR is the address in the remote memory space.
5554 MYADDR is the address of the buffer in our space.
5555 LEN is the number of bytes.
5556
5557 Returns number of bytes transferred, or 0 for error. */
5558
5559 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
5560 remote targets) shouldn't attempt to read the entire buffer.
5561 Instead it should read a single packet worth of data and then
5562 return the byte size of that packet to the caller. The caller (its
5563 caller and its callers caller ;-) already contains code for
5564 handling partial reads. */
5565
5566 int
5567 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
5568 {
5569 struct remote_state *rs = get_remote_state ();
5570 int max_buf_size; /* Max size of packet output buffer. */
5571 int origlen;
5572
5573 if (len <= 0)
5574 return 0;
5575
5576 max_buf_size = get_memory_read_packet_size ();
5577 /* The packet buffer will be large enough for the payload;
5578 get_memory_packet_size ensures this. */
5579
5580 origlen = len;
5581 while (len > 0)
5582 {
5583 char *p;
5584 int todo;
5585 int i;
5586
5587 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
5588
5589 /* construct "m"<memaddr>","<len>" */
5590 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
5591 memaddr = remote_address_masked (memaddr);
5592 p = rs->buf;
5593 *p++ = 'm';
5594 p += hexnumstr (p, (ULONGEST) memaddr);
5595 *p++ = ',';
5596 p += hexnumstr (p, (ULONGEST) todo);
5597 *p = '\0';
5598
5599 putpkt (rs->buf);
5600 getpkt (&rs->buf, &rs->buf_size, 0);
5601
5602 if (rs->buf[0] == 'E'
5603 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
5604 && rs->buf[3] == '\0')
5605 {
5606 /* There is no correspondance between what the remote
5607 protocol uses for errors and errno codes. We would like
5608 a cleaner way of representing errors (big enough to
5609 include errno codes, bfd_error codes, and others). But
5610 for now just return EIO. */
5611 errno = EIO;
5612 return 0;
5613 }
5614
5615 /* Reply describes memory byte by byte,
5616 each byte encoded as two hex characters. */
5617
5618 p = rs->buf;
5619 if ((i = hex2bin (p, myaddr, todo)) < todo)
5620 {
5621 /* Reply is short. This means that we were able to read
5622 only part of what we wanted to. */
5623 return i + (origlen - len);
5624 }
5625 myaddr += todo;
5626 memaddr += todo;
5627 len -= todo;
5628 }
5629 return origlen;
5630 }
5631 \f
5632
5633 /* Remote notification handler. */
5634
5635 static void
5636 handle_notification (char *buf, size_t length)
5637 {
5638 if (strncmp (buf, "Stop:", 5) == 0)
5639 {
5640 if (pending_stop_reply)
5641 /* We've already parsed the in-flight stop-reply, but the stub
5642 for some reason thought we didn't, possibly due to timeout
5643 on its side. Just ignore it. */
5644 ;
5645 else
5646 {
5647 struct cleanup *old_chain;
5648 struct stop_reply *reply = stop_reply_xmalloc ();
5649 old_chain = make_cleanup (do_stop_reply_xfree, reply);
5650
5651 remote_parse_stop_reply (buf + 5, reply);
5652
5653 discard_cleanups (old_chain);
5654
5655 /* Be careful to only set it after parsing, since an error
5656 may be thrown then. */
5657 pending_stop_reply = reply;
5658
5659 /* Notify the event loop there's a stop reply to acknowledge
5660 and that there may be more events to fetch. */
5661 mark_async_event_handler (remote_async_get_pending_events_token);
5662 }
5663 }
5664 else
5665 /* We ignore notifications we don't recognize, for compatibility
5666 with newer stubs. */
5667 ;
5668 }
5669
5670 \f
5671 /* Read or write LEN bytes from inferior memory at MEMADDR,
5672 transferring to or from debugger address BUFFER. Write to inferior
5673 if SHOULD_WRITE is nonzero. Returns length of data written or
5674 read; 0 for error. TARGET is unused. */
5675
5676 static int
5677 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
5678 int should_write, struct mem_attrib *attrib,
5679 struct target_ops *target)
5680 {
5681 int res;
5682
5683 set_general_thread (inferior_ptid);
5684
5685 if (should_write)
5686 res = remote_write_bytes (mem_addr, buffer, mem_len);
5687 else
5688 res = remote_read_bytes (mem_addr, buffer, mem_len);
5689
5690 return res;
5691 }
5692
5693 /* Sends a packet with content determined by the printf format string
5694 FORMAT and the remaining arguments, then gets the reply. Returns
5695 whether the packet was a success, a failure, or unknown. */
5696
5697 enum packet_result
5698 remote_send_printf (const char *format, ...)
5699 {
5700 struct remote_state *rs = get_remote_state ();
5701 int max_size = get_remote_packet_size ();
5702
5703 va_list ap;
5704 va_start (ap, format);
5705
5706 rs->buf[0] = '\0';
5707 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
5708 internal_error (__FILE__, __LINE__, "Too long remote packet.");
5709
5710 if (putpkt (rs->buf) < 0)
5711 error (_("Communication problem with target."));
5712
5713 rs->buf[0] = '\0';
5714 getpkt (&rs->buf, &rs->buf_size, 0);
5715
5716 return packet_check_result (rs->buf);
5717 }
5718
5719 static void
5720 restore_remote_timeout (void *p)
5721 {
5722 int value = *(int *)p;
5723 remote_timeout = value;
5724 }
5725
5726 /* Flash writing can take quite some time. We'll set
5727 effectively infinite timeout for flash operations.
5728 In future, we'll need to decide on a better approach. */
5729 static const int remote_flash_timeout = 1000;
5730
5731 static void
5732 remote_flash_erase (struct target_ops *ops,
5733 ULONGEST address, LONGEST length)
5734 {
5735 int saved_remote_timeout = remote_timeout;
5736 enum packet_result ret;
5737
5738 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5739 &saved_remote_timeout);
5740 remote_timeout = remote_flash_timeout;
5741
5742 ret = remote_send_printf ("vFlashErase:%s,%s",
5743 paddr (address),
5744 phex (length, 4));
5745 switch (ret)
5746 {
5747 case PACKET_UNKNOWN:
5748 error (_("Remote target does not support flash erase"));
5749 case PACKET_ERROR:
5750 error (_("Error erasing flash with vFlashErase packet"));
5751 default:
5752 break;
5753 }
5754
5755 do_cleanups (back_to);
5756 }
5757
5758 static LONGEST
5759 remote_flash_write (struct target_ops *ops,
5760 ULONGEST address, LONGEST length,
5761 const gdb_byte *data)
5762 {
5763 int saved_remote_timeout = remote_timeout;
5764 int ret;
5765 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5766 &saved_remote_timeout);
5767
5768 remote_timeout = remote_flash_timeout;
5769 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
5770 do_cleanups (back_to);
5771
5772 return ret;
5773 }
5774
5775 static void
5776 remote_flash_done (struct target_ops *ops)
5777 {
5778 int saved_remote_timeout = remote_timeout;
5779 int ret;
5780 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5781 &saved_remote_timeout);
5782
5783 remote_timeout = remote_flash_timeout;
5784 ret = remote_send_printf ("vFlashDone");
5785 do_cleanups (back_to);
5786
5787 switch (ret)
5788 {
5789 case PACKET_UNKNOWN:
5790 error (_("Remote target does not support vFlashDone"));
5791 case PACKET_ERROR:
5792 error (_("Error finishing flash operation"));
5793 default:
5794 break;
5795 }
5796 }
5797
5798 static void
5799 remote_files_info (struct target_ops *ignore)
5800 {
5801 puts_filtered ("Debugging a target over a serial line.\n");
5802 }
5803 \f
5804 /* Stuff for dealing with the packets which are part of this protocol.
5805 See comment at top of file for details. */
5806
5807 /* Read a single character from the remote end. */
5808
5809 static int
5810 readchar (int timeout)
5811 {
5812 int ch;
5813
5814 ch = serial_readchar (remote_desc, timeout);
5815
5816 if (ch >= 0)
5817 return ch;
5818
5819 switch ((enum serial_rc) ch)
5820 {
5821 case SERIAL_EOF:
5822 pop_target ();
5823 error (_("Remote connection closed"));
5824 /* no return */
5825 case SERIAL_ERROR:
5826 perror_with_name (_("Remote communication error"));
5827 /* no return */
5828 case SERIAL_TIMEOUT:
5829 break;
5830 }
5831 return ch;
5832 }
5833
5834 /* Send the command in *BUF to the remote machine, and read the reply
5835 into *BUF. Report an error if we get an error reply. Resize
5836 *BUF using xrealloc if necessary to hold the result, and update
5837 *SIZEOF_BUF. */
5838
5839 static void
5840 remote_send (char **buf,
5841 long *sizeof_buf)
5842 {
5843 putpkt (*buf);
5844 getpkt (buf, sizeof_buf, 0);
5845
5846 if ((*buf)[0] == 'E')
5847 error (_("Remote failure reply: %s"), *buf);
5848 }
5849
5850 /* Display a null-terminated packet on stdout, for debugging, using C
5851 string notation. */
5852
5853 static void
5854 print_packet (char *buf)
5855 {
5856 puts_filtered ("\"");
5857 fputstr_filtered (buf, '"', gdb_stdout);
5858 puts_filtered ("\"");
5859 }
5860
5861 int
5862 putpkt (char *buf)
5863 {
5864 return putpkt_binary (buf, strlen (buf));
5865 }
5866
5867 /* Send a packet to the remote machine, with error checking. The data
5868 of the packet is in BUF. The string in BUF can be at most
5869 get_remote_packet_size () - 5 to account for the $, # and checksum,
5870 and for a possible /0 if we are debugging (remote_debug) and want
5871 to print the sent packet as a string. */
5872
5873 static int
5874 putpkt_binary (char *buf, int cnt)
5875 {
5876 struct remote_state *rs = get_remote_state ();
5877 int i;
5878 unsigned char csum = 0;
5879 char *buf2 = alloca (cnt + 6);
5880
5881 int ch;
5882 int tcount = 0;
5883 char *p;
5884
5885 /* Catch cases like trying to read memory or listing threads while
5886 we're waiting for a stop reply. The remote server wouldn't be
5887 ready to handle this request, so we'd hang and timeout. We don't
5888 have to worry about this in synchronous mode, because in that
5889 case it's not possible to issue a command while the target is
5890 running. This is not a problem in non-stop mode, because in that
5891 case, the stub is always ready to process serial input. */
5892 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
5893 error (_("Cannot execute this command while the target is running."));
5894
5895 /* We're sending out a new packet. Make sure we don't look at a
5896 stale cached response. */
5897 rs->cached_wait_status = 0;
5898
5899 /* Copy the packet into buffer BUF2, encapsulating it
5900 and giving it a checksum. */
5901
5902 p = buf2;
5903 *p++ = '$';
5904
5905 for (i = 0; i < cnt; i++)
5906 {
5907 csum += buf[i];
5908 *p++ = buf[i];
5909 }
5910 *p++ = '#';
5911 *p++ = tohex ((csum >> 4) & 0xf);
5912 *p++ = tohex (csum & 0xf);
5913
5914 /* Send it over and over until we get a positive ack. */
5915
5916 while (1)
5917 {
5918 int started_error_output = 0;
5919
5920 if (remote_debug)
5921 {
5922 *p = '\0';
5923 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
5924 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
5925 fprintf_unfiltered (gdb_stdlog, "...");
5926 gdb_flush (gdb_stdlog);
5927 }
5928 if (serial_write (remote_desc, buf2, p - buf2))
5929 perror_with_name (_("putpkt: write failed"));
5930
5931 /* If this is a no acks version of the remote protocol, send the
5932 packet and move on. */
5933 if (rs->noack_mode)
5934 break;
5935
5936 /* Read until either a timeout occurs (-2) or '+' is read.
5937 Handle any notification that arrives in the mean time. */
5938 while (1)
5939 {
5940 ch = readchar (remote_timeout);
5941
5942 if (remote_debug)
5943 {
5944 switch (ch)
5945 {
5946 case '+':
5947 case '-':
5948 case SERIAL_TIMEOUT:
5949 case '$':
5950 case '%':
5951 if (started_error_output)
5952 {
5953 putchar_unfiltered ('\n');
5954 started_error_output = 0;
5955 }
5956 }
5957 }
5958
5959 switch (ch)
5960 {
5961 case '+':
5962 if (remote_debug)
5963 fprintf_unfiltered (gdb_stdlog, "Ack\n");
5964 return 1;
5965 case '-':
5966 if (remote_debug)
5967 fprintf_unfiltered (gdb_stdlog, "Nak\n");
5968 case SERIAL_TIMEOUT:
5969 tcount++;
5970 if (tcount > 3)
5971 return 0;
5972 break; /* Retransmit buffer. */
5973 case '$':
5974 {
5975 if (remote_debug)
5976 fprintf_unfiltered (gdb_stdlog,
5977 "Packet instead of Ack, ignoring it\n");
5978 /* It's probably an old response sent because an ACK
5979 was lost. Gobble up the packet and ack it so it
5980 doesn't get retransmitted when we resend this
5981 packet. */
5982 skip_frame ();
5983 serial_write (remote_desc, "+", 1);
5984 continue; /* Now, go look for +. */
5985 }
5986
5987 case '%':
5988 {
5989 int val;
5990
5991 /* If we got a notification, handle it, and go back to looking
5992 for an ack. */
5993 /* We've found the start of a notification. Now
5994 collect the data. */
5995 val = read_frame (&rs->buf, &rs->buf_size);
5996 if (val >= 0)
5997 {
5998 if (remote_debug)
5999 {
6000 fprintf_unfiltered (gdb_stdlog, " Notification received: ");
6001 fputstrn_unfiltered (rs->buf, val, 0, gdb_stdlog);
6002 fprintf_unfiltered (gdb_stdlog, "\n");
6003 }
6004 handle_notification (rs->buf, val);
6005 /* We're in sync now, rewait for the ack. */
6006 tcount = 0;
6007 }
6008 else
6009 {
6010 if (remote_debug)
6011 {
6012 if (!started_error_output)
6013 {
6014 started_error_output = 1;
6015 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6016 }
6017 fputc_unfiltered (ch & 0177, gdb_stdlog);
6018 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
6019 }
6020 }
6021 continue;
6022 }
6023 /* fall-through */
6024 default:
6025 if (remote_debug)
6026 {
6027 if (!started_error_output)
6028 {
6029 started_error_output = 1;
6030 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6031 }
6032 fputc_unfiltered (ch & 0177, gdb_stdlog);
6033 }
6034 continue;
6035 }
6036 break; /* Here to retransmit. */
6037 }
6038
6039 #if 0
6040 /* This is wrong. If doing a long backtrace, the user should be
6041 able to get out next time we call QUIT, without anything as
6042 violent as interrupt_query. If we want to provide a way out of
6043 here without getting to the next QUIT, it should be based on
6044 hitting ^C twice as in remote_wait. */
6045 if (quit_flag)
6046 {
6047 quit_flag = 0;
6048 interrupt_query ();
6049 }
6050 #endif
6051 }
6052 return 0;
6053 }
6054
6055 /* Come here after finding the start of a frame when we expected an
6056 ack. Do our best to discard the rest of this packet. */
6057
6058 static void
6059 skip_frame (void)
6060 {
6061 int c;
6062
6063 while (1)
6064 {
6065 c = readchar (remote_timeout);
6066 switch (c)
6067 {
6068 case SERIAL_TIMEOUT:
6069 /* Nothing we can do. */
6070 return;
6071 case '#':
6072 /* Discard the two bytes of checksum and stop. */
6073 c = readchar (remote_timeout);
6074 if (c >= 0)
6075 c = readchar (remote_timeout);
6076
6077 return;
6078 case '*': /* Run length encoding. */
6079 /* Discard the repeat count. */
6080 c = readchar (remote_timeout);
6081 if (c < 0)
6082 return;
6083 break;
6084 default:
6085 /* A regular character. */
6086 break;
6087 }
6088 }
6089 }
6090
6091 /* Come here after finding the start of the frame. Collect the rest
6092 into *BUF, verifying the checksum, length, and handling run-length
6093 compression. NUL terminate the buffer. If there is not enough room,
6094 expand *BUF using xrealloc.
6095
6096 Returns -1 on error, number of characters in buffer (ignoring the
6097 trailing NULL) on success. (could be extended to return one of the
6098 SERIAL status indications). */
6099
6100 static long
6101 read_frame (char **buf_p,
6102 long *sizeof_buf)
6103 {
6104 unsigned char csum;
6105 long bc;
6106 int c;
6107 char *buf = *buf_p;
6108 struct remote_state *rs = get_remote_state ();
6109
6110 csum = 0;
6111 bc = 0;
6112
6113 while (1)
6114 {
6115 c = readchar (remote_timeout);
6116 switch (c)
6117 {
6118 case SERIAL_TIMEOUT:
6119 if (remote_debug)
6120 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
6121 return -1;
6122 case '$':
6123 if (remote_debug)
6124 fputs_filtered ("Saw new packet start in middle of old one\n",
6125 gdb_stdlog);
6126 return -1; /* Start a new packet, count retries. */
6127 case '#':
6128 {
6129 unsigned char pktcsum;
6130 int check_0 = 0;
6131 int check_1 = 0;
6132
6133 buf[bc] = '\0';
6134
6135 check_0 = readchar (remote_timeout);
6136 if (check_0 >= 0)
6137 check_1 = readchar (remote_timeout);
6138
6139 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
6140 {
6141 if (remote_debug)
6142 fputs_filtered ("Timeout in checksum, retrying\n",
6143 gdb_stdlog);
6144 return -1;
6145 }
6146 else if (check_0 < 0 || check_1 < 0)
6147 {
6148 if (remote_debug)
6149 fputs_filtered ("Communication error in checksum\n",
6150 gdb_stdlog);
6151 return -1;
6152 }
6153
6154 /* Don't recompute the checksum; with no ack packets we
6155 don't have any way to indicate a packet retransmission
6156 is necessary. */
6157 if (rs->noack_mode)
6158 return bc;
6159
6160 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
6161 if (csum == pktcsum)
6162 return bc;
6163
6164 if (remote_debug)
6165 {
6166 fprintf_filtered (gdb_stdlog,
6167 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
6168 pktcsum, csum);
6169 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
6170 fputs_filtered ("\n", gdb_stdlog);
6171 }
6172 /* Number of characters in buffer ignoring trailing
6173 NULL. */
6174 return -1;
6175 }
6176 case '*': /* Run length encoding. */
6177 {
6178 int repeat;
6179 csum += c;
6180
6181 c = readchar (remote_timeout);
6182 csum += c;
6183 repeat = c - ' ' + 3; /* Compute repeat count. */
6184
6185 /* The character before ``*'' is repeated. */
6186
6187 if (repeat > 0 && repeat <= 255 && bc > 0)
6188 {
6189 if (bc + repeat - 1 >= *sizeof_buf - 1)
6190 {
6191 /* Make some more room in the buffer. */
6192 *sizeof_buf += repeat;
6193 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6194 buf = *buf_p;
6195 }
6196
6197 memset (&buf[bc], buf[bc - 1], repeat);
6198 bc += repeat;
6199 continue;
6200 }
6201
6202 buf[bc] = '\0';
6203 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
6204 return -1;
6205 }
6206 default:
6207 if (bc >= *sizeof_buf - 1)
6208 {
6209 /* Make some more room in the buffer. */
6210 *sizeof_buf *= 2;
6211 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6212 buf = *buf_p;
6213 }
6214
6215 buf[bc++] = c;
6216 csum += c;
6217 continue;
6218 }
6219 }
6220 }
6221
6222 /* Read a packet from the remote machine, with error checking, and
6223 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6224 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6225 rather than timing out; this is used (in synchronous mode) to wait
6226 for a target that is is executing user code to stop. */
6227 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
6228 don't have to change all the calls to getpkt to deal with the
6229 return value, because at the moment I don't know what the right
6230 thing to do it for those. */
6231 void
6232 getpkt (char **buf,
6233 long *sizeof_buf,
6234 int forever)
6235 {
6236 int timed_out;
6237
6238 timed_out = getpkt_sane (buf, sizeof_buf, forever);
6239 }
6240
6241
6242 /* Read a packet from the remote machine, with error checking, and
6243 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6244 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6245 rather than timing out; this is used (in synchronous mode) to wait
6246 for a target that is is executing user code to stop. If FOREVER ==
6247 0, this function is allowed to time out gracefully and return an
6248 indication of this to the caller. Otherwise return the number of
6249 bytes read. If EXPECTING_NOTIF, consider receiving a notification
6250 enough reason to return to the caller. */
6251
6252 static int
6253 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
6254 int expecting_notif)
6255 {
6256 struct remote_state *rs = get_remote_state ();
6257 int c;
6258 int tries;
6259 int timeout;
6260 int val;
6261
6262 /* We're reading a new response. Make sure we don't look at a
6263 previously cached response. */
6264 rs->cached_wait_status = 0;
6265
6266 strcpy (*buf, "timeout");
6267
6268 if (forever)
6269 timeout = watchdog > 0 ? watchdog : -1;
6270 else if (expecting_notif)
6271 timeout = 0; /* There should already be a char in the buffer. If
6272 not, bail out. */
6273 else
6274 timeout = remote_timeout;
6275
6276 #define MAX_TRIES 3
6277
6278 /* Process any number of notifications, and then return when
6279 we get a packet. */
6280 for (;;)
6281 {
6282 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
6283 times. */
6284 for (tries = 1; tries <= MAX_TRIES; tries++)
6285 {
6286 /* This can loop forever if the remote side sends us
6287 characters continuously, but if it pauses, we'll get
6288 SERIAL_TIMEOUT from readchar because of timeout. Then
6289 we'll count that as a retry.
6290
6291 Note that even when forever is set, we will only wait
6292 forever prior to the start of a packet. After that, we
6293 expect characters to arrive at a brisk pace. They should
6294 show up within remote_timeout intervals. */
6295 do
6296 c = readchar (timeout);
6297 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
6298
6299 if (c == SERIAL_TIMEOUT)
6300 {
6301 if (expecting_notif)
6302 return -1; /* Don't complain, it's normal to not get
6303 anything in this case. */
6304
6305 if (forever) /* Watchdog went off? Kill the target. */
6306 {
6307 QUIT;
6308 pop_target ();
6309 error (_("Watchdog timeout has expired. Target detached."));
6310 }
6311 if (remote_debug)
6312 fputs_filtered ("Timed out.\n", gdb_stdlog);
6313 }
6314 else
6315 {
6316 /* We've found the start of a packet or notification.
6317 Now collect the data. */
6318 val = read_frame (buf, sizeof_buf);
6319 if (val >= 0)
6320 break;
6321 }
6322
6323 serial_write (remote_desc, "-", 1);
6324 }
6325
6326 if (tries > MAX_TRIES)
6327 {
6328 /* We have tried hard enough, and just can't receive the
6329 packet/notification. Give up. */
6330 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
6331
6332 /* Skip the ack char if we're in no-ack mode. */
6333 if (!rs->noack_mode)
6334 serial_write (remote_desc, "+", 1);
6335 return -1;
6336 }
6337
6338 /* If we got an ordinary packet, return that to our caller. */
6339 if (c == '$')
6340 {
6341 if (remote_debug)
6342 {
6343 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
6344 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
6345 fprintf_unfiltered (gdb_stdlog, "\n");
6346 }
6347
6348 /* Skip the ack char if we're in no-ack mode. */
6349 if (!rs->noack_mode)
6350 serial_write (remote_desc, "+", 1);
6351 return val;
6352 }
6353
6354 /* If we got a notification, handle it, and go back to looking
6355 for a packet. */
6356 else
6357 {
6358 gdb_assert (c == '%');
6359
6360 if (remote_debug)
6361 {
6362 fprintf_unfiltered (gdb_stdlog, " Notification received: ");
6363 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
6364 fprintf_unfiltered (gdb_stdlog, "\n");
6365 }
6366
6367 handle_notification (*buf, val);
6368
6369 /* Notifications require no acknowledgement. */
6370
6371 if (expecting_notif)
6372 return -1;
6373 }
6374 }
6375 }
6376
6377 static int
6378 getpkt_sane (char **buf, long *sizeof_buf, int forever)
6379 {
6380 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
6381 }
6382
6383 static int
6384 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
6385 {
6386 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
6387 }
6388
6389 \f
6390 static void
6391 remote_kill (void)
6392 {
6393 /* Use catch_errors so the user can quit from gdb even when we
6394 aren't on speaking terms with the remote system. */
6395 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
6396
6397 /* Don't wait for it to die. I'm not really sure it matters whether
6398 we do or not. For the existing stubs, kill is a noop. */
6399 target_mourn_inferior ();
6400 }
6401
6402 static int
6403 remote_vkill (int pid, struct remote_state *rs)
6404 {
6405 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6406 return -1;
6407
6408 /* Tell the remote target to detach. */
6409 sprintf (rs->buf, "vKill;%x", pid);
6410 putpkt (rs->buf);
6411 getpkt (&rs->buf, &rs->buf_size, 0);
6412
6413 if (packet_ok (rs->buf,
6414 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
6415 return 0;
6416 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6417 return -1;
6418 else
6419 return 1;
6420 }
6421
6422 static void
6423 extended_remote_kill (void)
6424 {
6425 int res;
6426 int pid = ptid_get_pid (inferior_ptid);
6427 struct remote_state *rs = get_remote_state ();
6428
6429 res = remote_vkill (pid, rs);
6430 if (res == -1 && !remote_multi_process_p (rs))
6431 {
6432 /* Don't try 'k' on a multi-process aware stub -- it has no way
6433 to specify the pid. */
6434
6435 putpkt ("k");
6436 #if 0
6437 getpkt (&rs->buf, &rs->buf_size, 0);
6438 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
6439 res = 1;
6440 #else
6441 /* Don't wait for it to die. I'm not really sure it matters whether
6442 we do or not. For the existing stubs, kill is a noop. */
6443 res = 0;
6444 #endif
6445 }
6446
6447 if (res != 0)
6448 error (_("Can't kill process"));
6449
6450 delete_inferior (pid);
6451 target_mourn_inferior ();
6452 }
6453
6454 static void
6455 remote_mourn (struct target_ops *ops)
6456 {
6457 remote_mourn_1 (ops);
6458 }
6459
6460 /* Worker function for remote_mourn. */
6461 static void
6462 remote_mourn_1 (struct target_ops *target)
6463 {
6464 unpush_target (target);
6465
6466 /* remote_close takes care of cleaning up. */
6467 }
6468
6469 static int
6470 select_new_thread_callback (struct thread_info *th, void* data)
6471 {
6472 if (!is_exited (th->ptid))
6473 {
6474 switch_to_thread (th->ptid);
6475 printf_filtered (_("[Switching to %s]\n"),
6476 target_pid_to_str (inferior_ptid));
6477 return 1;
6478 }
6479 return 0;
6480 }
6481
6482 static void
6483 extended_remote_mourn_1 (struct target_ops *target)
6484 {
6485 struct remote_state *rs = get_remote_state ();
6486
6487 /* In case we got here due to an error, but we're going to stay
6488 connected. */
6489 rs->waiting_for_stop_reply = 0;
6490
6491 /* We're no longer interested in these events. */
6492 discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
6493
6494 /* Unlike "target remote", we do not want to unpush the target; then
6495 the next time the user says "run", we won't be connected. */
6496
6497 if (have_inferiors ())
6498 {
6499 extern void nullify_last_target_wait_ptid ();
6500 /* Multi-process case. The current process has exited, but
6501 there are other processes to debug. Switch to the first
6502 available. */
6503 iterate_over_threads (select_new_thread_callback, NULL);
6504 nullify_last_target_wait_ptid ();
6505 }
6506 else
6507 {
6508 struct remote_state *rs = get_remote_state ();
6509
6510 /* Call common code to mark the inferior as not running. */
6511 generic_mourn_inferior ();
6512 if (!remote_multi_process_p (rs))
6513 {
6514 /* Check whether the target is running now - some remote stubs
6515 automatically restart after kill. */
6516 putpkt ("?");
6517 getpkt (&rs->buf, &rs->buf_size, 0);
6518
6519 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
6520 {
6521 /* Assume that the target has been restarted. Set inferior_ptid
6522 so that bits of core GDB realizes there's something here, e.g.,
6523 so that the user can say "kill" again. */
6524 inferior_ptid = magic_null_ptid;
6525 }
6526 else
6527 {
6528 /* Mark this (still pushed) target as not executable until we
6529 restart it. */
6530 target_mark_exited (target);
6531 }
6532 }
6533 else
6534 /* Always remove execution if this was the last process. */
6535 target_mark_exited (target);
6536 }
6537 }
6538
6539 static void
6540 extended_remote_mourn (struct target_ops *ops)
6541 {
6542 extended_remote_mourn_1 (ops);
6543 }
6544
6545 static int
6546 extended_remote_run (char *args)
6547 {
6548 struct remote_state *rs = get_remote_state ();
6549 char *p;
6550 int len;
6551
6552 /* If the user has disabled vRun support, or we have detected that
6553 support is not available, do not try it. */
6554 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
6555 return -1;
6556
6557 strcpy (rs->buf, "vRun;");
6558 len = strlen (rs->buf);
6559
6560 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
6561 error (_("Remote file name too long for run packet"));
6562 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
6563
6564 gdb_assert (args != NULL);
6565 if (*args)
6566 {
6567 struct cleanup *back_to;
6568 int i;
6569 char **argv;
6570
6571 argv = gdb_buildargv (args);
6572 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
6573 for (i = 0; argv[i] != NULL; i++)
6574 {
6575 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
6576 error (_("Argument list too long for run packet"));
6577 rs->buf[len++] = ';';
6578 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
6579 }
6580 do_cleanups (back_to);
6581 }
6582
6583 rs->buf[len++] = '\0';
6584
6585 putpkt (rs->buf);
6586 getpkt (&rs->buf, &rs->buf_size, 0);
6587
6588 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
6589 {
6590 /* We have a wait response; we don't need it, though. All is well. */
6591 return 0;
6592 }
6593 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
6594 /* It wasn't disabled before, but it is now. */
6595 return -1;
6596 else
6597 {
6598 if (remote_exec_file[0] == '\0')
6599 error (_("Running the default executable on the remote target failed; "
6600 "try \"set remote exec-file\"?"));
6601 else
6602 error (_("Running \"%s\" on the remote target failed"),
6603 remote_exec_file);
6604 }
6605 }
6606
6607 /* In the extended protocol we want to be able to do things like
6608 "run" and have them basically work as expected. So we need
6609 a special create_inferior function. We support changing the
6610 executable file and the command line arguments, but not the
6611 environment. */
6612
6613 static void
6614 extended_remote_create_inferior_1 (char *exec_file, char *args,
6615 char **env, int from_tty)
6616 {
6617 /* If running asynchronously, register the target file descriptor
6618 with the event loop. */
6619 if (target_can_async_p ())
6620 target_async (inferior_event_handler, 0);
6621
6622 /* Now restart the remote server. */
6623 if (extended_remote_run (args) == -1)
6624 {
6625 /* vRun was not supported. Fail if we need it to do what the
6626 user requested. */
6627 if (remote_exec_file[0])
6628 error (_("Remote target does not support \"set remote exec-file\""));
6629 if (args[0])
6630 error (_("Remote target does not support \"set args\" or run <ARGS>"));
6631
6632 /* Fall back to "R". */
6633 extended_remote_restart ();
6634 }
6635
6636 /* Clean up from the last time we ran, before we mark the target
6637 running again. This will mark breakpoints uninserted, and
6638 get_offsets may insert breakpoints. */
6639 init_thread_list ();
6640 init_wait_for_inferior ();
6641
6642 /* Now mark the inferior as running before we do anything else. */
6643 inferior_ptid = magic_null_ptid;
6644
6645 /* Now, if we have thread information, update inferior_ptid. */
6646 inferior_ptid = remote_current_thread (inferior_ptid);
6647
6648 add_inferior (ptid_get_pid (inferior_ptid));
6649 add_thread_silent (inferior_ptid);
6650
6651 target_mark_running (&extended_remote_ops);
6652
6653 /* Get updated offsets, if the stub uses qOffsets. */
6654 get_offsets ();
6655 }
6656
6657 static void
6658 extended_remote_create_inferior (struct target_ops *ops,
6659 char *exec_file, char *args,
6660 char **env, int from_tty)
6661 {
6662 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
6663 }
6664 \f
6665
6666 /* Insert a breakpoint. On targets that have software breakpoint
6667 support, we ask the remote target to do the work; on targets
6668 which don't, we insert a traditional memory breakpoint. */
6669
6670 static int
6671 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
6672 {
6673 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
6674 If it succeeds, then set the support to PACKET_ENABLE. If it
6675 fails, and the user has explicitly requested the Z support then
6676 report an error, otherwise, mark it disabled and go on. */
6677
6678 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
6679 {
6680 CORE_ADDR addr = bp_tgt->placed_address;
6681 struct remote_state *rs;
6682 char *p;
6683 int bpsize;
6684
6685 gdbarch_breakpoint_from_pc (target_gdbarch, &addr, &bpsize);
6686
6687 rs = get_remote_state ();
6688 p = rs->buf;
6689
6690 *(p++) = 'Z';
6691 *(p++) = '0';
6692 *(p++) = ',';
6693 addr = (ULONGEST) remote_address_masked (addr);
6694 p += hexnumstr (p, addr);
6695 sprintf (p, ",%d", bpsize);
6696
6697 putpkt (rs->buf);
6698 getpkt (&rs->buf, &rs->buf_size, 0);
6699
6700 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
6701 {
6702 case PACKET_ERROR:
6703 return -1;
6704 case PACKET_OK:
6705 bp_tgt->placed_address = addr;
6706 bp_tgt->placed_size = bpsize;
6707 return 0;
6708 case PACKET_UNKNOWN:
6709 break;
6710 }
6711 }
6712
6713 return memory_insert_breakpoint (bp_tgt);
6714 }
6715
6716 static int
6717 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
6718 {
6719 CORE_ADDR addr = bp_tgt->placed_address;
6720 struct remote_state *rs = get_remote_state ();
6721 int bp_size;
6722
6723 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
6724 {
6725 char *p = rs->buf;
6726
6727 *(p++) = 'z';
6728 *(p++) = '0';
6729 *(p++) = ',';
6730
6731 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
6732 p += hexnumstr (p, addr);
6733 sprintf (p, ",%d", bp_tgt->placed_size);
6734
6735 putpkt (rs->buf);
6736 getpkt (&rs->buf, &rs->buf_size, 0);
6737
6738 return (rs->buf[0] == 'E');
6739 }
6740
6741 return memory_remove_breakpoint (bp_tgt);
6742 }
6743
6744 static int
6745 watchpoint_to_Z_packet (int type)
6746 {
6747 switch (type)
6748 {
6749 case hw_write:
6750 return Z_PACKET_WRITE_WP;
6751 break;
6752 case hw_read:
6753 return Z_PACKET_READ_WP;
6754 break;
6755 case hw_access:
6756 return Z_PACKET_ACCESS_WP;
6757 break;
6758 default:
6759 internal_error (__FILE__, __LINE__,
6760 _("hw_bp_to_z: bad watchpoint type %d"), type);
6761 }
6762 }
6763
6764 static int
6765 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
6766 {
6767 struct remote_state *rs = get_remote_state ();
6768 char *p;
6769 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
6770
6771 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
6772 return -1;
6773
6774 sprintf (rs->buf, "Z%x,", packet);
6775 p = strchr (rs->buf, '\0');
6776 addr = remote_address_masked (addr);
6777 p += hexnumstr (p, (ULONGEST) addr);
6778 sprintf (p, ",%x", len);
6779
6780 putpkt (rs->buf);
6781 getpkt (&rs->buf, &rs->buf_size, 0);
6782
6783 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
6784 {
6785 case PACKET_ERROR:
6786 case PACKET_UNKNOWN:
6787 return -1;
6788 case PACKET_OK:
6789 return 0;
6790 }
6791 internal_error (__FILE__, __LINE__,
6792 _("remote_insert_watchpoint: reached end of function"));
6793 }
6794
6795
6796 static int
6797 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
6798 {
6799 struct remote_state *rs = get_remote_state ();
6800 char *p;
6801 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
6802
6803 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
6804 return -1;
6805
6806 sprintf (rs->buf, "z%x,", packet);
6807 p = strchr (rs->buf, '\0');
6808 addr = remote_address_masked (addr);
6809 p += hexnumstr (p, (ULONGEST) addr);
6810 sprintf (p, ",%x", len);
6811 putpkt (rs->buf);
6812 getpkt (&rs->buf, &rs->buf_size, 0);
6813
6814 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
6815 {
6816 case PACKET_ERROR:
6817 case PACKET_UNKNOWN:
6818 return -1;
6819 case PACKET_OK:
6820 return 0;
6821 }
6822 internal_error (__FILE__, __LINE__,
6823 _("remote_remove_watchpoint: reached end of function"));
6824 }
6825
6826
6827 int remote_hw_watchpoint_limit = -1;
6828 int remote_hw_breakpoint_limit = -1;
6829
6830 static int
6831 remote_check_watch_resources (int type, int cnt, int ot)
6832 {
6833 if (type == bp_hardware_breakpoint)
6834 {
6835 if (remote_hw_breakpoint_limit == 0)
6836 return 0;
6837 else if (remote_hw_breakpoint_limit < 0)
6838 return 1;
6839 else if (cnt <= remote_hw_breakpoint_limit)
6840 return 1;
6841 }
6842 else
6843 {
6844 if (remote_hw_watchpoint_limit == 0)
6845 return 0;
6846 else if (remote_hw_watchpoint_limit < 0)
6847 return 1;
6848 else if (ot)
6849 return -1;
6850 else if (cnt <= remote_hw_watchpoint_limit)
6851 return 1;
6852 }
6853 return -1;
6854 }
6855
6856 static int
6857 remote_stopped_by_watchpoint (void)
6858 {
6859 return remote_stopped_by_watchpoint_p;
6860 }
6861
6862 static int
6863 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
6864 {
6865 int rc = 0;
6866 if (remote_stopped_by_watchpoint ())
6867 {
6868 *addr_p = remote_watch_data_address;
6869 rc = 1;
6870 }
6871
6872 return rc;
6873 }
6874
6875
6876 static int
6877 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
6878 {
6879 CORE_ADDR addr;
6880 struct remote_state *rs;
6881 char *p;
6882
6883 /* The length field should be set to the size of a breakpoint
6884 instruction, even though we aren't inserting one ourselves. */
6885
6886 gdbarch_breakpoint_from_pc
6887 (target_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
6888
6889 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
6890 return -1;
6891
6892 rs = get_remote_state ();
6893 p = rs->buf;
6894
6895 *(p++) = 'Z';
6896 *(p++) = '1';
6897 *(p++) = ',';
6898
6899 addr = remote_address_masked (bp_tgt->placed_address);
6900 p += hexnumstr (p, (ULONGEST) addr);
6901 sprintf (p, ",%x", bp_tgt->placed_size);
6902
6903 putpkt (rs->buf);
6904 getpkt (&rs->buf, &rs->buf_size, 0);
6905
6906 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
6907 {
6908 case PACKET_ERROR:
6909 case PACKET_UNKNOWN:
6910 return -1;
6911 case PACKET_OK:
6912 return 0;
6913 }
6914 internal_error (__FILE__, __LINE__,
6915 _("remote_insert_hw_breakpoint: reached end of function"));
6916 }
6917
6918
6919 static int
6920 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
6921 {
6922 CORE_ADDR addr;
6923 struct remote_state *rs = get_remote_state ();
6924 char *p = rs->buf;
6925
6926 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
6927 return -1;
6928
6929 *(p++) = 'z';
6930 *(p++) = '1';
6931 *(p++) = ',';
6932
6933 addr = remote_address_masked (bp_tgt->placed_address);
6934 p += hexnumstr (p, (ULONGEST) addr);
6935 sprintf (p, ",%x", bp_tgt->placed_size);
6936
6937 putpkt (rs->buf);
6938 getpkt (&rs->buf, &rs->buf_size, 0);
6939
6940 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
6941 {
6942 case PACKET_ERROR:
6943 case PACKET_UNKNOWN:
6944 return -1;
6945 case PACKET_OK:
6946 return 0;
6947 }
6948 internal_error (__FILE__, __LINE__,
6949 _("remote_remove_hw_breakpoint: reached end of function"));
6950 }
6951
6952 /* Table used by the crc32 function to calcuate the checksum. */
6953
6954 static unsigned long crc32_table[256] =
6955 {0, 0};
6956
6957 static unsigned long
6958 crc32 (unsigned char *buf, int len, unsigned int crc)
6959 {
6960 if (!crc32_table[1])
6961 {
6962 /* Initialize the CRC table and the decoding table. */
6963 int i, j;
6964 unsigned int c;
6965
6966 for (i = 0; i < 256; i++)
6967 {
6968 for (c = i << 24, j = 8; j > 0; --j)
6969 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
6970 crc32_table[i] = c;
6971 }
6972 }
6973
6974 while (len--)
6975 {
6976 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
6977 buf++;
6978 }
6979 return crc;
6980 }
6981
6982 /* compare-sections command
6983
6984 With no arguments, compares each loadable section in the exec bfd
6985 with the same memory range on the target, and reports mismatches.
6986 Useful for verifying the image on the target against the exec file.
6987 Depends on the target understanding the new "qCRC:" request. */
6988
6989 /* FIXME: cagney/1999-10-26: This command should be broken down into a
6990 target method (target verify memory) and generic version of the
6991 actual command. This will allow other high-level code (especially
6992 generic_load()) to make use of this target functionality. */
6993
6994 static void
6995 compare_sections_command (char *args, int from_tty)
6996 {
6997 struct remote_state *rs = get_remote_state ();
6998 asection *s;
6999 unsigned long host_crc, target_crc;
7000 extern bfd *exec_bfd;
7001 struct cleanup *old_chain;
7002 char *tmp;
7003 char *sectdata;
7004 const char *sectname;
7005 bfd_size_type size;
7006 bfd_vma lma;
7007 int matched = 0;
7008 int mismatched = 0;
7009
7010 if (!exec_bfd)
7011 error (_("command cannot be used without an exec file"));
7012 if (!current_target.to_shortname ||
7013 strcmp (current_target.to_shortname, "remote") != 0)
7014 error (_("command can only be used with remote target"));
7015
7016 for (s = exec_bfd->sections; s; s = s->next)
7017 {
7018 if (!(s->flags & SEC_LOAD))
7019 continue; /* skip non-loadable section */
7020
7021 size = bfd_get_section_size (s);
7022 if (size == 0)
7023 continue; /* skip zero-length section */
7024
7025 sectname = bfd_get_section_name (exec_bfd, s);
7026 if (args && strcmp (args, sectname) != 0)
7027 continue; /* not the section selected by user */
7028
7029 matched = 1; /* do this section */
7030 lma = s->lma;
7031 /* FIXME: assumes lma can fit into long. */
7032 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
7033 (long) lma, (long) size);
7034 putpkt (rs->buf);
7035
7036 /* Be clever; compute the host_crc before waiting for target
7037 reply. */
7038 sectdata = xmalloc (size);
7039 old_chain = make_cleanup (xfree, sectdata);
7040 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
7041 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
7042
7043 getpkt (&rs->buf, &rs->buf_size, 0);
7044 if (rs->buf[0] == 'E')
7045 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
7046 sectname, paddr (lma), paddr (lma + size));
7047 if (rs->buf[0] != 'C')
7048 error (_("remote target does not support this operation"));
7049
7050 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
7051 target_crc = target_crc * 16 + fromhex (*tmp);
7052
7053 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
7054 sectname, paddr (lma), paddr (lma + size));
7055 if (host_crc == target_crc)
7056 printf_filtered ("matched.\n");
7057 else
7058 {
7059 printf_filtered ("MIS-MATCHED!\n");
7060 mismatched++;
7061 }
7062
7063 do_cleanups (old_chain);
7064 }
7065 if (mismatched > 0)
7066 warning (_("One or more sections of the remote executable does not match\n\
7067 the loaded file\n"));
7068 if (args && !matched)
7069 printf_filtered (_("No loaded section named '%s'.\n"), args);
7070 }
7071
7072 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
7073 into remote target. The number of bytes written to the remote
7074 target is returned, or -1 for error. */
7075
7076 static LONGEST
7077 remote_write_qxfer (struct target_ops *ops, const char *object_name,
7078 const char *annex, const gdb_byte *writebuf,
7079 ULONGEST offset, LONGEST len,
7080 struct packet_config *packet)
7081 {
7082 int i, buf_len;
7083 ULONGEST n;
7084 gdb_byte *wbuf;
7085 struct remote_state *rs = get_remote_state ();
7086 int max_size = get_memory_write_packet_size ();
7087
7088 if (packet->support == PACKET_DISABLE)
7089 return -1;
7090
7091 /* Insert header. */
7092 i = snprintf (rs->buf, max_size,
7093 "qXfer:%s:write:%s:%s:",
7094 object_name, annex ? annex : "",
7095 phex_nz (offset, sizeof offset));
7096 max_size -= (i + 1);
7097
7098 /* Escape as much data as fits into rs->buf. */
7099 buf_len = remote_escape_output
7100 (writebuf, len, (rs->buf + i), &max_size, max_size);
7101
7102 if (putpkt_binary (rs->buf, i + buf_len) < 0
7103 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
7104 || packet_ok (rs->buf, packet) != PACKET_OK)
7105 return -1;
7106
7107 unpack_varlen_hex (rs->buf, &n);
7108 return n;
7109 }
7110
7111 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
7112 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
7113 number of bytes read is returned, or 0 for EOF, or -1 for error.
7114 The number of bytes read may be less than LEN without indicating an
7115 EOF. PACKET is checked and updated to indicate whether the remote
7116 target supports this object. */
7117
7118 static LONGEST
7119 remote_read_qxfer (struct target_ops *ops, const char *object_name,
7120 const char *annex,
7121 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
7122 struct packet_config *packet)
7123 {
7124 static char *finished_object;
7125 static char *finished_annex;
7126 static ULONGEST finished_offset;
7127
7128 struct remote_state *rs = get_remote_state ();
7129 unsigned int total = 0;
7130 LONGEST i, n, packet_len;
7131
7132 if (packet->support == PACKET_DISABLE)
7133 return -1;
7134
7135 /* Check whether we've cached an end-of-object packet that matches
7136 this request. */
7137 if (finished_object)
7138 {
7139 if (strcmp (object_name, finished_object) == 0
7140 && strcmp (annex ? annex : "", finished_annex) == 0
7141 && offset == finished_offset)
7142 return 0;
7143
7144 /* Otherwise, we're now reading something different. Discard
7145 the cache. */
7146 xfree (finished_object);
7147 xfree (finished_annex);
7148 finished_object = NULL;
7149 finished_annex = NULL;
7150 }
7151
7152 /* Request only enough to fit in a single packet. The actual data
7153 may not, since we don't know how much of it will need to be escaped;
7154 the target is free to respond with slightly less data. We subtract
7155 five to account for the response type and the protocol frame. */
7156 n = min (get_remote_packet_size () - 5, len);
7157 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
7158 object_name, annex ? annex : "",
7159 phex_nz (offset, sizeof offset),
7160 phex_nz (n, sizeof n));
7161 i = putpkt (rs->buf);
7162 if (i < 0)
7163 return -1;
7164
7165 rs->buf[0] = '\0';
7166 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
7167 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
7168 return -1;
7169
7170 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
7171 error (_("Unknown remote qXfer reply: %s"), rs->buf);
7172
7173 /* 'm' means there is (or at least might be) more data after this
7174 batch. That does not make sense unless there's at least one byte
7175 of data in this reply. */
7176 if (rs->buf[0] == 'm' && packet_len == 1)
7177 error (_("Remote qXfer reply contained no data."));
7178
7179 /* Got some data. */
7180 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
7181
7182 /* 'l' is an EOF marker, possibly including a final block of data,
7183 or possibly empty. If we have the final block of a non-empty
7184 object, record this fact to bypass a subsequent partial read. */
7185 if (rs->buf[0] == 'l' && offset + i > 0)
7186 {
7187 finished_object = xstrdup (object_name);
7188 finished_annex = xstrdup (annex ? annex : "");
7189 finished_offset = offset + i;
7190 }
7191
7192 return i;
7193 }
7194
7195 static LONGEST
7196 remote_xfer_partial (struct target_ops *ops, enum target_object object,
7197 const char *annex, gdb_byte *readbuf,
7198 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
7199 {
7200 struct remote_state *rs;
7201 int i;
7202 char *p2;
7203 char query_type;
7204
7205 set_general_thread (inferior_ptid);
7206
7207 rs = get_remote_state ();
7208
7209 /* Handle memory using the standard memory routines. */
7210 if (object == TARGET_OBJECT_MEMORY)
7211 {
7212 int xfered;
7213 errno = 0;
7214
7215 /* If the remote target is connected but not running, we should
7216 pass this request down to a lower stratum (e.g. the executable
7217 file). */
7218 if (!target_has_execution)
7219 return 0;
7220
7221 if (writebuf != NULL)
7222 xfered = remote_write_bytes (offset, writebuf, len);
7223 else
7224 xfered = remote_read_bytes (offset, readbuf, len);
7225
7226 if (xfered > 0)
7227 return xfered;
7228 else if (xfered == 0 && errno == 0)
7229 return 0;
7230 else
7231 return -1;
7232 }
7233
7234 /* Handle SPU memory using qxfer packets. */
7235 if (object == TARGET_OBJECT_SPU)
7236 {
7237 if (readbuf)
7238 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
7239 &remote_protocol_packets
7240 [PACKET_qXfer_spu_read]);
7241 else
7242 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
7243 &remote_protocol_packets
7244 [PACKET_qXfer_spu_write]);
7245 }
7246
7247 /* Only handle flash writes. */
7248 if (writebuf != NULL)
7249 {
7250 LONGEST xfered;
7251
7252 switch (object)
7253 {
7254 case TARGET_OBJECT_FLASH:
7255 xfered = remote_flash_write (ops, offset, len, writebuf);
7256
7257 if (xfered > 0)
7258 return xfered;
7259 else if (xfered == 0 && errno == 0)
7260 return 0;
7261 else
7262 return -1;
7263
7264 default:
7265 return -1;
7266 }
7267 }
7268
7269 /* Map pre-existing objects onto letters. DO NOT do this for new
7270 objects!!! Instead specify new query packets. */
7271 switch (object)
7272 {
7273 case TARGET_OBJECT_AVR:
7274 query_type = 'R';
7275 break;
7276
7277 case TARGET_OBJECT_AUXV:
7278 gdb_assert (annex == NULL);
7279 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
7280 &remote_protocol_packets[PACKET_qXfer_auxv]);
7281
7282 case TARGET_OBJECT_AVAILABLE_FEATURES:
7283 return remote_read_qxfer
7284 (ops, "features", annex, readbuf, offset, len,
7285 &remote_protocol_packets[PACKET_qXfer_features]);
7286
7287 case TARGET_OBJECT_LIBRARIES:
7288 return remote_read_qxfer
7289 (ops, "libraries", annex, readbuf, offset, len,
7290 &remote_protocol_packets[PACKET_qXfer_libraries]);
7291
7292 case TARGET_OBJECT_MEMORY_MAP:
7293 gdb_assert (annex == NULL);
7294 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
7295 &remote_protocol_packets[PACKET_qXfer_memory_map]);
7296
7297 default:
7298 return -1;
7299 }
7300
7301 /* Note: a zero OFFSET and LEN can be used to query the minimum
7302 buffer size. */
7303 if (offset == 0 && len == 0)
7304 return (get_remote_packet_size ());
7305 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
7306 large enough let the caller deal with it. */
7307 if (len < get_remote_packet_size ())
7308 return -1;
7309 len = get_remote_packet_size ();
7310
7311 /* Except for querying the minimum buffer size, target must be open. */
7312 if (!remote_desc)
7313 error (_("remote query is only available after target open"));
7314
7315 gdb_assert (annex != NULL);
7316 gdb_assert (readbuf != NULL);
7317
7318 p2 = rs->buf;
7319 *p2++ = 'q';
7320 *p2++ = query_type;
7321
7322 /* We used one buffer char for the remote protocol q command and
7323 another for the query type. As the remote protocol encapsulation
7324 uses 4 chars plus one extra in case we are debugging
7325 (remote_debug), we have PBUFZIZ - 7 left to pack the query
7326 string. */
7327 i = 0;
7328 while (annex[i] && (i < (get_remote_packet_size () - 8)))
7329 {
7330 /* Bad caller may have sent forbidden characters. */
7331 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
7332 *p2++ = annex[i];
7333 i++;
7334 }
7335 *p2 = '\0';
7336 gdb_assert (annex[i] == '\0');
7337
7338 i = putpkt (rs->buf);
7339 if (i < 0)
7340 return i;
7341
7342 getpkt (&rs->buf, &rs->buf_size, 0);
7343 strcpy ((char *) readbuf, rs->buf);
7344
7345 return strlen ((char *) readbuf);
7346 }
7347
7348 static int
7349 remote_search_memory (struct target_ops* ops,
7350 CORE_ADDR start_addr, ULONGEST search_space_len,
7351 const gdb_byte *pattern, ULONGEST pattern_len,
7352 CORE_ADDR *found_addrp)
7353 {
7354 struct remote_state *rs = get_remote_state ();
7355 int max_size = get_memory_write_packet_size ();
7356 struct packet_config *packet =
7357 &remote_protocol_packets[PACKET_qSearch_memory];
7358 /* number of packet bytes used to encode the pattern,
7359 this could be more than PATTERN_LEN due to escape characters */
7360 int escaped_pattern_len;
7361 /* amount of pattern that was encodable in the packet */
7362 int used_pattern_len;
7363 int i;
7364 int found;
7365 ULONGEST found_addr;
7366
7367 /* Don't go to the target if we don't have to.
7368 This is done before checking packet->support to avoid the possibility that
7369 a success for this edge case means the facility works in general. */
7370 if (pattern_len > search_space_len)
7371 return 0;
7372 if (pattern_len == 0)
7373 {
7374 *found_addrp = start_addr;
7375 return 1;
7376 }
7377
7378 /* If we already know the packet isn't supported, fall back to the simple
7379 way of searching memory. */
7380
7381 if (packet->support == PACKET_DISABLE)
7382 {
7383 /* Target doesn't provided special support, fall back and use the
7384 standard support (copy memory and do the search here). */
7385 return simple_search_memory (ops, start_addr, search_space_len,
7386 pattern, pattern_len, found_addrp);
7387 }
7388
7389 /* Insert header. */
7390 i = snprintf (rs->buf, max_size,
7391 "qSearch:memory:%s;%s;",
7392 paddr_nz (start_addr),
7393 phex_nz (search_space_len, sizeof (search_space_len)));
7394 max_size -= (i + 1);
7395
7396 /* Escape as much data as fits into rs->buf. */
7397 escaped_pattern_len =
7398 remote_escape_output (pattern, pattern_len, (rs->buf + i),
7399 &used_pattern_len, max_size);
7400
7401 /* Bail if the pattern is too large. */
7402 if (used_pattern_len != pattern_len)
7403 error ("Pattern is too large to transmit to remote target.");
7404
7405 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
7406 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
7407 || packet_ok (rs->buf, packet) != PACKET_OK)
7408 {
7409 /* The request may not have worked because the command is not
7410 supported. If so, fall back to the simple way. */
7411 if (packet->support == PACKET_DISABLE)
7412 {
7413 return simple_search_memory (ops, start_addr, search_space_len,
7414 pattern, pattern_len, found_addrp);
7415 }
7416 return -1;
7417 }
7418
7419 if (rs->buf[0] == '0')
7420 found = 0;
7421 else if (rs->buf[0] == '1')
7422 {
7423 found = 1;
7424 if (rs->buf[1] != ',')
7425 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
7426 unpack_varlen_hex (rs->buf + 2, &found_addr);
7427 *found_addrp = found_addr;
7428 }
7429 else
7430 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
7431
7432 return found;
7433 }
7434
7435 static void
7436 remote_rcmd (char *command,
7437 struct ui_file *outbuf)
7438 {
7439 struct remote_state *rs = get_remote_state ();
7440 char *p = rs->buf;
7441
7442 if (!remote_desc)
7443 error (_("remote rcmd is only available after target open"));
7444
7445 /* Send a NULL command across as an empty command. */
7446 if (command == NULL)
7447 command = "";
7448
7449 /* The query prefix. */
7450 strcpy (rs->buf, "qRcmd,");
7451 p = strchr (rs->buf, '\0');
7452
7453 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
7454 error (_("\"monitor\" command ``%s'' is too long."), command);
7455
7456 /* Encode the actual command. */
7457 bin2hex ((gdb_byte *) command, p, 0);
7458
7459 if (putpkt (rs->buf) < 0)
7460 error (_("Communication problem with target."));
7461
7462 /* get/display the response */
7463 while (1)
7464 {
7465 char *buf;
7466
7467 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
7468 rs->buf[0] = '\0';
7469 getpkt (&rs->buf, &rs->buf_size, 0);
7470 buf = rs->buf;
7471 if (buf[0] == '\0')
7472 error (_("Target does not support this command."));
7473 if (buf[0] == 'O' && buf[1] != 'K')
7474 {
7475 remote_console_output (buf + 1); /* 'O' message from stub. */
7476 continue;
7477 }
7478 if (strcmp (buf, "OK") == 0)
7479 break;
7480 if (strlen (buf) == 3 && buf[0] == 'E'
7481 && isdigit (buf[1]) && isdigit (buf[2]))
7482 {
7483 error (_("Protocol error with Rcmd"));
7484 }
7485 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
7486 {
7487 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
7488 fputc_unfiltered (c, outbuf);
7489 }
7490 break;
7491 }
7492 }
7493
7494 static VEC(mem_region_s) *
7495 remote_memory_map (struct target_ops *ops)
7496 {
7497 VEC(mem_region_s) *result = NULL;
7498 char *text = target_read_stralloc (&current_target,
7499 TARGET_OBJECT_MEMORY_MAP, NULL);
7500
7501 if (text)
7502 {
7503 struct cleanup *back_to = make_cleanup (xfree, text);
7504 result = parse_memory_map (text);
7505 do_cleanups (back_to);
7506 }
7507
7508 return result;
7509 }
7510
7511 static void
7512 packet_command (char *args, int from_tty)
7513 {
7514 struct remote_state *rs = get_remote_state ();
7515
7516 if (!remote_desc)
7517 error (_("command can only be used with remote target"));
7518
7519 if (!args)
7520 error (_("remote-packet command requires packet text as argument"));
7521
7522 puts_filtered ("sending: ");
7523 print_packet (args);
7524 puts_filtered ("\n");
7525 putpkt (args);
7526
7527 getpkt (&rs->buf, &rs->buf_size, 0);
7528 puts_filtered ("received: ");
7529 print_packet (rs->buf);
7530 puts_filtered ("\n");
7531 }
7532
7533 #if 0
7534 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
7535
7536 static void display_thread_info (struct gdb_ext_thread_info *info);
7537
7538 static void threadset_test_cmd (char *cmd, int tty);
7539
7540 static void threadalive_test (char *cmd, int tty);
7541
7542 static void threadlist_test_cmd (char *cmd, int tty);
7543
7544 int get_and_display_threadinfo (threadref *ref);
7545
7546 static void threadinfo_test_cmd (char *cmd, int tty);
7547
7548 static int thread_display_step (threadref *ref, void *context);
7549
7550 static void threadlist_update_test_cmd (char *cmd, int tty);
7551
7552 static void init_remote_threadtests (void);
7553
7554 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
7555
7556 static void
7557 threadset_test_cmd (char *cmd, int tty)
7558 {
7559 int sample_thread = SAMPLE_THREAD;
7560
7561 printf_filtered (_("Remote threadset test\n"));
7562 set_general_thread (sample_thread);
7563 }
7564
7565
7566 static void
7567 threadalive_test (char *cmd, int tty)
7568 {
7569 int sample_thread = SAMPLE_THREAD;
7570 int pid = ptid_get_pid (inferior_ptid);
7571 ptid_t ptid = ptid_build (pid, 0, sample_thread);
7572
7573 if (remote_thread_alive (ptid))
7574 printf_filtered ("PASS: Thread alive test\n");
7575 else
7576 printf_filtered ("FAIL: Thread alive test\n");
7577 }
7578
7579 void output_threadid (char *title, threadref *ref);
7580
7581 void
7582 output_threadid (char *title, threadref *ref)
7583 {
7584 char hexid[20];
7585
7586 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
7587 hexid[16] = 0;
7588 printf_filtered ("%s %s\n", title, (&hexid[0]));
7589 }
7590
7591 static void
7592 threadlist_test_cmd (char *cmd, int tty)
7593 {
7594 int startflag = 1;
7595 threadref nextthread;
7596 int done, result_count;
7597 threadref threadlist[3];
7598
7599 printf_filtered ("Remote Threadlist test\n");
7600 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
7601 &result_count, &threadlist[0]))
7602 printf_filtered ("FAIL: threadlist test\n");
7603 else
7604 {
7605 threadref *scan = threadlist;
7606 threadref *limit = scan + result_count;
7607
7608 while (scan < limit)
7609 output_threadid (" thread ", scan++);
7610 }
7611 }
7612
7613 void
7614 display_thread_info (struct gdb_ext_thread_info *info)
7615 {
7616 output_threadid ("Threadid: ", &info->threadid);
7617 printf_filtered ("Name: %s\n ", info->shortname);
7618 printf_filtered ("State: %s\n", info->display);
7619 printf_filtered ("other: %s\n\n", info->more_display);
7620 }
7621
7622 int
7623 get_and_display_threadinfo (threadref *ref)
7624 {
7625 int result;
7626 int set;
7627 struct gdb_ext_thread_info threadinfo;
7628
7629 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
7630 | TAG_MOREDISPLAY | TAG_DISPLAY;
7631 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
7632 display_thread_info (&threadinfo);
7633 return result;
7634 }
7635
7636 static void
7637 threadinfo_test_cmd (char *cmd, int tty)
7638 {
7639 int athread = SAMPLE_THREAD;
7640 threadref thread;
7641 int set;
7642
7643 int_to_threadref (&thread, athread);
7644 printf_filtered ("Remote Threadinfo test\n");
7645 if (!get_and_display_threadinfo (&thread))
7646 printf_filtered ("FAIL cannot get thread info\n");
7647 }
7648
7649 static int
7650 thread_display_step (threadref *ref, void *context)
7651 {
7652 /* output_threadid(" threadstep ",ref); *//* simple test */
7653 return get_and_display_threadinfo (ref);
7654 }
7655
7656 static void
7657 threadlist_update_test_cmd (char *cmd, int tty)
7658 {
7659 printf_filtered ("Remote Threadlist update test\n");
7660 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
7661 }
7662
7663 static void
7664 init_remote_threadtests (void)
7665 {
7666 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
7667 Fetch and print the remote list of thread identifiers, one pkt only"));
7668 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
7669 _("Fetch and display info about one thread"));
7670 add_com ("tset", class_obscure, threadset_test_cmd,
7671 _("Test setting to a different thread"));
7672 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
7673 _("Iterate through updating all remote thread info"));
7674 add_com ("talive", class_obscure, threadalive_test,
7675 _(" Remote thread alive test "));
7676 }
7677
7678 #endif /* 0 */
7679
7680 /* Convert a thread ID to a string. Returns the string in a static
7681 buffer. */
7682
7683 static char *
7684 remote_pid_to_str (ptid_t ptid)
7685 {
7686 static char buf[64];
7687 struct remote_state *rs = get_remote_state ();
7688
7689 if (ptid_equal (magic_null_ptid, ptid))
7690 {
7691 xsnprintf (buf, sizeof buf, "Thread <main>");
7692 return buf;
7693 }
7694 else if (remote_multi_process_p (rs)
7695 && ptid_get_tid (ptid) != 0 && ptid_get_pid (ptid) != 0)
7696 {
7697 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
7698 ptid_get_pid (ptid), ptid_get_tid (ptid));
7699 return buf;
7700 }
7701 else if (ptid_get_tid (ptid) != 0)
7702 {
7703 xsnprintf (buf, sizeof buf, "Thread %ld",
7704 ptid_get_tid (ptid));
7705 return buf;
7706 }
7707
7708 return normal_pid_to_str (ptid);
7709 }
7710
7711 /* Get the address of the thread local variable in OBJFILE which is
7712 stored at OFFSET within the thread local storage for thread PTID. */
7713
7714 static CORE_ADDR
7715 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
7716 {
7717 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
7718 {
7719 struct remote_state *rs = get_remote_state ();
7720 char *p = rs->buf;
7721 char *endp = rs->buf + get_remote_packet_size ();
7722 enum packet_result result;
7723
7724 strcpy (p, "qGetTLSAddr:");
7725 p += strlen (p);
7726 p = write_ptid (p, endp, ptid);
7727 *p++ = ',';
7728 p += hexnumstr (p, offset);
7729 *p++ = ',';
7730 p += hexnumstr (p, lm);
7731 *p++ = '\0';
7732
7733 putpkt (rs->buf);
7734 getpkt (&rs->buf, &rs->buf_size, 0);
7735 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
7736 if (result == PACKET_OK)
7737 {
7738 ULONGEST result;
7739
7740 unpack_varlen_hex (rs->buf, &result);
7741 return result;
7742 }
7743 else if (result == PACKET_UNKNOWN)
7744 throw_error (TLS_GENERIC_ERROR,
7745 _("Remote target doesn't support qGetTLSAddr packet"));
7746 else
7747 throw_error (TLS_GENERIC_ERROR,
7748 _("Remote target failed to process qGetTLSAddr request"));
7749 }
7750 else
7751 throw_error (TLS_GENERIC_ERROR,
7752 _("TLS not supported or disabled on this target"));
7753 /* Not reached. */
7754 return 0;
7755 }
7756
7757 /* Support for inferring a target description based on the current
7758 architecture and the size of a 'g' packet. While the 'g' packet
7759 can have any size (since optional registers can be left off the
7760 end), some sizes are easily recognizable given knowledge of the
7761 approximate architecture. */
7762
7763 struct remote_g_packet_guess
7764 {
7765 int bytes;
7766 const struct target_desc *tdesc;
7767 };
7768 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
7769 DEF_VEC_O(remote_g_packet_guess_s);
7770
7771 struct remote_g_packet_data
7772 {
7773 VEC(remote_g_packet_guess_s) *guesses;
7774 };
7775
7776 static struct gdbarch_data *remote_g_packet_data_handle;
7777
7778 static void *
7779 remote_g_packet_data_init (struct obstack *obstack)
7780 {
7781 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
7782 }
7783
7784 void
7785 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
7786 const struct target_desc *tdesc)
7787 {
7788 struct remote_g_packet_data *data
7789 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
7790 struct remote_g_packet_guess new_guess, *guess;
7791 int ix;
7792
7793 gdb_assert (tdesc != NULL);
7794
7795 for (ix = 0;
7796 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
7797 ix++)
7798 if (guess->bytes == bytes)
7799 internal_error (__FILE__, __LINE__,
7800 "Duplicate g packet description added for size %d",
7801 bytes);
7802
7803 new_guess.bytes = bytes;
7804 new_guess.tdesc = tdesc;
7805 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
7806 }
7807
7808 static const struct target_desc *
7809 remote_read_description (struct target_ops *target)
7810 {
7811 struct remote_g_packet_data *data
7812 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
7813
7814 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
7815 {
7816 struct remote_g_packet_guess *guess;
7817 int ix;
7818 int bytes = send_g_packet ();
7819
7820 for (ix = 0;
7821 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
7822 ix++)
7823 if (guess->bytes == bytes)
7824 return guess->tdesc;
7825
7826 /* We discard the g packet. A minor optimization would be to
7827 hold on to it, and fill the register cache once we have selected
7828 an architecture, but it's too tricky to do safely. */
7829 }
7830
7831 return NULL;
7832 }
7833
7834 /* Remote file transfer support. This is host-initiated I/O, not
7835 target-initiated; for target-initiated, see remote-fileio.c. */
7836
7837 /* If *LEFT is at least the length of STRING, copy STRING to
7838 *BUFFER, update *BUFFER to point to the new end of the buffer, and
7839 decrease *LEFT. Otherwise raise an error. */
7840
7841 static void
7842 remote_buffer_add_string (char **buffer, int *left, char *string)
7843 {
7844 int len = strlen (string);
7845
7846 if (len > *left)
7847 error (_("Packet too long for target."));
7848
7849 memcpy (*buffer, string, len);
7850 *buffer += len;
7851 *left -= len;
7852
7853 /* NUL-terminate the buffer as a convenience, if there is
7854 room. */
7855 if (*left)
7856 **buffer = '\0';
7857 }
7858
7859 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
7860 *BUFFER, update *BUFFER to point to the new end of the buffer, and
7861 decrease *LEFT. Otherwise raise an error. */
7862
7863 static void
7864 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
7865 int len)
7866 {
7867 if (2 * len > *left)
7868 error (_("Packet too long for target."));
7869
7870 bin2hex (bytes, *buffer, len);
7871 *buffer += 2 * len;
7872 *left -= 2 * len;
7873
7874 /* NUL-terminate the buffer as a convenience, if there is
7875 room. */
7876 if (*left)
7877 **buffer = '\0';
7878 }
7879
7880 /* If *LEFT is large enough, convert VALUE to hex and add it to
7881 *BUFFER, update *BUFFER to point to the new end of the buffer, and
7882 decrease *LEFT. Otherwise raise an error. */
7883
7884 static void
7885 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
7886 {
7887 int len = hexnumlen (value);
7888
7889 if (len > *left)
7890 error (_("Packet too long for target."));
7891
7892 hexnumstr (*buffer, value);
7893 *buffer += len;
7894 *left -= len;
7895
7896 /* NUL-terminate the buffer as a convenience, if there is
7897 room. */
7898 if (*left)
7899 **buffer = '\0';
7900 }
7901
7902 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
7903 value, *REMOTE_ERRNO to the remote error number or zero if none
7904 was included, and *ATTACHMENT to point to the start of the annex
7905 if any. The length of the packet isn't needed here; there may
7906 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
7907
7908 Return 0 if the packet could be parsed, -1 if it could not. If
7909 -1 is returned, the other variables may not be initialized. */
7910
7911 static int
7912 remote_hostio_parse_result (char *buffer, int *retcode,
7913 int *remote_errno, char **attachment)
7914 {
7915 char *p, *p2;
7916
7917 *remote_errno = 0;
7918 *attachment = NULL;
7919
7920 if (buffer[0] != 'F')
7921 return -1;
7922
7923 errno = 0;
7924 *retcode = strtol (&buffer[1], &p, 16);
7925 if (errno != 0 || p == &buffer[1])
7926 return -1;
7927
7928 /* Check for ",errno". */
7929 if (*p == ',')
7930 {
7931 errno = 0;
7932 *remote_errno = strtol (p + 1, &p2, 16);
7933 if (errno != 0 || p + 1 == p2)
7934 return -1;
7935 p = p2;
7936 }
7937
7938 /* Check for ";attachment". If there is no attachment, the
7939 packet should end here. */
7940 if (*p == ';')
7941 {
7942 *attachment = p + 1;
7943 return 0;
7944 }
7945 else if (*p == '\0')
7946 return 0;
7947 else
7948 return -1;
7949 }
7950
7951 /* Send a prepared I/O packet to the target and read its response.
7952 The prepared packet is in the global RS->BUF before this function
7953 is called, and the answer is there when we return.
7954
7955 COMMAND_BYTES is the length of the request to send, which may include
7956 binary data. WHICH_PACKET is the packet configuration to check
7957 before attempting a packet. If an error occurs, *REMOTE_ERRNO
7958 is set to the error number and -1 is returned. Otherwise the value
7959 returned by the function is returned.
7960
7961 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
7962 attachment is expected; an error will be reported if there's a
7963 mismatch. If one is found, *ATTACHMENT will be set to point into
7964 the packet buffer and *ATTACHMENT_LEN will be set to the
7965 attachment's length. */
7966
7967 static int
7968 remote_hostio_send_command (int command_bytes, int which_packet,
7969 int *remote_errno, char **attachment,
7970 int *attachment_len)
7971 {
7972 struct remote_state *rs = get_remote_state ();
7973 int ret, bytes_read;
7974 char *attachment_tmp;
7975
7976 if (!remote_desc
7977 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
7978 {
7979 *remote_errno = FILEIO_ENOSYS;
7980 return -1;
7981 }
7982
7983 putpkt_binary (rs->buf, command_bytes);
7984 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
7985
7986 /* If it timed out, something is wrong. Don't try to parse the
7987 buffer. */
7988 if (bytes_read < 0)
7989 {
7990 *remote_errno = FILEIO_EINVAL;
7991 return -1;
7992 }
7993
7994 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
7995 {
7996 case PACKET_ERROR:
7997 *remote_errno = FILEIO_EINVAL;
7998 return -1;
7999 case PACKET_UNKNOWN:
8000 *remote_errno = FILEIO_ENOSYS;
8001 return -1;
8002 case PACKET_OK:
8003 break;
8004 }
8005
8006 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
8007 &attachment_tmp))
8008 {
8009 *remote_errno = FILEIO_EINVAL;
8010 return -1;
8011 }
8012
8013 /* Make sure we saw an attachment if and only if we expected one. */
8014 if ((attachment_tmp == NULL && attachment != NULL)
8015 || (attachment_tmp != NULL && attachment == NULL))
8016 {
8017 *remote_errno = FILEIO_EINVAL;
8018 return -1;
8019 }
8020
8021 /* If an attachment was found, it must point into the packet buffer;
8022 work out how many bytes there were. */
8023 if (attachment_tmp != NULL)
8024 {
8025 *attachment = attachment_tmp;
8026 *attachment_len = bytes_read - (*attachment - rs->buf);
8027 }
8028
8029 return ret;
8030 }
8031
8032 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
8033 remote file descriptor, or -1 if an error occurs (and set
8034 *REMOTE_ERRNO). */
8035
8036 static int
8037 remote_hostio_open (const char *filename, int flags, int mode,
8038 int *remote_errno)
8039 {
8040 struct remote_state *rs = get_remote_state ();
8041 char *p = rs->buf;
8042 int left = get_remote_packet_size () - 1;
8043
8044 remote_buffer_add_string (&p, &left, "vFile:open:");
8045
8046 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8047 strlen (filename));
8048 remote_buffer_add_string (&p, &left, ",");
8049
8050 remote_buffer_add_int (&p, &left, flags);
8051 remote_buffer_add_string (&p, &left, ",");
8052
8053 remote_buffer_add_int (&p, &left, mode);
8054
8055 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
8056 remote_errno, NULL, NULL);
8057 }
8058
8059 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
8060 Return the number of bytes written, or -1 if an error occurs (and
8061 set *REMOTE_ERRNO). */
8062
8063 static int
8064 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
8065 ULONGEST offset, int *remote_errno)
8066 {
8067 struct remote_state *rs = get_remote_state ();
8068 char *p = rs->buf;
8069 int left = get_remote_packet_size ();
8070 int out_len;
8071
8072 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
8073
8074 remote_buffer_add_int (&p, &left, fd);
8075 remote_buffer_add_string (&p, &left, ",");
8076
8077 remote_buffer_add_int (&p, &left, offset);
8078 remote_buffer_add_string (&p, &left, ",");
8079
8080 p += remote_escape_output (write_buf, len, p, &out_len,
8081 get_remote_packet_size () - (p - rs->buf));
8082
8083 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
8084 remote_errno, NULL, NULL);
8085 }
8086
8087 /* Read up to LEN bytes FD on the remote target into READ_BUF
8088 Return the number of bytes read, or -1 if an error occurs (and
8089 set *REMOTE_ERRNO). */
8090
8091 static int
8092 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
8093 ULONGEST offset, int *remote_errno)
8094 {
8095 struct remote_state *rs = get_remote_state ();
8096 char *p = rs->buf;
8097 char *attachment;
8098 int left = get_remote_packet_size ();
8099 int ret, attachment_len;
8100 int read_len;
8101
8102 remote_buffer_add_string (&p, &left, "vFile:pread:");
8103
8104 remote_buffer_add_int (&p, &left, fd);
8105 remote_buffer_add_string (&p, &left, ",");
8106
8107 remote_buffer_add_int (&p, &left, len);
8108 remote_buffer_add_string (&p, &left, ",");
8109
8110 remote_buffer_add_int (&p, &left, offset);
8111
8112 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
8113 remote_errno, &attachment,
8114 &attachment_len);
8115
8116 if (ret < 0)
8117 return ret;
8118
8119 read_len = remote_unescape_input (attachment, attachment_len,
8120 read_buf, len);
8121 if (read_len != ret)
8122 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
8123
8124 return ret;
8125 }
8126
8127 /* Close FD on the remote target. Return 0, or -1 if an error occurs
8128 (and set *REMOTE_ERRNO). */
8129
8130 static int
8131 remote_hostio_close (int fd, int *remote_errno)
8132 {
8133 struct remote_state *rs = get_remote_state ();
8134 char *p = rs->buf;
8135 int left = get_remote_packet_size () - 1;
8136
8137 remote_buffer_add_string (&p, &left, "vFile:close:");
8138
8139 remote_buffer_add_int (&p, &left, fd);
8140
8141 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
8142 remote_errno, NULL, NULL);
8143 }
8144
8145 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
8146 occurs (and set *REMOTE_ERRNO). */
8147
8148 static int
8149 remote_hostio_unlink (const char *filename, int *remote_errno)
8150 {
8151 struct remote_state *rs = get_remote_state ();
8152 char *p = rs->buf;
8153 int left = get_remote_packet_size () - 1;
8154
8155 remote_buffer_add_string (&p, &left, "vFile:unlink:");
8156
8157 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8158 strlen (filename));
8159
8160 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
8161 remote_errno, NULL, NULL);
8162 }
8163
8164 static int
8165 remote_fileio_errno_to_host (int errnum)
8166 {
8167 switch (errnum)
8168 {
8169 case FILEIO_EPERM:
8170 return EPERM;
8171 case FILEIO_ENOENT:
8172 return ENOENT;
8173 case FILEIO_EINTR:
8174 return EINTR;
8175 case FILEIO_EIO:
8176 return EIO;
8177 case FILEIO_EBADF:
8178 return EBADF;
8179 case FILEIO_EACCES:
8180 return EACCES;
8181 case FILEIO_EFAULT:
8182 return EFAULT;
8183 case FILEIO_EBUSY:
8184 return EBUSY;
8185 case FILEIO_EEXIST:
8186 return EEXIST;
8187 case FILEIO_ENODEV:
8188 return ENODEV;
8189 case FILEIO_ENOTDIR:
8190 return ENOTDIR;
8191 case FILEIO_EISDIR:
8192 return EISDIR;
8193 case FILEIO_EINVAL:
8194 return EINVAL;
8195 case FILEIO_ENFILE:
8196 return ENFILE;
8197 case FILEIO_EMFILE:
8198 return EMFILE;
8199 case FILEIO_EFBIG:
8200 return EFBIG;
8201 case FILEIO_ENOSPC:
8202 return ENOSPC;
8203 case FILEIO_ESPIPE:
8204 return ESPIPE;
8205 case FILEIO_EROFS:
8206 return EROFS;
8207 case FILEIO_ENOSYS:
8208 return ENOSYS;
8209 case FILEIO_ENAMETOOLONG:
8210 return ENAMETOOLONG;
8211 }
8212 return -1;
8213 }
8214
8215 static char *
8216 remote_hostio_error (int errnum)
8217 {
8218 int host_error = remote_fileio_errno_to_host (errnum);
8219
8220 if (host_error == -1)
8221 error (_("Unknown remote I/O error %d"), errnum);
8222 else
8223 error (_("Remote I/O error: %s"), safe_strerror (host_error));
8224 }
8225
8226 static void
8227 remote_hostio_close_cleanup (void *opaque)
8228 {
8229 int fd = *(int *) opaque;
8230 int remote_errno;
8231
8232 remote_hostio_close (fd, &remote_errno);
8233 }
8234
8235
8236 static void *
8237 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
8238 {
8239 const char *filename = bfd_get_filename (abfd);
8240 int fd, remote_errno;
8241 int *stream;
8242
8243 gdb_assert (remote_filename_p (filename));
8244
8245 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
8246 if (fd == -1)
8247 {
8248 errno = remote_fileio_errno_to_host (remote_errno);
8249 bfd_set_error (bfd_error_system_call);
8250 return NULL;
8251 }
8252
8253 stream = xmalloc (sizeof (int));
8254 *stream = fd;
8255 return stream;
8256 }
8257
8258 static int
8259 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
8260 {
8261 int fd = *(int *)stream;
8262 int remote_errno;
8263
8264 xfree (stream);
8265
8266 /* Ignore errors on close; these may happen if the remote
8267 connection was already torn down. */
8268 remote_hostio_close (fd, &remote_errno);
8269
8270 return 1;
8271 }
8272
8273 static file_ptr
8274 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
8275 file_ptr nbytes, file_ptr offset)
8276 {
8277 int fd = *(int *)stream;
8278 int remote_errno;
8279 file_ptr pos, bytes;
8280
8281 pos = 0;
8282 while (nbytes > pos)
8283 {
8284 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
8285 offset + pos, &remote_errno);
8286 if (bytes == 0)
8287 /* Success, but no bytes, means end-of-file. */
8288 break;
8289 if (bytes == -1)
8290 {
8291 errno = remote_fileio_errno_to_host (remote_errno);
8292 bfd_set_error (bfd_error_system_call);
8293 return -1;
8294 }
8295
8296 pos += bytes;
8297 }
8298
8299 return pos;
8300 }
8301
8302 static int
8303 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
8304 {
8305 /* FIXME: We should probably implement remote_hostio_stat. */
8306 sb->st_size = INT_MAX;
8307 return 0;
8308 }
8309
8310 int
8311 remote_filename_p (const char *filename)
8312 {
8313 return strncmp (filename, "remote:", 7) == 0;
8314 }
8315
8316 bfd *
8317 remote_bfd_open (const char *remote_file, const char *target)
8318 {
8319 return bfd_openr_iovec (remote_file, target,
8320 remote_bfd_iovec_open, NULL,
8321 remote_bfd_iovec_pread,
8322 remote_bfd_iovec_close,
8323 remote_bfd_iovec_stat);
8324 }
8325
8326 void
8327 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
8328 {
8329 struct cleanup *back_to, *close_cleanup;
8330 int retcode, fd, remote_errno, bytes, io_size;
8331 FILE *file;
8332 gdb_byte *buffer;
8333 int bytes_in_buffer;
8334 int saw_eof;
8335 ULONGEST offset;
8336
8337 if (!remote_desc)
8338 error (_("command can only be used with remote target"));
8339
8340 file = fopen (local_file, "rb");
8341 if (file == NULL)
8342 perror_with_name (local_file);
8343 back_to = make_cleanup_fclose (file);
8344
8345 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
8346 | FILEIO_O_TRUNC),
8347 0700, &remote_errno);
8348 if (fd == -1)
8349 remote_hostio_error (remote_errno);
8350
8351 /* Send up to this many bytes at once. They won't all fit in the
8352 remote packet limit, so we'll transfer slightly fewer. */
8353 io_size = get_remote_packet_size ();
8354 buffer = xmalloc (io_size);
8355 make_cleanup (xfree, buffer);
8356
8357 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
8358
8359 bytes_in_buffer = 0;
8360 saw_eof = 0;
8361 offset = 0;
8362 while (bytes_in_buffer || !saw_eof)
8363 {
8364 if (!saw_eof)
8365 {
8366 bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer,
8367 file);
8368 if (bytes == 0)
8369 {
8370 if (ferror (file))
8371 error (_("Error reading %s."), local_file);
8372 else
8373 {
8374 /* EOF. Unless there is something still in the
8375 buffer from the last iteration, we are done. */
8376 saw_eof = 1;
8377 if (bytes_in_buffer == 0)
8378 break;
8379 }
8380 }
8381 }
8382 else
8383 bytes = 0;
8384
8385 bytes += bytes_in_buffer;
8386 bytes_in_buffer = 0;
8387
8388 retcode = remote_hostio_pwrite (fd, buffer, bytes, offset, &remote_errno);
8389
8390 if (retcode < 0)
8391 remote_hostio_error (remote_errno);
8392 else if (retcode == 0)
8393 error (_("Remote write of %d bytes returned 0!"), bytes);
8394 else if (retcode < bytes)
8395 {
8396 /* Short write. Save the rest of the read data for the next
8397 write. */
8398 bytes_in_buffer = bytes - retcode;
8399 memmove (buffer, buffer + retcode, bytes_in_buffer);
8400 }
8401
8402 offset += retcode;
8403 }
8404
8405 discard_cleanups (close_cleanup);
8406 if (remote_hostio_close (fd, &remote_errno))
8407 remote_hostio_error (remote_errno);
8408
8409 if (from_tty)
8410 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
8411 do_cleanups (back_to);
8412 }
8413
8414 void
8415 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
8416 {
8417 struct cleanup *back_to, *close_cleanup;
8418 int retcode, fd, remote_errno, bytes, io_size;
8419 FILE *file;
8420 gdb_byte *buffer;
8421 ULONGEST offset;
8422
8423 if (!remote_desc)
8424 error (_("command can only be used with remote target"));
8425
8426 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
8427 if (fd == -1)
8428 remote_hostio_error (remote_errno);
8429
8430 file = fopen (local_file, "wb");
8431 if (file == NULL)
8432 perror_with_name (local_file);
8433 back_to = make_cleanup_fclose (file);
8434
8435 /* Send up to this many bytes at once. They won't all fit in the
8436 remote packet limit, so we'll transfer slightly fewer. */
8437 io_size = get_remote_packet_size ();
8438 buffer = xmalloc (io_size);
8439 make_cleanup (xfree, buffer);
8440
8441 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
8442
8443 offset = 0;
8444 while (1)
8445 {
8446 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
8447 if (bytes == 0)
8448 /* Success, but no bytes, means end-of-file. */
8449 break;
8450 if (bytes == -1)
8451 remote_hostio_error (remote_errno);
8452
8453 offset += bytes;
8454
8455 bytes = fwrite (buffer, 1, bytes, file);
8456 if (bytes == 0)
8457 perror_with_name (local_file);
8458 }
8459
8460 discard_cleanups (close_cleanup);
8461 if (remote_hostio_close (fd, &remote_errno))
8462 remote_hostio_error (remote_errno);
8463
8464 if (from_tty)
8465 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
8466 do_cleanups (back_to);
8467 }
8468
8469 void
8470 remote_file_delete (const char *remote_file, int from_tty)
8471 {
8472 int retcode, remote_errno;
8473
8474 if (!remote_desc)
8475 error (_("command can only be used with remote target"));
8476
8477 retcode = remote_hostio_unlink (remote_file, &remote_errno);
8478 if (retcode == -1)
8479 remote_hostio_error (remote_errno);
8480
8481 if (from_tty)
8482 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
8483 }
8484
8485 static void
8486 remote_put_command (char *args, int from_tty)
8487 {
8488 struct cleanup *back_to;
8489 char **argv;
8490
8491 if (args == NULL)
8492 error_no_arg (_("file to put"));
8493
8494 argv = gdb_buildargv (args);
8495 back_to = make_cleanup_freeargv (argv);
8496 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
8497 error (_("Invalid parameters to remote put"));
8498
8499 remote_file_put (argv[0], argv[1], from_tty);
8500
8501 do_cleanups (back_to);
8502 }
8503
8504 static void
8505 remote_get_command (char *args, int from_tty)
8506 {
8507 struct cleanup *back_to;
8508 char **argv;
8509
8510 if (args == NULL)
8511 error_no_arg (_("file to get"));
8512
8513 argv = gdb_buildargv (args);
8514 back_to = make_cleanup_freeargv (argv);
8515 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
8516 error (_("Invalid parameters to remote get"));
8517
8518 remote_file_get (argv[0], argv[1], from_tty);
8519
8520 do_cleanups (back_to);
8521 }
8522
8523 static void
8524 remote_delete_command (char *args, int from_tty)
8525 {
8526 struct cleanup *back_to;
8527 char **argv;
8528
8529 if (args == NULL)
8530 error_no_arg (_("file to delete"));
8531
8532 argv = gdb_buildargv (args);
8533 back_to = make_cleanup_freeargv (argv);
8534 if (argv[0] == NULL || argv[1] != NULL)
8535 error (_("Invalid parameters to remote delete"));
8536
8537 remote_file_delete (argv[0], from_tty);
8538
8539 do_cleanups (back_to);
8540 }
8541
8542 static void
8543 remote_command (char *args, int from_tty)
8544 {
8545 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
8546 }
8547
8548 static int remote_target_can_reverse = 1;
8549
8550 static int
8551 remote_can_execute_reverse (void)
8552 {
8553 return remote_target_can_reverse;
8554 }
8555
8556 static int
8557 remote_supports_non_stop (void)
8558 {
8559 return 1;
8560 }
8561
8562 static int
8563 remote_supports_multi_process (void)
8564 {
8565 struct remote_state *rs = get_remote_state ();
8566 return remote_multi_process_p (rs);
8567 }
8568
8569 static void
8570 init_remote_ops (void)
8571 {
8572 remote_ops.to_shortname = "remote";
8573 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
8574 remote_ops.to_doc =
8575 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
8576 Specify the serial device it is connected to\n\
8577 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
8578 remote_ops.to_open = remote_open;
8579 remote_ops.to_close = remote_close;
8580 remote_ops.to_detach = remote_detach;
8581 remote_ops.to_disconnect = remote_disconnect;
8582 remote_ops.to_resume = remote_resume;
8583 remote_ops.to_wait = remote_wait;
8584 remote_ops.to_fetch_registers = remote_fetch_registers;
8585 remote_ops.to_store_registers = remote_store_registers;
8586 remote_ops.to_prepare_to_store = remote_prepare_to_store;
8587 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
8588 remote_ops.to_files_info = remote_files_info;
8589 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
8590 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
8591 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
8592 remote_ops.to_stopped_data_address = remote_stopped_data_address;
8593 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
8594 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
8595 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
8596 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
8597 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
8598 remote_ops.to_kill = remote_kill;
8599 remote_ops.to_load = generic_load;
8600 remote_ops.to_mourn_inferior = remote_mourn;
8601 remote_ops.to_thread_alive = remote_thread_alive;
8602 remote_ops.to_find_new_threads = remote_threads_info;
8603 remote_ops.to_pid_to_str = remote_pid_to_str;
8604 remote_ops.to_extra_thread_info = remote_threads_extra_info;
8605 remote_ops.to_stop = remote_stop;
8606 remote_ops.to_xfer_partial = remote_xfer_partial;
8607 remote_ops.to_rcmd = remote_rcmd;
8608 remote_ops.to_log_command = serial_log_command;
8609 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
8610 remote_ops.to_stratum = process_stratum;
8611 remote_ops.to_has_all_memory = 1;
8612 remote_ops.to_has_memory = 1;
8613 remote_ops.to_has_stack = 1;
8614 remote_ops.to_has_registers = 1;
8615 remote_ops.to_has_execution = 1;
8616 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
8617 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
8618 remote_ops.to_magic = OPS_MAGIC;
8619 remote_ops.to_memory_map = remote_memory_map;
8620 remote_ops.to_flash_erase = remote_flash_erase;
8621 remote_ops.to_flash_done = remote_flash_done;
8622 remote_ops.to_read_description = remote_read_description;
8623 remote_ops.to_search_memory = remote_search_memory;
8624 remote_ops.to_can_async_p = remote_can_async_p;
8625 remote_ops.to_is_async_p = remote_is_async_p;
8626 remote_ops.to_async = remote_async;
8627 remote_ops.to_async_mask = remote_async_mask;
8628 remote_ops.to_terminal_inferior = remote_terminal_inferior;
8629 remote_ops.to_terminal_ours = remote_terminal_ours;
8630 remote_ops.to_supports_non_stop = remote_supports_non_stop;
8631 remote_ops.to_supports_multi_process = remote_supports_multi_process;
8632 }
8633
8634 /* Set up the extended remote vector by making a copy of the standard
8635 remote vector and adding to it. */
8636
8637 static void
8638 init_extended_remote_ops (void)
8639 {
8640 extended_remote_ops = remote_ops;
8641
8642 extended_remote_ops.to_shortname = "extended-remote";
8643 extended_remote_ops.to_longname =
8644 "Extended remote serial target in gdb-specific protocol";
8645 extended_remote_ops.to_doc =
8646 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
8647 Specify the serial device it is connected to (e.g. /dev/ttya).";
8648 extended_remote_ops.to_open = extended_remote_open;
8649 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
8650 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
8651 extended_remote_ops.to_detach = extended_remote_detach;
8652 extended_remote_ops.to_attach = extended_remote_attach;
8653 extended_remote_ops.to_kill = extended_remote_kill;
8654 }
8655
8656 static int
8657 remote_can_async_p (void)
8658 {
8659 if (!target_async_permitted)
8660 /* We only enable async when the user specifically asks for it. */
8661 return 0;
8662
8663 /* We're async whenever the serial device is. */
8664 return remote_async_mask_value && serial_can_async_p (remote_desc);
8665 }
8666
8667 static int
8668 remote_is_async_p (void)
8669 {
8670 if (!target_async_permitted)
8671 /* We only enable async when the user specifically asks for it. */
8672 return 0;
8673
8674 /* We're async whenever the serial device is. */
8675 return remote_async_mask_value && serial_is_async_p (remote_desc);
8676 }
8677
8678 /* Pass the SERIAL event on and up to the client. One day this code
8679 will be able to delay notifying the client of an event until the
8680 point where an entire packet has been received. */
8681
8682 static void (*async_client_callback) (enum inferior_event_type event_type,
8683 void *context);
8684 static void *async_client_context;
8685 static serial_event_ftype remote_async_serial_handler;
8686
8687 static void
8688 remote_async_serial_handler (struct serial *scb, void *context)
8689 {
8690 /* Don't propogate error information up to the client. Instead let
8691 the client find out about the error by querying the target. */
8692 async_client_callback (INF_REG_EVENT, async_client_context);
8693 }
8694
8695 static void
8696 remote_async_inferior_event_handler (gdb_client_data data)
8697 {
8698 inferior_event_handler (INF_REG_EVENT, NULL);
8699 }
8700
8701 static void
8702 remote_async_get_pending_events_handler (gdb_client_data data)
8703 {
8704 remote_get_pending_stop_replies ();
8705 }
8706
8707 static void
8708 remote_async (void (*callback) (enum inferior_event_type event_type,
8709 void *context), void *context)
8710 {
8711 if (remote_async_mask_value == 0)
8712 internal_error (__FILE__, __LINE__,
8713 _("Calling remote_async when async is masked"));
8714
8715 if (callback != NULL)
8716 {
8717 serial_async (remote_desc, remote_async_serial_handler, NULL);
8718 async_client_callback = callback;
8719 async_client_context = context;
8720 }
8721 else
8722 serial_async (remote_desc, NULL, NULL);
8723 }
8724
8725 static int
8726 remote_async_mask (int new_mask)
8727 {
8728 int curr_mask = remote_async_mask_value;
8729 remote_async_mask_value = new_mask;
8730 return curr_mask;
8731 }
8732
8733 static void
8734 set_remote_cmd (char *args, int from_tty)
8735 {
8736 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
8737 }
8738
8739 static void
8740 show_remote_cmd (char *args, int from_tty)
8741 {
8742 /* We can't just use cmd_show_list here, because we want to skip
8743 the redundant "show remote Z-packet" and the legacy aliases. */
8744 struct cleanup *showlist_chain;
8745 struct cmd_list_element *list = remote_show_cmdlist;
8746
8747 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
8748 for (; list != NULL; list = list->next)
8749 if (strcmp (list->name, "Z-packet") == 0)
8750 continue;
8751 else if (list->type == not_set_cmd)
8752 /* Alias commands are exactly like the original, except they
8753 don't have the normal type. */
8754 continue;
8755 else
8756 {
8757 struct cleanup *option_chain
8758 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
8759 ui_out_field_string (uiout, "name", list->name);
8760 ui_out_text (uiout, ": ");
8761 if (list->type == show_cmd)
8762 do_setshow_command ((char *) NULL, from_tty, list);
8763 else
8764 cmd_func (list, NULL, from_tty);
8765 /* Close the tuple. */
8766 do_cleanups (option_chain);
8767 }
8768
8769 /* Close the tuple. */
8770 do_cleanups (showlist_chain);
8771 }
8772
8773
8774 /* Function to be called whenever a new objfile (shlib) is detected. */
8775 static void
8776 remote_new_objfile (struct objfile *objfile)
8777 {
8778 if (remote_desc != 0) /* Have a remote connection. */
8779 remote_check_symbols (objfile);
8780 }
8781
8782 void
8783 _initialize_remote (void)
8784 {
8785 struct remote_state *rs;
8786
8787 /* architecture specific data */
8788 remote_gdbarch_data_handle =
8789 gdbarch_data_register_post_init (init_remote_state);
8790 remote_g_packet_data_handle =
8791 gdbarch_data_register_pre_init (remote_g_packet_data_init);
8792
8793 /* Initialize the per-target state. At the moment there is only one
8794 of these, not one per target. Only one target is active at a
8795 time. The default buffer size is unimportant; it will be expanded
8796 whenever a larger buffer is needed. */
8797 rs = get_remote_state_raw ();
8798 rs->buf_size = 400;
8799 rs->buf = xmalloc (rs->buf_size);
8800
8801 init_remote_ops ();
8802 add_target (&remote_ops);
8803
8804 init_extended_remote_ops ();
8805 add_target (&extended_remote_ops);
8806
8807 /* Hook into new objfile notification. */
8808 observer_attach_new_objfile (remote_new_objfile);
8809
8810 /* Set up signal handlers. */
8811 sigint_remote_token =
8812 create_async_signal_handler (async_remote_interrupt, NULL);
8813 sigint_remote_twice_token =
8814 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
8815
8816 #if 0
8817 init_remote_threadtests ();
8818 #endif
8819
8820 /* set/show remote ... */
8821
8822 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
8823 Remote protocol specific variables\n\
8824 Configure various remote-protocol specific variables such as\n\
8825 the packets being used"),
8826 &remote_set_cmdlist, "set remote ",
8827 0 /* allow-unknown */, &setlist);
8828 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
8829 Remote protocol specific variables\n\
8830 Configure various remote-protocol specific variables such as\n\
8831 the packets being used"),
8832 &remote_show_cmdlist, "show remote ",
8833 0 /* allow-unknown */, &showlist);
8834
8835 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
8836 Compare section data on target to the exec file.\n\
8837 Argument is a single section name (default: all loaded sections)."),
8838 &cmdlist);
8839
8840 add_cmd ("packet", class_maintenance, packet_command, _("\
8841 Send an arbitrary packet to a remote target.\n\
8842 maintenance packet TEXT\n\
8843 If GDB is talking to an inferior via the GDB serial protocol, then\n\
8844 this command sends the string TEXT to the inferior, and displays the\n\
8845 response packet. GDB supplies the initial `$' character, and the\n\
8846 terminating `#' character and checksum."),
8847 &maintenancelist);
8848
8849 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
8850 Set whether to send break if interrupted."), _("\
8851 Show whether to send break if interrupted."), _("\
8852 If set, a break, instead of a cntrl-c, is sent to the remote target."),
8853 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
8854 &setlist, &showlist);
8855
8856 /* Install commands for configuring memory read/write packets. */
8857
8858 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
8859 Set the maximum number of bytes per memory write packet (deprecated)."),
8860 &setlist);
8861 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
8862 Show the maximum number of bytes per memory write packet (deprecated)."),
8863 &showlist);
8864 add_cmd ("memory-write-packet-size", no_class,
8865 set_memory_write_packet_size, _("\
8866 Set the maximum number of bytes per memory-write packet.\n\
8867 Specify the number of bytes in a packet or 0 (zero) for the\n\
8868 default packet size. The actual limit is further reduced\n\
8869 dependent on the target. Specify ``fixed'' to disable the\n\
8870 further restriction and ``limit'' to enable that restriction."),
8871 &remote_set_cmdlist);
8872 add_cmd ("memory-read-packet-size", no_class,
8873 set_memory_read_packet_size, _("\
8874 Set the maximum number of bytes per memory-read packet.\n\
8875 Specify the number of bytes in a packet or 0 (zero) for the\n\
8876 default packet size. The actual limit is further reduced\n\
8877 dependent on the target. Specify ``fixed'' to disable the\n\
8878 further restriction and ``limit'' to enable that restriction."),
8879 &remote_set_cmdlist);
8880 add_cmd ("memory-write-packet-size", no_class,
8881 show_memory_write_packet_size,
8882 _("Show the maximum number of bytes per memory-write packet."),
8883 &remote_show_cmdlist);
8884 add_cmd ("memory-read-packet-size", no_class,
8885 show_memory_read_packet_size,
8886 _("Show the maximum number of bytes per memory-read packet."),
8887 &remote_show_cmdlist);
8888
8889 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
8890 &remote_hw_watchpoint_limit, _("\
8891 Set the maximum number of target hardware watchpoints."), _("\
8892 Show the maximum number of target hardware watchpoints."), _("\
8893 Specify a negative limit for unlimited."),
8894 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
8895 &remote_set_cmdlist, &remote_show_cmdlist);
8896 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
8897 &remote_hw_breakpoint_limit, _("\
8898 Set the maximum number of target hardware breakpoints."), _("\
8899 Show the maximum number of target hardware breakpoints."), _("\
8900 Specify a negative limit for unlimited."),
8901 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
8902 &remote_set_cmdlist, &remote_show_cmdlist);
8903
8904 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
8905 &remote_address_size, _("\
8906 Set the maximum size of the address (in bits) in a memory packet."), _("\
8907 Show the maximum size of the address (in bits) in a memory packet."), NULL,
8908 NULL,
8909 NULL, /* FIXME: i18n: */
8910 &setlist, &showlist);
8911
8912 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
8913 "X", "binary-download", 1);
8914
8915 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
8916 "vCont", "verbose-resume", 0);
8917
8918 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
8919 "QPassSignals", "pass-signals", 0);
8920
8921 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
8922 "qSymbol", "symbol-lookup", 0);
8923
8924 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
8925 "P", "set-register", 1);
8926
8927 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
8928 "p", "fetch-register", 1);
8929
8930 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
8931 "Z0", "software-breakpoint", 0);
8932
8933 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
8934 "Z1", "hardware-breakpoint", 0);
8935
8936 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
8937 "Z2", "write-watchpoint", 0);
8938
8939 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
8940 "Z3", "read-watchpoint", 0);
8941
8942 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
8943 "Z4", "access-watchpoint", 0);
8944
8945 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
8946 "qXfer:auxv:read", "read-aux-vector", 0);
8947
8948 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
8949 "qXfer:features:read", "target-features", 0);
8950
8951 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
8952 "qXfer:libraries:read", "library-info", 0);
8953
8954 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
8955 "qXfer:memory-map:read", "memory-map", 0);
8956
8957 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
8958 "qXfer:spu:read", "read-spu-object", 0);
8959
8960 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
8961 "qXfer:spu:write", "write-spu-object", 0);
8962
8963 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
8964 "qGetTLSAddr", "get-thread-local-storage-address",
8965 0);
8966
8967 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
8968 "qSupported", "supported-packets", 0);
8969
8970 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
8971 "qSearch:memory", "search-memory", 0);
8972
8973 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
8974 "vFile:open", "hostio-open", 0);
8975
8976 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
8977 "vFile:pread", "hostio-pread", 0);
8978
8979 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
8980 "vFile:pwrite", "hostio-pwrite", 0);
8981
8982 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
8983 "vFile:close", "hostio-close", 0);
8984
8985 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
8986 "vFile:unlink", "hostio-unlink", 0);
8987
8988 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
8989 "vAttach", "attach", 0);
8990
8991 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
8992 "vRun", "run", 0);
8993
8994 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
8995 "QStartNoAckMode", "noack", 0);
8996
8997 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
8998 "vKill", "kill", 0);
8999
9000 /* Keep the old ``set remote Z-packet ...'' working. Each individual
9001 Z sub-packet has its own set and show commands, but users may
9002 have sets to this variable in their .gdbinit files (or in their
9003 documentation). */
9004 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
9005 &remote_Z_packet_detect, _("\
9006 Set use of remote protocol `Z' packets"), _("\
9007 Show use of remote protocol `Z' packets "), _("\
9008 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
9009 packets."),
9010 set_remote_protocol_Z_packet_cmd,
9011 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
9012 &remote_set_cmdlist, &remote_show_cmdlist);
9013
9014 add_prefix_cmd ("remote", class_files, remote_command, _("\
9015 Manipulate files on the remote system\n\
9016 Transfer files to and from the remote target system."),
9017 &remote_cmdlist, "remote ",
9018 0 /* allow-unknown */, &cmdlist);
9019
9020 add_cmd ("put", class_files, remote_put_command,
9021 _("Copy a local file to the remote system."),
9022 &remote_cmdlist);
9023
9024 add_cmd ("get", class_files, remote_get_command,
9025 _("Copy a remote file to the local system."),
9026 &remote_cmdlist);
9027
9028 add_cmd ("delete", class_files, remote_delete_command,
9029 _("Delete a remote file."),
9030 &remote_cmdlist);
9031
9032 remote_exec_file = xstrdup ("");
9033 add_setshow_string_noescape_cmd ("exec-file", class_files,
9034 &remote_exec_file, _("\
9035 Set the remote pathname for \"run\""), _("\
9036 Show the remote pathname for \"run\""), NULL, NULL, NULL,
9037 &remote_set_cmdlist, &remote_show_cmdlist);
9038
9039 /* Eventually initialize fileio. See fileio.c */
9040 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
9041
9042 /* Take advantage of the fact that the LWP field is not used, to tag
9043 special ptids with it set to != 0. */
9044 magic_null_ptid = ptid_build (42000, 1, -1);
9045 not_sent_ptid = ptid_build (42000, 1, -2);
9046 any_thread_ptid = ptid_build (42000, 1, 0);
9047 }
This page took 0.242787 seconds and 5 git commands to generate.