binutils/testsuite/
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include "gdb_stat.h"
63
64 #include "memory-map.h"
65
66 /* The size to align memory write packets, when practical. The protocol
67 does not guarantee any alignment, and gdb will generate short
68 writes and unaligned writes, but even as a best-effort attempt this
69 can improve bulk transfers. For instance, if a write is misaligned
70 relative to the target's data bus, the stub may need to make an extra
71 round trip fetching data from the target. This doesn't make a
72 huge difference, but it's easy to do, so we try to be helpful.
73
74 The alignment chosen is arbitrary; usually data bus width is
75 important here, not the possibly larger cache line size. */
76 enum { REMOTE_ALIGN_WRITES = 16 };
77
78 /* Prototypes for local functions. */
79 static void cleanup_sigint_signal_handler (void *dummy);
80 static void initialize_sigint_signal_handler (void);
81 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
82 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
83 int forever);
84
85 static void handle_remote_sigint (int);
86 static void handle_remote_sigint_twice (int);
87 static void async_remote_interrupt (gdb_client_data);
88 void async_remote_interrupt_twice (gdb_client_data);
89
90 static void remote_files_info (struct target_ops *ignore);
91
92 static void remote_prepare_to_store (struct regcache *regcache);
93
94 static void remote_open (char *name, int from_tty);
95
96 static void extended_remote_open (char *name, int from_tty);
97
98 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
99
100 static void remote_close (int quitting);
101
102 static void remote_mourn (struct target_ops *ops);
103
104 static void extended_remote_restart (void);
105
106 static void extended_remote_mourn (struct target_ops *);
107
108 static void remote_mourn_1 (struct target_ops *);
109
110 static void remote_send (char **buf, long *sizeof_buf_p);
111
112 static int readchar (int timeout);
113
114 static void remote_kill (struct target_ops *ops);
115
116 static int tohex (int nib);
117
118 static int remote_can_async_p (void);
119
120 static int remote_is_async_p (void);
121
122 static void remote_async (void (*callback) (enum inferior_event_type event_type,
123 void *context), void *context);
124
125 static int remote_async_mask (int new_mask);
126
127 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
128
129 static void remote_interrupt (int signo);
130
131 static void remote_interrupt_twice (int signo);
132
133 static void interrupt_query (void);
134
135 static void set_general_thread (struct ptid ptid);
136 static void set_continue_thread (struct ptid ptid);
137
138 static void get_offsets (void);
139
140 static void skip_frame (void);
141
142 static long read_frame (char **buf_p, long *sizeof_buf);
143
144 static int hexnumlen (ULONGEST num);
145
146 static void init_remote_ops (void);
147
148 static void init_extended_remote_ops (void);
149
150 static void remote_stop (ptid_t);
151
152 static int ishex (int ch, int *val);
153
154 static int stubhex (int ch);
155
156 static int hexnumstr (char *, ULONGEST);
157
158 static int hexnumnstr (char *, ULONGEST, int);
159
160 static CORE_ADDR remote_address_masked (CORE_ADDR);
161
162 static void print_packet (char *);
163
164 static unsigned long crc32 (unsigned char *, int, unsigned int);
165
166 static void compare_sections_command (char *, int);
167
168 static void packet_command (char *, int);
169
170 static int stub_unpack_int (char *buff, int fieldlength);
171
172 static ptid_t remote_current_thread (ptid_t oldptid);
173
174 static void remote_find_new_threads (void);
175
176 static void record_currthread (ptid_t currthread);
177
178 static int fromhex (int a);
179
180 static int hex2bin (const char *hex, gdb_byte *bin, int count);
181
182 static int bin2hex (const gdb_byte *bin, char *hex, int count);
183
184 static int putpkt_binary (char *buf, int cnt);
185
186 static void check_binary_download (CORE_ADDR addr);
187
188 struct packet_config;
189
190 static void show_packet_config_cmd (struct packet_config *config);
191
192 static void update_packet_config (struct packet_config *config);
193
194 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
195 struct cmd_list_element *c);
196
197 static void show_remote_protocol_packet_cmd (struct ui_file *file,
198 int from_tty,
199 struct cmd_list_element *c,
200 const char *value);
201
202 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
203 static ptid_t read_ptid (char *buf, char **obuf);
204
205 static void remote_query_supported (void);
206
207 static void remote_check_symbols (struct objfile *objfile);
208
209 void _initialize_remote (void);
210
211 struct stop_reply;
212 static struct stop_reply *stop_reply_xmalloc (void);
213 static void stop_reply_xfree (struct stop_reply *);
214 static void do_stop_reply_xfree (void *arg);
215 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
216 static void push_stop_reply (struct stop_reply *);
217 static void remote_get_pending_stop_replies (void);
218 static void discard_pending_stop_replies (int pid);
219 static int peek_stop_reply (ptid_t ptid);
220
221 static void remote_async_inferior_event_handler (gdb_client_data);
222 static void remote_async_get_pending_events_handler (gdb_client_data);
223
224 static void remote_terminal_ours (void);
225
226 static int remote_read_description_p (struct target_ops *target);
227
228 /* The non-stop remote protocol provisions for one pending stop reply.
229 This is where we keep it until it is acknowledged. */
230
231 static struct stop_reply *pending_stop_reply = NULL;
232
233 /* For "remote". */
234
235 static struct cmd_list_element *remote_cmdlist;
236
237 /* For "set remote" and "show remote". */
238
239 static struct cmd_list_element *remote_set_cmdlist;
240 static struct cmd_list_element *remote_show_cmdlist;
241
242 /* Description of the remote protocol state for the currently
243 connected target. This is per-target state, and independent of the
244 selected architecture. */
245
246 struct remote_state
247 {
248 /* A buffer to use for incoming packets, and its current size. The
249 buffer is grown dynamically for larger incoming packets.
250 Outgoing packets may also be constructed in this buffer.
251 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
252 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
253 packets. */
254 char *buf;
255 long buf_size;
256
257 /* If we negotiated packet size explicitly (and thus can bypass
258 heuristics for the largest packet size that will not overflow
259 a buffer in the stub), this will be set to that packet size.
260 Otherwise zero, meaning to use the guessed size. */
261 long explicit_packet_size;
262
263 /* remote_wait is normally called when the target is running and
264 waits for a stop reply packet. But sometimes we need to call it
265 when the target is already stopped. We can send a "?" packet
266 and have remote_wait read the response. Or, if we already have
267 the response, we can stash it in BUF and tell remote_wait to
268 skip calling getpkt. This flag is set when BUF contains a
269 stop reply packet and the target is not waiting. */
270 int cached_wait_status;
271
272 /* True, if in no ack mode. That is, neither GDB nor the stub will
273 expect acks from each other. The connection is assumed to be
274 reliable. */
275 int noack_mode;
276
277 /* True if we're connected in extended remote mode. */
278 int extended;
279
280 /* True if the stub reported support for multi-process
281 extensions. */
282 int multi_process_aware;
283
284 /* True if we resumed the target and we're waiting for the target to
285 stop. In the mean time, we can't start another command/query.
286 The remote server wouldn't be ready to process it, so we'd
287 timeout waiting for a reply that would never come and eventually
288 we'd close the connection. This can happen in asynchronous mode
289 because we allow GDB commands while the target is running. */
290 int waiting_for_stop_reply;
291
292 /* True if the stub reports support for non-stop mode. */
293 int non_stop_aware;
294
295 /* True if the stub reports support for vCont;t. */
296 int support_vCont_t;
297
298 /* True if the stub reports support for conditional tracepoints. */
299 int cond_tracepoints;
300 };
301
302 /* Returns true if the multi-process extensions are in effect. */
303 static int
304 remote_multi_process_p (struct remote_state *rs)
305 {
306 return rs->extended && rs->multi_process_aware;
307 }
308
309 /* This data could be associated with a target, but we do not always
310 have access to the current target when we need it, so for now it is
311 static. This will be fine for as long as only one target is in use
312 at a time. */
313 static struct remote_state remote_state;
314
315 static struct remote_state *
316 get_remote_state_raw (void)
317 {
318 return &remote_state;
319 }
320
321 /* Description of the remote protocol for a given architecture. */
322
323 struct packet_reg
324 {
325 long offset; /* Offset into G packet. */
326 long regnum; /* GDB's internal register number. */
327 LONGEST pnum; /* Remote protocol register number. */
328 int in_g_packet; /* Always part of G packet. */
329 /* long size in bytes; == register_size (target_gdbarch, regnum);
330 at present. */
331 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
332 at present. */
333 };
334
335 struct remote_arch_state
336 {
337 /* Description of the remote protocol registers. */
338 long sizeof_g_packet;
339
340 /* Description of the remote protocol registers indexed by REGNUM
341 (making an array gdbarch_num_regs in size). */
342 struct packet_reg *regs;
343
344 /* This is the size (in chars) of the first response to the ``g''
345 packet. It is used as a heuristic when determining the maximum
346 size of memory-read and memory-write packets. A target will
347 typically only reserve a buffer large enough to hold the ``g''
348 packet. The size does not include packet overhead (headers and
349 trailers). */
350 long actual_register_packet_size;
351
352 /* This is the maximum size (in chars) of a non read/write packet.
353 It is also used as a cap on the size of read/write packets. */
354 long remote_packet_size;
355 };
356
357
358 /* Handle for retreving the remote protocol data from gdbarch. */
359 static struct gdbarch_data *remote_gdbarch_data_handle;
360
361 static struct remote_arch_state *
362 get_remote_arch_state (void)
363 {
364 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
365 }
366
367 /* Fetch the global remote target state. */
368
369 static struct remote_state *
370 get_remote_state (void)
371 {
372 /* Make sure that the remote architecture state has been
373 initialized, because doing so might reallocate rs->buf. Any
374 function which calls getpkt also needs to be mindful of changes
375 to rs->buf, but this call limits the number of places which run
376 into trouble. */
377 get_remote_arch_state ();
378
379 return get_remote_state_raw ();
380 }
381
382 static int
383 compare_pnums (const void *lhs_, const void *rhs_)
384 {
385 const struct packet_reg * const *lhs = lhs_;
386 const struct packet_reg * const *rhs = rhs_;
387
388 if ((*lhs)->pnum < (*rhs)->pnum)
389 return -1;
390 else if ((*lhs)->pnum == (*rhs)->pnum)
391 return 0;
392 else
393 return 1;
394 }
395
396 static void *
397 init_remote_state (struct gdbarch *gdbarch)
398 {
399 int regnum, num_remote_regs, offset;
400 struct remote_state *rs = get_remote_state_raw ();
401 struct remote_arch_state *rsa;
402 struct packet_reg **remote_regs;
403
404 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
405
406 /* Use the architecture to build a regnum<->pnum table, which will be
407 1:1 unless a feature set specifies otherwise. */
408 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
409 gdbarch_num_regs (gdbarch),
410 struct packet_reg);
411 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
412 {
413 struct packet_reg *r = &rsa->regs[regnum];
414
415 if (register_size (gdbarch, regnum) == 0)
416 /* Do not try to fetch zero-sized (placeholder) registers. */
417 r->pnum = -1;
418 else
419 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
420
421 r->regnum = regnum;
422 }
423
424 /* Define the g/G packet format as the contents of each register
425 with a remote protocol number, in order of ascending protocol
426 number. */
427
428 remote_regs = alloca (gdbarch_num_regs (gdbarch)
429 * sizeof (struct packet_reg *));
430 for (num_remote_regs = 0, regnum = 0;
431 regnum < gdbarch_num_regs (gdbarch);
432 regnum++)
433 if (rsa->regs[regnum].pnum != -1)
434 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
435
436 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
437 compare_pnums);
438
439 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
440 {
441 remote_regs[regnum]->in_g_packet = 1;
442 remote_regs[regnum]->offset = offset;
443 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
444 }
445
446 /* Record the maximum possible size of the g packet - it may turn out
447 to be smaller. */
448 rsa->sizeof_g_packet = offset;
449
450 /* Default maximum number of characters in a packet body. Many
451 remote stubs have a hardwired buffer size of 400 bytes
452 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
453 as the maximum packet-size to ensure that the packet and an extra
454 NUL character can always fit in the buffer. This stops GDB
455 trashing stubs that try to squeeze an extra NUL into what is
456 already a full buffer (As of 1999-12-04 that was most stubs). */
457 rsa->remote_packet_size = 400 - 1;
458
459 /* This one is filled in when a ``g'' packet is received. */
460 rsa->actual_register_packet_size = 0;
461
462 /* Should rsa->sizeof_g_packet needs more space than the
463 default, adjust the size accordingly. Remember that each byte is
464 encoded as two characters. 32 is the overhead for the packet
465 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
466 (``$NN:G...#NN'') is a better guess, the below has been padded a
467 little. */
468 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
469 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
470
471 /* Make sure that the packet buffer is plenty big enough for
472 this architecture. */
473 if (rs->buf_size < rsa->remote_packet_size)
474 {
475 rs->buf_size = 2 * rsa->remote_packet_size;
476 rs->buf = xrealloc (rs->buf, rs->buf_size);
477 }
478
479 return rsa;
480 }
481
482 /* Return the current allowed size of a remote packet. This is
483 inferred from the current architecture, and should be used to
484 limit the length of outgoing packets. */
485 static long
486 get_remote_packet_size (void)
487 {
488 struct remote_state *rs = get_remote_state ();
489 struct remote_arch_state *rsa = get_remote_arch_state ();
490
491 if (rs->explicit_packet_size)
492 return rs->explicit_packet_size;
493
494 return rsa->remote_packet_size;
495 }
496
497 static struct packet_reg *
498 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
499 {
500 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
501 return NULL;
502 else
503 {
504 struct packet_reg *r = &rsa->regs[regnum];
505 gdb_assert (r->regnum == regnum);
506 return r;
507 }
508 }
509
510 static struct packet_reg *
511 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
512 {
513 int i;
514 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
515 {
516 struct packet_reg *r = &rsa->regs[i];
517 if (r->pnum == pnum)
518 return r;
519 }
520 return NULL;
521 }
522
523 /* FIXME: graces/2002-08-08: These variables should eventually be
524 bound to an instance of the target object (as in gdbarch-tdep()),
525 when such a thing exists. */
526
527 /* This is set to the data address of the access causing the target
528 to stop for a watchpoint. */
529 static CORE_ADDR remote_watch_data_address;
530
531 /* This is non-zero if target stopped for a watchpoint. */
532 static int remote_stopped_by_watchpoint_p;
533
534 static struct target_ops remote_ops;
535
536 static struct target_ops extended_remote_ops;
537
538 static int remote_async_mask_value = 1;
539
540 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
541 ``forever'' still use the normal timeout mechanism. This is
542 currently used by the ASYNC code to guarentee that target reads
543 during the initial connect always time-out. Once getpkt has been
544 modified to return a timeout indication and, in turn
545 remote_wait()/wait_for_inferior() have gained a timeout parameter
546 this can go away. */
547 static int wait_forever_enabled_p = 1;
548
549
550 /* This variable chooses whether to send a ^C or a break when the user
551 requests program interruption. Although ^C is usually what remote
552 systems expect, and that is the default here, sometimes a break is
553 preferable instead. */
554
555 static int remote_break;
556
557 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
558 remote_open knows that we don't have a file open when the program
559 starts. */
560 static struct serial *remote_desc = NULL;
561
562 /* This variable sets the number of bits in an address that are to be
563 sent in a memory ("M" or "m") packet. Normally, after stripping
564 leading zeros, the entire address would be sent. This variable
565 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
566 initial implementation of remote.c restricted the address sent in
567 memory packets to ``host::sizeof long'' bytes - (typically 32
568 bits). Consequently, for 64 bit targets, the upper 32 bits of an
569 address was never sent. Since fixing this bug may cause a break in
570 some remote targets this variable is principly provided to
571 facilitate backward compatibility. */
572
573 static int remote_address_size;
574
575 /* Temporary to track who currently owns the terminal. See
576 remote_terminal_* for more details. */
577
578 static int remote_async_terminal_ours_p;
579
580 /* The executable file to use for "run" on the remote side. */
581
582 static char *remote_exec_file = "";
583
584 \f
585 /* User configurable variables for the number of characters in a
586 memory read/write packet. MIN (rsa->remote_packet_size,
587 rsa->sizeof_g_packet) is the default. Some targets need smaller
588 values (fifo overruns, et.al.) and some users need larger values
589 (speed up transfers). The variables ``preferred_*'' (the user
590 request), ``current_*'' (what was actually set) and ``forced_*''
591 (Positive - a soft limit, negative - a hard limit). */
592
593 struct memory_packet_config
594 {
595 char *name;
596 long size;
597 int fixed_p;
598 };
599
600 /* Compute the current size of a read/write packet. Since this makes
601 use of ``actual_register_packet_size'' the computation is dynamic. */
602
603 static long
604 get_memory_packet_size (struct memory_packet_config *config)
605 {
606 struct remote_state *rs = get_remote_state ();
607 struct remote_arch_state *rsa = get_remote_arch_state ();
608
609 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
610 law?) that some hosts don't cope very well with large alloca()
611 calls. Eventually the alloca() code will be replaced by calls to
612 xmalloc() and make_cleanups() allowing this restriction to either
613 be lifted or removed. */
614 #ifndef MAX_REMOTE_PACKET_SIZE
615 #define MAX_REMOTE_PACKET_SIZE 16384
616 #endif
617 /* NOTE: 20 ensures we can write at least one byte. */
618 #ifndef MIN_REMOTE_PACKET_SIZE
619 #define MIN_REMOTE_PACKET_SIZE 20
620 #endif
621 long what_they_get;
622 if (config->fixed_p)
623 {
624 if (config->size <= 0)
625 what_they_get = MAX_REMOTE_PACKET_SIZE;
626 else
627 what_they_get = config->size;
628 }
629 else
630 {
631 what_they_get = get_remote_packet_size ();
632 /* Limit the packet to the size specified by the user. */
633 if (config->size > 0
634 && what_they_get > config->size)
635 what_they_get = config->size;
636
637 /* Limit it to the size of the targets ``g'' response unless we have
638 permission from the stub to use a larger packet size. */
639 if (rs->explicit_packet_size == 0
640 && rsa->actual_register_packet_size > 0
641 && what_they_get > rsa->actual_register_packet_size)
642 what_they_get = rsa->actual_register_packet_size;
643 }
644 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
645 what_they_get = MAX_REMOTE_PACKET_SIZE;
646 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
647 what_they_get = MIN_REMOTE_PACKET_SIZE;
648
649 /* Make sure there is room in the global buffer for this packet
650 (including its trailing NUL byte). */
651 if (rs->buf_size < what_they_get + 1)
652 {
653 rs->buf_size = 2 * what_they_get;
654 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
655 }
656
657 return what_they_get;
658 }
659
660 /* Update the size of a read/write packet. If they user wants
661 something really big then do a sanity check. */
662
663 static void
664 set_memory_packet_size (char *args, struct memory_packet_config *config)
665 {
666 int fixed_p = config->fixed_p;
667 long size = config->size;
668 if (args == NULL)
669 error (_("Argument required (integer, `fixed' or `limited')."));
670 else if (strcmp (args, "hard") == 0
671 || strcmp (args, "fixed") == 0)
672 fixed_p = 1;
673 else if (strcmp (args, "soft") == 0
674 || strcmp (args, "limit") == 0)
675 fixed_p = 0;
676 else
677 {
678 char *end;
679 size = strtoul (args, &end, 0);
680 if (args == end)
681 error (_("Invalid %s (bad syntax)."), config->name);
682 #if 0
683 /* Instead of explicitly capping the size of a packet to
684 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
685 instead allowed to set the size to something arbitrarily
686 large. */
687 if (size > MAX_REMOTE_PACKET_SIZE)
688 error (_("Invalid %s (too large)."), config->name);
689 #endif
690 }
691 /* Extra checks? */
692 if (fixed_p && !config->fixed_p)
693 {
694 if (! query (_("The target may not be able to correctly handle a %s\n"
695 "of %ld bytes. Change the packet size? "),
696 config->name, size))
697 error (_("Packet size not changed."));
698 }
699 /* Update the config. */
700 config->fixed_p = fixed_p;
701 config->size = size;
702 }
703
704 static void
705 show_memory_packet_size (struct memory_packet_config *config)
706 {
707 printf_filtered (_("The %s is %ld. "), config->name, config->size);
708 if (config->fixed_p)
709 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
710 get_memory_packet_size (config));
711 else
712 printf_filtered (_("Packets are limited to %ld bytes.\n"),
713 get_memory_packet_size (config));
714 }
715
716 static struct memory_packet_config memory_write_packet_config =
717 {
718 "memory-write-packet-size",
719 };
720
721 static void
722 set_memory_write_packet_size (char *args, int from_tty)
723 {
724 set_memory_packet_size (args, &memory_write_packet_config);
725 }
726
727 static void
728 show_memory_write_packet_size (char *args, int from_tty)
729 {
730 show_memory_packet_size (&memory_write_packet_config);
731 }
732
733 static long
734 get_memory_write_packet_size (void)
735 {
736 return get_memory_packet_size (&memory_write_packet_config);
737 }
738
739 static struct memory_packet_config memory_read_packet_config =
740 {
741 "memory-read-packet-size",
742 };
743
744 static void
745 set_memory_read_packet_size (char *args, int from_tty)
746 {
747 set_memory_packet_size (args, &memory_read_packet_config);
748 }
749
750 static void
751 show_memory_read_packet_size (char *args, int from_tty)
752 {
753 show_memory_packet_size (&memory_read_packet_config);
754 }
755
756 static long
757 get_memory_read_packet_size (void)
758 {
759 long size = get_memory_packet_size (&memory_read_packet_config);
760 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
761 extra buffer size argument before the memory read size can be
762 increased beyond this. */
763 if (size > get_remote_packet_size ())
764 size = get_remote_packet_size ();
765 return size;
766 }
767
768 \f
769 /* Generic configuration support for packets the stub optionally
770 supports. Allows the user to specify the use of the packet as well
771 as allowing GDB to auto-detect support in the remote stub. */
772
773 enum packet_support
774 {
775 PACKET_SUPPORT_UNKNOWN = 0,
776 PACKET_ENABLE,
777 PACKET_DISABLE
778 };
779
780 struct packet_config
781 {
782 const char *name;
783 const char *title;
784 enum auto_boolean detect;
785 enum packet_support support;
786 };
787
788 /* Analyze a packet's return value and update the packet config
789 accordingly. */
790
791 enum packet_result
792 {
793 PACKET_ERROR,
794 PACKET_OK,
795 PACKET_UNKNOWN
796 };
797
798 static void
799 update_packet_config (struct packet_config *config)
800 {
801 switch (config->detect)
802 {
803 case AUTO_BOOLEAN_TRUE:
804 config->support = PACKET_ENABLE;
805 break;
806 case AUTO_BOOLEAN_FALSE:
807 config->support = PACKET_DISABLE;
808 break;
809 case AUTO_BOOLEAN_AUTO:
810 config->support = PACKET_SUPPORT_UNKNOWN;
811 break;
812 }
813 }
814
815 static void
816 show_packet_config_cmd (struct packet_config *config)
817 {
818 char *support = "internal-error";
819 switch (config->support)
820 {
821 case PACKET_ENABLE:
822 support = "enabled";
823 break;
824 case PACKET_DISABLE:
825 support = "disabled";
826 break;
827 case PACKET_SUPPORT_UNKNOWN:
828 support = "unknown";
829 break;
830 }
831 switch (config->detect)
832 {
833 case AUTO_BOOLEAN_AUTO:
834 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
835 config->name, support);
836 break;
837 case AUTO_BOOLEAN_TRUE:
838 case AUTO_BOOLEAN_FALSE:
839 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
840 config->name, support);
841 break;
842 }
843 }
844
845 static void
846 add_packet_config_cmd (struct packet_config *config, const char *name,
847 const char *title, int legacy)
848 {
849 char *set_doc;
850 char *show_doc;
851 char *cmd_name;
852
853 config->name = name;
854 config->title = title;
855 config->detect = AUTO_BOOLEAN_AUTO;
856 config->support = PACKET_SUPPORT_UNKNOWN;
857 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
858 name, title);
859 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
860 name, title);
861 /* set/show TITLE-packet {auto,on,off} */
862 cmd_name = xstrprintf ("%s-packet", title);
863 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
864 &config->detect, set_doc, show_doc, NULL, /* help_doc */
865 set_remote_protocol_packet_cmd,
866 show_remote_protocol_packet_cmd,
867 &remote_set_cmdlist, &remote_show_cmdlist);
868 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
869 if (legacy)
870 {
871 char *legacy_name;
872 legacy_name = xstrprintf ("%s-packet", name);
873 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
874 &remote_set_cmdlist);
875 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
876 &remote_show_cmdlist);
877 }
878 }
879
880 static enum packet_result
881 packet_check_result (const char *buf)
882 {
883 if (buf[0] != '\0')
884 {
885 /* The stub recognized the packet request. Check that the
886 operation succeeded. */
887 if (buf[0] == 'E'
888 && isxdigit (buf[1]) && isxdigit (buf[2])
889 && buf[3] == '\0')
890 /* "Enn" - definitly an error. */
891 return PACKET_ERROR;
892
893 /* Always treat "E." as an error. This will be used for
894 more verbose error messages, such as E.memtypes. */
895 if (buf[0] == 'E' && buf[1] == '.')
896 return PACKET_ERROR;
897
898 /* The packet may or may not be OK. Just assume it is. */
899 return PACKET_OK;
900 }
901 else
902 /* The stub does not support the packet. */
903 return PACKET_UNKNOWN;
904 }
905
906 static enum packet_result
907 packet_ok (const char *buf, struct packet_config *config)
908 {
909 enum packet_result result;
910
911 result = packet_check_result (buf);
912 switch (result)
913 {
914 case PACKET_OK:
915 case PACKET_ERROR:
916 /* The stub recognized the packet request. */
917 switch (config->support)
918 {
919 case PACKET_SUPPORT_UNKNOWN:
920 if (remote_debug)
921 fprintf_unfiltered (gdb_stdlog,
922 "Packet %s (%s) is supported\n",
923 config->name, config->title);
924 config->support = PACKET_ENABLE;
925 break;
926 case PACKET_DISABLE:
927 internal_error (__FILE__, __LINE__,
928 _("packet_ok: attempt to use a disabled packet"));
929 break;
930 case PACKET_ENABLE:
931 break;
932 }
933 break;
934 case PACKET_UNKNOWN:
935 /* The stub does not support the packet. */
936 switch (config->support)
937 {
938 case PACKET_ENABLE:
939 if (config->detect == AUTO_BOOLEAN_AUTO)
940 /* If the stub previously indicated that the packet was
941 supported then there is a protocol error.. */
942 error (_("Protocol error: %s (%s) conflicting enabled responses."),
943 config->name, config->title);
944 else
945 /* The user set it wrong. */
946 error (_("Enabled packet %s (%s) not recognized by stub"),
947 config->name, config->title);
948 break;
949 case PACKET_SUPPORT_UNKNOWN:
950 if (remote_debug)
951 fprintf_unfiltered (gdb_stdlog,
952 "Packet %s (%s) is NOT supported\n",
953 config->name, config->title);
954 config->support = PACKET_DISABLE;
955 break;
956 case PACKET_DISABLE:
957 break;
958 }
959 break;
960 }
961
962 return result;
963 }
964
965 enum {
966 PACKET_vCont = 0,
967 PACKET_X,
968 PACKET_qSymbol,
969 PACKET_P,
970 PACKET_p,
971 PACKET_Z0,
972 PACKET_Z1,
973 PACKET_Z2,
974 PACKET_Z3,
975 PACKET_Z4,
976 PACKET_vFile_open,
977 PACKET_vFile_pread,
978 PACKET_vFile_pwrite,
979 PACKET_vFile_close,
980 PACKET_vFile_unlink,
981 PACKET_qXfer_auxv,
982 PACKET_qXfer_features,
983 PACKET_qXfer_libraries,
984 PACKET_qXfer_memory_map,
985 PACKET_qXfer_spu_read,
986 PACKET_qXfer_spu_write,
987 PACKET_qXfer_osdata,
988 PACKET_qGetTLSAddr,
989 PACKET_qSupported,
990 PACKET_QPassSignals,
991 PACKET_qSearch_memory,
992 PACKET_vAttach,
993 PACKET_vRun,
994 PACKET_QStartNoAckMode,
995 PACKET_vKill,
996 PACKET_qXfer_siginfo_read,
997 PACKET_qXfer_siginfo_write,
998 PACKET_qAttached,
999 PACKET_ConditionalTracepoints,
1000 PACKET_MAX
1001 };
1002
1003 static struct packet_config remote_protocol_packets[PACKET_MAX];
1004
1005 static void
1006 set_remote_protocol_packet_cmd (char *args, int from_tty,
1007 struct cmd_list_element *c)
1008 {
1009 struct packet_config *packet;
1010
1011 for (packet = remote_protocol_packets;
1012 packet < &remote_protocol_packets[PACKET_MAX];
1013 packet++)
1014 {
1015 if (&packet->detect == c->var)
1016 {
1017 update_packet_config (packet);
1018 return;
1019 }
1020 }
1021 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1022 c->name);
1023 }
1024
1025 static void
1026 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1027 struct cmd_list_element *c,
1028 const char *value)
1029 {
1030 struct packet_config *packet;
1031
1032 for (packet = remote_protocol_packets;
1033 packet < &remote_protocol_packets[PACKET_MAX];
1034 packet++)
1035 {
1036 if (&packet->detect == c->var)
1037 {
1038 show_packet_config_cmd (packet);
1039 return;
1040 }
1041 }
1042 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1043 c->name);
1044 }
1045
1046 /* Should we try one of the 'Z' requests? */
1047
1048 enum Z_packet_type
1049 {
1050 Z_PACKET_SOFTWARE_BP,
1051 Z_PACKET_HARDWARE_BP,
1052 Z_PACKET_WRITE_WP,
1053 Z_PACKET_READ_WP,
1054 Z_PACKET_ACCESS_WP,
1055 NR_Z_PACKET_TYPES
1056 };
1057
1058 /* For compatibility with older distributions. Provide a ``set remote
1059 Z-packet ...'' command that updates all the Z packet types. */
1060
1061 static enum auto_boolean remote_Z_packet_detect;
1062
1063 static void
1064 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1065 struct cmd_list_element *c)
1066 {
1067 int i;
1068 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1069 {
1070 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1071 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1072 }
1073 }
1074
1075 static void
1076 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1077 struct cmd_list_element *c,
1078 const char *value)
1079 {
1080 int i;
1081 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1082 {
1083 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1084 }
1085 }
1086
1087 /* Should we try the 'ThreadInfo' query packet?
1088
1089 This variable (NOT available to the user: auto-detect only!)
1090 determines whether GDB will use the new, simpler "ThreadInfo"
1091 query or the older, more complex syntax for thread queries.
1092 This is an auto-detect variable (set to true at each connect,
1093 and set to false when the target fails to recognize it). */
1094
1095 static int use_threadinfo_query;
1096 static int use_threadextra_query;
1097
1098 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1099 static struct async_signal_handler *sigint_remote_twice_token;
1100 static struct async_signal_handler *sigint_remote_token;
1101
1102 \f
1103 /* Asynchronous signal handle registered as event loop source for
1104 when we have pending events ready to be passed to the core. */
1105
1106 static struct async_event_handler *remote_async_inferior_event_token;
1107
1108 /* Asynchronous signal handle registered as event loop source for when
1109 the remote sent us a %Stop notification. The registered callback
1110 will do a vStopped sequence to pull the rest of the events out of
1111 the remote side into our event queue. */
1112
1113 static struct async_event_handler *remote_async_get_pending_events_token;
1114 \f
1115
1116 static ptid_t magic_null_ptid;
1117 static ptid_t not_sent_ptid;
1118 static ptid_t any_thread_ptid;
1119
1120 /* These are the threads which we last sent to the remote system. The
1121 TID member will be -1 for all or -2 for not sent yet. */
1122
1123 static ptid_t general_thread;
1124 static ptid_t continue_thread;
1125
1126 /* Find out if the stub attached to PID (and hence GDB should offer to
1127 detach instead of killing it when bailing out). */
1128
1129 static int
1130 remote_query_attached (int pid)
1131 {
1132 struct remote_state *rs = get_remote_state ();
1133
1134 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1135 return 0;
1136
1137 if (remote_multi_process_p (rs))
1138 sprintf (rs->buf, "qAttached:%x", pid);
1139 else
1140 sprintf (rs->buf, "qAttached");
1141
1142 putpkt (rs->buf);
1143 getpkt (&rs->buf, &rs->buf_size, 0);
1144
1145 switch (packet_ok (rs->buf,
1146 &remote_protocol_packets[PACKET_qAttached]))
1147 {
1148 case PACKET_OK:
1149 if (strcmp (rs->buf, "1") == 0)
1150 return 1;
1151 break;
1152 case PACKET_ERROR:
1153 warning (_("Remote failure reply: %s"), rs->buf);
1154 break;
1155 case PACKET_UNKNOWN:
1156 break;
1157 }
1158
1159 return 0;
1160 }
1161
1162 /* Add PID to GDB's inferior table. Since we can be connected to a
1163 remote system before before knowing about any inferior, mark the
1164 target with execution when we find the first inferior. If ATTACHED
1165 is 1, then we had just attached to this inferior. If it is 0, then
1166 we just created this inferior. If it is -1, then try querying the
1167 remote stub to find out if it had attached to the inferior or
1168 not. */
1169
1170 static struct inferior *
1171 remote_add_inferior (int pid, int attached)
1172 {
1173 struct remote_state *rs = get_remote_state ();
1174 struct inferior *inf;
1175
1176 /* Check whether this process we're learning about is to be
1177 considered attached, or if is to be considered to have been
1178 spawned by the stub. */
1179 if (attached == -1)
1180 attached = remote_query_attached (pid);
1181
1182 inf = add_inferior (pid);
1183
1184 inf->attach_flag = attached;
1185
1186 return inf;
1187 }
1188
1189 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1190 according to RUNNING. */
1191
1192 static void
1193 remote_add_thread (ptid_t ptid, int running)
1194 {
1195 add_thread (ptid);
1196
1197 set_executing (ptid, running);
1198 set_running (ptid, running);
1199 }
1200
1201 /* Come here when we learn about a thread id from the remote target.
1202 It may be the first time we hear about such thread, so take the
1203 opportunity to add it to GDB's thread list. In case this is the
1204 first time we're noticing its corresponding inferior, add it to
1205 GDB's inferior list as well. */
1206
1207 static void
1208 remote_notice_new_inferior (ptid_t currthread, int running)
1209 {
1210 struct remote_state *rs = get_remote_state ();
1211
1212 /* If this is a new thread, add it to GDB's thread list.
1213 If we leave it up to WFI to do this, bad things will happen. */
1214
1215 if (in_thread_list (currthread) && is_exited (currthread))
1216 {
1217 /* We're seeing an event on a thread id we knew had exited.
1218 This has to be a new thread reusing the old id. Add it. */
1219 remote_add_thread (currthread, running);
1220 return;
1221 }
1222
1223 if (!in_thread_list (currthread))
1224 {
1225 struct inferior *inf = NULL;
1226 int pid = ptid_get_pid (currthread);
1227
1228 if (ptid_is_pid (inferior_ptid)
1229 && pid == ptid_get_pid (inferior_ptid))
1230 {
1231 /* inferior_ptid has no thread member yet. This can happen
1232 with the vAttach -> remote_wait,"TAAthread:" path if the
1233 stub doesn't support qC. This is the first stop reported
1234 after an attach, so this is the main thread. Update the
1235 ptid in the thread list. */
1236 if (in_thread_list (pid_to_ptid (pid)))
1237 thread_change_ptid (inferior_ptid, currthread);
1238 else
1239 {
1240 remote_add_thread (currthread, running);
1241 inferior_ptid = currthread;
1242 }
1243 return;
1244 }
1245
1246 if (ptid_equal (magic_null_ptid, inferior_ptid))
1247 {
1248 /* inferior_ptid is not set yet. This can happen with the
1249 vRun -> remote_wait,"TAAthread:" path if the stub
1250 doesn't support qC. This is the first stop reported
1251 after an attach, so this is the main thread. Update the
1252 ptid in the thread list. */
1253 thread_change_ptid (inferior_ptid, currthread);
1254 return;
1255 }
1256
1257 /* When connecting to a target remote, or to a target
1258 extended-remote which already was debugging an inferior, we
1259 may not know about it yet. Add it before adding its child
1260 thread, so notifications are emitted in a sensible order. */
1261 if (!in_inferior_list (ptid_get_pid (currthread)))
1262 inf = remote_add_inferior (ptid_get_pid (currthread), -1);
1263
1264 /* This is really a new thread. Add it. */
1265 remote_add_thread (currthread, running);
1266
1267 /* If we found a new inferior, let the common code do whatever
1268 it needs to with it (e.g., read shared libraries, insert
1269 breakpoints). */
1270 if (inf != NULL)
1271 notice_new_inferior (currthread, running, 0);
1272 }
1273 }
1274
1275 /* Call this function as a result of
1276 1) A halt indication (T packet) containing a thread id
1277 2) A direct query of currthread
1278 3) Successful execution of set thread
1279 */
1280
1281 static void
1282 record_currthread (ptid_t currthread)
1283 {
1284 general_thread = currthread;
1285
1286 if (ptid_equal (currthread, minus_one_ptid))
1287 /* We're just invalidating the local thread mirror. */
1288 return;
1289
1290 remote_notice_new_inferior (currthread, 0);
1291 }
1292
1293 static char *last_pass_packet;
1294
1295 /* If 'QPassSignals' is supported, tell the remote stub what signals
1296 it can simply pass through to the inferior without reporting. */
1297
1298 static void
1299 remote_pass_signals (void)
1300 {
1301 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1302 {
1303 char *pass_packet, *p;
1304 int numsigs = (int) TARGET_SIGNAL_LAST;
1305 int count = 0, i;
1306
1307 gdb_assert (numsigs < 256);
1308 for (i = 0; i < numsigs; i++)
1309 {
1310 if (signal_stop_state (i) == 0
1311 && signal_print_state (i) == 0
1312 && signal_pass_state (i) == 1)
1313 count++;
1314 }
1315 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1316 strcpy (pass_packet, "QPassSignals:");
1317 p = pass_packet + strlen (pass_packet);
1318 for (i = 0; i < numsigs; i++)
1319 {
1320 if (signal_stop_state (i) == 0
1321 && signal_print_state (i) == 0
1322 && signal_pass_state (i) == 1)
1323 {
1324 if (i >= 16)
1325 *p++ = tohex (i >> 4);
1326 *p++ = tohex (i & 15);
1327 if (count)
1328 *p++ = ';';
1329 else
1330 break;
1331 count--;
1332 }
1333 }
1334 *p = 0;
1335 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1336 {
1337 struct remote_state *rs = get_remote_state ();
1338 char *buf = rs->buf;
1339
1340 putpkt (pass_packet);
1341 getpkt (&rs->buf, &rs->buf_size, 0);
1342 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1343 if (last_pass_packet)
1344 xfree (last_pass_packet);
1345 last_pass_packet = pass_packet;
1346 }
1347 else
1348 xfree (pass_packet);
1349 }
1350 }
1351
1352 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1353 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1354 thread. If GEN is set, set the general thread, if not, then set
1355 the step/continue thread. */
1356 static void
1357 set_thread (struct ptid ptid, int gen)
1358 {
1359 struct remote_state *rs = get_remote_state ();
1360 ptid_t state = gen ? general_thread : continue_thread;
1361 char *buf = rs->buf;
1362 char *endbuf = rs->buf + get_remote_packet_size ();
1363
1364 if (ptid_equal (state, ptid))
1365 return;
1366
1367 *buf++ = 'H';
1368 *buf++ = gen ? 'g' : 'c';
1369 if (ptid_equal (ptid, magic_null_ptid))
1370 xsnprintf (buf, endbuf - buf, "0");
1371 else if (ptid_equal (ptid, any_thread_ptid))
1372 xsnprintf (buf, endbuf - buf, "0");
1373 else if (ptid_equal (ptid, minus_one_ptid))
1374 xsnprintf (buf, endbuf - buf, "-1");
1375 else
1376 write_ptid (buf, endbuf, ptid);
1377 putpkt (rs->buf);
1378 getpkt (&rs->buf, &rs->buf_size, 0);
1379 if (gen)
1380 general_thread = ptid;
1381 else
1382 continue_thread = ptid;
1383 }
1384
1385 static void
1386 set_general_thread (struct ptid ptid)
1387 {
1388 set_thread (ptid, 1);
1389 }
1390
1391 static void
1392 set_continue_thread (struct ptid ptid)
1393 {
1394 set_thread (ptid, 0);
1395 }
1396
1397 /* Change the remote current process. Which thread within the process
1398 ends up selected isn't important, as long as it is the same process
1399 as what INFERIOR_PTID points to.
1400
1401 This comes from that fact that there is no explicit notion of
1402 "selected process" in the protocol. The selected process for
1403 general operations is the process the selected general thread
1404 belongs to. */
1405
1406 static void
1407 set_general_process (void)
1408 {
1409 struct remote_state *rs = get_remote_state ();
1410
1411 /* If the remote can't handle multiple processes, don't bother. */
1412 if (!remote_multi_process_p (rs))
1413 return;
1414
1415 /* We only need to change the remote current thread if it's pointing
1416 at some other process. */
1417 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1418 set_general_thread (inferior_ptid);
1419 }
1420
1421 \f
1422 /* Return nonzero if the thread PTID is still alive on the remote
1423 system. */
1424
1425 static int
1426 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1427 {
1428 struct remote_state *rs = get_remote_state ();
1429 int tid = ptid_get_tid (ptid);
1430 char *p, *endp;
1431
1432 if (ptid_equal (ptid, magic_null_ptid))
1433 /* The main thread is always alive. */
1434 return 1;
1435
1436 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1437 /* The main thread is always alive. This can happen after a
1438 vAttach, if the remote side doesn't support
1439 multi-threading. */
1440 return 1;
1441
1442 p = rs->buf;
1443 endp = rs->buf + get_remote_packet_size ();
1444
1445 *p++ = 'T';
1446 write_ptid (p, endp, ptid);
1447
1448 putpkt (rs->buf);
1449 getpkt (&rs->buf, &rs->buf_size, 0);
1450 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1451 }
1452
1453 /* About these extended threadlist and threadinfo packets. They are
1454 variable length packets but, the fields within them are often fixed
1455 length. They are redundent enough to send over UDP as is the
1456 remote protocol in general. There is a matching unit test module
1457 in libstub. */
1458
1459 #define OPAQUETHREADBYTES 8
1460
1461 /* a 64 bit opaque identifier */
1462 typedef unsigned char threadref[OPAQUETHREADBYTES];
1463
1464 /* WARNING: This threadref data structure comes from the remote O.S.,
1465 libstub protocol encoding, and remote.c. it is not particularly
1466 changable. */
1467
1468 /* Right now, the internal structure is int. We want it to be bigger.
1469 Plan to fix this.
1470 */
1471
1472 typedef int gdb_threadref; /* Internal GDB thread reference. */
1473
1474 /* gdb_ext_thread_info is an internal GDB data structure which is
1475 equivalent to the reply of the remote threadinfo packet. */
1476
1477 struct gdb_ext_thread_info
1478 {
1479 threadref threadid; /* External form of thread reference. */
1480 int active; /* Has state interesting to GDB?
1481 regs, stack. */
1482 char display[256]; /* Brief state display, name,
1483 blocked/suspended. */
1484 char shortname[32]; /* To be used to name threads. */
1485 char more_display[256]; /* Long info, statistics, queue depth,
1486 whatever. */
1487 };
1488
1489 /* The volume of remote transfers can be limited by submitting
1490 a mask containing bits specifying the desired information.
1491 Use a union of these values as the 'selection' parameter to
1492 get_thread_info. FIXME: Make these TAG names more thread specific.
1493 */
1494
1495 #define TAG_THREADID 1
1496 #define TAG_EXISTS 2
1497 #define TAG_DISPLAY 4
1498 #define TAG_THREADNAME 8
1499 #define TAG_MOREDISPLAY 16
1500
1501 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1502
1503 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1504
1505 static char *unpack_nibble (char *buf, int *val);
1506
1507 static char *pack_nibble (char *buf, int nibble);
1508
1509 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1510
1511 static char *unpack_byte (char *buf, int *value);
1512
1513 static char *pack_int (char *buf, int value);
1514
1515 static char *unpack_int (char *buf, int *value);
1516
1517 static char *unpack_string (char *src, char *dest, int length);
1518
1519 static char *pack_threadid (char *pkt, threadref *id);
1520
1521 static char *unpack_threadid (char *inbuf, threadref *id);
1522
1523 void int_to_threadref (threadref *id, int value);
1524
1525 static int threadref_to_int (threadref *ref);
1526
1527 static void copy_threadref (threadref *dest, threadref *src);
1528
1529 static int threadmatch (threadref *dest, threadref *src);
1530
1531 static char *pack_threadinfo_request (char *pkt, int mode,
1532 threadref *id);
1533
1534 static int remote_unpack_thread_info_response (char *pkt,
1535 threadref *expectedref,
1536 struct gdb_ext_thread_info
1537 *info);
1538
1539
1540 static int remote_get_threadinfo (threadref *threadid,
1541 int fieldset, /*TAG mask */
1542 struct gdb_ext_thread_info *info);
1543
1544 static char *pack_threadlist_request (char *pkt, int startflag,
1545 int threadcount,
1546 threadref *nextthread);
1547
1548 static int parse_threadlist_response (char *pkt,
1549 int result_limit,
1550 threadref *original_echo,
1551 threadref *resultlist,
1552 int *doneflag);
1553
1554 static int remote_get_threadlist (int startflag,
1555 threadref *nextthread,
1556 int result_limit,
1557 int *done,
1558 int *result_count,
1559 threadref *threadlist);
1560
1561 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1562
1563 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1564 void *context, int looplimit);
1565
1566 static int remote_newthread_step (threadref *ref, void *context);
1567
1568
1569 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1570 buffer we're allowed to write to. Returns
1571 BUF+CHARACTERS_WRITTEN. */
1572
1573 static char *
1574 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1575 {
1576 int pid, tid;
1577 struct remote_state *rs = get_remote_state ();
1578
1579 if (remote_multi_process_p (rs))
1580 {
1581 pid = ptid_get_pid (ptid);
1582 if (pid < 0)
1583 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1584 else
1585 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1586 }
1587 tid = ptid_get_tid (ptid);
1588 if (tid < 0)
1589 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1590 else
1591 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1592
1593 return buf;
1594 }
1595
1596 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1597 passed the last parsed char. Returns null_ptid on error. */
1598
1599 static ptid_t
1600 read_ptid (char *buf, char **obuf)
1601 {
1602 char *p = buf;
1603 char *pp;
1604 ULONGEST pid = 0, tid = 0;
1605 ptid_t ptid;
1606
1607 if (*p == 'p')
1608 {
1609 /* Multi-process ptid. */
1610 pp = unpack_varlen_hex (p + 1, &pid);
1611 if (*pp != '.')
1612 error (_("invalid remote ptid: %s\n"), p);
1613
1614 p = pp;
1615 pp = unpack_varlen_hex (p + 1, &tid);
1616 if (obuf)
1617 *obuf = pp;
1618 return ptid_build (pid, 0, tid);
1619 }
1620
1621 /* No multi-process. Just a tid. */
1622 pp = unpack_varlen_hex (p, &tid);
1623
1624 /* Since the stub is not sending a process id, then default to
1625 what's in inferior_ptid, unless it's null at this point. If so,
1626 then since there's no way to know the pid of the reported
1627 threads, use the magic number. */
1628 if (ptid_equal (inferior_ptid, null_ptid))
1629 pid = ptid_get_pid (magic_null_ptid);
1630 else
1631 pid = ptid_get_pid (inferior_ptid);
1632
1633 if (obuf)
1634 *obuf = pp;
1635 return ptid_build (pid, 0, tid);
1636 }
1637
1638 /* Encode 64 bits in 16 chars of hex. */
1639
1640 static const char hexchars[] = "0123456789abcdef";
1641
1642 static int
1643 ishex (int ch, int *val)
1644 {
1645 if ((ch >= 'a') && (ch <= 'f'))
1646 {
1647 *val = ch - 'a' + 10;
1648 return 1;
1649 }
1650 if ((ch >= 'A') && (ch <= 'F'))
1651 {
1652 *val = ch - 'A' + 10;
1653 return 1;
1654 }
1655 if ((ch >= '0') && (ch <= '9'))
1656 {
1657 *val = ch - '0';
1658 return 1;
1659 }
1660 return 0;
1661 }
1662
1663 static int
1664 stubhex (int ch)
1665 {
1666 if (ch >= 'a' && ch <= 'f')
1667 return ch - 'a' + 10;
1668 if (ch >= '0' && ch <= '9')
1669 return ch - '0';
1670 if (ch >= 'A' && ch <= 'F')
1671 return ch - 'A' + 10;
1672 return -1;
1673 }
1674
1675 static int
1676 stub_unpack_int (char *buff, int fieldlength)
1677 {
1678 int nibble;
1679 int retval = 0;
1680
1681 while (fieldlength)
1682 {
1683 nibble = stubhex (*buff++);
1684 retval |= nibble;
1685 fieldlength--;
1686 if (fieldlength)
1687 retval = retval << 4;
1688 }
1689 return retval;
1690 }
1691
1692 char *
1693 unpack_varlen_hex (char *buff, /* packet to parse */
1694 ULONGEST *result)
1695 {
1696 int nibble;
1697 ULONGEST retval = 0;
1698
1699 while (ishex (*buff, &nibble))
1700 {
1701 buff++;
1702 retval = retval << 4;
1703 retval |= nibble & 0x0f;
1704 }
1705 *result = retval;
1706 return buff;
1707 }
1708
1709 static char *
1710 unpack_nibble (char *buf, int *val)
1711 {
1712 *val = fromhex (*buf++);
1713 return buf;
1714 }
1715
1716 static char *
1717 pack_nibble (char *buf, int nibble)
1718 {
1719 *buf++ = hexchars[(nibble & 0x0f)];
1720 return buf;
1721 }
1722
1723 static char *
1724 pack_hex_byte (char *pkt, int byte)
1725 {
1726 *pkt++ = hexchars[(byte >> 4) & 0xf];
1727 *pkt++ = hexchars[(byte & 0xf)];
1728 return pkt;
1729 }
1730
1731 static char *
1732 unpack_byte (char *buf, int *value)
1733 {
1734 *value = stub_unpack_int (buf, 2);
1735 return buf + 2;
1736 }
1737
1738 static char *
1739 pack_int (char *buf, int value)
1740 {
1741 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1742 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1743 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1744 buf = pack_hex_byte (buf, (value & 0xff));
1745 return buf;
1746 }
1747
1748 static char *
1749 unpack_int (char *buf, int *value)
1750 {
1751 *value = stub_unpack_int (buf, 8);
1752 return buf + 8;
1753 }
1754
1755 #if 0 /* Currently unused, uncomment when needed. */
1756 static char *pack_string (char *pkt, char *string);
1757
1758 static char *
1759 pack_string (char *pkt, char *string)
1760 {
1761 char ch;
1762 int len;
1763
1764 len = strlen (string);
1765 if (len > 200)
1766 len = 200; /* Bigger than most GDB packets, junk??? */
1767 pkt = pack_hex_byte (pkt, len);
1768 while (len-- > 0)
1769 {
1770 ch = *string++;
1771 if ((ch == '\0') || (ch == '#'))
1772 ch = '*'; /* Protect encapsulation. */
1773 *pkt++ = ch;
1774 }
1775 return pkt;
1776 }
1777 #endif /* 0 (unused) */
1778
1779 static char *
1780 unpack_string (char *src, char *dest, int length)
1781 {
1782 while (length--)
1783 *dest++ = *src++;
1784 *dest = '\0';
1785 return src;
1786 }
1787
1788 static char *
1789 pack_threadid (char *pkt, threadref *id)
1790 {
1791 char *limit;
1792 unsigned char *altid;
1793
1794 altid = (unsigned char *) id;
1795 limit = pkt + BUF_THREAD_ID_SIZE;
1796 while (pkt < limit)
1797 pkt = pack_hex_byte (pkt, *altid++);
1798 return pkt;
1799 }
1800
1801
1802 static char *
1803 unpack_threadid (char *inbuf, threadref *id)
1804 {
1805 char *altref;
1806 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1807 int x, y;
1808
1809 altref = (char *) id;
1810
1811 while (inbuf < limit)
1812 {
1813 x = stubhex (*inbuf++);
1814 y = stubhex (*inbuf++);
1815 *altref++ = (x << 4) | y;
1816 }
1817 return inbuf;
1818 }
1819
1820 /* Externally, threadrefs are 64 bits but internally, they are still
1821 ints. This is due to a mismatch of specifications. We would like
1822 to use 64bit thread references internally. This is an adapter
1823 function. */
1824
1825 void
1826 int_to_threadref (threadref *id, int value)
1827 {
1828 unsigned char *scan;
1829
1830 scan = (unsigned char *) id;
1831 {
1832 int i = 4;
1833 while (i--)
1834 *scan++ = 0;
1835 }
1836 *scan++ = (value >> 24) & 0xff;
1837 *scan++ = (value >> 16) & 0xff;
1838 *scan++ = (value >> 8) & 0xff;
1839 *scan++ = (value & 0xff);
1840 }
1841
1842 static int
1843 threadref_to_int (threadref *ref)
1844 {
1845 int i, value = 0;
1846 unsigned char *scan;
1847
1848 scan = *ref;
1849 scan += 4;
1850 i = 4;
1851 while (i-- > 0)
1852 value = (value << 8) | ((*scan++) & 0xff);
1853 return value;
1854 }
1855
1856 static void
1857 copy_threadref (threadref *dest, threadref *src)
1858 {
1859 int i;
1860 unsigned char *csrc, *cdest;
1861
1862 csrc = (unsigned char *) src;
1863 cdest = (unsigned char *) dest;
1864 i = 8;
1865 while (i--)
1866 *cdest++ = *csrc++;
1867 }
1868
1869 static int
1870 threadmatch (threadref *dest, threadref *src)
1871 {
1872 /* Things are broken right now, so just assume we got a match. */
1873 #if 0
1874 unsigned char *srcp, *destp;
1875 int i, result;
1876 srcp = (char *) src;
1877 destp = (char *) dest;
1878
1879 result = 1;
1880 while (i-- > 0)
1881 result &= (*srcp++ == *destp++) ? 1 : 0;
1882 return result;
1883 #endif
1884 return 1;
1885 }
1886
1887 /*
1888 threadid:1, # always request threadid
1889 context_exists:2,
1890 display:4,
1891 unique_name:8,
1892 more_display:16
1893 */
1894
1895 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1896
1897 static char *
1898 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1899 {
1900 *pkt++ = 'q'; /* Info Query */
1901 *pkt++ = 'P'; /* process or thread info */
1902 pkt = pack_int (pkt, mode); /* mode */
1903 pkt = pack_threadid (pkt, id); /* threadid */
1904 *pkt = '\0'; /* terminate */
1905 return pkt;
1906 }
1907
1908 /* These values tag the fields in a thread info response packet. */
1909 /* Tagging the fields allows us to request specific fields and to
1910 add more fields as time goes by. */
1911
1912 #define TAG_THREADID 1 /* Echo the thread identifier. */
1913 #define TAG_EXISTS 2 /* Is this process defined enough to
1914 fetch registers and its stack? */
1915 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1916 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1917 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1918 the process. */
1919
1920 static int
1921 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1922 struct gdb_ext_thread_info *info)
1923 {
1924 struct remote_state *rs = get_remote_state ();
1925 int mask, length;
1926 int tag;
1927 threadref ref;
1928 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1929 int retval = 1;
1930
1931 /* info->threadid = 0; FIXME: implement zero_threadref. */
1932 info->active = 0;
1933 info->display[0] = '\0';
1934 info->shortname[0] = '\0';
1935 info->more_display[0] = '\0';
1936
1937 /* Assume the characters indicating the packet type have been
1938 stripped. */
1939 pkt = unpack_int (pkt, &mask); /* arg mask */
1940 pkt = unpack_threadid (pkt, &ref);
1941
1942 if (mask == 0)
1943 warning (_("Incomplete response to threadinfo request."));
1944 if (!threadmatch (&ref, expectedref))
1945 { /* This is an answer to a different request. */
1946 warning (_("ERROR RMT Thread info mismatch."));
1947 return 0;
1948 }
1949 copy_threadref (&info->threadid, &ref);
1950
1951 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1952
1953 /* Packets are terminated with nulls. */
1954 while ((pkt < limit) && mask && *pkt)
1955 {
1956 pkt = unpack_int (pkt, &tag); /* tag */
1957 pkt = unpack_byte (pkt, &length); /* length */
1958 if (!(tag & mask)) /* Tags out of synch with mask. */
1959 {
1960 warning (_("ERROR RMT: threadinfo tag mismatch."));
1961 retval = 0;
1962 break;
1963 }
1964 if (tag == TAG_THREADID)
1965 {
1966 if (length != 16)
1967 {
1968 warning (_("ERROR RMT: length of threadid is not 16."));
1969 retval = 0;
1970 break;
1971 }
1972 pkt = unpack_threadid (pkt, &ref);
1973 mask = mask & ~TAG_THREADID;
1974 continue;
1975 }
1976 if (tag == TAG_EXISTS)
1977 {
1978 info->active = stub_unpack_int (pkt, length);
1979 pkt += length;
1980 mask = mask & ~(TAG_EXISTS);
1981 if (length > 8)
1982 {
1983 warning (_("ERROR RMT: 'exists' length too long."));
1984 retval = 0;
1985 break;
1986 }
1987 continue;
1988 }
1989 if (tag == TAG_THREADNAME)
1990 {
1991 pkt = unpack_string (pkt, &info->shortname[0], length);
1992 mask = mask & ~TAG_THREADNAME;
1993 continue;
1994 }
1995 if (tag == TAG_DISPLAY)
1996 {
1997 pkt = unpack_string (pkt, &info->display[0], length);
1998 mask = mask & ~TAG_DISPLAY;
1999 continue;
2000 }
2001 if (tag == TAG_MOREDISPLAY)
2002 {
2003 pkt = unpack_string (pkt, &info->more_display[0], length);
2004 mask = mask & ~TAG_MOREDISPLAY;
2005 continue;
2006 }
2007 warning (_("ERROR RMT: unknown thread info tag."));
2008 break; /* Not a tag we know about. */
2009 }
2010 return retval;
2011 }
2012
2013 static int
2014 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2015 struct gdb_ext_thread_info *info)
2016 {
2017 struct remote_state *rs = get_remote_state ();
2018 int result;
2019
2020 pack_threadinfo_request (rs->buf, fieldset, threadid);
2021 putpkt (rs->buf);
2022 getpkt (&rs->buf, &rs->buf_size, 0);
2023
2024 if (rs->buf[0] == '\0')
2025 return 0;
2026
2027 result = remote_unpack_thread_info_response (rs->buf + 2,
2028 threadid, info);
2029 return result;
2030 }
2031
2032 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2033
2034 static char *
2035 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2036 threadref *nextthread)
2037 {
2038 *pkt++ = 'q'; /* info query packet */
2039 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2040 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2041 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2042 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2043 *pkt = '\0';
2044 return pkt;
2045 }
2046
2047 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2048
2049 static int
2050 parse_threadlist_response (char *pkt, int result_limit,
2051 threadref *original_echo, threadref *resultlist,
2052 int *doneflag)
2053 {
2054 struct remote_state *rs = get_remote_state ();
2055 char *limit;
2056 int count, resultcount, done;
2057
2058 resultcount = 0;
2059 /* Assume the 'q' and 'M chars have been stripped. */
2060 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2061 /* done parse past here */
2062 pkt = unpack_byte (pkt, &count); /* count field */
2063 pkt = unpack_nibble (pkt, &done);
2064 /* The first threadid is the argument threadid. */
2065 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2066 while ((count-- > 0) && (pkt < limit))
2067 {
2068 pkt = unpack_threadid (pkt, resultlist++);
2069 if (resultcount++ >= result_limit)
2070 break;
2071 }
2072 if (doneflag)
2073 *doneflag = done;
2074 return resultcount;
2075 }
2076
2077 static int
2078 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2079 int *done, int *result_count, threadref *threadlist)
2080 {
2081 struct remote_state *rs = get_remote_state ();
2082 static threadref echo_nextthread;
2083 int result = 1;
2084
2085 /* Trancate result limit to be smaller than the packet size. */
2086 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
2087 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2088
2089 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2090 putpkt (rs->buf);
2091 getpkt (&rs->buf, &rs->buf_size, 0);
2092
2093 if (*rs->buf == '\0')
2094 *result_count = 0;
2095 else
2096 *result_count =
2097 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2098 threadlist, done);
2099
2100 if (!threadmatch (&echo_nextthread, nextthread))
2101 {
2102 /* FIXME: This is a good reason to drop the packet. */
2103 /* Possably, there is a duplicate response. */
2104 /* Possabilities :
2105 retransmit immediatly - race conditions
2106 retransmit after timeout - yes
2107 exit
2108 wait for packet, then exit
2109 */
2110 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2111 return 0; /* I choose simply exiting. */
2112 }
2113 if (*result_count <= 0)
2114 {
2115 if (*done != 1)
2116 {
2117 warning (_("RMT ERROR : failed to get remote thread list."));
2118 result = 0;
2119 }
2120 return result; /* break; */
2121 }
2122 if (*result_count > result_limit)
2123 {
2124 *result_count = 0;
2125 warning (_("RMT ERROR: threadlist response longer than requested."));
2126 return 0;
2127 }
2128 return result;
2129 }
2130
2131 /* This is the interface between remote and threads, remotes upper
2132 interface. */
2133
2134 /* remote_find_new_threads retrieves the thread list and for each
2135 thread in the list, looks up the thread in GDB's internal list,
2136 adding the thread if it does not already exist. This involves
2137 getting partial thread lists from the remote target so, polling the
2138 quit_flag is required. */
2139
2140
2141 /* About this many threadisds fit in a packet. */
2142
2143 #define MAXTHREADLISTRESULTS 32
2144
2145 static int
2146 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2147 int looplimit)
2148 {
2149 int done, i, result_count;
2150 int startflag = 1;
2151 int result = 1;
2152 int loopcount = 0;
2153 static threadref nextthread;
2154 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2155
2156 done = 0;
2157 while (!done)
2158 {
2159 if (loopcount++ > looplimit)
2160 {
2161 result = 0;
2162 warning (_("Remote fetch threadlist -infinite loop-."));
2163 break;
2164 }
2165 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2166 &done, &result_count, resultthreadlist))
2167 {
2168 result = 0;
2169 break;
2170 }
2171 /* Clear for later iterations. */
2172 startflag = 0;
2173 /* Setup to resume next batch of thread references, set nextthread. */
2174 if (result_count >= 1)
2175 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2176 i = 0;
2177 while (result_count--)
2178 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2179 break;
2180 }
2181 return result;
2182 }
2183
2184 static int
2185 remote_newthread_step (threadref *ref, void *context)
2186 {
2187 int pid = ptid_get_pid (inferior_ptid);
2188 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2189
2190 if (!in_thread_list (ptid))
2191 add_thread (ptid);
2192 return 1; /* continue iterator */
2193 }
2194
2195 #define CRAZY_MAX_THREADS 1000
2196
2197 static ptid_t
2198 remote_current_thread (ptid_t oldpid)
2199 {
2200 struct remote_state *rs = get_remote_state ();
2201 char *p = rs->buf;
2202 int tid;
2203 int pid;
2204
2205 putpkt ("qC");
2206 getpkt (&rs->buf, &rs->buf_size, 0);
2207 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2208 return read_ptid (&rs->buf[2], NULL);
2209 else
2210 return oldpid;
2211 }
2212
2213 /* Find new threads for info threads command.
2214 * Original version, using John Metzler's thread protocol.
2215 */
2216
2217 static void
2218 remote_find_new_threads (void)
2219 {
2220 remote_threadlist_iterator (remote_newthread_step, 0,
2221 CRAZY_MAX_THREADS);
2222 }
2223
2224 /*
2225 * Find all threads for info threads command.
2226 * Uses new thread protocol contributed by Cisco.
2227 * Falls back and attempts to use the older method (above)
2228 * if the target doesn't respond to the new method.
2229 */
2230
2231 static void
2232 remote_threads_info (struct target_ops *ops)
2233 {
2234 struct remote_state *rs = get_remote_state ();
2235 char *bufp;
2236 ptid_t new_thread;
2237
2238 if (remote_desc == 0) /* paranoia */
2239 error (_("Command can only be used when connected to the remote target."));
2240
2241 if (use_threadinfo_query)
2242 {
2243 putpkt ("qfThreadInfo");
2244 getpkt (&rs->buf, &rs->buf_size, 0);
2245 bufp = rs->buf;
2246 if (bufp[0] != '\0') /* q packet recognized */
2247 {
2248 while (*bufp++ == 'm') /* reply contains one or more TID */
2249 {
2250 do
2251 {
2252 new_thread = read_ptid (bufp, &bufp);
2253 if (!ptid_equal (new_thread, null_ptid))
2254 {
2255 /* In non-stop mode, we assume new found threads
2256 are running until proven otherwise with a
2257 stop reply. In all-stop, we can only get
2258 here if all threads are stopped. */
2259 int running = non_stop ? 1 : 0;
2260
2261 remote_notice_new_inferior (new_thread, running);
2262 }
2263 }
2264 while (*bufp++ == ','); /* comma-separated list */
2265 putpkt ("qsThreadInfo");
2266 getpkt (&rs->buf, &rs->buf_size, 0);
2267 bufp = rs->buf;
2268 }
2269 return; /* done */
2270 }
2271 }
2272
2273 /* Only qfThreadInfo is supported in non-stop mode. */
2274 if (non_stop)
2275 return;
2276
2277 /* Else fall back to old method based on jmetzler protocol. */
2278 use_threadinfo_query = 0;
2279 remote_find_new_threads ();
2280 return;
2281 }
2282
2283 /*
2284 * Collect a descriptive string about the given thread.
2285 * The target may say anything it wants to about the thread
2286 * (typically info about its blocked / runnable state, name, etc.).
2287 * This string will appear in the info threads display.
2288 *
2289 * Optional: targets are not required to implement this function.
2290 */
2291
2292 static char *
2293 remote_threads_extra_info (struct thread_info *tp)
2294 {
2295 struct remote_state *rs = get_remote_state ();
2296 int result;
2297 int set;
2298 threadref id;
2299 struct gdb_ext_thread_info threadinfo;
2300 static char display_buf[100]; /* arbitrary... */
2301 int n = 0; /* position in display_buf */
2302
2303 if (remote_desc == 0) /* paranoia */
2304 internal_error (__FILE__, __LINE__,
2305 _("remote_threads_extra_info"));
2306
2307 if (ptid_equal (tp->ptid, magic_null_ptid)
2308 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2309 /* This is the main thread which was added by GDB. The remote
2310 server doesn't know about it. */
2311 return NULL;
2312
2313 if (use_threadextra_query)
2314 {
2315 char *b = rs->buf;
2316 char *endb = rs->buf + get_remote_packet_size ();
2317
2318 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2319 b += strlen (b);
2320 write_ptid (b, endb, tp->ptid);
2321
2322 putpkt (rs->buf);
2323 getpkt (&rs->buf, &rs->buf_size, 0);
2324 if (rs->buf[0] != 0)
2325 {
2326 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2327 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2328 display_buf [result] = '\0';
2329 return display_buf;
2330 }
2331 }
2332
2333 /* If the above query fails, fall back to the old method. */
2334 use_threadextra_query = 0;
2335 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2336 | TAG_MOREDISPLAY | TAG_DISPLAY;
2337 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2338 if (remote_get_threadinfo (&id, set, &threadinfo))
2339 if (threadinfo.active)
2340 {
2341 if (*threadinfo.shortname)
2342 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2343 " Name: %s,", threadinfo.shortname);
2344 if (*threadinfo.display)
2345 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2346 " State: %s,", threadinfo.display);
2347 if (*threadinfo.more_display)
2348 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2349 " Priority: %s", threadinfo.more_display);
2350
2351 if (n > 0)
2352 {
2353 /* For purely cosmetic reasons, clear up trailing commas. */
2354 if (',' == display_buf[n-1])
2355 display_buf[n-1] = ' ';
2356 return display_buf;
2357 }
2358 }
2359 return NULL;
2360 }
2361 \f
2362
2363 /* Restart the remote side; this is an extended protocol operation. */
2364
2365 static void
2366 extended_remote_restart (void)
2367 {
2368 struct remote_state *rs = get_remote_state ();
2369
2370 /* Send the restart command; for reasons I don't understand the
2371 remote side really expects a number after the "R". */
2372 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2373 putpkt (rs->buf);
2374
2375 remote_fileio_reset ();
2376 }
2377 \f
2378 /* Clean up connection to a remote debugger. */
2379
2380 static void
2381 remote_close (int quitting)
2382 {
2383 if (remote_desc == NULL)
2384 return; /* already closed */
2385
2386 /* Make sure we leave stdin registered in the event loop, and we
2387 don't leave the async SIGINT signal handler installed. */
2388 remote_terminal_ours ();
2389
2390 serial_close (remote_desc);
2391 remote_desc = NULL;
2392
2393 /* We don't have a connection to the remote stub anymore. Get rid
2394 of all the inferiors and their threads we were controlling. */
2395 discard_all_inferiors ();
2396
2397 /* We're no longer interested in any of these events. */
2398 discard_pending_stop_replies (-1);
2399
2400 if (remote_async_inferior_event_token)
2401 delete_async_event_handler (&remote_async_inferior_event_token);
2402 if (remote_async_get_pending_events_token)
2403 delete_async_event_handler (&remote_async_get_pending_events_token);
2404 }
2405
2406 /* Query the remote side for the text, data and bss offsets. */
2407
2408 static void
2409 get_offsets (void)
2410 {
2411 struct remote_state *rs = get_remote_state ();
2412 char *buf;
2413 char *ptr;
2414 int lose, num_segments = 0, do_sections, do_segments;
2415 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2416 struct section_offsets *offs;
2417 struct symfile_segment_data *data;
2418
2419 if (symfile_objfile == NULL)
2420 return;
2421
2422 putpkt ("qOffsets");
2423 getpkt (&rs->buf, &rs->buf_size, 0);
2424 buf = rs->buf;
2425
2426 if (buf[0] == '\000')
2427 return; /* Return silently. Stub doesn't support
2428 this command. */
2429 if (buf[0] == 'E')
2430 {
2431 warning (_("Remote failure reply: %s"), buf);
2432 return;
2433 }
2434
2435 /* Pick up each field in turn. This used to be done with scanf, but
2436 scanf will make trouble if CORE_ADDR size doesn't match
2437 conversion directives correctly. The following code will work
2438 with any size of CORE_ADDR. */
2439 text_addr = data_addr = bss_addr = 0;
2440 ptr = buf;
2441 lose = 0;
2442
2443 if (strncmp (ptr, "Text=", 5) == 0)
2444 {
2445 ptr += 5;
2446 /* Don't use strtol, could lose on big values. */
2447 while (*ptr && *ptr != ';')
2448 text_addr = (text_addr << 4) + fromhex (*ptr++);
2449
2450 if (strncmp (ptr, ";Data=", 6) == 0)
2451 {
2452 ptr += 6;
2453 while (*ptr && *ptr != ';')
2454 data_addr = (data_addr << 4) + fromhex (*ptr++);
2455 }
2456 else
2457 lose = 1;
2458
2459 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2460 {
2461 ptr += 5;
2462 while (*ptr && *ptr != ';')
2463 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2464
2465 if (bss_addr != data_addr)
2466 warning (_("Target reported unsupported offsets: %s"), buf);
2467 }
2468 else
2469 lose = 1;
2470 }
2471 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2472 {
2473 ptr += 8;
2474 /* Don't use strtol, could lose on big values. */
2475 while (*ptr && *ptr != ';')
2476 text_addr = (text_addr << 4) + fromhex (*ptr++);
2477 num_segments = 1;
2478
2479 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2480 {
2481 ptr += 9;
2482 while (*ptr && *ptr != ';')
2483 data_addr = (data_addr << 4) + fromhex (*ptr++);
2484 num_segments++;
2485 }
2486 }
2487 else
2488 lose = 1;
2489
2490 if (lose)
2491 error (_("Malformed response to offset query, %s"), buf);
2492 else if (*ptr != '\0')
2493 warning (_("Target reported unsupported offsets: %s"), buf);
2494
2495 offs = ((struct section_offsets *)
2496 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2497 memcpy (offs, symfile_objfile->section_offsets,
2498 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2499
2500 data = get_symfile_segment_data (symfile_objfile->obfd);
2501 do_segments = (data != NULL);
2502 do_sections = num_segments == 0;
2503
2504 if (num_segments > 0)
2505 {
2506 segments[0] = text_addr;
2507 segments[1] = data_addr;
2508 }
2509 /* If we have two segments, we can still try to relocate everything
2510 by assuming that the .text and .data offsets apply to the whole
2511 text and data segments. Convert the offsets given in the packet
2512 to base addresses for symfile_map_offsets_to_segments. */
2513 else if (data && data->num_segments == 2)
2514 {
2515 segments[0] = data->segment_bases[0] + text_addr;
2516 segments[1] = data->segment_bases[1] + data_addr;
2517 num_segments = 2;
2518 }
2519 /* If the object file has only one segment, assume that it is text
2520 rather than data; main programs with no writable data are rare,
2521 but programs with no code are useless. Of course the code might
2522 have ended up in the data segment... to detect that we would need
2523 the permissions here. */
2524 else if (data && data->num_segments == 1)
2525 {
2526 segments[0] = data->segment_bases[0] + text_addr;
2527 num_segments = 1;
2528 }
2529 /* There's no way to relocate by segment. */
2530 else
2531 do_segments = 0;
2532
2533 if (do_segments)
2534 {
2535 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2536 offs, num_segments, segments);
2537
2538 if (ret == 0 && !do_sections)
2539 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2540
2541 if (ret > 0)
2542 do_sections = 0;
2543 }
2544
2545 if (data)
2546 free_symfile_segment_data (data);
2547
2548 if (do_sections)
2549 {
2550 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2551
2552 /* This is a temporary kludge to force data and bss to use the same offsets
2553 because that's what nlmconv does now. The real solution requires changes
2554 to the stub and remote.c that I don't have time to do right now. */
2555
2556 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2557 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2558 }
2559
2560 objfile_relocate (symfile_objfile, offs);
2561 }
2562
2563 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
2564 threads we know are stopped already. This is used during the
2565 initial remote connection in non-stop mode --- threads that are
2566 reported as already being stopped are left stopped. */
2567
2568 static int
2569 set_stop_requested_callback (struct thread_info *thread, void *data)
2570 {
2571 /* If we have a stop reply for this thread, it must be stopped. */
2572 if (peek_stop_reply (thread->ptid))
2573 set_stop_requested (thread->ptid, 1);
2574
2575 return 0;
2576 }
2577
2578 /* Stub for catch_exception. */
2579
2580 struct start_remote_args
2581 {
2582 int from_tty;
2583
2584 /* The current target. */
2585 struct target_ops *target;
2586
2587 /* Non-zero if this is an extended-remote target. */
2588 int extended_p;
2589 };
2590
2591 static void
2592 remote_start_remote (struct ui_out *uiout, void *opaque)
2593 {
2594 struct start_remote_args *args = opaque;
2595 struct remote_state *rs = get_remote_state ();
2596 struct packet_config *noack_config;
2597 char *wait_status = NULL;
2598
2599 immediate_quit++; /* Allow user to interrupt it. */
2600
2601 /* Ack any packet which the remote side has already sent. */
2602 serial_write (remote_desc, "+", 1);
2603
2604 /* The first packet we send to the target is the optional "supported
2605 packets" request. If the target can answer this, it will tell us
2606 which later probes to skip. */
2607 remote_query_supported ();
2608
2609 /* Next, we possibly activate noack mode.
2610
2611 If the QStartNoAckMode packet configuration is set to AUTO,
2612 enable noack mode if the stub reported a wish for it with
2613 qSupported.
2614
2615 If set to TRUE, then enable noack mode even if the stub didn't
2616 report it in qSupported. If the stub doesn't reply OK, the
2617 session ends with an error.
2618
2619 If FALSE, then don't activate noack mode, regardless of what the
2620 stub claimed should be the default with qSupported. */
2621
2622 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
2623
2624 if (noack_config->detect == AUTO_BOOLEAN_TRUE
2625 || (noack_config->detect == AUTO_BOOLEAN_AUTO
2626 && noack_config->support == PACKET_ENABLE))
2627 {
2628 putpkt ("QStartNoAckMode");
2629 getpkt (&rs->buf, &rs->buf_size, 0);
2630 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
2631 rs->noack_mode = 1;
2632 }
2633
2634 if (args->extended_p)
2635 {
2636 /* Tell the remote that we are using the extended protocol. */
2637 putpkt ("!");
2638 getpkt (&rs->buf, &rs->buf_size, 0);
2639 }
2640
2641 /* Next, if the target can specify a description, read it. We do
2642 this before anything involving memory or registers. */
2643 target_find_description ();
2644
2645 /* On OSs where the list of libraries is global to all
2646 processes, we fetch them early. */
2647 if (gdbarch_has_global_solist (target_gdbarch))
2648 solib_add (NULL, args->from_tty, args->target, auto_solib_add);
2649
2650 if (non_stop)
2651 {
2652 if (!rs->non_stop_aware)
2653 error (_("Non-stop mode requested, but remote does not support non-stop"));
2654
2655 putpkt ("QNonStop:1");
2656 getpkt (&rs->buf, &rs->buf_size, 0);
2657
2658 if (strcmp (rs->buf, "OK") != 0)
2659 error ("Remote refused setting non-stop mode with: %s", rs->buf);
2660
2661 /* Find about threads and processes the stub is already
2662 controlling. We default to adding them in the running state.
2663 The '?' query below will then tell us about which threads are
2664 stopped. */
2665 remote_threads_info (args->target);
2666 }
2667 else if (rs->non_stop_aware)
2668 {
2669 /* Don't assume that the stub can operate in all-stop mode.
2670 Request it explicitely. */
2671 putpkt ("QNonStop:0");
2672 getpkt (&rs->buf, &rs->buf_size, 0);
2673
2674 if (strcmp (rs->buf, "OK") != 0)
2675 error ("Remote refused setting all-stop mode with: %s", rs->buf);
2676 }
2677
2678 /* Check whether the target is running now. */
2679 putpkt ("?");
2680 getpkt (&rs->buf, &rs->buf_size, 0);
2681
2682 if (!non_stop)
2683 {
2684 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
2685 {
2686 if (!args->extended_p)
2687 error (_("The target is not running (try extended-remote?)"));
2688
2689 /* We're connected, but not running. Drop out before we
2690 call start_remote. */
2691 return;
2692 }
2693 else
2694 {
2695 /* Save the reply for later. */
2696 wait_status = alloca (strlen (rs->buf) + 1);
2697 strcpy (wait_status, rs->buf);
2698 }
2699
2700 /* Let the stub know that we want it to return the thread. */
2701 set_continue_thread (minus_one_ptid);
2702
2703 /* Without this, some commands which require an active target
2704 (such as kill) won't work. This variable serves (at least)
2705 double duty as both the pid of the target process (if it has
2706 such), and as a flag indicating that a target is active.
2707 These functions should be split out into seperate variables,
2708 especially since GDB will someday have a notion of debugging
2709 several processes. */
2710 inferior_ptid = magic_null_ptid;
2711
2712 /* Now, if we have thread information, update inferior_ptid. */
2713 inferior_ptid = remote_current_thread (inferior_ptid);
2714
2715 remote_add_inferior (ptid_get_pid (inferior_ptid), -1);
2716
2717 /* Always add the main thread. */
2718 add_thread_silent (inferior_ptid);
2719
2720 get_offsets (); /* Get text, data & bss offsets. */
2721
2722 /* If we could not find a description using qXfer, and we know
2723 how to do it some other way, try again. This is not
2724 supported for non-stop; it could be, but it is tricky if
2725 there are no stopped threads when we connect. */
2726 if (remote_read_description_p (args->target)
2727 && gdbarch_target_desc (target_gdbarch) == NULL)
2728 {
2729 target_clear_description ();
2730 target_find_description ();
2731 }
2732
2733 /* Use the previously fetched status. */
2734 gdb_assert (wait_status != NULL);
2735 strcpy (rs->buf, wait_status);
2736 rs->cached_wait_status = 1;
2737
2738 immediate_quit--;
2739 start_remote (args->from_tty); /* Initialize gdb process mechanisms. */
2740 }
2741 else
2742 {
2743 /* Clear WFI global state. Do this before finding about new
2744 threads and inferiors, and setting the current inferior.
2745 Otherwise we would clear the proceed status of the current
2746 inferior when we want its stop_soon state to be preserved
2747 (see notice_new_inferior). */
2748 init_wait_for_inferior ();
2749
2750 /* In non-stop, we will either get an "OK", meaning that there
2751 are no stopped threads at this time; or, a regular stop
2752 reply. In the latter case, there may be more than one thread
2753 stopped --- we pull them all out using the vStopped
2754 mechanism. */
2755 if (strcmp (rs->buf, "OK") != 0)
2756 {
2757 struct stop_reply *stop_reply;
2758 struct cleanup *old_chain;
2759
2760 stop_reply = stop_reply_xmalloc ();
2761 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
2762
2763 remote_parse_stop_reply (rs->buf, stop_reply);
2764 discard_cleanups (old_chain);
2765
2766 /* get_pending_stop_replies acks this one, and gets the rest
2767 out. */
2768 pending_stop_reply = stop_reply;
2769 remote_get_pending_stop_replies ();
2770
2771 /* Make sure that threads that were stopped remain
2772 stopped. */
2773 iterate_over_threads (set_stop_requested_callback, NULL);
2774 }
2775
2776 if (target_can_async_p ())
2777 target_async (inferior_event_handler, 0);
2778
2779 if (thread_count () == 0)
2780 {
2781 if (!args->extended_p)
2782 error (_("The target is not running (try extended-remote?)"));
2783
2784 /* We're connected, but not running. Drop out before we
2785 call start_remote. */
2786 return;
2787 }
2788
2789 /* Let the stub know that we want it to return the thread. */
2790
2791 /* Force the stub to choose a thread. */
2792 set_general_thread (null_ptid);
2793
2794 /* Query it. */
2795 inferior_ptid = remote_current_thread (minus_one_ptid);
2796 if (ptid_equal (inferior_ptid, minus_one_ptid))
2797 error (_("remote didn't report the current thread in non-stop mode"));
2798
2799 get_offsets (); /* Get text, data & bss offsets. */
2800
2801 /* In non-stop mode, any cached wait status will be stored in
2802 the stop reply queue. */
2803 gdb_assert (wait_status == NULL);
2804 }
2805
2806 /* If we connected to a live target, do some additional setup. */
2807 if (target_has_execution)
2808 {
2809 if (exec_bfd) /* No use without an exec file. */
2810 remote_check_symbols (symfile_objfile);
2811 }
2812
2813 /* If breakpoints are global, insert them now. */
2814 if (gdbarch_has_global_breakpoints (target_gdbarch)
2815 && breakpoints_always_inserted_mode ())
2816 insert_breakpoints ();
2817 }
2818
2819 /* Open a connection to a remote debugger.
2820 NAME is the filename used for communication. */
2821
2822 static void
2823 remote_open (char *name, int from_tty)
2824 {
2825 remote_open_1 (name, from_tty, &remote_ops, 0);
2826 }
2827
2828 /* Open a connection to a remote debugger using the extended
2829 remote gdb protocol. NAME is the filename used for communication. */
2830
2831 static void
2832 extended_remote_open (char *name, int from_tty)
2833 {
2834 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
2835 }
2836
2837 /* Generic code for opening a connection to a remote target. */
2838
2839 static void
2840 init_all_packet_configs (void)
2841 {
2842 int i;
2843 for (i = 0; i < PACKET_MAX; i++)
2844 update_packet_config (&remote_protocol_packets[i]);
2845 }
2846
2847 /* Symbol look-up. */
2848
2849 static void
2850 remote_check_symbols (struct objfile *objfile)
2851 {
2852 struct remote_state *rs = get_remote_state ();
2853 char *msg, *reply, *tmp;
2854 struct minimal_symbol *sym;
2855 int end;
2856
2857 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2858 return;
2859
2860 /* Make sure the remote is pointing at the right process. */
2861 set_general_process ();
2862
2863 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2864 because we need both at the same time. */
2865 msg = alloca (get_remote_packet_size ());
2866
2867 /* Invite target to request symbol lookups. */
2868
2869 putpkt ("qSymbol::");
2870 getpkt (&rs->buf, &rs->buf_size, 0);
2871 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2872 reply = rs->buf;
2873
2874 while (strncmp (reply, "qSymbol:", 8) == 0)
2875 {
2876 tmp = &reply[8];
2877 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2878 msg[end] = '\0';
2879 sym = lookup_minimal_symbol (msg, NULL, NULL);
2880 if (sym == NULL)
2881 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2882 else
2883 {
2884 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
2885 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
2886
2887 /* If this is a function address, return the start of code
2888 instead of any data function descriptor. */
2889 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2890 sym_addr,
2891 &current_target);
2892
2893 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2894 phex_nz (sym_addr, addr_size), &reply[8]);
2895 }
2896
2897 putpkt (msg);
2898 getpkt (&rs->buf, &rs->buf_size, 0);
2899 reply = rs->buf;
2900 }
2901 }
2902
2903 static struct serial *
2904 remote_serial_open (char *name)
2905 {
2906 static int udp_warning = 0;
2907
2908 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2909 of in ser-tcp.c, because it is the remote protocol assuming that the
2910 serial connection is reliable and not the serial connection promising
2911 to be. */
2912 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2913 {
2914 warning (_("\
2915 The remote protocol may be unreliable over UDP.\n\
2916 Some events may be lost, rendering further debugging impossible."));
2917 udp_warning = 1;
2918 }
2919
2920 return serial_open (name);
2921 }
2922
2923 /* This type describes each known response to the qSupported
2924 packet. */
2925 struct protocol_feature
2926 {
2927 /* The name of this protocol feature. */
2928 const char *name;
2929
2930 /* The default for this protocol feature. */
2931 enum packet_support default_support;
2932
2933 /* The function to call when this feature is reported, or after
2934 qSupported processing if the feature is not supported.
2935 The first argument points to this structure. The second
2936 argument indicates whether the packet requested support be
2937 enabled, disabled, or probed (or the default, if this function
2938 is being called at the end of processing and this feature was
2939 not reported). The third argument may be NULL; if not NULL, it
2940 is a NUL-terminated string taken from the packet following
2941 this feature's name and an equals sign. */
2942 void (*func) (const struct protocol_feature *, enum packet_support,
2943 const char *);
2944
2945 /* The corresponding packet for this feature. Only used if
2946 FUNC is remote_supported_packet. */
2947 int packet;
2948 };
2949
2950 static void
2951 remote_supported_packet (const struct protocol_feature *feature,
2952 enum packet_support support,
2953 const char *argument)
2954 {
2955 if (argument)
2956 {
2957 warning (_("Remote qSupported response supplied an unexpected value for"
2958 " \"%s\"."), feature->name);
2959 return;
2960 }
2961
2962 if (remote_protocol_packets[feature->packet].support
2963 == PACKET_SUPPORT_UNKNOWN)
2964 remote_protocol_packets[feature->packet].support = support;
2965 }
2966
2967 static void
2968 remote_packet_size (const struct protocol_feature *feature,
2969 enum packet_support support, const char *value)
2970 {
2971 struct remote_state *rs = get_remote_state ();
2972
2973 int packet_size;
2974 char *value_end;
2975
2976 if (support != PACKET_ENABLE)
2977 return;
2978
2979 if (value == NULL || *value == '\0')
2980 {
2981 warning (_("Remote target reported \"%s\" without a size."),
2982 feature->name);
2983 return;
2984 }
2985
2986 errno = 0;
2987 packet_size = strtol (value, &value_end, 16);
2988 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2989 {
2990 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2991 feature->name, value);
2992 return;
2993 }
2994
2995 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2996 {
2997 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2998 packet_size, MAX_REMOTE_PACKET_SIZE);
2999 packet_size = MAX_REMOTE_PACKET_SIZE;
3000 }
3001
3002 /* Record the new maximum packet size. */
3003 rs->explicit_packet_size = packet_size;
3004 }
3005
3006 static void
3007 remote_multi_process_feature (const struct protocol_feature *feature,
3008 enum packet_support support, const char *value)
3009 {
3010 struct remote_state *rs = get_remote_state ();
3011 rs->multi_process_aware = (support == PACKET_ENABLE);
3012 }
3013
3014 static void
3015 remote_non_stop_feature (const struct protocol_feature *feature,
3016 enum packet_support support, const char *value)
3017 {
3018 struct remote_state *rs = get_remote_state ();
3019 rs->non_stop_aware = (support == PACKET_ENABLE);
3020 }
3021
3022 static void
3023 remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3024 enum packet_support support,
3025 const char *value)
3026 {
3027 struct remote_state *rs = get_remote_state ();
3028 rs->cond_tracepoints = (support == PACKET_ENABLE);
3029 }
3030
3031 static struct protocol_feature remote_protocol_features[] = {
3032 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3033 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3034 PACKET_qXfer_auxv },
3035 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3036 PACKET_qXfer_features },
3037 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3038 PACKET_qXfer_libraries },
3039 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
3040 PACKET_qXfer_memory_map },
3041 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
3042 PACKET_qXfer_spu_read },
3043 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
3044 PACKET_qXfer_spu_write },
3045 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
3046 PACKET_qXfer_osdata },
3047 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
3048 PACKET_QPassSignals },
3049 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
3050 PACKET_QStartNoAckMode },
3051 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
3052 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
3053 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
3054 PACKET_qXfer_siginfo_read },
3055 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
3056 PACKET_qXfer_siginfo_write },
3057 { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
3058 PACKET_ConditionalTracepoints },
3059 };
3060
3061 static void
3062 remote_query_supported (void)
3063 {
3064 struct remote_state *rs = get_remote_state ();
3065 char *next;
3066 int i;
3067 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
3068
3069 /* The packet support flags are handled differently for this packet
3070 than for most others. We treat an error, a disabled packet, and
3071 an empty response identically: any features which must be reported
3072 to be used will be automatically disabled. An empty buffer
3073 accomplishes this, since that is also the representation for a list
3074 containing no features. */
3075
3076 rs->buf[0] = 0;
3077 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
3078 {
3079 if (rs->extended)
3080 putpkt ("qSupported:multiprocess+");
3081 else
3082 putpkt ("qSupported");
3083
3084 getpkt (&rs->buf, &rs->buf_size, 0);
3085
3086 /* If an error occured, warn, but do not return - just reset the
3087 buffer to empty and go on to disable features. */
3088 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
3089 == PACKET_ERROR)
3090 {
3091 warning (_("Remote failure reply: %s"), rs->buf);
3092 rs->buf[0] = 0;
3093 }
3094 }
3095
3096 memset (seen, 0, sizeof (seen));
3097
3098 next = rs->buf;
3099 while (*next)
3100 {
3101 enum packet_support is_supported;
3102 char *p, *end, *name_end, *value;
3103
3104 /* First separate out this item from the rest of the packet. If
3105 there's another item after this, we overwrite the separator
3106 (terminated strings are much easier to work with). */
3107 p = next;
3108 end = strchr (p, ';');
3109 if (end == NULL)
3110 {
3111 end = p + strlen (p);
3112 next = end;
3113 }
3114 else
3115 {
3116 *end = '\0';
3117 next = end + 1;
3118
3119 if (end == p)
3120 {
3121 warning (_("empty item in \"qSupported\" response"));
3122 continue;
3123 }
3124 }
3125
3126 name_end = strchr (p, '=');
3127 if (name_end)
3128 {
3129 /* This is a name=value entry. */
3130 is_supported = PACKET_ENABLE;
3131 value = name_end + 1;
3132 *name_end = '\0';
3133 }
3134 else
3135 {
3136 value = NULL;
3137 switch (end[-1])
3138 {
3139 case '+':
3140 is_supported = PACKET_ENABLE;
3141 break;
3142
3143 case '-':
3144 is_supported = PACKET_DISABLE;
3145 break;
3146
3147 case '?':
3148 is_supported = PACKET_SUPPORT_UNKNOWN;
3149 break;
3150
3151 default:
3152 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
3153 continue;
3154 }
3155 end[-1] = '\0';
3156 }
3157
3158 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3159 if (strcmp (remote_protocol_features[i].name, p) == 0)
3160 {
3161 const struct protocol_feature *feature;
3162
3163 seen[i] = 1;
3164 feature = &remote_protocol_features[i];
3165 feature->func (feature, is_supported, value);
3166 break;
3167 }
3168 }
3169
3170 /* If we increased the packet size, make sure to increase the global
3171 buffer size also. We delay this until after parsing the entire
3172 qSupported packet, because this is the same buffer we were
3173 parsing. */
3174 if (rs->buf_size < rs->explicit_packet_size)
3175 {
3176 rs->buf_size = rs->explicit_packet_size;
3177 rs->buf = xrealloc (rs->buf, rs->buf_size);
3178 }
3179
3180 /* Handle the defaults for unmentioned features. */
3181 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3182 if (!seen[i])
3183 {
3184 const struct protocol_feature *feature;
3185
3186 feature = &remote_protocol_features[i];
3187 feature->func (feature, feature->default_support, NULL);
3188 }
3189 }
3190
3191
3192 static void
3193 remote_open_1 (char *name, int from_tty, struct target_ops *target, int extended_p)
3194 {
3195 struct remote_state *rs = get_remote_state ();
3196
3197 if (name == 0)
3198 error (_("To open a remote debug connection, you need to specify what\n"
3199 "serial device is attached to the remote system\n"
3200 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
3201
3202 /* See FIXME above. */
3203 if (!target_async_permitted)
3204 wait_forever_enabled_p = 1;
3205
3206 /* If we're connected to a running target, target_preopen will kill it.
3207 But if we're connected to a target system with no running process,
3208 then we will still be connected when it returns. Ask this question
3209 first, before target_preopen has a chance to kill anything. */
3210 if (remote_desc != NULL && !have_inferiors ())
3211 {
3212 if (!from_tty
3213 || query (_("Already connected to a remote target. Disconnect? ")))
3214 pop_target ();
3215 else
3216 error (_("Still connected."));
3217 }
3218
3219 target_preopen (from_tty);
3220
3221 unpush_target (target);
3222
3223 /* This time without a query. If we were connected to an
3224 extended-remote target and target_preopen killed the running
3225 process, we may still be connected. If we are starting "target
3226 remote" now, the extended-remote target will not have been
3227 removed by unpush_target. */
3228 if (remote_desc != NULL && !have_inferiors ())
3229 pop_target ();
3230
3231 /* Make sure we send the passed signals list the next time we resume. */
3232 xfree (last_pass_packet);
3233 last_pass_packet = NULL;
3234
3235 remote_fileio_reset ();
3236 reopen_exec_file ();
3237 reread_symbols ();
3238
3239 remote_desc = remote_serial_open (name);
3240 if (!remote_desc)
3241 perror_with_name (name);
3242
3243 if (baud_rate != -1)
3244 {
3245 if (serial_setbaudrate (remote_desc, baud_rate))
3246 {
3247 /* The requested speed could not be set. Error out to
3248 top level after closing remote_desc. Take care to
3249 set remote_desc to NULL to avoid closing remote_desc
3250 more than once. */
3251 serial_close (remote_desc);
3252 remote_desc = NULL;
3253 perror_with_name (name);
3254 }
3255 }
3256
3257 serial_raw (remote_desc);
3258
3259 /* If there is something sitting in the buffer we might take it as a
3260 response to a command, which would be bad. */
3261 serial_flush_input (remote_desc);
3262
3263 if (from_tty)
3264 {
3265 puts_filtered ("Remote debugging using ");
3266 puts_filtered (name);
3267 puts_filtered ("\n");
3268 }
3269 push_target (target); /* Switch to using remote target now. */
3270
3271 /* Register extra event sources in the event loop. */
3272 remote_async_inferior_event_token
3273 = create_async_event_handler (remote_async_inferior_event_handler,
3274 NULL);
3275 remote_async_get_pending_events_token
3276 = create_async_event_handler (remote_async_get_pending_events_handler,
3277 NULL);
3278
3279 /* Reset the target state; these things will be queried either by
3280 remote_query_supported or as they are needed. */
3281 init_all_packet_configs ();
3282 rs->cached_wait_status = 0;
3283 rs->explicit_packet_size = 0;
3284 rs->noack_mode = 0;
3285 rs->multi_process_aware = 0;
3286 rs->extended = extended_p;
3287 rs->non_stop_aware = 0;
3288 rs->waiting_for_stop_reply = 0;
3289
3290 general_thread = not_sent_ptid;
3291 continue_thread = not_sent_ptid;
3292
3293 /* Probe for ability to use "ThreadInfo" query, as required. */
3294 use_threadinfo_query = 1;
3295 use_threadextra_query = 1;
3296
3297 if (target_async_permitted)
3298 {
3299 /* With this target we start out by owning the terminal. */
3300 remote_async_terminal_ours_p = 1;
3301
3302 /* FIXME: cagney/1999-09-23: During the initial connection it is
3303 assumed that the target is already ready and able to respond to
3304 requests. Unfortunately remote_start_remote() eventually calls
3305 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
3306 around this. Eventually a mechanism that allows
3307 wait_for_inferior() to expect/get timeouts will be
3308 implemented. */
3309 wait_forever_enabled_p = 0;
3310 }
3311
3312 /* First delete any symbols previously loaded from shared libraries. */
3313 no_shared_libraries (NULL, 0);
3314
3315 /* Start afresh. */
3316 init_thread_list ();
3317
3318 /* Start the remote connection. If error() or QUIT, discard this
3319 target (we'd otherwise be in an inconsistent state) and then
3320 propogate the error on up the exception chain. This ensures that
3321 the caller doesn't stumble along blindly assuming that the
3322 function succeeded. The CLI doesn't have this problem but other
3323 UI's, such as MI do.
3324
3325 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
3326 this function should return an error indication letting the
3327 caller restore the previous state. Unfortunately the command
3328 ``target remote'' is directly wired to this function making that
3329 impossible. On a positive note, the CLI side of this problem has
3330 been fixed - the function set_cmd_context() makes it possible for
3331 all the ``target ....'' commands to share a common callback
3332 function. See cli-dump.c. */
3333 {
3334 struct gdb_exception ex;
3335 struct start_remote_args args;
3336
3337 args.from_tty = from_tty;
3338 args.target = target;
3339 args.extended_p = extended_p;
3340
3341 ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
3342 if (ex.reason < 0)
3343 {
3344 /* Pop the partially set up target - unless something else did
3345 already before throwing the exception. */
3346 if (remote_desc != NULL)
3347 pop_target ();
3348 if (target_async_permitted)
3349 wait_forever_enabled_p = 1;
3350 throw_exception (ex);
3351 }
3352 }
3353
3354 if (target_async_permitted)
3355 wait_forever_enabled_p = 1;
3356 }
3357
3358 /* This takes a program previously attached to and detaches it. After
3359 this is done, GDB can be used to debug some other program. We
3360 better not have left any breakpoints in the target program or it'll
3361 die when it hits one. */
3362
3363 static void
3364 remote_detach_1 (char *args, int from_tty, int extended)
3365 {
3366 int pid = ptid_get_pid (inferior_ptid);
3367 struct remote_state *rs = get_remote_state ();
3368
3369 if (args)
3370 error (_("Argument given to \"detach\" when remotely debugging."));
3371
3372 if (!target_has_execution)
3373 error (_("No process to detach from."));
3374
3375 /* Tell the remote target to detach. */
3376 if (remote_multi_process_p (rs))
3377 sprintf (rs->buf, "D;%x", pid);
3378 else
3379 strcpy (rs->buf, "D");
3380
3381 putpkt (rs->buf);
3382 getpkt (&rs->buf, &rs->buf_size, 0);
3383
3384 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
3385 ;
3386 else if (rs->buf[0] == '\0')
3387 error (_("Remote doesn't know how to detach"));
3388 else
3389 error (_("Can't detach process."));
3390
3391 if (from_tty)
3392 {
3393 if (remote_multi_process_p (rs))
3394 printf_filtered (_("Detached from remote %s.\n"),
3395 target_pid_to_str (pid_to_ptid (pid)));
3396 else
3397 {
3398 if (extended)
3399 puts_filtered (_("Detached from remote process.\n"));
3400 else
3401 puts_filtered (_("Ending remote debugging.\n"));
3402 }
3403 }
3404
3405 discard_pending_stop_replies (pid);
3406 target_mourn_inferior ();
3407 }
3408
3409 static void
3410 remote_detach (struct target_ops *ops, char *args, int from_tty)
3411 {
3412 remote_detach_1 (args, from_tty, 0);
3413 }
3414
3415 static void
3416 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
3417 {
3418 remote_detach_1 (args, from_tty, 1);
3419 }
3420
3421 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
3422
3423 static void
3424 remote_disconnect (struct target_ops *target, char *args, int from_tty)
3425 {
3426 if (args)
3427 error (_("Argument given to \"disconnect\" when remotely debugging."));
3428
3429 /* Make sure we unpush even the extended remote targets; mourn
3430 won't do it. So call remote_mourn_1 directly instead of
3431 target_mourn_inferior. */
3432 remote_mourn_1 (target);
3433
3434 if (from_tty)
3435 puts_filtered ("Ending remote debugging.\n");
3436 }
3437
3438 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
3439 be chatty about it. */
3440
3441 static void
3442 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
3443 {
3444 struct remote_state *rs = get_remote_state ();
3445 int pid;
3446 char *dummy;
3447 char *wait_status = NULL;
3448
3449 if (!args)
3450 error_no_arg (_("process-id to attach"));
3451
3452 dummy = args;
3453 pid = strtol (args, &dummy, 0);
3454 /* Some targets don't set errno on errors, grrr! */
3455 if (pid == 0 && args == dummy)
3456 error (_("Illegal process-id: %s."), args);
3457
3458 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3459 error (_("This target does not support attaching to a process"));
3460
3461 sprintf (rs->buf, "vAttach;%x", pid);
3462 putpkt (rs->buf);
3463 getpkt (&rs->buf, &rs->buf_size, 0);
3464
3465 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
3466 {
3467 if (from_tty)
3468 printf_unfiltered (_("Attached to %s\n"),
3469 target_pid_to_str (pid_to_ptid (pid)));
3470
3471 if (!non_stop)
3472 {
3473 /* Save the reply for later. */
3474 wait_status = alloca (strlen (rs->buf) + 1);
3475 strcpy (wait_status, rs->buf);
3476 }
3477 else if (strcmp (rs->buf, "OK") != 0)
3478 error (_("Attaching to %s failed with: %s"),
3479 target_pid_to_str (pid_to_ptid (pid)),
3480 rs->buf);
3481 }
3482 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3483 error (_("This target does not support attaching to a process"));
3484 else
3485 error (_("Attaching to %s failed"),
3486 target_pid_to_str (pid_to_ptid (pid)));
3487
3488 remote_add_inferior (pid, 1);
3489
3490 inferior_ptid = pid_to_ptid (pid);
3491
3492 if (non_stop)
3493 {
3494 struct thread_info *thread;
3495
3496 /* Get list of threads. */
3497 remote_threads_info (target);
3498
3499 thread = first_thread_of_process (pid);
3500 if (thread)
3501 inferior_ptid = thread->ptid;
3502 else
3503 inferior_ptid = pid_to_ptid (pid);
3504
3505 /* Invalidate our notion of the remote current thread. */
3506 record_currthread (minus_one_ptid);
3507 }
3508 else
3509 {
3510 /* Now, if we have thread information, update inferior_ptid. */
3511 inferior_ptid = remote_current_thread (inferior_ptid);
3512
3513 /* Add the main thread to the thread list. */
3514 add_thread_silent (inferior_ptid);
3515 }
3516
3517 /* Next, if the target can specify a description, read it. We do
3518 this before anything involving memory or registers. */
3519 target_find_description ();
3520
3521 if (!non_stop)
3522 {
3523 /* Use the previously fetched status. */
3524 gdb_assert (wait_status != NULL);
3525
3526 if (target_can_async_p ())
3527 {
3528 struct stop_reply *stop_reply;
3529 struct cleanup *old_chain;
3530
3531 stop_reply = stop_reply_xmalloc ();
3532 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3533 remote_parse_stop_reply (wait_status, stop_reply);
3534 discard_cleanups (old_chain);
3535 push_stop_reply (stop_reply);
3536
3537 target_async (inferior_event_handler, 0);
3538 }
3539 else
3540 {
3541 gdb_assert (wait_status != NULL);
3542 strcpy (rs->buf, wait_status);
3543 rs->cached_wait_status = 1;
3544 }
3545 }
3546 else
3547 gdb_assert (wait_status == NULL);
3548 }
3549
3550 static void
3551 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
3552 {
3553 extended_remote_attach_1 (ops, args, from_tty);
3554 }
3555
3556 /* Convert hex digit A to a number. */
3557
3558 static int
3559 fromhex (int a)
3560 {
3561 if (a >= '0' && a <= '9')
3562 return a - '0';
3563 else if (a >= 'a' && a <= 'f')
3564 return a - 'a' + 10;
3565 else if (a >= 'A' && a <= 'F')
3566 return a - 'A' + 10;
3567 else
3568 error (_("Reply contains invalid hex digit %d"), a);
3569 }
3570
3571 static int
3572 hex2bin (const char *hex, gdb_byte *bin, int count)
3573 {
3574 int i;
3575
3576 for (i = 0; i < count; i++)
3577 {
3578 if (hex[0] == 0 || hex[1] == 0)
3579 {
3580 /* Hex string is short, or of uneven length.
3581 Return the count that has been converted so far. */
3582 return i;
3583 }
3584 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
3585 hex += 2;
3586 }
3587 return i;
3588 }
3589
3590 /* Convert number NIB to a hex digit. */
3591
3592 static int
3593 tohex (int nib)
3594 {
3595 if (nib < 10)
3596 return '0' + nib;
3597 else
3598 return 'a' + nib - 10;
3599 }
3600
3601 static int
3602 bin2hex (const gdb_byte *bin, char *hex, int count)
3603 {
3604 int i;
3605 /* May use a length, or a nul-terminated string as input. */
3606 if (count == 0)
3607 count = strlen ((char *) bin);
3608
3609 for (i = 0; i < count; i++)
3610 {
3611 *hex++ = tohex ((*bin >> 4) & 0xf);
3612 *hex++ = tohex (*bin++ & 0xf);
3613 }
3614 *hex = 0;
3615 return i;
3616 }
3617 \f
3618 /* Check for the availability of vCont. This function should also check
3619 the response. */
3620
3621 static void
3622 remote_vcont_probe (struct remote_state *rs)
3623 {
3624 char *buf;
3625
3626 strcpy (rs->buf, "vCont?");
3627 putpkt (rs->buf);
3628 getpkt (&rs->buf, &rs->buf_size, 0);
3629 buf = rs->buf;
3630
3631 /* Make sure that the features we assume are supported. */
3632 if (strncmp (buf, "vCont", 5) == 0)
3633 {
3634 char *p = &buf[5];
3635 int support_s, support_S, support_c, support_C;
3636
3637 support_s = 0;
3638 support_S = 0;
3639 support_c = 0;
3640 support_C = 0;
3641 rs->support_vCont_t = 0;
3642 while (p && *p == ';')
3643 {
3644 p++;
3645 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
3646 support_s = 1;
3647 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
3648 support_S = 1;
3649 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
3650 support_c = 1;
3651 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
3652 support_C = 1;
3653 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
3654 rs->support_vCont_t = 1;
3655
3656 p = strchr (p, ';');
3657 }
3658
3659 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
3660 BUF will make packet_ok disable the packet. */
3661 if (!support_s || !support_S || !support_c || !support_C)
3662 buf[0] = 0;
3663 }
3664
3665 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
3666 }
3667
3668 /* Helper function for building "vCont" resumptions. Write a
3669 resumption to P. ENDP points to one-passed-the-end of the buffer
3670 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
3671 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
3672 resumed thread should be single-stepped and/or signalled. If PTID
3673 equals minus_one_ptid, then all threads are resumed; if PTID
3674 represents a process, then all threads of the process are resumed;
3675 the thread to be stepped and/or signalled is given in the global
3676 INFERIOR_PTID. */
3677
3678 static char *
3679 append_resumption (char *p, char *endp,
3680 ptid_t ptid, int step, enum target_signal siggnal)
3681 {
3682 struct remote_state *rs = get_remote_state ();
3683
3684 if (step && siggnal != TARGET_SIGNAL_0)
3685 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
3686 else if (step)
3687 p += xsnprintf (p, endp - p, ";s");
3688 else if (siggnal != TARGET_SIGNAL_0)
3689 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
3690 else
3691 p += xsnprintf (p, endp - p, ";c");
3692
3693 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
3694 {
3695 ptid_t nptid;
3696
3697 /* All (-1) threads of process. */
3698 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
3699
3700 p += xsnprintf (p, endp - p, ":");
3701 p = write_ptid (p, endp, nptid);
3702 }
3703 else if (!ptid_equal (ptid, minus_one_ptid))
3704 {
3705 p += xsnprintf (p, endp - p, ":");
3706 p = write_ptid (p, endp, ptid);
3707 }
3708
3709 return p;
3710 }
3711
3712 /* Resume the remote inferior by using a "vCont" packet. The thread
3713 to be resumed is PTID; STEP and SIGGNAL indicate whether the
3714 resumed thread should be single-stepped and/or signalled. If PTID
3715 equals minus_one_ptid, then all threads are resumed; the thread to
3716 be stepped and/or signalled is given in the global INFERIOR_PTID.
3717 This function returns non-zero iff it resumes the inferior.
3718
3719 This function issues a strict subset of all possible vCont commands at the
3720 moment. */
3721
3722 static int
3723 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
3724 {
3725 struct remote_state *rs = get_remote_state ();
3726 char *p;
3727 char *endp;
3728
3729 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3730 remote_vcont_probe (rs);
3731
3732 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
3733 return 0;
3734
3735 p = rs->buf;
3736 endp = rs->buf + get_remote_packet_size ();
3737
3738 /* If we could generate a wider range of packets, we'd have to worry
3739 about overflowing BUF. Should there be a generic
3740 "multi-part-packet" packet? */
3741
3742 p += xsnprintf (p, endp - p, "vCont");
3743
3744 if (ptid_equal (ptid, magic_null_ptid))
3745 {
3746 /* MAGIC_NULL_PTID means that we don't have any active threads,
3747 so we don't have any TID numbers the inferior will
3748 understand. Make sure to only send forms that do not specify
3749 a TID. */
3750 p = append_resumption (p, endp, minus_one_ptid, step, siggnal);
3751 }
3752 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3753 {
3754 /* Resume all threads (of all processes, or of a single
3755 process), with preference for INFERIOR_PTID. This assumes
3756 inferior_ptid belongs to the set of all threads we are about
3757 to resume. */
3758 if (step || siggnal != TARGET_SIGNAL_0)
3759 {
3760 /* Step inferior_ptid, with or without signal. */
3761 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
3762 }
3763
3764 /* And continue others without a signal. */
3765 p = append_resumption (p, endp, ptid, /*step=*/ 0, TARGET_SIGNAL_0);
3766 }
3767 else
3768 {
3769 /* Scheduler locking; resume only PTID. */
3770 p = append_resumption (p, endp, ptid, step, siggnal);
3771 }
3772
3773 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
3774 putpkt (rs->buf);
3775
3776 if (non_stop)
3777 {
3778 /* In non-stop, the stub replies to vCont with "OK". The stop
3779 reply will be reported asynchronously by means of a `%Stop'
3780 notification. */
3781 getpkt (&rs->buf, &rs->buf_size, 0);
3782 if (strcmp (rs->buf, "OK") != 0)
3783 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
3784 }
3785
3786 return 1;
3787 }
3788
3789 /* Tell the remote machine to resume. */
3790
3791 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
3792
3793 static int last_sent_step;
3794
3795 static void
3796 remote_resume (struct target_ops *ops,
3797 ptid_t ptid, int step, enum target_signal siggnal)
3798 {
3799 struct remote_state *rs = get_remote_state ();
3800 char *buf;
3801
3802 last_sent_signal = siggnal;
3803 last_sent_step = step;
3804
3805 /* Update the inferior on signals to silently pass, if they've changed. */
3806 remote_pass_signals ();
3807
3808 /* The vCont packet doesn't need to specify threads via Hc. */
3809 if (remote_vcont_resume (ptid, step, siggnal))
3810 goto done;
3811
3812 /* All other supported resume packets do use Hc, so set the continue
3813 thread. */
3814 if (ptid_equal (ptid, minus_one_ptid))
3815 set_continue_thread (any_thread_ptid);
3816 else
3817 set_continue_thread (ptid);
3818
3819 buf = rs->buf;
3820 if (execution_direction == EXEC_REVERSE)
3821 {
3822 /* We don't pass signals to the target in reverse exec mode. */
3823 if (info_verbose && siggnal != TARGET_SIGNAL_0)
3824 warning (" - Can't pass signal %d to target in reverse: ignored.\n",
3825 siggnal);
3826 strcpy (buf, step ? "bs" : "bc");
3827 }
3828 else if (siggnal != TARGET_SIGNAL_0)
3829 {
3830 buf[0] = step ? 'S' : 'C';
3831 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
3832 buf[2] = tohex (((int) siggnal) & 0xf);
3833 buf[3] = '\0';
3834 }
3835 else
3836 strcpy (buf, step ? "s" : "c");
3837
3838 putpkt (buf);
3839
3840 done:
3841 /* We are about to start executing the inferior, let's register it
3842 with the event loop. NOTE: this is the one place where all the
3843 execution commands end up. We could alternatively do this in each
3844 of the execution commands in infcmd.c. */
3845 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
3846 into infcmd.c in order to allow inferior function calls to work
3847 NOT asynchronously. */
3848 if (target_can_async_p ())
3849 target_async (inferior_event_handler, 0);
3850
3851 /* We've just told the target to resume. The remote server will
3852 wait for the inferior to stop, and then send a stop reply. In
3853 the mean time, we can't start another command/query ourselves
3854 because the stub wouldn't be ready to process it. This applies
3855 only to the base all-stop protocol, however. In non-stop (which
3856 only supports vCont), the stub replies with an "OK", and is
3857 immediate able to process further serial input. */
3858 if (!non_stop)
3859 rs->waiting_for_stop_reply = 1;
3860 }
3861 \f
3862
3863 /* Set up the signal handler for SIGINT, while the target is
3864 executing, ovewriting the 'regular' SIGINT signal handler. */
3865 static void
3866 initialize_sigint_signal_handler (void)
3867 {
3868 signal (SIGINT, handle_remote_sigint);
3869 }
3870
3871 /* Signal handler for SIGINT, while the target is executing. */
3872 static void
3873 handle_remote_sigint (int sig)
3874 {
3875 signal (sig, handle_remote_sigint_twice);
3876 mark_async_signal_handler_wrapper (sigint_remote_token);
3877 }
3878
3879 /* Signal handler for SIGINT, installed after SIGINT has already been
3880 sent once. It will take effect the second time that the user sends
3881 a ^C. */
3882 static void
3883 handle_remote_sigint_twice (int sig)
3884 {
3885 signal (sig, handle_remote_sigint);
3886 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3887 }
3888
3889 /* Perform the real interruption of the target execution, in response
3890 to a ^C. */
3891 static void
3892 async_remote_interrupt (gdb_client_data arg)
3893 {
3894 if (remote_debug)
3895 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3896
3897 target_stop (inferior_ptid);
3898 }
3899
3900 /* Perform interrupt, if the first attempt did not succeed. Just give
3901 up on the target alltogether. */
3902 void
3903 async_remote_interrupt_twice (gdb_client_data arg)
3904 {
3905 if (remote_debug)
3906 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3907
3908 interrupt_query ();
3909 }
3910
3911 /* Reinstall the usual SIGINT handlers, after the target has
3912 stopped. */
3913 static void
3914 cleanup_sigint_signal_handler (void *dummy)
3915 {
3916 signal (SIGINT, handle_sigint);
3917 }
3918
3919 /* Send ^C to target to halt it. Target will respond, and send us a
3920 packet. */
3921 static void (*ofunc) (int);
3922
3923 /* The command line interface's stop routine. This function is installed
3924 as a signal handler for SIGINT. The first time a user requests a
3925 stop, we call remote_stop to send a break or ^C. If there is no
3926 response from the target (it didn't stop when the user requested it),
3927 we ask the user if he'd like to detach from the target. */
3928 static void
3929 remote_interrupt (int signo)
3930 {
3931 /* If this doesn't work, try more severe steps. */
3932 signal (signo, remote_interrupt_twice);
3933
3934 gdb_call_async_signal_handler (sigint_remote_token, 1);
3935 }
3936
3937 /* The user typed ^C twice. */
3938
3939 static void
3940 remote_interrupt_twice (int signo)
3941 {
3942 signal (signo, ofunc);
3943 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
3944 signal (signo, remote_interrupt);
3945 }
3946
3947 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
3948 thread, all threads of a remote process, or all threads of all
3949 processes. */
3950
3951 static void
3952 remote_stop_ns (ptid_t ptid)
3953 {
3954 struct remote_state *rs = get_remote_state ();
3955 char *p = rs->buf;
3956 char *endp = rs->buf + get_remote_packet_size ();
3957 struct stop_reply *reply, *next;
3958
3959 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3960 remote_vcont_probe (rs);
3961
3962 if (!rs->support_vCont_t)
3963 error (_("Remote server does not support stopping threads"));
3964
3965 if (ptid_equal (ptid, minus_one_ptid)
3966 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
3967 p += xsnprintf (p, endp - p, "vCont;t");
3968 else
3969 {
3970 ptid_t nptid;
3971
3972 p += xsnprintf (p, endp - p, "vCont;t:");
3973
3974 if (ptid_is_pid (ptid))
3975 /* All (-1) threads of process. */
3976 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
3977 else
3978 {
3979 /* Small optimization: if we already have a stop reply for
3980 this thread, no use in telling the stub we want this
3981 stopped. */
3982 if (peek_stop_reply (ptid))
3983 return;
3984
3985 nptid = ptid;
3986 }
3987
3988 p = write_ptid (p, endp, nptid);
3989 }
3990
3991 /* In non-stop, we get an immediate OK reply. The stop reply will
3992 come in asynchronously by notification. */
3993 putpkt (rs->buf);
3994 getpkt (&rs->buf, &rs->buf_size, 0);
3995 if (strcmp (rs->buf, "OK") != 0)
3996 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
3997 }
3998
3999 /* All-stop version of target_stop. Sends a break or a ^C to stop the
4000 remote target. It is undefined which thread of which process
4001 reports the stop. */
4002
4003 static void
4004 remote_stop_as (ptid_t ptid)
4005 {
4006 struct remote_state *rs = get_remote_state ();
4007
4008 /* If the inferior is stopped already, but the core didn't know
4009 about it yet, just ignore the request. The cached wait status
4010 will be collected in remote_wait. */
4011 if (rs->cached_wait_status)
4012 return;
4013
4014 /* Send a break or a ^C, depending on user preference. */
4015
4016 if (remote_break)
4017 serial_send_break (remote_desc);
4018 else
4019 serial_write (remote_desc, "\003", 1);
4020 }
4021
4022 /* This is the generic stop called via the target vector. When a target
4023 interrupt is requested, either by the command line or the GUI, we
4024 will eventually end up here. */
4025
4026 static void
4027 remote_stop (ptid_t ptid)
4028 {
4029 if (remote_debug)
4030 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
4031
4032 if (non_stop)
4033 remote_stop_ns (ptid);
4034 else
4035 remote_stop_as (ptid);
4036 }
4037
4038 /* Ask the user what to do when an interrupt is received. */
4039
4040 static void
4041 interrupt_query (void)
4042 {
4043 target_terminal_ours ();
4044
4045 if (target_can_async_p ())
4046 {
4047 signal (SIGINT, handle_sigint);
4048 deprecated_throw_reason (RETURN_QUIT);
4049 }
4050 else
4051 {
4052 if (query (_("Interrupted while waiting for the program.\n\
4053 Give up (and stop debugging it)? ")))
4054 {
4055 pop_target ();
4056 deprecated_throw_reason (RETURN_QUIT);
4057 }
4058 }
4059
4060 target_terminal_inferior ();
4061 }
4062
4063 /* Enable/disable target terminal ownership. Most targets can use
4064 terminal groups to control terminal ownership. Remote targets are
4065 different in that explicit transfer of ownership to/from GDB/target
4066 is required. */
4067
4068 static void
4069 remote_terminal_inferior (void)
4070 {
4071 if (!target_async_permitted)
4072 /* Nothing to do. */
4073 return;
4074
4075 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
4076 idempotent. The event-loop GDB talking to an asynchronous target
4077 with a synchronous command calls this function from both
4078 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
4079 transfer the terminal to the target when it shouldn't this guard
4080 can go away. */
4081 if (!remote_async_terminal_ours_p)
4082 return;
4083 delete_file_handler (input_fd);
4084 remote_async_terminal_ours_p = 0;
4085 initialize_sigint_signal_handler ();
4086 /* NOTE: At this point we could also register our selves as the
4087 recipient of all input. Any characters typed could then be
4088 passed on down to the target. */
4089 }
4090
4091 static void
4092 remote_terminal_ours (void)
4093 {
4094 if (!target_async_permitted)
4095 /* Nothing to do. */
4096 return;
4097
4098 /* See FIXME in remote_terminal_inferior. */
4099 if (remote_async_terminal_ours_p)
4100 return;
4101 cleanup_sigint_signal_handler (NULL);
4102 add_file_handler (input_fd, stdin_event_handler, 0);
4103 remote_async_terminal_ours_p = 1;
4104 }
4105
4106 void
4107 remote_console_output (char *msg)
4108 {
4109 char *p;
4110
4111 for (p = msg; p[0] && p[1]; p += 2)
4112 {
4113 char tb[2];
4114 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
4115 tb[0] = c;
4116 tb[1] = 0;
4117 fputs_unfiltered (tb, gdb_stdtarg);
4118 }
4119 gdb_flush (gdb_stdtarg);
4120 }
4121
4122 typedef struct cached_reg
4123 {
4124 int num;
4125 gdb_byte data[MAX_REGISTER_SIZE];
4126 } cached_reg_t;
4127
4128 DEF_VEC_O(cached_reg_t);
4129
4130 struct stop_reply
4131 {
4132 struct stop_reply *next;
4133
4134 ptid_t ptid;
4135
4136 struct target_waitstatus ws;
4137
4138 VEC(cached_reg_t) *regcache;
4139
4140 int stopped_by_watchpoint_p;
4141 CORE_ADDR watch_data_address;
4142
4143 int solibs_changed;
4144 int replay_event;
4145 };
4146
4147 /* The list of already fetched and acknowledged stop events. */
4148 static struct stop_reply *stop_reply_queue;
4149
4150 static struct stop_reply *
4151 stop_reply_xmalloc (void)
4152 {
4153 struct stop_reply *r = XMALLOC (struct stop_reply);
4154 r->next = NULL;
4155 return r;
4156 }
4157
4158 static void
4159 stop_reply_xfree (struct stop_reply *r)
4160 {
4161 if (r != NULL)
4162 {
4163 VEC_free (cached_reg_t, r->regcache);
4164 xfree (r);
4165 }
4166 }
4167
4168 /* Discard all pending stop replies of inferior PID. If PID is -1,
4169 discard everything. */
4170
4171 static void
4172 discard_pending_stop_replies (int pid)
4173 {
4174 struct stop_reply *prev = NULL, *reply, *next;
4175
4176 /* Discard the in-flight notification. */
4177 if (pending_stop_reply != NULL
4178 && (pid == -1
4179 || ptid_get_pid (pending_stop_reply->ptid) == pid))
4180 {
4181 stop_reply_xfree (pending_stop_reply);
4182 pending_stop_reply = NULL;
4183 }
4184
4185 /* Discard the stop replies we have already pulled with
4186 vStopped. */
4187 for (reply = stop_reply_queue; reply; reply = next)
4188 {
4189 next = reply->next;
4190 if (pid == -1
4191 || ptid_get_pid (reply->ptid) == pid)
4192 {
4193 if (reply == stop_reply_queue)
4194 stop_reply_queue = reply->next;
4195 else
4196 prev->next = reply->next;
4197
4198 stop_reply_xfree (reply);
4199 }
4200 else
4201 prev = reply;
4202 }
4203 }
4204
4205 /* Cleanup wrapper. */
4206
4207 static void
4208 do_stop_reply_xfree (void *arg)
4209 {
4210 struct stop_reply *r = arg;
4211 stop_reply_xfree (r);
4212 }
4213
4214 /* Look for a queued stop reply belonging to PTID. If one is found,
4215 remove it from the queue, and return it. Returns NULL if none is
4216 found. If there are still queued events left to process, tell the
4217 event loop to get back to target_wait soon. */
4218
4219 static struct stop_reply *
4220 queued_stop_reply (ptid_t ptid)
4221 {
4222 struct stop_reply *it, *prev;
4223 struct stop_reply head;
4224
4225 head.next = stop_reply_queue;
4226 prev = &head;
4227
4228 it = head.next;
4229
4230 if (!ptid_equal (ptid, minus_one_ptid))
4231 for (; it; prev = it, it = it->next)
4232 if (ptid_equal (ptid, it->ptid))
4233 break;
4234
4235 if (it)
4236 {
4237 prev->next = it->next;
4238 it->next = NULL;
4239 }
4240
4241 stop_reply_queue = head.next;
4242
4243 if (stop_reply_queue)
4244 /* There's still at least an event left. */
4245 mark_async_event_handler (remote_async_inferior_event_token);
4246
4247 return it;
4248 }
4249
4250 /* Push a fully parsed stop reply in the stop reply queue. Since we
4251 know that we now have at least one queued event left to pass to the
4252 core side, tell the event loop to get back to target_wait soon. */
4253
4254 static void
4255 push_stop_reply (struct stop_reply *new_event)
4256 {
4257 struct stop_reply *event;
4258
4259 if (stop_reply_queue)
4260 {
4261 for (event = stop_reply_queue;
4262 event && event->next;
4263 event = event->next)
4264 ;
4265
4266 event->next = new_event;
4267 }
4268 else
4269 stop_reply_queue = new_event;
4270
4271 mark_async_event_handler (remote_async_inferior_event_token);
4272 }
4273
4274 /* Returns true if we have a stop reply for PTID. */
4275
4276 static int
4277 peek_stop_reply (ptid_t ptid)
4278 {
4279 struct stop_reply *it;
4280
4281 for (it = stop_reply_queue; it; it = it->next)
4282 if (ptid_equal (ptid, it->ptid))
4283 {
4284 if (it->ws.kind == TARGET_WAITKIND_STOPPED)
4285 return 1;
4286 }
4287
4288 return 0;
4289 }
4290
4291 /* Parse the stop reply in BUF. Either the function succeeds, and the
4292 result is stored in EVENT, or throws an error. */
4293
4294 static void
4295 remote_parse_stop_reply (char *buf, struct stop_reply *event)
4296 {
4297 struct remote_arch_state *rsa = get_remote_arch_state ();
4298 ULONGEST addr;
4299 char *p;
4300
4301 event->ptid = null_ptid;
4302 event->ws.kind = TARGET_WAITKIND_IGNORE;
4303 event->ws.value.integer = 0;
4304 event->solibs_changed = 0;
4305 event->replay_event = 0;
4306 event->stopped_by_watchpoint_p = 0;
4307 event->regcache = NULL;
4308
4309 switch (buf[0])
4310 {
4311 case 'T': /* Status with PC, SP, FP, ... */
4312 {
4313 gdb_byte regs[MAX_REGISTER_SIZE];
4314
4315 /* Expedited reply, containing Signal, {regno, reg} repeat. */
4316 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
4317 ss = signal number
4318 n... = register number
4319 r... = register contents
4320 */
4321
4322 p = &buf[3]; /* after Txx */
4323 while (*p)
4324 {
4325 char *p1;
4326 char *p_temp;
4327 int fieldsize;
4328 LONGEST pnum = 0;
4329
4330 /* If the packet contains a register number, save it in
4331 pnum and set p1 to point to the character following it.
4332 Otherwise p1 points to p. */
4333
4334 /* If this packet is an awatch packet, don't parse the 'a'
4335 as a register number. */
4336
4337 if (strncmp (p, "awatch", strlen("awatch")) != 0)
4338 {
4339 /* Read the ``P'' register number. */
4340 pnum = strtol (p, &p_temp, 16);
4341 p1 = p_temp;
4342 }
4343 else
4344 p1 = p;
4345
4346 if (p1 == p) /* No register number present here. */
4347 {
4348 p1 = strchr (p, ':');
4349 if (p1 == NULL)
4350 error (_("Malformed packet(a) (missing colon): %s\n\
4351 Packet: '%s'\n"),
4352 p, buf);
4353 if (strncmp (p, "thread", p1 - p) == 0)
4354 event->ptid = read_ptid (++p1, &p);
4355 else if ((strncmp (p, "watch", p1 - p) == 0)
4356 || (strncmp (p, "rwatch", p1 - p) == 0)
4357 || (strncmp (p, "awatch", p1 - p) == 0))
4358 {
4359 event->stopped_by_watchpoint_p = 1;
4360 p = unpack_varlen_hex (++p1, &addr);
4361 event->watch_data_address = (CORE_ADDR) addr;
4362 }
4363 else if (strncmp (p, "library", p1 - p) == 0)
4364 {
4365 p1++;
4366 p_temp = p1;
4367 while (*p_temp && *p_temp != ';')
4368 p_temp++;
4369
4370 event->solibs_changed = 1;
4371 p = p_temp;
4372 }
4373 else if (strncmp (p, "replaylog", p1 - p) == 0)
4374 {
4375 /* NO_HISTORY event.
4376 p1 will indicate "begin" or "end", but
4377 it makes no difference for now, so ignore it. */
4378 event->replay_event = 1;
4379 p_temp = strchr (p1 + 1, ';');
4380 if (p_temp)
4381 p = p_temp;
4382 }
4383 else
4384 {
4385 /* Silently skip unknown optional info. */
4386 p_temp = strchr (p1 + 1, ';');
4387 if (p_temp)
4388 p = p_temp;
4389 }
4390 }
4391 else
4392 {
4393 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
4394 cached_reg_t cached_reg;
4395
4396 p = p1;
4397
4398 if (*p != ':')
4399 error (_("Malformed packet(b) (missing colon): %s\n\
4400 Packet: '%s'\n"),
4401 p, buf);
4402 ++p;
4403
4404 if (reg == NULL)
4405 error (_("Remote sent bad register number %s: %s\n\
4406 Packet: '%s'\n"),
4407 phex_nz (pnum, 0), p, buf);
4408
4409 cached_reg.num = reg->regnum;
4410
4411 fieldsize = hex2bin (p, cached_reg.data,
4412 register_size (target_gdbarch,
4413 reg->regnum));
4414 p += 2 * fieldsize;
4415 if (fieldsize < register_size (target_gdbarch,
4416 reg->regnum))
4417 warning (_("Remote reply is too short: %s"), buf);
4418
4419 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
4420 }
4421
4422 if (*p != ';')
4423 error (_("Remote register badly formatted: %s\nhere: %s"),
4424 buf, p);
4425 ++p;
4426 }
4427 }
4428 /* fall through */
4429 case 'S': /* Old style status, just signal only. */
4430 if (event->solibs_changed)
4431 event->ws.kind = TARGET_WAITKIND_LOADED;
4432 else if (event->replay_event)
4433 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
4434 else
4435 {
4436 event->ws.kind = TARGET_WAITKIND_STOPPED;
4437 event->ws.value.sig = (enum target_signal)
4438 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
4439 }
4440 break;
4441 case 'W': /* Target exited. */
4442 case 'X':
4443 {
4444 char *p;
4445 int pid;
4446 ULONGEST value;
4447
4448 /* GDB used to accept only 2 hex chars here. Stubs should
4449 only send more if they detect GDB supports multi-process
4450 support. */
4451 p = unpack_varlen_hex (&buf[1], &value);
4452
4453 if (buf[0] == 'W')
4454 {
4455 /* The remote process exited. */
4456 event->ws.kind = TARGET_WAITKIND_EXITED;
4457 event->ws.value.integer = value;
4458 }
4459 else
4460 {
4461 /* The remote process exited with a signal. */
4462 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
4463 event->ws.value.sig = (enum target_signal) value;
4464 }
4465
4466 /* If no process is specified, assume inferior_ptid. */
4467 pid = ptid_get_pid (inferior_ptid);
4468 if (*p == '\0')
4469 ;
4470 else if (*p == ';')
4471 {
4472 p++;
4473
4474 if (p == '\0')
4475 ;
4476 else if (strncmp (p,
4477 "process:", sizeof ("process:") - 1) == 0)
4478 {
4479 ULONGEST upid;
4480 p += sizeof ("process:") - 1;
4481 unpack_varlen_hex (p, &upid);
4482 pid = upid;
4483 }
4484 else
4485 error (_("unknown stop reply packet: %s"), buf);
4486 }
4487 else
4488 error (_("unknown stop reply packet: %s"), buf);
4489 event->ptid = pid_to_ptid (pid);
4490 }
4491 break;
4492 }
4493
4494 if (non_stop && ptid_equal (event->ptid, null_ptid))
4495 error (_("No process or thread specified in stop reply: %s"), buf);
4496 }
4497
4498 /* When the stub wants to tell GDB about a new stop reply, it sends a
4499 stop notification (%Stop). Those can come it at any time, hence,
4500 we have to make sure that any pending putpkt/getpkt sequence we're
4501 making is finished, before querying the stub for more events with
4502 vStopped. E.g., if we started a vStopped sequence immediatelly
4503 upon receiving the %Stop notification, something like this could
4504 happen:
4505
4506 1.1) --> Hg 1
4507 1.2) <-- OK
4508 1.3) --> g
4509 1.4) <-- %Stop
4510 1.5) --> vStopped
4511 1.6) <-- (registers reply to step #1.3)
4512
4513 Obviously, the reply in step #1.6 would be unexpected to a vStopped
4514 query.
4515
4516 To solve this, whenever we parse a %Stop notification sucessfully,
4517 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
4518 doing whatever we were doing:
4519
4520 2.1) --> Hg 1
4521 2.2) <-- OK
4522 2.3) --> g
4523 2.4) <-- %Stop
4524 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
4525 2.5) <-- (registers reply to step #2.3)
4526
4527 Eventualy after step #2.5, we return to the event loop, which
4528 notices there's an event on the
4529 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
4530 associated callback --- the function below. At this point, we're
4531 always safe to start a vStopped sequence. :
4532
4533 2.6) --> vStopped
4534 2.7) <-- T05 thread:2
4535 2.8) --> vStopped
4536 2.9) --> OK
4537 */
4538
4539 static void
4540 remote_get_pending_stop_replies (void)
4541 {
4542 struct remote_state *rs = get_remote_state ();
4543 int ret;
4544
4545 if (pending_stop_reply)
4546 {
4547 /* acknowledge */
4548 putpkt ("vStopped");
4549
4550 /* Now we can rely on it. */
4551 push_stop_reply (pending_stop_reply);
4552 pending_stop_reply = NULL;
4553
4554 while (1)
4555 {
4556 getpkt (&rs->buf, &rs->buf_size, 0);
4557 if (strcmp (rs->buf, "OK") == 0)
4558 break;
4559 else
4560 {
4561 struct cleanup *old_chain;
4562 struct stop_reply *stop_reply = stop_reply_xmalloc ();
4563
4564 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4565 remote_parse_stop_reply (rs->buf, stop_reply);
4566
4567 /* acknowledge */
4568 putpkt ("vStopped");
4569
4570 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
4571 {
4572 /* Now we can rely on it. */
4573 discard_cleanups (old_chain);
4574 push_stop_reply (stop_reply);
4575 }
4576 else
4577 /* We got an unknown stop reply. */
4578 do_cleanups (old_chain);
4579 }
4580 }
4581 }
4582 }
4583
4584
4585 /* Called when it is decided that STOP_REPLY holds the info of the
4586 event that is to be returned to the core. This function always
4587 destroys STOP_REPLY. */
4588
4589 static ptid_t
4590 process_stop_reply (struct stop_reply *stop_reply,
4591 struct target_waitstatus *status)
4592 {
4593 ptid_t ptid;
4594
4595 *status = stop_reply->ws;
4596 ptid = stop_reply->ptid;
4597
4598 /* If no thread/process was reported by the stub, assume the current
4599 inferior. */
4600 if (ptid_equal (ptid, null_ptid))
4601 ptid = inferior_ptid;
4602
4603 if (status->kind != TARGET_WAITKIND_EXITED
4604 && status->kind != TARGET_WAITKIND_SIGNALLED)
4605 {
4606 /* Expedited registers. */
4607 if (stop_reply->regcache)
4608 {
4609 struct regcache *regcache
4610 = get_thread_arch_regcache (ptid, target_gdbarch);
4611 cached_reg_t *reg;
4612 int ix;
4613
4614 for (ix = 0;
4615 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
4616 ix++)
4617 regcache_raw_supply (regcache, reg->num, reg->data);
4618 VEC_free (cached_reg_t, stop_reply->regcache);
4619 }
4620
4621 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
4622 remote_watch_data_address = stop_reply->watch_data_address;
4623
4624 remote_notice_new_inferior (ptid, 0);
4625 }
4626
4627 stop_reply_xfree (stop_reply);
4628 return ptid;
4629 }
4630
4631 /* The non-stop mode version of target_wait. */
4632
4633 static ptid_t
4634 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
4635 {
4636 struct remote_state *rs = get_remote_state ();
4637 struct remote_arch_state *rsa = get_remote_arch_state ();
4638 ptid_t event_ptid = null_ptid;
4639 struct stop_reply *stop_reply;
4640 int ret;
4641
4642 /* If in non-stop mode, get out of getpkt even if a
4643 notification is received. */
4644
4645 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
4646 0 /* forever */);
4647 while (1)
4648 {
4649 if (ret != -1)
4650 switch (rs->buf[0])
4651 {
4652 case 'E': /* Error of some sort. */
4653 /* We're out of sync with the target now. Did it continue
4654 or not? We can't tell which thread it was in non-stop,
4655 so just ignore this. */
4656 warning (_("Remote failure reply: %s"), rs->buf);
4657 break;
4658 case 'O': /* Console output. */
4659 remote_console_output (rs->buf + 1);
4660 break;
4661 default:
4662 warning (_("Invalid remote reply: %s"), rs->buf);
4663 break;
4664 }
4665
4666 /* Acknowledge a pending stop reply that may have arrived in the
4667 mean time. */
4668 if (pending_stop_reply != NULL)
4669 remote_get_pending_stop_replies ();
4670
4671 /* If indeed we noticed a stop reply, we're done. */
4672 stop_reply = queued_stop_reply (ptid);
4673 if (stop_reply != NULL)
4674 return process_stop_reply (stop_reply, status);
4675
4676 /* Still no event. If we're just polling for an event, then
4677 return to the event loop. */
4678 if (options & TARGET_WNOHANG)
4679 {
4680 status->kind = TARGET_WAITKIND_IGNORE;
4681 return minus_one_ptid;
4682 }
4683
4684 /* Otherwise do a blocking wait. */
4685 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
4686 1 /* forever */);
4687 }
4688 }
4689
4690 /* Wait until the remote machine stops, then return, storing status in
4691 STATUS just as `wait' would. */
4692
4693 static ptid_t
4694 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
4695 {
4696 struct remote_state *rs = get_remote_state ();
4697 struct remote_arch_state *rsa = get_remote_arch_state ();
4698 ptid_t event_ptid = null_ptid;
4699 ULONGEST addr;
4700 int solibs_changed = 0;
4701 char *buf, *p;
4702 struct stop_reply *stop_reply;
4703
4704 again:
4705
4706 status->kind = TARGET_WAITKIND_IGNORE;
4707 status->value.integer = 0;
4708
4709 stop_reply = queued_stop_reply (ptid);
4710 if (stop_reply != NULL)
4711 return process_stop_reply (stop_reply, status);
4712
4713 if (rs->cached_wait_status)
4714 /* Use the cached wait status, but only once. */
4715 rs->cached_wait_status = 0;
4716 else
4717 {
4718 int ret;
4719
4720 if (!target_is_async_p ())
4721 {
4722 ofunc = signal (SIGINT, remote_interrupt);
4723 /* If the user hit C-c before this packet, or between packets,
4724 pretend that it was hit right here. */
4725 if (quit_flag)
4726 {
4727 quit_flag = 0;
4728 remote_interrupt (SIGINT);
4729 }
4730 }
4731
4732 /* FIXME: cagney/1999-09-27: If we're in async mode we should
4733 _never_ wait for ever -> test on target_is_async_p().
4734 However, before we do that we need to ensure that the caller
4735 knows how to take the target into/out of async mode. */
4736 ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
4737 if (!target_is_async_p ())
4738 signal (SIGINT, ofunc);
4739 }
4740
4741 buf = rs->buf;
4742
4743 remote_stopped_by_watchpoint_p = 0;
4744
4745 /* We got something. */
4746 rs->waiting_for_stop_reply = 0;
4747
4748 switch (buf[0])
4749 {
4750 case 'E': /* Error of some sort. */
4751 /* We're out of sync with the target now. Did it continue or
4752 not? Not is more likely, so report a stop. */
4753 warning (_("Remote failure reply: %s"), buf);
4754 status->kind = TARGET_WAITKIND_STOPPED;
4755 status->value.sig = TARGET_SIGNAL_0;
4756 break;
4757 case 'F': /* File-I/O request. */
4758 remote_fileio_request (buf);
4759 break;
4760 case 'T': case 'S': case 'X': case 'W':
4761 {
4762 struct stop_reply *stop_reply;
4763 struct cleanup *old_chain;
4764
4765 stop_reply = stop_reply_xmalloc ();
4766 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4767 remote_parse_stop_reply (buf, stop_reply);
4768 discard_cleanups (old_chain);
4769 event_ptid = process_stop_reply (stop_reply, status);
4770 break;
4771 }
4772 case 'O': /* Console output. */
4773 remote_console_output (buf + 1);
4774
4775 /* The target didn't really stop; keep waiting. */
4776 rs->waiting_for_stop_reply = 1;
4777
4778 break;
4779 case '\0':
4780 if (last_sent_signal != TARGET_SIGNAL_0)
4781 {
4782 /* Zero length reply means that we tried 'S' or 'C' and the
4783 remote system doesn't support it. */
4784 target_terminal_ours_for_output ();
4785 printf_filtered
4786 ("Can't send signals to this remote system. %s not sent.\n",
4787 target_signal_to_name (last_sent_signal));
4788 last_sent_signal = TARGET_SIGNAL_0;
4789 target_terminal_inferior ();
4790
4791 strcpy ((char *) buf, last_sent_step ? "s" : "c");
4792 putpkt ((char *) buf);
4793
4794 /* We just told the target to resume, so a stop reply is in
4795 order. */
4796 rs->waiting_for_stop_reply = 1;
4797 break;
4798 }
4799 /* else fallthrough */
4800 default:
4801 warning (_("Invalid remote reply: %s"), buf);
4802 /* Keep waiting. */
4803 rs->waiting_for_stop_reply = 1;
4804 break;
4805 }
4806
4807 if (status->kind == TARGET_WAITKIND_IGNORE)
4808 {
4809 /* Nothing interesting happened. If we're doing a non-blocking
4810 poll, we're done. Otherwise, go back to waiting. */
4811 if (options & TARGET_WNOHANG)
4812 return minus_one_ptid;
4813 else
4814 goto again;
4815 }
4816 else if (status->kind != TARGET_WAITKIND_EXITED
4817 && status->kind != TARGET_WAITKIND_SIGNALLED)
4818 {
4819 if (!ptid_equal (event_ptid, null_ptid))
4820 record_currthread (event_ptid);
4821 else
4822 event_ptid = inferior_ptid;
4823 }
4824 else
4825 /* A process exit. Invalidate our notion of current thread. */
4826 record_currthread (minus_one_ptid);
4827
4828 return event_ptid;
4829 }
4830
4831 /* Wait until the remote machine stops, then return, storing status in
4832 STATUS just as `wait' would. */
4833
4834 static ptid_t
4835 remote_wait (struct target_ops *ops,
4836 ptid_t ptid, struct target_waitstatus *status, int options)
4837 {
4838 ptid_t event_ptid;
4839
4840 if (non_stop)
4841 event_ptid = remote_wait_ns (ptid, status, options);
4842 else
4843 event_ptid = remote_wait_as (ptid, status, options);
4844
4845 if (target_can_async_p ())
4846 {
4847 /* If there are are events left in the queue tell the event loop
4848 to return here. */
4849 if (stop_reply_queue)
4850 mark_async_event_handler (remote_async_inferior_event_token);
4851 }
4852
4853 return event_ptid;
4854 }
4855
4856 /* Fetch a single register using a 'p' packet. */
4857
4858 static int
4859 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
4860 {
4861 struct remote_state *rs = get_remote_state ();
4862 char *buf, *p;
4863 char regp[MAX_REGISTER_SIZE];
4864 int i;
4865
4866 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
4867 return 0;
4868
4869 if (reg->pnum == -1)
4870 return 0;
4871
4872 p = rs->buf;
4873 *p++ = 'p';
4874 p += hexnumstr (p, reg->pnum);
4875 *p++ = '\0';
4876 remote_send (&rs->buf, &rs->buf_size);
4877
4878 buf = rs->buf;
4879
4880 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
4881 {
4882 case PACKET_OK:
4883 break;
4884 case PACKET_UNKNOWN:
4885 return 0;
4886 case PACKET_ERROR:
4887 error (_("Could not fetch register \"%s\""),
4888 gdbarch_register_name (get_regcache_arch (regcache), reg->regnum));
4889 }
4890
4891 /* If this register is unfetchable, tell the regcache. */
4892 if (buf[0] == 'x')
4893 {
4894 regcache_raw_supply (regcache, reg->regnum, NULL);
4895 return 1;
4896 }
4897
4898 /* Otherwise, parse and supply the value. */
4899 p = buf;
4900 i = 0;
4901 while (p[0] != 0)
4902 {
4903 if (p[1] == 0)
4904 error (_("fetch_register_using_p: early buf termination"));
4905
4906 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
4907 p += 2;
4908 }
4909 regcache_raw_supply (regcache, reg->regnum, regp);
4910 return 1;
4911 }
4912
4913 /* Fetch the registers included in the target's 'g' packet. */
4914
4915 static int
4916 send_g_packet (void)
4917 {
4918 struct remote_state *rs = get_remote_state ();
4919 int i, buf_len;
4920 char *p;
4921 char *regs;
4922
4923 sprintf (rs->buf, "g");
4924 remote_send (&rs->buf, &rs->buf_size);
4925
4926 /* We can get out of synch in various cases. If the first character
4927 in the buffer is not a hex character, assume that has happened
4928 and try to fetch another packet to read. */
4929 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
4930 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
4931 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
4932 && rs->buf[0] != 'x') /* New: unavailable register value. */
4933 {
4934 if (remote_debug)
4935 fprintf_unfiltered (gdb_stdlog,
4936 "Bad register packet; fetching a new packet\n");
4937 getpkt (&rs->buf, &rs->buf_size, 0);
4938 }
4939
4940 buf_len = strlen (rs->buf);
4941
4942 /* Sanity check the received packet. */
4943 if (buf_len % 2 != 0)
4944 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
4945
4946 return buf_len / 2;
4947 }
4948
4949 static void
4950 process_g_packet (struct regcache *regcache)
4951 {
4952 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4953 struct remote_state *rs = get_remote_state ();
4954 struct remote_arch_state *rsa = get_remote_arch_state ();
4955 int i, buf_len;
4956 char *p;
4957 char *regs;
4958
4959 buf_len = strlen (rs->buf);
4960
4961 /* Further sanity checks, with knowledge of the architecture. */
4962 if (buf_len > 2 * rsa->sizeof_g_packet)
4963 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
4964
4965 /* Save the size of the packet sent to us by the target. It is used
4966 as a heuristic when determining the max size of packets that the
4967 target can safely receive. */
4968 if (rsa->actual_register_packet_size == 0)
4969 rsa->actual_register_packet_size = buf_len;
4970
4971 /* If this is smaller than we guessed the 'g' packet would be,
4972 update our records. A 'g' reply that doesn't include a register's
4973 value implies either that the register is not available, or that
4974 the 'p' packet must be used. */
4975 if (buf_len < 2 * rsa->sizeof_g_packet)
4976 {
4977 rsa->sizeof_g_packet = buf_len / 2;
4978
4979 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
4980 {
4981 if (rsa->regs[i].pnum == -1)
4982 continue;
4983
4984 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
4985 rsa->regs[i].in_g_packet = 0;
4986 else
4987 rsa->regs[i].in_g_packet = 1;
4988 }
4989 }
4990
4991 regs = alloca (rsa->sizeof_g_packet);
4992
4993 /* Unimplemented registers read as all bits zero. */
4994 memset (regs, 0, rsa->sizeof_g_packet);
4995
4996 /* Reply describes registers byte by byte, each byte encoded as two
4997 hex characters. Suck them all up, then supply them to the
4998 register cacheing/storage mechanism. */
4999
5000 p = rs->buf;
5001 for (i = 0; i < rsa->sizeof_g_packet; i++)
5002 {
5003 if (p[0] == 0 || p[1] == 0)
5004 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
5005 internal_error (__FILE__, __LINE__,
5006 "unexpected end of 'g' packet reply");
5007
5008 if (p[0] == 'x' && p[1] == 'x')
5009 regs[i] = 0; /* 'x' */
5010 else
5011 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
5012 p += 2;
5013 }
5014
5015 {
5016 int i;
5017 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5018 {
5019 struct packet_reg *r = &rsa->regs[i];
5020 if (r->in_g_packet)
5021 {
5022 if (r->offset * 2 >= strlen (rs->buf))
5023 /* This shouldn't happen - we adjusted in_g_packet above. */
5024 internal_error (__FILE__, __LINE__,
5025 "unexpected end of 'g' packet reply");
5026 else if (rs->buf[r->offset * 2] == 'x')
5027 {
5028 gdb_assert (r->offset * 2 < strlen (rs->buf));
5029 /* The register isn't available, mark it as such (at
5030 the same time setting the value to zero). */
5031 regcache_raw_supply (regcache, r->regnum, NULL);
5032 }
5033 else
5034 regcache_raw_supply (regcache, r->regnum,
5035 regs + r->offset);
5036 }
5037 }
5038 }
5039 }
5040
5041 static void
5042 fetch_registers_using_g (struct regcache *regcache)
5043 {
5044 send_g_packet ();
5045 process_g_packet (regcache);
5046 }
5047
5048 static void
5049 remote_fetch_registers (struct target_ops *ops,
5050 struct regcache *regcache, int regnum)
5051 {
5052 struct remote_state *rs = get_remote_state ();
5053 struct remote_arch_state *rsa = get_remote_arch_state ();
5054 int i;
5055
5056 set_general_thread (inferior_ptid);
5057
5058 if (regnum >= 0)
5059 {
5060 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5061 gdb_assert (reg != NULL);
5062
5063 /* If this register might be in the 'g' packet, try that first -
5064 we are likely to read more than one register. If this is the
5065 first 'g' packet, we might be overly optimistic about its
5066 contents, so fall back to 'p'. */
5067 if (reg->in_g_packet)
5068 {
5069 fetch_registers_using_g (regcache);
5070 if (reg->in_g_packet)
5071 return;
5072 }
5073
5074 if (fetch_register_using_p (regcache, reg))
5075 return;
5076
5077 /* This register is not available. */
5078 regcache_raw_supply (regcache, reg->regnum, NULL);
5079
5080 return;
5081 }
5082
5083 fetch_registers_using_g (regcache);
5084
5085 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5086 if (!rsa->regs[i].in_g_packet)
5087 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
5088 {
5089 /* This register is not available. */
5090 regcache_raw_supply (regcache, i, NULL);
5091 }
5092 }
5093
5094 /* Prepare to store registers. Since we may send them all (using a
5095 'G' request), we have to read out the ones we don't want to change
5096 first. */
5097
5098 static void
5099 remote_prepare_to_store (struct regcache *regcache)
5100 {
5101 struct remote_arch_state *rsa = get_remote_arch_state ();
5102 int i;
5103 gdb_byte buf[MAX_REGISTER_SIZE];
5104
5105 /* Make sure the entire registers array is valid. */
5106 switch (remote_protocol_packets[PACKET_P].support)
5107 {
5108 case PACKET_DISABLE:
5109 case PACKET_SUPPORT_UNKNOWN:
5110 /* Make sure all the necessary registers are cached. */
5111 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5112 if (rsa->regs[i].in_g_packet)
5113 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
5114 break;
5115 case PACKET_ENABLE:
5116 break;
5117 }
5118 }
5119
5120 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
5121 packet was not recognized. */
5122
5123 static int
5124 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
5125 {
5126 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5127 struct remote_state *rs = get_remote_state ();
5128 struct remote_arch_state *rsa = get_remote_arch_state ();
5129 /* Try storing a single register. */
5130 char *buf = rs->buf;
5131 gdb_byte regp[MAX_REGISTER_SIZE];
5132 char *p;
5133
5134 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
5135 return 0;
5136
5137 if (reg->pnum == -1)
5138 return 0;
5139
5140 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
5141 p = buf + strlen (buf);
5142 regcache_raw_collect (regcache, reg->regnum, regp);
5143 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
5144 remote_send (&rs->buf, &rs->buf_size);
5145
5146 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
5147 {
5148 case PACKET_OK:
5149 return 1;
5150 case PACKET_ERROR:
5151 error (_("Could not write register \"%s\""),
5152 gdbarch_register_name (gdbarch, reg->regnum));
5153 case PACKET_UNKNOWN:
5154 return 0;
5155 default:
5156 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
5157 }
5158 }
5159
5160 /* Store register REGNUM, or all registers if REGNUM == -1, from the
5161 contents of the register cache buffer. FIXME: ignores errors. */
5162
5163 static void
5164 store_registers_using_G (const struct regcache *regcache)
5165 {
5166 struct remote_state *rs = get_remote_state ();
5167 struct remote_arch_state *rsa = get_remote_arch_state ();
5168 gdb_byte *regs;
5169 char *p;
5170
5171 /* Extract all the registers in the regcache copying them into a
5172 local buffer. */
5173 {
5174 int i;
5175 regs = alloca (rsa->sizeof_g_packet);
5176 memset (regs, 0, rsa->sizeof_g_packet);
5177 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5178 {
5179 struct packet_reg *r = &rsa->regs[i];
5180 if (r->in_g_packet)
5181 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
5182 }
5183 }
5184
5185 /* Command describes registers byte by byte,
5186 each byte encoded as two hex characters. */
5187 p = rs->buf;
5188 *p++ = 'G';
5189 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
5190 updated. */
5191 bin2hex (regs, p, rsa->sizeof_g_packet);
5192 remote_send (&rs->buf, &rs->buf_size);
5193 }
5194
5195 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
5196 of the register cache buffer. FIXME: ignores errors. */
5197
5198 static void
5199 remote_store_registers (struct target_ops *ops,
5200 struct regcache *regcache, int regnum)
5201 {
5202 struct remote_state *rs = get_remote_state ();
5203 struct remote_arch_state *rsa = get_remote_arch_state ();
5204 int i;
5205
5206 set_general_thread (inferior_ptid);
5207
5208 if (regnum >= 0)
5209 {
5210 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5211 gdb_assert (reg != NULL);
5212
5213 /* Always prefer to store registers using the 'P' packet if
5214 possible; we often change only a small number of registers.
5215 Sometimes we change a larger number; we'd need help from a
5216 higher layer to know to use 'G'. */
5217 if (store_register_using_P (regcache, reg))
5218 return;
5219
5220 /* For now, don't complain if we have no way to write the
5221 register. GDB loses track of unavailable registers too
5222 easily. Some day, this may be an error. We don't have
5223 any way to read the register, either... */
5224 if (!reg->in_g_packet)
5225 return;
5226
5227 store_registers_using_G (regcache);
5228 return;
5229 }
5230
5231 store_registers_using_G (regcache);
5232
5233 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5234 if (!rsa->regs[i].in_g_packet)
5235 if (!store_register_using_P (regcache, &rsa->regs[i]))
5236 /* See above for why we do not issue an error here. */
5237 continue;
5238 }
5239 \f
5240
5241 /* Return the number of hex digits in num. */
5242
5243 static int
5244 hexnumlen (ULONGEST num)
5245 {
5246 int i;
5247
5248 for (i = 0; num != 0; i++)
5249 num >>= 4;
5250
5251 return max (i, 1);
5252 }
5253
5254 /* Set BUF to the minimum number of hex digits representing NUM. */
5255
5256 static int
5257 hexnumstr (char *buf, ULONGEST num)
5258 {
5259 int len = hexnumlen (num);
5260 return hexnumnstr (buf, num, len);
5261 }
5262
5263
5264 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
5265
5266 static int
5267 hexnumnstr (char *buf, ULONGEST num, int width)
5268 {
5269 int i;
5270
5271 buf[width] = '\0';
5272
5273 for (i = width - 1; i >= 0; i--)
5274 {
5275 buf[i] = "0123456789abcdef"[(num & 0xf)];
5276 num >>= 4;
5277 }
5278
5279 return width;
5280 }
5281
5282 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
5283
5284 static CORE_ADDR
5285 remote_address_masked (CORE_ADDR addr)
5286 {
5287 int address_size = remote_address_size;
5288 /* If "remoteaddresssize" was not set, default to target address size. */
5289 if (!address_size)
5290 address_size = gdbarch_addr_bit (target_gdbarch);
5291
5292 if (address_size > 0
5293 && address_size < (sizeof (ULONGEST) * 8))
5294 {
5295 /* Only create a mask when that mask can safely be constructed
5296 in a ULONGEST variable. */
5297 ULONGEST mask = 1;
5298 mask = (mask << address_size) - 1;
5299 addr &= mask;
5300 }
5301 return addr;
5302 }
5303
5304 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
5305 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
5306 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
5307 (which may be more than *OUT_LEN due to escape characters). The
5308 total number of bytes in the output buffer will be at most
5309 OUT_MAXLEN. */
5310
5311 static int
5312 remote_escape_output (const gdb_byte *buffer, int len,
5313 gdb_byte *out_buf, int *out_len,
5314 int out_maxlen)
5315 {
5316 int input_index, output_index;
5317
5318 output_index = 0;
5319 for (input_index = 0; input_index < len; input_index++)
5320 {
5321 gdb_byte b = buffer[input_index];
5322
5323 if (b == '$' || b == '#' || b == '}')
5324 {
5325 /* These must be escaped. */
5326 if (output_index + 2 > out_maxlen)
5327 break;
5328 out_buf[output_index++] = '}';
5329 out_buf[output_index++] = b ^ 0x20;
5330 }
5331 else
5332 {
5333 if (output_index + 1 > out_maxlen)
5334 break;
5335 out_buf[output_index++] = b;
5336 }
5337 }
5338
5339 *out_len = input_index;
5340 return output_index;
5341 }
5342
5343 /* Convert BUFFER, escaped data LEN bytes long, into binary data
5344 in OUT_BUF. Return the number of bytes written to OUT_BUF.
5345 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
5346
5347 This function reverses remote_escape_output. It allows more
5348 escaped characters than that function does, in particular because
5349 '*' must be escaped to avoid the run-length encoding processing
5350 in reading packets. */
5351
5352 static int
5353 remote_unescape_input (const gdb_byte *buffer, int len,
5354 gdb_byte *out_buf, int out_maxlen)
5355 {
5356 int input_index, output_index;
5357 int escaped;
5358
5359 output_index = 0;
5360 escaped = 0;
5361 for (input_index = 0; input_index < len; input_index++)
5362 {
5363 gdb_byte b = buffer[input_index];
5364
5365 if (output_index + 1 > out_maxlen)
5366 {
5367 warning (_("Received too much data from remote target;"
5368 " ignoring overflow."));
5369 return output_index;
5370 }
5371
5372 if (escaped)
5373 {
5374 out_buf[output_index++] = b ^ 0x20;
5375 escaped = 0;
5376 }
5377 else if (b == '}')
5378 escaped = 1;
5379 else
5380 out_buf[output_index++] = b;
5381 }
5382
5383 if (escaped)
5384 error (_("Unmatched escape character in target response."));
5385
5386 return output_index;
5387 }
5388
5389 /* Determine whether the remote target supports binary downloading.
5390 This is accomplished by sending a no-op memory write of zero length
5391 to the target at the specified address. It does not suffice to send
5392 the whole packet, since many stubs strip the eighth bit and
5393 subsequently compute a wrong checksum, which causes real havoc with
5394 remote_write_bytes.
5395
5396 NOTE: This can still lose if the serial line is not eight-bit
5397 clean. In cases like this, the user should clear "remote
5398 X-packet". */
5399
5400 static void
5401 check_binary_download (CORE_ADDR addr)
5402 {
5403 struct remote_state *rs = get_remote_state ();
5404
5405 switch (remote_protocol_packets[PACKET_X].support)
5406 {
5407 case PACKET_DISABLE:
5408 break;
5409 case PACKET_ENABLE:
5410 break;
5411 case PACKET_SUPPORT_UNKNOWN:
5412 {
5413 char *p;
5414
5415 p = rs->buf;
5416 *p++ = 'X';
5417 p += hexnumstr (p, (ULONGEST) addr);
5418 *p++ = ',';
5419 p += hexnumstr (p, (ULONGEST) 0);
5420 *p++ = ':';
5421 *p = '\0';
5422
5423 putpkt_binary (rs->buf, (int) (p - rs->buf));
5424 getpkt (&rs->buf, &rs->buf_size, 0);
5425
5426 if (rs->buf[0] == '\0')
5427 {
5428 if (remote_debug)
5429 fprintf_unfiltered (gdb_stdlog,
5430 "binary downloading NOT suppported by target\n");
5431 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
5432 }
5433 else
5434 {
5435 if (remote_debug)
5436 fprintf_unfiltered (gdb_stdlog,
5437 "binary downloading suppported by target\n");
5438 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
5439 }
5440 break;
5441 }
5442 }
5443 }
5444
5445 /* Write memory data directly to the remote machine.
5446 This does not inform the data cache; the data cache uses this.
5447 HEADER is the starting part of the packet.
5448 MEMADDR is the address in the remote memory space.
5449 MYADDR is the address of the buffer in our space.
5450 LEN is the number of bytes.
5451 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
5452 should send data as binary ('X'), or hex-encoded ('M').
5453
5454 The function creates packet of the form
5455 <HEADER><ADDRESS>,<LENGTH>:<DATA>
5456
5457 where encoding of <DATA> is termined by PACKET_FORMAT.
5458
5459 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
5460 are omitted.
5461
5462 Returns the number of bytes transferred, or 0 (setting errno) for
5463 error. Only transfer a single packet. */
5464
5465 static int
5466 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
5467 const gdb_byte *myaddr, int len,
5468 char packet_format, int use_length)
5469 {
5470 struct remote_state *rs = get_remote_state ();
5471 char *p;
5472 char *plen = NULL;
5473 int plenlen = 0;
5474 int todo;
5475 int nr_bytes;
5476 int payload_size;
5477 int payload_length;
5478 int header_length;
5479
5480 if (packet_format != 'X' && packet_format != 'M')
5481 internal_error (__FILE__, __LINE__,
5482 "remote_write_bytes_aux: bad packet format");
5483
5484 if (len <= 0)
5485 return 0;
5486
5487 payload_size = get_memory_write_packet_size ();
5488
5489 /* The packet buffer will be large enough for the payload;
5490 get_memory_packet_size ensures this. */
5491 rs->buf[0] = '\0';
5492
5493 /* Compute the size of the actual payload by subtracting out the
5494 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
5495 */
5496 payload_size -= strlen ("$,:#NN");
5497 if (!use_length)
5498 /* The comma won't be used. */
5499 payload_size += 1;
5500 header_length = strlen (header);
5501 payload_size -= header_length;
5502 payload_size -= hexnumlen (memaddr);
5503
5504 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
5505
5506 strcat (rs->buf, header);
5507 p = rs->buf + strlen (header);
5508
5509 /* Compute a best guess of the number of bytes actually transfered. */
5510 if (packet_format == 'X')
5511 {
5512 /* Best guess at number of bytes that will fit. */
5513 todo = min (len, payload_size);
5514 if (use_length)
5515 payload_size -= hexnumlen (todo);
5516 todo = min (todo, payload_size);
5517 }
5518 else
5519 {
5520 /* Num bytes that will fit. */
5521 todo = min (len, payload_size / 2);
5522 if (use_length)
5523 payload_size -= hexnumlen (todo);
5524 todo = min (todo, payload_size / 2);
5525 }
5526
5527 if (todo <= 0)
5528 internal_error (__FILE__, __LINE__,
5529 _("minumum packet size too small to write data"));
5530
5531 /* If we already need another packet, then try to align the end
5532 of this packet to a useful boundary. */
5533 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
5534 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
5535
5536 /* Append "<memaddr>". */
5537 memaddr = remote_address_masked (memaddr);
5538 p += hexnumstr (p, (ULONGEST) memaddr);
5539
5540 if (use_length)
5541 {
5542 /* Append ",". */
5543 *p++ = ',';
5544
5545 /* Append <len>. Retain the location/size of <len>. It may need to
5546 be adjusted once the packet body has been created. */
5547 plen = p;
5548 plenlen = hexnumstr (p, (ULONGEST) todo);
5549 p += plenlen;
5550 }
5551
5552 /* Append ":". */
5553 *p++ = ':';
5554 *p = '\0';
5555
5556 /* Append the packet body. */
5557 if (packet_format == 'X')
5558 {
5559 /* Binary mode. Send target system values byte by byte, in
5560 increasing byte addresses. Only escape certain critical
5561 characters. */
5562 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
5563 payload_size);
5564
5565 /* If not all TODO bytes fit, then we'll need another packet. Make
5566 a second try to keep the end of the packet aligned. Don't do
5567 this if the packet is tiny. */
5568 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
5569 {
5570 int new_nr_bytes;
5571
5572 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
5573 - memaddr);
5574 if (new_nr_bytes != nr_bytes)
5575 payload_length = remote_escape_output (myaddr, new_nr_bytes,
5576 p, &nr_bytes,
5577 payload_size);
5578 }
5579
5580 p += payload_length;
5581 if (use_length && nr_bytes < todo)
5582 {
5583 /* Escape chars have filled up the buffer prematurely,
5584 and we have actually sent fewer bytes than planned.
5585 Fix-up the length field of the packet. Use the same
5586 number of characters as before. */
5587 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
5588 *plen = ':'; /* overwrite \0 from hexnumnstr() */
5589 }
5590 }
5591 else
5592 {
5593 /* Normal mode: Send target system values byte by byte, in
5594 increasing byte addresses. Each byte is encoded as a two hex
5595 value. */
5596 nr_bytes = bin2hex (myaddr, p, todo);
5597 p += 2 * nr_bytes;
5598 }
5599
5600 putpkt_binary (rs->buf, (int) (p - rs->buf));
5601 getpkt (&rs->buf, &rs->buf_size, 0);
5602
5603 if (rs->buf[0] == 'E')
5604 {
5605 /* There is no correspondance between what the remote protocol
5606 uses for errors and errno codes. We would like a cleaner way
5607 of representing errors (big enough to include errno codes,
5608 bfd_error codes, and others). But for now just return EIO. */
5609 errno = EIO;
5610 return 0;
5611 }
5612
5613 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
5614 fewer bytes than we'd planned. */
5615 return nr_bytes;
5616 }
5617
5618 /* Write memory data directly to the remote machine.
5619 This does not inform the data cache; the data cache uses this.
5620 MEMADDR is the address in the remote memory space.
5621 MYADDR is the address of the buffer in our space.
5622 LEN is the number of bytes.
5623
5624 Returns number of bytes transferred, or 0 (setting errno) for
5625 error. Only transfer a single packet. */
5626
5627 int
5628 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
5629 {
5630 char *packet_format = 0;
5631
5632 /* Check whether the target supports binary download. */
5633 check_binary_download (memaddr);
5634
5635 switch (remote_protocol_packets[PACKET_X].support)
5636 {
5637 case PACKET_ENABLE:
5638 packet_format = "X";
5639 break;
5640 case PACKET_DISABLE:
5641 packet_format = "M";
5642 break;
5643 case PACKET_SUPPORT_UNKNOWN:
5644 internal_error (__FILE__, __LINE__,
5645 _("remote_write_bytes: bad internal state"));
5646 default:
5647 internal_error (__FILE__, __LINE__, _("bad switch"));
5648 }
5649
5650 return remote_write_bytes_aux (packet_format,
5651 memaddr, myaddr, len, packet_format[0], 1);
5652 }
5653
5654 /* Read memory data directly from the remote machine.
5655 This does not use the data cache; the data cache uses this.
5656 MEMADDR is the address in the remote memory space.
5657 MYADDR is the address of the buffer in our space.
5658 LEN is the number of bytes.
5659
5660 Returns number of bytes transferred, or 0 for error. */
5661
5662 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
5663 remote targets) shouldn't attempt to read the entire buffer.
5664 Instead it should read a single packet worth of data and then
5665 return the byte size of that packet to the caller. The caller (its
5666 caller and its callers caller ;-) already contains code for
5667 handling partial reads. */
5668
5669 int
5670 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
5671 {
5672 struct remote_state *rs = get_remote_state ();
5673 int max_buf_size; /* Max size of packet output buffer. */
5674 int origlen;
5675
5676 if (len <= 0)
5677 return 0;
5678
5679 max_buf_size = get_memory_read_packet_size ();
5680 /* The packet buffer will be large enough for the payload;
5681 get_memory_packet_size ensures this. */
5682
5683 origlen = len;
5684 while (len > 0)
5685 {
5686 char *p;
5687 int todo;
5688 int i;
5689
5690 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
5691
5692 /* construct "m"<memaddr>","<len>" */
5693 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
5694 memaddr = remote_address_masked (memaddr);
5695 p = rs->buf;
5696 *p++ = 'm';
5697 p += hexnumstr (p, (ULONGEST) memaddr);
5698 *p++ = ',';
5699 p += hexnumstr (p, (ULONGEST) todo);
5700 *p = '\0';
5701
5702 putpkt (rs->buf);
5703 getpkt (&rs->buf, &rs->buf_size, 0);
5704
5705 if (rs->buf[0] == 'E'
5706 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
5707 && rs->buf[3] == '\0')
5708 {
5709 /* There is no correspondance between what the remote
5710 protocol uses for errors and errno codes. We would like
5711 a cleaner way of representing errors (big enough to
5712 include errno codes, bfd_error codes, and others). But
5713 for now just return EIO. */
5714 errno = EIO;
5715 return 0;
5716 }
5717
5718 /* Reply describes memory byte by byte,
5719 each byte encoded as two hex characters. */
5720
5721 p = rs->buf;
5722 if ((i = hex2bin (p, myaddr, todo)) < todo)
5723 {
5724 /* Reply is short. This means that we were able to read
5725 only part of what we wanted to. */
5726 return i + (origlen - len);
5727 }
5728 myaddr += todo;
5729 memaddr += todo;
5730 len -= todo;
5731 }
5732 return origlen;
5733 }
5734 \f
5735
5736 /* Remote notification handler. */
5737
5738 static void
5739 handle_notification (char *buf, size_t length)
5740 {
5741 if (strncmp (buf, "Stop:", 5) == 0)
5742 {
5743 if (pending_stop_reply)
5744 /* We've already parsed the in-flight stop-reply, but the stub
5745 for some reason thought we didn't, possibly due to timeout
5746 on its side. Just ignore it. */
5747 ;
5748 else
5749 {
5750 struct cleanup *old_chain;
5751 struct stop_reply *reply = stop_reply_xmalloc ();
5752 old_chain = make_cleanup (do_stop_reply_xfree, reply);
5753
5754 remote_parse_stop_reply (buf + 5, reply);
5755
5756 discard_cleanups (old_chain);
5757
5758 /* Be careful to only set it after parsing, since an error
5759 may be thrown then. */
5760 pending_stop_reply = reply;
5761
5762 /* Notify the event loop there's a stop reply to acknowledge
5763 and that there may be more events to fetch. */
5764 mark_async_event_handler (remote_async_get_pending_events_token);
5765 }
5766 }
5767 else
5768 /* We ignore notifications we don't recognize, for compatibility
5769 with newer stubs. */
5770 ;
5771 }
5772
5773 \f
5774 /* Read or write LEN bytes from inferior memory at MEMADDR,
5775 transferring to or from debugger address BUFFER. Write to inferior
5776 if SHOULD_WRITE is nonzero. Returns length of data written or
5777 read; 0 for error. TARGET is unused. */
5778
5779 static int
5780 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
5781 int should_write, struct mem_attrib *attrib,
5782 struct target_ops *target)
5783 {
5784 int res;
5785
5786 set_general_thread (inferior_ptid);
5787
5788 if (should_write)
5789 res = remote_write_bytes (mem_addr, buffer, mem_len);
5790 else
5791 res = remote_read_bytes (mem_addr, buffer, mem_len);
5792
5793 return res;
5794 }
5795
5796 /* Sends a packet with content determined by the printf format string
5797 FORMAT and the remaining arguments, then gets the reply. Returns
5798 whether the packet was a success, a failure, or unknown. */
5799
5800 static enum packet_result
5801 remote_send_printf (const char *format, ...)
5802 {
5803 struct remote_state *rs = get_remote_state ();
5804 int max_size = get_remote_packet_size ();
5805
5806 va_list ap;
5807 va_start (ap, format);
5808
5809 rs->buf[0] = '\0';
5810 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
5811 internal_error (__FILE__, __LINE__, "Too long remote packet.");
5812
5813 if (putpkt (rs->buf) < 0)
5814 error (_("Communication problem with target."));
5815
5816 rs->buf[0] = '\0';
5817 getpkt (&rs->buf, &rs->buf_size, 0);
5818
5819 return packet_check_result (rs->buf);
5820 }
5821
5822 static void
5823 restore_remote_timeout (void *p)
5824 {
5825 int value = *(int *)p;
5826 remote_timeout = value;
5827 }
5828
5829 /* Flash writing can take quite some time. We'll set
5830 effectively infinite timeout for flash operations.
5831 In future, we'll need to decide on a better approach. */
5832 static const int remote_flash_timeout = 1000;
5833
5834 static void
5835 remote_flash_erase (struct target_ops *ops,
5836 ULONGEST address, LONGEST length)
5837 {
5838 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
5839 int saved_remote_timeout = remote_timeout;
5840 enum packet_result ret;
5841
5842 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5843 &saved_remote_timeout);
5844 remote_timeout = remote_flash_timeout;
5845
5846 ret = remote_send_printf ("vFlashErase:%s,%s",
5847 phex (address, addr_size),
5848 phex (length, 4));
5849 switch (ret)
5850 {
5851 case PACKET_UNKNOWN:
5852 error (_("Remote target does not support flash erase"));
5853 case PACKET_ERROR:
5854 error (_("Error erasing flash with vFlashErase packet"));
5855 default:
5856 break;
5857 }
5858
5859 do_cleanups (back_to);
5860 }
5861
5862 static LONGEST
5863 remote_flash_write (struct target_ops *ops,
5864 ULONGEST address, LONGEST length,
5865 const gdb_byte *data)
5866 {
5867 int saved_remote_timeout = remote_timeout;
5868 int ret;
5869 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5870 &saved_remote_timeout);
5871
5872 remote_timeout = remote_flash_timeout;
5873 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
5874 do_cleanups (back_to);
5875
5876 return ret;
5877 }
5878
5879 static void
5880 remote_flash_done (struct target_ops *ops)
5881 {
5882 int saved_remote_timeout = remote_timeout;
5883 int ret;
5884 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5885 &saved_remote_timeout);
5886
5887 remote_timeout = remote_flash_timeout;
5888 ret = remote_send_printf ("vFlashDone");
5889 do_cleanups (back_to);
5890
5891 switch (ret)
5892 {
5893 case PACKET_UNKNOWN:
5894 error (_("Remote target does not support vFlashDone"));
5895 case PACKET_ERROR:
5896 error (_("Error finishing flash operation"));
5897 default:
5898 break;
5899 }
5900 }
5901
5902 static void
5903 remote_files_info (struct target_ops *ignore)
5904 {
5905 puts_filtered ("Debugging a target over a serial line.\n");
5906 }
5907 \f
5908 /* Stuff for dealing with the packets which are part of this protocol.
5909 See comment at top of file for details. */
5910
5911 /* Read a single character from the remote end. */
5912
5913 static int
5914 readchar (int timeout)
5915 {
5916 int ch;
5917
5918 ch = serial_readchar (remote_desc, timeout);
5919
5920 if (ch >= 0)
5921 return ch;
5922
5923 switch ((enum serial_rc) ch)
5924 {
5925 case SERIAL_EOF:
5926 pop_target ();
5927 error (_("Remote connection closed"));
5928 /* no return */
5929 case SERIAL_ERROR:
5930 perror_with_name (_("Remote communication error"));
5931 /* no return */
5932 case SERIAL_TIMEOUT:
5933 break;
5934 }
5935 return ch;
5936 }
5937
5938 /* Send the command in *BUF to the remote machine, and read the reply
5939 into *BUF. Report an error if we get an error reply. Resize
5940 *BUF using xrealloc if necessary to hold the result, and update
5941 *SIZEOF_BUF. */
5942
5943 static void
5944 remote_send (char **buf,
5945 long *sizeof_buf)
5946 {
5947 putpkt (*buf);
5948 getpkt (buf, sizeof_buf, 0);
5949
5950 if ((*buf)[0] == 'E')
5951 error (_("Remote failure reply: %s"), *buf);
5952 }
5953
5954 /* Return a pointer to an xmalloc'ed string representing an escaped
5955 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
5956 etc. The caller is responsible for releasing the returned
5957 memory. */
5958
5959 static char *
5960 escape_buffer (const char *buf, int n)
5961 {
5962 struct cleanup *old_chain;
5963 struct ui_file *stb;
5964 char *str;
5965 long length;
5966
5967 stb = mem_fileopen ();
5968 old_chain = make_cleanup_ui_file_delete (stb);
5969
5970 fputstrn_unfiltered (buf, n, 0, stb);
5971 str = ui_file_xstrdup (stb, &length);
5972 do_cleanups (old_chain);
5973 return str;
5974 }
5975
5976 /* Display a null-terminated packet on stdout, for debugging, using C
5977 string notation. */
5978
5979 static void
5980 print_packet (char *buf)
5981 {
5982 puts_filtered ("\"");
5983 fputstr_filtered (buf, '"', gdb_stdout);
5984 puts_filtered ("\"");
5985 }
5986
5987 int
5988 putpkt (char *buf)
5989 {
5990 return putpkt_binary (buf, strlen (buf));
5991 }
5992
5993 /* Send a packet to the remote machine, with error checking. The data
5994 of the packet is in BUF. The string in BUF can be at most
5995 get_remote_packet_size () - 5 to account for the $, # and checksum,
5996 and for a possible /0 if we are debugging (remote_debug) and want
5997 to print the sent packet as a string. */
5998
5999 static int
6000 putpkt_binary (char *buf, int cnt)
6001 {
6002 struct remote_state *rs = get_remote_state ();
6003 int i;
6004 unsigned char csum = 0;
6005 char *buf2 = alloca (cnt + 6);
6006
6007 int ch;
6008 int tcount = 0;
6009 char *p;
6010
6011 /* Catch cases like trying to read memory or listing threads while
6012 we're waiting for a stop reply. The remote server wouldn't be
6013 ready to handle this request, so we'd hang and timeout. We don't
6014 have to worry about this in synchronous mode, because in that
6015 case it's not possible to issue a command while the target is
6016 running. This is not a problem in non-stop mode, because in that
6017 case, the stub is always ready to process serial input. */
6018 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
6019 error (_("Cannot execute this command while the target is running."));
6020
6021 /* We're sending out a new packet. Make sure we don't look at a
6022 stale cached response. */
6023 rs->cached_wait_status = 0;
6024
6025 /* Copy the packet into buffer BUF2, encapsulating it
6026 and giving it a checksum. */
6027
6028 p = buf2;
6029 *p++ = '$';
6030
6031 for (i = 0; i < cnt; i++)
6032 {
6033 csum += buf[i];
6034 *p++ = buf[i];
6035 }
6036 *p++ = '#';
6037 *p++ = tohex ((csum >> 4) & 0xf);
6038 *p++ = tohex (csum & 0xf);
6039
6040 /* Send it over and over until we get a positive ack. */
6041
6042 while (1)
6043 {
6044 int started_error_output = 0;
6045
6046 if (remote_debug)
6047 {
6048 struct cleanup *old_chain;
6049 char *str;
6050
6051 *p = '\0';
6052 str = escape_buffer (buf2, p - buf2);
6053 old_chain = make_cleanup (xfree, str);
6054 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
6055 gdb_flush (gdb_stdlog);
6056 do_cleanups (old_chain);
6057 }
6058 if (serial_write (remote_desc, buf2, p - buf2))
6059 perror_with_name (_("putpkt: write failed"));
6060
6061 /* If this is a no acks version of the remote protocol, send the
6062 packet and move on. */
6063 if (rs->noack_mode)
6064 break;
6065
6066 /* Read until either a timeout occurs (-2) or '+' is read.
6067 Handle any notification that arrives in the mean time. */
6068 while (1)
6069 {
6070 ch = readchar (remote_timeout);
6071
6072 if (remote_debug)
6073 {
6074 switch (ch)
6075 {
6076 case '+':
6077 case '-':
6078 case SERIAL_TIMEOUT:
6079 case '$':
6080 case '%':
6081 if (started_error_output)
6082 {
6083 putchar_unfiltered ('\n');
6084 started_error_output = 0;
6085 }
6086 }
6087 }
6088
6089 switch (ch)
6090 {
6091 case '+':
6092 if (remote_debug)
6093 fprintf_unfiltered (gdb_stdlog, "Ack\n");
6094 return 1;
6095 case '-':
6096 if (remote_debug)
6097 fprintf_unfiltered (gdb_stdlog, "Nak\n");
6098 case SERIAL_TIMEOUT:
6099 tcount++;
6100 if (tcount > 3)
6101 return 0;
6102 break; /* Retransmit buffer. */
6103 case '$':
6104 {
6105 if (remote_debug)
6106 fprintf_unfiltered (gdb_stdlog,
6107 "Packet instead of Ack, ignoring it\n");
6108 /* It's probably an old response sent because an ACK
6109 was lost. Gobble up the packet and ack it so it
6110 doesn't get retransmitted when we resend this
6111 packet. */
6112 skip_frame ();
6113 serial_write (remote_desc, "+", 1);
6114 continue; /* Now, go look for +. */
6115 }
6116
6117 case '%':
6118 {
6119 int val;
6120
6121 /* If we got a notification, handle it, and go back to looking
6122 for an ack. */
6123 /* We've found the start of a notification. Now
6124 collect the data. */
6125 val = read_frame (&rs->buf, &rs->buf_size);
6126 if (val >= 0)
6127 {
6128 if (remote_debug)
6129 {
6130 struct cleanup *old_chain;
6131 char *str;
6132
6133 str = escape_buffer (rs->buf, val);
6134 old_chain = make_cleanup (xfree, str);
6135 fprintf_unfiltered (gdb_stdlog,
6136 " Notification received: %s\n",
6137 str);
6138 do_cleanups (old_chain);
6139 }
6140 handle_notification (rs->buf, val);
6141 /* We're in sync now, rewait for the ack. */
6142 tcount = 0;
6143 }
6144 else
6145 {
6146 if (remote_debug)
6147 {
6148 if (!started_error_output)
6149 {
6150 started_error_output = 1;
6151 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6152 }
6153 fputc_unfiltered (ch & 0177, gdb_stdlog);
6154 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
6155 }
6156 }
6157 continue;
6158 }
6159 /* fall-through */
6160 default:
6161 if (remote_debug)
6162 {
6163 if (!started_error_output)
6164 {
6165 started_error_output = 1;
6166 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6167 }
6168 fputc_unfiltered (ch & 0177, gdb_stdlog);
6169 }
6170 continue;
6171 }
6172 break; /* Here to retransmit. */
6173 }
6174
6175 #if 0
6176 /* This is wrong. If doing a long backtrace, the user should be
6177 able to get out next time we call QUIT, without anything as
6178 violent as interrupt_query. If we want to provide a way out of
6179 here without getting to the next QUIT, it should be based on
6180 hitting ^C twice as in remote_wait. */
6181 if (quit_flag)
6182 {
6183 quit_flag = 0;
6184 interrupt_query ();
6185 }
6186 #endif
6187 }
6188 return 0;
6189 }
6190
6191 /* Come here after finding the start of a frame when we expected an
6192 ack. Do our best to discard the rest of this packet. */
6193
6194 static void
6195 skip_frame (void)
6196 {
6197 int c;
6198
6199 while (1)
6200 {
6201 c = readchar (remote_timeout);
6202 switch (c)
6203 {
6204 case SERIAL_TIMEOUT:
6205 /* Nothing we can do. */
6206 return;
6207 case '#':
6208 /* Discard the two bytes of checksum and stop. */
6209 c = readchar (remote_timeout);
6210 if (c >= 0)
6211 c = readchar (remote_timeout);
6212
6213 return;
6214 case '*': /* Run length encoding. */
6215 /* Discard the repeat count. */
6216 c = readchar (remote_timeout);
6217 if (c < 0)
6218 return;
6219 break;
6220 default:
6221 /* A regular character. */
6222 break;
6223 }
6224 }
6225 }
6226
6227 /* Come here after finding the start of the frame. Collect the rest
6228 into *BUF, verifying the checksum, length, and handling run-length
6229 compression. NUL terminate the buffer. If there is not enough room,
6230 expand *BUF using xrealloc.
6231
6232 Returns -1 on error, number of characters in buffer (ignoring the
6233 trailing NULL) on success. (could be extended to return one of the
6234 SERIAL status indications). */
6235
6236 static long
6237 read_frame (char **buf_p,
6238 long *sizeof_buf)
6239 {
6240 unsigned char csum;
6241 long bc;
6242 int c;
6243 char *buf = *buf_p;
6244 struct remote_state *rs = get_remote_state ();
6245
6246 csum = 0;
6247 bc = 0;
6248
6249 while (1)
6250 {
6251 c = readchar (remote_timeout);
6252 switch (c)
6253 {
6254 case SERIAL_TIMEOUT:
6255 if (remote_debug)
6256 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
6257 return -1;
6258 case '$':
6259 if (remote_debug)
6260 fputs_filtered ("Saw new packet start in middle of old one\n",
6261 gdb_stdlog);
6262 return -1; /* Start a new packet, count retries. */
6263 case '#':
6264 {
6265 unsigned char pktcsum;
6266 int check_0 = 0;
6267 int check_1 = 0;
6268
6269 buf[bc] = '\0';
6270
6271 check_0 = readchar (remote_timeout);
6272 if (check_0 >= 0)
6273 check_1 = readchar (remote_timeout);
6274
6275 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
6276 {
6277 if (remote_debug)
6278 fputs_filtered ("Timeout in checksum, retrying\n",
6279 gdb_stdlog);
6280 return -1;
6281 }
6282 else if (check_0 < 0 || check_1 < 0)
6283 {
6284 if (remote_debug)
6285 fputs_filtered ("Communication error in checksum\n",
6286 gdb_stdlog);
6287 return -1;
6288 }
6289
6290 /* Don't recompute the checksum; with no ack packets we
6291 don't have any way to indicate a packet retransmission
6292 is necessary. */
6293 if (rs->noack_mode)
6294 return bc;
6295
6296 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
6297 if (csum == pktcsum)
6298 return bc;
6299
6300 if (remote_debug)
6301 {
6302 struct cleanup *old_chain;
6303 char *str;
6304
6305 str = escape_buffer (buf, bc);
6306 old_chain = make_cleanup (xfree, str);
6307 fprintf_unfiltered (gdb_stdlog,
6308 "\
6309 Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s\n",
6310 pktcsum, csum, str);
6311 do_cleanups (old_chain);
6312 }
6313 /* Number of characters in buffer ignoring trailing
6314 NULL. */
6315 return -1;
6316 }
6317 case '*': /* Run length encoding. */
6318 {
6319 int repeat;
6320 csum += c;
6321
6322 c = readchar (remote_timeout);
6323 csum += c;
6324 repeat = c - ' ' + 3; /* Compute repeat count. */
6325
6326 /* The character before ``*'' is repeated. */
6327
6328 if (repeat > 0 && repeat <= 255 && bc > 0)
6329 {
6330 if (bc + repeat - 1 >= *sizeof_buf - 1)
6331 {
6332 /* Make some more room in the buffer. */
6333 *sizeof_buf += repeat;
6334 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6335 buf = *buf_p;
6336 }
6337
6338 memset (&buf[bc], buf[bc - 1], repeat);
6339 bc += repeat;
6340 continue;
6341 }
6342
6343 buf[bc] = '\0';
6344 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
6345 return -1;
6346 }
6347 default:
6348 if (bc >= *sizeof_buf - 1)
6349 {
6350 /* Make some more room in the buffer. */
6351 *sizeof_buf *= 2;
6352 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6353 buf = *buf_p;
6354 }
6355
6356 buf[bc++] = c;
6357 csum += c;
6358 continue;
6359 }
6360 }
6361 }
6362
6363 /* Read a packet from the remote machine, with error checking, and
6364 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6365 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6366 rather than timing out; this is used (in synchronous mode) to wait
6367 for a target that is is executing user code to stop. */
6368 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
6369 don't have to change all the calls to getpkt to deal with the
6370 return value, because at the moment I don't know what the right
6371 thing to do it for those. */
6372 void
6373 getpkt (char **buf,
6374 long *sizeof_buf,
6375 int forever)
6376 {
6377 int timed_out;
6378
6379 timed_out = getpkt_sane (buf, sizeof_buf, forever);
6380 }
6381
6382
6383 /* Read a packet from the remote machine, with error checking, and
6384 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6385 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6386 rather than timing out; this is used (in synchronous mode) to wait
6387 for a target that is is executing user code to stop. If FOREVER ==
6388 0, this function is allowed to time out gracefully and return an
6389 indication of this to the caller. Otherwise return the number of
6390 bytes read. If EXPECTING_NOTIF, consider receiving a notification
6391 enough reason to return to the caller. */
6392
6393 static int
6394 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
6395 int expecting_notif)
6396 {
6397 struct remote_state *rs = get_remote_state ();
6398 int c;
6399 int tries;
6400 int timeout;
6401 int val = -1;
6402
6403 /* We're reading a new response. Make sure we don't look at a
6404 previously cached response. */
6405 rs->cached_wait_status = 0;
6406
6407 strcpy (*buf, "timeout");
6408
6409 if (forever)
6410 timeout = watchdog > 0 ? watchdog : -1;
6411 else if (expecting_notif)
6412 timeout = 0; /* There should already be a char in the buffer. If
6413 not, bail out. */
6414 else
6415 timeout = remote_timeout;
6416
6417 #define MAX_TRIES 3
6418
6419 /* Process any number of notifications, and then return when
6420 we get a packet. */
6421 for (;;)
6422 {
6423 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
6424 times. */
6425 for (tries = 1; tries <= MAX_TRIES; tries++)
6426 {
6427 /* This can loop forever if the remote side sends us
6428 characters continuously, but if it pauses, we'll get
6429 SERIAL_TIMEOUT from readchar because of timeout. Then
6430 we'll count that as a retry.
6431
6432 Note that even when forever is set, we will only wait
6433 forever prior to the start of a packet. After that, we
6434 expect characters to arrive at a brisk pace. They should
6435 show up within remote_timeout intervals. */
6436 do
6437 c = readchar (timeout);
6438 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
6439
6440 if (c == SERIAL_TIMEOUT)
6441 {
6442 if (expecting_notif)
6443 return -1; /* Don't complain, it's normal to not get
6444 anything in this case. */
6445
6446 if (forever) /* Watchdog went off? Kill the target. */
6447 {
6448 QUIT;
6449 pop_target ();
6450 error (_("Watchdog timeout has expired. Target detached."));
6451 }
6452 if (remote_debug)
6453 fputs_filtered ("Timed out.\n", gdb_stdlog);
6454 }
6455 else
6456 {
6457 /* We've found the start of a packet or notification.
6458 Now collect the data. */
6459 val = read_frame (buf, sizeof_buf);
6460 if (val >= 0)
6461 break;
6462 }
6463
6464 serial_write (remote_desc, "-", 1);
6465 }
6466
6467 if (tries > MAX_TRIES)
6468 {
6469 /* We have tried hard enough, and just can't receive the
6470 packet/notification. Give up. */
6471 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
6472
6473 /* Skip the ack char if we're in no-ack mode. */
6474 if (!rs->noack_mode)
6475 serial_write (remote_desc, "+", 1);
6476 return -1;
6477 }
6478
6479 /* If we got an ordinary packet, return that to our caller. */
6480 if (c == '$')
6481 {
6482 if (remote_debug)
6483 {
6484 struct cleanup *old_chain;
6485 char *str;
6486
6487 str = escape_buffer (*buf, val);
6488 old_chain = make_cleanup (xfree, str);
6489 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
6490 do_cleanups (old_chain);
6491 }
6492
6493 /* Skip the ack char if we're in no-ack mode. */
6494 if (!rs->noack_mode)
6495 serial_write (remote_desc, "+", 1);
6496 return val;
6497 }
6498
6499 /* If we got a notification, handle it, and go back to looking
6500 for a packet. */
6501 else
6502 {
6503 gdb_assert (c == '%');
6504
6505 if (remote_debug)
6506 {
6507 struct cleanup *old_chain;
6508 char *str;
6509
6510 str = escape_buffer (*buf, val);
6511 old_chain = make_cleanup (xfree, str);
6512 fprintf_unfiltered (gdb_stdlog,
6513 " Notification received: %s\n",
6514 str);
6515 do_cleanups (old_chain);
6516 }
6517
6518 handle_notification (*buf, val);
6519
6520 /* Notifications require no acknowledgement. */
6521
6522 if (expecting_notif)
6523 return -1;
6524 }
6525 }
6526 }
6527
6528 static int
6529 getpkt_sane (char **buf, long *sizeof_buf, int forever)
6530 {
6531 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
6532 }
6533
6534 static int
6535 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
6536 {
6537 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
6538 }
6539
6540 \f
6541 static void
6542 remote_kill (struct target_ops *ops)
6543 {
6544 /* Use catch_errors so the user can quit from gdb even when we
6545 aren't on speaking terms with the remote system. */
6546 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
6547
6548 /* Don't wait for it to die. I'm not really sure it matters whether
6549 we do or not. For the existing stubs, kill is a noop. */
6550 target_mourn_inferior ();
6551 }
6552
6553 static int
6554 remote_vkill (int pid, struct remote_state *rs)
6555 {
6556 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6557 return -1;
6558
6559 /* Tell the remote target to detach. */
6560 sprintf (rs->buf, "vKill;%x", pid);
6561 putpkt (rs->buf);
6562 getpkt (&rs->buf, &rs->buf_size, 0);
6563
6564 if (packet_ok (rs->buf,
6565 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
6566 return 0;
6567 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6568 return -1;
6569 else
6570 return 1;
6571 }
6572
6573 static void
6574 extended_remote_kill (struct target_ops *ops)
6575 {
6576 int res;
6577 int pid = ptid_get_pid (inferior_ptid);
6578 struct remote_state *rs = get_remote_state ();
6579
6580 res = remote_vkill (pid, rs);
6581 if (res == -1 && !remote_multi_process_p (rs))
6582 {
6583 /* Don't try 'k' on a multi-process aware stub -- it has no way
6584 to specify the pid. */
6585
6586 putpkt ("k");
6587 #if 0
6588 getpkt (&rs->buf, &rs->buf_size, 0);
6589 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
6590 res = 1;
6591 #else
6592 /* Don't wait for it to die. I'm not really sure it matters whether
6593 we do or not. For the existing stubs, kill is a noop. */
6594 res = 0;
6595 #endif
6596 }
6597
6598 if (res != 0)
6599 error (_("Can't kill process"));
6600
6601 target_mourn_inferior ();
6602 }
6603
6604 static void
6605 remote_mourn (struct target_ops *ops)
6606 {
6607 remote_mourn_1 (ops);
6608 }
6609
6610 /* Worker function for remote_mourn. */
6611 static void
6612 remote_mourn_1 (struct target_ops *target)
6613 {
6614 unpush_target (target);
6615
6616 /* remote_close takes care of doing most of the clean up. */
6617 generic_mourn_inferior ();
6618 }
6619
6620 static void
6621 extended_remote_mourn_1 (struct target_ops *target)
6622 {
6623 struct remote_state *rs = get_remote_state ();
6624
6625 /* In case we got here due to an error, but we're going to stay
6626 connected. */
6627 rs->waiting_for_stop_reply = 0;
6628
6629 /* We're no longer interested in these events. */
6630 discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
6631
6632 /* If the current general thread belonged to the process we just
6633 detached from or has exited, the remote side current general
6634 thread becomes undefined. Considering a case like this:
6635
6636 - We just got here due to a detach.
6637 - The process that we're detaching from happens to immediately
6638 report a global breakpoint being hit in non-stop mode, in the
6639 same thread we had selected before.
6640 - GDB attaches to this process again.
6641 - This event happens to be the next event we handle.
6642
6643 GDB would consider that the current general thread didn't need to
6644 be set on the stub side (with Hg), since for all it knew,
6645 GENERAL_THREAD hadn't changed.
6646
6647 Notice that although in all-stop mode, the remote server always
6648 sets the current thread to the thread reporting the stop event,
6649 that doesn't happen in non-stop mode; in non-stop, the stub *must
6650 not* change the current thread when reporting a breakpoint hit,
6651 due to the decoupling of event reporting and event handling.
6652
6653 To keep things simple, we always invalidate our notion of the
6654 current thread. */
6655 record_currthread (minus_one_ptid);
6656
6657 /* Unlike "target remote", we do not want to unpush the target; then
6658 the next time the user says "run", we won't be connected. */
6659
6660 /* Call common code to mark the inferior as not running. */
6661 generic_mourn_inferior ();
6662
6663 if (!have_inferiors ())
6664 {
6665 if (!remote_multi_process_p (rs))
6666 {
6667 /* Check whether the target is running now - some remote stubs
6668 automatically restart after kill. */
6669 putpkt ("?");
6670 getpkt (&rs->buf, &rs->buf_size, 0);
6671
6672 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
6673 {
6674 /* Assume that the target has been restarted. Set inferior_ptid
6675 so that bits of core GDB realizes there's something here, e.g.,
6676 so that the user can say "kill" again. */
6677 inferior_ptid = magic_null_ptid;
6678 }
6679 }
6680 }
6681 }
6682
6683 static void
6684 extended_remote_mourn (struct target_ops *ops)
6685 {
6686 extended_remote_mourn_1 (ops);
6687 }
6688
6689 static int
6690 extended_remote_run (char *args)
6691 {
6692 struct remote_state *rs = get_remote_state ();
6693 char *p;
6694 int len;
6695
6696 /* If the user has disabled vRun support, or we have detected that
6697 support is not available, do not try it. */
6698 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
6699 return -1;
6700
6701 strcpy (rs->buf, "vRun;");
6702 len = strlen (rs->buf);
6703
6704 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
6705 error (_("Remote file name too long for run packet"));
6706 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
6707
6708 gdb_assert (args != NULL);
6709 if (*args)
6710 {
6711 struct cleanup *back_to;
6712 int i;
6713 char **argv;
6714
6715 argv = gdb_buildargv (args);
6716 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
6717 for (i = 0; argv[i] != NULL; i++)
6718 {
6719 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
6720 error (_("Argument list too long for run packet"));
6721 rs->buf[len++] = ';';
6722 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
6723 }
6724 do_cleanups (back_to);
6725 }
6726
6727 rs->buf[len++] = '\0';
6728
6729 putpkt (rs->buf);
6730 getpkt (&rs->buf, &rs->buf_size, 0);
6731
6732 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
6733 {
6734 /* We have a wait response; we don't need it, though. All is well. */
6735 return 0;
6736 }
6737 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
6738 /* It wasn't disabled before, but it is now. */
6739 return -1;
6740 else
6741 {
6742 if (remote_exec_file[0] == '\0')
6743 error (_("Running the default executable on the remote target failed; "
6744 "try \"set remote exec-file\"?"));
6745 else
6746 error (_("Running \"%s\" on the remote target failed"),
6747 remote_exec_file);
6748 }
6749 }
6750
6751 /* In the extended protocol we want to be able to do things like
6752 "run" and have them basically work as expected. So we need
6753 a special create_inferior function. We support changing the
6754 executable file and the command line arguments, but not the
6755 environment. */
6756
6757 static void
6758 extended_remote_create_inferior_1 (char *exec_file, char *args,
6759 char **env, int from_tty)
6760 {
6761 /* If running asynchronously, register the target file descriptor
6762 with the event loop. */
6763 if (target_can_async_p ())
6764 target_async (inferior_event_handler, 0);
6765
6766 /* Now restart the remote server. */
6767 if (extended_remote_run (args) == -1)
6768 {
6769 /* vRun was not supported. Fail if we need it to do what the
6770 user requested. */
6771 if (remote_exec_file[0])
6772 error (_("Remote target does not support \"set remote exec-file\""));
6773 if (args[0])
6774 error (_("Remote target does not support \"set args\" or run <ARGS>"));
6775
6776 /* Fall back to "R". */
6777 extended_remote_restart ();
6778 }
6779
6780 /* Clean up from the last time we ran, before we mark the target
6781 running again. This will mark breakpoints uninserted, and
6782 get_offsets may insert breakpoints. */
6783 init_thread_list ();
6784 init_wait_for_inferior ();
6785
6786 /* Now mark the inferior as running before we do anything else. */
6787 inferior_ptid = magic_null_ptid;
6788
6789 /* Now, if we have thread information, update inferior_ptid. */
6790 inferior_ptid = remote_current_thread (inferior_ptid);
6791
6792 remote_add_inferior (ptid_get_pid (inferior_ptid), 0);
6793 add_thread_silent (inferior_ptid);
6794
6795 /* Get updated offsets, if the stub uses qOffsets. */
6796 get_offsets ();
6797 }
6798
6799 static void
6800 extended_remote_create_inferior (struct target_ops *ops,
6801 char *exec_file, char *args,
6802 char **env, int from_tty)
6803 {
6804 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
6805 }
6806 \f
6807
6808 /* Insert a breakpoint. On targets that have software breakpoint
6809 support, we ask the remote target to do the work; on targets
6810 which don't, we insert a traditional memory breakpoint. */
6811
6812 static int
6813 remote_insert_breakpoint (struct gdbarch *gdbarch,
6814 struct bp_target_info *bp_tgt)
6815 {
6816 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
6817 If it succeeds, then set the support to PACKET_ENABLE. If it
6818 fails, and the user has explicitly requested the Z support then
6819 report an error, otherwise, mark it disabled and go on. */
6820
6821 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
6822 {
6823 CORE_ADDR addr = bp_tgt->placed_address;
6824 struct remote_state *rs;
6825 char *p;
6826 int bpsize;
6827
6828 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bpsize);
6829
6830 rs = get_remote_state ();
6831 p = rs->buf;
6832
6833 *(p++) = 'Z';
6834 *(p++) = '0';
6835 *(p++) = ',';
6836 addr = (ULONGEST) remote_address_masked (addr);
6837 p += hexnumstr (p, addr);
6838 sprintf (p, ",%d", bpsize);
6839
6840 putpkt (rs->buf);
6841 getpkt (&rs->buf, &rs->buf_size, 0);
6842
6843 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
6844 {
6845 case PACKET_ERROR:
6846 return -1;
6847 case PACKET_OK:
6848 bp_tgt->placed_address = addr;
6849 bp_tgt->placed_size = bpsize;
6850 return 0;
6851 case PACKET_UNKNOWN:
6852 break;
6853 }
6854 }
6855
6856 return memory_insert_breakpoint (gdbarch, bp_tgt);
6857 }
6858
6859 static int
6860 remote_remove_breakpoint (struct gdbarch *gdbarch,
6861 struct bp_target_info *bp_tgt)
6862 {
6863 CORE_ADDR addr = bp_tgt->placed_address;
6864 struct remote_state *rs = get_remote_state ();
6865 int bp_size;
6866
6867 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
6868 {
6869 char *p = rs->buf;
6870
6871 *(p++) = 'z';
6872 *(p++) = '0';
6873 *(p++) = ',';
6874
6875 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
6876 p += hexnumstr (p, addr);
6877 sprintf (p, ",%d", bp_tgt->placed_size);
6878
6879 putpkt (rs->buf);
6880 getpkt (&rs->buf, &rs->buf_size, 0);
6881
6882 return (rs->buf[0] == 'E');
6883 }
6884
6885 return memory_remove_breakpoint (gdbarch, bp_tgt);
6886 }
6887
6888 static int
6889 watchpoint_to_Z_packet (int type)
6890 {
6891 switch (type)
6892 {
6893 case hw_write:
6894 return Z_PACKET_WRITE_WP;
6895 break;
6896 case hw_read:
6897 return Z_PACKET_READ_WP;
6898 break;
6899 case hw_access:
6900 return Z_PACKET_ACCESS_WP;
6901 break;
6902 default:
6903 internal_error (__FILE__, __LINE__,
6904 _("hw_bp_to_z: bad watchpoint type %d"), type);
6905 }
6906 }
6907
6908 static int
6909 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
6910 {
6911 struct remote_state *rs = get_remote_state ();
6912 char *p;
6913 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
6914
6915 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
6916 return -1;
6917
6918 sprintf (rs->buf, "Z%x,", packet);
6919 p = strchr (rs->buf, '\0');
6920 addr = remote_address_masked (addr);
6921 p += hexnumstr (p, (ULONGEST) addr);
6922 sprintf (p, ",%x", len);
6923
6924 putpkt (rs->buf);
6925 getpkt (&rs->buf, &rs->buf_size, 0);
6926
6927 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
6928 {
6929 case PACKET_ERROR:
6930 case PACKET_UNKNOWN:
6931 return -1;
6932 case PACKET_OK:
6933 return 0;
6934 }
6935 internal_error (__FILE__, __LINE__,
6936 _("remote_insert_watchpoint: reached end of function"));
6937 }
6938
6939
6940 static int
6941 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
6942 {
6943 struct remote_state *rs = get_remote_state ();
6944 char *p;
6945 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
6946
6947 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
6948 return -1;
6949
6950 sprintf (rs->buf, "z%x,", packet);
6951 p = strchr (rs->buf, '\0');
6952 addr = remote_address_masked (addr);
6953 p += hexnumstr (p, (ULONGEST) addr);
6954 sprintf (p, ",%x", len);
6955 putpkt (rs->buf);
6956 getpkt (&rs->buf, &rs->buf_size, 0);
6957
6958 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
6959 {
6960 case PACKET_ERROR:
6961 case PACKET_UNKNOWN:
6962 return -1;
6963 case PACKET_OK:
6964 return 0;
6965 }
6966 internal_error (__FILE__, __LINE__,
6967 _("remote_remove_watchpoint: reached end of function"));
6968 }
6969
6970
6971 int remote_hw_watchpoint_limit = -1;
6972 int remote_hw_breakpoint_limit = -1;
6973
6974 static int
6975 remote_check_watch_resources (int type, int cnt, int ot)
6976 {
6977 if (type == bp_hardware_breakpoint)
6978 {
6979 if (remote_hw_breakpoint_limit == 0)
6980 return 0;
6981 else if (remote_hw_breakpoint_limit < 0)
6982 return 1;
6983 else if (cnt <= remote_hw_breakpoint_limit)
6984 return 1;
6985 }
6986 else
6987 {
6988 if (remote_hw_watchpoint_limit == 0)
6989 return 0;
6990 else if (remote_hw_watchpoint_limit < 0)
6991 return 1;
6992 else if (ot)
6993 return -1;
6994 else if (cnt <= remote_hw_watchpoint_limit)
6995 return 1;
6996 }
6997 return -1;
6998 }
6999
7000 static int
7001 remote_stopped_by_watchpoint (void)
7002 {
7003 return remote_stopped_by_watchpoint_p;
7004 }
7005
7006 static int
7007 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
7008 {
7009 int rc = 0;
7010 if (remote_stopped_by_watchpoint ())
7011 {
7012 *addr_p = remote_watch_data_address;
7013 rc = 1;
7014 }
7015
7016 return rc;
7017 }
7018
7019
7020 static int
7021 remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
7022 struct bp_target_info *bp_tgt)
7023 {
7024 CORE_ADDR addr;
7025 struct remote_state *rs;
7026 char *p;
7027
7028 /* The length field should be set to the size of a breakpoint
7029 instruction, even though we aren't inserting one ourselves. */
7030
7031 gdbarch_breakpoint_from_pc
7032 (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
7033
7034 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7035 return -1;
7036
7037 rs = get_remote_state ();
7038 p = rs->buf;
7039
7040 *(p++) = 'Z';
7041 *(p++) = '1';
7042 *(p++) = ',';
7043
7044 addr = remote_address_masked (bp_tgt->placed_address);
7045 p += hexnumstr (p, (ULONGEST) addr);
7046 sprintf (p, ",%x", bp_tgt->placed_size);
7047
7048 putpkt (rs->buf);
7049 getpkt (&rs->buf, &rs->buf_size, 0);
7050
7051 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7052 {
7053 case PACKET_ERROR:
7054 case PACKET_UNKNOWN:
7055 return -1;
7056 case PACKET_OK:
7057 return 0;
7058 }
7059 internal_error (__FILE__, __LINE__,
7060 _("remote_insert_hw_breakpoint: reached end of function"));
7061 }
7062
7063
7064 static int
7065 remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
7066 struct bp_target_info *bp_tgt)
7067 {
7068 CORE_ADDR addr;
7069 struct remote_state *rs = get_remote_state ();
7070 char *p = rs->buf;
7071
7072 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7073 return -1;
7074
7075 *(p++) = 'z';
7076 *(p++) = '1';
7077 *(p++) = ',';
7078
7079 addr = remote_address_masked (bp_tgt->placed_address);
7080 p += hexnumstr (p, (ULONGEST) addr);
7081 sprintf (p, ",%x", bp_tgt->placed_size);
7082
7083 putpkt (rs->buf);
7084 getpkt (&rs->buf, &rs->buf_size, 0);
7085
7086 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7087 {
7088 case PACKET_ERROR:
7089 case PACKET_UNKNOWN:
7090 return -1;
7091 case PACKET_OK:
7092 return 0;
7093 }
7094 internal_error (__FILE__, __LINE__,
7095 _("remote_remove_hw_breakpoint: reached end of function"));
7096 }
7097
7098 /* Table used by the crc32 function to calcuate the checksum. */
7099
7100 static unsigned long crc32_table[256] =
7101 {0, 0};
7102
7103 static unsigned long
7104 crc32 (unsigned char *buf, int len, unsigned int crc)
7105 {
7106 if (!crc32_table[1])
7107 {
7108 /* Initialize the CRC table and the decoding table. */
7109 int i, j;
7110 unsigned int c;
7111
7112 for (i = 0; i < 256; i++)
7113 {
7114 for (c = i << 24, j = 8; j > 0; --j)
7115 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
7116 crc32_table[i] = c;
7117 }
7118 }
7119
7120 while (len--)
7121 {
7122 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
7123 buf++;
7124 }
7125 return crc;
7126 }
7127
7128 /* compare-sections command
7129
7130 With no arguments, compares each loadable section in the exec bfd
7131 with the same memory range on the target, and reports mismatches.
7132 Useful for verifying the image on the target against the exec file.
7133 Depends on the target understanding the new "qCRC:" request. */
7134
7135 /* FIXME: cagney/1999-10-26: This command should be broken down into a
7136 target method (target verify memory) and generic version of the
7137 actual command. This will allow other high-level code (especially
7138 generic_load()) to make use of this target functionality. */
7139
7140 static void
7141 compare_sections_command (char *args, int from_tty)
7142 {
7143 struct remote_state *rs = get_remote_state ();
7144 asection *s;
7145 unsigned long host_crc, target_crc;
7146 struct cleanup *old_chain;
7147 char *tmp;
7148 char *sectdata;
7149 const char *sectname;
7150 bfd_size_type size;
7151 bfd_vma lma;
7152 int matched = 0;
7153 int mismatched = 0;
7154
7155 if (!exec_bfd)
7156 error (_("command cannot be used without an exec file"));
7157 if (!current_target.to_shortname ||
7158 strcmp (current_target.to_shortname, "remote") != 0)
7159 error (_("command can only be used with remote target"));
7160
7161 for (s = exec_bfd->sections; s; s = s->next)
7162 {
7163 if (!(s->flags & SEC_LOAD))
7164 continue; /* skip non-loadable section */
7165
7166 size = bfd_get_section_size (s);
7167 if (size == 0)
7168 continue; /* skip zero-length section */
7169
7170 sectname = bfd_get_section_name (exec_bfd, s);
7171 if (args && strcmp (args, sectname) != 0)
7172 continue; /* not the section selected by user */
7173
7174 matched = 1; /* do this section */
7175 lma = s->lma;
7176 /* FIXME: assumes lma can fit into long. */
7177 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
7178 (long) lma, (long) size);
7179 putpkt (rs->buf);
7180
7181 /* Be clever; compute the host_crc before waiting for target
7182 reply. */
7183 sectdata = xmalloc (size);
7184 old_chain = make_cleanup (xfree, sectdata);
7185 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
7186 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
7187
7188 getpkt (&rs->buf, &rs->buf_size, 0);
7189 if (rs->buf[0] == 'E')
7190 error (_("target memory fault, section %s, range %s -- %s"), sectname,
7191 paddress (target_gdbarch, lma),
7192 paddress (target_gdbarch, lma + size));
7193 if (rs->buf[0] != 'C')
7194 error (_("remote target does not support this operation"));
7195
7196 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
7197 target_crc = target_crc * 16 + fromhex (*tmp);
7198
7199 printf_filtered ("Section %s, range %s -- %s: ", sectname,
7200 paddress (target_gdbarch, lma),
7201 paddress (target_gdbarch, lma + size));
7202 if (host_crc == target_crc)
7203 printf_filtered ("matched.\n");
7204 else
7205 {
7206 printf_filtered ("MIS-MATCHED!\n");
7207 mismatched++;
7208 }
7209
7210 do_cleanups (old_chain);
7211 }
7212 if (mismatched > 0)
7213 warning (_("One or more sections of the remote executable does not match\n\
7214 the loaded file\n"));
7215 if (args && !matched)
7216 printf_filtered (_("No loaded section named '%s'.\n"), args);
7217 }
7218
7219 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
7220 into remote target. The number of bytes written to the remote
7221 target is returned, or -1 for error. */
7222
7223 static LONGEST
7224 remote_write_qxfer (struct target_ops *ops, const char *object_name,
7225 const char *annex, const gdb_byte *writebuf,
7226 ULONGEST offset, LONGEST len,
7227 struct packet_config *packet)
7228 {
7229 int i, buf_len;
7230 ULONGEST n;
7231 gdb_byte *wbuf;
7232 struct remote_state *rs = get_remote_state ();
7233 int max_size = get_memory_write_packet_size ();
7234
7235 if (packet->support == PACKET_DISABLE)
7236 return -1;
7237
7238 /* Insert header. */
7239 i = snprintf (rs->buf, max_size,
7240 "qXfer:%s:write:%s:%s:",
7241 object_name, annex ? annex : "",
7242 phex_nz (offset, sizeof offset));
7243 max_size -= (i + 1);
7244
7245 /* Escape as much data as fits into rs->buf. */
7246 buf_len = remote_escape_output
7247 (writebuf, len, (rs->buf + i), &max_size, max_size);
7248
7249 if (putpkt_binary (rs->buf, i + buf_len) < 0
7250 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
7251 || packet_ok (rs->buf, packet) != PACKET_OK)
7252 return -1;
7253
7254 unpack_varlen_hex (rs->buf, &n);
7255 return n;
7256 }
7257
7258 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
7259 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
7260 number of bytes read is returned, or 0 for EOF, or -1 for error.
7261 The number of bytes read may be less than LEN without indicating an
7262 EOF. PACKET is checked and updated to indicate whether the remote
7263 target supports this object. */
7264
7265 static LONGEST
7266 remote_read_qxfer (struct target_ops *ops, const char *object_name,
7267 const char *annex,
7268 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
7269 struct packet_config *packet)
7270 {
7271 static char *finished_object;
7272 static char *finished_annex;
7273 static ULONGEST finished_offset;
7274
7275 struct remote_state *rs = get_remote_state ();
7276 unsigned int total = 0;
7277 LONGEST i, n, packet_len;
7278
7279 if (packet->support == PACKET_DISABLE)
7280 return -1;
7281
7282 /* Check whether we've cached an end-of-object packet that matches
7283 this request. */
7284 if (finished_object)
7285 {
7286 if (strcmp (object_name, finished_object) == 0
7287 && strcmp (annex ? annex : "", finished_annex) == 0
7288 && offset == finished_offset)
7289 return 0;
7290
7291 /* Otherwise, we're now reading something different. Discard
7292 the cache. */
7293 xfree (finished_object);
7294 xfree (finished_annex);
7295 finished_object = NULL;
7296 finished_annex = NULL;
7297 }
7298
7299 /* Request only enough to fit in a single packet. The actual data
7300 may not, since we don't know how much of it will need to be escaped;
7301 the target is free to respond with slightly less data. We subtract
7302 five to account for the response type and the protocol frame. */
7303 n = min (get_remote_packet_size () - 5, len);
7304 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
7305 object_name, annex ? annex : "",
7306 phex_nz (offset, sizeof offset),
7307 phex_nz (n, sizeof n));
7308 i = putpkt (rs->buf);
7309 if (i < 0)
7310 return -1;
7311
7312 rs->buf[0] = '\0';
7313 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
7314 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
7315 return -1;
7316
7317 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
7318 error (_("Unknown remote qXfer reply: %s"), rs->buf);
7319
7320 /* 'm' means there is (or at least might be) more data after this
7321 batch. That does not make sense unless there's at least one byte
7322 of data in this reply. */
7323 if (rs->buf[0] == 'm' && packet_len == 1)
7324 error (_("Remote qXfer reply contained no data."));
7325
7326 /* Got some data. */
7327 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
7328
7329 /* 'l' is an EOF marker, possibly including a final block of data,
7330 or possibly empty. If we have the final block of a non-empty
7331 object, record this fact to bypass a subsequent partial read. */
7332 if (rs->buf[0] == 'l' && offset + i > 0)
7333 {
7334 finished_object = xstrdup (object_name);
7335 finished_annex = xstrdup (annex ? annex : "");
7336 finished_offset = offset + i;
7337 }
7338
7339 return i;
7340 }
7341
7342 static LONGEST
7343 remote_xfer_partial (struct target_ops *ops, enum target_object object,
7344 const char *annex, gdb_byte *readbuf,
7345 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
7346 {
7347 struct remote_state *rs;
7348 int i;
7349 char *p2;
7350 char query_type;
7351
7352 set_general_thread (inferior_ptid);
7353
7354 rs = get_remote_state ();
7355
7356 /* Handle memory using the standard memory routines. */
7357 if (object == TARGET_OBJECT_MEMORY)
7358 {
7359 int xfered;
7360 errno = 0;
7361
7362 /* If the remote target is connected but not running, we should
7363 pass this request down to a lower stratum (e.g. the executable
7364 file). */
7365 if (!target_has_execution)
7366 return 0;
7367
7368 if (writebuf != NULL)
7369 xfered = remote_write_bytes (offset, writebuf, len);
7370 else
7371 xfered = remote_read_bytes (offset, readbuf, len);
7372
7373 if (xfered > 0)
7374 return xfered;
7375 else if (xfered == 0 && errno == 0)
7376 return 0;
7377 else
7378 return -1;
7379 }
7380
7381 /* Handle SPU memory using qxfer packets. */
7382 if (object == TARGET_OBJECT_SPU)
7383 {
7384 if (readbuf)
7385 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
7386 &remote_protocol_packets
7387 [PACKET_qXfer_spu_read]);
7388 else
7389 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
7390 &remote_protocol_packets
7391 [PACKET_qXfer_spu_write]);
7392 }
7393
7394 /* Handle extra signal info using qxfer packets. */
7395 if (object == TARGET_OBJECT_SIGNAL_INFO)
7396 {
7397 if (readbuf)
7398 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
7399 &remote_protocol_packets
7400 [PACKET_qXfer_siginfo_read]);
7401 else
7402 return remote_write_qxfer (ops, "siginfo", annex, writebuf, offset, len,
7403 &remote_protocol_packets
7404 [PACKET_qXfer_siginfo_write]);
7405 }
7406
7407 /* Only handle flash writes. */
7408 if (writebuf != NULL)
7409 {
7410 LONGEST xfered;
7411
7412 switch (object)
7413 {
7414 case TARGET_OBJECT_FLASH:
7415 xfered = remote_flash_write (ops, offset, len, writebuf);
7416
7417 if (xfered > 0)
7418 return xfered;
7419 else if (xfered == 0 && errno == 0)
7420 return 0;
7421 else
7422 return -1;
7423
7424 default:
7425 return -1;
7426 }
7427 }
7428
7429 /* Map pre-existing objects onto letters. DO NOT do this for new
7430 objects!!! Instead specify new query packets. */
7431 switch (object)
7432 {
7433 case TARGET_OBJECT_AVR:
7434 query_type = 'R';
7435 break;
7436
7437 case TARGET_OBJECT_AUXV:
7438 gdb_assert (annex == NULL);
7439 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
7440 &remote_protocol_packets[PACKET_qXfer_auxv]);
7441
7442 case TARGET_OBJECT_AVAILABLE_FEATURES:
7443 return remote_read_qxfer
7444 (ops, "features", annex, readbuf, offset, len,
7445 &remote_protocol_packets[PACKET_qXfer_features]);
7446
7447 case TARGET_OBJECT_LIBRARIES:
7448 return remote_read_qxfer
7449 (ops, "libraries", annex, readbuf, offset, len,
7450 &remote_protocol_packets[PACKET_qXfer_libraries]);
7451
7452 case TARGET_OBJECT_MEMORY_MAP:
7453 gdb_assert (annex == NULL);
7454 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
7455 &remote_protocol_packets[PACKET_qXfer_memory_map]);
7456
7457 case TARGET_OBJECT_OSDATA:
7458 /* Should only get here if we're connected. */
7459 gdb_assert (remote_desc);
7460 return remote_read_qxfer
7461 (ops, "osdata", annex, readbuf, offset, len,
7462 &remote_protocol_packets[PACKET_qXfer_osdata]);
7463
7464 default:
7465 return -1;
7466 }
7467
7468 /* Note: a zero OFFSET and LEN can be used to query the minimum
7469 buffer size. */
7470 if (offset == 0 && len == 0)
7471 return (get_remote_packet_size ());
7472 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
7473 large enough let the caller deal with it. */
7474 if (len < get_remote_packet_size ())
7475 return -1;
7476 len = get_remote_packet_size ();
7477
7478 /* Except for querying the minimum buffer size, target must be open. */
7479 if (!remote_desc)
7480 error (_("remote query is only available after target open"));
7481
7482 gdb_assert (annex != NULL);
7483 gdb_assert (readbuf != NULL);
7484
7485 p2 = rs->buf;
7486 *p2++ = 'q';
7487 *p2++ = query_type;
7488
7489 /* We used one buffer char for the remote protocol q command and
7490 another for the query type. As the remote protocol encapsulation
7491 uses 4 chars plus one extra in case we are debugging
7492 (remote_debug), we have PBUFZIZ - 7 left to pack the query
7493 string. */
7494 i = 0;
7495 while (annex[i] && (i < (get_remote_packet_size () - 8)))
7496 {
7497 /* Bad caller may have sent forbidden characters. */
7498 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
7499 *p2++ = annex[i];
7500 i++;
7501 }
7502 *p2 = '\0';
7503 gdb_assert (annex[i] == '\0');
7504
7505 i = putpkt (rs->buf);
7506 if (i < 0)
7507 return i;
7508
7509 getpkt (&rs->buf, &rs->buf_size, 0);
7510 strcpy ((char *) readbuf, rs->buf);
7511
7512 return strlen ((char *) readbuf);
7513 }
7514
7515 static int
7516 remote_search_memory (struct target_ops* ops,
7517 CORE_ADDR start_addr, ULONGEST search_space_len,
7518 const gdb_byte *pattern, ULONGEST pattern_len,
7519 CORE_ADDR *found_addrp)
7520 {
7521 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
7522 struct remote_state *rs = get_remote_state ();
7523 int max_size = get_memory_write_packet_size ();
7524 struct packet_config *packet =
7525 &remote_protocol_packets[PACKET_qSearch_memory];
7526 /* number of packet bytes used to encode the pattern,
7527 this could be more than PATTERN_LEN due to escape characters */
7528 int escaped_pattern_len;
7529 /* amount of pattern that was encodable in the packet */
7530 int used_pattern_len;
7531 int i;
7532 int found;
7533 ULONGEST found_addr;
7534
7535 /* Don't go to the target if we don't have to.
7536 This is done before checking packet->support to avoid the possibility that
7537 a success for this edge case means the facility works in general. */
7538 if (pattern_len > search_space_len)
7539 return 0;
7540 if (pattern_len == 0)
7541 {
7542 *found_addrp = start_addr;
7543 return 1;
7544 }
7545
7546 /* If we already know the packet isn't supported, fall back to the simple
7547 way of searching memory. */
7548
7549 if (packet->support == PACKET_DISABLE)
7550 {
7551 /* Target doesn't provided special support, fall back and use the
7552 standard support (copy memory and do the search here). */
7553 return simple_search_memory (ops, start_addr, search_space_len,
7554 pattern, pattern_len, found_addrp);
7555 }
7556
7557 /* Insert header. */
7558 i = snprintf (rs->buf, max_size,
7559 "qSearch:memory:%s;%s;",
7560 phex_nz (start_addr, addr_size),
7561 phex_nz (search_space_len, sizeof (search_space_len)));
7562 max_size -= (i + 1);
7563
7564 /* Escape as much data as fits into rs->buf. */
7565 escaped_pattern_len =
7566 remote_escape_output (pattern, pattern_len, (rs->buf + i),
7567 &used_pattern_len, max_size);
7568
7569 /* Bail if the pattern is too large. */
7570 if (used_pattern_len != pattern_len)
7571 error ("Pattern is too large to transmit to remote target.");
7572
7573 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
7574 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
7575 || packet_ok (rs->buf, packet) != PACKET_OK)
7576 {
7577 /* The request may not have worked because the command is not
7578 supported. If so, fall back to the simple way. */
7579 if (packet->support == PACKET_DISABLE)
7580 {
7581 return simple_search_memory (ops, start_addr, search_space_len,
7582 pattern, pattern_len, found_addrp);
7583 }
7584 return -1;
7585 }
7586
7587 if (rs->buf[0] == '0')
7588 found = 0;
7589 else if (rs->buf[0] == '1')
7590 {
7591 found = 1;
7592 if (rs->buf[1] != ',')
7593 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
7594 unpack_varlen_hex (rs->buf + 2, &found_addr);
7595 *found_addrp = found_addr;
7596 }
7597 else
7598 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
7599
7600 return found;
7601 }
7602
7603 static void
7604 remote_rcmd (char *command,
7605 struct ui_file *outbuf)
7606 {
7607 struct remote_state *rs = get_remote_state ();
7608 char *p = rs->buf;
7609
7610 if (!remote_desc)
7611 error (_("remote rcmd is only available after target open"));
7612
7613 /* Send a NULL command across as an empty command. */
7614 if (command == NULL)
7615 command = "";
7616
7617 /* The query prefix. */
7618 strcpy (rs->buf, "qRcmd,");
7619 p = strchr (rs->buf, '\0');
7620
7621 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
7622 error (_("\"monitor\" command ``%s'' is too long."), command);
7623
7624 /* Encode the actual command. */
7625 bin2hex ((gdb_byte *) command, p, 0);
7626
7627 if (putpkt (rs->buf) < 0)
7628 error (_("Communication problem with target."));
7629
7630 /* get/display the response */
7631 while (1)
7632 {
7633 char *buf;
7634
7635 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
7636 rs->buf[0] = '\0';
7637 getpkt (&rs->buf, &rs->buf_size, 0);
7638 buf = rs->buf;
7639 if (buf[0] == '\0')
7640 error (_("Target does not support this command."));
7641 if (buf[0] == 'O' && buf[1] != 'K')
7642 {
7643 remote_console_output (buf + 1); /* 'O' message from stub. */
7644 continue;
7645 }
7646 if (strcmp (buf, "OK") == 0)
7647 break;
7648 if (strlen (buf) == 3 && buf[0] == 'E'
7649 && isdigit (buf[1]) && isdigit (buf[2]))
7650 {
7651 error (_("Protocol error with Rcmd"));
7652 }
7653 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
7654 {
7655 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
7656 fputc_unfiltered (c, outbuf);
7657 }
7658 break;
7659 }
7660 }
7661
7662 static VEC(mem_region_s) *
7663 remote_memory_map (struct target_ops *ops)
7664 {
7665 VEC(mem_region_s) *result = NULL;
7666 char *text = target_read_stralloc (&current_target,
7667 TARGET_OBJECT_MEMORY_MAP, NULL);
7668
7669 if (text)
7670 {
7671 struct cleanup *back_to = make_cleanup (xfree, text);
7672 result = parse_memory_map (text);
7673 do_cleanups (back_to);
7674 }
7675
7676 return result;
7677 }
7678
7679 static void
7680 packet_command (char *args, int from_tty)
7681 {
7682 struct remote_state *rs = get_remote_state ();
7683
7684 if (!remote_desc)
7685 error (_("command can only be used with remote target"));
7686
7687 if (!args)
7688 error (_("remote-packet command requires packet text as argument"));
7689
7690 puts_filtered ("sending: ");
7691 print_packet (args);
7692 puts_filtered ("\n");
7693 putpkt (args);
7694
7695 getpkt (&rs->buf, &rs->buf_size, 0);
7696 puts_filtered ("received: ");
7697 print_packet (rs->buf);
7698 puts_filtered ("\n");
7699 }
7700
7701 #if 0
7702 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
7703
7704 static void display_thread_info (struct gdb_ext_thread_info *info);
7705
7706 static void threadset_test_cmd (char *cmd, int tty);
7707
7708 static void threadalive_test (char *cmd, int tty);
7709
7710 static void threadlist_test_cmd (char *cmd, int tty);
7711
7712 int get_and_display_threadinfo (threadref *ref);
7713
7714 static void threadinfo_test_cmd (char *cmd, int tty);
7715
7716 static int thread_display_step (threadref *ref, void *context);
7717
7718 static void threadlist_update_test_cmd (char *cmd, int tty);
7719
7720 static void init_remote_threadtests (void);
7721
7722 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
7723
7724 static void
7725 threadset_test_cmd (char *cmd, int tty)
7726 {
7727 int sample_thread = SAMPLE_THREAD;
7728
7729 printf_filtered (_("Remote threadset test\n"));
7730 set_general_thread (sample_thread);
7731 }
7732
7733
7734 static void
7735 threadalive_test (char *cmd, int tty)
7736 {
7737 int sample_thread = SAMPLE_THREAD;
7738 int pid = ptid_get_pid (inferior_ptid);
7739 ptid_t ptid = ptid_build (pid, 0, sample_thread);
7740
7741 if (remote_thread_alive (ptid))
7742 printf_filtered ("PASS: Thread alive test\n");
7743 else
7744 printf_filtered ("FAIL: Thread alive test\n");
7745 }
7746
7747 void output_threadid (char *title, threadref *ref);
7748
7749 void
7750 output_threadid (char *title, threadref *ref)
7751 {
7752 char hexid[20];
7753
7754 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
7755 hexid[16] = 0;
7756 printf_filtered ("%s %s\n", title, (&hexid[0]));
7757 }
7758
7759 static void
7760 threadlist_test_cmd (char *cmd, int tty)
7761 {
7762 int startflag = 1;
7763 threadref nextthread;
7764 int done, result_count;
7765 threadref threadlist[3];
7766
7767 printf_filtered ("Remote Threadlist test\n");
7768 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
7769 &result_count, &threadlist[0]))
7770 printf_filtered ("FAIL: threadlist test\n");
7771 else
7772 {
7773 threadref *scan = threadlist;
7774 threadref *limit = scan + result_count;
7775
7776 while (scan < limit)
7777 output_threadid (" thread ", scan++);
7778 }
7779 }
7780
7781 void
7782 display_thread_info (struct gdb_ext_thread_info *info)
7783 {
7784 output_threadid ("Threadid: ", &info->threadid);
7785 printf_filtered ("Name: %s\n ", info->shortname);
7786 printf_filtered ("State: %s\n", info->display);
7787 printf_filtered ("other: %s\n\n", info->more_display);
7788 }
7789
7790 int
7791 get_and_display_threadinfo (threadref *ref)
7792 {
7793 int result;
7794 int set;
7795 struct gdb_ext_thread_info threadinfo;
7796
7797 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
7798 | TAG_MOREDISPLAY | TAG_DISPLAY;
7799 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
7800 display_thread_info (&threadinfo);
7801 return result;
7802 }
7803
7804 static void
7805 threadinfo_test_cmd (char *cmd, int tty)
7806 {
7807 int athread = SAMPLE_THREAD;
7808 threadref thread;
7809 int set;
7810
7811 int_to_threadref (&thread, athread);
7812 printf_filtered ("Remote Threadinfo test\n");
7813 if (!get_and_display_threadinfo (&thread))
7814 printf_filtered ("FAIL cannot get thread info\n");
7815 }
7816
7817 static int
7818 thread_display_step (threadref *ref, void *context)
7819 {
7820 /* output_threadid(" threadstep ",ref); *//* simple test */
7821 return get_and_display_threadinfo (ref);
7822 }
7823
7824 static void
7825 threadlist_update_test_cmd (char *cmd, int tty)
7826 {
7827 printf_filtered ("Remote Threadlist update test\n");
7828 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
7829 }
7830
7831 static void
7832 init_remote_threadtests (void)
7833 {
7834 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
7835 Fetch and print the remote list of thread identifiers, one pkt only"));
7836 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
7837 _("Fetch and display info about one thread"));
7838 add_com ("tset", class_obscure, threadset_test_cmd,
7839 _("Test setting to a different thread"));
7840 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
7841 _("Iterate through updating all remote thread info"));
7842 add_com ("talive", class_obscure, threadalive_test,
7843 _(" Remote thread alive test "));
7844 }
7845
7846 #endif /* 0 */
7847
7848 /* Convert a thread ID to a string. Returns the string in a static
7849 buffer. */
7850
7851 static char *
7852 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
7853 {
7854 static char buf[64];
7855 struct remote_state *rs = get_remote_state ();
7856
7857 if (ptid_equal (magic_null_ptid, ptid))
7858 {
7859 xsnprintf (buf, sizeof buf, "Thread <main>");
7860 return buf;
7861 }
7862 else if (remote_multi_process_p (rs)
7863 && ptid_get_tid (ptid) != 0 && ptid_get_pid (ptid) != 0)
7864 {
7865 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
7866 ptid_get_pid (ptid), ptid_get_tid (ptid));
7867 return buf;
7868 }
7869 else if (ptid_get_tid (ptid) != 0)
7870 {
7871 xsnprintf (buf, sizeof buf, "Thread %ld",
7872 ptid_get_tid (ptid));
7873 return buf;
7874 }
7875
7876 return normal_pid_to_str (ptid);
7877 }
7878
7879 /* Get the address of the thread local variable in OBJFILE which is
7880 stored at OFFSET within the thread local storage for thread PTID. */
7881
7882 static CORE_ADDR
7883 remote_get_thread_local_address (struct target_ops *ops,
7884 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
7885 {
7886 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
7887 {
7888 struct remote_state *rs = get_remote_state ();
7889 char *p = rs->buf;
7890 char *endp = rs->buf + get_remote_packet_size ();
7891 enum packet_result result;
7892
7893 strcpy (p, "qGetTLSAddr:");
7894 p += strlen (p);
7895 p = write_ptid (p, endp, ptid);
7896 *p++ = ',';
7897 p += hexnumstr (p, offset);
7898 *p++ = ',';
7899 p += hexnumstr (p, lm);
7900 *p++ = '\0';
7901
7902 putpkt (rs->buf);
7903 getpkt (&rs->buf, &rs->buf_size, 0);
7904 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
7905 if (result == PACKET_OK)
7906 {
7907 ULONGEST result;
7908
7909 unpack_varlen_hex (rs->buf, &result);
7910 return result;
7911 }
7912 else if (result == PACKET_UNKNOWN)
7913 throw_error (TLS_GENERIC_ERROR,
7914 _("Remote target doesn't support qGetTLSAddr packet"));
7915 else
7916 throw_error (TLS_GENERIC_ERROR,
7917 _("Remote target failed to process qGetTLSAddr request"));
7918 }
7919 else
7920 throw_error (TLS_GENERIC_ERROR,
7921 _("TLS not supported or disabled on this target"));
7922 /* Not reached. */
7923 return 0;
7924 }
7925
7926 /* Support for inferring a target description based on the current
7927 architecture and the size of a 'g' packet. While the 'g' packet
7928 can have any size (since optional registers can be left off the
7929 end), some sizes are easily recognizable given knowledge of the
7930 approximate architecture. */
7931
7932 struct remote_g_packet_guess
7933 {
7934 int bytes;
7935 const struct target_desc *tdesc;
7936 };
7937 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
7938 DEF_VEC_O(remote_g_packet_guess_s);
7939
7940 struct remote_g_packet_data
7941 {
7942 VEC(remote_g_packet_guess_s) *guesses;
7943 };
7944
7945 static struct gdbarch_data *remote_g_packet_data_handle;
7946
7947 static void *
7948 remote_g_packet_data_init (struct obstack *obstack)
7949 {
7950 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
7951 }
7952
7953 void
7954 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
7955 const struct target_desc *tdesc)
7956 {
7957 struct remote_g_packet_data *data
7958 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
7959 struct remote_g_packet_guess new_guess, *guess;
7960 int ix;
7961
7962 gdb_assert (tdesc != NULL);
7963
7964 for (ix = 0;
7965 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
7966 ix++)
7967 if (guess->bytes == bytes)
7968 internal_error (__FILE__, __LINE__,
7969 "Duplicate g packet description added for size %d",
7970 bytes);
7971
7972 new_guess.bytes = bytes;
7973 new_guess.tdesc = tdesc;
7974 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
7975 }
7976
7977 /* Return 1 if remote_read_description would do anything on this target
7978 and architecture, 0 otherwise. */
7979
7980 static int
7981 remote_read_description_p (struct target_ops *target)
7982 {
7983 struct remote_g_packet_data *data
7984 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
7985
7986 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
7987 return 1;
7988
7989 return 0;
7990 }
7991
7992 static const struct target_desc *
7993 remote_read_description (struct target_ops *target)
7994 {
7995 struct remote_g_packet_data *data
7996 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
7997
7998 /* Do not try this during initial connection, when we do not know
7999 whether there is a running but stopped thread. */
8000 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
8001 return NULL;
8002
8003 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8004 {
8005 struct remote_g_packet_guess *guess;
8006 int ix;
8007 int bytes = send_g_packet ();
8008
8009 for (ix = 0;
8010 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8011 ix++)
8012 if (guess->bytes == bytes)
8013 return guess->tdesc;
8014
8015 /* We discard the g packet. A minor optimization would be to
8016 hold on to it, and fill the register cache once we have selected
8017 an architecture, but it's too tricky to do safely. */
8018 }
8019
8020 return NULL;
8021 }
8022
8023 /* Remote file transfer support. This is host-initiated I/O, not
8024 target-initiated; for target-initiated, see remote-fileio.c. */
8025
8026 /* If *LEFT is at least the length of STRING, copy STRING to
8027 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8028 decrease *LEFT. Otherwise raise an error. */
8029
8030 static void
8031 remote_buffer_add_string (char **buffer, int *left, char *string)
8032 {
8033 int len = strlen (string);
8034
8035 if (len > *left)
8036 error (_("Packet too long for target."));
8037
8038 memcpy (*buffer, string, len);
8039 *buffer += len;
8040 *left -= len;
8041
8042 /* NUL-terminate the buffer as a convenience, if there is
8043 room. */
8044 if (*left)
8045 **buffer = '\0';
8046 }
8047
8048 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
8049 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8050 decrease *LEFT. Otherwise raise an error. */
8051
8052 static void
8053 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
8054 int len)
8055 {
8056 if (2 * len > *left)
8057 error (_("Packet too long for target."));
8058
8059 bin2hex (bytes, *buffer, len);
8060 *buffer += 2 * len;
8061 *left -= 2 * len;
8062
8063 /* NUL-terminate the buffer as a convenience, if there is
8064 room. */
8065 if (*left)
8066 **buffer = '\0';
8067 }
8068
8069 /* If *LEFT is large enough, convert VALUE to hex and add it to
8070 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8071 decrease *LEFT. Otherwise raise an error. */
8072
8073 static void
8074 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
8075 {
8076 int len = hexnumlen (value);
8077
8078 if (len > *left)
8079 error (_("Packet too long for target."));
8080
8081 hexnumstr (*buffer, value);
8082 *buffer += len;
8083 *left -= len;
8084
8085 /* NUL-terminate the buffer as a convenience, if there is
8086 room. */
8087 if (*left)
8088 **buffer = '\0';
8089 }
8090
8091 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
8092 value, *REMOTE_ERRNO to the remote error number or zero if none
8093 was included, and *ATTACHMENT to point to the start of the annex
8094 if any. The length of the packet isn't needed here; there may
8095 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
8096
8097 Return 0 if the packet could be parsed, -1 if it could not. If
8098 -1 is returned, the other variables may not be initialized. */
8099
8100 static int
8101 remote_hostio_parse_result (char *buffer, int *retcode,
8102 int *remote_errno, char **attachment)
8103 {
8104 char *p, *p2;
8105
8106 *remote_errno = 0;
8107 *attachment = NULL;
8108
8109 if (buffer[0] != 'F')
8110 return -1;
8111
8112 errno = 0;
8113 *retcode = strtol (&buffer[1], &p, 16);
8114 if (errno != 0 || p == &buffer[1])
8115 return -1;
8116
8117 /* Check for ",errno". */
8118 if (*p == ',')
8119 {
8120 errno = 0;
8121 *remote_errno = strtol (p + 1, &p2, 16);
8122 if (errno != 0 || p + 1 == p2)
8123 return -1;
8124 p = p2;
8125 }
8126
8127 /* Check for ";attachment". If there is no attachment, the
8128 packet should end here. */
8129 if (*p == ';')
8130 {
8131 *attachment = p + 1;
8132 return 0;
8133 }
8134 else if (*p == '\0')
8135 return 0;
8136 else
8137 return -1;
8138 }
8139
8140 /* Send a prepared I/O packet to the target and read its response.
8141 The prepared packet is in the global RS->BUF before this function
8142 is called, and the answer is there when we return.
8143
8144 COMMAND_BYTES is the length of the request to send, which may include
8145 binary data. WHICH_PACKET is the packet configuration to check
8146 before attempting a packet. If an error occurs, *REMOTE_ERRNO
8147 is set to the error number and -1 is returned. Otherwise the value
8148 returned by the function is returned.
8149
8150 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
8151 attachment is expected; an error will be reported if there's a
8152 mismatch. If one is found, *ATTACHMENT will be set to point into
8153 the packet buffer and *ATTACHMENT_LEN will be set to the
8154 attachment's length. */
8155
8156 static int
8157 remote_hostio_send_command (int command_bytes, int which_packet,
8158 int *remote_errno, char **attachment,
8159 int *attachment_len)
8160 {
8161 struct remote_state *rs = get_remote_state ();
8162 int ret, bytes_read;
8163 char *attachment_tmp;
8164
8165 if (!remote_desc
8166 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
8167 {
8168 *remote_errno = FILEIO_ENOSYS;
8169 return -1;
8170 }
8171
8172 putpkt_binary (rs->buf, command_bytes);
8173 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8174
8175 /* If it timed out, something is wrong. Don't try to parse the
8176 buffer. */
8177 if (bytes_read < 0)
8178 {
8179 *remote_errno = FILEIO_EINVAL;
8180 return -1;
8181 }
8182
8183 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
8184 {
8185 case PACKET_ERROR:
8186 *remote_errno = FILEIO_EINVAL;
8187 return -1;
8188 case PACKET_UNKNOWN:
8189 *remote_errno = FILEIO_ENOSYS;
8190 return -1;
8191 case PACKET_OK:
8192 break;
8193 }
8194
8195 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
8196 &attachment_tmp))
8197 {
8198 *remote_errno = FILEIO_EINVAL;
8199 return -1;
8200 }
8201
8202 /* Make sure we saw an attachment if and only if we expected one. */
8203 if ((attachment_tmp == NULL && attachment != NULL)
8204 || (attachment_tmp != NULL && attachment == NULL))
8205 {
8206 *remote_errno = FILEIO_EINVAL;
8207 return -1;
8208 }
8209
8210 /* If an attachment was found, it must point into the packet buffer;
8211 work out how many bytes there were. */
8212 if (attachment_tmp != NULL)
8213 {
8214 *attachment = attachment_tmp;
8215 *attachment_len = bytes_read - (*attachment - rs->buf);
8216 }
8217
8218 return ret;
8219 }
8220
8221 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
8222 remote file descriptor, or -1 if an error occurs (and set
8223 *REMOTE_ERRNO). */
8224
8225 static int
8226 remote_hostio_open (const char *filename, int flags, int mode,
8227 int *remote_errno)
8228 {
8229 struct remote_state *rs = get_remote_state ();
8230 char *p = rs->buf;
8231 int left = get_remote_packet_size () - 1;
8232
8233 remote_buffer_add_string (&p, &left, "vFile:open:");
8234
8235 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8236 strlen (filename));
8237 remote_buffer_add_string (&p, &left, ",");
8238
8239 remote_buffer_add_int (&p, &left, flags);
8240 remote_buffer_add_string (&p, &left, ",");
8241
8242 remote_buffer_add_int (&p, &left, mode);
8243
8244 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
8245 remote_errno, NULL, NULL);
8246 }
8247
8248 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
8249 Return the number of bytes written, or -1 if an error occurs (and
8250 set *REMOTE_ERRNO). */
8251
8252 static int
8253 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
8254 ULONGEST offset, int *remote_errno)
8255 {
8256 struct remote_state *rs = get_remote_state ();
8257 char *p = rs->buf;
8258 int left = get_remote_packet_size ();
8259 int out_len;
8260
8261 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
8262
8263 remote_buffer_add_int (&p, &left, fd);
8264 remote_buffer_add_string (&p, &left, ",");
8265
8266 remote_buffer_add_int (&p, &left, offset);
8267 remote_buffer_add_string (&p, &left, ",");
8268
8269 p += remote_escape_output (write_buf, len, p, &out_len,
8270 get_remote_packet_size () - (p - rs->buf));
8271
8272 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
8273 remote_errno, NULL, NULL);
8274 }
8275
8276 /* Read up to LEN bytes FD on the remote target into READ_BUF
8277 Return the number of bytes read, or -1 if an error occurs (and
8278 set *REMOTE_ERRNO). */
8279
8280 static int
8281 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
8282 ULONGEST offset, int *remote_errno)
8283 {
8284 struct remote_state *rs = get_remote_state ();
8285 char *p = rs->buf;
8286 char *attachment;
8287 int left = get_remote_packet_size ();
8288 int ret, attachment_len;
8289 int read_len;
8290
8291 remote_buffer_add_string (&p, &left, "vFile:pread:");
8292
8293 remote_buffer_add_int (&p, &left, fd);
8294 remote_buffer_add_string (&p, &left, ",");
8295
8296 remote_buffer_add_int (&p, &left, len);
8297 remote_buffer_add_string (&p, &left, ",");
8298
8299 remote_buffer_add_int (&p, &left, offset);
8300
8301 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
8302 remote_errno, &attachment,
8303 &attachment_len);
8304
8305 if (ret < 0)
8306 return ret;
8307
8308 read_len = remote_unescape_input (attachment, attachment_len,
8309 read_buf, len);
8310 if (read_len != ret)
8311 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
8312
8313 return ret;
8314 }
8315
8316 /* Close FD on the remote target. Return 0, or -1 if an error occurs
8317 (and set *REMOTE_ERRNO). */
8318
8319 static int
8320 remote_hostio_close (int fd, int *remote_errno)
8321 {
8322 struct remote_state *rs = get_remote_state ();
8323 char *p = rs->buf;
8324 int left = get_remote_packet_size () - 1;
8325
8326 remote_buffer_add_string (&p, &left, "vFile:close:");
8327
8328 remote_buffer_add_int (&p, &left, fd);
8329
8330 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
8331 remote_errno, NULL, NULL);
8332 }
8333
8334 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
8335 occurs (and set *REMOTE_ERRNO). */
8336
8337 static int
8338 remote_hostio_unlink (const char *filename, int *remote_errno)
8339 {
8340 struct remote_state *rs = get_remote_state ();
8341 char *p = rs->buf;
8342 int left = get_remote_packet_size () - 1;
8343
8344 remote_buffer_add_string (&p, &left, "vFile:unlink:");
8345
8346 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8347 strlen (filename));
8348
8349 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
8350 remote_errno, NULL, NULL);
8351 }
8352
8353 static int
8354 remote_fileio_errno_to_host (int errnum)
8355 {
8356 switch (errnum)
8357 {
8358 case FILEIO_EPERM:
8359 return EPERM;
8360 case FILEIO_ENOENT:
8361 return ENOENT;
8362 case FILEIO_EINTR:
8363 return EINTR;
8364 case FILEIO_EIO:
8365 return EIO;
8366 case FILEIO_EBADF:
8367 return EBADF;
8368 case FILEIO_EACCES:
8369 return EACCES;
8370 case FILEIO_EFAULT:
8371 return EFAULT;
8372 case FILEIO_EBUSY:
8373 return EBUSY;
8374 case FILEIO_EEXIST:
8375 return EEXIST;
8376 case FILEIO_ENODEV:
8377 return ENODEV;
8378 case FILEIO_ENOTDIR:
8379 return ENOTDIR;
8380 case FILEIO_EISDIR:
8381 return EISDIR;
8382 case FILEIO_EINVAL:
8383 return EINVAL;
8384 case FILEIO_ENFILE:
8385 return ENFILE;
8386 case FILEIO_EMFILE:
8387 return EMFILE;
8388 case FILEIO_EFBIG:
8389 return EFBIG;
8390 case FILEIO_ENOSPC:
8391 return ENOSPC;
8392 case FILEIO_ESPIPE:
8393 return ESPIPE;
8394 case FILEIO_EROFS:
8395 return EROFS;
8396 case FILEIO_ENOSYS:
8397 return ENOSYS;
8398 case FILEIO_ENAMETOOLONG:
8399 return ENAMETOOLONG;
8400 }
8401 return -1;
8402 }
8403
8404 static char *
8405 remote_hostio_error (int errnum)
8406 {
8407 int host_error = remote_fileio_errno_to_host (errnum);
8408
8409 if (host_error == -1)
8410 error (_("Unknown remote I/O error %d"), errnum);
8411 else
8412 error (_("Remote I/O error: %s"), safe_strerror (host_error));
8413 }
8414
8415 static void
8416 remote_hostio_close_cleanup (void *opaque)
8417 {
8418 int fd = *(int *) opaque;
8419 int remote_errno;
8420
8421 remote_hostio_close (fd, &remote_errno);
8422 }
8423
8424
8425 static void *
8426 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
8427 {
8428 const char *filename = bfd_get_filename (abfd);
8429 int fd, remote_errno;
8430 int *stream;
8431
8432 gdb_assert (remote_filename_p (filename));
8433
8434 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
8435 if (fd == -1)
8436 {
8437 errno = remote_fileio_errno_to_host (remote_errno);
8438 bfd_set_error (bfd_error_system_call);
8439 return NULL;
8440 }
8441
8442 stream = xmalloc (sizeof (int));
8443 *stream = fd;
8444 return stream;
8445 }
8446
8447 static int
8448 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
8449 {
8450 int fd = *(int *)stream;
8451 int remote_errno;
8452
8453 xfree (stream);
8454
8455 /* Ignore errors on close; these may happen if the remote
8456 connection was already torn down. */
8457 remote_hostio_close (fd, &remote_errno);
8458
8459 return 1;
8460 }
8461
8462 static file_ptr
8463 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
8464 file_ptr nbytes, file_ptr offset)
8465 {
8466 int fd = *(int *)stream;
8467 int remote_errno;
8468 file_ptr pos, bytes;
8469
8470 pos = 0;
8471 while (nbytes > pos)
8472 {
8473 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
8474 offset + pos, &remote_errno);
8475 if (bytes == 0)
8476 /* Success, but no bytes, means end-of-file. */
8477 break;
8478 if (bytes == -1)
8479 {
8480 errno = remote_fileio_errno_to_host (remote_errno);
8481 bfd_set_error (bfd_error_system_call);
8482 return -1;
8483 }
8484
8485 pos += bytes;
8486 }
8487
8488 return pos;
8489 }
8490
8491 static int
8492 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
8493 {
8494 /* FIXME: We should probably implement remote_hostio_stat. */
8495 sb->st_size = INT_MAX;
8496 return 0;
8497 }
8498
8499 int
8500 remote_filename_p (const char *filename)
8501 {
8502 return strncmp (filename, "remote:", 7) == 0;
8503 }
8504
8505 bfd *
8506 remote_bfd_open (const char *remote_file, const char *target)
8507 {
8508 return bfd_openr_iovec (remote_file, target,
8509 remote_bfd_iovec_open, NULL,
8510 remote_bfd_iovec_pread,
8511 remote_bfd_iovec_close,
8512 remote_bfd_iovec_stat);
8513 }
8514
8515 void
8516 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
8517 {
8518 struct cleanup *back_to, *close_cleanup;
8519 int retcode, fd, remote_errno, bytes, io_size;
8520 FILE *file;
8521 gdb_byte *buffer;
8522 int bytes_in_buffer;
8523 int saw_eof;
8524 ULONGEST offset;
8525
8526 if (!remote_desc)
8527 error (_("command can only be used with remote target"));
8528
8529 file = fopen (local_file, "rb");
8530 if (file == NULL)
8531 perror_with_name (local_file);
8532 back_to = make_cleanup_fclose (file);
8533
8534 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
8535 | FILEIO_O_TRUNC),
8536 0700, &remote_errno);
8537 if (fd == -1)
8538 remote_hostio_error (remote_errno);
8539
8540 /* Send up to this many bytes at once. They won't all fit in the
8541 remote packet limit, so we'll transfer slightly fewer. */
8542 io_size = get_remote_packet_size ();
8543 buffer = xmalloc (io_size);
8544 make_cleanup (xfree, buffer);
8545
8546 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
8547
8548 bytes_in_buffer = 0;
8549 saw_eof = 0;
8550 offset = 0;
8551 while (bytes_in_buffer || !saw_eof)
8552 {
8553 if (!saw_eof)
8554 {
8555 bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer,
8556 file);
8557 if (bytes == 0)
8558 {
8559 if (ferror (file))
8560 error (_("Error reading %s."), local_file);
8561 else
8562 {
8563 /* EOF. Unless there is something still in the
8564 buffer from the last iteration, we are done. */
8565 saw_eof = 1;
8566 if (bytes_in_buffer == 0)
8567 break;
8568 }
8569 }
8570 }
8571 else
8572 bytes = 0;
8573
8574 bytes += bytes_in_buffer;
8575 bytes_in_buffer = 0;
8576
8577 retcode = remote_hostio_pwrite (fd, buffer, bytes, offset, &remote_errno);
8578
8579 if (retcode < 0)
8580 remote_hostio_error (remote_errno);
8581 else if (retcode == 0)
8582 error (_("Remote write of %d bytes returned 0!"), bytes);
8583 else if (retcode < bytes)
8584 {
8585 /* Short write. Save the rest of the read data for the next
8586 write. */
8587 bytes_in_buffer = bytes - retcode;
8588 memmove (buffer, buffer + retcode, bytes_in_buffer);
8589 }
8590
8591 offset += retcode;
8592 }
8593
8594 discard_cleanups (close_cleanup);
8595 if (remote_hostio_close (fd, &remote_errno))
8596 remote_hostio_error (remote_errno);
8597
8598 if (from_tty)
8599 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
8600 do_cleanups (back_to);
8601 }
8602
8603 void
8604 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
8605 {
8606 struct cleanup *back_to, *close_cleanup;
8607 int retcode, fd, remote_errno, bytes, io_size;
8608 FILE *file;
8609 gdb_byte *buffer;
8610 ULONGEST offset;
8611
8612 if (!remote_desc)
8613 error (_("command can only be used with remote target"));
8614
8615 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
8616 if (fd == -1)
8617 remote_hostio_error (remote_errno);
8618
8619 file = fopen (local_file, "wb");
8620 if (file == NULL)
8621 perror_with_name (local_file);
8622 back_to = make_cleanup_fclose (file);
8623
8624 /* Send up to this many bytes at once. They won't all fit in the
8625 remote packet limit, so we'll transfer slightly fewer. */
8626 io_size = get_remote_packet_size ();
8627 buffer = xmalloc (io_size);
8628 make_cleanup (xfree, buffer);
8629
8630 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
8631
8632 offset = 0;
8633 while (1)
8634 {
8635 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
8636 if (bytes == 0)
8637 /* Success, but no bytes, means end-of-file. */
8638 break;
8639 if (bytes == -1)
8640 remote_hostio_error (remote_errno);
8641
8642 offset += bytes;
8643
8644 bytes = fwrite (buffer, 1, bytes, file);
8645 if (bytes == 0)
8646 perror_with_name (local_file);
8647 }
8648
8649 discard_cleanups (close_cleanup);
8650 if (remote_hostio_close (fd, &remote_errno))
8651 remote_hostio_error (remote_errno);
8652
8653 if (from_tty)
8654 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
8655 do_cleanups (back_to);
8656 }
8657
8658 void
8659 remote_file_delete (const char *remote_file, int from_tty)
8660 {
8661 int retcode, remote_errno;
8662
8663 if (!remote_desc)
8664 error (_("command can only be used with remote target"));
8665
8666 retcode = remote_hostio_unlink (remote_file, &remote_errno);
8667 if (retcode == -1)
8668 remote_hostio_error (remote_errno);
8669
8670 if (from_tty)
8671 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
8672 }
8673
8674 static void
8675 remote_put_command (char *args, int from_tty)
8676 {
8677 struct cleanup *back_to;
8678 char **argv;
8679
8680 if (args == NULL)
8681 error_no_arg (_("file to put"));
8682
8683 argv = gdb_buildargv (args);
8684 back_to = make_cleanup_freeargv (argv);
8685 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
8686 error (_("Invalid parameters to remote put"));
8687
8688 remote_file_put (argv[0], argv[1], from_tty);
8689
8690 do_cleanups (back_to);
8691 }
8692
8693 static void
8694 remote_get_command (char *args, int from_tty)
8695 {
8696 struct cleanup *back_to;
8697 char **argv;
8698
8699 if (args == NULL)
8700 error_no_arg (_("file to get"));
8701
8702 argv = gdb_buildargv (args);
8703 back_to = make_cleanup_freeargv (argv);
8704 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
8705 error (_("Invalid parameters to remote get"));
8706
8707 remote_file_get (argv[0], argv[1], from_tty);
8708
8709 do_cleanups (back_to);
8710 }
8711
8712 static void
8713 remote_delete_command (char *args, int from_tty)
8714 {
8715 struct cleanup *back_to;
8716 char **argv;
8717
8718 if (args == NULL)
8719 error_no_arg (_("file to delete"));
8720
8721 argv = gdb_buildargv (args);
8722 back_to = make_cleanup_freeargv (argv);
8723 if (argv[0] == NULL || argv[1] != NULL)
8724 error (_("Invalid parameters to remote delete"));
8725
8726 remote_file_delete (argv[0], from_tty);
8727
8728 do_cleanups (back_to);
8729 }
8730
8731 static void
8732 remote_command (char *args, int from_tty)
8733 {
8734 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
8735 }
8736
8737 static int remote_target_can_reverse = 1;
8738
8739 static int
8740 remote_can_execute_reverse (void)
8741 {
8742 return remote_target_can_reverse;
8743 }
8744
8745 static int
8746 remote_supports_non_stop (void)
8747 {
8748 return 1;
8749 }
8750
8751 static int
8752 remote_supports_multi_process (void)
8753 {
8754 struct remote_state *rs = get_remote_state ();
8755 return remote_multi_process_p (rs);
8756 }
8757
8758 int
8759 remote_supports_cond_tracepoints (void)
8760 {
8761 struct remote_state *rs = get_remote_state ();
8762 return rs->cond_tracepoints;
8763 }
8764
8765 static void
8766 init_remote_ops (void)
8767 {
8768 remote_ops.to_shortname = "remote";
8769 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
8770 remote_ops.to_doc =
8771 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
8772 Specify the serial device it is connected to\n\
8773 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
8774 remote_ops.to_open = remote_open;
8775 remote_ops.to_close = remote_close;
8776 remote_ops.to_detach = remote_detach;
8777 remote_ops.to_disconnect = remote_disconnect;
8778 remote_ops.to_resume = remote_resume;
8779 remote_ops.to_wait = remote_wait;
8780 remote_ops.to_fetch_registers = remote_fetch_registers;
8781 remote_ops.to_store_registers = remote_store_registers;
8782 remote_ops.to_prepare_to_store = remote_prepare_to_store;
8783 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
8784 remote_ops.to_files_info = remote_files_info;
8785 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
8786 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
8787 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
8788 remote_ops.to_stopped_data_address = remote_stopped_data_address;
8789 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
8790 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
8791 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
8792 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
8793 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
8794 remote_ops.to_kill = remote_kill;
8795 remote_ops.to_load = generic_load;
8796 remote_ops.to_mourn_inferior = remote_mourn;
8797 remote_ops.to_thread_alive = remote_thread_alive;
8798 remote_ops.to_find_new_threads = remote_threads_info;
8799 remote_ops.to_pid_to_str = remote_pid_to_str;
8800 remote_ops.to_extra_thread_info = remote_threads_extra_info;
8801 remote_ops.to_stop = remote_stop;
8802 remote_ops.to_xfer_partial = remote_xfer_partial;
8803 remote_ops.to_rcmd = remote_rcmd;
8804 remote_ops.to_log_command = serial_log_command;
8805 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
8806 remote_ops.to_stratum = process_stratum;
8807 remote_ops.to_has_all_memory = default_child_has_all_memory;
8808 remote_ops.to_has_memory = default_child_has_memory;
8809 remote_ops.to_has_stack = default_child_has_stack;
8810 remote_ops.to_has_registers = default_child_has_registers;
8811 remote_ops.to_has_execution = default_child_has_execution;
8812 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
8813 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
8814 remote_ops.to_magic = OPS_MAGIC;
8815 remote_ops.to_memory_map = remote_memory_map;
8816 remote_ops.to_flash_erase = remote_flash_erase;
8817 remote_ops.to_flash_done = remote_flash_done;
8818 remote_ops.to_read_description = remote_read_description;
8819 remote_ops.to_search_memory = remote_search_memory;
8820 remote_ops.to_can_async_p = remote_can_async_p;
8821 remote_ops.to_is_async_p = remote_is_async_p;
8822 remote_ops.to_async = remote_async;
8823 remote_ops.to_async_mask = remote_async_mask;
8824 remote_ops.to_terminal_inferior = remote_terminal_inferior;
8825 remote_ops.to_terminal_ours = remote_terminal_ours;
8826 remote_ops.to_supports_non_stop = remote_supports_non_stop;
8827 remote_ops.to_supports_multi_process = remote_supports_multi_process;
8828 }
8829
8830 /* Set up the extended remote vector by making a copy of the standard
8831 remote vector and adding to it. */
8832
8833 static void
8834 init_extended_remote_ops (void)
8835 {
8836 extended_remote_ops = remote_ops;
8837
8838 extended_remote_ops.to_shortname = "extended-remote";
8839 extended_remote_ops.to_longname =
8840 "Extended remote serial target in gdb-specific protocol";
8841 extended_remote_ops.to_doc =
8842 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
8843 Specify the serial device it is connected to (e.g. /dev/ttya).";
8844 extended_remote_ops.to_open = extended_remote_open;
8845 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
8846 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
8847 extended_remote_ops.to_detach = extended_remote_detach;
8848 extended_remote_ops.to_attach = extended_remote_attach;
8849 extended_remote_ops.to_kill = extended_remote_kill;
8850 }
8851
8852 static int
8853 remote_can_async_p (void)
8854 {
8855 if (!target_async_permitted)
8856 /* We only enable async when the user specifically asks for it. */
8857 return 0;
8858
8859 /* We're async whenever the serial device is. */
8860 return remote_async_mask_value && serial_can_async_p (remote_desc);
8861 }
8862
8863 static int
8864 remote_is_async_p (void)
8865 {
8866 if (!target_async_permitted)
8867 /* We only enable async when the user specifically asks for it. */
8868 return 0;
8869
8870 /* We're async whenever the serial device is. */
8871 return remote_async_mask_value && serial_is_async_p (remote_desc);
8872 }
8873
8874 /* Pass the SERIAL event on and up to the client. One day this code
8875 will be able to delay notifying the client of an event until the
8876 point where an entire packet has been received. */
8877
8878 static void (*async_client_callback) (enum inferior_event_type event_type,
8879 void *context);
8880 static void *async_client_context;
8881 static serial_event_ftype remote_async_serial_handler;
8882
8883 static void
8884 remote_async_serial_handler (struct serial *scb, void *context)
8885 {
8886 /* Don't propogate error information up to the client. Instead let
8887 the client find out about the error by querying the target. */
8888 async_client_callback (INF_REG_EVENT, async_client_context);
8889 }
8890
8891 static void
8892 remote_async_inferior_event_handler (gdb_client_data data)
8893 {
8894 inferior_event_handler (INF_REG_EVENT, NULL);
8895 }
8896
8897 static void
8898 remote_async_get_pending_events_handler (gdb_client_data data)
8899 {
8900 remote_get_pending_stop_replies ();
8901 }
8902
8903 static void
8904 remote_async (void (*callback) (enum inferior_event_type event_type,
8905 void *context), void *context)
8906 {
8907 if (remote_async_mask_value == 0)
8908 internal_error (__FILE__, __LINE__,
8909 _("Calling remote_async when async is masked"));
8910
8911 if (callback != NULL)
8912 {
8913 serial_async (remote_desc, remote_async_serial_handler, NULL);
8914 async_client_callback = callback;
8915 async_client_context = context;
8916 }
8917 else
8918 serial_async (remote_desc, NULL, NULL);
8919 }
8920
8921 static int
8922 remote_async_mask (int new_mask)
8923 {
8924 int curr_mask = remote_async_mask_value;
8925 remote_async_mask_value = new_mask;
8926 return curr_mask;
8927 }
8928
8929 static void
8930 set_remote_cmd (char *args, int from_tty)
8931 {
8932 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
8933 }
8934
8935 static void
8936 show_remote_cmd (char *args, int from_tty)
8937 {
8938 /* We can't just use cmd_show_list here, because we want to skip
8939 the redundant "show remote Z-packet" and the legacy aliases. */
8940 struct cleanup *showlist_chain;
8941 struct cmd_list_element *list = remote_show_cmdlist;
8942
8943 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
8944 for (; list != NULL; list = list->next)
8945 if (strcmp (list->name, "Z-packet") == 0)
8946 continue;
8947 else if (list->type == not_set_cmd)
8948 /* Alias commands are exactly like the original, except they
8949 don't have the normal type. */
8950 continue;
8951 else
8952 {
8953 struct cleanup *option_chain
8954 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
8955 ui_out_field_string (uiout, "name", list->name);
8956 ui_out_text (uiout, ": ");
8957 if (list->type == show_cmd)
8958 do_setshow_command ((char *) NULL, from_tty, list);
8959 else
8960 cmd_func (list, NULL, from_tty);
8961 /* Close the tuple. */
8962 do_cleanups (option_chain);
8963 }
8964
8965 /* Close the tuple. */
8966 do_cleanups (showlist_chain);
8967 }
8968
8969
8970 /* Function to be called whenever a new objfile (shlib) is detected. */
8971 static void
8972 remote_new_objfile (struct objfile *objfile)
8973 {
8974 if (remote_desc != 0) /* Have a remote connection. */
8975 remote_check_symbols (objfile);
8976 }
8977
8978 void
8979 _initialize_remote (void)
8980 {
8981 struct remote_state *rs;
8982
8983 /* architecture specific data */
8984 remote_gdbarch_data_handle =
8985 gdbarch_data_register_post_init (init_remote_state);
8986 remote_g_packet_data_handle =
8987 gdbarch_data_register_pre_init (remote_g_packet_data_init);
8988
8989 /* Initialize the per-target state. At the moment there is only one
8990 of these, not one per target. Only one target is active at a
8991 time. The default buffer size is unimportant; it will be expanded
8992 whenever a larger buffer is needed. */
8993 rs = get_remote_state_raw ();
8994 rs->buf_size = 400;
8995 rs->buf = xmalloc (rs->buf_size);
8996
8997 init_remote_ops ();
8998 add_target (&remote_ops);
8999
9000 init_extended_remote_ops ();
9001 add_target (&extended_remote_ops);
9002
9003 /* Hook into new objfile notification. */
9004 observer_attach_new_objfile (remote_new_objfile);
9005
9006 /* Set up signal handlers. */
9007 sigint_remote_token =
9008 create_async_signal_handler (async_remote_interrupt, NULL);
9009 sigint_remote_twice_token =
9010 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
9011
9012 #if 0
9013 init_remote_threadtests ();
9014 #endif
9015
9016 /* set/show remote ... */
9017
9018 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
9019 Remote protocol specific variables\n\
9020 Configure various remote-protocol specific variables such as\n\
9021 the packets being used"),
9022 &remote_set_cmdlist, "set remote ",
9023 0 /* allow-unknown */, &setlist);
9024 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
9025 Remote protocol specific variables\n\
9026 Configure various remote-protocol specific variables such as\n\
9027 the packets being used"),
9028 &remote_show_cmdlist, "show remote ",
9029 0 /* allow-unknown */, &showlist);
9030
9031 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
9032 Compare section data on target to the exec file.\n\
9033 Argument is a single section name (default: all loaded sections)."),
9034 &cmdlist);
9035
9036 add_cmd ("packet", class_maintenance, packet_command, _("\
9037 Send an arbitrary packet to a remote target.\n\
9038 maintenance packet TEXT\n\
9039 If GDB is talking to an inferior via the GDB serial protocol, then\n\
9040 this command sends the string TEXT to the inferior, and displays the\n\
9041 response packet. GDB supplies the initial `$' character, and the\n\
9042 terminating `#' character and checksum."),
9043 &maintenancelist);
9044
9045 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
9046 Set whether to send break if interrupted."), _("\
9047 Show whether to send break if interrupted."), _("\
9048 If set, a break, instead of a cntrl-c, is sent to the remote target."),
9049 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
9050 &setlist, &showlist);
9051
9052 /* Install commands for configuring memory read/write packets. */
9053
9054 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
9055 Set the maximum number of bytes per memory write packet (deprecated)."),
9056 &setlist);
9057 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
9058 Show the maximum number of bytes per memory write packet (deprecated)."),
9059 &showlist);
9060 add_cmd ("memory-write-packet-size", no_class,
9061 set_memory_write_packet_size, _("\
9062 Set the maximum number of bytes per memory-write packet.\n\
9063 Specify the number of bytes in a packet or 0 (zero) for the\n\
9064 default packet size. The actual limit is further reduced\n\
9065 dependent on the target. Specify ``fixed'' to disable the\n\
9066 further restriction and ``limit'' to enable that restriction."),
9067 &remote_set_cmdlist);
9068 add_cmd ("memory-read-packet-size", no_class,
9069 set_memory_read_packet_size, _("\
9070 Set the maximum number of bytes per memory-read packet.\n\
9071 Specify the number of bytes in a packet or 0 (zero) for the\n\
9072 default packet size. The actual limit is further reduced\n\
9073 dependent on the target. Specify ``fixed'' to disable the\n\
9074 further restriction and ``limit'' to enable that restriction."),
9075 &remote_set_cmdlist);
9076 add_cmd ("memory-write-packet-size", no_class,
9077 show_memory_write_packet_size,
9078 _("Show the maximum number of bytes per memory-write packet."),
9079 &remote_show_cmdlist);
9080 add_cmd ("memory-read-packet-size", no_class,
9081 show_memory_read_packet_size,
9082 _("Show the maximum number of bytes per memory-read packet."),
9083 &remote_show_cmdlist);
9084
9085 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
9086 &remote_hw_watchpoint_limit, _("\
9087 Set the maximum number of target hardware watchpoints."), _("\
9088 Show the maximum number of target hardware watchpoints."), _("\
9089 Specify a negative limit for unlimited."),
9090 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
9091 &remote_set_cmdlist, &remote_show_cmdlist);
9092 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
9093 &remote_hw_breakpoint_limit, _("\
9094 Set the maximum number of target hardware breakpoints."), _("\
9095 Show the maximum number of target hardware breakpoints."), _("\
9096 Specify a negative limit for unlimited."),
9097 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
9098 &remote_set_cmdlist, &remote_show_cmdlist);
9099
9100 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
9101 &remote_address_size, _("\
9102 Set the maximum size of the address (in bits) in a memory packet."), _("\
9103 Show the maximum size of the address (in bits) in a memory packet."), NULL,
9104 NULL,
9105 NULL, /* FIXME: i18n: */
9106 &setlist, &showlist);
9107
9108 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
9109 "X", "binary-download", 1);
9110
9111 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
9112 "vCont", "verbose-resume", 0);
9113
9114 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
9115 "QPassSignals", "pass-signals", 0);
9116
9117 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
9118 "qSymbol", "symbol-lookup", 0);
9119
9120 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
9121 "P", "set-register", 1);
9122
9123 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
9124 "p", "fetch-register", 1);
9125
9126 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
9127 "Z0", "software-breakpoint", 0);
9128
9129 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
9130 "Z1", "hardware-breakpoint", 0);
9131
9132 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
9133 "Z2", "write-watchpoint", 0);
9134
9135 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
9136 "Z3", "read-watchpoint", 0);
9137
9138 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
9139 "Z4", "access-watchpoint", 0);
9140
9141 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
9142 "qXfer:auxv:read", "read-aux-vector", 0);
9143
9144 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
9145 "qXfer:features:read", "target-features", 0);
9146
9147 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
9148 "qXfer:libraries:read", "library-info", 0);
9149
9150 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
9151 "qXfer:memory-map:read", "memory-map", 0);
9152
9153 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
9154 "qXfer:spu:read", "read-spu-object", 0);
9155
9156 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
9157 "qXfer:spu:write", "write-spu-object", 0);
9158
9159 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
9160 "qXfer:osdata:read", "osdata", 0);
9161
9162 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
9163 "qXfer:siginfo:read", "read-siginfo-object", 0);
9164
9165 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
9166 "qXfer:siginfo:write", "write-siginfo-object", 0);
9167
9168 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
9169 "qGetTLSAddr", "get-thread-local-storage-address",
9170 0);
9171
9172 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
9173 "qSupported", "supported-packets", 0);
9174
9175 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
9176 "qSearch:memory", "search-memory", 0);
9177
9178 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
9179 "vFile:open", "hostio-open", 0);
9180
9181 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
9182 "vFile:pread", "hostio-pread", 0);
9183
9184 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
9185 "vFile:pwrite", "hostio-pwrite", 0);
9186
9187 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
9188 "vFile:close", "hostio-close", 0);
9189
9190 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
9191 "vFile:unlink", "hostio-unlink", 0);
9192
9193 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
9194 "vAttach", "attach", 0);
9195
9196 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
9197 "vRun", "run", 0);
9198
9199 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
9200 "QStartNoAckMode", "noack", 0);
9201
9202 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
9203 "vKill", "kill", 0);
9204
9205 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
9206 "qAttached", "query-attached", 0);
9207
9208 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
9209 "ConditionalTracepoints", "conditional-tracepoints", 0);
9210
9211 /* Keep the old ``set remote Z-packet ...'' working. Each individual
9212 Z sub-packet has its own set and show commands, but users may
9213 have sets to this variable in their .gdbinit files (or in their
9214 documentation). */
9215 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
9216 &remote_Z_packet_detect, _("\
9217 Set use of remote protocol `Z' packets"), _("\
9218 Show use of remote protocol `Z' packets "), _("\
9219 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
9220 packets."),
9221 set_remote_protocol_Z_packet_cmd,
9222 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
9223 &remote_set_cmdlist, &remote_show_cmdlist);
9224
9225 add_prefix_cmd ("remote", class_files, remote_command, _("\
9226 Manipulate files on the remote system\n\
9227 Transfer files to and from the remote target system."),
9228 &remote_cmdlist, "remote ",
9229 0 /* allow-unknown */, &cmdlist);
9230
9231 add_cmd ("put", class_files, remote_put_command,
9232 _("Copy a local file to the remote system."),
9233 &remote_cmdlist);
9234
9235 add_cmd ("get", class_files, remote_get_command,
9236 _("Copy a remote file to the local system."),
9237 &remote_cmdlist);
9238
9239 add_cmd ("delete", class_files, remote_delete_command,
9240 _("Delete a remote file."),
9241 &remote_cmdlist);
9242
9243 remote_exec_file = xstrdup ("");
9244 add_setshow_string_noescape_cmd ("exec-file", class_files,
9245 &remote_exec_file, _("\
9246 Set the remote pathname for \"run\""), _("\
9247 Show the remote pathname for \"run\""), NULL, NULL, NULL,
9248 &remote_set_cmdlist, &remote_show_cmdlist);
9249
9250 /* Eventually initialize fileio. See fileio.c */
9251 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
9252
9253 /* Take advantage of the fact that the LWP field is not used, to tag
9254 special ptids with it set to != 0. */
9255 magic_null_ptid = ptid_build (42000, 1, -1);
9256 not_sent_ptid = ptid_build (42000, 1, -2);
9257 any_thread_ptid = ptid_build (42000, 1, 0);
9258 }
This page took 0.217543 seconds and 5 git commands to generate.