gdb, gdbserver, gdbsupport: fix leading space vs tabs issues
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "gdbsupport/event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h"
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include "gdbsupport/search.h"
79 #include <algorithm>
80 #include <unordered_map>
81 #include "async-event.h"
82
83 /* The remote target. */
84
85 static const char remote_doc[] = N_("\
86 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
87 Specify the serial device it is connected to\n\
88 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
89
90 #define OPAQUETHREADBYTES 8
91
92 /* a 64 bit opaque identifier */
93 typedef unsigned char threadref[OPAQUETHREADBYTES];
94
95 struct gdb_ext_thread_info;
96 struct threads_listing_context;
97 typedef int (*rmt_thread_action) (threadref *ref, void *context);
98 struct protocol_feature;
99 struct packet_reg;
100
101 struct stop_reply;
102 typedef std::unique_ptr<stop_reply> stop_reply_up;
103
104 /* Generic configuration support for packets the stub optionally
105 supports. Allows the user to specify the use of the packet as well
106 as allowing GDB to auto-detect support in the remote stub. */
107
108 enum packet_support
109 {
110 PACKET_SUPPORT_UNKNOWN = 0,
111 PACKET_ENABLE,
112 PACKET_DISABLE
113 };
114
115 /* Analyze a packet's return value and update the packet config
116 accordingly. */
117
118 enum packet_result
119 {
120 PACKET_ERROR,
121 PACKET_OK,
122 PACKET_UNKNOWN
123 };
124
125 struct threads_listing_context;
126
127 /* Stub vCont actions support.
128
129 Each field is a boolean flag indicating whether the stub reports
130 support for the corresponding action. */
131
132 struct vCont_action_support
133 {
134 /* vCont;t */
135 bool t = false;
136
137 /* vCont;r */
138 bool r = false;
139
140 /* vCont;s */
141 bool s = false;
142
143 /* vCont;S */
144 bool S = false;
145 };
146
147 /* About this many threadids fit in a packet. */
148
149 #define MAXTHREADLISTRESULTS 32
150
151 /* Data for the vFile:pread readahead cache. */
152
153 struct readahead_cache
154 {
155 /* Invalidate the readahead cache. */
156 void invalidate ();
157
158 /* Invalidate the readahead cache if it is holding data for FD. */
159 void invalidate_fd (int fd);
160
161 /* Serve pread from the readahead cache. Returns number of bytes
162 read, or 0 if the request can't be served from the cache. */
163 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
164
165 /* The file descriptor for the file that is being cached. -1 if the
166 cache is invalid. */
167 int fd = -1;
168
169 /* The offset into the file that the cache buffer corresponds
170 to. */
171 ULONGEST offset = 0;
172
173 /* The buffer holding the cache contents. */
174 gdb_byte *buf = nullptr;
175 /* The buffer's size. We try to read as much as fits into a packet
176 at a time. */
177 size_t bufsize = 0;
178
179 /* Cache hit and miss counters. */
180 ULONGEST hit_count = 0;
181 ULONGEST miss_count = 0;
182 };
183
184 /* Description of the remote protocol for a given architecture. */
185
186 struct packet_reg
187 {
188 long offset; /* Offset into G packet. */
189 long regnum; /* GDB's internal register number. */
190 LONGEST pnum; /* Remote protocol register number. */
191 int in_g_packet; /* Always part of G packet. */
192 /* long size in bytes; == register_size (target_gdbarch (), regnum);
193 at present. */
194 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
195 at present. */
196 };
197
198 struct remote_arch_state
199 {
200 explicit remote_arch_state (struct gdbarch *gdbarch);
201
202 /* Description of the remote protocol registers. */
203 long sizeof_g_packet;
204
205 /* Description of the remote protocol registers indexed by REGNUM
206 (making an array gdbarch_num_regs in size). */
207 std::unique_ptr<packet_reg[]> regs;
208
209 /* This is the size (in chars) of the first response to the ``g''
210 packet. It is used as a heuristic when determining the maximum
211 size of memory-read and memory-write packets. A target will
212 typically only reserve a buffer large enough to hold the ``g''
213 packet. The size does not include packet overhead (headers and
214 trailers). */
215 long actual_register_packet_size;
216
217 /* This is the maximum size (in chars) of a non read/write packet.
218 It is also used as a cap on the size of read/write packets. */
219 long remote_packet_size;
220 };
221
222 /* Description of the remote protocol state for the currently
223 connected target. This is per-target state, and independent of the
224 selected architecture. */
225
226 class remote_state
227 {
228 public:
229
230 remote_state ();
231 ~remote_state ();
232
233 /* Get the remote arch state for GDBARCH. */
234 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
235
236 public: /* data */
237
238 /* A buffer to use for incoming packets, and its current size. The
239 buffer is grown dynamically for larger incoming packets.
240 Outgoing packets may also be constructed in this buffer.
241 The size of the buffer is always at least REMOTE_PACKET_SIZE;
242 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
243 packets. */
244 gdb::char_vector buf;
245
246 /* True if we're going through initial connection setup (finding out
247 about the remote side's threads, relocating symbols, etc.). */
248 bool starting_up = false;
249
250 /* If we negotiated packet size explicitly (and thus can bypass
251 heuristics for the largest packet size that will not overflow
252 a buffer in the stub), this will be set to that packet size.
253 Otherwise zero, meaning to use the guessed size. */
254 long explicit_packet_size = 0;
255
256 /* remote_wait is normally called when the target is running and
257 waits for a stop reply packet. But sometimes we need to call it
258 when the target is already stopped. We can send a "?" packet
259 and have remote_wait read the response. Or, if we already have
260 the response, we can stash it in BUF and tell remote_wait to
261 skip calling getpkt. This flag is set when BUF contains a
262 stop reply packet and the target is not waiting. */
263 int cached_wait_status = 0;
264
265 /* True, if in no ack mode. That is, neither GDB nor the stub will
266 expect acks from each other. The connection is assumed to be
267 reliable. */
268 bool noack_mode = false;
269
270 /* True if we're connected in extended remote mode. */
271 bool extended = false;
272
273 /* True if we resumed the target and we're waiting for the target to
274 stop. In the mean time, we can't start another command/query.
275 The remote server wouldn't be ready to process it, so we'd
276 timeout waiting for a reply that would never come and eventually
277 we'd close the connection. This can happen in asynchronous mode
278 because we allow GDB commands while the target is running. */
279 bool waiting_for_stop_reply = false;
280
281 /* The status of the stub support for the various vCont actions. */
282 vCont_action_support supports_vCont;
283 /* Whether vCont support was probed already. This is a workaround
284 until packet_support is per-connection. */
285 bool supports_vCont_probed;
286
287 /* True if the user has pressed Ctrl-C, but the target hasn't
288 responded to that. */
289 bool ctrlc_pending_p = false;
290
291 /* True if we saw a Ctrl-C while reading or writing from/to the
292 remote descriptor. At that point it is not safe to send a remote
293 interrupt packet, so we instead remember we saw the Ctrl-C and
294 process it once we're done with sending/receiving the current
295 packet, which should be shortly. If however that takes too long,
296 and the user presses Ctrl-C again, we offer to disconnect. */
297 bool got_ctrlc_during_io = false;
298
299 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
300 remote_open knows that we don't have a file open when the program
301 starts. */
302 struct serial *remote_desc = nullptr;
303
304 /* These are the threads which we last sent to the remote system. The
305 TID member will be -1 for all or -2 for not sent yet. */
306 ptid_t general_thread = null_ptid;
307 ptid_t continue_thread = null_ptid;
308
309 /* This is the traceframe which we last selected on the remote system.
310 It will be -1 if no traceframe is selected. */
311 int remote_traceframe_number = -1;
312
313 char *last_pass_packet = nullptr;
314
315 /* The last QProgramSignals packet sent to the target. We bypass
316 sending a new program signals list down to the target if the new
317 packet is exactly the same as the last we sent. IOW, we only let
318 the target know about program signals list changes. */
319 char *last_program_signals_packet = nullptr;
320
321 gdb_signal last_sent_signal = GDB_SIGNAL_0;
322
323 bool last_sent_step = false;
324
325 /* The execution direction of the last resume we got. */
326 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
327
328 char *finished_object = nullptr;
329 char *finished_annex = nullptr;
330 ULONGEST finished_offset = 0;
331
332 /* Should we try the 'ThreadInfo' query packet?
333
334 This variable (NOT available to the user: auto-detect only!)
335 determines whether GDB will use the new, simpler "ThreadInfo"
336 query or the older, more complex syntax for thread queries.
337 This is an auto-detect variable (set to true at each connect,
338 and set to false when the target fails to recognize it). */
339 bool use_threadinfo_query = false;
340 bool use_threadextra_query = false;
341
342 threadref echo_nextthread {};
343 threadref nextthread {};
344 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
345
346 /* The state of remote notification. */
347 struct remote_notif_state *notif_state = nullptr;
348
349 /* The branch trace configuration. */
350 struct btrace_config btrace_config {};
351
352 /* The argument to the last "vFile:setfs:" packet we sent, used
353 to avoid sending repeated unnecessary "vFile:setfs:" packets.
354 Initialized to -1 to indicate that no "vFile:setfs:" packet
355 has yet been sent. */
356 int fs_pid = -1;
357
358 /* A readahead cache for vFile:pread. Often, reading a binary
359 involves a sequence of small reads. E.g., when parsing an ELF
360 file. A readahead cache helps mostly the case of remote
361 debugging on a connection with higher latency, due to the
362 request/reply nature of the RSP. We only cache data for a single
363 file descriptor at a time. */
364 struct readahead_cache readahead_cache;
365
366 /* The list of already fetched and acknowledged stop events. This
367 queue is used for notification Stop, and other notifications
368 don't need queue for their events, because the notification
369 events of Stop can't be consumed immediately, so that events
370 should be queued first, and be consumed by remote_wait_{ns,as}
371 one per time. Other notifications can consume their events
372 immediately, so queue is not needed for them. */
373 std::vector<stop_reply_up> stop_reply_queue;
374
375 /* Asynchronous signal handle registered as event loop source for
376 when we have pending events ready to be passed to the core. */
377 struct async_event_handler *remote_async_inferior_event_token = nullptr;
378
379 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
380 ``forever'' still use the normal timeout mechanism. This is
381 currently used by the ASYNC code to guarentee that target reads
382 during the initial connect always time-out. Once getpkt has been
383 modified to return a timeout indication and, in turn
384 remote_wait()/wait_for_inferior() have gained a timeout parameter
385 this can go away. */
386 int wait_forever_enabled_p = 1;
387
388 private:
389 /* Mapping of remote protocol data for each gdbarch. Usually there
390 is only one entry here, though we may see more with stubs that
391 support multi-process. */
392 std::unordered_map<struct gdbarch *, remote_arch_state>
393 m_arch_states;
394 };
395
396 static const target_info remote_target_info = {
397 "remote",
398 N_("Remote serial target in gdb-specific protocol"),
399 remote_doc
400 };
401
402 class remote_target : public process_stratum_target
403 {
404 public:
405 remote_target () = default;
406 ~remote_target () override;
407
408 const target_info &info () const override
409 { return remote_target_info; }
410
411 const char *connection_string () override;
412
413 thread_control_capabilities get_thread_control_capabilities () override
414 { return tc_schedlock; }
415
416 /* Open a remote connection. */
417 static void open (const char *, int);
418
419 void close () override;
420
421 void detach (inferior *, int) override;
422 void disconnect (const char *, int) override;
423
424 void commit_resume () override;
425 void resume (ptid_t, int, enum gdb_signal) override;
426 ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
427
428 void fetch_registers (struct regcache *, int) override;
429 void store_registers (struct regcache *, int) override;
430 void prepare_to_store (struct regcache *) override;
431
432 void files_info () override;
433
434 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
435
436 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
437 enum remove_bp_reason) override;
438
439
440 bool stopped_by_sw_breakpoint () override;
441 bool supports_stopped_by_sw_breakpoint () override;
442
443 bool stopped_by_hw_breakpoint () override;
444
445 bool supports_stopped_by_hw_breakpoint () override;
446
447 bool stopped_by_watchpoint () override;
448
449 bool stopped_data_address (CORE_ADDR *) override;
450
451 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
452
453 int can_use_hw_breakpoint (enum bptype, int, int) override;
454
455 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
456
457 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
458
459 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
460
461 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
462 struct expression *) override;
463
464 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
465 struct expression *) override;
466
467 void kill () override;
468
469 void load (const char *, int) override;
470
471 void mourn_inferior () override;
472
473 void pass_signals (gdb::array_view<const unsigned char>) override;
474
475 int set_syscall_catchpoint (int, bool, int,
476 gdb::array_view<const int>) override;
477
478 void program_signals (gdb::array_view<const unsigned char>) override;
479
480 bool thread_alive (ptid_t ptid) override;
481
482 const char *thread_name (struct thread_info *) override;
483
484 void update_thread_list () override;
485
486 std::string pid_to_str (ptid_t) override;
487
488 const char *extra_thread_info (struct thread_info *) override;
489
490 ptid_t get_ada_task_ptid (long lwp, long thread) override;
491
492 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
493 int handle_len,
494 inferior *inf) override;
495
496 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
497 override;
498
499 void stop (ptid_t) override;
500
501 void interrupt () override;
502
503 void pass_ctrlc () override;
504
505 enum target_xfer_status xfer_partial (enum target_object object,
506 const char *annex,
507 gdb_byte *readbuf,
508 const gdb_byte *writebuf,
509 ULONGEST offset, ULONGEST len,
510 ULONGEST *xfered_len) override;
511
512 ULONGEST get_memory_xfer_limit () override;
513
514 void rcmd (const char *command, struct ui_file *output) override;
515
516 char *pid_to_exec_file (int pid) override;
517
518 void log_command (const char *cmd) override
519 {
520 serial_log_command (this, cmd);
521 }
522
523 CORE_ADDR get_thread_local_address (ptid_t ptid,
524 CORE_ADDR load_module_addr,
525 CORE_ADDR offset) override;
526
527 bool can_execute_reverse () override;
528
529 std::vector<mem_region> memory_map () override;
530
531 void flash_erase (ULONGEST address, LONGEST length) override;
532
533 void flash_done () override;
534
535 const struct target_desc *read_description () override;
536
537 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
538 const gdb_byte *pattern, ULONGEST pattern_len,
539 CORE_ADDR *found_addrp) override;
540
541 bool can_async_p () override;
542
543 bool is_async_p () override;
544
545 void async (int) override;
546
547 int async_wait_fd () override;
548
549 void thread_events (int) override;
550
551 int can_do_single_step () override;
552
553 void terminal_inferior () override;
554
555 void terminal_ours () override;
556
557 bool supports_non_stop () override;
558
559 bool supports_multi_process () override;
560
561 bool supports_disable_randomization () override;
562
563 bool filesystem_is_local () override;
564
565
566 int fileio_open (struct inferior *inf, const char *filename,
567 int flags, int mode, int warn_if_slow,
568 int *target_errno) override;
569
570 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
571 ULONGEST offset, int *target_errno) override;
572
573 int fileio_pread (int fd, gdb_byte *read_buf, int len,
574 ULONGEST offset, int *target_errno) override;
575
576 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
577
578 int fileio_close (int fd, int *target_errno) override;
579
580 int fileio_unlink (struct inferior *inf,
581 const char *filename,
582 int *target_errno) override;
583
584 gdb::optional<std::string>
585 fileio_readlink (struct inferior *inf,
586 const char *filename,
587 int *target_errno) override;
588
589 bool supports_enable_disable_tracepoint () override;
590
591 bool supports_string_tracing () override;
592
593 bool supports_evaluation_of_breakpoint_conditions () override;
594
595 bool can_run_breakpoint_commands () override;
596
597 void trace_init () override;
598
599 void download_tracepoint (struct bp_location *location) override;
600
601 bool can_download_tracepoint () override;
602
603 void download_trace_state_variable (const trace_state_variable &tsv) override;
604
605 void enable_tracepoint (struct bp_location *location) override;
606
607 void disable_tracepoint (struct bp_location *location) override;
608
609 void trace_set_readonly_regions () override;
610
611 void trace_start () override;
612
613 int get_trace_status (struct trace_status *ts) override;
614
615 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
616 override;
617
618 void trace_stop () override;
619
620 int trace_find (enum trace_find_type type, int num,
621 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
622
623 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
624
625 int save_trace_data (const char *filename) override;
626
627 int upload_tracepoints (struct uploaded_tp **utpp) override;
628
629 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
630
631 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
632
633 int get_min_fast_tracepoint_insn_len () override;
634
635 void set_disconnected_tracing (int val) override;
636
637 void set_circular_trace_buffer (int val) override;
638
639 void set_trace_buffer_size (LONGEST val) override;
640
641 bool set_trace_notes (const char *user, const char *notes,
642 const char *stopnotes) override;
643
644 int core_of_thread (ptid_t ptid) override;
645
646 int verify_memory (const gdb_byte *data,
647 CORE_ADDR memaddr, ULONGEST size) override;
648
649
650 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
651
652 void set_permissions () override;
653
654 bool static_tracepoint_marker_at (CORE_ADDR,
655 struct static_tracepoint_marker *marker)
656 override;
657
658 std::vector<static_tracepoint_marker>
659 static_tracepoint_markers_by_strid (const char *id) override;
660
661 traceframe_info_up traceframe_info () override;
662
663 bool use_agent (bool use) override;
664 bool can_use_agent () override;
665
666 struct btrace_target_info *enable_btrace (ptid_t ptid,
667 const struct btrace_config *conf) override;
668
669 void disable_btrace (struct btrace_target_info *tinfo) override;
670
671 void teardown_btrace (struct btrace_target_info *tinfo) override;
672
673 enum btrace_error read_btrace (struct btrace_data *data,
674 struct btrace_target_info *btinfo,
675 enum btrace_read_type type) override;
676
677 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
678 bool augmented_libraries_svr4_read () override;
679 bool follow_fork (bool, bool) override;
680 void follow_exec (struct inferior *, const char *) override;
681 int insert_fork_catchpoint (int) override;
682 int remove_fork_catchpoint (int) override;
683 int insert_vfork_catchpoint (int) override;
684 int remove_vfork_catchpoint (int) override;
685 int insert_exec_catchpoint (int) override;
686 int remove_exec_catchpoint (int) override;
687 enum exec_direction_kind execution_direction () override;
688
689 public: /* Remote specific methods. */
690
691 void remote_download_command_source (int num, ULONGEST addr,
692 struct command_line *cmds);
693
694 void remote_file_put (const char *local_file, const char *remote_file,
695 int from_tty);
696 void remote_file_get (const char *remote_file, const char *local_file,
697 int from_tty);
698 void remote_file_delete (const char *remote_file, int from_tty);
699
700 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
701 ULONGEST offset, int *remote_errno);
702 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
703 ULONGEST offset, int *remote_errno);
704 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
705 ULONGEST offset, int *remote_errno);
706
707 int remote_hostio_send_command (int command_bytes, int which_packet,
708 int *remote_errno, char **attachment,
709 int *attachment_len);
710 int remote_hostio_set_filesystem (struct inferior *inf,
711 int *remote_errno);
712 /* We should get rid of this and use fileio_open directly. */
713 int remote_hostio_open (struct inferior *inf, const char *filename,
714 int flags, int mode, int warn_if_slow,
715 int *remote_errno);
716 int remote_hostio_close (int fd, int *remote_errno);
717
718 int remote_hostio_unlink (inferior *inf, const char *filename,
719 int *remote_errno);
720
721 struct remote_state *get_remote_state ();
722
723 long get_remote_packet_size (void);
724 long get_memory_packet_size (struct memory_packet_config *config);
725
726 long get_memory_write_packet_size ();
727 long get_memory_read_packet_size ();
728
729 char *append_pending_thread_resumptions (char *p, char *endp,
730 ptid_t ptid);
731 static void open_1 (const char *name, int from_tty, int extended_p);
732 void start_remote (int from_tty, int extended_p);
733 void remote_detach_1 (struct inferior *inf, int from_tty);
734
735 char *append_resumption (char *p, char *endp,
736 ptid_t ptid, int step, gdb_signal siggnal);
737 int remote_resume_with_vcont (ptid_t ptid, int step,
738 gdb_signal siggnal);
739
740 void add_current_inferior_and_thread (char *wait_status);
741
742 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
743 target_wait_flags options);
744 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
745 target_wait_flags options);
746
747 ptid_t process_stop_reply (struct stop_reply *stop_reply,
748 target_waitstatus *status);
749
750 void remote_notice_new_inferior (ptid_t currthread, int executing);
751
752 void process_initial_stop_replies (int from_tty);
753
754 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
755
756 void btrace_sync_conf (const btrace_config *conf);
757
758 void remote_btrace_maybe_reopen ();
759
760 void remove_new_fork_children (threads_listing_context *context);
761 void kill_new_fork_children (int pid);
762 void discard_pending_stop_replies (struct inferior *inf);
763 int stop_reply_queue_length ();
764
765 void check_pending_events_prevent_wildcard_vcont
766 (int *may_global_wildcard_vcont);
767
768 void discard_pending_stop_replies_in_queue ();
769 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
770 struct stop_reply *queued_stop_reply (ptid_t ptid);
771 int peek_stop_reply (ptid_t ptid);
772 void remote_parse_stop_reply (const char *buf, stop_reply *event);
773
774 void remote_stop_ns (ptid_t ptid);
775 void remote_interrupt_as ();
776 void remote_interrupt_ns ();
777
778 char *remote_get_noisy_reply ();
779 int remote_query_attached (int pid);
780 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
781 int try_open_exec);
782
783 ptid_t remote_current_thread (ptid_t oldpid);
784 ptid_t get_current_thread (char *wait_status);
785
786 void set_thread (ptid_t ptid, int gen);
787 void set_general_thread (ptid_t ptid);
788 void set_continue_thread (ptid_t ptid);
789 void set_general_process ();
790
791 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
792
793 int remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
794 gdb_ext_thread_info *info);
795 int remote_get_threadinfo (threadref *threadid, int fieldset,
796 gdb_ext_thread_info *info);
797
798 int parse_threadlist_response (char *pkt, int result_limit,
799 threadref *original_echo,
800 threadref *resultlist,
801 int *doneflag);
802 int remote_get_threadlist (int startflag, threadref *nextthread,
803 int result_limit, int *done, int *result_count,
804 threadref *threadlist);
805
806 int remote_threadlist_iterator (rmt_thread_action stepfunction,
807 void *context, int looplimit);
808
809 int remote_get_threads_with_ql (threads_listing_context *context);
810 int remote_get_threads_with_qxfer (threads_listing_context *context);
811 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
812
813 void extended_remote_restart ();
814
815 void get_offsets ();
816
817 void remote_check_symbols ();
818
819 void remote_supported_packet (const struct protocol_feature *feature,
820 enum packet_support support,
821 const char *argument);
822
823 void remote_query_supported ();
824
825 void remote_packet_size (const protocol_feature *feature,
826 packet_support support, const char *value);
827
828 void remote_serial_quit_handler ();
829
830 void remote_detach_pid (int pid);
831
832 void remote_vcont_probe ();
833
834 void remote_resume_with_hc (ptid_t ptid, int step,
835 gdb_signal siggnal);
836
837 void send_interrupt_sequence ();
838 void interrupt_query ();
839
840 void remote_notif_get_pending_events (notif_client *nc);
841
842 int fetch_register_using_p (struct regcache *regcache,
843 packet_reg *reg);
844 int send_g_packet ();
845 void process_g_packet (struct regcache *regcache);
846 void fetch_registers_using_g (struct regcache *regcache);
847 int store_register_using_P (const struct regcache *regcache,
848 packet_reg *reg);
849 void store_registers_using_G (const struct regcache *regcache);
850
851 void set_remote_traceframe ();
852
853 void check_binary_download (CORE_ADDR addr);
854
855 target_xfer_status remote_write_bytes_aux (const char *header,
856 CORE_ADDR memaddr,
857 const gdb_byte *myaddr,
858 ULONGEST len_units,
859 int unit_size,
860 ULONGEST *xfered_len_units,
861 char packet_format,
862 int use_length);
863
864 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
865 const gdb_byte *myaddr, ULONGEST len,
866 int unit_size, ULONGEST *xfered_len);
867
868 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
869 ULONGEST len_units,
870 int unit_size, ULONGEST *xfered_len_units);
871
872 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
873 ULONGEST memaddr,
874 ULONGEST len,
875 int unit_size,
876 ULONGEST *xfered_len);
877
878 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
879 gdb_byte *myaddr, ULONGEST len,
880 int unit_size,
881 ULONGEST *xfered_len);
882
883 packet_result remote_send_printf (const char *format, ...)
884 ATTRIBUTE_PRINTF (2, 3);
885
886 target_xfer_status remote_flash_write (ULONGEST address,
887 ULONGEST length, ULONGEST *xfered_len,
888 const gdb_byte *data);
889
890 int readchar (int timeout);
891
892 void remote_serial_write (const char *str, int len);
893
894 int putpkt (const char *buf);
895 int putpkt_binary (const char *buf, int cnt);
896
897 int putpkt (const gdb::char_vector &buf)
898 {
899 return putpkt (buf.data ());
900 }
901
902 void skip_frame ();
903 long read_frame (gdb::char_vector *buf_p);
904 void getpkt (gdb::char_vector *buf, int forever);
905 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
906 int expecting_notif, int *is_notif);
907 int getpkt_sane (gdb::char_vector *buf, int forever);
908 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
909 int *is_notif);
910 int remote_vkill (int pid);
911 void remote_kill_k ();
912
913 void extended_remote_disable_randomization (int val);
914 int extended_remote_run (const std::string &args);
915
916 void send_environment_packet (const char *action,
917 const char *packet,
918 const char *value);
919
920 void extended_remote_environment_support ();
921 void extended_remote_set_inferior_cwd ();
922
923 target_xfer_status remote_write_qxfer (const char *object_name,
924 const char *annex,
925 const gdb_byte *writebuf,
926 ULONGEST offset, LONGEST len,
927 ULONGEST *xfered_len,
928 struct packet_config *packet);
929
930 target_xfer_status remote_read_qxfer (const char *object_name,
931 const char *annex,
932 gdb_byte *readbuf, ULONGEST offset,
933 LONGEST len,
934 ULONGEST *xfered_len,
935 struct packet_config *packet);
936
937 void push_stop_reply (struct stop_reply *new_event);
938
939 bool vcont_r_supported ();
940
941 void packet_command (const char *args, int from_tty);
942
943 private: /* data fields */
944
945 /* The remote state. Don't reference this directly. Use the
946 get_remote_state method instead. */
947 remote_state m_remote_state;
948 };
949
950 static const target_info extended_remote_target_info = {
951 "extended-remote",
952 N_("Extended remote serial target in gdb-specific protocol"),
953 remote_doc
954 };
955
956 /* Set up the extended remote target by extending the standard remote
957 target and adding to it. */
958
959 class extended_remote_target final : public remote_target
960 {
961 public:
962 const target_info &info () const override
963 { return extended_remote_target_info; }
964
965 /* Open an extended-remote connection. */
966 static void open (const char *, int);
967
968 bool can_create_inferior () override { return true; }
969 void create_inferior (const char *, const std::string &,
970 char **, int) override;
971
972 void detach (inferior *, int) override;
973
974 bool can_attach () override { return true; }
975 void attach (const char *, int) override;
976
977 void post_attach (int) override;
978 bool supports_disable_randomization () override;
979 };
980
981 /* Per-program-space data key. */
982 static const struct program_space_key<char, gdb::xfree_deleter<char>>
983 remote_pspace_data;
984
985 /* The variable registered as the control variable used by the
986 remote exec-file commands. While the remote exec-file setting is
987 per-program-space, the set/show machinery uses this as the
988 location of the remote exec-file value. */
989 static char *remote_exec_file_var;
990
991 /* The size to align memory write packets, when practical. The protocol
992 does not guarantee any alignment, and gdb will generate short
993 writes and unaligned writes, but even as a best-effort attempt this
994 can improve bulk transfers. For instance, if a write is misaligned
995 relative to the target's data bus, the stub may need to make an extra
996 round trip fetching data from the target. This doesn't make a
997 huge difference, but it's easy to do, so we try to be helpful.
998
999 The alignment chosen is arbitrary; usually data bus width is
1000 important here, not the possibly larger cache line size. */
1001 enum { REMOTE_ALIGN_WRITES = 16 };
1002
1003 /* Prototypes for local functions. */
1004
1005 static int hexnumlen (ULONGEST num);
1006
1007 static int stubhex (int ch);
1008
1009 static int hexnumstr (char *, ULONGEST);
1010
1011 static int hexnumnstr (char *, ULONGEST, int);
1012
1013 static CORE_ADDR remote_address_masked (CORE_ADDR);
1014
1015 static void print_packet (const char *);
1016
1017 static int stub_unpack_int (char *buff, int fieldlength);
1018
1019 struct packet_config;
1020
1021 static void show_packet_config_cmd (struct packet_config *config);
1022
1023 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1024 int from_tty,
1025 struct cmd_list_element *c,
1026 const char *value);
1027
1028 static ptid_t read_ptid (const char *buf, const char **obuf);
1029
1030 static void remote_async_inferior_event_handler (gdb_client_data);
1031
1032 static bool remote_read_description_p (struct target_ops *target);
1033
1034 static void remote_console_output (const char *msg);
1035
1036 static void remote_btrace_reset (remote_state *rs);
1037
1038 static void remote_unpush_and_throw (remote_target *target);
1039
1040 /* For "remote". */
1041
1042 static struct cmd_list_element *remote_cmdlist;
1043
1044 /* For "set remote" and "show remote". */
1045
1046 static struct cmd_list_element *remote_set_cmdlist;
1047 static struct cmd_list_element *remote_show_cmdlist;
1048
1049 /* Controls whether GDB is willing to use range stepping. */
1050
1051 static bool use_range_stepping = true;
1052
1053 /* Private data that we'll store in (struct thread_info)->priv. */
1054 struct remote_thread_info : public private_thread_info
1055 {
1056 std::string extra;
1057 std::string name;
1058 int core = -1;
1059
1060 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1061 sequence of bytes. */
1062 gdb::byte_vector thread_handle;
1063
1064 /* Whether the target stopped for a breakpoint/watchpoint. */
1065 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1066
1067 /* This is set to the data address of the access causing the target
1068 to stop for a watchpoint. */
1069 CORE_ADDR watch_data_address = 0;
1070
1071 /* Fields used by the vCont action coalescing implemented in
1072 remote_resume / remote_commit_resume. remote_resume stores each
1073 thread's last resume request in these fields, so that a later
1074 remote_commit_resume knows which is the proper action for this
1075 thread to include in the vCont packet. */
1076
1077 /* True if the last target_resume call for this thread was a step
1078 request, false if a continue request. */
1079 int last_resume_step = 0;
1080
1081 /* The signal specified in the last target_resume call for this
1082 thread. */
1083 gdb_signal last_resume_sig = GDB_SIGNAL_0;
1084
1085 /* Whether this thread was already vCont-resumed on the remote
1086 side. */
1087 int vcont_resumed = 0;
1088 };
1089
1090 remote_state::remote_state ()
1091 : buf (400)
1092 {
1093 }
1094
1095 remote_state::~remote_state ()
1096 {
1097 xfree (this->last_pass_packet);
1098 xfree (this->last_program_signals_packet);
1099 xfree (this->finished_object);
1100 xfree (this->finished_annex);
1101 }
1102
1103 /* Utility: generate error from an incoming stub packet. */
1104 static void
1105 trace_error (char *buf)
1106 {
1107 if (*buf++ != 'E')
1108 return; /* not an error msg */
1109 switch (*buf)
1110 {
1111 case '1': /* malformed packet error */
1112 if (*++buf == '0') /* general case: */
1113 error (_("remote.c: error in outgoing packet."));
1114 else
1115 error (_("remote.c: error in outgoing packet at field #%ld."),
1116 strtol (buf, NULL, 16));
1117 default:
1118 error (_("Target returns error code '%s'."), buf);
1119 }
1120 }
1121
1122 /* Utility: wait for reply from stub, while accepting "O" packets. */
1123
1124 char *
1125 remote_target::remote_get_noisy_reply ()
1126 {
1127 struct remote_state *rs = get_remote_state ();
1128
1129 do /* Loop on reply from remote stub. */
1130 {
1131 char *buf;
1132
1133 QUIT; /* Allow user to bail out with ^C. */
1134 getpkt (&rs->buf, 0);
1135 buf = rs->buf.data ();
1136 if (buf[0] == 'E')
1137 trace_error (buf);
1138 else if (startswith (buf, "qRelocInsn:"))
1139 {
1140 ULONGEST ul;
1141 CORE_ADDR from, to, org_to;
1142 const char *p, *pp;
1143 int adjusted_size = 0;
1144 int relocated = 0;
1145
1146 p = buf + strlen ("qRelocInsn:");
1147 pp = unpack_varlen_hex (p, &ul);
1148 if (*pp != ';')
1149 error (_("invalid qRelocInsn packet: %s"), buf);
1150 from = ul;
1151
1152 p = pp + 1;
1153 unpack_varlen_hex (p, &ul);
1154 to = ul;
1155
1156 org_to = to;
1157
1158 try
1159 {
1160 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1161 relocated = 1;
1162 }
1163 catch (const gdb_exception &ex)
1164 {
1165 if (ex.error == MEMORY_ERROR)
1166 {
1167 /* Propagate memory errors silently back to the
1168 target. The stub may have limited the range of
1169 addresses we can write to, for example. */
1170 }
1171 else
1172 {
1173 /* Something unexpectedly bad happened. Be verbose
1174 so we can tell what, and propagate the error back
1175 to the stub, so it doesn't get stuck waiting for
1176 a response. */
1177 exception_fprintf (gdb_stderr, ex,
1178 _("warning: relocating instruction: "));
1179 }
1180 putpkt ("E01");
1181 }
1182
1183 if (relocated)
1184 {
1185 adjusted_size = to - org_to;
1186
1187 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1188 putpkt (buf);
1189 }
1190 }
1191 else if (buf[0] == 'O' && buf[1] != 'K')
1192 remote_console_output (buf + 1); /* 'O' message from stub */
1193 else
1194 return buf; /* Here's the actual reply. */
1195 }
1196 while (1);
1197 }
1198
1199 struct remote_arch_state *
1200 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1201 {
1202 remote_arch_state *rsa;
1203
1204 auto it = this->m_arch_states.find (gdbarch);
1205 if (it == this->m_arch_states.end ())
1206 {
1207 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1208 std::forward_as_tuple (gdbarch),
1209 std::forward_as_tuple (gdbarch));
1210 rsa = &p.first->second;
1211
1212 /* Make sure that the packet buffer is plenty big enough for
1213 this architecture. */
1214 if (this->buf.size () < rsa->remote_packet_size)
1215 this->buf.resize (2 * rsa->remote_packet_size);
1216 }
1217 else
1218 rsa = &it->second;
1219
1220 return rsa;
1221 }
1222
1223 /* Fetch the global remote target state. */
1224
1225 remote_state *
1226 remote_target::get_remote_state ()
1227 {
1228 /* Make sure that the remote architecture state has been
1229 initialized, because doing so might reallocate rs->buf. Any
1230 function which calls getpkt also needs to be mindful of changes
1231 to rs->buf, but this call limits the number of places which run
1232 into trouble. */
1233 m_remote_state.get_remote_arch_state (target_gdbarch ());
1234
1235 return &m_remote_state;
1236 }
1237
1238 /* Fetch the remote exec-file from the current program space. */
1239
1240 static const char *
1241 get_remote_exec_file (void)
1242 {
1243 char *remote_exec_file;
1244
1245 remote_exec_file = remote_pspace_data.get (current_program_space);
1246 if (remote_exec_file == NULL)
1247 return "";
1248
1249 return remote_exec_file;
1250 }
1251
1252 /* Set the remote exec file for PSPACE. */
1253
1254 static void
1255 set_pspace_remote_exec_file (struct program_space *pspace,
1256 const char *remote_exec_file)
1257 {
1258 char *old_file = remote_pspace_data.get (pspace);
1259
1260 xfree (old_file);
1261 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1262 }
1263
1264 /* The "set/show remote exec-file" set command hook. */
1265
1266 static void
1267 set_remote_exec_file (const char *ignored, int from_tty,
1268 struct cmd_list_element *c)
1269 {
1270 gdb_assert (remote_exec_file_var != NULL);
1271 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1272 }
1273
1274 /* The "set/show remote exec-file" show command hook. */
1275
1276 static void
1277 show_remote_exec_file (struct ui_file *file, int from_tty,
1278 struct cmd_list_element *cmd, const char *value)
1279 {
1280 fprintf_filtered (file, "%s\n", get_remote_exec_file ());
1281 }
1282
1283 static int
1284 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1285 {
1286 int regnum, num_remote_regs, offset;
1287 struct packet_reg **remote_regs;
1288
1289 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1290 {
1291 struct packet_reg *r = &regs[regnum];
1292
1293 if (register_size (gdbarch, regnum) == 0)
1294 /* Do not try to fetch zero-sized (placeholder) registers. */
1295 r->pnum = -1;
1296 else
1297 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1298
1299 r->regnum = regnum;
1300 }
1301
1302 /* Define the g/G packet format as the contents of each register
1303 with a remote protocol number, in order of ascending protocol
1304 number. */
1305
1306 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1307 for (num_remote_regs = 0, regnum = 0;
1308 regnum < gdbarch_num_regs (gdbarch);
1309 regnum++)
1310 if (regs[regnum].pnum != -1)
1311 remote_regs[num_remote_regs++] = &regs[regnum];
1312
1313 std::sort (remote_regs, remote_regs + num_remote_regs,
1314 [] (const packet_reg *a, const packet_reg *b)
1315 { return a->pnum < b->pnum; });
1316
1317 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1318 {
1319 remote_regs[regnum]->in_g_packet = 1;
1320 remote_regs[regnum]->offset = offset;
1321 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1322 }
1323
1324 return offset;
1325 }
1326
1327 /* Given the architecture described by GDBARCH, return the remote
1328 protocol register's number and the register's offset in the g/G
1329 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1330 If the target does not have a mapping for REGNUM, return false,
1331 otherwise, return true. */
1332
1333 int
1334 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1335 int *pnum, int *poffset)
1336 {
1337 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1338
1339 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1340
1341 map_regcache_remote_table (gdbarch, regs.data ());
1342
1343 *pnum = regs[regnum].pnum;
1344 *poffset = regs[regnum].offset;
1345
1346 return *pnum != -1;
1347 }
1348
1349 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1350 {
1351 /* Use the architecture to build a regnum<->pnum table, which will be
1352 1:1 unless a feature set specifies otherwise. */
1353 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1354
1355 /* Record the maximum possible size of the g packet - it may turn out
1356 to be smaller. */
1357 this->sizeof_g_packet
1358 = map_regcache_remote_table (gdbarch, this->regs.get ());
1359
1360 /* Default maximum number of characters in a packet body. Many
1361 remote stubs have a hardwired buffer size of 400 bytes
1362 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1363 as the maximum packet-size to ensure that the packet and an extra
1364 NUL character can always fit in the buffer. This stops GDB
1365 trashing stubs that try to squeeze an extra NUL into what is
1366 already a full buffer (As of 1999-12-04 that was most stubs). */
1367 this->remote_packet_size = 400 - 1;
1368
1369 /* This one is filled in when a ``g'' packet is received. */
1370 this->actual_register_packet_size = 0;
1371
1372 /* Should rsa->sizeof_g_packet needs more space than the
1373 default, adjust the size accordingly. Remember that each byte is
1374 encoded as two characters. 32 is the overhead for the packet
1375 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1376 (``$NN:G...#NN'') is a better guess, the below has been padded a
1377 little. */
1378 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1379 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1380 }
1381
1382 /* Get a pointer to the current remote target. If not connected to a
1383 remote target, return NULL. */
1384
1385 static remote_target *
1386 get_current_remote_target ()
1387 {
1388 target_ops *proc_target = current_inferior ()->process_target ();
1389 return dynamic_cast<remote_target *> (proc_target);
1390 }
1391
1392 /* Return the current allowed size of a remote packet. This is
1393 inferred from the current architecture, and should be used to
1394 limit the length of outgoing packets. */
1395 long
1396 remote_target::get_remote_packet_size ()
1397 {
1398 struct remote_state *rs = get_remote_state ();
1399 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1400
1401 if (rs->explicit_packet_size)
1402 return rs->explicit_packet_size;
1403
1404 return rsa->remote_packet_size;
1405 }
1406
1407 static struct packet_reg *
1408 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1409 long regnum)
1410 {
1411 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1412 return NULL;
1413 else
1414 {
1415 struct packet_reg *r = &rsa->regs[regnum];
1416
1417 gdb_assert (r->regnum == regnum);
1418 return r;
1419 }
1420 }
1421
1422 static struct packet_reg *
1423 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1424 LONGEST pnum)
1425 {
1426 int i;
1427
1428 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1429 {
1430 struct packet_reg *r = &rsa->regs[i];
1431
1432 if (r->pnum == pnum)
1433 return r;
1434 }
1435 return NULL;
1436 }
1437
1438 /* Allow the user to specify what sequence to send to the remote
1439 when he requests a program interruption: Although ^C is usually
1440 what remote systems expect (this is the default, here), it is
1441 sometimes preferable to send a break. On other systems such
1442 as the Linux kernel, a break followed by g, which is Magic SysRq g
1443 is required in order to interrupt the execution. */
1444 const char interrupt_sequence_control_c[] = "Ctrl-C";
1445 const char interrupt_sequence_break[] = "BREAK";
1446 const char interrupt_sequence_break_g[] = "BREAK-g";
1447 static const char *const interrupt_sequence_modes[] =
1448 {
1449 interrupt_sequence_control_c,
1450 interrupt_sequence_break,
1451 interrupt_sequence_break_g,
1452 NULL
1453 };
1454 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1455
1456 static void
1457 show_interrupt_sequence (struct ui_file *file, int from_tty,
1458 struct cmd_list_element *c,
1459 const char *value)
1460 {
1461 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1462 fprintf_filtered (file,
1463 _("Send the ASCII ETX character (Ctrl-c) "
1464 "to the remote target to interrupt the "
1465 "execution of the program.\n"));
1466 else if (interrupt_sequence_mode == interrupt_sequence_break)
1467 fprintf_filtered (file,
1468 _("send a break signal to the remote target "
1469 "to interrupt the execution of the program.\n"));
1470 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1471 fprintf_filtered (file,
1472 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1473 "the remote target to interrupt the execution "
1474 "of Linux kernel.\n"));
1475 else
1476 internal_error (__FILE__, __LINE__,
1477 _("Invalid value for interrupt_sequence_mode: %s."),
1478 interrupt_sequence_mode);
1479 }
1480
1481 /* This boolean variable specifies whether interrupt_sequence is sent
1482 to the remote target when gdb connects to it.
1483 This is mostly needed when you debug the Linux kernel: The Linux kernel
1484 expects BREAK g which is Magic SysRq g for connecting gdb. */
1485 static bool interrupt_on_connect = false;
1486
1487 /* This variable is used to implement the "set/show remotebreak" commands.
1488 Since these commands are now deprecated in favor of "set/show remote
1489 interrupt-sequence", it no longer has any effect on the code. */
1490 static bool remote_break;
1491
1492 static void
1493 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1494 {
1495 if (remote_break)
1496 interrupt_sequence_mode = interrupt_sequence_break;
1497 else
1498 interrupt_sequence_mode = interrupt_sequence_control_c;
1499 }
1500
1501 static void
1502 show_remotebreak (struct ui_file *file, int from_tty,
1503 struct cmd_list_element *c,
1504 const char *value)
1505 {
1506 }
1507
1508 /* This variable sets the number of bits in an address that are to be
1509 sent in a memory ("M" or "m") packet. Normally, after stripping
1510 leading zeros, the entire address would be sent. This variable
1511 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1512 initial implementation of remote.c restricted the address sent in
1513 memory packets to ``host::sizeof long'' bytes - (typically 32
1514 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1515 address was never sent. Since fixing this bug may cause a break in
1516 some remote targets this variable is principally provided to
1517 facilitate backward compatibility. */
1518
1519 static unsigned int remote_address_size;
1520
1521 \f
1522 /* User configurable variables for the number of characters in a
1523 memory read/write packet. MIN (rsa->remote_packet_size,
1524 rsa->sizeof_g_packet) is the default. Some targets need smaller
1525 values (fifo overruns, et.al.) and some users need larger values
1526 (speed up transfers). The variables ``preferred_*'' (the user
1527 request), ``current_*'' (what was actually set) and ``forced_*''
1528 (Positive - a soft limit, negative - a hard limit). */
1529
1530 struct memory_packet_config
1531 {
1532 const char *name;
1533 long size;
1534 int fixed_p;
1535 };
1536
1537 /* The default max memory-write-packet-size, when the setting is
1538 "fixed". The 16k is historical. (It came from older GDB's using
1539 alloca for buffers and the knowledge (folklore?) that some hosts
1540 don't cope very well with large alloca calls.) */
1541 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1542
1543 /* The minimum remote packet size for memory transfers. Ensures we
1544 can write at least one byte. */
1545 #define MIN_MEMORY_PACKET_SIZE 20
1546
1547 /* Get the memory packet size, assuming it is fixed. */
1548
1549 static long
1550 get_fixed_memory_packet_size (struct memory_packet_config *config)
1551 {
1552 gdb_assert (config->fixed_p);
1553
1554 if (config->size <= 0)
1555 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1556 else
1557 return config->size;
1558 }
1559
1560 /* Compute the current size of a read/write packet. Since this makes
1561 use of ``actual_register_packet_size'' the computation is dynamic. */
1562
1563 long
1564 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1565 {
1566 struct remote_state *rs = get_remote_state ();
1567 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1568
1569 long what_they_get;
1570 if (config->fixed_p)
1571 what_they_get = get_fixed_memory_packet_size (config);
1572 else
1573 {
1574 what_they_get = get_remote_packet_size ();
1575 /* Limit the packet to the size specified by the user. */
1576 if (config->size > 0
1577 && what_they_get > config->size)
1578 what_they_get = config->size;
1579
1580 /* Limit it to the size of the targets ``g'' response unless we have
1581 permission from the stub to use a larger packet size. */
1582 if (rs->explicit_packet_size == 0
1583 && rsa->actual_register_packet_size > 0
1584 && what_they_get > rsa->actual_register_packet_size)
1585 what_they_get = rsa->actual_register_packet_size;
1586 }
1587 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1588 what_they_get = MIN_MEMORY_PACKET_SIZE;
1589
1590 /* Make sure there is room in the global buffer for this packet
1591 (including its trailing NUL byte). */
1592 if (rs->buf.size () < what_they_get + 1)
1593 rs->buf.resize (2 * what_they_get);
1594
1595 return what_they_get;
1596 }
1597
1598 /* Update the size of a read/write packet. If they user wants
1599 something really big then do a sanity check. */
1600
1601 static void
1602 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1603 {
1604 int fixed_p = config->fixed_p;
1605 long size = config->size;
1606
1607 if (args == NULL)
1608 error (_("Argument required (integer, `fixed' or `limited')."));
1609 else if (strcmp (args, "hard") == 0
1610 || strcmp (args, "fixed") == 0)
1611 fixed_p = 1;
1612 else if (strcmp (args, "soft") == 0
1613 || strcmp (args, "limit") == 0)
1614 fixed_p = 0;
1615 else
1616 {
1617 char *end;
1618
1619 size = strtoul (args, &end, 0);
1620 if (args == end)
1621 error (_("Invalid %s (bad syntax)."), config->name);
1622
1623 /* Instead of explicitly capping the size of a packet to or
1624 disallowing it, the user is allowed to set the size to
1625 something arbitrarily large. */
1626 }
1627
1628 /* Extra checks? */
1629 if (fixed_p && !config->fixed_p)
1630 {
1631 /* So that the query shows the correct value. */
1632 long query_size = (size <= 0
1633 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1634 : size);
1635
1636 if (! query (_("The target may not be able to correctly handle a %s\n"
1637 "of %ld bytes. Change the packet size? "),
1638 config->name, query_size))
1639 error (_("Packet size not changed."));
1640 }
1641 /* Update the config. */
1642 config->fixed_p = fixed_p;
1643 config->size = size;
1644 }
1645
1646 static void
1647 show_memory_packet_size (struct memory_packet_config *config)
1648 {
1649 if (config->size == 0)
1650 printf_filtered (_("The %s is 0 (default). "), config->name);
1651 else
1652 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1653 if (config->fixed_p)
1654 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1655 get_fixed_memory_packet_size (config));
1656 else
1657 {
1658 remote_target *remote = get_current_remote_target ();
1659
1660 if (remote != NULL)
1661 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1662 remote->get_memory_packet_size (config));
1663 else
1664 puts_filtered ("The actual limit will be further reduced "
1665 "dependent on the target.\n");
1666 }
1667 }
1668
1669 /* FIXME: needs to be per-remote-target. */
1670 static struct memory_packet_config memory_write_packet_config =
1671 {
1672 "memory-write-packet-size",
1673 };
1674
1675 static void
1676 set_memory_write_packet_size (const char *args, int from_tty)
1677 {
1678 set_memory_packet_size (args, &memory_write_packet_config);
1679 }
1680
1681 static void
1682 show_memory_write_packet_size (const char *args, int from_tty)
1683 {
1684 show_memory_packet_size (&memory_write_packet_config);
1685 }
1686
1687 /* Show the number of hardware watchpoints that can be used. */
1688
1689 static void
1690 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1691 struct cmd_list_element *c,
1692 const char *value)
1693 {
1694 fprintf_filtered (file, _("The maximum number of target hardware "
1695 "watchpoints is %s.\n"), value);
1696 }
1697
1698 /* Show the length limit (in bytes) for hardware watchpoints. */
1699
1700 static void
1701 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1702 struct cmd_list_element *c,
1703 const char *value)
1704 {
1705 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1706 "hardware watchpoint is %s.\n"), value);
1707 }
1708
1709 /* Show the number of hardware breakpoints that can be used. */
1710
1711 static void
1712 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1713 struct cmd_list_element *c,
1714 const char *value)
1715 {
1716 fprintf_filtered (file, _("The maximum number of target hardware "
1717 "breakpoints is %s.\n"), value);
1718 }
1719
1720 /* Controls the maximum number of characters to display in the debug output
1721 for each remote packet. The remaining characters are omitted. */
1722
1723 static int remote_packet_max_chars = 512;
1724
1725 /* Show the maximum number of characters to display for each remote packet
1726 when remote debugging is enabled. */
1727
1728 static void
1729 show_remote_packet_max_chars (struct ui_file *file, int from_tty,
1730 struct cmd_list_element *c,
1731 const char *value)
1732 {
1733 fprintf_filtered (file, _("Number of remote packet characters to "
1734 "display is %s.\n"), value);
1735 }
1736
1737 long
1738 remote_target::get_memory_write_packet_size ()
1739 {
1740 return get_memory_packet_size (&memory_write_packet_config);
1741 }
1742
1743 /* FIXME: needs to be per-remote-target. */
1744 static struct memory_packet_config memory_read_packet_config =
1745 {
1746 "memory-read-packet-size",
1747 };
1748
1749 static void
1750 set_memory_read_packet_size (const char *args, int from_tty)
1751 {
1752 set_memory_packet_size (args, &memory_read_packet_config);
1753 }
1754
1755 static void
1756 show_memory_read_packet_size (const char *args, int from_tty)
1757 {
1758 show_memory_packet_size (&memory_read_packet_config);
1759 }
1760
1761 long
1762 remote_target::get_memory_read_packet_size ()
1763 {
1764 long size = get_memory_packet_size (&memory_read_packet_config);
1765
1766 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1767 extra buffer size argument before the memory read size can be
1768 increased beyond this. */
1769 if (size > get_remote_packet_size ())
1770 size = get_remote_packet_size ();
1771 return size;
1772 }
1773
1774 \f
1775
1776 struct packet_config
1777 {
1778 const char *name;
1779 const char *title;
1780
1781 /* If auto, GDB auto-detects support for this packet or feature,
1782 either through qSupported, or by trying the packet and looking
1783 at the response. If true, GDB assumes the target supports this
1784 packet. If false, the packet is disabled. Configs that don't
1785 have an associated command always have this set to auto. */
1786 enum auto_boolean detect;
1787
1788 /* Does the target support this packet? */
1789 enum packet_support support;
1790 };
1791
1792 static enum packet_support packet_config_support (struct packet_config *config);
1793 static enum packet_support packet_support (int packet);
1794
1795 static void
1796 show_packet_config_cmd (struct packet_config *config)
1797 {
1798 const char *support = "internal-error";
1799
1800 switch (packet_config_support (config))
1801 {
1802 case PACKET_ENABLE:
1803 support = "enabled";
1804 break;
1805 case PACKET_DISABLE:
1806 support = "disabled";
1807 break;
1808 case PACKET_SUPPORT_UNKNOWN:
1809 support = "unknown";
1810 break;
1811 }
1812 switch (config->detect)
1813 {
1814 case AUTO_BOOLEAN_AUTO:
1815 printf_filtered (_("Support for the `%s' packet "
1816 "is auto-detected, currently %s.\n"),
1817 config->name, support);
1818 break;
1819 case AUTO_BOOLEAN_TRUE:
1820 case AUTO_BOOLEAN_FALSE:
1821 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1822 config->name, support);
1823 break;
1824 }
1825 }
1826
1827 static void
1828 add_packet_config_cmd (struct packet_config *config, const char *name,
1829 const char *title, int legacy)
1830 {
1831 char *set_doc;
1832 char *show_doc;
1833 char *cmd_name;
1834
1835 config->name = name;
1836 config->title = title;
1837 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1838 name, title);
1839 show_doc = xstrprintf ("Show current use of remote "
1840 "protocol `%s' (%s) packet.",
1841 name, title);
1842 /* set/show TITLE-packet {auto,on,off} */
1843 cmd_name = xstrprintf ("%s-packet", title);
1844 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1845 &config->detect, set_doc,
1846 show_doc, NULL, /* help_doc */
1847 NULL,
1848 show_remote_protocol_packet_cmd,
1849 &remote_set_cmdlist, &remote_show_cmdlist);
1850 /* The command code copies the documentation strings. */
1851 xfree (set_doc);
1852 xfree (show_doc);
1853 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1854 if (legacy)
1855 {
1856 char *legacy_name;
1857
1858 legacy_name = xstrprintf ("%s-packet", name);
1859 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1860 &remote_set_cmdlist);
1861 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1862 &remote_show_cmdlist);
1863 }
1864 }
1865
1866 static enum packet_result
1867 packet_check_result (const char *buf)
1868 {
1869 if (buf[0] != '\0')
1870 {
1871 /* The stub recognized the packet request. Check that the
1872 operation succeeded. */
1873 if (buf[0] == 'E'
1874 && isxdigit (buf[1]) && isxdigit (buf[2])
1875 && buf[3] == '\0')
1876 /* "Enn" - definitely an error. */
1877 return PACKET_ERROR;
1878
1879 /* Always treat "E." as an error. This will be used for
1880 more verbose error messages, such as E.memtypes. */
1881 if (buf[0] == 'E' && buf[1] == '.')
1882 return PACKET_ERROR;
1883
1884 /* The packet may or may not be OK. Just assume it is. */
1885 return PACKET_OK;
1886 }
1887 else
1888 /* The stub does not support the packet. */
1889 return PACKET_UNKNOWN;
1890 }
1891
1892 static enum packet_result
1893 packet_check_result (const gdb::char_vector &buf)
1894 {
1895 return packet_check_result (buf.data ());
1896 }
1897
1898 static enum packet_result
1899 packet_ok (const char *buf, struct packet_config *config)
1900 {
1901 enum packet_result result;
1902
1903 if (config->detect != AUTO_BOOLEAN_TRUE
1904 && config->support == PACKET_DISABLE)
1905 internal_error (__FILE__, __LINE__,
1906 _("packet_ok: attempt to use a disabled packet"));
1907
1908 result = packet_check_result (buf);
1909 switch (result)
1910 {
1911 case PACKET_OK:
1912 case PACKET_ERROR:
1913 /* The stub recognized the packet request. */
1914 if (config->support == PACKET_SUPPORT_UNKNOWN)
1915 {
1916 if (remote_debug)
1917 fprintf_unfiltered (gdb_stdlog,
1918 "Packet %s (%s) is supported\n",
1919 config->name, config->title);
1920 config->support = PACKET_ENABLE;
1921 }
1922 break;
1923 case PACKET_UNKNOWN:
1924 /* The stub does not support the packet. */
1925 if (config->detect == AUTO_BOOLEAN_AUTO
1926 && config->support == PACKET_ENABLE)
1927 {
1928 /* If the stub previously indicated that the packet was
1929 supported then there is a protocol error. */
1930 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1931 config->name, config->title);
1932 }
1933 else if (config->detect == AUTO_BOOLEAN_TRUE)
1934 {
1935 /* The user set it wrong. */
1936 error (_("Enabled packet %s (%s) not recognized by stub"),
1937 config->name, config->title);
1938 }
1939
1940 if (remote_debug)
1941 fprintf_unfiltered (gdb_stdlog,
1942 "Packet %s (%s) is NOT supported\n",
1943 config->name, config->title);
1944 config->support = PACKET_DISABLE;
1945 break;
1946 }
1947
1948 return result;
1949 }
1950
1951 static enum packet_result
1952 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
1953 {
1954 return packet_ok (buf.data (), config);
1955 }
1956
1957 enum {
1958 PACKET_vCont = 0,
1959 PACKET_X,
1960 PACKET_qSymbol,
1961 PACKET_P,
1962 PACKET_p,
1963 PACKET_Z0,
1964 PACKET_Z1,
1965 PACKET_Z2,
1966 PACKET_Z3,
1967 PACKET_Z4,
1968 PACKET_vFile_setfs,
1969 PACKET_vFile_open,
1970 PACKET_vFile_pread,
1971 PACKET_vFile_pwrite,
1972 PACKET_vFile_close,
1973 PACKET_vFile_unlink,
1974 PACKET_vFile_readlink,
1975 PACKET_vFile_fstat,
1976 PACKET_qXfer_auxv,
1977 PACKET_qXfer_features,
1978 PACKET_qXfer_exec_file,
1979 PACKET_qXfer_libraries,
1980 PACKET_qXfer_libraries_svr4,
1981 PACKET_qXfer_memory_map,
1982 PACKET_qXfer_osdata,
1983 PACKET_qXfer_threads,
1984 PACKET_qXfer_statictrace_read,
1985 PACKET_qXfer_traceframe_info,
1986 PACKET_qXfer_uib,
1987 PACKET_qGetTIBAddr,
1988 PACKET_qGetTLSAddr,
1989 PACKET_qSupported,
1990 PACKET_qTStatus,
1991 PACKET_QPassSignals,
1992 PACKET_QCatchSyscalls,
1993 PACKET_QProgramSignals,
1994 PACKET_QSetWorkingDir,
1995 PACKET_QStartupWithShell,
1996 PACKET_QEnvironmentHexEncoded,
1997 PACKET_QEnvironmentReset,
1998 PACKET_QEnvironmentUnset,
1999 PACKET_qCRC,
2000 PACKET_qSearch_memory,
2001 PACKET_vAttach,
2002 PACKET_vRun,
2003 PACKET_QStartNoAckMode,
2004 PACKET_vKill,
2005 PACKET_qXfer_siginfo_read,
2006 PACKET_qXfer_siginfo_write,
2007 PACKET_qAttached,
2008
2009 /* Support for conditional tracepoints. */
2010 PACKET_ConditionalTracepoints,
2011
2012 /* Support for target-side breakpoint conditions. */
2013 PACKET_ConditionalBreakpoints,
2014
2015 /* Support for target-side breakpoint commands. */
2016 PACKET_BreakpointCommands,
2017
2018 /* Support for fast tracepoints. */
2019 PACKET_FastTracepoints,
2020
2021 /* Support for static tracepoints. */
2022 PACKET_StaticTracepoints,
2023
2024 /* Support for installing tracepoints while a trace experiment is
2025 running. */
2026 PACKET_InstallInTrace,
2027
2028 PACKET_bc,
2029 PACKET_bs,
2030 PACKET_TracepointSource,
2031 PACKET_QAllow,
2032 PACKET_qXfer_fdpic,
2033 PACKET_QDisableRandomization,
2034 PACKET_QAgent,
2035 PACKET_QTBuffer_size,
2036 PACKET_Qbtrace_off,
2037 PACKET_Qbtrace_bts,
2038 PACKET_Qbtrace_pt,
2039 PACKET_qXfer_btrace,
2040
2041 /* Support for the QNonStop packet. */
2042 PACKET_QNonStop,
2043
2044 /* Support for the QThreadEvents packet. */
2045 PACKET_QThreadEvents,
2046
2047 /* Support for multi-process extensions. */
2048 PACKET_multiprocess_feature,
2049
2050 /* Support for enabling and disabling tracepoints while a trace
2051 experiment is running. */
2052 PACKET_EnableDisableTracepoints_feature,
2053
2054 /* Support for collecting strings using the tracenz bytecode. */
2055 PACKET_tracenz_feature,
2056
2057 /* Support for continuing to run a trace experiment while GDB is
2058 disconnected. */
2059 PACKET_DisconnectedTracing_feature,
2060
2061 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2062 PACKET_augmented_libraries_svr4_read_feature,
2063
2064 /* Support for the qXfer:btrace-conf:read packet. */
2065 PACKET_qXfer_btrace_conf,
2066
2067 /* Support for the Qbtrace-conf:bts:size packet. */
2068 PACKET_Qbtrace_conf_bts_size,
2069
2070 /* Support for swbreak+ feature. */
2071 PACKET_swbreak_feature,
2072
2073 /* Support for hwbreak+ feature. */
2074 PACKET_hwbreak_feature,
2075
2076 /* Support for fork events. */
2077 PACKET_fork_event_feature,
2078
2079 /* Support for vfork events. */
2080 PACKET_vfork_event_feature,
2081
2082 /* Support for the Qbtrace-conf:pt:size packet. */
2083 PACKET_Qbtrace_conf_pt_size,
2084
2085 /* Support for exec events. */
2086 PACKET_exec_event_feature,
2087
2088 /* Support for query supported vCont actions. */
2089 PACKET_vContSupported,
2090
2091 /* Support remote CTRL-C. */
2092 PACKET_vCtrlC,
2093
2094 /* Support TARGET_WAITKIND_NO_RESUMED. */
2095 PACKET_no_resumed,
2096
2097 PACKET_MAX
2098 };
2099
2100 /* FIXME: needs to be per-remote-target. Ignoring this for now,
2101 assuming all remote targets are the same server (thus all support
2102 the same packets). */
2103 static struct packet_config remote_protocol_packets[PACKET_MAX];
2104
2105 /* Returns the packet's corresponding "set remote foo-packet" command
2106 state. See struct packet_config for more details. */
2107
2108 static enum auto_boolean
2109 packet_set_cmd_state (int packet)
2110 {
2111 return remote_protocol_packets[packet].detect;
2112 }
2113
2114 /* Returns whether a given packet or feature is supported. This takes
2115 into account the state of the corresponding "set remote foo-packet"
2116 command, which may be used to bypass auto-detection. */
2117
2118 static enum packet_support
2119 packet_config_support (struct packet_config *config)
2120 {
2121 switch (config->detect)
2122 {
2123 case AUTO_BOOLEAN_TRUE:
2124 return PACKET_ENABLE;
2125 case AUTO_BOOLEAN_FALSE:
2126 return PACKET_DISABLE;
2127 case AUTO_BOOLEAN_AUTO:
2128 return config->support;
2129 default:
2130 gdb_assert_not_reached (_("bad switch"));
2131 }
2132 }
2133
2134 /* Same as packet_config_support, but takes the packet's enum value as
2135 argument. */
2136
2137 static enum packet_support
2138 packet_support (int packet)
2139 {
2140 struct packet_config *config = &remote_protocol_packets[packet];
2141
2142 return packet_config_support (config);
2143 }
2144
2145 static void
2146 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2147 struct cmd_list_element *c,
2148 const char *value)
2149 {
2150 struct packet_config *packet;
2151
2152 for (packet = remote_protocol_packets;
2153 packet < &remote_protocol_packets[PACKET_MAX];
2154 packet++)
2155 {
2156 if (&packet->detect == c->var)
2157 {
2158 show_packet_config_cmd (packet);
2159 return;
2160 }
2161 }
2162 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2163 c->name);
2164 }
2165
2166 /* Should we try one of the 'Z' requests? */
2167
2168 enum Z_packet_type
2169 {
2170 Z_PACKET_SOFTWARE_BP,
2171 Z_PACKET_HARDWARE_BP,
2172 Z_PACKET_WRITE_WP,
2173 Z_PACKET_READ_WP,
2174 Z_PACKET_ACCESS_WP,
2175 NR_Z_PACKET_TYPES
2176 };
2177
2178 /* For compatibility with older distributions. Provide a ``set remote
2179 Z-packet ...'' command that updates all the Z packet types. */
2180
2181 static enum auto_boolean remote_Z_packet_detect;
2182
2183 static void
2184 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2185 struct cmd_list_element *c)
2186 {
2187 int i;
2188
2189 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2190 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2191 }
2192
2193 static void
2194 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2195 struct cmd_list_element *c,
2196 const char *value)
2197 {
2198 int i;
2199
2200 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2201 {
2202 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2203 }
2204 }
2205
2206 /* Returns true if the multi-process extensions are in effect. */
2207
2208 static int
2209 remote_multi_process_p (struct remote_state *rs)
2210 {
2211 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2212 }
2213
2214 /* Returns true if fork events are supported. */
2215
2216 static int
2217 remote_fork_event_p (struct remote_state *rs)
2218 {
2219 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2220 }
2221
2222 /* Returns true if vfork events are supported. */
2223
2224 static int
2225 remote_vfork_event_p (struct remote_state *rs)
2226 {
2227 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2228 }
2229
2230 /* Returns true if exec events are supported. */
2231
2232 static int
2233 remote_exec_event_p (struct remote_state *rs)
2234 {
2235 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2236 }
2237
2238 /* Insert fork catchpoint target routine. If fork events are enabled
2239 then return success, nothing more to do. */
2240
2241 int
2242 remote_target::insert_fork_catchpoint (int pid)
2243 {
2244 struct remote_state *rs = get_remote_state ();
2245
2246 return !remote_fork_event_p (rs);
2247 }
2248
2249 /* Remove fork catchpoint target routine. Nothing to do, just
2250 return success. */
2251
2252 int
2253 remote_target::remove_fork_catchpoint (int pid)
2254 {
2255 return 0;
2256 }
2257
2258 /* Insert vfork catchpoint target routine. If vfork events are enabled
2259 then return success, nothing more to do. */
2260
2261 int
2262 remote_target::insert_vfork_catchpoint (int pid)
2263 {
2264 struct remote_state *rs = get_remote_state ();
2265
2266 return !remote_vfork_event_p (rs);
2267 }
2268
2269 /* Remove vfork catchpoint target routine. Nothing to do, just
2270 return success. */
2271
2272 int
2273 remote_target::remove_vfork_catchpoint (int pid)
2274 {
2275 return 0;
2276 }
2277
2278 /* Insert exec catchpoint target routine. If exec events are
2279 enabled, just return success. */
2280
2281 int
2282 remote_target::insert_exec_catchpoint (int pid)
2283 {
2284 struct remote_state *rs = get_remote_state ();
2285
2286 return !remote_exec_event_p (rs);
2287 }
2288
2289 /* Remove exec catchpoint target routine. Nothing to do, just
2290 return success. */
2291
2292 int
2293 remote_target::remove_exec_catchpoint (int pid)
2294 {
2295 return 0;
2296 }
2297
2298 \f
2299
2300 /* Take advantage of the fact that the TID field is not used, to tag
2301 special ptids with it set to != 0. */
2302 static const ptid_t magic_null_ptid (42000, -1, 1);
2303 static const ptid_t not_sent_ptid (42000, -2, 1);
2304 static const ptid_t any_thread_ptid (42000, 0, 1);
2305
2306 /* Find out if the stub attached to PID (and hence GDB should offer to
2307 detach instead of killing it when bailing out). */
2308
2309 int
2310 remote_target::remote_query_attached (int pid)
2311 {
2312 struct remote_state *rs = get_remote_state ();
2313 size_t size = get_remote_packet_size ();
2314
2315 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2316 return 0;
2317
2318 if (remote_multi_process_p (rs))
2319 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2320 else
2321 xsnprintf (rs->buf.data (), size, "qAttached");
2322
2323 putpkt (rs->buf);
2324 getpkt (&rs->buf, 0);
2325
2326 switch (packet_ok (rs->buf,
2327 &remote_protocol_packets[PACKET_qAttached]))
2328 {
2329 case PACKET_OK:
2330 if (strcmp (rs->buf.data (), "1") == 0)
2331 return 1;
2332 break;
2333 case PACKET_ERROR:
2334 warning (_("Remote failure reply: %s"), rs->buf.data ());
2335 break;
2336 case PACKET_UNKNOWN:
2337 break;
2338 }
2339
2340 return 0;
2341 }
2342
2343 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2344 has been invented by GDB, instead of reported by the target. Since
2345 we can be connected to a remote system before before knowing about
2346 any inferior, mark the target with execution when we find the first
2347 inferior. If ATTACHED is 1, then we had just attached to this
2348 inferior. If it is 0, then we just created this inferior. If it
2349 is -1, then try querying the remote stub to find out if it had
2350 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2351 attempt to open this inferior's executable as the main executable
2352 if no main executable is open already. */
2353
2354 inferior *
2355 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2356 int try_open_exec)
2357 {
2358 struct inferior *inf;
2359
2360 /* Check whether this process we're learning about is to be
2361 considered attached, or if is to be considered to have been
2362 spawned by the stub. */
2363 if (attached == -1)
2364 attached = remote_query_attached (pid);
2365
2366 if (gdbarch_has_global_solist (target_gdbarch ()))
2367 {
2368 /* If the target shares code across all inferiors, then every
2369 attach adds a new inferior. */
2370 inf = add_inferior (pid);
2371
2372 /* ... and every inferior is bound to the same program space.
2373 However, each inferior may still have its own address
2374 space. */
2375 inf->aspace = maybe_new_address_space ();
2376 inf->pspace = current_program_space;
2377 }
2378 else
2379 {
2380 /* In the traditional debugging scenario, there's a 1-1 match
2381 between program/address spaces. We simply bind the inferior
2382 to the program space's address space. */
2383 inf = current_inferior ();
2384
2385 /* However, if the current inferior is already bound to a
2386 process, find some other empty inferior. */
2387 if (inf->pid != 0)
2388 {
2389 inf = nullptr;
2390 for (inferior *it : all_inferiors ())
2391 if (it->pid == 0)
2392 {
2393 inf = it;
2394 break;
2395 }
2396 }
2397 if (inf == nullptr)
2398 {
2399 /* Since all inferiors were already bound to a process, add
2400 a new inferior. */
2401 inf = add_inferior_with_spaces ();
2402 }
2403 switch_to_inferior_no_thread (inf);
2404 push_target (this);
2405 inferior_appeared (inf, pid);
2406 }
2407
2408 inf->attach_flag = attached;
2409 inf->fake_pid_p = fake_pid_p;
2410
2411 /* If no main executable is currently open then attempt to
2412 open the file that was executed to create this inferior. */
2413 if (try_open_exec && get_exec_file (0) == NULL)
2414 exec_file_locate_attach (pid, 0, 1);
2415
2416 /* Check for exec file mismatch, and let the user solve it. */
2417 validate_exec_file (1);
2418
2419 return inf;
2420 }
2421
2422 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2423 static remote_thread_info *get_remote_thread_info (remote_target *target,
2424 ptid_t ptid);
2425
2426 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2427 according to RUNNING. */
2428
2429 thread_info *
2430 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2431 {
2432 struct remote_state *rs = get_remote_state ();
2433 struct thread_info *thread;
2434
2435 /* GDB historically didn't pull threads in the initial connection
2436 setup. If the remote target doesn't even have a concept of
2437 threads (e.g., a bare-metal target), even if internally we
2438 consider that a single-threaded target, mentioning a new thread
2439 might be confusing to the user. Be silent then, preserving the
2440 age old behavior. */
2441 if (rs->starting_up)
2442 thread = add_thread_silent (this, ptid);
2443 else
2444 thread = add_thread (this, ptid);
2445
2446 get_remote_thread_info (thread)->vcont_resumed = executing;
2447 set_executing (this, ptid, executing);
2448 set_running (this, ptid, running);
2449
2450 return thread;
2451 }
2452
2453 /* Come here when we learn about a thread id from the remote target.
2454 It may be the first time we hear about such thread, so take the
2455 opportunity to add it to GDB's thread list. In case this is the
2456 first time we're noticing its corresponding inferior, add it to
2457 GDB's inferior list as well. EXECUTING indicates whether the
2458 thread is (internally) executing or stopped. */
2459
2460 void
2461 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2462 {
2463 /* In non-stop mode, we assume new found threads are (externally)
2464 running until proven otherwise with a stop reply. In all-stop,
2465 we can only get here if all threads are stopped. */
2466 int running = target_is_non_stop_p () ? 1 : 0;
2467
2468 /* If this is a new thread, add it to GDB's thread list.
2469 If we leave it up to WFI to do this, bad things will happen. */
2470
2471 thread_info *tp = find_thread_ptid (this, currthread);
2472 if (tp != NULL && tp->state == THREAD_EXITED)
2473 {
2474 /* We're seeing an event on a thread id we knew had exited.
2475 This has to be a new thread reusing the old id. Add it. */
2476 remote_add_thread (currthread, running, executing);
2477 return;
2478 }
2479
2480 if (!in_thread_list (this, currthread))
2481 {
2482 struct inferior *inf = NULL;
2483 int pid = currthread.pid ();
2484
2485 if (inferior_ptid.is_pid ()
2486 && pid == inferior_ptid.pid ())
2487 {
2488 /* inferior_ptid has no thread member yet. This can happen
2489 with the vAttach -> remote_wait,"TAAthread:" path if the
2490 stub doesn't support qC. This is the first stop reported
2491 after an attach, so this is the main thread. Update the
2492 ptid in the thread list. */
2493 if (in_thread_list (this, ptid_t (pid)))
2494 thread_change_ptid (this, inferior_ptid, currthread);
2495 else
2496 {
2497 thread_info *thr
2498 = remote_add_thread (currthread, running, executing);
2499 switch_to_thread (thr);
2500 }
2501 return;
2502 }
2503
2504 if (magic_null_ptid == inferior_ptid)
2505 {
2506 /* inferior_ptid is not set yet. This can happen with the
2507 vRun -> remote_wait,"TAAthread:" path if the stub
2508 doesn't support qC. This is the first stop reported
2509 after an attach, so this is the main thread. Update the
2510 ptid in the thread list. */
2511 thread_change_ptid (this, inferior_ptid, currthread);
2512 return;
2513 }
2514
2515 /* When connecting to a target remote, or to a target
2516 extended-remote which already was debugging an inferior, we
2517 may not know about it yet. Add it before adding its child
2518 thread, so notifications are emitted in a sensible order. */
2519 if (find_inferior_pid (this, currthread.pid ()) == NULL)
2520 {
2521 struct remote_state *rs = get_remote_state ();
2522 bool fake_pid_p = !remote_multi_process_p (rs);
2523
2524 inf = remote_add_inferior (fake_pid_p,
2525 currthread.pid (), -1, 1);
2526 }
2527
2528 /* This is really a new thread. Add it. */
2529 thread_info *new_thr
2530 = remote_add_thread (currthread, running, executing);
2531
2532 /* If we found a new inferior, let the common code do whatever
2533 it needs to with it (e.g., read shared libraries, insert
2534 breakpoints), unless we're just setting up an all-stop
2535 connection. */
2536 if (inf != NULL)
2537 {
2538 struct remote_state *rs = get_remote_state ();
2539
2540 if (!rs->starting_up)
2541 notice_new_inferior (new_thr, executing, 0);
2542 }
2543 }
2544 }
2545
2546 /* Return THREAD's private thread data, creating it if necessary. */
2547
2548 static remote_thread_info *
2549 get_remote_thread_info (thread_info *thread)
2550 {
2551 gdb_assert (thread != NULL);
2552
2553 if (thread->priv == NULL)
2554 thread->priv.reset (new remote_thread_info);
2555
2556 return static_cast<remote_thread_info *> (thread->priv.get ());
2557 }
2558
2559 /* Return PTID's private thread data, creating it if necessary. */
2560
2561 static remote_thread_info *
2562 get_remote_thread_info (remote_target *target, ptid_t ptid)
2563 {
2564 thread_info *thr = find_thread_ptid (target, ptid);
2565 return get_remote_thread_info (thr);
2566 }
2567
2568 /* Call this function as a result of
2569 1) A halt indication (T packet) containing a thread id
2570 2) A direct query of currthread
2571 3) Successful execution of set thread */
2572
2573 static void
2574 record_currthread (struct remote_state *rs, ptid_t currthread)
2575 {
2576 rs->general_thread = currthread;
2577 }
2578
2579 /* If 'QPassSignals' is supported, tell the remote stub what signals
2580 it can simply pass through to the inferior without reporting. */
2581
2582 void
2583 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2584 {
2585 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2586 {
2587 char *pass_packet, *p;
2588 int count = 0;
2589 struct remote_state *rs = get_remote_state ();
2590
2591 gdb_assert (pass_signals.size () < 256);
2592 for (size_t i = 0; i < pass_signals.size (); i++)
2593 {
2594 if (pass_signals[i])
2595 count++;
2596 }
2597 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2598 strcpy (pass_packet, "QPassSignals:");
2599 p = pass_packet + strlen (pass_packet);
2600 for (size_t i = 0; i < pass_signals.size (); i++)
2601 {
2602 if (pass_signals[i])
2603 {
2604 if (i >= 16)
2605 *p++ = tohex (i >> 4);
2606 *p++ = tohex (i & 15);
2607 if (count)
2608 *p++ = ';';
2609 else
2610 break;
2611 count--;
2612 }
2613 }
2614 *p = 0;
2615 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2616 {
2617 putpkt (pass_packet);
2618 getpkt (&rs->buf, 0);
2619 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2620 xfree (rs->last_pass_packet);
2621 rs->last_pass_packet = pass_packet;
2622 }
2623 else
2624 xfree (pass_packet);
2625 }
2626 }
2627
2628 /* If 'QCatchSyscalls' is supported, tell the remote stub
2629 to report syscalls to GDB. */
2630
2631 int
2632 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2633 gdb::array_view<const int> syscall_counts)
2634 {
2635 const char *catch_packet;
2636 enum packet_result result;
2637 int n_sysno = 0;
2638
2639 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2640 {
2641 /* Not supported. */
2642 return 1;
2643 }
2644
2645 if (needed && any_count == 0)
2646 {
2647 /* Count how many syscalls are to be caught. */
2648 for (size_t i = 0; i < syscall_counts.size (); i++)
2649 {
2650 if (syscall_counts[i] != 0)
2651 n_sysno++;
2652 }
2653 }
2654
2655 if (remote_debug)
2656 {
2657 fprintf_unfiltered (gdb_stdlog,
2658 "remote_set_syscall_catchpoint "
2659 "pid %d needed %d any_count %d n_sysno %d\n",
2660 pid, needed, any_count, n_sysno);
2661 }
2662
2663 std::string built_packet;
2664 if (needed)
2665 {
2666 /* Prepare a packet with the sysno list, assuming max 8+1
2667 characters for a sysno. If the resulting packet size is too
2668 big, fallback on the non-selective packet. */
2669 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2670 built_packet.reserve (maxpktsz);
2671 built_packet = "QCatchSyscalls:1";
2672 if (any_count == 0)
2673 {
2674 /* Add in each syscall to be caught. */
2675 for (size_t i = 0; i < syscall_counts.size (); i++)
2676 {
2677 if (syscall_counts[i] != 0)
2678 string_appendf (built_packet, ";%zx", i);
2679 }
2680 }
2681 if (built_packet.size () > get_remote_packet_size ())
2682 {
2683 /* catch_packet too big. Fallback to less efficient
2684 non selective mode, with GDB doing the filtering. */
2685 catch_packet = "QCatchSyscalls:1";
2686 }
2687 else
2688 catch_packet = built_packet.c_str ();
2689 }
2690 else
2691 catch_packet = "QCatchSyscalls:0";
2692
2693 struct remote_state *rs = get_remote_state ();
2694
2695 putpkt (catch_packet);
2696 getpkt (&rs->buf, 0);
2697 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2698 if (result == PACKET_OK)
2699 return 0;
2700 else
2701 return -1;
2702 }
2703
2704 /* If 'QProgramSignals' is supported, tell the remote stub what
2705 signals it should pass through to the inferior when detaching. */
2706
2707 void
2708 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2709 {
2710 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2711 {
2712 char *packet, *p;
2713 int count = 0;
2714 struct remote_state *rs = get_remote_state ();
2715
2716 gdb_assert (signals.size () < 256);
2717 for (size_t i = 0; i < signals.size (); i++)
2718 {
2719 if (signals[i])
2720 count++;
2721 }
2722 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2723 strcpy (packet, "QProgramSignals:");
2724 p = packet + strlen (packet);
2725 for (size_t i = 0; i < signals.size (); i++)
2726 {
2727 if (signal_pass_state (i))
2728 {
2729 if (i >= 16)
2730 *p++ = tohex (i >> 4);
2731 *p++ = tohex (i & 15);
2732 if (count)
2733 *p++ = ';';
2734 else
2735 break;
2736 count--;
2737 }
2738 }
2739 *p = 0;
2740 if (!rs->last_program_signals_packet
2741 || strcmp (rs->last_program_signals_packet, packet) != 0)
2742 {
2743 putpkt (packet);
2744 getpkt (&rs->buf, 0);
2745 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2746 xfree (rs->last_program_signals_packet);
2747 rs->last_program_signals_packet = packet;
2748 }
2749 else
2750 xfree (packet);
2751 }
2752 }
2753
2754 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2755 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2756 thread. If GEN is set, set the general thread, if not, then set
2757 the step/continue thread. */
2758 void
2759 remote_target::set_thread (ptid_t ptid, int gen)
2760 {
2761 struct remote_state *rs = get_remote_state ();
2762 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2763 char *buf = rs->buf.data ();
2764 char *endbuf = buf + get_remote_packet_size ();
2765
2766 if (state == ptid)
2767 return;
2768
2769 *buf++ = 'H';
2770 *buf++ = gen ? 'g' : 'c';
2771 if (ptid == magic_null_ptid)
2772 xsnprintf (buf, endbuf - buf, "0");
2773 else if (ptid == any_thread_ptid)
2774 xsnprintf (buf, endbuf - buf, "0");
2775 else if (ptid == minus_one_ptid)
2776 xsnprintf (buf, endbuf - buf, "-1");
2777 else
2778 write_ptid (buf, endbuf, ptid);
2779 putpkt (rs->buf);
2780 getpkt (&rs->buf, 0);
2781 if (gen)
2782 rs->general_thread = ptid;
2783 else
2784 rs->continue_thread = ptid;
2785 }
2786
2787 void
2788 remote_target::set_general_thread (ptid_t ptid)
2789 {
2790 set_thread (ptid, 1);
2791 }
2792
2793 void
2794 remote_target::set_continue_thread (ptid_t ptid)
2795 {
2796 set_thread (ptid, 0);
2797 }
2798
2799 /* Change the remote current process. Which thread within the process
2800 ends up selected isn't important, as long as it is the same process
2801 as what INFERIOR_PTID points to.
2802
2803 This comes from that fact that there is no explicit notion of
2804 "selected process" in the protocol. The selected process for
2805 general operations is the process the selected general thread
2806 belongs to. */
2807
2808 void
2809 remote_target::set_general_process ()
2810 {
2811 struct remote_state *rs = get_remote_state ();
2812
2813 /* If the remote can't handle multiple processes, don't bother. */
2814 if (!remote_multi_process_p (rs))
2815 return;
2816
2817 /* We only need to change the remote current thread if it's pointing
2818 at some other process. */
2819 if (rs->general_thread.pid () != inferior_ptid.pid ())
2820 set_general_thread (inferior_ptid);
2821 }
2822
2823 \f
2824 /* Return nonzero if this is the main thread that we made up ourselves
2825 to model non-threaded targets as single-threaded. */
2826
2827 static int
2828 remote_thread_always_alive (ptid_t ptid)
2829 {
2830 if (ptid == magic_null_ptid)
2831 /* The main thread is always alive. */
2832 return 1;
2833
2834 if (ptid.pid () != 0 && ptid.lwp () == 0)
2835 /* The main thread is always alive. This can happen after a
2836 vAttach, if the remote side doesn't support
2837 multi-threading. */
2838 return 1;
2839
2840 return 0;
2841 }
2842
2843 /* Return nonzero if the thread PTID is still alive on the remote
2844 system. */
2845
2846 bool
2847 remote_target::thread_alive (ptid_t ptid)
2848 {
2849 struct remote_state *rs = get_remote_state ();
2850 char *p, *endp;
2851
2852 /* Check if this is a thread that we made up ourselves to model
2853 non-threaded targets as single-threaded. */
2854 if (remote_thread_always_alive (ptid))
2855 return 1;
2856
2857 p = rs->buf.data ();
2858 endp = p + get_remote_packet_size ();
2859
2860 *p++ = 'T';
2861 write_ptid (p, endp, ptid);
2862
2863 putpkt (rs->buf);
2864 getpkt (&rs->buf, 0);
2865 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2866 }
2867
2868 /* Return a pointer to a thread name if we know it and NULL otherwise.
2869 The thread_info object owns the memory for the name. */
2870
2871 const char *
2872 remote_target::thread_name (struct thread_info *info)
2873 {
2874 if (info->priv != NULL)
2875 {
2876 const std::string &name = get_remote_thread_info (info)->name;
2877 return !name.empty () ? name.c_str () : NULL;
2878 }
2879
2880 return NULL;
2881 }
2882
2883 /* About these extended threadlist and threadinfo packets. They are
2884 variable length packets but, the fields within them are often fixed
2885 length. They are redundant enough to send over UDP as is the
2886 remote protocol in general. There is a matching unit test module
2887 in libstub. */
2888
2889 /* WARNING: This threadref data structure comes from the remote O.S.,
2890 libstub protocol encoding, and remote.c. It is not particularly
2891 changable. */
2892
2893 /* Right now, the internal structure is int. We want it to be bigger.
2894 Plan to fix this. */
2895
2896 typedef int gdb_threadref; /* Internal GDB thread reference. */
2897
2898 /* gdb_ext_thread_info is an internal GDB data structure which is
2899 equivalent to the reply of the remote threadinfo packet. */
2900
2901 struct gdb_ext_thread_info
2902 {
2903 threadref threadid; /* External form of thread reference. */
2904 int active; /* Has state interesting to GDB?
2905 regs, stack. */
2906 char display[256]; /* Brief state display, name,
2907 blocked/suspended. */
2908 char shortname[32]; /* To be used to name threads. */
2909 char more_display[256]; /* Long info, statistics, queue depth,
2910 whatever. */
2911 };
2912
2913 /* The volume of remote transfers can be limited by submitting
2914 a mask containing bits specifying the desired information.
2915 Use a union of these values as the 'selection' parameter to
2916 get_thread_info. FIXME: Make these TAG names more thread specific. */
2917
2918 #define TAG_THREADID 1
2919 #define TAG_EXISTS 2
2920 #define TAG_DISPLAY 4
2921 #define TAG_THREADNAME 8
2922 #define TAG_MOREDISPLAY 16
2923
2924 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2925
2926 static char *unpack_nibble (char *buf, int *val);
2927
2928 static char *unpack_byte (char *buf, int *value);
2929
2930 static char *pack_int (char *buf, int value);
2931
2932 static char *unpack_int (char *buf, int *value);
2933
2934 static char *unpack_string (char *src, char *dest, int length);
2935
2936 static char *pack_threadid (char *pkt, threadref *id);
2937
2938 static char *unpack_threadid (char *inbuf, threadref *id);
2939
2940 void int_to_threadref (threadref *id, int value);
2941
2942 static int threadref_to_int (threadref *ref);
2943
2944 static void copy_threadref (threadref *dest, threadref *src);
2945
2946 static int threadmatch (threadref *dest, threadref *src);
2947
2948 static char *pack_threadinfo_request (char *pkt, int mode,
2949 threadref *id);
2950
2951 static char *pack_threadlist_request (char *pkt, int startflag,
2952 int threadcount,
2953 threadref *nextthread);
2954
2955 static int remote_newthread_step (threadref *ref, void *context);
2956
2957
2958 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2959 buffer we're allowed to write to. Returns
2960 BUF+CHARACTERS_WRITTEN. */
2961
2962 char *
2963 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2964 {
2965 int pid, tid;
2966 struct remote_state *rs = get_remote_state ();
2967
2968 if (remote_multi_process_p (rs))
2969 {
2970 pid = ptid.pid ();
2971 if (pid < 0)
2972 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2973 else
2974 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2975 }
2976 tid = ptid.lwp ();
2977 if (tid < 0)
2978 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2979 else
2980 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2981
2982 return buf;
2983 }
2984
2985 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2986 last parsed char. Returns null_ptid if no thread id is found, and
2987 throws an error if the thread id has an invalid format. */
2988
2989 static ptid_t
2990 read_ptid (const char *buf, const char **obuf)
2991 {
2992 const char *p = buf;
2993 const char *pp;
2994 ULONGEST pid = 0, tid = 0;
2995
2996 if (*p == 'p')
2997 {
2998 /* Multi-process ptid. */
2999 pp = unpack_varlen_hex (p + 1, &pid);
3000 if (*pp != '.')
3001 error (_("invalid remote ptid: %s"), p);
3002
3003 p = pp;
3004 pp = unpack_varlen_hex (p + 1, &tid);
3005 if (obuf)
3006 *obuf = pp;
3007 return ptid_t (pid, tid, 0);
3008 }
3009
3010 /* No multi-process. Just a tid. */
3011 pp = unpack_varlen_hex (p, &tid);
3012
3013 /* Return null_ptid when no thread id is found. */
3014 if (p == pp)
3015 {
3016 if (obuf)
3017 *obuf = pp;
3018 return null_ptid;
3019 }
3020
3021 /* Since the stub is not sending a process id, then default to
3022 what's in inferior_ptid, unless it's null at this point. If so,
3023 then since there's no way to know the pid of the reported
3024 threads, use the magic number. */
3025 if (inferior_ptid == null_ptid)
3026 pid = magic_null_ptid.pid ();
3027 else
3028 pid = inferior_ptid.pid ();
3029
3030 if (obuf)
3031 *obuf = pp;
3032 return ptid_t (pid, tid, 0);
3033 }
3034
3035 static int
3036 stubhex (int ch)
3037 {
3038 if (ch >= 'a' && ch <= 'f')
3039 return ch - 'a' + 10;
3040 if (ch >= '0' && ch <= '9')
3041 return ch - '0';
3042 if (ch >= 'A' && ch <= 'F')
3043 return ch - 'A' + 10;
3044 return -1;
3045 }
3046
3047 static int
3048 stub_unpack_int (char *buff, int fieldlength)
3049 {
3050 int nibble;
3051 int retval = 0;
3052
3053 while (fieldlength)
3054 {
3055 nibble = stubhex (*buff++);
3056 retval |= nibble;
3057 fieldlength--;
3058 if (fieldlength)
3059 retval = retval << 4;
3060 }
3061 return retval;
3062 }
3063
3064 static char *
3065 unpack_nibble (char *buf, int *val)
3066 {
3067 *val = fromhex (*buf++);
3068 return buf;
3069 }
3070
3071 static char *
3072 unpack_byte (char *buf, int *value)
3073 {
3074 *value = stub_unpack_int (buf, 2);
3075 return buf + 2;
3076 }
3077
3078 static char *
3079 pack_int (char *buf, int value)
3080 {
3081 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3082 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3083 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3084 buf = pack_hex_byte (buf, (value & 0xff));
3085 return buf;
3086 }
3087
3088 static char *
3089 unpack_int (char *buf, int *value)
3090 {
3091 *value = stub_unpack_int (buf, 8);
3092 return buf + 8;
3093 }
3094
3095 #if 0 /* Currently unused, uncomment when needed. */
3096 static char *pack_string (char *pkt, char *string);
3097
3098 static char *
3099 pack_string (char *pkt, char *string)
3100 {
3101 char ch;
3102 int len;
3103
3104 len = strlen (string);
3105 if (len > 200)
3106 len = 200; /* Bigger than most GDB packets, junk??? */
3107 pkt = pack_hex_byte (pkt, len);
3108 while (len-- > 0)
3109 {
3110 ch = *string++;
3111 if ((ch == '\0') || (ch == '#'))
3112 ch = '*'; /* Protect encapsulation. */
3113 *pkt++ = ch;
3114 }
3115 return pkt;
3116 }
3117 #endif /* 0 (unused) */
3118
3119 static char *
3120 unpack_string (char *src, char *dest, int length)
3121 {
3122 while (length--)
3123 *dest++ = *src++;
3124 *dest = '\0';
3125 return src;
3126 }
3127
3128 static char *
3129 pack_threadid (char *pkt, threadref *id)
3130 {
3131 char *limit;
3132 unsigned char *altid;
3133
3134 altid = (unsigned char *) id;
3135 limit = pkt + BUF_THREAD_ID_SIZE;
3136 while (pkt < limit)
3137 pkt = pack_hex_byte (pkt, *altid++);
3138 return pkt;
3139 }
3140
3141
3142 static char *
3143 unpack_threadid (char *inbuf, threadref *id)
3144 {
3145 char *altref;
3146 char *limit = inbuf + BUF_THREAD_ID_SIZE;
3147 int x, y;
3148
3149 altref = (char *) id;
3150
3151 while (inbuf < limit)
3152 {
3153 x = stubhex (*inbuf++);
3154 y = stubhex (*inbuf++);
3155 *altref++ = (x << 4) | y;
3156 }
3157 return inbuf;
3158 }
3159
3160 /* Externally, threadrefs are 64 bits but internally, they are still
3161 ints. This is due to a mismatch of specifications. We would like
3162 to use 64bit thread references internally. This is an adapter
3163 function. */
3164
3165 void
3166 int_to_threadref (threadref *id, int value)
3167 {
3168 unsigned char *scan;
3169
3170 scan = (unsigned char *) id;
3171 {
3172 int i = 4;
3173 while (i--)
3174 *scan++ = 0;
3175 }
3176 *scan++ = (value >> 24) & 0xff;
3177 *scan++ = (value >> 16) & 0xff;
3178 *scan++ = (value >> 8) & 0xff;
3179 *scan++ = (value & 0xff);
3180 }
3181
3182 static int
3183 threadref_to_int (threadref *ref)
3184 {
3185 int i, value = 0;
3186 unsigned char *scan;
3187
3188 scan = *ref;
3189 scan += 4;
3190 i = 4;
3191 while (i-- > 0)
3192 value = (value << 8) | ((*scan++) & 0xff);
3193 return value;
3194 }
3195
3196 static void
3197 copy_threadref (threadref *dest, threadref *src)
3198 {
3199 int i;
3200 unsigned char *csrc, *cdest;
3201
3202 csrc = (unsigned char *) src;
3203 cdest = (unsigned char *) dest;
3204 i = 8;
3205 while (i--)
3206 *cdest++ = *csrc++;
3207 }
3208
3209 static int
3210 threadmatch (threadref *dest, threadref *src)
3211 {
3212 /* Things are broken right now, so just assume we got a match. */
3213 #if 0
3214 unsigned char *srcp, *destp;
3215 int i, result;
3216 srcp = (char *) src;
3217 destp = (char *) dest;
3218
3219 result = 1;
3220 while (i-- > 0)
3221 result &= (*srcp++ == *destp++) ? 1 : 0;
3222 return result;
3223 #endif
3224 return 1;
3225 }
3226
3227 /*
3228 threadid:1, # always request threadid
3229 context_exists:2,
3230 display:4,
3231 unique_name:8,
3232 more_display:16
3233 */
3234
3235 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3236
3237 static char *
3238 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3239 {
3240 *pkt++ = 'q'; /* Info Query */
3241 *pkt++ = 'P'; /* process or thread info */
3242 pkt = pack_int (pkt, mode); /* mode */
3243 pkt = pack_threadid (pkt, id); /* threadid */
3244 *pkt = '\0'; /* terminate */
3245 return pkt;
3246 }
3247
3248 /* These values tag the fields in a thread info response packet. */
3249 /* Tagging the fields allows us to request specific fields and to
3250 add more fields as time goes by. */
3251
3252 #define TAG_THREADID 1 /* Echo the thread identifier. */
3253 #define TAG_EXISTS 2 /* Is this process defined enough to
3254 fetch registers and its stack? */
3255 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3256 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3257 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3258 the process. */
3259
3260 int
3261 remote_target::remote_unpack_thread_info_response (char *pkt,
3262 threadref *expectedref,
3263 gdb_ext_thread_info *info)
3264 {
3265 struct remote_state *rs = get_remote_state ();
3266 int mask, length;
3267 int tag;
3268 threadref ref;
3269 char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3270 int retval = 1;
3271
3272 /* info->threadid = 0; FIXME: implement zero_threadref. */
3273 info->active = 0;
3274 info->display[0] = '\0';
3275 info->shortname[0] = '\0';
3276 info->more_display[0] = '\0';
3277
3278 /* Assume the characters indicating the packet type have been
3279 stripped. */
3280 pkt = unpack_int (pkt, &mask); /* arg mask */
3281 pkt = unpack_threadid (pkt, &ref);
3282
3283 if (mask == 0)
3284 warning (_("Incomplete response to threadinfo request."));
3285 if (!threadmatch (&ref, expectedref))
3286 { /* This is an answer to a different request. */
3287 warning (_("ERROR RMT Thread info mismatch."));
3288 return 0;
3289 }
3290 copy_threadref (&info->threadid, &ref);
3291
3292 /* Loop on tagged fields , try to bail if something goes wrong. */
3293
3294 /* Packets are terminated with nulls. */
3295 while ((pkt < limit) && mask && *pkt)
3296 {
3297 pkt = unpack_int (pkt, &tag); /* tag */
3298 pkt = unpack_byte (pkt, &length); /* length */
3299 if (!(tag & mask)) /* Tags out of synch with mask. */
3300 {
3301 warning (_("ERROR RMT: threadinfo tag mismatch."));
3302 retval = 0;
3303 break;
3304 }
3305 if (tag == TAG_THREADID)
3306 {
3307 if (length != 16)
3308 {
3309 warning (_("ERROR RMT: length of threadid is not 16."));
3310 retval = 0;
3311 break;
3312 }
3313 pkt = unpack_threadid (pkt, &ref);
3314 mask = mask & ~TAG_THREADID;
3315 continue;
3316 }
3317 if (tag == TAG_EXISTS)
3318 {
3319 info->active = stub_unpack_int (pkt, length);
3320 pkt += length;
3321 mask = mask & ~(TAG_EXISTS);
3322 if (length > 8)
3323 {
3324 warning (_("ERROR RMT: 'exists' length too long."));
3325 retval = 0;
3326 break;
3327 }
3328 continue;
3329 }
3330 if (tag == TAG_THREADNAME)
3331 {
3332 pkt = unpack_string (pkt, &info->shortname[0], length);
3333 mask = mask & ~TAG_THREADNAME;
3334 continue;
3335 }
3336 if (tag == TAG_DISPLAY)
3337 {
3338 pkt = unpack_string (pkt, &info->display[0], length);
3339 mask = mask & ~TAG_DISPLAY;
3340 continue;
3341 }
3342 if (tag == TAG_MOREDISPLAY)
3343 {
3344 pkt = unpack_string (pkt, &info->more_display[0], length);
3345 mask = mask & ~TAG_MOREDISPLAY;
3346 continue;
3347 }
3348 warning (_("ERROR RMT: unknown thread info tag."));
3349 break; /* Not a tag we know about. */
3350 }
3351 return retval;
3352 }
3353
3354 int
3355 remote_target::remote_get_threadinfo (threadref *threadid,
3356 int fieldset,
3357 gdb_ext_thread_info *info)
3358 {
3359 struct remote_state *rs = get_remote_state ();
3360 int result;
3361
3362 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3363 putpkt (rs->buf);
3364 getpkt (&rs->buf, 0);
3365
3366 if (rs->buf[0] == '\0')
3367 return 0;
3368
3369 result = remote_unpack_thread_info_response (&rs->buf[2],
3370 threadid, info);
3371 return result;
3372 }
3373
3374 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3375
3376 static char *
3377 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3378 threadref *nextthread)
3379 {
3380 *pkt++ = 'q'; /* info query packet */
3381 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3382 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3383 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3384 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3385 *pkt = '\0';
3386 return pkt;
3387 }
3388
3389 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3390
3391 int
3392 remote_target::parse_threadlist_response (char *pkt, int result_limit,
3393 threadref *original_echo,
3394 threadref *resultlist,
3395 int *doneflag)
3396 {
3397 struct remote_state *rs = get_remote_state ();
3398 char *limit;
3399 int count, resultcount, done;
3400
3401 resultcount = 0;
3402 /* Assume the 'q' and 'M chars have been stripped. */
3403 limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3404 /* done parse past here */
3405 pkt = unpack_byte (pkt, &count); /* count field */
3406 pkt = unpack_nibble (pkt, &done);
3407 /* The first threadid is the argument threadid. */
3408 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3409 while ((count-- > 0) && (pkt < limit))
3410 {
3411 pkt = unpack_threadid (pkt, resultlist++);
3412 if (resultcount++ >= result_limit)
3413 break;
3414 }
3415 if (doneflag)
3416 *doneflag = done;
3417 return resultcount;
3418 }
3419
3420 /* Fetch the next batch of threads from the remote. Returns -1 if the
3421 qL packet is not supported, 0 on error and 1 on success. */
3422
3423 int
3424 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3425 int result_limit, int *done, int *result_count,
3426 threadref *threadlist)
3427 {
3428 struct remote_state *rs = get_remote_state ();
3429 int result = 1;
3430
3431 /* Truncate result limit to be smaller than the packet size. */
3432 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3433 >= get_remote_packet_size ())
3434 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3435
3436 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3437 nextthread);
3438 putpkt (rs->buf);
3439 getpkt (&rs->buf, 0);
3440 if (rs->buf[0] == '\0')
3441 {
3442 /* Packet not supported. */
3443 return -1;
3444 }
3445
3446 *result_count =
3447 parse_threadlist_response (&rs->buf[2], result_limit,
3448 &rs->echo_nextthread, threadlist, done);
3449
3450 if (!threadmatch (&rs->echo_nextthread, nextthread))
3451 {
3452 /* FIXME: This is a good reason to drop the packet. */
3453 /* Possibly, there is a duplicate response. */
3454 /* Possibilities :
3455 retransmit immediatly - race conditions
3456 retransmit after timeout - yes
3457 exit
3458 wait for packet, then exit
3459 */
3460 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3461 return 0; /* I choose simply exiting. */
3462 }
3463 if (*result_count <= 0)
3464 {
3465 if (*done != 1)
3466 {
3467 warning (_("RMT ERROR : failed to get remote thread list."));
3468 result = 0;
3469 }
3470 return result; /* break; */
3471 }
3472 if (*result_count > result_limit)
3473 {
3474 *result_count = 0;
3475 warning (_("RMT ERROR: threadlist response longer than requested."));
3476 return 0;
3477 }
3478 return result;
3479 }
3480
3481 /* Fetch the list of remote threads, with the qL packet, and call
3482 STEPFUNCTION for each thread found. Stops iterating and returns 1
3483 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3484 STEPFUNCTION returns false. If the packet is not supported,
3485 returns -1. */
3486
3487 int
3488 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3489 void *context, int looplimit)
3490 {
3491 struct remote_state *rs = get_remote_state ();
3492 int done, i, result_count;
3493 int startflag = 1;
3494 int result = 1;
3495 int loopcount = 0;
3496
3497 done = 0;
3498 while (!done)
3499 {
3500 if (loopcount++ > looplimit)
3501 {
3502 result = 0;
3503 warning (_("Remote fetch threadlist -infinite loop-."));
3504 break;
3505 }
3506 result = remote_get_threadlist (startflag, &rs->nextthread,
3507 MAXTHREADLISTRESULTS,
3508 &done, &result_count,
3509 rs->resultthreadlist);
3510 if (result <= 0)
3511 break;
3512 /* Clear for later iterations. */
3513 startflag = 0;
3514 /* Setup to resume next batch of thread references, set nextthread. */
3515 if (result_count >= 1)
3516 copy_threadref (&rs->nextthread,
3517 &rs->resultthreadlist[result_count - 1]);
3518 i = 0;
3519 while (result_count--)
3520 {
3521 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3522 {
3523 result = 0;
3524 break;
3525 }
3526 }
3527 }
3528 return result;
3529 }
3530
3531 /* A thread found on the remote target. */
3532
3533 struct thread_item
3534 {
3535 explicit thread_item (ptid_t ptid_)
3536 : ptid (ptid_)
3537 {}
3538
3539 thread_item (thread_item &&other) = default;
3540 thread_item &operator= (thread_item &&other) = default;
3541
3542 DISABLE_COPY_AND_ASSIGN (thread_item);
3543
3544 /* The thread's PTID. */
3545 ptid_t ptid;
3546
3547 /* The thread's extra info. */
3548 std::string extra;
3549
3550 /* The thread's name. */
3551 std::string name;
3552
3553 /* The core the thread was running on. -1 if not known. */
3554 int core = -1;
3555
3556 /* The thread handle associated with the thread. */
3557 gdb::byte_vector thread_handle;
3558 };
3559
3560 /* Context passed around to the various methods listing remote
3561 threads. As new threads are found, they're added to the ITEMS
3562 vector. */
3563
3564 struct threads_listing_context
3565 {
3566 /* Return true if this object contains an entry for a thread with ptid
3567 PTID. */
3568
3569 bool contains_thread (ptid_t ptid) const
3570 {
3571 auto match_ptid = [&] (const thread_item &item)
3572 {
3573 return item.ptid == ptid;
3574 };
3575
3576 auto it = std::find_if (this->items.begin (),
3577 this->items.end (),
3578 match_ptid);
3579
3580 return it != this->items.end ();
3581 }
3582
3583 /* Remove the thread with ptid PTID. */
3584
3585 void remove_thread (ptid_t ptid)
3586 {
3587 auto match_ptid = [&] (const thread_item &item)
3588 {
3589 return item.ptid == ptid;
3590 };
3591
3592 auto it = std::remove_if (this->items.begin (),
3593 this->items.end (),
3594 match_ptid);
3595
3596 if (it != this->items.end ())
3597 this->items.erase (it);
3598 }
3599
3600 /* The threads found on the remote target. */
3601 std::vector<thread_item> items;
3602 };
3603
3604 static int
3605 remote_newthread_step (threadref *ref, void *data)
3606 {
3607 struct threads_listing_context *context
3608 = (struct threads_listing_context *) data;
3609 int pid = inferior_ptid.pid ();
3610 int lwp = threadref_to_int (ref);
3611 ptid_t ptid (pid, lwp);
3612
3613 context->items.emplace_back (ptid);
3614
3615 return 1; /* continue iterator */
3616 }
3617
3618 #define CRAZY_MAX_THREADS 1000
3619
3620 ptid_t
3621 remote_target::remote_current_thread (ptid_t oldpid)
3622 {
3623 struct remote_state *rs = get_remote_state ();
3624
3625 putpkt ("qC");
3626 getpkt (&rs->buf, 0);
3627 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3628 {
3629 const char *obuf;
3630 ptid_t result;
3631
3632 result = read_ptid (&rs->buf[2], &obuf);
3633 if (*obuf != '\0' && remote_debug)
3634 fprintf_unfiltered (gdb_stdlog,
3635 "warning: garbage in qC reply\n");
3636
3637 return result;
3638 }
3639 else
3640 return oldpid;
3641 }
3642
3643 /* List remote threads using the deprecated qL packet. */
3644
3645 int
3646 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3647 {
3648 if (remote_threadlist_iterator (remote_newthread_step, context,
3649 CRAZY_MAX_THREADS) >= 0)
3650 return 1;
3651
3652 return 0;
3653 }
3654
3655 #if defined(HAVE_LIBEXPAT)
3656
3657 static void
3658 start_thread (struct gdb_xml_parser *parser,
3659 const struct gdb_xml_element *element,
3660 void *user_data,
3661 std::vector<gdb_xml_value> &attributes)
3662 {
3663 struct threads_listing_context *data
3664 = (struct threads_listing_context *) user_data;
3665 struct gdb_xml_value *attr;
3666
3667 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3668 ptid_t ptid = read_ptid (id, NULL);
3669
3670 data->items.emplace_back (ptid);
3671 thread_item &item = data->items.back ();
3672
3673 attr = xml_find_attribute (attributes, "core");
3674 if (attr != NULL)
3675 item.core = *(ULONGEST *) attr->value.get ();
3676
3677 attr = xml_find_attribute (attributes, "name");
3678 if (attr != NULL)
3679 item.name = (const char *) attr->value.get ();
3680
3681 attr = xml_find_attribute (attributes, "handle");
3682 if (attr != NULL)
3683 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3684 }
3685
3686 static void
3687 end_thread (struct gdb_xml_parser *parser,
3688 const struct gdb_xml_element *element,
3689 void *user_data, const char *body_text)
3690 {
3691 struct threads_listing_context *data
3692 = (struct threads_listing_context *) user_data;
3693
3694 if (body_text != NULL && *body_text != '\0')
3695 data->items.back ().extra = body_text;
3696 }
3697
3698 const struct gdb_xml_attribute thread_attributes[] = {
3699 { "id", GDB_XML_AF_NONE, NULL, NULL },
3700 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3701 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3702 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3703 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3704 };
3705
3706 const struct gdb_xml_element thread_children[] = {
3707 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3708 };
3709
3710 const struct gdb_xml_element threads_children[] = {
3711 { "thread", thread_attributes, thread_children,
3712 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3713 start_thread, end_thread },
3714 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3715 };
3716
3717 const struct gdb_xml_element threads_elements[] = {
3718 { "threads", NULL, threads_children,
3719 GDB_XML_EF_NONE, NULL, NULL },
3720 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3721 };
3722
3723 #endif
3724
3725 /* List remote threads using qXfer:threads:read. */
3726
3727 int
3728 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3729 {
3730 #if defined(HAVE_LIBEXPAT)
3731 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3732 {
3733 gdb::optional<gdb::char_vector> xml
3734 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3735
3736 if (xml && (*xml)[0] != '\0')
3737 {
3738 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3739 threads_elements, xml->data (), context);
3740 }
3741
3742 return 1;
3743 }
3744 #endif
3745
3746 return 0;
3747 }
3748
3749 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3750
3751 int
3752 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3753 {
3754 struct remote_state *rs = get_remote_state ();
3755
3756 if (rs->use_threadinfo_query)
3757 {
3758 const char *bufp;
3759
3760 putpkt ("qfThreadInfo");
3761 getpkt (&rs->buf, 0);
3762 bufp = rs->buf.data ();
3763 if (bufp[0] != '\0') /* q packet recognized */
3764 {
3765 while (*bufp++ == 'm') /* reply contains one or more TID */
3766 {
3767 do
3768 {
3769 ptid_t ptid = read_ptid (bufp, &bufp);
3770 context->items.emplace_back (ptid);
3771 }
3772 while (*bufp++ == ','); /* comma-separated list */
3773 putpkt ("qsThreadInfo");
3774 getpkt (&rs->buf, 0);
3775 bufp = rs->buf.data ();
3776 }
3777 return 1;
3778 }
3779 else
3780 {
3781 /* Packet not recognized. */
3782 rs->use_threadinfo_query = 0;
3783 }
3784 }
3785
3786 return 0;
3787 }
3788
3789 /* Return true if INF only has one non-exited thread. */
3790
3791 static bool
3792 has_single_non_exited_thread (inferior *inf)
3793 {
3794 int count = 0;
3795 for (thread_info *tp ATTRIBUTE_UNUSED : inf->non_exited_threads ())
3796 if (++count > 1)
3797 break;
3798 return count == 1;
3799 }
3800
3801 /* Implement the to_update_thread_list function for the remote
3802 targets. */
3803
3804 void
3805 remote_target::update_thread_list ()
3806 {
3807 struct threads_listing_context context;
3808 int got_list = 0;
3809
3810 /* We have a few different mechanisms to fetch the thread list. Try
3811 them all, starting with the most preferred one first, falling
3812 back to older methods. */
3813 if (remote_get_threads_with_qxfer (&context)
3814 || remote_get_threads_with_qthreadinfo (&context)
3815 || remote_get_threads_with_ql (&context))
3816 {
3817 got_list = 1;
3818
3819 if (context.items.empty ()
3820 && remote_thread_always_alive (inferior_ptid))
3821 {
3822 /* Some targets don't really support threads, but still
3823 reply an (empty) thread list in response to the thread
3824 listing packets, instead of replying "packet not
3825 supported". Exit early so we don't delete the main
3826 thread. */
3827 return;
3828 }
3829
3830 /* CONTEXT now holds the current thread list on the remote
3831 target end. Delete GDB-side threads no longer found on the
3832 target. */
3833 for (thread_info *tp : all_threads_safe ())
3834 {
3835 if (tp->inf->process_target () != this)
3836 continue;
3837
3838 if (!context.contains_thread (tp->ptid))
3839 {
3840 /* Do not remove the thread if it is the last thread in
3841 the inferior. This situation happens when we have a
3842 pending exit process status to process. Otherwise we
3843 may end up with a seemingly live inferior (i.e. pid
3844 != 0) that has no threads. */
3845 if (has_single_non_exited_thread (tp->inf))
3846 continue;
3847
3848 /* Not found. */
3849 delete_thread (tp);
3850 }
3851 }
3852
3853 /* Remove any unreported fork child threads from CONTEXT so
3854 that we don't interfere with follow fork, which is where
3855 creation of such threads is handled. */
3856 remove_new_fork_children (&context);
3857
3858 /* And now add threads we don't know about yet to our list. */
3859 for (thread_item &item : context.items)
3860 {
3861 if (item.ptid != null_ptid)
3862 {
3863 /* In non-stop mode, we assume new found threads are
3864 executing until proven otherwise with a stop reply.
3865 In all-stop, we can only get here if all threads are
3866 stopped. */
3867 int executing = target_is_non_stop_p () ? 1 : 0;
3868
3869 remote_notice_new_inferior (item.ptid, executing);
3870
3871 thread_info *tp = find_thread_ptid (this, item.ptid);
3872 remote_thread_info *info = get_remote_thread_info (tp);
3873 info->core = item.core;
3874 info->extra = std::move (item.extra);
3875 info->name = std::move (item.name);
3876 info->thread_handle = std::move (item.thread_handle);
3877 }
3878 }
3879 }
3880
3881 if (!got_list)
3882 {
3883 /* If no thread listing method is supported, then query whether
3884 each known thread is alive, one by one, with the T packet.
3885 If the target doesn't support threads at all, then this is a
3886 no-op. See remote_thread_alive. */
3887 prune_threads ();
3888 }
3889 }
3890
3891 /*
3892 * Collect a descriptive string about the given thread.
3893 * The target may say anything it wants to about the thread
3894 * (typically info about its blocked / runnable state, name, etc.).
3895 * This string will appear in the info threads display.
3896 *
3897 * Optional: targets are not required to implement this function.
3898 */
3899
3900 const char *
3901 remote_target::extra_thread_info (thread_info *tp)
3902 {
3903 struct remote_state *rs = get_remote_state ();
3904 int set;
3905 threadref id;
3906 struct gdb_ext_thread_info threadinfo;
3907
3908 if (rs->remote_desc == 0) /* paranoia */
3909 internal_error (__FILE__, __LINE__,
3910 _("remote_threads_extra_info"));
3911
3912 if (tp->ptid == magic_null_ptid
3913 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
3914 /* This is the main thread which was added by GDB. The remote
3915 server doesn't know about it. */
3916 return NULL;
3917
3918 std::string &extra = get_remote_thread_info (tp)->extra;
3919
3920 /* If already have cached info, use it. */
3921 if (!extra.empty ())
3922 return extra.c_str ();
3923
3924 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3925 {
3926 /* If we're using qXfer:threads:read, then the extra info is
3927 included in the XML. So if we didn't have anything cached,
3928 it's because there's really no extra info. */
3929 return NULL;
3930 }
3931
3932 if (rs->use_threadextra_query)
3933 {
3934 char *b = rs->buf.data ();
3935 char *endb = b + get_remote_packet_size ();
3936
3937 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3938 b += strlen (b);
3939 write_ptid (b, endb, tp->ptid);
3940
3941 putpkt (rs->buf);
3942 getpkt (&rs->buf, 0);
3943 if (rs->buf[0] != 0)
3944 {
3945 extra.resize (strlen (rs->buf.data ()) / 2);
3946 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
3947 return extra.c_str ();
3948 }
3949 }
3950
3951 /* If the above query fails, fall back to the old method. */
3952 rs->use_threadextra_query = 0;
3953 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3954 | TAG_MOREDISPLAY | TAG_DISPLAY;
3955 int_to_threadref (&id, tp->ptid.lwp ());
3956 if (remote_get_threadinfo (&id, set, &threadinfo))
3957 if (threadinfo.active)
3958 {
3959 if (*threadinfo.shortname)
3960 string_appendf (extra, " Name: %s", threadinfo.shortname);
3961 if (*threadinfo.display)
3962 {
3963 if (!extra.empty ())
3964 extra += ',';
3965 string_appendf (extra, " State: %s", threadinfo.display);
3966 }
3967 if (*threadinfo.more_display)
3968 {
3969 if (!extra.empty ())
3970 extra += ',';
3971 string_appendf (extra, " Priority: %s", threadinfo.more_display);
3972 }
3973 return extra.c_str ();
3974 }
3975 return NULL;
3976 }
3977 \f
3978
3979 bool
3980 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
3981 struct static_tracepoint_marker *marker)
3982 {
3983 struct remote_state *rs = get_remote_state ();
3984 char *p = rs->buf.data ();
3985
3986 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3987 p += strlen (p);
3988 p += hexnumstr (p, addr);
3989 putpkt (rs->buf);
3990 getpkt (&rs->buf, 0);
3991 p = rs->buf.data ();
3992
3993 if (*p == 'E')
3994 error (_("Remote failure reply: %s"), p);
3995
3996 if (*p++ == 'm')
3997 {
3998 parse_static_tracepoint_marker_definition (p, NULL, marker);
3999 return true;
4000 }
4001
4002 return false;
4003 }
4004
4005 std::vector<static_tracepoint_marker>
4006 remote_target::static_tracepoint_markers_by_strid (const char *strid)
4007 {
4008 struct remote_state *rs = get_remote_state ();
4009 std::vector<static_tracepoint_marker> markers;
4010 const char *p;
4011 static_tracepoint_marker marker;
4012
4013 /* Ask for a first packet of static tracepoint marker
4014 definition. */
4015 putpkt ("qTfSTM");
4016 getpkt (&rs->buf, 0);
4017 p = rs->buf.data ();
4018 if (*p == 'E')
4019 error (_("Remote failure reply: %s"), p);
4020
4021 while (*p++ == 'm')
4022 {
4023 do
4024 {
4025 parse_static_tracepoint_marker_definition (p, &p, &marker);
4026
4027 if (strid == NULL || marker.str_id == strid)
4028 markers.push_back (std::move (marker));
4029 }
4030 while (*p++ == ','); /* comma-separated list */
4031 /* Ask for another packet of static tracepoint definition. */
4032 putpkt ("qTsSTM");
4033 getpkt (&rs->buf, 0);
4034 p = rs->buf.data ();
4035 }
4036
4037 return markers;
4038 }
4039
4040 \f
4041 /* Implement the to_get_ada_task_ptid function for the remote targets. */
4042
4043 ptid_t
4044 remote_target::get_ada_task_ptid (long lwp, long thread)
4045 {
4046 return ptid_t (inferior_ptid.pid (), lwp, 0);
4047 }
4048 \f
4049
4050 /* Restart the remote side; this is an extended protocol operation. */
4051
4052 void
4053 remote_target::extended_remote_restart ()
4054 {
4055 struct remote_state *rs = get_remote_state ();
4056
4057 /* Send the restart command; for reasons I don't understand the
4058 remote side really expects a number after the "R". */
4059 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4060 putpkt (rs->buf);
4061
4062 remote_fileio_reset ();
4063 }
4064 \f
4065 /* Clean up connection to a remote debugger. */
4066
4067 void
4068 remote_target::close ()
4069 {
4070 /* Make sure we leave stdin registered in the event loop. */
4071 terminal_ours ();
4072
4073 trace_reset_local_state ();
4074
4075 delete this;
4076 }
4077
4078 remote_target::~remote_target ()
4079 {
4080 struct remote_state *rs = get_remote_state ();
4081
4082 /* Check for NULL because we may get here with a partially
4083 constructed target/connection. */
4084 if (rs->remote_desc == nullptr)
4085 return;
4086
4087 serial_close (rs->remote_desc);
4088
4089 /* We are destroying the remote target, so we should discard
4090 everything of this target. */
4091 discard_pending_stop_replies_in_queue ();
4092
4093 if (rs->remote_async_inferior_event_token)
4094 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4095
4096 delete rs->notif_state;
4097 }
4098
4099 /* Query the remote side for the text, data and bss offsets. */
4100
4101 void
4102 remote_target::get_offsets ()
4103 {
4104 struct remote_state *rs = get_remote_state ();
4105 char *buf;
4106 char *ptr;
4107 int lose, num_segments = 0, do_sections, do_segments;
4108 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4109
4110 if (current_program_space->symfile_object_file == NULL)
4111 return;
4112
4113 putpkt ("qOffsets");
4114 getpkt (&rs->buf, 0);
4115 buf = rs->buf.data ();
4116
4117 if (buf[0] == '\000')
4118 return; /* Return silently. Stub doesn't support
4119 this command. */
4120 if (buf[0] == 'E')
4121 {
4122 warning (_("Remote failure reply: %s"), buf);
4123 return;
4124 }
4125
4126 /* Pick up each field in turn. This used to be done with scanf, but
4127 scanf will make trouble if CORE_ADDR size doesn't match
4128 conversion directives correctly. The following code will work
4129 with any size of CORE_ADDR. */
4130 text_addr = data_addr = bss_addr = 0;
4131 ptr = buf;
4132 lose = 0;
4133
4134 if (startswith (ptr, "Text="))
4135 {
4136 ptr += 5;
4137 /* Don't use strtol, could lose on big values. */
4138 while (*ptr && *ptr != ';')
4139 text_addr = (text_addr << 4) + fromhex (*ptr++);
4140
4141 if (startswith (ptr, ";Data="))
4142 {
4143 ptr += 6;
4144 while (*ptr && *ptr != ';')
4145 data_addr = (data_addr << 4) + fromhex (*ptr++);
4146 }
4147 else
4148 lose = 1;
4149
4150 if (!lose && startswith (ptr, ";Bss="))
4151 {
4152 ptr += 5;
4153 while (*ptr && *ptr != ';')
4154 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4155
4156 if (bss_addr != data_addr)
4157 warning (_("Target reported unsupported offsets: %s"), buf);
4158 }
4159 else
4160 lose = 1;
4161 }
4162 else if (startswith (ptr, "TextSeg="))
4163 {
4164 ptr += 8;
4165 /* Don't use strtol, could lose on big values. */
4166 while (*ptr && *ptr != ';')
4167 text_addr = (text_addr << 4) + fromhex (*ptr++);
4168 num_segments = 1;
4169
4170 if (startswith (ptr, ";DataSeg="))
4171 {
4172 ptr += 9;
4173 while (*ptr && *ptr != ';')
4174 data_addr = (data_addr << 4) + fromhex (*ptr++);
4175 num_segments++;
4176 }
4177 }
4178 else
4179 lose = 1;
4180
4181 if (lose)
4182 error (_("Malformed response to offset query, %s"), buf);
4183 else if (*ptr != '\0')
4184 warning (_("Target reported unsupported offsets: %s"), buf);
4185
4186 objfile *objf = current_program_space->symfile_object_file;
4187 section_offsets offs = objf->section_offsets;
4188
4189 symfile_segment_data_up data = get_symfile_segment_data (objf->obfd);
4190 do_segments = (data != NULL);
4191 do_sections = num_segments == 0;
4192
4193 if (num_segments > 0)
4194 {
4195 segments[0] = text_addr;
4196 segments[1] = data_addr;
4197 }
4198 /* If we have two segments, we can still try to relocate everything
4199 by assuming that the .text and .data offsets apply to the whole
4200 text and data segments. Convert the offsets given in the packet
4201 to base addresses for symfile_map_offsets_to_segments. */
4202 else if (data != nullptr && data->segments.size () == 2)
4203 {
4204 segments[0] = data->segments[0].base + text_addr;
4205 segments[1] = data->segments[1].base + data_addr;
4206 num_segments = 2;
4207 }
4208 /* If the object file has only one segment, assume that it is text
4209 rather than data; main programs with no writable data are rare,
4210 but programs with no code are useless. Of course the code might
4211 have ended up in the data segment... to detect that we would need
4212 the permissions here. */
4213 else if (data && data->segments.size () == 1)
4214 {
4215 segments[0] = data->segments[0].base + text_addr;
4216 num_segments = 1;
4217 }
4218 /* There's no way to relocate by segment. */
4219 else
4220 do_segments = 0;
4221
4222 if (do_segments)
4223 {
4224 int ret = symfile_map_offsets_to_segments (objf->obfd,
4225 data.get (), offs,
4226 num_segments, segments);
4227
4228 if (ret == 0 && !do_sections)
4229 error (_("Can not handle qOffsets TextSeg "
4230 "response with this symbol file"));
4231
4232 if (ret > 0)
4233 do_sections = 0;
4234 }
4235
4236 if (do_sections)
4237 {
4238 offs[SECT_OFF_TEXT (objf)] = text_addr;
4239
4240 /* This is a temporary kludge to force data and bss to use the
4241 same offsets because that's what nlmconv does now. The real
4242 solution requires changes to the stub and remote.c that I
4243 don't have time to do right now. */
4244
4245 offs[SECT_OFF_DATA (objf)] = data_addr;
4246 offs[SECT_OFF_BSS (objf)] = data_addr;
4247 }
4248
4249 objfile_relocate (objf, offs);
4250 }
4251
4252 /* Send interrupt_sequence to remote target. */
4253
4254 void
4255 remote_target::send_interrupt_sequence ()
4256 {
4257 struct remote_state *rs = get_remote_state ();
4258
4259 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4260 remote_serial_write ("\x03", 1);
4261 else if (interrupt_sequence_mode == interrupt_sequence_break)
4262 serial_send_break (rs->remote_desc);
4263 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4264 {
4265 serial_send_break (rs->remote_desc);
4266 remote_serial_write ("g", 1);
4267 }
4268 else
4269 internal_error (__FILE__, __LINE__,
4270 _("Invalid value for interrupt_sequence_mode: %s."),
4271 interrupt_sequence_mode);
4272 }
4273
4274
4275 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4276 and extract the PTID. Returns NULL_PTID if not found. */
4277
4278 static ptid_t
4279 stop_reply_extract_thread (char *stop_reply)
4280 {
4281 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4282 {
4283 const char *p;
4284
4285 /* Txx r:val ; r:val (...) */
4286 p = &stop_reply[3];
4287
4288 /* Look for "register" named "thread". */
4289 while (*p != '\0')
4290 {
4291 const char *p1;
4292
4293 p1 = strchr (p, ':');
4294 if (p1 == NULL)
4295 return null_ptid;
4296
4297 if (strncmp (p, "thread", p1 - p) == 0)
4298 return read_ptid (++p1, &p);
4299
4300 p1 = strchr (p, ';');
4301 if (p1 == NULL)
4302 return null_ptid;
4303 p1++;
4304
4305 p = p1;
4306 }
4307 }
4308
4309 return null_ptid;
4310 }
4311
4312 /* Determine the remote side's current thread. If we have a stop
4313 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4314 "thread" register we can extract the current thread from. If not,
4315 ask the remote which is the current thread with qC. The former
4316 method avoids a roundtrip. */
4317
4318 ptid_t
4319 remote_target::get_current_thread (char *wait_status)
4320 {
4321 ptid_t ptid = null_ptid;
4322
4323 /* Note we don't use remote_parse_stop_reply as that makes use of
4324 the target architecture, which we haven't yet fully determined at
4325 this point. */
4326 if (wait_status != NULL)
4327 ptid = stop_reply_extract_thread (wait_status);
4328 if (ptid == null_ptid)
4329 ptid = remote_current_thread (inferior_ptid);
4330
4331 return ptid;
4332 }
4333
4334 /* Query the remote target for which is the current thread/process,
4335 add it to our tables, and update INFERIOR_PTID. The caller is
4336 responsible for setting the state such that the remote end is ready
4337 to return the current thread.
4338
4339 This function is called after handling the '?' or 'vRun' packets,
4340 whose response is a stop reply from which we can also try
4341 extracting the thread. If the target doesn't support the explicit
4342 qC query, we infer the current thread from that stop reply, passed
4343 in in WAIT_STATUS, which may be NULL. */
4344
4345 void
4346 remote_target::add_current_inferior_and_thread (char *wait_status)
4347 {
4348 struct remote_state *rs = get_remote_state ();
4349 bool fake_pid_p = false;
4350
4351 switch_to_no_thread ();
4352
4353 /* Now, if we have thread information, update the current thread's
4354 ptid. */
4355 ptid_t curr_ptid = get_current_thread (wait_status);
4356
4357 if (curr_ptid != null_ptid)
4358 {
4359 if (!remote_multi_process_p (rs))
4360 fake_pid_p = true;
4361 }
4362 else
4363 {
4364 /* Without this, some commands which require an active target
4365 (such as kill) won't work. This variable serves (at least)
4366 double duty as both the pid of the target process (if it has
4367 such), and as a flag indicating that a target is active. */
4368 curr_ptid = magic_null_ptid;
4369 fake_pid_p = true;
4370 }
4371
4372 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4373
4374 /* Add the main thread and switch to it. Don't try reading
4375 registers yet, since we haven't fetched the target description
4376 yet. */
4377 thread_info *tp = add_thread_silent (this, curr_ptid);
4378 switch_to_thread_no_regs (tp);
4379 }
4380
4381 /* Print info about a thread that was found already stopped on
4382 connection. */
4383
4384 static void
4385 print_one_stopped_thread (struct thread_info *thread)
4386 {
4387 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4388
4389 switch_to_thread (thread);
4390 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4391 set_current_sal_from_frame (get_current_frame ());
4392
4393 thread->suspend.waitstatus_pending_p = 0;
4394
4395 if (ws->kind == TARGET_WAITKIND_STOPPED)
4396 {
4397 enum gdb_signal sig = ws->value.sig;
4398
4399 if (signal_print_state (sig))
4400 gdb::observers::signal_received.notify (sig);
4401 }
4402 gdb::observers::normal_stop.notify (NULL, 1);
4403 }
4404
4405 /* Process all initial stop replies the remote side sent in response
4406 to the ? packet. These indicate threads that were already stopped
4407 on initial connection. We mark these threads as stopped and print
4408 their current frame before giving the user the prompt. */
4409
4410 void
4411 remote_target::process_initial_stop_replies (int from_tty)
4412 {
4413 int pending_stop_replies = stop_reply_queue_length ();
4414 struct thread_info *selected = NULL;
4415 struct thread_info *lowest_stopped = NULL;
4416 struct thread_info *first = NULL;
4417
4418 /* Consume the initial pending events. */
4419 while (pending_stop_replies-- > 0)
4420 {
4421 ptid_t waiton_ptid = minus_one_ptid;
4422 ptid_t event_ptid;
4423 struct target_waitstatus ws;
4424 int ignore_event = 0;
4425
4426 memset (&ws, 0, sizeof (ws));
4427 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4428 if (remote_debug)
4429 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4430
4431 switch (ws.kind)
4432 {
4433 case TARGET_WAITKIND_IGNORE:
4434 case TARGET_WAITKIND_NO_RESUMED:
4435 case TARGET_WAITKIND_SIGNALLED:
4436 case TARGET_WAITKIND_EXITED:
4437 /* We shouldn't see these, but if we do, just ignore. */
4438 if (remote_debug)
4439 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4440 ignore_event = 1;
4441 break;
4442
4443 case TARGET_WAITKIND_EXECD:
4444 xfree (ws.value.execd_pathname);
4445 break;
4446 default:
4447 break;
4448 }
4449
4450 if (ignore_event)
4451 continue;
4452
4453 thread_info *evthread = find_thread_ptid (this, event_ptid);
4454
4455 if (ws.kind == TARGET_WAITKIND_STOPPED)
4456 {
4457 enum gdb_signal sig = ws.value.sig;
4458
4459 /* Stubs traditionally report SIGTRAP as initial signal,
4460 instead of signal 0. Suppress it. */
4461 if (sig == GDB_SIGNAL_TRAP)
4462 sig = GDB_SIGNAL_0;
4463 evthread->suspend.stop_signal = sig;
4464 ws.value.sig = sig;
4465 }
4466
4467 evthread->suspend.waitstatus = ws;
4468
4469 if (ws.kind != TARGET_WAITKIND_STOPPED
4470 || ws.value.sig != GDB_SIGNAL_0)
4471 evthread->suspend.waitstatus_pending_p = 1;
4472
4473 set_executing (this, event_ptid, false);
4474 set_running (this, event_ptid, false);
4475 get_remote_thread_info (evthread)->vcont_resumed = 0;
4476 }
4477
4478 /* "Notice" the new inferiors before anything related to
4479 registers/memory. */
4480 for (inferior *inf : all_non_exited_inferiors (this))
4481 {
4482 inf->needs_setup = 1;
4483
4484 if (non_stop)
4485 {
4486 thread_info *thread = any_live_thread_of_inferior (inf);
4487 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4488 from_tty);
4489 }
4490 }
4491
4492 /* If all-stop on top of non-stop, pause all threads. Note this
4493 records the threads' stop pc, so must be done after "noticing"
4494 the inferiors. */
4495 if (!non_stop)
4496 {
4497 stop_all_threads ();
4498
4499 /* If all threads of an inferior were already stopped, we
4500 haven't setup the inferior yet. */
4501 for (inferior *inf : all_non_exited_inferiors (this))
4502 {
4503 if (inf->needs_setup)
4504 {
4505 thread_info *thread = any_live_thread_of_inferior (inf);
4506 switch_to_thread_no_regs (thread);
4507 setup_inferior (0);
4508 }
4509 }
4510 }
4511
4512 /* Now go over all threads that are stopped, and print their current
4513 frame. If all-stop, then if there's a signalled thread, pick
4514 that as current. */
4515 for (thread_info *thread : all_non_exited_threads (this))
4516 {
4517 if (first == NULL)
4518 first = thread;
4519
4520 if (!non_stop)
4521 thread->set_running (false);
4522 else if (thread->state != THREAD_STOPPED)
4523 continue;
4524
4525 if (selected == NULL
4526 && thread->suspend.waitstatus_pending_p)
4527 selected = thread;
4528
4529 if (lowest_stopped == NULL
4530 || thread->inf->num < lowest_stopped->inf->num
4531 || thread->per_inf_num < lowest_stopped->per_inf_num)
4532 lowest_stopped = thread;
4533
4534 if (non_stop)
4535 print_one_stopped_thread (thread);
4536 }
4537
4538 /* In all-stop, we only print the status of one thread, and leave
4539 others with their status pending. */
4540 if (!non_stop)
4541 {
4542 thread_info *thread = selected;
4543 if (thread == NULL)
4544 thread = lowest_stopped;
4545 if (thread == NULL)
4546 thread = first;
4547
4548 print_one_stopped_thread (thread);
4549 }
4550
4551 /* For "info program". */
4552 thread_info *thread = inferior_thread ();
4553 if (thread->state == THREAD_STOPPED)
4554 set_last_target_status (this, inferior_ptid, thread->suspend.waitstatus);
4555 }
4556
4557 /* Start the remote connection and sync state. */
4558
4559 void
4560 remote_target::start_remote (int from_tty, int extended_p)
4561 {
4562 struct remote_state *rs = get_remote_state ();
4563 struct packet_config *noack_config;
4564 char *wait_status = NULL;
4565
4566 /* Signal other parts that we're going through the initial setup,
4567 and so things may not be stable yet. E.g., we don't try to
4568 install tracepoints until we've relocated symbols. Also, a
4569 Ctrl-C before we're connected and synced up can't interrupt the
4570 target. Instead, it offers to drop the (potentially wedged)
4571 connection. */
4572 rs->starting_up = 1;
4573
4574 QUIT;
4575
4576 if (interrupt_on_connect)
4577 send_interrupt_sequence ();
4578
4579 /* Ack any packet which the remote side has already sent. */
4580 remote_serial_write ("+", 1);
4581
4582 /* The first packet we send to the target is the optional "supported
4583 packets" request. If the target can answer this, it will tell us
4584 which later probes to skip. */
4585 remote_query_supported ();
4586
4587 /* If the stub wants to get a QAllow, compose one and send it. */
4588 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4589 set_permissions ();
4590
4591 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4592 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4593 as a reply to known packet. For packet "vFile:setfs:" it is an
4594 invalid reply and GDB would return error in
4595 remote_hostio_set_filesystem, making remote files access impossible.
4596 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4597 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4598 {
4599 const char v_mustreplyempty[] = "vMustReplyEmpty";
4600
4601 putpkt (v_mustreplyempty);
4602 getpkt (&rs->buf, 0);
4603 if (strcmp (rs->buf.data (), "OK") == 0)
4604 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4605 else if (strcmp (rs->buf.data (), "") != 0)
4606 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4607 rs->buf.data ());
4608 }
4609
4610 /* Next, we possibly activate noack mode.
4611
4612 If the QStartNoAckMode packet configuration is set to AUTO,
4613 enable noack mode if the stub reported a wish for it with
4614 qSupported.
4615
4616 If set to TRUE, then enable noack mode even if the stub didn't
4617 report it in qSupported. If the stub doesn't reply OK, the
4618 session ends with an error.
4619
4620 If FALSE, then don't activate noack mode, regardless of what the
4621 stub claimed should be the default with qSupported. */
4622
4623 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4624 if (packet_config_support (noack_config) != PACKET_DISABLE)
4625 {
4626 putpkt ("QStartNoAckMode");
4627 getpkt (&rs->buf, 0);
4628 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4629 rs->noack_mode = 1;
4630 }
4631
4632 if (extended_p)
4633 {
4634 /* Tell the remote that we are using the extended protocol. */
4635 putpkt ("!");
4636 getpkt (&rs->buf, 0);
4637 }
4638
4639 /* Let the target know which signals it is allowed to pass down to
4640 the program. */
4641 update_signals_program_target ();
4642
4643 /* Next, if the target can specify a description, read it. We do
4644 this before anything involving memory or registers. */
4645 target_find_description ();
4646
4647 /* Next, now that we know something about the target, update the
4648 address spaces in the program spaces. */
4649 update_address_spaces ();
4650
4651 /* On OSs where the list of libraries is global to all
4652 processes, we fetch them early. */
4653 if (gdbarch_has_global_solist (target_gdbarch ()))
4654 solib_add (NULL, from_tty, auto_solib_add);
4655
4656 if (target_is_non_stop_p ())
4657 {
4658 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4659 error (_("Non-stop mode requested, but remote "
4660 "does not support non-stop"));
4661
4662 putpkt ("QNonStop:1");
4663 getpkt (&rs->buf, 0);
4664
4665 if (strcmp (rs->buf.data (), "OK") != 0)
4666 error (_("Remote refused setting non-stop mode with: %s"),
4667 rs->buf.data ());
4668
4669 /* Find about threads and processes the stub is already
4670 controlling. We default to adding them in the running state.
4671 The '?' query below will then tell us about which threads are
4672 stopped. */
4673 this->update_thread_list ();
4674 }
4675 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4676 {
4677 /* Don't assume that the stub can operate in all-stop mode.
4678 Request it explicitly. */
4679 putpkt ("QNonStop:0");
4680 getpkt (&rs->buf, 0);
4681
4682 if (strcmp (rs->buf.data (), "OK") != 0)
4683 error (_("Remote refused setting all-stop mode with: %s"),
4684 rs->buf.data ());
4685 }
4686
4687 /* Upload TSVs regardless of whether the target is running or not. The
4688 remote stub, such as GDBserver, may have some predefined or builtin
4689 TSVs, even if the target is not running. */
4690 if (get_trace_status (current_trace_status ()) != -1)
4691 {
4692 struct uploaded_tsv *uploaded_tsvs = NULL;
4693
4694 upload_trace_state_variables (&uploaded_tsvs);
4695 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4696 }
4697
4698 /* Check whether the target is running now. */
4699 putpkt ("?");
4700 getpkt (&rs->buf, 0);
4701
4702 if (!target_is_non_stop_p ())
4703 {
4704 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4705 {
4706 if (!extended_p)
4707 error (_("The target is not running (try extended-remote?)"));
4708
4709 /* We're connected, but not running. Drop out before we
4710 call start_remote. */
4711 rs->starting_up = 0;
4712 return;
4713 }
4714 else
4715 {
4716 /* Save the reply for later. */
4717 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4718 strcpy (wait_status, rs->buf.data ());
4719 }
4720
4721 /* Fetch thread list. */
4722 target_update_thread_list ();
4723
4724 /* Let the stub know that we want it to return the thread. */
4725 set_continue_thread (minus_one_ptid);
4726
4727 if (thread_count (this) == 0)
4728 {
4729 /* Target has no concept of threads at all. GDB treats
4730 non-threaded target as single-threaded; add a main
4731 thread. */
4732 add_current_inferior_and_thread (wait_status);
4733 }
4734 else
4735 {
4736 /* We have thread information; select the thread the target
4737 says should be current. If we're reconnecting to a
4738 multi-threaded program, this will ideally be the thread
4739 that last reported an event before GDB disconnected. */
4740 ptid_t curr_thread = get_current_thread (wait_status);
4741 if (curr_thread == null_ptid)
4742 {
4743 /* Odd... The target was able to list threads, but not
4744 tell us which thread was current (no "thread"
4745 register in T stop reply?). Just pick the first
4746 thread in the thread list then. */
4747
4748 if (remote_debug)
4749 fprintf_unfiltered (gdb_stdlog,
4750 "warning: couldn't determine remote "
4751 "current thread; picking first in list.\n");
4752
4753 for (thread_info *tp : all_non_exited_threads (this,
4754 minus_one_ptid))
4755 {
4756 switch_to_thread (tp);
4757 break;
4758 }
4759 }
4760 else
4761 switch_to_thread (find_thread_ptid (this, curr_thread));
4762 }
4763
4764 /* init_wait_for_inferior should be called before get_offsets in order
4765 to manage `inserted' flag in bp loc in a correct state.
4766 breakpoint_init_inferior, called from init_wait_for_inferior, set
4767 `inserted' flag to 0, while before breakpoint_re_set, called from
4768 start_remote, set `inserted' flag to 1. In the initialization of
4769 inferior, breakpoint_init_inferior should be called first, and then
4770 breakpoint_re_set can be called. If this order is broken, state of
4771 `inserted' flag is wrong, and cause some problems on breakpoint
4772 manipulation. */
4773 init_wait_for_inferior ();
4774
4775 get_offsets (); /* Get text, data & bss offsets. */
4776
4777 /* If we could not find a description using qXfer, and we know
4778 how to do it some other way, try again. This is not
4779 supported for non-stop; it could be, but it is tricky if
4780 there are no stopped threads when we connect. */
4781 if (remote_read_description_p (this)
4782 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4783 {
4784 target_clear_description ();
4785 target_find_description ();
4786 }
4787
4788 /* Use the previously fetched status. */
4789 gdb_assert (wait_status != NULL);
4790 strcpy (rs->buf.data (), wait_status);
4791 rs->cached_wait_status = 1;
4792
4793 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4794 }
4795 else
4796 {
4797 /* Clear WFI global state. Do this before finding about new
4798 threads and inferiors, and setting the current inferior.
4799 Otherwise we would clear the proceed status of the current
4800 inferior when we want its stop_soon state to be preserved
4801 (see notice_new_inferior). */
4802 init_wait_for_inferior ();
4803
4804 /* In non-stop, we will either get an "OK", meaning that there
4805 are no stopped threads at this time; or, a regular stop
4806 reply. In the latter case, there may be more than one thread
4807 stopped --- we pull them all out using the vStopped
4808 mechanism. */
4809 if (strcmp (rs->buf.data (), "OK") != 0)
4810 {
4811 struct notif_client *notif = &notif_client_stop;
4812
4813 /* remote_notif_get_pending_replies acks this one, and gets
4814 the rest out. */
4815 rs->notif_state->pending_event[notif_client_stop.id]
4816 = remote_notif_parse (this, notif, rs->buf.data ());
4817 remote_notif_get_pending_events (notif);
4818 }
4819
4820 if (thread_count (this) == 0)
4821 {
4822 if (!extended_p)
4823 error (_("The target is not running (try extended-remote?)"));
4824
4825 /* We're connected, but not running. Drop out before we
4826 call start_remote. */
4827 rs->starting_up = 0;
4828 return;
4829 }
4830
4831 /* In non-stop mode, any cached wait status will be stored in
4832 the stop reply queue. */
4833 gdb_assert (wait_status == NULL);
4834
4835 /* Report all signals during attach/startup. */
4836 pass_signals ({});
4837
4838 /* If there are already stopped threads, mark them stopped and
4839 report their stops before giving the prompt to the user. */
4840 process_initial_stop_replies (from_tty);
4841
4842 if (target_can_async_p ())
4843 target_async (1);
4844 }
4845
4846 /* If we connected to a live target, do some additional setup. */
4847 if (target_has_execution ())
4848 {
4849 /* No use without a symbol-file. */
4850 if (current_program_space->symfile_object_file)
4851 remote_check_symbols ();
4852 }
4853
4854 /* Possibly the target has been engaged in a trace run started
4855 previously; find out where things are at. */
4856 if (get_trace_status (current_trace_status ()) != -1)
4857 {
4858 struct uploaded_tp *uploaded_tps = NULL;
4859
4860 if (current_trace_status ()->running)
4861 printf_filtered (_("Trace is already running on the target.\n"));
4862
4863 upload_tracepoints (&uploaded_tps);
4864
4865 merge_uploaded_tracepoints (&uploaded_tps);
4866 }
4867
4868 /* Possibly the target has been engaged in a btrace record started
4869 previously; find out where things are at. */
4870 remote_btrace_maybe_reopen ();
4871
4872 /* The thread and inferior lists are now synchronized with the
4873 target, our symbols have been relocated, and we're merged the
4874 target's tracepoints with ours. We're done with basic start
4875 up. */
4876 rs->starting_up = 0;
4877
4878 /* Maybe breakpoints are global and need to be inserted now. */
4879 if (breakpoints_should_be_inserted_now ())
4880 insert_breakpoints ();
4881 }
4882
4883 const char *
4884 remote_target::connection_string ()
4885 {
4886 remote_state *rs = get_remote_state ();
4887
4888 if (rs->remote_desc->name != NULL)
4889 return rs->remote_desc->name;
4890 else
4891 return NULL;
4892 }
4893
4894 /* Open a connection to a remote debugger.
4895 NAME is the filename used for communication. */
4896
4897 void
4898 remote_target::open (const char *name, int from_tty)
4899 {
4900 open_1 (name, from_tty, 0);
4901 }
4902
4903 /* Open a connection to a remote debugger using the extended
4904 remote gdb protocol. NAME is the filename used for communication. */
4905
4906 void
4907 extended_remote_target::open (const char *name, int from_tty)
4908 {
4909 open_1 (name, from_tty, 1 /*extended_p */);
4910 }
4911
4912 /* Reset all packets back to "unknown support". Called when opening a
4913 new connection to a remote target. */
4914
4915 static void
4916 reset_all_packet_configs_support (void)
4917 {
4918 int i;
4919
4920 for (i = 0; i < PACKET_MAX; i++)
4921 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4922 }
4923
4924 /* Initialize all packet configs. */
4925
4926 static void
4927 init_all_packet_configs (void)
4928 {
4929 int i;
4930
4931 for (i = 0; i < PACKET_MAX; i++)
4932 {
4933 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4934 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4935 }
4936 }
4937
4938 /* Symbol look-up. */
4939
4940 void
4941 remote_target::remote_check_symbols ()
4942 {
4943 char *tmp;
4944 int end;
4945
4946 /* The remote side has no concept of inferiors that aren't running
4947 yet, it only knows about running processes. If we're connected
4948 but our current inferior is not running, we should not invite the
4949 remote target to request symbol lookups related to its
4950 (unrelated) current process. */
4951 if (!target_has_execution ())
4952 return;
4953
4954 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4955 return;
4956
4957 /* Make sure the remote is pointing at the right process. Note
4958 there's no way to select "no process". */
4959 set_general_process ();
4960
4961 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4962 because we need both at the same time. */
4963 gdb::char_vector msg (get_remote_packet_size ());
4964 gdb::char_vector reply (get_remote_packet_size ());
4965
4966 /* Invite target to request symbol lookups. */
4967
4968 putpkt ("qSymbol::");
4969 getpkt (&reply, 0);
4970 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4971
4972 while (startswith (reply.data (), "qSymbol:"))
4973 {
4974 struct bound_minimal_symbol sym;
4975
4976 tmp = &reply[8];
4977 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
4978 strlen (tmp) / 2);
4979 msg[end] = '\0';
4980 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
4981 if (sym.minsym == NULL)
4982 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
4983 &reply[8]);
4984 else
4985 {
4986 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4987 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4988
4989 /* If this is a function address, return the start of code
4990 instead of any data function descriptor. */
4991 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4992 sym_addr,
4993 current_top_target ());
4994
4995 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
4996 phex_nz (sym_addr, addr_size), &reply[8]);
4997 }
4998
4999 putpkt (msg.data ());
5000 getpkt (&reply, 0);
5001 }
5002 }
5003
5004 static struct serial *
5005 remote_serial_open (const char *name)
5006 {
5007 static int udp_warning = 0;
5008
5009 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
5010 of in ser-tcp.c, because it is the remote protocol assuming that the
5011 serial connection is reliable and not the serial connection promising
5012 to be. */
5013 if (!udp_warning && startswith (name, "udp:"))
5014 {
5015 warning (_("The remote protocol may be unreliable over UDP.\n"
5016 "Some events may be lost, rendering further debugging "
5017 "impossible."));
5018 udp_warning = 1;
5019 }
5020
5021 return serial_open (name);
5022 }
5023
5024 /* Inform the target of our permission settings. The permission flags
5025 work without this, but if the target knows the settings, it can do
5026 a couple things. First, it can add its own check, to catch cases
5027 that somehow manage to get by the permissions checks in target
5028 methods. Second, if the target is wired to disallow particular
5029 settings (for instance, a system in the field that is not set up to
5030 be able to stop at a breakpoint), it can object to any unavailable
5031 permissions. */
5032
5033 void
5034 remote_target::set_permissions ()
5035 {
5036 struct remote_state *rs = get_remote_state ();
5037
5038 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
5039 "WriteReg:%x;WriteMem:%x;"
5040 "InsertBreak:%x;InsertTrace:%x;"
5041 "InsertFastTrace:%x;Stop:%x",
5042 may_write_registers, may_write_memory,
5043 may_insert_breakpoints, may_insert_tracepoints,
5044 may_insert_fast_tracepoints, may_stop);
5045 putpkt (rs->buf);
5046 getpkt (&rs->buf, 0);
5047
5048 /* If the target didn't like the packet, warn the user. Do not try
5049 to undo the user's settings, that would just be maddening. */
5050 if (strcmp (rs->buf.data (), "OK") != 0)
5051 warning (_("Remote refused setting permissions with: %s"),
5052 rs->buf.data ());
5053 }
5054
5055 /* This type describes each known response to the qSupported
5056 packet. */
5057 struct protocol_feature
5058 {
5059 /* The name of this protocol feature. */
5060 const char *name;
5061
5062 /* The default for this protocol feature. */
5063 enum packet_support default_support;
5064
5065 /* The function to call when this feature is reported, or after
5066 qSupported processing if the feature is not supported.
5067 The first argument points to this structure. The second
5068 argument indicates whether the packet requested support be
5069 enabled, disabled, or probed (or the default, if this function
5070 is being called at the end of processing and this feature was
5071 not reported). The third argument may be NULL; if not NULL, it
5072 is a NUL-terminated string taken from the packet following
5073 this feature's name and an equals sign. */
5074 void (*func) (remote_target *remote, const struct protocol_feature *,
5075 enum packet_support, const char *);
5076
5077 /* The corresponding packet for this feature. Only used if
5078 FUNC is remote_supported_packet. */
5079 int packet;
5080 };
5081
5082 static void
5083 remote_supported_packet (remote_target *remote,
5084 const struct protocol_feature *feature,
5085 enum packet_support support,
5086 const char *argument)
5087 {
5088 if (argument)
5089 {
5090 warning (_("Remote qSupported response supplied an unexpected value for"
5091 " \"%s\"."), feature->name);
5092 return;
5093 }
5094
5095 remote_protocol_packets[feature->packet].support = support;
5096 }
5097
5098 void
5099 remote_target::remote_packet_size (const protocol_feature *feature,
5100 enum packet_support support, const char *value)
5101 {
5102 struct remote_state *rs = get_remote_state ();
5103
5104 int packet_size;
5105 char *value_end;
5106
5107 if (support != PACKET_ENABLE)
5108 return;
5109
5110 if (value == NULL || *value == '\0')
5111 {
5112 warning (_("Remote target reported \"%s\" without a size."),
5113 feature->name);
5114 return;
5115 }
5116
5117 errno = 0;
5118 packet_size = strtol (value, &value_end, 16);
5119 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5120 {
5121 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5122 feature->name, value);
5123 return;
5124 }
5125
5126 /* Record the new maximum packet size. */
5127 rs->explicit_packet_size = packet_size;
5128 }
5129
5130 static void
5131 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5132 enum packet_support support, const char *value)
5133 {
5134 remote->remote_packet_size (feature, support, value);
5135 }
5136
5137 static const struct protocol_feature remote_protocol_features[] = {
5138 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5139 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5140 PACKET_qXfer_auxv },
5141 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5142 PACKET_qXfer_exec_file },
5143 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5144 PACKET_qXfer_features },
5145 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5146 PACKET_qXfer_libraries },
5147 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5148 PACKET_qXfer_libraries_svr4 },
5149 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5150 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5151 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5152 PACKET_qXfer_memory_map },
5153 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5154 PACKET_qXfer_osdata },
5155 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5156 PACKET_qXfer_threads },
5157 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5158 PACKET_qXfer_traceframe_info },
5159 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5160 PACKET_QPassSignals },
5161 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5162 PACKET_QCatchSyscalls },
5163 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5164 PACKET_QProgramSignals },
5165 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5166 PACKET_QSetWorkingDir },
5167 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5168 PACKET_QStartupWithShell },
5169 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5170 PACKET_QEnvironmentHexEncoded },
5171 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5172 PACKET_QEnvironmentReset },
5173 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5174 PACKET_QEnvironmentUnset },
5175 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5176 PACKET_QStartNoAckMode },
5177 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5178 PACKET_multiprocess_feature },
5179 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5180 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5181 PACKET_qXfer_siginfo_read },
5182 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5183 PACKET_qXfer_siginfo_write },
5184 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5185 PACKET_ConditionalTracepoints },
5186 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5187 PACKET_ConditionalBreakpoints },
5188 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5189 PACKET_BreakpointCommands },
5190 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5191 PACKET_FastTracepoints },
5192 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5193 PACKET_StaticTracepoints },
5194 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5195 PACKET_InstallInTrace},
5196 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5197 PACKET_DisconnectedTracing_feature },
5198 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5199 PACKET_bc },
5200 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5201 PACKET_bs },
5202 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5203 PACKET_TracepointSource },
5204 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5205 PACKET_QAllow },
5206 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5207 PACKET_EnableDisableTracepoints_feature },
5208 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5209 PACKET_qXfer_fdpic },
5210 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5211 PACKET_qXfer_uib },
5212 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5213 PACKET_QDisableRandomization },
5214 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5215 { "QTBuffer:size", PACKET_DISABLE,
5216 remote_supported_packet, PACKET_QTBuffer_size},
5217 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5218 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5219 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5220 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5221 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5222 PACKET_qXfer_btrace },
5223 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5224 PACKET_qXfer_btrace_conf },
5225 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5226 PACKET_Qbtrace_conf_bts_size },
5227 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5228 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5229 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5230 PACKET_fork_event_feature },
5231 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5232 PACKET_vfork_event_feature },
5233 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5234 PACKET_exec_event_feature },
5235 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5236 PACKET_Qbtrace_conf_pt_size },
5237 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5238 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5239 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5240 };
5241
5242 static char *remote_support_xml;
5243
5244 /* Register string appended to "xmlRegisters=" in qSupported query. */
5245
5246 void
5247 register_remote_support_xml (const char *xml)
5248 {
5249 #if defined(HAVE_LIBEXPAT)
5250 if (remote_support_xml == NULL)
5251 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5252 else
5253 {
5254 char *copy = xstrdup (remote_support_xml + 13);
5255 char *saveptr;
5256 char *p = strtok_r (copy, ",", &saveptr);
5257
5258 do
5259 {
5260 if (strcmp (p, xml) == 0)
5261 {
5262 /* already there */
5263 xfree (copy);
5264 return;
5265 }
5266 }
5267 while ((p = strtok_r (NULL, ",", &saveptr)) != NULL);
5268 xfree (copy);
5269
5270 remote_support_xml = reconcat (remote_support_xml,
5271 remote_support_xml, ",", xml,
5272 (char *) NULL);
5273 }
5274 #endif
5275 }
5276
5277 static void
5278 remote_query_supported_append (std::string *msg, const char *append)
5279 {
5280 if (!msg->empty ())
5281 msg->append (";");
5282 msg->append (append);
5283 }
5284
5285 void
5286 remote_target::remote_query_supported ()
5287 {
5288 struct remote_state *rs = get_remote_state ();
5289 char *next;
5290 int i;
5291 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5292
5293 /* The packet support flags are handled differently for this packet
5294 than for most others. We treat an error, a disabled packet, and
5295 an empty response identically: any features which must be reported
5296 to be used will be automatically disabled. An empty buffer
5297 accomplishes this, since that is also the representation for a list
5298 containing no features. */
5299
5300 rs->buf[0] = 0;
5301 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5302 {
5303 std::string q;
5304
5305 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5306 remote_query_supported_append (&q, "multiprocess+");
5307
5308 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5309 remote_query_supported_append (&q, "swbreak+");
5310 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5311 remote_query_supported_append (&q, "hwbreak+");
5312
5313 remote_query_supported_append (&q, "qRelocInsn+");
5314
5315 if (packet_set_cmd_state (PACKET_fork_event_feature)
5316 != AUTO_BOOLEAN_FALSE)
5317 remote_query_supported_append (&q, "fork-events+");
5318 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5319 != AUTO_BOOLEAN_FALSE)
5320 remote_query_supported_append (&q, "vfork-events+");
5321 if (packet_set_cmd_state (PACKET_exec_event_feature)
5322 != AUTO_BOOLEAN_FALSE)
5323 remote_query_supported_append (&q, "exec-events+");
5324
5325 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5326 remote_query_supported_append (&q, "vContSupported+");
5327
5328 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5329 remote_query_supported_append (&q, "QThreadEvents+");
5330
5331 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5332 remote_query_supported_append (&q, "no-resumed+");
5333
5334 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5335 the qSupported:xmlRegisters=i386 handling. */
5336 if (remote_support_xml != NULL
5337 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5338 remote_query_supported_append (&q, remote_support_xml);
5339
5340 q = "qSupported:" + q;
5341 putpkt (q.c_str ());
5342
5343 getpkt (&rs->buf, 0);
5344
5345 /* If an error occured, warn, but do not return - just reset the
5346 buffer to empty and go on to disable features. */
5347 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5348 == PACKET_ERROR)
5349 {
5350 warning (_("Remote failure reply: %s"), rs->buf.data ());
5351 rs->buf[0] = 0;
5352 }
5353 }
5354
5355 memset (seen, 0, sizeof (seen));
5356
5357 next = rs->buf.data ();
5358 while (*next)
5359 {
5360 enum packet_support is_supported;
5361 char *p, *end, *name_end, *value;
5362
5363 /* First separate out this item from the rest of the packet. If
5364 there's another item after this, we overwrite the separator
5365 (terminated strings are much easier to work with). */
5366 p = next;
5367 end = strchr (p, ';');
5368 if (end == NULL)
5369 {
5370 end = p + strlen (p);
5371 next = end;
5372 }
5373 else
5374 {
5375 *end = '\0';
5376 next = end + 1;
5377
5378 if (end == p)
5379 {
5380 warning (_("empty item in \"qSupported\" response"));
5381 continue;
5382 }
5383 }
5384
5385 name_end = strchr (p, '=');
5386 if (name_end)
5387 {
5388 /* This is a name=value entry. */
5389 is_supported = PACKET_ENABLE;
5390 value = name_end + 1;
5391 *name_end = '\0';
5392 }
5393 else
5394 {
5395 value = NULL;
5396 switch (end[-1])
5397 {
5398 case '+':
5399 is_supported = PACKET_ENABLE;
5400 break;
5401
5402 case '-':
5403 is_supported = PACKET_DISABLE;
5404 break;
5405
5406 case '?':
5407 is_supported = PACKET_SUPPORT_UNKNOWN;
5408 break;
5409
5410 default:
5411 warning (_("unrecognized item \"%s\" "
5412 "in \"qSupported\" response"), p);
5413 continue;
5414 }
5415 end[-1] = '\0';
5416 }
5417
5418 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5419 if (strcmp (remote_protocol_features[i].name, p) == 0)
5420 {
5421 const struct protocol_feature *feature;
5422
5423 seen[i] = 1;
5424 feature = &remote_protocol_features[i];
5425 feature->func (this, feature, is_supported, value);
5426 break;
5427 }
5428 }
5429
5430 /* If we increased the packet size, make sure to increase the global
5431 buffer size also. We delay this until after parsing the entire
5432 qSupported packet, because this is the same buffer we were
5433 parsing. */
5434 if (rs->buf.size () < rs->explicit_packet_size)
5435 rs->buf.resize (rs->explicit_packet_size);
5436
5437 /* Handle the defaults for unmentioned features. */
5438 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5439 if (!seen[i])
5440 {
5441 const struct protocol_feature *feature;
5442
5443 feature = &remote_protocol_features[i];
5444 feature->func (this, feature, feature->default_support, NULL);
5445 }
5446 }
5447
5448 /* Serial QUIT handler for the remote serial descriptor.
5449
5450 Defers handling a Ctrl-C until we're done with the current
5451 command/response packet sequence, unless:
5452
5453 - We're setting up the connection. Don't send a remote interrupt
5454 request, as we're not fully synced yet. Quit immediately
5455 instead.
5456
5457 - The target has been resumed in the foreground
5458 (target_terminal::is_ours is false) with a synchronous resume
5459 packet, and we're blocked waiting for the stop reply, thus a
5460 Ctrl-C should be immediately sent to the target.
5461
5462 - We get a second Ctrl-C while still within the same serial read or
5463 write. In that case the serial is seemingly wedged --- offer to
5464 quit/disconnect.
5465
5466 - We see a second Ctrl-C without target response, after having
5467 previously interrupted the target. In that case the target/stub
5468 is probably wedged --- offer to quit/disconnect.
5469 */
5470
5471 void
5472 remote_target::remote_serial_quit_handler ()
5473 {
5474 struct remote_state *rs = get_remote_state ();
5475
5476 if (check_quit_flag ())
5477 {
5478 /* If we're starting up, we're not fully synced yet. Quit
5479 immediately. */
5480 if (rs->starting_up)
5481 quit ();
5482 else if (rs->got_ctrlc_during_io)
5483 {
5484 if (query (_("The target is not responding to GDB commands.\n"
5485 "Stop debugging it? ")))
5486 remote_unpush_and_throw (this);
5487 }
5488 /* If ^C has already been sent once, offer to disconnect. */
5489 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5490 interrupt_query ();
5491 /* All-stop protocol, and blocked waiting for stop reply. Send
5492 an interrupt request. */
5493 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5494 target_interrupt ();
5495 else
5496 rs->got_ctrlc_during_io = 1;
5497 }
5498 }
5499
5500 /* The remote_target that is current while the quit handler is
5501 overridden with remote_serial_quit_handler. */
5502 static remote_target *curr_quit_handler_target;
5503
5504 static void
5505 remote_serial_quit_handler ()
5506 {
5507 curr_quit_handler_target->remote_serial_quit_handler ();
5508 }
5509
5510 /* Remove the remote target from the target stack of each inferior
5511 that is using it. Upper targets depend on it so remove them
5512 first. */
5513
5514 static void
5515 remote_unpush_target (remote_target *target)
5516 {
5517 /* We have to unpush the target from all inferiors, even those that
5518 aren't running. */
5519 scoped_restore_current_inferior restore_current_inferior;
5520
5521 for (inferior *inf : all_inferiors (target))
5522 {
5523 switch_to_inferior_no_thread (inf);
5524 pop_all_targets_at_and_above (process_stratum);
5525 generic_mourn_inferior ();
5526 }
5527 }
5528
5529 static void
5530 remote_unpush_and_throw (remote_target *target)
5531 {
5532 remote_unpush_target (target);
5533 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5534 }
5535
5536 void
5537 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5538 {
5539 remote_target *curr_remote = get_current_remote_target ();
5540
5541 if (name == 0)
5542 error (_("To open a remote debug connection, you need to specify what\n"
5543 "serial device is attached to the remote system\n"
5544 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5545
5546 /* If we're connected to a running target, target_preopen will kill it.
5547 Ask this question first, before target_preopen has a chance to kill
5548 anything. */
5549 if (curr_remote != NULL && !target_has_execution ())
5550 {
5551 if (from_tty
5552 && !query (_("Already connected to a remote target. Disconnect? ")))
5553 error (_("Still connected."));
5554 }
5555
5556 /* Here the possibly existing remote target gets unpushed. */
5557 target_preopen (from_tty);
5558
5559 remote_fileio_reset ();
5560 reopen_exec_file ();
5561 reread_symbols ();
5562
5563 remote_target *remote
5564 = (extended_p ? new extended_remote_target () : new remote_target ());
5565 target_ops_up target_holder (remote);
5566
5567 remote_state *rs = remote->get_remote_state ();
5568
5569 /* See FIXME above. */
5570 if (!target_async_permitted)
5571 rs->wait_forever_enabled_p = 1;
5572
5573 rs->remote_desc = remote_serial_open (name);
5574 if (!rs->remote_desc)
5575 perror_with_name (name);
5576
5577 if (baud_rate != -1)
5578 {
5579 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5580 {
5581 /* The requested speed could not be set. Error out to
5582 top level after closing remote_desc. Take care to
5583 set remote_desc to NULL to avoid closing remote_desc
5584 more than once. */
5585 serial_close (rs->remote_desc);
5586 rs->remote_desc = NULL;
5587 perror_with_name (name);
5588 }
5589 }
5590
5591 serial_setparity (rs->remote_desc, serial_parity);
5592 serial_raw (rs->remote_desc);
5593
5594 /* If there is something sitting in the buffer we might take it as a
5595 response to a command, which would be bad. */
5596 serial_flush_input (rs->remote_desc);
5597
5598 if (from_tty)
5599 {
5600 puts_filtered ("Remote debugging using ");
5601 puts_filtered (name);
5602 puts_filtered ("\n");
5603 }
5604
5605 /* Switch to using the remote target now. */
5606 push_target (std::move (target_holder));
5607
5608 /* Register extra event sources in the event loop. */
5609 rs->remote_async_inferior_event_token
5610 = create_async_event_handler (remote_async_inferior_event_handler, remote,
5611 "remote");
5612 rs->notif_state = remote_notif_state_allocate (remote);
5613
5614 /* Reset the target state; these things will be queried either by
5615 remote_query_supported or as they are needed. */
5616 reset_all_packet_configs_support ();
5617 rs->cached_wait_status = 0;
5618 rs->explicit_packet_size = 0;
5619 rs->noack_mode = 0;
5620 rs->extended = extended_p;
5621 rs->waiting_for_stop_reply = 0;
5622 rs->ctrlc_pending_p = 0;
5623 rs->got_ctrlc_during_io = 0;
5624
5625 rs->general_thread = not_sent_ptid;
5626 rs->continue_thread = not_sent_ptid;
5627 rs->remote_traceframe_number = -1;
5628
5629 rs->last_resume_exec_dir = EXEC_FORWARD;
5630
5631 /* Probe for ability to use "ThreadInfo" query, as required. */
5632 rs->use_threadinfo_query = 1;
5633 rs->use_threadextra_query = 1;
5634
5635 rs->readahead_cache.invalidate ();
5636
5637 if (target_async_permitted)
5638 {
5639 /* FIXME: cagney/1999-09-23: During the initial connection it is
5640 assumed that the target is already ready and able to respond to
5641 requests. Unfortunately remote_start_remote() eventually calls
5642 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5643 around this. Eventually a mechanism that allows
5644 wait_for_inferior() to expect/get timeouts will be
5645 implemented. */
5646 rs->wait_forever_enabled_p = 0;
5647 }
5648
5649 /* First delete any symbols previously loaded from shared libraries. */
5650 no_shared_libraries (NULL, 0);
5651
5652 /* Start the remote connection. If error() or QUIT, discard this
5653 target (we'd otherwise be in an inconsistent state) and then
5654 propogate the error on up the exception chain. This ensures that
5655 the caller doesn't stumble along blindly assuming that the
5656 function succeeded. The CLI doesn't have this problem but other
5657 UI's, such as MI do.
5658
5659 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5660 this function should return an error indication letting the
5661 caller restore the previous state. Unfortunately the command
5662 ``target remote'' is directly wired to this function making that
5663 impossible. On a positive note, the CLI side of this problem has
5664 been fixed - the function set_cmd_context() makes it possible for
5665 all the ``target ....'' commands to share a common callback
5666 function. See cli-dump.c. */
5667 {
5668
5669 try
5670 {
5671 remote->start_remote (from_tty, extended_p);
5672 }
5673 catch (const gdb_exception &ex)
5674 {
5675 /* Pop the partially set up target - unless something else did
5676 already before throwing the exception. */
5677 if (ex.error != TARGET_CLOSE_ERROR)
5678 remote_unpush_target (remote);
5679 throw;
5680 }
5681 }
5682
5683 remote_btrace_reset (rs);
5684
5685 if (target_async_permitted)
5686 rs->wait_forever_enabled_p = 1;
5687 }
5688
5689 /* Detach the specified process. */
5690
5691 void
5692 remote_target::remote_detach_pid (int pid)
5693 {
5694 struct remote_state *rs = get_remote_state ();
5695
5696 /* This should not be necessary, but the handling for D;PID in
5697 GDBserver versions prior to 8.2 incorrectly assumes that the
5698 selected process points to the same process we're detaching,
5699 leading to misbehavior (and possibly GDBserver crashing) when it
5700 does not. Since it's easy and cheap, work around it by forcing
5701 GDBserver to select GDB's current process. */
5702 set_general_process ();
5703
5704 if (remote_multi_process_p (rs))
5705 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5706 else
5707 strcpy (rs->buf.data (), "D");
5708
5709 putpkt (rs->buf);
5710 getpkt (&rs->buf, 0);
5711
5712 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5713 ;
5714 else if (rs->buf[0] == '\0')
5715 error (_("Remote doesn't know how to detach"));
5716 else
5717 error (_("Can't detach process."));
5718 }
5719
5720 /* This detaches a program to which we previously attached, using
5721 inferior_ptid to identify the process. After this is done, GDB
5722 can be used to debug some other program. We better not have left
5723 any breakpoints in the target program or it'll die when it hits
5724 one. */
5725
5726 void
5727 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5728 {
5729 int pid = inferior_ptid.pid ();
5730 struct remote_state *rs = get_remote_state ();
5731 int is_fork_parent;
5732
5733 if (!target_has_execution ())
5734 error (_("No process to detach from."));
5735
5736 target_announce_detach (from_tty);
5737
5738 /* Tell the remote target to detach. */
5739 remote_detach_pid (pid);
5740
5741 /* Exit only if this is the only active inferior. */
5742 if (from_tty && !rs->extended && number_of_live_inferiors (this) == 1)
5743 puts_filtered (_("Ending remote debugging.\n"));
5744
5745 thread_info *tp = find_thread_ptid (this, inferior_ptid);
5746
5747 /* Check to see if we are detaching a fork parent. Note that if we
5748 are detaching a fork child, tp == NULL. */
5749 is_fork_parent = (tp != NULL
5750 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5751
5752 /* If doing detach-on-fork, we don't mourn, because that will delete
5753 breakpoints that should be available for the followed inferior. */
5754 if (!is_fork_parent)
5755 {
5756 /* Save the pid as a string before mourning, since that will
5757 unpush the remote target, and we need the string after. */
5758 std::string infpid = target_pid_to_str (ptid_t (pid));
5759
5760 target_mourn_inferior (inferior_ptid);
5761 if (print_inferior_events)
5762 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5763 inf->num, infpid.c_str ());
5764 }
5765 else
5766 {
5767 switch_to_no_thread ();
5768 detach_inferior (current_inferior ());
5769 }
5770 }
5771
5772 void
5773 remote_target::detach (inferior *inf, int from_tty)
5774 {
5775 remote_detach_1 (inf, from_tty);
5776 }
5777
5778 void
5779 extended_remote_target::detach (inferior *inf, int from_tty)
5780 {
5781 remote_detach_1 (inf, from_tty);
5782 }
5783
5784 /* Target follow-fork function for remote targets. On entry, and
5785 at return, the current inferior is the fork parent.
5786
5787 Note that although this is currently only used for extended-remote,
5788 it is named remote_follow_fork in anticipation of using it for the
5789 remote target as well. */
5790
5791 bool
5792 remote_target::follow_fork (bool follow_child, bool detach_fork)
5793 {
5794 struct remote_state *rs = get_remote_state ();
5795 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5796
5797 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5798 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5799 {
5800 /* When following the parent and detaching the child, we detach
5801 the child here. For the case of following the child and
5802 detaching the parent, the detach is done in the target-
5803 independent follow fork code in infrun.c. We can't use
5804 target_detach when detaching an unfollowed child because
5805 the client side doesn't know anything about the child. */
5806 if (detach_fork && !follow_child)
5807 {
5808 /* Detach the fork child. */
5809 ptid_t child_ptid;
5810 pid_t child_pid;
5811
5812 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5813 child_pid = child_ptid.pid ();
5814
5815 remote_detach_pid (child_pid);
5816 }
5817 }
5818
5819 return false;
5820 }
5821
5822 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5823 in the program space of the new inferior. On entry and at return the
5824 current inferior is the exec'ing inferior. INF is the new exec'd
5825 inferior, which may be the same as the exec'ing inferior unless
5826 follow-exec-mode is "new". */
5827
5828 void
5829 remote_target::follow_exec (struct inferior *inf, const char *execd_pathname)
5830 {
5831 /* We know that this is a target file name, so if it has the "target:"
5832 prefix we strip it off before saving it in the program space. */
5833 if (is_target_filename (execd_pathname))
5834 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5835
5836 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5837 }
5838
5839 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5840
5841 void
5842 remote_target::disconnect (const char *args, int from_tty)
5843 {
5844 if (args)
5845 error (_("Argument given to \"disconnect\" when remotely debugging."));
5846
5847 /* Make sure we unpush even the extended remote targets. Calling
5848 target_mourn_inferior won't unpush, and
5849 remote_target::mourn_inferior won't unpush if there is more than
5850 one inferior left. */
5851 remote_unpush_target (this);
5852
5853 if (from_tty)
5854 puts_filtered ("Ending remote debugging.\n");
5855 }
5856
5857 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5858 be chatty about it. */
5859
5860 void
5861 extended_remote_target::attach (const char *args, int from_tty)
5862 {
5863 struct remote_state *rs = get_remote_state ();
5864 int pid;
5865 char *wait_status = NULL;
5866
5867 pid = parse_pid_to_attach (args);
5868
5869 /* Remote PID can be freely equal to getpid, do not check it here the same
5870 way as in other targets. */
5871
5872 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5873 error (_("This target does not support attaching to a process"));
5874
5875 if (from_tty)
5876 {
5877 const char *exec_file = get_exec_file (0);
5878
5879 if (exec_file)
5880 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5881 target_pid_to_str (ptid_t (pid)).c_str ());
5882 else
5883 printf_unfiltered (_("Attaching to %s\n"),
5884 target_pid_to_str (ptid_t (pid)).c_str ());
5885 }
5886
5887 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
5888 putpkt (rs->buf);
5889 getpkt (&rs->buf, 0);
5890
5891 switch (packet_ok (rs->buf,
5892 &remote_protocol_packets[PACKET_vAttach]))
5893 {
5894 case PACKET_OK:
5895 if (!target_is_non_stop_p ())
5896 {
5897 /* Save the reply for later. */
5898 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
5899 strcpy (wait_status, rs->buf.data ());
5900 }
5901 else if (strcmp (rs->buf.data (), "OK") != 0)
5902 error (_("Attaching to %s failed with: %s"),
5903 target_pid_to_str (ptid_t (pid)).c_str (),
5904 rs->buf.data ());
5905 break;
5906 case PACKET_UNKNOWN:
5907 error (_("This target does not support attaching to a process"));
5908 default:
5909 error (_("Attaching to %s failed"),
5910 target_pid_to_str (ptid_t (pid)).c_str ());
5911 }
5912
5913 switch_to_inferior_no_thread (remote_add_inferior (false, pid, 1, 0));
5914
5915 inferior_ptid = ptid_t (pid);
5916
5917 if (target_is_non_stop_p ())
5918 {
5919 /* Get list of threads. */
5920 update_thread_list ();
5921
5922 thread_info *thread = first_thread_of_inferior (current_inferior ());
5923 if (thread != nullptr)
5924 switch_to_thread (thread);
5925
5926 /* Invalidate our notion of the remote current thread. */
5927 record_currthread (rs, minus_one_ptid);
5928 }
5929 else
5930 {
5931 /* Now, if we have thread information, update the main thread's
5932 ptid. */
5933 ptid_t curr_ptid = remote_current_thread (ptid_t (pid));
5934
5935 /* Add the main thread to the thread list. */
5936 thread_info *thr = add_thread_silent (this, curr_ptid);
5937
5938 switch_to_thread (thr);
5939
5940 /* Don't consider the thread stopped until we've processed the
5941 saved stop reply. */
5942 set_executing (this, thr->ptid, true);
5943 }
5944
5945 /* Next, if the target can specify a description, read it. We do
5946 this before anything involving memory or registers. */
5947 target_find_description ();
5948
5949 if (!target_is_non_stop_p ())
5950 {
5951 /* Use the previously fetched status. */
5952 gdb_assert (wait_status != NULL);
5953
5954 if (target_can_async_p ())
5955 {
5956 struct notif_event *reply
5957 = remote_notif_parse (this, &notif_client_stop, wait_status);
5958
5959 push_stop_reply ((struct stop_reply *) reply);
5960
5961 target_async (1);
5962 }
5963 else
5964 {
5965 gdb_assert (wait_status != NULL);
5966 strcpy (rs->buf.data (), wait_status);
5967 rs->cached_wait_status = 1;
5968 }
5969 }
5970 else
5971 gdb_assert (wait_status == NULL);
5972 }
5973
5974 /* Implementation of the to_post_attach method. */
5975
5976 void
5977 extended_remote_target::post_attach (int pid)
5978 {
5979 /* Get text, data & bss offsets. */
5980 get_offsets ();
5981
5982 /* In certain cases GDB might not have had the chance to start
5983 symbol lookup up until now. This could happen if the debugged
5984 binary is not using shared libraries, the vsyscall page is not
5985 present (on Linux) and the binary itself hadn't changed since the
5986 debugging process was started. */
5987 if (current_program_space->symfile_object_file != NULL)
5988 remote_check_symbols();
5989 }
5990
5991 \f
5992 /* Check for the availability of vCont. This function should also check
5993 the response. */
5994
5995 void
5996 remote_target::remote_vcont_probe ()
5997 {
5998 remote_state *rs = get_remote_state ();
5999 char *buf;
6000
6001 strcpy (rs->buf.data (), "vCont?");
6002 putpkt (rs->buf);
6003 getpkt (&rs->buf, 0);
6004 buf = rs->buf.data ();
6005
6006 /* Make sure that the features we assume are supported. */
6007 if (startswith (buf, "vCont"))
6008 {
6009 char *p = &buf[5];
6010 int support_c, support_C;
6011
6012 rs->supports_vCont.s = 0;
6013 rs->supports_vCont.S = 0;
6014 support_c = 0;
6015 support_C = 0;
6016 rs->supports_vCont.t = 0;
6017 rs->supports_vCont.r = 0;
6018 while (p && *p == ';')
6019 {
6020 p++;
6021 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
6022 rs->supports_vCont.s = 1;
6023 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
6024 rs->supports_vCont.S = 1;
6025 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
6026 support_c = 1;
6027 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
6028 support_C = 1;
6029 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
6030 rs->supports_vCont.t = 1;
6031 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
6032 rs->supports_vCont.r = 1;
6033
6034 p = strchr (p, ';');
6035 }
6036
6037 /* If c, and C are not all supported, we can't use vCont. Clearing
6038 BUF will make packet_ok disable the packet. */
6039 if (!support_c || !support_C)
6040 buf[0] = 0;
6041 }
6042
6043 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
6044 rs->supports_vCont_probed = true;
6045 }
6046
6047 /* Helper function for building "vCont" resumptions. Write a
6048 resumption to P. ENDP points to one-passed-the-end of the buffer
6049 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
6050 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
6051 resumed thread should be single-stepped and/or signalled. If PTID
6052 equals minus_one_ptid, then all threads are resumed; if PTID
6053 represents a process, then all threads of the process are resumed;
6054 the thread to be stepped and/or signalled is given in the global
6055 INFERIOR_PTID. */
6056
6057 char *
6058 remote_target::append_resumption (char *p, char *endp,
6059 ptid_t ptid, int step, gdb_signal siggnal)
6060 {
6061 struct remote_state *rs = get_remote_state ();
6062
6063 if (step && siggnal != GDB_SIGNAL_0)
6064 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6065 else if (step
6066 /* GDB is willing to range step. */
6067 && use_range_stepping
6068 /* Target supports range stepping. */
6069 && rs->supports_vCont.r
6070 /* We don't currently support range stepping multiple
6071 threads with a wildcard (though the protocol allows it,
6072 so stubs shouldn't make an active effort to forbid
6073 it). */
6074 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6075 {
6076 struct thread_info *tp;
6077
6078 if (ptid == minus_one_ptid)
6079 {
6080 /* If we don't know about the target thread's tid, then
6081 we're resuming magic_null_ptid (see caller). */
6082 tp = find_thread_ptid (this, magic_null_ptid);
6083 }
6084 else
6085 tp = find_thread_ptid (this, ptid);
6086 gdb_assert (tp != NULL);
6087
6088 if (tp->control.may_range_step)
6089 {
6090 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6091
6092 p += xsnprintf (p, endp - p, ";r%s,%s",
6093 phex_nz (tp->control.step_range_start,
6094 addr_size),
6095 phex_nz (tp->control.step_range_end,
6096 addr_size));
6097 }
6098 else
6099 p += xsnprintf (p, endp - p, ";s");
6100 }
6101 else if (step)
6102 p += xsnprintf (p, endp - p, ";s");
6103 else if (siggnal != GDB_SIGNAL_0)
6104 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6105 else
6106 p += xsnprintf (p, endp - p, ";c");
6107
6108 if (remote_multi_process_p (rs) && ptid.is_pid ())
6109 {
6110 ptid_t nptid;
6111
6112 /* All (-1) threads of process. */
6113 nptid = ptid_t (ptid.pid (), -1, 0);
6114
6115 p += xsnprintf (p, endp - p, ":");
6116 p = write_ptid (p, endp, nptid);
6117 }
6118 else if (ptid != minus_one_ptid)
6119 {
6120 p += xsnprintf (p, endp - p, ":");
6121 p = write_ptid (p, endp, ptid);
6122 }
6123
6124 return p;
6125 }
6126
6127 /* Clear the thread's private info on resume. */
6128
6129 static void
6130 resume_clear_thread_private_info (struct thread_info *thread)
6131 {
6132 if (thread->priv != NULL)
6133 {
6134 remote_thread_info *priv = get_remote_thread_info (thread);
6135
6136 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6137 priv->watch_data_address = 0;
6138 }
6139 }
6140
6141 /* Append a vCont continue-with-signal action for threads that have a
6142 non-zero stop signal. */
6143
6144 char *
6145 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6146 ptid_t ptid)
6147 {
6148 for (thread_info *thread : all_non_exited_threads (this, ptid))
6149 if (inferior_ptid != thread->ptid
6150 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6151 {
6152 p = append_resumption (p, endp, thread->ptid,
6153 0, thread->suspend.stop_signal);
6154 thread->suspend.stop_signal = GDB_SIGNAL_0;
6155 resume_clear_thread_private_info (thread);
6156 }
6157
6158 return p;
6159 }
6160
6161 /* Set the target running, using the packets that use Hc
6162 (c/s/C/S). */
6163
6164 void
6165 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6166 gdb_signal siggnal)
6167 {
6168 struct remote_state *rs = get_remote_state ();
6169 char *buf;
6170
6171 rs->last_sent_signal = siggnal;
6172 rs->last_sent_step = step;
6173
6174 /* The c/s/C/S resume packets use Hc, so set the continue
6175 thread. */
6176 if (ptid == minus_one_ptid)
6177 set_continue_thread (any_thread_ptid);
6178 else
6179 set_continue_thread (ptid);
6180
6181 for (thread_info *thread : all_non_exited_threads (this))
6182 resume_clear_thread_private_info (thread);
6183
6184 buf = rs->buf.data ();
6185 if (::execution_direction == EXEC_REVERSE)
6186 {
6187 /* We don't pass signals to the target in reverse exec mode. */
6188 if (info_verbose && siggnal != GDB_SIGNAL_0)
6189 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6190 siggnal);
6191
6192 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6193 error (_("Remote reverse-step not supported."));
6194 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6195 error (_("Remote reverse-continue not supported."));
6196
6197 strcpy (buf, step ? "bs" : "bc");
6198 }
6199 else if (siggnal != GDB_SIGNAL_0)
6200 {
6201 buf[0] = step ? 'S' : 'C';
6202 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6203 buf[2] = tohex (((int) siggnal) & 0xf);
6204 buf[3] = '\0';
6205 }
6206 else
6207 strcpy (buf, step ? "s" : "c");
6208
6209 putpkt (buf);
6210 }
6211
6212 /* Resume the remote inferior by using a "vCont" packet. The thread
6213 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6214 resumed thread should be single-stepped and/or signalled. If PTID
6215 equals minus_one_ptid, then all threads are resumed; the thread to
6216 be stepped and/or signalled is given in the global INFERIOR_PTID.
6217 This function returns non-zero iff it resumes the inferior.
6218
6219 This function issues a strict subset of all possible vCont commands
6220 at the moment. */
6221
6222 int
6223 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6224 enum gdb_signal siggnal)
6225 {
6226 struct remote_state *rs = get_remote_state ();
6227 char *p;
6228 char *endp;
6229
6230 /* No reverse execution actions defined for vCont. */
6231 if (::execution_direction == EXEC_REVERSE)
6232 return 0;
6233
6234 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6235 remote_vcont_probe ();
6236
6237 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6238 return 0;
6239
6240 p = rs->buf.data ();
6241 endp = p + get_remote_packet_size ();
6242
6243 /* If we could generate a wider range of packets, we'd have to worry
6244 about overflowing BUF. Should there be a generic
6245 "multi-part-packet" packet? */
6246
6247 p += xsnprintf (p, endp - p, "vCont");
6248
6249 if (ptid == magic_null_ptid)
6250 {
6251 /* MAGIC_NULL_PTID means that we don't have any active threads,
6252 so we don't have any TID numbers the inferior will
6253 understand. Make sure to only send forms that do not specify
6254 a TID. */
6255 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6256 }
6257 else if (ptid == minus_one_ptid || ptid.is_pid ())
6258 {
6259 /* Resume all threads (of all processes, or of a single
6260 process), with preference for INFERIOR_PTID. This assumes
6261 inferior_ptid belongs to the set of all threads we are about
6262 to resume. */
6263 if (step || siggnal != GDB_SIGNAL_0)
6264 {
6265 /* Step inferior_ptid, with or without signal. */
6266 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6267 }
6268
6269 /* Also pass down any pending signaled resumption for other
6270 threads not the current. */
6271 p = append_pending_thread_resumptions (p, endp, ptid);
6272
6273 /* And continue others without a signal. */
6274 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6275 }
6276 else
6277 {
6278 /* Scheduler locking; resume only PTID. */
6279 append_resumption (p, endp, ptid, step, siggnal);
6280 }
6281
6282 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6283 putpkt (rs->buf);
6284
6285 if (target_is_non_stop_p ())
6286 {
6287 /* In non-stop, the stub replies to vCont with "OK". The stop
6288 reply will be reported asynchronously by means of a `%Stop'
6289 notification. */
6290 getpkt (&rs->buf, 0);
6291 if (strcmp (rs->buf.data (), "OK") != 0)
6292 error (_("Unexpected vCont reply in non-stop mode: %s"),
6293 rs->buf.data ());
6294 }
6295
6296 return 1;
6297 }
6298
6299 /* Tell the remote machine to resume. */
6300
6301 void
6302 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6303 {
6304 struct remote_state *rs = get_remote_state ();
6305
6306 /* When connected in non-stop mode, the core resumes threads
6307 individually. Resuming remote threads directly in target_resume
6308 would thus result in sending one packet per thread. Instead, to
6309 minimize roundtrip latency, here we just store the resume
6310 request; the actual remote resumption will be done in
6311 target_commit_resume / remote_commit_resume, where we'll be able
6312 to do vCont action coalescing. */
6313 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6314 {
6315 remote_thread_info *remote_thr;
6316
6317 if (minus_one_ptid == ptid || ptid.is_pid ())
6318 remote_thr = get_remote_thread_info (this, inferior_ptid);
6319 else
6320 remote_thr = get_remote_thread_info (this, ptid);
6321
6322 remote_thr->last_resume_step = step;
6323 remote_thr->last_resume_sig = siggnal;
6324 return;
6325 }
6326
6327 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6328 (explained in remote-notif.c:handle_notification) so
6329 remote_notif_process is not called. We need find a place where
6330 it is safe to start a 'vNotif' sequence. It is good to do it
6331 before resuming inferior, because inferior was stopped and no RSP
6332 traffic at that moment. */
6333 if (!target_is_non_stop_p ())
6334 remote_notif_process (rs->notif_state, &notif_client_stop);
6335
6336 rs->last_resume_exec_dir = ::execution_direction;
6337
6338 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6339 if (!remote_resume_with_vcont (ptid, step, siggnal))
6340 remote_resume_with_hc (ptid, step, siggnal);
6341
6342 /* We are about to start executing the inferior, let's register it
6343 with the event loop. NOTE: this is the one place where all the
6344 execution commands end up. We could alternatively do this in each
6345 of the execution commands in infcmd.c. */
6346 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6347 into infcmd.c in order to allow inferior function calls to work
6348 NOT asynchronously. */
6349 if (target_can_async_p ())
6350 target_async (1);
6351
6352 /* We've just told the target to resume. The remote server will
6353 wait for the inferior to stop, and then send a stop reply. In
6354 the mean time, we can't start another command/query ourselves
6355 because the stub wouldn't be ready to process it. This applies
6356 only to the base all-stop protocol, however. In non-stop (which
6357 only supports vCont), the stub replies with an "OK", and is
6358 immediate able to process further serial input. */
6359 if (!target_is_non_stop_p ())
6360 rs->waiting_for_stop_reply = 1;
6361 }
6362
6363 static int is_pending_fork_parent_thread (struct thread_info *thread);
6364
6365 /* Private per-inferior info for target remote processes. */
6366
6367 struct remote_inferior : public private_inferior
6368 {
6369 /* Whether we can send a wildcard vCont for this process. */
6370 bool may_wildcard_vcont = true;
6371 };
6372
6373 /* Get the remote private inferior data associated to INF. */
6374
6375 static remote_inferior *
6376 get_remote_inferior (inferior *inf)
6377 {
6378 if (inf->priv == NULL)
6379 inf->priv.reset (new remote_inferior);
6380
6381 return static_cast<remote_inferior *> (inf->priv.get ());
6382 }
6383
6384 /* Class used to track the construction of a vCont packet in the
6385 outgoing packet buffer. This is used to send multiple vCont
6386 packets if we have more actions than would fit a single packet. */
6387
6388 class vcont_builder
6389 {
6390 public:
6391 explicit vcont_builder (remote_target *remote)
6392 : m_remote (remote)
6393 {
6394 restart ();
6395 }
6396
6397 void flush ();
6398 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6399
6400 private:
6401 void restart ();
6402
6403 /* The remote target. */
6404 remote_target *m_remote;
6405
6406 /* Pointer to the first action. P points here if no action has been
6407 appended yet. */
6408 char *m_first_action;
6409
6410 /* Where the next action will be appended. */
6411 char *m_p;
6412
6413 /* The end of the buffer. Must never write past this. */
6414 char *m_endp;
6415 };
6416
6417 /* Prepare the outgoing buffer for a new vCont packet. */
6418
6419 void
6420 vcont_builder::restart ()
6421 {
6422 struct remote_state *rs = m_remote->get_remote_state ();
6423
6424 m_p = rs->buf.data ();
6425 m_endp = m_p + m_remote->get_remote_packet_size ();
6426 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6427 m_first_action = m_p;
6428 }
6429
6430 /* If the vCont packet being built has any action, send it to the
6431 remote end. */
6432
6433 void
6434 vcont_builder::flush ()
6435 {
6436 struct remote_state *rs;
6437
6438 if (m_p == m_first_action)
6439 return;
6440
6441 rs = m_remote->get_remote_state ();
6442 m_remote->putpkt (rs->buf);
6443 m_remote->getpkt (&rs->buf, 0);
6444 if (strcmp (rs->buf.data (), "OK") != 0)
6445 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6446 }
6447
6448 /* The largest action is range-stepping, with its two addresses. This
6449 is more than sufficient. If a new, bigger action is created, it'll
6450 quickly trigger a failed assertion in append_resumption (and we'll
6451 just bump this). */
6452 #define MAX_ACTION_SIZE 200
6453
6454 /* Append a new vCont action in the outgoing packet being built. If
6455 the action doesn't fit the packet along with previous actions, push
6456 what we've got so far to the remote end and start over a new vCont
6457 packet (with the new action). */
6458
6459 void
6460 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6461 {
6462 char buf[MAX_ACTION_SIZE + 1];
6463
6464 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6465 ptid, step, siggnal);
6466
6467 /* Check whether this new action would fit in the vCont packet along
6468 with previous actions. If not, send what we've got so far and
6469 start a new vCont packet. */
6470 size_t rsize = endp - buf;
6471 if (rsize > m_endp - m_p)
6472 {
6473 flush ();
6474 restart ();
6475
6476 /* Should now fit. */
6477 gdb_assert (rsize <= m_endp - m_p);
6478 }
6479
6480 memcpy (m_p, buf, rsize);
6481 m_p += rsize;
6482 *m_p = '\0';
6483 }
6484
6485 /* to_commit_resume implementation. */
6486
6487 void
6488 remote_target::commit_resume ()
6489 {
6490 int any_process_wildcard;
6491 int may_global_wildcard_vcont;
6492
6493 /* If connected in all-stop mode, we'd send the remote resume
6494 request directly from remote_resume. Likewise if
6495 reverse-debugging, as there are no defined vCont actions for
6496 reverse execution. */
6497 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6498 return;
6499
6500 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6501 instead of resuming all threads of each process individually.
6502 However, if any thread of a process must remain halted, we can't
6503 send wildcard resumes and must send one action per thread.
6504
6505 Care must be taken to not resume threads/processes the server
6506 side already told us are stopped, but the core doesn't know about
6507 yet, because the events are still in the vStopped notification
6508 queue. For example:
6509
6510 #1 => vCont s:p1.1;c
6511 #2 <= OK
6512 #3 <= %Stopped T05 p1.1
6513 #4 => vStopped
6514 #5 <= T05 p1.2
6515 #6 => vStopped
6516 #7 <= OK
6517 #8 (infrun handles the stop for p1.1 and continues stepping)
6518 #9 => vCont s:p1.1;c
6519
6520 The last vCont above would resume thread p1.2 by mistake, because
6521 the server has no idea that the event for p1.2 had not been
6522 handled yet.
6523
6524 The server side must similarly ignore resume actions for the
6525 thread that has a pending %Stopped notification (and any other
6526 threads with events pending), until GDB acks the notification
6527 with vStopped. Otherwise, e.g., the following case is
6528 mishandled:
6529
6530 #1 => g (or any other packet)
6531 #2 <= [registers]
6532 #3 <= %Stopped T05 p1.2
6533 #4 => vCont s:p1.1;c
6534 #5 <= OK
6535
6536 Above, the server must not resume thread p1.2. GDB can't know
6537 that p1.2 stopped until it acks the %Stopped notification, and
6538 since from GDB's perspective all threads should be running, it
6539 sends a "c" action.
6540
6541 Finally, special care must also be given to handling fork/vfork
6542 events. A (v)fork event actually tells us that two processes
6543 stopped -- the parent and the child. Until we follow the fork,
6544 we must not resume the child. Therefore, if we have a pending
6545 fork follow, we must not send a global wildcard resume action
6546 (vCont;c). We can still send process-wide wildcards though. */
6547
6548 /* Start by assuming a global wildcard (vCont;c) is possible. */
6549 may_global_wildcard_vcont = 1;
6550
6551 /* And assume every process is individually wildcard-able too. */
6552 for (inferior *inf : all_non_exited_inferiors (this))
6553 {
6554 remote_inferior *priv = get_remote_inferior (inf);
6555
6556 priv->may_wildcard_vcont = true;
6557 }
6558
6559 /* Check for any pending events (not reported or processed yet) and
6560 disable process and global wildcard resumes appropriately. */
6561 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6562
6563 for (thread_info *tp : all_non_exited_threads (this))
6564 {
6565 /* If a thread of a process is not meant to be resumed, then we
6566 can't wildcard that process. */
6567 if (!tp->executing)
6568 {
6569 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6570
6571 /* And if we can't wildcard a process, we can't wildcard
6572 everything either. */
6573 may_global_wildcard_vcont = 0;
6574 continue;
6575 }
6576
6577 /* If a thread is the parent of an unfollowed fork, then we
6578 can't do a global wildcard, as that would resume the fork
6579 child. */
6580 if (is_pending_fork_parent_thread (tp))
6581 may_global_wildcard_vcont = 0;
6582 }
6583
6584 /* Now let's build the vCont packet(s). Actions must be appended
6585 from narrower to wider scopes (thread -> process -> global). If
6586 we end up with too many actions for a single packet vcont_builder
6587 flushes the current vCont packet to the remote side and starts a
6588 new one. */
6589 struct vcont_builder vcont_builder (this);
6590
6591 /* Threads first. */
6592 for (thread_info *tp : all_non_exited_threads (this))
6593 {
6594 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6595
6596 if (!tp->executing || remote_thr->vcont_resumed)
6597 continue;
6598
6599 gdb_assert (!thread_is_in_step_over_chain (tp));
6600
6601 if (!remote_thr->last_resume_step
6602 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6603 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6604 {
6605 /* We'll send a wildcard resume instead. */
6606 remote_thr->vcont_resumed = 1;
6607 continue;
6608 }
6609
6610 vcont_builder.push_action (tp->ptid,
6611 remote_thr->last_resume_step,
6612 remote_thr->last_resume_sig);
6613 remote_thr->vcont_resumed = 1;
6614 }
6615
6616 /* Now check whether we can send any process-wide wildcard. This is
6617 to avoid sending a global wildcard in the case nothing is
6618 supposed to be resumed. */
6619 any_process_wildcard = 0;
6620
6621 for (inferior *inf : all_non_exited_inferiors (this))
6622 {
6623 if (get_remote_inferior (inf)->may_wildcard_vcont)
6624 {
6625 any_process_wildcard = 1;
6626 break;
6627 }
6628 }
6629
6630 if (any_process_wildcard)
6631 {
6632 /* If all processes are wildcard-able, then send a single "c"
6633 action, otherwise, send an "all (-1) threads of process"
6634 continue action for each running process, if any. */
6635 if (may_global_wildcard_vcont)
6636 {
6637 vcont_builder.push_action (minus_one_ptid,
6638 false, GDB_SIGNAL_0);
6639 }
6640 else
6641 {
6642 for (inferior *inf : all_non_exited_inferiors (this))
6643 {
6644 if (get_remote_inferior (inf)->may_wildcard_vcont)
6645 {
6646 vcont_builder.push_action (ptid_t (inf->pid),
6647 false, GDB_SIGNAL_0);
6648 }
6649 }
6650 }
6651 }
6652
6653 vcont_builder.flush ();
6654 }
6655
6656 \f
6657
6658 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6659 thread, all threads of a remote process, or all threads of all
6660 processes. */
6661
6662 void
6663 remote_target::remote_stop_ns (ptid_t ptid)
6664 {
6665 struct remote_state *rs = get_remote_state ();
6666 char *p = rs->buf.data ();
6667 char *endp = p + get_remote_packet_size ();
6668
6669 /* FIXME: This supports_vCont_probed check is a workaround until
6670 packet_support is per-connection. */
6671 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN
6672 || !rs->supports_vCont_probed)
6673 remote_vcont_probe ();
6674
6675 if (!rs->supports_vCont.t)
6676 error (_("Remote server does not support stopping threads"));
6677
6678 if (ptid == minus_one_ptid
6679 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6680 p += xsnprintf (p, endp - p, "vCont;t");
6681 else
6682 {
6683 ptid_t nptid;
6684
6685 p += xsnprintf (p, endp - p, "vCont;t:");
6686
6687 if (ptid.is_pid ())
6688 /* All (-1) threads of process. */
6689 nptid = ptid_t (ptid.pid (), -1, 0);
6690 else
6691 {
6692 /* Small optimization: if we already have a stop reply for
6693 this thread, no use in telling the stub we want this
6694 stopped. */
6695 if (peek_stop_reply (ptid))
6696 return;
6697
6698 nptid = ptid;
6699 }
6700
6701 write_ptid (p, endp, nptid);
6702 }
6703
6704 /* In non-stop, we get an immediate OK reply. The stop reply will
6705 come in asynchronously by notification. */
6706 putpkt (rs->buf);
6707 getpkt (&rs->buf, 0);
6708 if (strcmp (rs->buf.data (), "OK") != 0)
6709 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6710 rs->buf.data ());
6711 }
6712
6713 /* All-stop version of target_interrupt. Sends a break or a ^C to
6714 interrupt the remote target. It is undefined which thread of which
6715 process reports the interrupt. */
6716
6717 void
6718 remote_target::remote_interrupt_as ()
6719 {
6720 struct remote_state *rs = get_remote_state ();
6721
6722 rs->ctrlc_pending_p = 1;
6723
6724 /* If the inferior is stopped already, but the core didn't know
6725 about it yet, just ignore the request. The cached wait status
6726 will be collected in remote_wait. */
6727 if (rs->cached_wait_status)
6728 return;
6729
6730 /* Send interrupt_sequence to remote target. */
6731 send_interrupt_sequence ();
6732 }
6733
6734 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6735 the remote target. It is undefined which thread of which process
6736 reports the interrupt. Throws an error if the packet is not
6737 supported by the server. */
6738
6739 void
6740 remote_target::remote_interrupt_ns ()
6741 {
6742 struct remote_state *rs = get_remote_state ();
6743 char *p = rs->buf.data ();
6744 char *endp = p + get_remote_packet_size ();
6745
6746 xsnprintf (p, endp - p, "vCtrlC");
6747
6748 /* In non-stop, we get an immediate OK reply. The stop reply will
6749 come in asynchronously by notification. */
6750 putpkt (rs->buf);
6751 getpkt (&rs->buf, 0);
6752
6753 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6754 {
6755 case PACKET_OK:
6756 break;
6757 case PACKET_UNKNOWN:
6758 error (_("No support for interrupting the remote target."));
6759 case PACKET_ERROR:
6760 error (_("Interrupting target failed: %s"), rs->buf.data ());
6761 }
6762 }
6763
6764 /* Implement the to_stop function for the remote targets. */
6765
6766 void
6767 remote_target::stop (ptid_t ptid)
6768 {
6769 if (remote_debug)
6770 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6771
6772 if (target_is_non_stop_p ())
6773 remote_stop_ns (ptid);
6774 else
6775 {
6776 /* We don't currently have a way to transparently pause the
6777 remote target in all-stop mode. Interrupt it instead. */
6778 remote_interrupt_as ();
6779 }
6780 }
6781
6782 /* Implement the to_interrupt function for the remote targets. */
6783
6784 void
6785 remote_target::interrupt ()
6786 {
6787 if (remote_debug)
6788 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6789
6790 if (target_is_non_stop_p ())
6791 remote_interrupt_ns ();
6792 else
6793 remote_interrupt_as ();
6794 }
6795
6796 /* Implement the to_pass_ctrlc function for the remote targets. */
6797
6798 void
6799 remote_target::pass_ctrlc ()
6800 {
6801 struct remote_state *rs = get_remote_state ();
6802
6803 if (remote_debug)
6804 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6805
6806 /* If we're starting up, we're not fully synced yet. Quit
6807 immediately. */
6808 if (rs->starting_up)
6809 quit ();
6810 /* If ^C has already been sent once, offer to disconnect. */
6811 else if (rs->ctrlc_pending_p)
6812 interrupt_query ();
6813 else
6814 target_interrupt ();
6815 }
6816
6817 /* Ask the user what to do when an interrupt is received. */
6818
6819 void
6820 remote_target::interrupt_query ()
6821 {
6822 struct remote_state *rs = get_remote_state ();
6823
6824 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6825 {
6826 if (query (_("The target is not responding to interrupt requests.\n"
6827 "Stop debugging it? ")))
6828 {
6829 remote_unpush_target (this);
6830 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6831 }
6832 }
6833 else
6834 {
6835 if (query (_("Interrupted while waiting for the program.\n"
6836 "Give up waiting? ")))
6837 quit ();
6838 }
6839 }
6840
6841 /* Enable/disable target terminal ownership. Most targets can use
6842 terminal groups to control terminal ownership. Remote targets are
6843 different in that explicit transfer of ownership to/from GDB/target
6844 is required. */
6845
6846 void
6847 remote_target::terminal_inferior ()
6848 {
6849 /* NOTE: At this point we could also register our selves as the
6850 recipient of all input. Any characters typed could then be
6851 passed on down to the target. */
6852 }
6853
6854 void
6855 remote_target::terminal_ours ()
6856 {
6857 }
6858
6859 static void
6860 remote_console_output (const char *msg)
6861 {
6862 const char *p;
6863
6864 for (p = msg; p[0] && p[1]; p += 2)
6865 {
6866 char tb[2];
6867 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6868
6869 tb[0] = c;
6870 tb[1] = 0;
6871 gdb_stdtarg->puts (tb);
6872 }
6873 gdb_stdtarg->flush ();
6874 }
6875
6876 struct stop_reply : public notif_event
6877 {
6878 ~stop_reply ();
6879
6880 /* The identifier of the thread about this event */
6881 ptid_t ptid;
6882
6883 /* The remote state this event is associated with. When the remote
6884 connection, represented by a remote_state object, is closed,
6885 all the associated stop_reply events should be released. */
6886 struct remote_state *rs;
6887
6888 struct target_waitstatus ws;
6889
6890 /* The architecture associated with the expedited registers. */
6891 gdbarch *arch;
6892
6893 /* Expedited registers. This makes remote debugging a bit more
6894 efficient for those targets that provide critical registers as
6895 part of their normal status mechanism (as another roundtrip to
6896 fetch them is avoided). */
6897 std::vector<cached_reg_t> regcache;
6898
6899 enum target_stop_reason stop_reason;
6900
6901 CORE_ADDR watch_data_address;
6902
6903 int core;
6904 };
6905
6906 /* Return the length of the stop reply queue. */
6907
6908 int
6909 remote_target::stop_reply_queue_length ()
6910 {
6911 remote_state *rs = get_remote_state ();
6912 return rs->stop_reply_queue.size ();
6913 }
6914
6915 static void
6916 remote_notif_stop_parse (remote_target *remote,
6917 struct notif_client *self, const char *buf,
6918 struct notif_event *event)
6919 {
6920 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
6921 }
6922
6923 static void
6924 remote_notif_stop_ack (remote_target *remote,
6925 struct notif_client *self, const char *buf,
6926 struct notif_event *event)
6927 {
6928 struct stop_reply *stop_reply = (struct stop_reply *) event;
6929
6930 /* acknowledge */
6931 putpkt (remote, self->ack_command);
6932
6933 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6934 {
6935 /* We got an unknown stop reply. */
6936 error (_("Unknown stop reply"));
6937 }
6938
6939 remote->push_stop_reply (stop_reply);
6940 }
6941
6942 static int
6943 remote_notif_stop_can_get_pending_events (remote_target *remote,
6944 struct notif_client *self)
6945 {
6946 /* We can't get pending events in remote_notif_process for
6947 notification stop, and we have to do this in remote_wait_ns
6948 instead. If we fetch all queued events from stub, remote stub
6949 may exit and we have no chance to process them back in
6950 remote_wait_ns. */
6951 remote_state *rs = remote->get_remote_state ();
6952 mark_async_event_handler (rs->remote_async_inferior_event_token);
6953 return 0;
6954 }
6955
6956 stop_reply::~stop_reply ()
6957 {
6958 for (cached_reg_t &reg : regcache)
6959 xfree (reg.data);
6960 }
6961
6962 static notif_event_up
6963 remote_notif_stop_alloc_reply ()
6964 {
6965 return notif_event_up (new struct stop_reply ());
6966 }
6967
6968 /* A client of notification Stop. */
6969
6970 struct notif_client notif_client_stop =
6971 {
6972 "Stop",
6973 "vStopped",
6974 remote_notif_stop_parse,
6975 remote_notif_stop_ack,
6976 remote_notif_stop_can_get_pending_events,
6977 remote_notif_stop_alloc_reply,
6978 REMOTE_NOTIF_STOP,
6979 };
6980
6981 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6982 the pid of the process that owns the threads we want to check, or
6983 -1 if we want to check all threads. */
6984
6985 static int
6986 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6987 ptid_t thread_ptid)
6988 {
6989 if (ws->kind == TARGET_WAITKIND_FORKED
6990 || ws->kind == TARGET_WAITKIND_VFORKED)
6991 {
6992 if (event_pid == -1 || event_pid == thread_ptid.pid ())
6993 return 1;
6994 }
6995
6996 return 0;
6997 }
6998
6999 /* Return the thread's pending status used to determine whether the
7000 thread is a fork parent stopped at a fork event. */
7001
7002 static struct target_waitstatus *
7003 thread_pending_fork_status (struct thread_info *thread)
7004 {
7005 if (thread->suspend.waitstatus_pending_p)
7006 return &thread->suspend.waitstatus;
7007 else
7008 return &thread->pending_follow;
7009 }
7010
7011 /* Determine if THREAD is a pending fork parent thread. */
7012
7013 static int
7014 is_pending_fork_parent_thread (struct thread_info *thread)
7015 {
7016 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7017 int pid = -1;
7018
7019 return is_pending_fork_parent (ws, pid, thread->ptid);
7020 }
7021
7022 /* If CONTEXT contains any fork child threads that have not been
7023 reported yet, remove them from the CONTEXT list. If such a
7024 thread exists it is because we are stopped at a fork catchpoint
7025 and have not yet called follow_fork, which will set up the
7026 host-side data structures for the new process. */
7027
7028 void
7029 remote_target::remove_new_fork_children (threads_listing_context *context)
7030 {
7031 int pid = -1;
7032 struct notif_client *notif = &notif_client_stop;
7033
7034 /* For any threads stopped at a fork event, remove the corresponding
7035 fork child threads from the CONTEXT list. */
7036 for (thread_info *thread : all_non_exited_threads (this))
7037 {
7038 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7039
7040 if (is_pending_fork_parent (ws, pid, thread->ptid))
7041 context->remove_thread (ws->value.related_pid);
7042 }
7043
7044 /* Check for any pending fork events (not reported or processed yet)
7045 in process PID and remove those fork child threads from the
7046 CONTEXT list as well. */
7047 remote_notif_get_pending_events (notif);
7048 for (auto &event : get_remote_state ()->stop_reply_queue)
7049 if (event->ws.kind == TARGET_WAITKIND_FORKED
7050 || event->ws.kind == TARGET_WAITKIND_VFORKED
7051 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
7052 context->remove_thread (event->ws.value.related_pid);
7053 }
7054
7055 /* Check whether any event pending in the vStopped queue would prevent
7056 a global or process wildcard vCont action. Clear
7057 *may_global_wildcard if we can't do a global wildcard (vCont;c),
7058 and clear the event inferior's may_wildcard_vcont flag if we can't
7059 do a process-wide wildcard resume (vCont;c:pPID.-1). */
7060
7061 void
7062 remote_target::check_pending_events_prevent_wildcard_vcont
7063 (int *may_global_wildcard)
7064 {
7065 struct notif_client *notif = &notif_client_stop;
7066
7067 remote_notif_get_pending_events (notif);
7068 for (auto &event : get_remote_state ()->stop_reply_queue)
7069 {
7070 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7071 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7072 continue;
7073
7074 if (event->ws.kind == TARGET_WAITKIND_FORKED
7075 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7076 *may_global_wildcard = 0;
7077
7078 struct inferior *inf = find_inferior_ptid (this, event->ptid);
7079
7080 /* This may be the first time we heard about this process.
7081 Regardless, we must not do a global wildcard resume, otherwise
7082 we'd resume this process too. */
7083 *may_global_wildcard = 0;
7084 if (inf != NULL)
7085 get_remote_inferior (inf)->may_wildcard_vcont = false;
7086 }
7087 }
7088
7089 /* Discard all pending stop replies of inferior INF. */
7090
7091 void
7092 remote_target::discard_pending_stop_replies (struct inferior *inf)
7093 {
7094 struct stop_reply *reply;
7095 struct remote_state *rs = get_remote_state ();
7096 struct remote_notif_state *rns = rs->notif_state;
7097
7098 /* This function can be notified when an inferior exists. When the
7099 target is not remote, the notification state is NULL. */
7100 if (rs->remote_desc == NULL)
7101 return;
7102
7103 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7104
7105 /* Discard the in-flight notification. */
7106 if (reply != NULL && reply->ptid.pid () == inf->pid)
7107 {
7108 delete reply;
7109 rns->pending_event[notif_client_stop.id] = NULL;
7110 }
7111
7112 /* Discard the stop replies we have already pulled with
7113 vStopped. */
7114 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7115 rs->stop_reply_queue.end (),
7116 [=] (const stop_reply_up &event)
7117 {
7118 return event->ptid.pid () == inf->pid;
7119 });
7120 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7121 }
7122
7123 /* Discard the stop replies for RS in stop_reply_queue. */
7124
7125 void
7126 remote_target::discard_pending_stop_replies_in_queue ()
7127 {
7128 remote_state *rs = get_remote_state ();
7129
7130 /* Discard the stop replies we have already pulled with
7131 vStopped. */
7132 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7133 rs->stop_reply_queue.end (),
7134 [=] (const stop_reply_up &event)
7135 {
7136 return event->rs == rs;
7137 });
7138 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7139 }
7140
7141 /* Remove the first reply in 'stop_reply_queue' which matches
7142 PTID. */
7143
7144 struct stop_reply *
7145 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7146 {
7147 remote_state *rs = get_remote_state ();
7148
7149 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7150 rs->stop_reply_queue.end (),
7151 [=] (const stop_reply_up &event)
7152 {
7153 return event->ptid.matches (ptid);
7154 });
7155 struct stop_reply *result;
7156 if (iter == rs->stop_reply_queue.end ())
7157 result = nullptr;
7158 else
7159 {
7160 result = iter->release ();
7161 rs->stop_reply_queue.erase (iter);
7162 }
7163
7164 if (notif_debug)
7165 fprintf_unfiltered (gdb_stdlog,
7166 "notif: discard queued event: 'Stop' in %s\n",
7167 target_pid_to_str (ptid).c_str ());
7168
7169 return result;
7170 }
7171
7172 /* Look for a queued stop reply belonging to PTID. If one is found,
7173 remove it from the queue, and return it. Returns NULL if none is
7174 found. If there are still queued events left to process, tell the
7175 event loop to get back to target_wait soon. */
7176
7177 struct stop_reply *
7178 remote_target::queued_stop_reply (ptid_t ptid)
7179 {
7180 remote_state *rs = get_remote_state ();
7181 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7182
7183 if (!rs->stop_reply_queue.empty ())
7184 {
7185 /* There's still at least an event left. */
7186 mark_async_event_handler (rs->remote_async_inferior_event_token);
7187 }
7188
7189 return r;
7190 }
7191
7192 /* Push a fully parsed stop reply in the stop reply queue. Since we
7193 know that we now have at least one queued event left to pass to the
7194 core side, tell the event loop to get back to target_wait soon. */
7195
7196 void
7197 remote_target::push_stop_reply (struct stop_reply *new_event)
7198 {
7199 remote_state *rs = get_remote_state ();
7200 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7201
7202 if (notif_debug)
7203 fprintf_unfiltered (gdb_stdlog,
7204 "notif: push 'Stop' %s to queue %d\n",
7205 target_pid_to_str (new_event->ptid).c_str (),
7206 int (rs->stop_reply_queue.size ()));
7207
7208 mark_async_event_handler (rs->remote_async_inferior_event_token);
7209 }
7210
7211 /* Returns true if we have a stop reply for PTID. */
7212
7213 int
7214 remote_target::peek_stop_reply (ptid_t ptid)
7215 {
7216 remote_state *rs = get_remote_state ();
7217 for (auto &event : rs->stop_reply_queue)
7218 if (ptid == event->ptid
7219 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7220 return 1;
7221 return 0;
7222 }
7223
7224 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7225 starting with P and ending with PEND matches PREFIX. */
7226
7227 static int
7228 strprefix (const char *p, const char *pend, const char *prefix)
7229 {
7230 for ( ; p < pend; p++, prefix++)
7231 if (*p != *prefix)
7232 return 0;
7233 return *prefix == '\0';
7234 }
7235
7236 /* Parse the stop reply in BUF. Either the function succeeds, and the
7237 result is stored in EVENT, or throws an error. */
7238
7239 void
7240 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7241 {
7242 remote_arch_state *rsa = NULL;
7243 ULONGEST addr;
7244 const char *p;
7245 int skipregs = 0;
7246
7247 event->ptid = null_ptid;
7248 event->rs = get_remote_state ();
7249 event->ws.kind = TARGET_WAITKIND_IGNORE;
7250 event->ws.value.integer = 0;
7251 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7252 event->regcache.clear ();
7253 event->core = -1;
7254
7255 switch (buf[0])
7256 {
7257 case 'T': /* Status with PC, SP, FP, ... */
7258 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7259 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7260 ss = signal number
7261 n... = register number
7262 r... = register contents
7263 */
7264
7265 p = &buf[3]; /* after Txx */
7266 while (*p)
7267 {
7268 const char *p1;
7269 int fieldsize;
7270
7271 p1 = strchr (p, ':');
7272 if (p1 == NULL)
7273 error (_("Malformed packet(a) (missing colon): %s\n\
7274 Packet: '%s'\n"),
7275 p, buf);
7276 if (p == p1)
7277 error (_("Malformed packet(a) (missing register number): %s\n\
7278 Packet: '%s'\n"),
7279 p, buf);
7280
7281 /* Some "registers" are actually extended stop information.
7282 Note if you're adding a new entry here: GDB 7.9 and
7283 earlier assume that all register "numbers" that start
7284 with an hex digit are real register numbers. Make sure
7285 the server only sends such a packet if it knows the
7286 client understands it. */
7287
7288 if (strprefix (p, p1, "thread"))
7289 event->ptid = read_ptid (++p1, &p);
7290 else if (strprefix (p, p1, "syscall_entry"))
7291 {
7292 ULONGEST sysno;
7293
7294 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7295 p = unpack_varlen_hex (++p1, &sysno);
7296 event->ws.value.syscall_number = (int) sysno;
7297 }
7298 else if (strprefix (p, p1, "syscall_return"))
7299 {
7300 ULONGEST sysno;
7301
7302 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7303 p = unpack_varlen_hex (++p1, &sysno);
7304 event->ws.value.syscall_number = (int) sysno;
7305 }
7306 else if (strprefix (p, p1, "watch")
7307 || strprefix (p, p1, "rwatch")
7308 || strprefix (p, p1, "awatch"))
7309 {
7310 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7311 p = unpack_varlen_hex (++p1, &addr);
7312 event->watch_data_address = (CORE_ADDR) addr;
7313 }
7314 else if (strprefix (p, p1, "swbreak"))
7315 {
7316 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7317
7318 /* Make sure the stub doesn't forget to indicate support
7319 with qSupported. */
7320 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7321 error (_("Unexpected swbreak stop reason"));
7322
7323 /* The value part is documented as "must be empty",
7324 though we ignore it, in case we ever decide to make
7325 use of it in a backward compatible way. */
7326 p = strchrnul (p1 + 1, ';');
7327 }
7328 else if (strprefix (p, p1, "hwbreak"))
7329 {
7330 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7331
7332 /* Make sure the stub doesn't forget to indicate support
7333 with qSupported. */
7334 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7335 error (_("Unexpected hwbreak stop reason"));
7336
7337 /* See above. */
7338 p = strchrnul (p1 + 1, ';');
7339 }
7340 else if (strprefix (p, p1, "library"))
7341 {
7342 event->ws.kind = TARGET_WAITKIND_LOADED;
7343 p = strchrnul (p1 + 1, ';');
7344 }
7345 else if (strprefix (p, p1, "replaylog"))
7346 {
7347 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7348 /* p1 will indicate "begin" or "end", but it makes
7349 no difference for now, so ignore it. */
7350 p = strchrnul (p1 + 1, ';');
7351 }
7352 else if (strprefix (p, p1, "core"))
7353 {
7354 ULONGEST c;
7355
7356 p = unpack_varlen_hex (++p1, &c);
7357 event->core = c;
7358 }
7359 else if (strprefix (p, p1, "fork"))
7360 {
7361 event->ws.value.related_pid = read_ptid (++p1, &p);
7362 event->ws.kind = TARGET_WAITKIND_FORKED;
7363 }
7364 else if (strprefix (p, p1, "vfork"))
7365 {
7366 event->ws.value.related_pid = read_ptid (++p1, &p);
7367 event->ws.kind = TARGET_WAITKIND_VFORKED;
7368 }
7369 else if (strprefix (p, p1, "vforkdone"))
7370 {
7371 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7372 p = strchrnul (p1 + 1, ';');
7373 }
7374 else if (strprefix (p, p1, "exec"))
7375 {
7376 ULONGEST ignored;
7377 int pathlen;
7378
7379 /* Determine the length of the execd pathname. */
7380 p = unpack_varlen_hex (++p1, &ignored);
7381 pathlen = (p - p1) / 2;
7382
7383 /* Save the pathname for event reporting and for
7384 the next run command. */
7385 gdb::unique_xmalloc_ptr<char[]> pathname
7386 ((char *) xmalloc (pathlen + 1));
7387 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7388 pathname[pathlen] = '\0';
7389
7390 /* This is freed during event handling. */
7391 event->ws.value.execd_pathname = pathname.release ();
7392 event->ws.kind = TARGET_WAITKIND_EXECD;
7393
7394 /* Skip the registers included in this packet, since
7395 they may be for an architecture different from the
7396 one used by the original program. */
7397 skipregs = 1;
7398 }
7399 else if (strprefix (p, p1, "create"))
7400 {
7401 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7402 p = strchrnul (p1 + 1, ';');
7403 }
7404 else
7405 {
7406 ULONGEST pnum;
7407 const char *p_temp;
7408
7409 if (skipregs)
7410 {
7411 p = strchrnul (p1 + 1, ';');
7412 p++;
7413 continue;
7414 }
7415
7416 /* Maybe a real ``P'' register number. */
7417 p_temp = unpack_varlen_hex (p, &pnum);
7418 /* If the first invalid character is the colon, we got a
7419 register number. Otherwise, it's an unknown stop
7420 reason. */
7421 if (p_temp == p1)
7422 {
7423 /* If we haven't parsed the event's thread yet, find
7424 it now, in order to find the architecture of the
7425 reported expedited registers. */
7426 if (event->ptid == null_ptid)
7427 {
7428 /* If there is no thread-id information then leave
7429 the event->ptid as null_ptid. Later in
7430 process_stop_reply we will pick a suitable
7431 thread. */
7432 const char *thr = strstr (p1 + 1, ";thread:");
7433 if (thr != NULL)
7434 event->ptid = read_ptid (thr + strlen (";thread:"),
7435 NULL);
7436 }
7437
7438 if (rsa == NULL)
7439 {
7440 inferior *inf
7441 = (event->ptid == null_ptid
7442 ? NULL
7443 : find_inferior_ptid (this, event->ptid));
7444 /* If this is the first time we learn anything
7445 about this process, skip the registers
7446 included in this packet, since we don't yet
7447 know which architecture to use to parse them.
7448 We'll determine the architecture later when
7449 we process the stop reply and retrieve the
7450 target description, via
7451 remote_notice_new_inferior ->
7452 post_create_inferior. */
7453 if (inf == NULL)
7454 {
7455 p = strchrnul (p1 + 1, ';');
7456 p++;
7457 continue;
7458 }
7459
7460 event->arch = inf->gdbarch;
7461 rsa = event->rs->get_remote_arch_state (event->arch);
7462 }
7463
7464 packet_reg *reg
7465 = packet_reg_from_pnum (event->arch, rsa, pnum);
7466 cached_reg_t cached_reg;
7467
7468 if (reg == NULL)
7469 error (_("Remote sent bad register number %s: %s\n\
7470 Packet: '%s'\n"),
7471 hex_string (pnum), p, buf);
7472
7473 cached_reg.num = reg->regnum;
7474 cached_reg.data = (gdb_byte *)
7475 xmalloc (register_size (event->arch, reg->regnum));
7476
7477 p = p1 + 1;
7478 fieldsize = hex2bin (p, cached_reg.data,
7479 register_size (event->arch, reg->regnum));
7480 p += 2 * fieldsize;
7481 if (fieldsize < register_size (event->arch, reg->regnum))
7482 warning (_("Remote reply is too short: %s"), buf);
7483
7484 event->regcache.push_back (cached_reg);
7485 }
7486 else
7487 {
7488 /* Not a number. Silently skip unknown optional
7489 info. */
7490 p = strchrnul (p1 + 1, ';');
7491 }
7492 }
7493
7494 if (*p != ';')
7495 error (_("Remote register badly formatted: %s\nhere: %s"),
7496 buf, p);
7497 ++p;
7498 }
7499
7500 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7501 break;
7502
7503 /* fall through */
7504 case 'S': /* Old style status, just signal only. */
7505 {
7506 int sig;
7507
7508 event->ws.kind = TARGET_WAITKIND_STOPPED;
7509 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7510 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7511 event->ws.value.sig = (enum gdb_signal) sig;
7512 else
7513 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7514 }
7515 break;
7516 case 'w': /* Thread exited. */
7517 {
7518 ULONGEST value;
7519
7520 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7521 p = unpack_varlen_hex (&buf[1], &value);
7522 event->ws.value.integer = value;
7523 if (*p != ';')
7524 error (_("stop reply packet badly formatted: %s"), buf);
7525 event->ptid = read_ptid (++p, NULL);
7526 break;
7527 }
7528 case 'W': /* Target exited. */
7529 case 'X':
7530 {
7531 ULONGEST value;
7532
7533 /* GDB used to accept only 2 hex chars here. Stubs should
7534 only send more if they detect GDB supports multi-process
7535 support. */
7536 p = unpack_varlen_hex (&buf[1], &value);
7537
7538 if (buf[0] == 'W')
7539 {
7540 /* The remote process exited. */
7541 event->ws.kind = TARGET_WAITKIND_EXITED;
7542 event->ws.value.integer = value;
7543 }
7544 else
7545 {
7546 /* The remote process exited with a signal. */
7547 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7548 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7549 event->ws.value.sig = (enum gdb_signal) value;
7550 else
7551 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7552 }
7553
7554 /* If no process is specified, return null_ptid, and let the
7555 caller figure out the right process to use. */
7556 int pid = 0;
7557 if (*p == '\0')
7558 ;
7559 else if (*p == ';')
7560 {
7561 p++;
7562
7563 if (*p == '\0')
7564 ;
7565 else if (startswith (p, "process:"))
7566 {
7567 ULONGEST upid;
7568
7569 p += sizeof ("process:") - 1;
7570 unpack_varlen_hex (p, &upid);
7571 pid = upid;
7572 }
7573 else
7574 error (_("unknown stop reply packet: %s"), buf);
7575 }
7576 else
7577 error (_("unknown stop reply packet: %s"), buf);
7578 event->ptid = ptid_t (pid);
7579 }
7580 break;
7581 case 'N':
7582 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7583 event->ptid = minus_one_ptid;
7584 break;
7585 }
7586 }
7587
7588 /* When the stub wants to tell GDB about a new notification reply, it
7589 sends a notification (%Stop, for example). Those can come it at
7590 any time, hence, we have to make sure that any pending
7591 putpkt/getpkt sequence we're making is finished, before querying
7592 the stub for more events with the corresponding ack command
7593 (vStopped, for example). E.g., if we started a vStopped sequence
7594 immediately upon receiving the notification, something like this
7595 could happen:
7596
7597 1.1) --> Hg 1
7598 1.2) <-- OK
7599 1.3) --> g
7600 1.4) <-- %Stop
7601 1.5) --> vStopped
7602 1.6) <-- (registers reply to step #1.3)
7603
7604 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7605 query.
7606
7607 To solve this, whenever we parse a %Stop notification successfully,
7608 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7609 doing whatever we were doing:
7610
7611 2.1) --> Hg 1
7612 2.2) <-- OK
7613 2.3) --> g
7614 2.4) <-- %Stop
7615 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7616 2.5) <-- (registers reply to step #2.3)
7617
7618 Eventually after step #2.5, we return to the event loop, which
7619 notices there's an event on the
7620 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7621 associated callback --- the function below. At this point, we're
7622 always safe to start a vStopped sequence. :
7623
7624 2.6) --> vStopped
7625 2.7) <-- T05 thread:2
7626 2.8) --> vStopped
7627 2.9) --> OK
7628 */
7629
7630 void
7631 remote_target::remote_notif_get_pending_events (notif_client *nc)
7632 {
7633 struct remote_state *rs = get_remote_state ();
7634
7635 if (rs->notif_state->pending_event[nc->id] != NULL)
7636 {
7637 if (notif_debug)
7638 fprintf_unfiltered (gdb_stdlog,
7639 "notif: process: '%s' ack pending event\n",
7640 nc->name);
7641
7642 /* acknowledge */
7643 nc->ack (this, nc, rs->buf.data (),
7644 rs->notif_state->pending_event[nc->id]);
7645 rs->notif_state->pending_event[nc->id] = NULL;
7646
7647 while (1)
7648 {
7649 getpkt (&rs->buf, 0);
7650 if (strcmp (rs->buf.data (), "OK") == 0)
7651 break;
7652 else
7653 remote_notif_ack (this, nc, rs->buf.data ());
7654 }
7655 }
7656 else
7657 {
7658 if (notif_debug)
7659 fprintf_unfiltered (gdb_stdlog,
7660 "notif: process: '%s' no pending reply\n",
7661 nc->name);
7662 }
7663 }
7664
7665 /* Wrapper around remote_target::remote_notif_get_pending_events to
7666 avoid having to export the whole remote_target class. */
7667
7668 void
7669 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7670 {
7671 remote->remote_notif_get_pending_events (nc);
7672 }
7673
7674 /* Called when it is decided that STOP_REPLY holds the info of the
7675 event that is to be returned to the core. This function always
7676 destroys STOP_REPLY. */
7677
7678 ptid_t
7679 remote_target::process_stop_reply (struct stop_reply *stop_reply,
7680 struct target_waitstatus *status)
7681 {
7682 ptid_t ptid;
7683
7684 *status = stop_reply->ws;
7685 ptid = stop_reply->ptid;
7686
7687 /* If no thread/process was reported by the stub then use the first
7688 non-exited thread in the current target. */
7689 if (ptid == null_ptid)
7690 {
7691 /* Some stop events apply to all threads in an inferior, while others
7692 only apply to a single thread. */
7693 bool is_stop_for_all_threads
7694 = (status->kind == TARGET_WAITKIND_EXITED
7695 || status->kind == TARGET_WAITKIND_SIGNALLED);
7696
7697 for (thread_info *thr : all_non_exited_threads (this))
7698 {
7699 if (ptid != null_ptid
7700 && (!is_stop_for_all_threads
7701 || ptid.pid () != thr->ptid.pid ()))
7702 {
7703 static bool warned = false;
7704
7705 if (!warned)
7706 {
7707 /* If you are seeing this warning then the remote target
7708 has stopped without specifying a thread-id, but the
7709 target does have multiple threads (or inferiors), and
7710 so GDB is having to guess which thread stopped.
7711
7712 Examples of what might cause this are the target
7713 sending and 'S' stop packet, or a 'T' stop packet and
7714 not including a thread-id.
7715
7716 Additionally, the target might send a 'W' or 'X
7717 packet without including a process-id, when the target
7718 has multiple running inferiors. */
7719 if (is_stop_for_all_threads)
7720 warning (_("multi-inferior target stopped without "
7721 "sending a process-id, using first "
7722 "non-exited inferior"));
7723 else
7724 warning (_("multi-threaded target stopped without "
7725 "sending a thread-id, using first "
7726 "non-exited thread"));
7727 warned = true;
7728 }
7729 break;
7730 }
7731
7732 /* If this is a stop for all threads then don't use a particular
7733 threads ptid, instead create a new ptid where only the pid
7734 field is set. */
7735 if (is_stop_for_all_threads)
7736 ptid = ptid_t (thr->ptid.pid ());
7737 else
7738 ptid = thr->ptid;
7739 }
7740 gdb_assert (ptid != null_ptid);
7741 }
7742
7743 if (status->kind != TARGET_WAITKIND_EXITED
7744 && status->kind != TARGET_WAITKIND_SIGNALLED
7745 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7746 {
7747 /* Expedited registers. */
7748 if (!stop_reply->regcache.empty ())
7749 {
7750 struct regcache *regcache
7751 = get_thread_arch_regcache (this, ptid, stop_reply->arch);
7752
7753 for (cached_reg_t &reg : stop_reply->regcache)
7754 {
7755 regcache->raw_supply (reg.num, reg.data);
7756 xfree (reg.data);
7757 }
7758
7759 stop_reply->regcache.clear ();
7760 }
7761
7762 remote_notice_new_inferior (ptid, 0);
7763 remote_thread_info *remote_thr = get_remote_thread_info (this, ptid);
7764 remote_thr->core = stop_reply->core;
7765 remote_thr->stop_reason = stop_reply->stop_reason;
7766 remote_thr->watch_data_address = stop_reply->watch_data_address;
7767 remote_thr->vcont_resumed = 0;
7768 }
7769
7770 delete stop_reply;
7771 return ptid;
7772 }
7773
7774 /* The non-stop mode version of target_wait. */
7775
7776 ptid_t
7777 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status,
7778 target_wait_flags options)
7779 {
7780 struct remote_state *rs = get_remote_state ();
7781 struct stop_reply *stop_reply;
7782 int ret;
7783 int is_notif = 0;
7784
7785 /* If in non-stop mode, get out of getpkt even if a
7786 notification is received. */
7787
7788 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
7789 while (1)
7790 {
7791 if (ret != -1 && !is_notif)
7792 switch (rs->buf[0])
7793 {
7794 case 'E': /* Error of some sort. */
7795 /* We're out of sync with the target now. Did it continue
7796 or not? We can't tell which thread it was in non-stop,
7797 so just ignore this. */
7798 warning (_("Remote failure reply: %s"), rs->buf.data ());
7799 break;
7800 case 'O': /* Console output. */
7801 remote_console_output (&rs->buf[1]);
7802 break;
7803 default:
7804 warning (_("Invalid remote reply: %s"), rs->buf.data ());
7805 break;
7806 }
7807
7808 /* Acknowledge a pending stop reply that may have arrived in the
7809 mean time. */
7810 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7811 remote_notif_get_pending_events (&notif_client_stop);
7812
7813 /* If indeed we noticed a stop reply, we're done. */
7814 stop_reply = queued_stop_reply (ptid);
7815 if (stop_reply != NULL)
7816 return process_stop_reply (stop_reply, status);
7817
7818 /* Still no event. If we're just polling for an event, then
7819 return to the event loop. */
7820 if (options & TARGET_WNOHANG)
7821 {
7822 status->kind = TARGET_WAITKIND_IGNORE;
7823 return minus_one_ptid;
7824 }
7825
7826 /* Otherwise do a blocking wait. */
7827 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
7828 }
7829 }
7830
7831 /* Return the first resumed thread. */
7832
7833 static ptid_t
7834 first_remote_resumed_thread (remote_target *target)
7835 {
7836 for (thread_info *tp : all_non_exited_threads (target, minus_one_ptid))
7837 if (tp->resumed)
7838 return tp->ptid;
7839 return null_ptid;
7840 }
7841
7842 /* Wait until the remote machine stops, then return, storing status in
7843 STATUS just as `wait' would. */
7844
7845 ptid_t
7846 remote_target::wait_as (ptid_t ptid, target_waitstatus *status,
7847 target_wait_flags options)
7848 {
7849 struct remote_state *rs = get_remote_state ();
7850 ptid_t event_ptid = null_ptid;
7851 char *buf;
7852 struct stop_reply *stop_reply;
7853
7854 again:
7855
7856 status->kind = TARGET_WAITKIND_IGNORE;
7857 status->value.integer = 0;
7858
7859 stop_reply = queued_stop_reply (ptid);
7860 if (stop_reply != NULL)
7861 return process_stop_reply (stop_reply, status);
7862
7863 if (rs->cached_wait_status)
7864 /* Use the cached wait status, but only once. */
7865 rs->cached_wait_status = 0;
7866 else
7867 {
7868 int ret;
7869 int is_notif;
7870 int forever = ((options & TARGET_WNOHANG) == 0
7871 && rs->wait_forever_enabled_p);
7872
7873 if (!rs->waiting_for_stop_reply)
7874 {
7875 status->kind = TARGET_WAITKIND_NO_RESUMED;
7876 return minus_one_ptid;
7877 }
7878
7879 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7880 _never_ wait for ever -> test on target_is_async_p().
7881 However, before we do that we need to ensure that the caller
7882 knows how to take the target into/out of async mode. */
7883 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
7884
7885 /* GDB gets a notification. Return to core as this event is
7886 not interesting. */
7887 if (ret != -1 && is_notif)
7888 return minus_one_ptid;
7889
7890 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7891 return minus_one_ptid;
7892 }
7893
7894 buf = rs->buf.data ();
7895
7896 /* Assume that the target has acknowledged Ctrl-C unless we receive
7897 an 'F' or 'O' packet. */
7898 if (buf[0] != 'F' && buf[0] != 'O')
7899 rs->ctrlc_pending_p = 0;
7900
7901 switch (buf[0])
7902 {
7903 case 'E': /* Error of some sort. */
7904 /* We're out of sync with the target now. Did it continue or
7905 not? Not is more likely, so report a stop. */
7906 rs->waiting_for_stop_reply = 0;
7907
7908 warning (_("Remote failure reply: %s"), buf);
7909 status->kind = TARGET_WAITKIND_STOPPED;
7910 status->value.sig = GDB_SIGNAL_0;
7911 break;
7912 case 'F': /* File-I/O request. */
7913 /* GDB may access the inferior memory while handling the File-I/O
7914 request, but we don't want GDB accessing memory while waiting
7915 for a stop reply. See the comments in putpkt_binary. Set
7916 waiting_for_stop_reply to 0 temporarily. */
7917 rs->waiting_for_stop_reply = 0;
7918 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
7919 rs->ctrlc_pending_p = 0;
7920 /* GDB handled the File-I/O request, and the target is running
7921 again. Keep waiting for events. */
7922 rs->waiting_for_stop_reply = 1;
7923 break;
7924 case 'N': case 'T': case 'S': case 'X': case 'W':
7925 {
7926 /* There is a stop reply to handle. */
7927 rs->waiting_for_stop_reply = 0;
7928
7929 stop_reply
7930 = (struct stop_reply *) remote_notif_parse (this,
7931 &notif_client_stop,
7932 rs->buf.data ());
7933
7934 event_ptid = process_stop_reply (stop_reply, status);
7935 break;
7936 }
7937 case 'O': /* Console output. */
7938 remote_console_output (buf + 1);
7939 break;
7940 case '\0':
7941 if (rs->last_sent_signal != GDB_SIGNAL_0)
7942 {
7943 /* Zero length reply means that we tried 'S' or 'C' and the
7944 remote system doesn't support it. */
7945 target_terminal::ours_for_output ();
7946 printf_filtered
7947 ("Can't send signals to this remote system. %s not sent.\n",
7948 gdb_signal_to_name (rs->last_sent_signal));
7949 rs->last_sent_signal = GDB_SIGNAL_0;
7950 target_terminal::inferior ();
7951
7952 strcpy (buf, rs->last_sent_step ? "s" : "c");
7953 putpkt (buf);
7954 break;
7955 }
7956 /* fallthrough */
7957 default:
7958 warning (_("Invalid remote reply: %s"), buf);
7959 break;
7960 }
7961
7962 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7963 return minus_one_ptid;
7964 else if (status->kind == TARGET_WAITKIND_IGNORE)
7965 {
7966 /* Nothing interesting happened. If we're doing a non-blocking
7967 poll, we're done. Otherwise, go back to waiting. */
7968 if (options & TARGET_WNOHANG)
7969 return minus_one_ptid;
7970 else
7971 goto again;
7972 }
7973 else if (status->kind != TARGET_WAITKIND_EXITED
7974 && status->kind != TARGET_WAITKIND_SIGNALLED)
7975 {
7976 if (event_ptid != null_ptid)
7977 record_currthread (rs, event_ptid);
7978 else
7979 event_ptid = first_remote_resumed_thread (this);
7980 }
7981 else
7982 {
7983 /* A process exit. Invalidate our notion of current thread. */
7984 record_currthread (rs, minus_one_ptid);
7985 /* It's possible that the packet did not include a pid. */
7986 if (event_ptid == null_ptid)
7987 event_ptid = first_remote_resumed_thread (this);
7988 /* EVENT_PTID could still be NULL_PTID. Double-check. */
7989 if (event_ptid == null_ptid)
7990 event_ptid = magic_null_ptid;
7991 }
7992
7993 return event_ptid;
7994 }
7995
7996 /* Wait until the remote machine stops, then return, storing status in
7997 STATUS just as `wait' would. */
7998
7999 ptid_t
8000 remote_target::wait (ptid_t ptid, struct target_waitstatus *status,
8001 target_wait_flags options)
8002 {
8003 ptid_t event_ptid;
8004
8005 if (target_is_non_stop_p ())
8006 event_ptid = wait_ns (ptid, status, options);
8007 else
8008 event_ptid = wait_as (ptid, status, options);
8009
8010 if (target_is_async_p ())
8011 {
8012 remote_state *rs = get_remote_state ();
8013
8014 /* If there are are events left in the queue tell the event loop
8015 to return here. */
8016 if (!rs->stop_reply_queue.empty ())
8017 mark_async_event_handler (rs->remote_async_inferior_event_token);
8018 }
8019
8020 return event_ptid;
8021 }
8022
8023 /* Fetch a single register using a 'p' packet. */
8024
8025 int
8026 remote_target::fetch_register_using_p (struct regcache *regcache,
8027 packet_reg *reg)
8028 {
8029 struct gdbarch *gdbarch = regcache->arch ();
8030 struct remote_state *rs = get_remote_state ();
8031 char *buf, *p;
8032 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8033 int i;
8034
8035 if (packet_support (PACKET_p) == PACKET_DISABLE)
8036 return 0;
8037
8038 if (reg->pnum == -1)
8039 return 0;
8040
8041 p = rs->buf.data ();
8042 *p++ = 'p';
8043 p += hexnumstr (p, reg->pnum);
8044 *p++ = '\0';
8045 putpkt (rs->buf);
8046 getpkt (&rs->buf, 0);
8047
8048 buf = rs->buf.data ();
8049
8050 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
8051 {
8052 case PACKET_OK:
8053 break;
8054 case PACKET_UNKNOWN:
8055 return 0;
8056 case PACKET_ERROR:
8057 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
8058 gdbarch_register_name (regcache->arch (),
8059 reg->regnum),
8060 buf);
8061 }
8062
8063 /* If this register is unfetchable, tell the regcache. */
8064 if (buf[0] == 'x')
8065 {
8066 regcache->raw_supply (reg->regnum, NULL);
8067 return 1;
8068 }
8069
8070 /* Otherwise, parse and supply the value. */
8071 p = buf;
8072 i = 0;
8073 while (p[0] != 0)
8074 {
8075 if (p[1] == 0)
8076 error (_("fetch_register_using_p: early buf termination"));
8077
8078 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
8079 p += 2;
8080 }
8081 regcache->raw_supply (reg->regnum, regp);
8082 return 1;
8083 }
8084
8085 /* Fetch the registers included in the target's 'g' packet. */
8086
8087 int
8088 remote_target::send_g_packet ()
8089 {
8090 struct remote_state *rs = get_remote_state ();
8091 int buf_len;
8092
8093 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
8094 putpkt (rs->buf);
8095 getpkt (&rs->buf, 0);
8096 if (packet_check_result (rs->buf) == PACKET_ERROR)
8097 error (_("Could not read registers; remote failure reply '%s'"),
8098 rs->buf.data ());
8099
8100 /* We can get out of synch in various cases. If the first character
8101 in the buffer is not a hex character, assume that has happened
8102 and try to fetch another packet to read. */
8103 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8104 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8105 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8106 && rs->buf[0] != 'x') /* New: unavailable register value. */
8107 {
8108 if (remote_debug)
8109 fprintf_unfiltered (gdb_stdlog,
8110 "Bad register packet; fetching a new packet\n");
8111 getpkt (&rs->buf, 0);
8112 }
8113
8114 buf_len = strlen (rs->buf.data ());
8115
8116 /* Sanity check the received packet. */
8117 if (buf_len % 2 != 0)
8118 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
8119
8120 return buf_len / 2;
8121 }
8122
8123 void
8124 remote_target::process_g_packet (struct regcache *regcache)
8125 {
8126 struct gdbarch *gdbarch = regcache->arch ();
8127 struct remote_state *rs = get_remote_state ();
8128 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8129 int i, buf_len;
8130 char *p;
8131 char *regs;
8132
8133 buf_len = strlen (rs->buf.data ());
8134
8135 /* Further sanity checks, with knowledge of the architecture. */
8136 if (buf_len > 2 * rsa->sizeof_g_packet)
8137 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8138 "bytes): %s"),
8139 rsa->sizeof_g_packet, buf_len / 2,
8140 rs->buf.data ());
8141
8142 /* Save the size of the packet sent to us by the target. It is used
8143 as a heuristic when determining the max size of packets that the
8144 target can safely receive. */
8145 if (rsa->actual_register_packet_size == 0)
8146 rsa->actual_register_packet_size = buf_len;
8147
8148 /* If this is smaller than we guessed the 'g' packet would be,
8149 update our records. A 'g' reply that doesn't include a register's
8150 value implies either that the register is not available, or that
8151 the 'p' packet must be used. */
8152 if (buf_len < 2 * rsa->sizeof_g_packet)
8153 {
8154 long sizeof_g_packet = buf_len / 2;
8155
8156 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8157 {
8158 long offset = rsa->regs[i].offset;
8159 long reg_size = register_size (gdbarch, i);
8160
8161 if (rsa->regs[i].pnum == -1)
8162 continue;
8163
8164 if (offset >= sizeof_g_packet)
8165 rsa->regs[i].in_g_packet = 0;
8166 else if (offset + reg_size > sizeof_g_packet)
8167 error (_("Truncated register %d in remote 'g' packet"), i);
8168 else
8169 rsa->regs[i].in_g_packet = 1;
8170 }
8171
8172 /* Looks valid enough, we can assume this is the correct length
8173 for a 'g' packet. It's important not to adjust
8174 rsa->sizeof_g_packet if we have truncated registers otherwise
8175 this "if" won't be run the next time the method is called
8176 with a packet of the same size and one of the internal errors
8177 below will trigger instead. */
8178 rsa->sizeof_g_packet = sizeof_g_packet;
8179 }
8180
8181 regs = (char *) alloca (rsa->sizeof_g_packet);
8182
8183 /* Unimplemented registers read as all bits zero. */
8184 memset (regs, 0, rsa->sizeof_g_packet);
8185
8186 /* Reply describes registers byte by byte, each byte encoded as two
8187 hex characters. Suck them all up, then supply them to the
8188 register cacheing/storage mechanism. */
8189
8190 p = rs->buf.data ();
8191 for (i = 0; i < rsa->sizeof_g_packet; i++)
8192 {
8193 if (p[0] == 0 || p[1] == 0)
8194 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8195 internal_error (__FILE__, __LINE__,
8196 _("unexpected end of 'g' packet reply"));
8197
8198 if (p[0] == 'x' && p[1] == 'x')
8199 regs[i] = 0; /* 'x' */
8200 else
8201 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8202 p += 2;
8203 }
8204
8205 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8206 {
8207 struct packet_reg *r = &rsa->regs[i];
8208 long reg_size = register_size (gdbarch, i);
8209
8210 if (r->in_g_packet)
8211 {
8212 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8213 /* This shouldn't happen - we adjusted in_g_packet above. */
8214 internal_error (__FILE__, __LINE__,
8215 _("unexpected end of 'g' packet reply"));
8216 else if (rs->buf[r->offset * 2] == 'x')
8217 {
8218 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8219 /* The register isn't available, mark it as such (at
8220 the same time setting the value to zero). */
8221 regcache->raw_supply (r->regnum, NULL);
8222 }
8223 else
8224 regcache->raw_supply (r->regnum, regs + r->offset);
8225 }
8226 }
8227 }
8228
8229 void
8230 remote_target::fetch_registers_using_g (struct regcache *regcache)
8231 {
8232 send_g_packet ();
8233 process_g_packet (regcache);
8234 }
8235
8236 /* Make the remote selected traceframe match GDB's selected
8237 traceframe. */
8238
8239 void
8240 remote_target::set_remote_traceframe ()
8241 {
8242 int newnum;
8243 struct remote_state *rs = get_remote_state ();
8244
8245 if (rs->remote_traceframe_number == get_traceframe_number ())
8246 return;
8247
8248 /* Avoid recursion, remote_trace_find calls us again. */
8249 rs->remote_traceframe_number = get_traceframe_number ();
8250
8251 newnum = target_trace_find (tfind_number,
8252 get_traceframe_number (), 0, 0, NULL);
8253
8254 /* Should not happen. If it does, all bets are off. */
8255 if (newnum != get_traceframe_number ())
8256 warning (_("could not set remote traceframe"));
8257 }
8258
8259 void
8260 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8261 {
8262 struct gdbarch *gdbarch = regcache->arch ();
8263 struct remote_state *rs = get_remote_state ();
8264 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8265 int i;
8266
8267 set_remote_traceframe ();
8268 set_general_thread (regcache->ptid ());
8269
8270 if (regnum >= 0)
8271 {
8272 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8273
8274 gdb_assert (reg != NULL);
8275
8276 /* If this register might be in the 'g' packet, try that first -
8277 we are likely to read more than one register. If this is the
8278 first 'g' packet, we might be overly optimistic about its
8279 contents, so fall back to 'p'. */
8280 if (reg->in_g_packet)
8281 {
8282 fetch_registers_using_g (regcache);
8283 if (reg->in_g_packet)
8284 return;
8285 }
8286
8287 if (fetch_register_using_p (regcache, reg))
8288 return;
8289
8290 /* This register is not available. */
8291 regcache->raw_supply (reg->regnum, NULL);
8292
8293 return;
8294 }
8295
8296 fetch_registers_using_g (regcache);
8297
8298 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8299 if (!rsa->regs[i].in_g_packet)
8300 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8301 {
8302 /* This register is not available. */
8303 regcache->raw_supply (i, NULL);
8304 }
8305 }
8306
8307 /* Prepare to store registers. Since we may send them all (using a
8308 'G' request), we have to read out the ones we don't want to change
8309 first. */
8310
8311 void
8312 remote_target::prepare_to_store (struct regcache *regcache)
8313 {
8314 struct remote_state *rs = get_remote_state ();
8315 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8316 int i;
8317
8318 /* Make sure the entire registers array is valid. */
8319 switch (packet_support (PACKET_P))
8320 {
8321 case PACKET_DISABLE:
8322 case PACKET_SUPPORT_UNKNOWN:
8323 /* Make sure all the necessary registers are cached. */
8324 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8325 if (rsa->regs[i].in_g_packet)
8326 regcache->raw_update (rsa->regs[i].regnum);
8327 break;
8328 case PACKET_ENABLE:
8329 break;
8330 }
8331 }
8332
8333 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8334 packet was not recognized. */
8335
8336 int
8337 remote_target::store_register_using_P (const struct regcache *regcache,
8338 packet_reg *reg)
8339 {
8340 struct gdbarch *gdbarch = regcache->arch ();
8341 struct remote_state *rs = get_remote_state ();
8342 /* Try storing a single register. */
8343 char *buf = rs->buf.data ();
8344 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8345 char *p;
8346
8347 if (packet_support (PACKET_P) == PACKET_DISABLE)
8348 return 0;
8349
8350 if (reg->pnum == -1)
8351 return 0;
8352
8353 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8354 p = buf + strlen (buf);
8355 regcache->raw_collect (reg->regnum, regp);
8356 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8357 putpkt (rs->buf);
8358 getpkt (&rs->buf, 0);
8359
8360 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8361 {
8362 case PACKET_OK:
8363 return 1;
8364 case PACKET_ERROR:
8365 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8366 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8367 case PACKET_UNKNOWN:
8368 return 0;
8369 default:
8370 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8371 }
8372 }
8373
8374 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8375 contents of the register cache buffer. FIXME: ignores errors. */
8376
8377 void
8378 remote_target::store_registers_using_G (const struct regcache *regcache)
8379 {
8380 struct remote_state *rs = get_remote_state ();
8381 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8382 gdb_byte *regs;
8383 char *p;
8384
8385 /* Extract all the registers in the regcache copying them into a
8386 local buffer. */
8387 {
8388 int i;
8389
8390 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8391 memset (regs, 0, rsa->sizeof_g_packet);
8392 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8393 {
8394 struct packet_reg *r = &rsa->regs[i];
8395
8396 if (r->in_g_packet)
8397 regcache->raw_collect (r->regnum, regs + r->offset);
8398 }
8399 }
8400
8401 /* Command describes registers byte by byte,
8402 each byte encoded as two hex characters. */
8403 p = rs->buf.data ();
8404 *p++ = 'G';
8405 bin2hex (regs, p, rsa->sizeof_g_packet);
8406 putpkt (rs->buf);
8407 getpkt (&rs->buf, 0);
8408 if (packet_check_result (rs->buf) == PACKET_ERROR)
8409 error (_("Could not write registers; remote failure reply '%s'"),
8410 rs->buf.data ());
8411 }
8412
8413 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8414 of the register cache buffer. FIXME: ignores errors. */
8415
8416 void
8417 remote_target::store_registers (struct regcache *regcache, int regnum)
8418 {
8419 struct gdbarch *gdbarch = regcache->arch ();
8420 struct remote_state *rs = get_remote_state ();
8421 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8422 int i;
8423
8424 set_remote_traceframe ();
8425 set_general_thread (regcache->ptid ());
8426
8427 if (regnum >= 0)
8428 {
8429 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8430
8431 gdb_assert (reg != NULL);
8432
8433 /* Always prefer to store registers using the 'P' packet if
8434 possible; we often change only a small number of registers.
8435 Sometimes we change a larger number; we'd need help from a
8436 higher layer to know to use 'G'. */
8437 if (store_register_using_P (regcache, reg))
8438 return;
8439
8440 /* For now, don't complain if we have no way to write the
8441 register. GDB loses track of unavailable registers too
8442 easily. Some day, this may be an error. We don't have
8443 any way to read the register, either... */
8444 if (!reg->in_g_packet)
8445 return;
8446
8447 store_registers_using_G (regcache);
8448 return;
8449 }
8450
8451 store_registers_using_G (regcache);
8452
8453 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8454 if (!rsa->regs[i].in_g_packet)
8455 if (!store_register_using_P (regcache, &rsa->regs[i]))
8456 /* See above for why we do not issue an error here. */
8457 continue;
8458 }
8459 \f
8460
8461 /* Return the number of hex digits in num. */
8462
8463 static int
8464 hexnumlen (ULONGEST num)
8465 {
8466 int i;
8467
8468 for (i = 0; num != 0; i++)
8469 num >>= 4;
8470
8471 return std::max (i, 1);
8472 }
8473
8474 /* Set BUF to the minimum number of hex digits representing NUM. */
8475
8476 static int
8477 hexnumstr (char *buf, ULONGEST num)
8478 {
8479 int len = hexnumlen (num);
8480
8481 return hexnumnstr (buf, num, len);
8482 }
8483
8484
8485 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8486
8487 static int
8488 hexnumnstr (char *buf, ULONGEST num, int width)
8489 {
8490 int i;
8491
8492 buf[width] = '\0';
8493
8494 for (i = width - 1; i >= 0; i--)
8495 {
8496 buf[i] = "0123456789abcdef"[(num & 0xf)];
8497 num >>= 4;
8498 }
8499
8500 return width;
8501 }
8502
8503 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8504
8505 static CORE_ADDR
8506 remote_address_masked (CORE_ADDR addr)
8507 {
8508 unsigned int address_size = remote_address_size;
8509
8510 /* If "remoteaddresssize" was not set, default to target address size. */
8511 if (!address_size)
8512 address_size = gdbarch_addr_bit (target_gdbarch ());
8513
8514 if (address_size > 0
8515 && address_size < (sizeof (ULONGEST) * 8))
8516 {
8517 /* Only create a mask when that mask can safely be constructed
8518 in a ULONGEST variable. */
8519 ULONGEST mask = 1;
8520
8521 mask = (mask << address_size) - 1;
8522 addr &= mask;
8523 }
8524 return addr;
8525 }
8526
8527 /* Determine whether the remote target supports binary downloading.
8528 This is accomplished by sending a no-op memory write of zero length
8529 to the target at the specified address. It does not suffice to send
8530 the whole packet, since many stubs strip the eighth bit and
8531 subsequently compute a wrong checksum, which causes real havoc with
8532 remote_write_bytes.
8533
8534 NOTE: This can still lose if the serial line is not eight-bit
8535 clean. In cases like this, the user should clear "remote
8536 X-packet". */
8537
8538 void
8539 remote_target::check_binary_download (CORE_ADDR addr)
8540 {
8541 struct remote_state *rs = get_remote_state ();
8542
8543 switch (packet_support (PACKET_X))
8544 {
8545 case PACKET_DISABLE:
8546 break;
8547 case PACKET_ENABLE:
8548 break;
8549 case PACKET_SUPPORT_UNKNOWN:
8550 {
8551 char *p;
8552
8553 p = rs->buf.data ();
8554 *p++ = 'X';
8555 p += hexnumstr (p, (ULONGEST) addr);
8556 *p++ = ',';
8557 p += hexnumstr (p, (ULONGEST) 0);
8558 *p++ = ':';
8559 *p = '\0';
8560
8561 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8562 getpkt (&rs->buf, 0);
8563
8564 if (rs->buf[0] == '\0')
8565 {
8566 if (remote_debug)
8567 fprintf_unfiltered (gdb_stdlog,
8568 "binary downloading NOT "
8569 "supported by target\n");
8570 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8571 }
8572 else
8573 {
8574 if (remote_debug)
8575 fprintf_unfiltered (gdb_stdlog,
8576 "binary downloading supported by target\n");
8577 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8578 }
8579 break;
8580 }
8581 }
8582 }
8583
8584 /* Helper function to resize the payload in order to try to get a good
8585 alignment. We try to write an amount of data such that the next write will
8586 start on an address aligned on REMOTE_ALIGN_WRITES. */
8587
8588 static int
8589 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8590 {
8591 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8592 }
8593
8594 /* Write memory data directly to the remote machine.
8595 This does not inform the data cache; the data cache uses this.
8596 HEADER is the starting part of the packet.
8597 MEMADDR is the address in the remote memory space.
8598 MYADDR is the address of the buffer in our space.
8599 LEN_UNITS is the number of addressable units to write.
8600 UNIT_SIZE is the length in bytes of an addressable unit.
8601 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8602 should send data as binary ('X'), or hex-encoded ('M').
8603
8604 The function creates packet of the form
8605 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8606
8607 where encoding of <DATA> is terminated by PACKET_FORMAT.
8608
8609 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8610 are omitted.
8611
8612 Return the transferred status, error or OK (an
8613 'enum target_xfer_status' value). Save the number of addressable units
8614 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8615
8616 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8617 exchange between gdb and the stub could look like (?? in place of the
8618 checksum):
8619
8620 -> $m1000,4#??
8621 <- aaaabbbbccccdddd
8622
8623 -> $M1000,3:eeeeffffeeee#??
8624 <- OK
8625
8626 -> $m1000,4#??
8627 <- eeeeffffeeeedddd */
8628
8629 target_xfer_status
8630 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8631 const gdb_byte *myaddr,
8632 ULONGEST len_units,
8633 int unit_size,
8634 ULONGEST *xfered_len_units,
8635 char packet_format, int use_length)
8636 {
8637 struct remote_state *rs = get_remote_state ();
8638 char *p;
8639 char *plen = NULL;
8640 int plenlen = 0;
8641 int todo_units;
8642 int units_written;
8643 int payload_capacity_bytes;
8644 int payload_length_bytes;
8645
8646 if (packet_format != 'X' && packet_format != 'M')
8647 internal_error (__FILE__, __LINE__,
8648 _("remote_write_bytes_aux: bad packet format"));
8649
8650 if (len_units == 0)
8651 return TARGET_XFER_EOF;
8652
8653 payload_capacity_bytes = get_memory_write_packet_size ();
8654
8655 /* The packet buffer will be large enough for the payload;
8656 get_memory_packet_size ensures this. */
8657 rs->buf[0] = '\0';
8658
8659 /* Compute the size of the actual payload by subtracting out the
8660 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8661
8662 payload_capacity_bytes -= strlen ("$,:#NN");
8663 if (!use_length)
8664 /* The comma won't be used. */
8665 payload_capacity_bytes += 1;
8666 payload_capacity_bytes -= strlen (header);
8667 payload_capacity_bytes -= hexnumlen (memaddr);
8668
8669 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8670
8671 strcat (rs->buf.data (), header);
8672 p = rs->buf.data () + strlen (header);
8673
8674 /* Compute a best guess of the number of bytes actually transfered. */
8675 if (packet_format == 'X')
8676 {
8677 /* Best guess at number of bytes that will fit. */
8678 todo_units = std::min (len_units,
8679 (ULONGEST) payload_capacity_bytes / unit_size);
8680 if (use_length)
8681 payload_capacity_bytes -= hexnumlen (todo_units);
8682 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8683 }
8684 else
8685 {
8686 /* Number of bytes that will fit. */
8687 todo_units
8688 = std::min (len_units,
8689 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8690 if (use_length)
8691 payload_capacity_bytes -= hexnumlen (todo_units);
8692 todo_units = std::min (todo_units,
8693 (payload_capacity_bytes / unit_size) / 2);
8694 }
8695
8696 if (todo_units <= 0)
8697 internal_error (__FILE__, __LINE__,
8698 _("minimum packet size too small to write data"));
8699
8700 /* If we already need another packet, then try to align the end
8701 of this packet to a useful boundary. */
8702 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8703 todo_units = align_for_efficient_write (todo_units, memaddr);
8704
8705 /* Append "<memaddr>". */
8706 memaddr = remote_address_masked (memaddr);
8707 p += hexnumstr (p, (ULONGEST) memaddr);
8708
8709 if (use_length)
8710 {
8711 /* Append ",". */
8712 *p++ = ',';
8713
8714 /* Append the length and retain its location and size. It may need to be
8715 adjusted once the packet body has been created. */
8716 plen = p;
8717 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8718 p += plenlen;
8719 }
8720
8721 /* Append ":". */
8722 *p++ = ':';
8723 *p = '\0';
8724
8725 /* Append the packet body. */
8726 if (packet_format == 'X')
8727 {
8728 /* Binary mode. Send target system values byte by byte, in
8729 increasing byte addresses. Only escape certain critical
8730 characters. */
8731 payload_length_bytes =
8732 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8733 &units_written, payload_capacity_bytes);
8734
8735 /* If not all TODO units fit, then we'll need another packet. Make
8736 a second try to keep the end of the packet aligned. Don't do
8737 this if the packet is tiny. */
8738 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8739 {
8740 int new_todo_units;
8741
8742 new_todo_units = align_for_efficient_write (units_written, memaddr);
8743
8744 if (new_todo_units != units_written)
8745 payload_length_bytes =
8746 remote_escape_output (myaddr, new_todo_units, unit_size,
8747 (gdb_byte *) p, &units_written,
8748 payload_capacity_bytes);
8749 }
8750
8751 p += payload_length_bytes;
8752 if (use_length && units_written < todo_units)
8753 {
8754 /* Escape chars have filled up the buffer prematurely,
8755 and we have actually sent fewer units than planned.
8756 Fix-up the length field of the packet. Use the same
8757 number of characters as before. */
8758 plen += hexnumnstr (plen, (ULONGEST) units_written,
8759 plenlen);
8760 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8761 }
8762 }
8763 else
8764 {
8765 /* Normal mode: Send target system values byte by byte, in
8766 increasing byte addresses. Each byte is encoded as a two hex
8767 value. */
8768 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8769 units_written = todo_units;
8770 }
8771
8772 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8773 getpkt (&rs->buf, 0);
8774
8775 if (rs->buf[0] == 'E')
8776 return TARGET_XFER_E_IO;
8777
8778 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8779 send fewer units than we'd planned. */
8780 *xfered_len_units = (ULONGEST) units_written;
8781 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8782 }
8783
8784 /* Write memory data directly to the remote machine.
8785 This does not inform the data cache; the data cache uses this.
8786 MEMADDR is the address in the remote memory space.
8787 MYADDR is the address of the buffer in our space.
8788 LEN is the number of bytes.
8789
8790 Return the transferred status, error or OK (an
8791 'enum target_xfer_status' value). Save the number of bytes
8792 transferred in *XFERED_LEN. Only transfer a single packet. */
8793
8794 target_xfer_status
8795 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8796 ULONGEST len, int unit_size,
8797 ULONGEST *xfered_len)
8798 {
8799 const char *packet_format = NULL;
8800
8801 /* Check whether the target supports binary download. */
8802 check_binary_download (memaddr);
8803
8804 switch (packet_support (PACKET_X))
8805 {
8806 case PACKET_ENABLE:
8807 packet_format = "X";
8808 break;
8809 case PACKET_DISABLE:
8810 packet_format = "M";
8811 break;
8812 case PACKET_SUPPORT_UNKNOWN:
8813 internal_error (__FILE__, __LINE__,
8814 _("remote_write_bytes: bad internal state"));
8815 default:
8816 internal_error (__FILE__, __LINE__, _("bad switch"));
8817 }
8818
8819 return remote_write_bytes_aux (packet_format,
8820 memaddr, myaddr, len, unit_size, xfered_len,
8821 packet_format[0], 1);
8822 }
8823
8824 /* Read memory data directly from the remote machine.
8825 This does not use the data cache; the data cache uses this.
8826 MEMADDR is the address in the remote memory space.
8827 MYADDR is the address of the buffer in our space.
8828 LEN_UNITS is the number of addressable memory units to read..
8829 UNIT_SIZE is the length in bytes of an addressable unit.
8830
8831 Return the transferred status, error or OK (an
8832 'enum target_xfer_status' value). Save the number of bytes
8833 transferred in *XFERED_LEN_UNITS.
8834
8835 See the comment of remote_write_bytes_aux for an example of
8836 memory read/write exchange between gdb and the stub. */
8837
8838 target_xfer_status
8839 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
8840 ULONGEST len_units,
8841 int unit_size, ULONGEST *xfered_len_units)
8842 {
8843 struct remote_state *rs = get_remote_state ();
8844 int buf_size_bytes; /* Max size of packet output buffer. */
8845 char *p;
8846 int todo_units;
8847 int decoded_bytes;
8848
8849 buf_size_bytes = get_memory_read_packet_size ();
8850 /* The packet buffer will be large enough for the payload;
8851 get_memory_packet_size ensures this. */
8852
8853 /* Number of units that will fit. */
8854 todo_units = std::min (len_units,
8855 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8856
8857 /* Construct "m"<memaddr>","<len>". */
8858 memaddr = remote_address_masked (memaddr);
8859 p = rs->buf.data ();
8860 *p++ = 'm';
8861 p += hexnumstr (p, (ULONGEST) memaddr);
8862 *p++ = ',';
8863 p += hexnumstr (p, (ULONGEST) todo_units);
8864 *p = '\0';
8865 putpkt (rs->buf);
8866 getpkt (&rs->buf, 0);
8867 if (rs->buf[0] == 'E'
8868 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8869 && rs->buf[3] == '\0')
8870 return TARGET_XFER_E_IO;
8871 /* Reply describes memory byte by byte, each byte encoded as two hex
8872 characters. */
8873 p = rs->buf.data ();
8874 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8875 /* Return what we have. Let higher layers handle partial reads. */
8876 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8877 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8878 }
8879
8880 /* Using the set of read-only target sections of remote, read live
8881 read-only memory.
8882
8883 For interface/parameters/return description see target.h,
8884 to_xfer_partial. */
8885
8886 target_xfer_status
8887 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
8888 ULONGEST memaddr,
8889 ULONGEST len,
8890 int unit_size,
8891 ULONGEST *xfered_len)
8892 {
8893 struct target_section *secp;
8894
8895 secp = target_section_by_addr (this, memaddr);
8896 if (secp != NULL
8897 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
8898 {
8899 ULONGEST memend = memaddr + len;
8900
8901 target_section_table *table = target_get_section_table (this);
8902 for (target_section &p : *table)
8903 {
8904 if (memaddr >= p.addr)
8905 {
8906 if (memend <= p.endaddr)
8907 {
8908 /* Entire transfer is within this section. */
8909 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8910 xfered_len);
8911 }
8912 else if (memaddr >= p.endaddr)
8913 {
8914 /* This section ends before the transfer starts. */
8915 continue;
8916 }
8917 else
8918 {
8919 /* This section overlaps the transfer. Just do half. */
8920 len = p.endaddr - memaddr;
8921 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8922 xfered_len);
8923 }
8924 }
8925 }
8926 }
8927
8928 return TARGET_XFER_EOF;
8929 }
8930
8931 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8932 first if the requested memory is unavailable in traceframe.
8933 Otherwise, fall back to remote_read_bytes_1. */
8934
8935 target_xfer_status
8936 remote_target::remote_read_bytes (CORE_ADDR memaddr,
8937 gdb_byte *myaddr, ULONGEST len, int unit_size,
8938 ULONGEST *xfered_len)
8939 {
8940 if (len == 0)
8941 return TARGET_XFER_EOF;
8942
8943 if (get_traceframe_number () != -1)
8944 {
8945 std::vector<mem_range> available;
8946
8947 /* If we fail to get the set of available memory, then the
8948 target does not support querying traceframe info, and so we
8949 attempt reading from the traceframe anyway (assuming the
8950 target implements the old QTro packet then). */
8951 if (traceframe_available_memory (&available, memaddr, len))
8952 {
8953 if (available.empty () || available[0].start != memaddr)
8954 {
8955 enum target_xfer_status res;
8956
8957 /* Don't read into the traceframe's available
8958 memory. */
8959 if (!available.empty ())
8960 {
8961 LONGEST oldlen = len;
8962
8963 len = available[0].start - memaddr;
8964 gdb_assert (len <= oldlen);
8965 }
8966
8967 /* This goes through the topmost target again. */
8968 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
8969 len, unit_size, xfered_len);
8970 if (res == TARGET_XFER_OK)
8971 return TARGET_XFER_OK;
8972 else
8973 {
8974 /* No use trying further, we know some memory starting
8975 at MEMADDR isn't available. */
8976 *xfered_len = len;
8977 return (*xfered_len != 0) ?
8978 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8979 }
8980 }
8981
8982 /* Don't try to read more than how much is available, in
8983 case the target implements the deprecated QTro packet to
8984 cater for older GDBs (the target's knowledge of read-only
8985 sections may be outdated by now). */
8986 len = available[0].length;
8987 }
8988 }
8989
8990 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8991 }
8992
8993 \f
8994
8995 /* Sends a packet with content determined by the printf format string
8996 FORMAT and the remaining arguments, then gets the reply. Returns
8997 whether the packet was a success, a failure, or unknown. */
8998
8999 packet_result
9000 remote_target::remote_send_printf (const char *format, ...)
9001 {
9002 struct remote_state *rs = get_remote_state ();
9003 int max_size = get_remote_packet_size ();
9004 va_list ap;
9005
9006 va_start (ap, format);
9007
9008 rs->buf[0] = '\0';
9009 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
9010
9011 va_end (ap);
9012
9013 if (size >= max_size)
9014 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
9015
9016 if (putpkt (rs->buf) < 0)
9017 error (_("Communication problem with target."));
9018
9019 rs->buf[0] = '\0';
9020 getpkt (&rs->buf, 0);
9021
9022 return packet_check_result (rs->buf);
9023 }
9024
9025 /* Flash writing can take quite some time. We'll set
9026 effectively infinite timeout for flash operations.
9027 In future, we'll need to decide on a better approach. */
9028 static const int remote_flash_timeout = 1000;
9029
9030 void
9031 remote_target::flash_erase (ULONGEST address, LONGEST length)
9032 {
9033 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
9034 enum packet_result ret;
9035 scoped_restore restore_timeout
9036 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9037
9038 ret = remote_send_printf ("vFlashErase:%s,%s",
9039 phex (address, addr_size),
9040 phex (length, 4));
9041 switch (ret)
9042 {
9043 case PACKET_UNKNOWN:
9044 error (_("Remote target does not support flash erase"));
9045 case PACKET_ERROR:
9046 error (_("Error erasing flash with vFlashErase packet"));
9047 default:
9048 break;
9049 }
9050 }
9051
9052 target_xfer_status
9053 remote_target::remote_flash_write (ULONGEST address,
9054 ULONGEST length, ULONGEST *xfered_len,
9055 const gdb_byte *data)
9056 {
9057 scoped_restore restore_timeout
9058 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9059 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
9060 xfered_len,'X', 0);
9061 }
9062
9063 void
9064 remote_target::flash_done ()
9065 {
9066 int ret;
9067
9068 scoped_restore restore_timeout
9069 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9070
9071 ret = remote_send_printf ("vFlashDone");
9072
9073 switch (ret)
9074 {
9075 case PACKET_UNKNOWN:
9076 error (_("Remote target does not support vFlashDone"));
9077 case PACKET_ERROR:
9078 error (_("Error finishing flash operation"));
9079 default:
9080 break;
9081 }
9082 }
9083
9084 void
9085 remote_target::files_info ()
9086 {
9087 puts_filtered ("Debugging a target over a serial line.\n");
9088 }
9089 \f
9090 /* Stuff for dealing with the packets which are part of this protocol.
9091 See comment at top of file for details. */
9092
9093 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
9094 error to higher layers. Called when a serial error is detected.
9095 The exception message is STRING, followed by a colon and a blank,
9096 the system error message for errno at function entry and final dot
9097 for output compatibility with throw_perror_with_name. */
9098
9099 static void
9100 unpush_and_perror (remote_target *target, const char *string)
9101 {
9102 int saved_errno = errno;
9103
9104 remote_unpush_target (target);
9105 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9106 safe_strerror (saved_errno));
9107 }
9108
9109 /* Read a single character from the remote end. The current quit
9110 handler is overridden to avoid quitting in the middle of packet
9111 sequence, as that would break communication with the remote server.
9112 See remote_serial_quit_handler for more detail. */
9113
9114 int
9115 remote_target::readchar (int timeout)
9116 {
9117 int ch;
9118 struct remote_state *rs = get_remote_state ();
9119
9120 {
9121 scoped_restore restore_quit_target
9122 = make_scoped_restore (&curr_quit_handler_target, this);
9123 scoped_restore restore_quit
9124 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9125
9126 rs->got_ctrlc_during_io = 0;
9127
9128 ch = serial_readchar (rs->remote_desc, timeout);
9129
9130 if (rs->got_ctrlc_during_io)
9131 set_quit_flag ();
9132 }
9133
9134 if (ch >= 0)
9135 return ch;
9136
9137 switch ((enum serial_rc) ch)
9138 {
9139 case SERIAL_EOF:
9140 remote_unpush_target (this);
9141 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9142 /* no return */
9143 case SERIAL_ERROR:
9144 unpush_and_perror (this, _("Remote communication error. "
9145 "Target disconnected."));
9146 /* no return */
9147 case SERIAL_TIMEOUT:
9148 break;
9149 }
9150 return ch;
9151 }
9152
9153 /* Wrapper for serial_write that closes the target and throws if
9154 writing fails. The current quit handler is overridden to avoid
9155 quitting in the middle of packet sequence, as that would break
9156 communication with the remote server. See
9157 remote_serial_quit_handler for more detail. */
9158
9159 void
9160 remote_target::remote_serial_write (const char *str, int len)
9161 {
9162 struct remote_state *rs = get_remote_state ();
9163
9164 scoped_restore restore_quit_target
9165 = make_scoped_restore (&curr_quit_handler_target, this);
9166 scoped_restore restore_quit
9167 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9168
9169 rs->got_ctrlc_during_io = 0;
9170
9171 if (serial_write (rs->remote_desc, str, len))
9172 {
9173 unpush_and_perror (this, _("Remote communication error. "
9174 "Target disconnected."));
9175 }
9176
9177 if (rs->got_ctrlc_during_io)
9178 set_quit_flag ();
9179 }
9180
9181 /* Return a string representing an escaped version of BUF, of len N.
9182 E.g. \n is converted to \\n, \t to \\t, etc. */
9183
9184 static std::string
9185 escape_buffer (const char *buf, int n)
9186 {
9187 string_file stb;
9188
9189 stb.putstrn (buf, n, '\\');
9190 return std::move (stb.string ());
9191 }
9192
9193 /* Display a null-terminated packet on stdout, for debugging, using C
9194 string notation. */
9195
9196 static void
9197 print_packet (const char *buf)
9198 {
9199 puts_filtered ("\"");
9200 fputstr_filtered (buf, '"', gdb_stdout);
9201 puts_filtered ("\"");
9202 }
9203
9204 int
9205 remote_target::putpkt (const char *buf)
9206 {
9207 return putpkt_binary (buf, strlen (buf));
9208 }
9209
9210 /* Wrapper around remote_target::putpkt to avoid exporting
9211 remote_target. */
9212
9213 int
9214 putpkt (remote_target *remote, const char *buf)
9215 {
9216 return remote->putpkt (buf);
9217 }
9218
9219 /* Send a packet to the remote machine, with error checking. The data
9220 of the packet is in BUF. The string in BUF can be at most
9221 get_remote_packet_size () - 5 to account for the $, # and checksum,
9222 and for a possible /0 if we are debugging (remote_debug) and want
9223 to print the sent packet as a string. */
9224
9225 int
9226 remote_target::putpkt_binary (const char *buf, int cnt)
9227 {
9228 struct remote_state *rs = get_remote_state ();
9229 int i;
9230 unsigned char csum = 0;
9231 gdb::def_vector<char> data (cnt + 6);
9232 char *buf2 = data.data ();
9233
9234 int ch;
9235 int tcount = 0;
9236 char *p;
9237
9238 /* Catch cases like trying to read memory or listing threads while
9239 we're waiting for a stop reply. The remote server wouldn't be
9240 ready to handle this request, so we'd hang and timeout. We don't
9241 have to worry about this in synchronous mode, because in that
9242 case it's not possible to issue a command while the target is
9243 running. This is not a problem in non-stop mode, because in that
9244 case, the stub is always ready to process serial input. */
9245 if (!target_is_non_stop_p ()
9246 && target_is_async_p ()
9247 && rs->waiting_for_stop_reply)
9248 {
9249 error (_("Cannot execute this command while the target is running.\n"
9250 "Use the \"interrupt\" command to stop the target\n"
9251 "and then try again."));
9252 }
9253
9254 /* We're sending out a new packet. Make sure we don't look at a
9255 stale cached response. */
9256 rs->cached_wait_status = 0;
9257
9258 /* Copy the packet into buffer BUF2, encapsulating it
9259 and giving it a checksum. */
9260
9261 p = buf2;
9262 *p++ = '$';
9263
9264 for (i = 0; i < cnt; i++)
9265 {
9266 csum += buf[i];
9267 *p++ = buf[i];
9268 }
9269 *p++ = '#';
9270 *p++ = tohex ((csum >> 4) & 0xf);
9271 *p++ = tohex (csum & 0xf);
9272
9273 /* Send it over and over until we get a positive ack. */
9274
9275 while (1)
9276 {
9277 int started_error_output = 0;
9278
9279 if (remote_debug)
9280 {
9281 *p = '\0';
9282
9283 int len = (int) (p - buf2);
9284 int max_chars;
9285
9286 if (remote_packet_max_chars < 0)
9287 max_chars = len;
9288 else
9289 max_chars = remote_packet_max_chars;
9290
9291 std::string str
9292 = escape_buffer (buf2, std::min (len, max_chars));
9293
9294 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
9295
9296 if (len > max_chars)
9297 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9298 len - max_chars);
9299
9300 fprintf_unfiltered (gdb_stdlog, "...");
9301
9302 gdb_flush (gdb_stdlog);
9303 }
9304 remote_serial_write (buf2, p - buf2);
9305
9306 /* If this is a no acks version of the remote protocol, send the
9307 packet and move on. */
9308 if (rs->noack_mode)
9309 break;
9310
9311 /* Read until either a timeout occurs (-2) or '+' is read.
9312 Handle any notification that arrives in the mean time. */
9313 while (1)
9314 {
9315 ch = readchar (remote_timeout);
9316
9317 if (remote_debug)
9318 {
9319 switch (ch)
9320 {
9321 case '+':
9322 case '-':
9323 case SERIAL_TIMEOUT:
9324 case '$':
9325 case '%':
9326 if (started_error_output)
9327 {
9328 putchar_unfiltered ('\n');
9329 started_error_output = 0;
9330 }
9331 }
9332 }
9333
9334 switch (ch)
9335 {
9336 case '+':
9337 if (remote_debug)
9338 fprintf_unfiltered (gdb_stdlog, "Ack\n");
9339 return 1;
9340 case '-':
9341 if (remote_debug)
9342 fprintf_unfiltered (gdb_stdlog, "Nak\n");
9343 /* FALLTHROUGH */
9344 case SERIAL_TIMEOUT:
9345 tcount++;
9346 if (tcount > 3)
9347 return 0;
9348 break; /* Retransmit buffer. */
9349 case '$':
9350 {
9351 if (remote_debug)
9352 fprintf_unfiltered (gdb_stdlog,
9353 "Packet instead of Ack, ignoring it\n");
9354 /* It's probably an old response sent because an ACK
9355 was lost. Gobble up the packet and ack it so it
9356 doesn't get retransmitted when we resend this
9357 packet. */
9358 skip_frame ();
9359 remote_serial_write ("+", 1);
9360 continue; /* Now, go look for +. */
9361 }
9362
9363 case '%':
9364 {
9365 int val;
9366
9367 /* If we got a notification, handle it, and go back to looking
9368 for an ack. */
9369 /* We've found the start of a notification. Now
9370 collect the data. */
9371 val = read_frame (&rs->buf);
9372 if (val >= 0)
9373 {
9374 if (remote_debug)
9375 {
9376 std::string str = escape_buffer (rs->buf.data (), val);
9377
9378 fprintf_unfiltered (gdb_stdlog,
9379 " Notification received: %s\n",
9380 str.c_str ());
9381 }
9382 handle_notification (rs->notif_state, rs->buf.data ());
9383 /* We're in sync now, rewait for the ack. */
9384 tcount = 0;
9385 }
9386 else
9387 {
9388 if (remote_debug)
9389 {
9390 if (!started_error_output)
9391 {
9392 started_error_output = 1;
9393 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9394 }
9395 fputc_unfiltered (ch & 0177, gdb_stdlog);
9396 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf.data ());
9397 }
9398 }
9399 continue;
9400 }
9401 /* fall-through */
9402 default:
9403 if (remote_debug)
9404 {
9405 if (!started_error_output)
9406 {
9407 started_error_output = 1;
9408 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9409 }
9410 fputc_unfiltered (ch & 0177, gdb_stdlog);
9411 }
9412 continue;
9413 }
9414 break; /* Here to retransmit. */
9415 }
9416
9417 #if 0
9418 /* This is wrong. If doing a long backtrace, the user should be
9419 able to get out next time we call QUIT, without anything as
9420 violent as interrupt_query. If we want to provide a way out of
9421 here without getting to the next QUIT, it should be based on
9422 hitting ^C twice as in remote_wait. */
9423 if (quit_flag)
9424 {
9425 quit_flag = 0;
9426 interrupt_query ();
9427 }
9428 #endif
9429 }
9430
9431 return 0;
9432 }
9433
9434 /* Come here after finding the start of a frame when we expected an
9435 ack. Do our best to discard the rest of this packet. */
9436
9437 void
9438 remote_target::skip_frame ()
9439 {
9440 int c;
9441
9442 while (1)
9443 {
9444 c = readchar (remote_timeout);
9445 switch (c)
9446 {
9447 case SERIAL_TIMEOUT:
9448 /* Nothing we can do. */
9449 return;
9450 case '#':
9451 /* Discard the two bytes of checksum and stop. */
9452 c = readchar (remote_timeout);
9453 if (c >= 0)
9454 c = readchar (remote_timeout);
9455
9456 return;
9457 case '*': /* Run length encoding. */
9458 /* Discard the repeat count. */
9459 c = readchar (remote_timeout);
9460 if (c < 0)
9461 return;
9462 break;
9463 default:
9464 /* A regular character. */
9465 break;
9466 }
9467 }
9468 }
9469
9470 /* Come here after finding the start of the frame. Collect the rest
9471 into *BUF, verifying the checksum, length, and handling run-length
9472 compression. NUL terminate the buffer. If there is not enough room,
9473 expand *BUF.
9474
9475 Returns -1 on error, number of characters in buffer (ignoring the
9476 trailing NULL) on success. (could be extended to return one of the
9477 SERIAL status indications). */
9478
9479 long
9480 remote_target::read_frame (gdb::char_vector *buf_p)
9481 {
9482 unsigned char csum;
9483 long bc;
9484 int c;
9485 char *buf = buf_p->data ();
9486 struct remote_state *rs = get_remote_state ();
9487
9488 csum = 0;
9489 bc = 0;
9490
9491 while (1)
9492 {
9493 c = readchar (remote_timeout);
9494 switch (c)
9495 {
9496 case SERIAL_TIMEOUT:
9497 if (remote_debug)
9498 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9499 return -1;
9500 case '$':
9501 if (remote_debug)
9502 fputs_filtered ("Saw new packet start in middle of old one\n",
9503 gdb_stdlog);
9504 return -1; /* Start a new packet, count retries. */
9505 case '#':
9506 {
9507 unsigned char pktcsum;
9508 int check_0 = 0;
9509 int check_1 = 0;
9510
9511 buf[bc] = '\0';
9512
9513 check_0 = readchar (remote_timeout);
9514 if (check_0 >= 0)
9515 check_1 = readchar (remote_timeout);
9516
9517 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9518 {
9519 if (remote_debug)
9520 fputs_filtered ("Timeout in checksum, retrying\n",
9521 gdb_stdlog);
9522 return -1;
9523 }
9524 else if (check_0 < 0 || check_1 < 0)
9525 {
9526 if (remote_debug)
9527 fputs_filtered ("Communication error in checksum\n",
9528 gdb_stdlog);
9529 return -1;
9530 }
9531
9532 /* Don't recompute the checksum; with no ack packets we
9533 don't have any way to indicate a packet retransmission
9534 is necessary. */
9535 if (rs->noack_mode)
9536 return bc;
9537
9538 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9539 if (csum == pktcsum)
9540 return bc;
9541
9542 if (remote_debug)
9543 {
9544 std::string str = escape_buffer (buf, bc);
9545
9546 fprintf_unfiltered (gdb_stdlog,
9547 "Bad checksum, sentsum=0x%x, "
9548 "csum=0x%x, buf=%s\n",
9549 pktcsum, csum, str.c_str ());
9550 }
9551 /* Number of characters in buffer ignoring trailing
9552 NULL. */
9553 return -1;
9554 }
9555 case '*': /* Run length encoding. */
9556 {
9557 int repeat;
9558
9559 csum += c;
9560 c = readchar (remote_timeout);
9561 csum += c;
9562 repeat = c - ' ' + 3; /* Compute repeat count. */
9563
9564 /* The character before ``*'' is repeated. */
9565
9566 if (repeat > 0 && repeat <= 255 && bc > 0)
9567 {
9568 if (bc + repeat - 1 >= buf_p->size () - 1)
9569 {
9570 /* Make some more room in the buffer. */
9571 buf_p->resize (buf_p->size () + repeat);
9572 buf = buf_p->data ();
9573 }
9574
9575 memset (&buf[bc], buf[bc - 1], repeat);
9576 bc += repeat;
9577 continue;
9578 }
9579
9580 buf[bc] = '\0';
9581 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9582 return -1;
9583 }
9584 default:
9585 if (bc >= buf_p->size () - 1)
9586 {
9587 /* Make some more room in the buffer. */
9588 buf_p->resize (buf_p->size () * 2);
9589 buf = buf_p->data ();
9590 }
9591
9592 buf[bc++] = c;
9593 csum += c;
9594 continue;
9595 }
9596 }
9597 }
9598
9599 /* Set this to the maximum number of seconds to wait instead of waiting forever
9600 in target_wait(). If this timer times out, then it generates an error and
9601 the command is aborted. This replaces most of the need for timeouts in the
9602 GDB test suite, and makes it possible to distinguish between a hung target
9603 and one with slow communications. */
9604
9605 static int watchdog = 0;
9606 static void
9607 show_watchdog (struct ui_file *file, int from_tty,
9608 struct cmd_list_element *c, const char *value)
9609 {
9610 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9611 }
9612
9613 /* Read a packet from the remote machine, with error checking, and
9614 store it in *BUF. Resize *BUF if necessary to hold the result. If
9615 FOREVER, wait forever rather than timing out; this is used (in
9616 synchronous mode) to wait for a target that is is executing user
9617 code to stop. */
9618 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9619 don't have to change all the calls to getpkt to deal with the
9620 return value, because at the moment I don't know what the right
9621 thing to do it for those. */
9622
9623 void
9624 remote_target::getpkt (gdb::char_vector *buf, int forever)
9625 {
9626 getpkt_sane (buf, forever);
9627 }
9628
9629
9630 /* Read a packet from the remote machine, with error checking, and
9631 store it in *BUF. Resize *BUF if necessary to hold the result. If
9632 FOREVER, wait forever rather than timing out; this is used (in
9633 synchronous mode) to wait for a target that is is executing user
9634 code to stop. If FOREVER == 0, this function is allowed to time
9635 out gracefully and return an indication of this to the caller.
9636 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9637 consider receiving a notification enough reason to return to the
9638 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9639 holds a notification or not (a regular packet). */
9640
9641 int
9642 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9643 int forever, int expecting_notif,
9644 int *is_notif)
9645 {
9646 struct remote_state *rs = get_remote_state ();
9647 int c;
9648 int tries;
9649 int timeout;
9650 int val = -1;
9651
9652 /* We're reading a new response. Make sure we don't look at a
9653 previously cached response. */
9654 rs->cached_wait_status = 0;
9655
9656 strcpy (buf->data (), "timeout");
9657
9658 if (forever)
9659 timeout = watchdog > 0 ? watchdog : -1;
9660 else if (expecting_notif)
9661 timeout = 0; /* There should already be a char in the buffer. If
9662 not, bail out. */
9663 else
9664 timeout = remote_timeout;
9665
9666 #define MAX_TRIES 3
9667
9668 /* Process any number of notifications, and then return when
9669 we get a packet. */
9670 for (;;)
9671 {
9672 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9673 times. */
9674 for (tries = 1; tries <= MAX_TRIES; tries++)
9675 {
9676 /* This can loop forever if the remote side sends us
9677 characters continuously, but if it pauses, we'll get
9678 SERIAL_TIMEOUT from readchar because of timeout. Then
9679 we'll count that as a retry.
9680
9681 Note that even when forever is set, we will only wait
9682 forever prior to the start of a packet. After that, we
9683 expect characters to arrive at a brisk pace. They should
9684 show up within remote_timeout intervals. */
9685 do
9686 c = readchar (timeout);
9687 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9688
9689 if (c == SERIAL_TIMEOUT)
9690 {
9691 if (expecting_notif)
9692 return -1; /* Don't complain, it's normal to not get
9693 anything in this case. */
9694
9695 if (forever) /* Watchdog went off? Kill the target. */
9696 {
9697 remote_unpush_target (this);
9698 throw_error (TARGET_CLOSE_ERROR,
9699 _("Watchdog timeout has expired. "
9700 "Target detached."));
9701 }
9702 if (remote_debug)
9703 fputs_filtered ("Timed out.\n", gdb_stdlog);
9704 }
9705 else
9706 {
9707 /* We've found the start of a packet or notification.
9708 Now collect the data. */
9709 val = read_frame (buf);
9710 if (val >= 0)
9711 break;
9712 }
9713
9714 remote_serial_write ("-", 1);
9715 }
9716
9717 if (tries > MAX_TRIES)
9718 {
9719 /* We have tried hard enough, and just can't receive the
9720 packet/notification. Give up. */
9721 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9722
9723 /* Skip the ack char if we're in no-ack mode. */
9724 if (!rs->noack_mode)
9725 remote_serial_write ("+", 1);
9726 return -1;
9727 }
9728
9729 /* If we got an ordinary packet, return that to our caller. */
9730 if (c == '$')
9731 {
9732 if (remote_debug)
9733 {
9734 int max_chars;
9735
9736 if (remote_packet_max_chars < 0)
9737 max_chars = val;
9738 else
9739 max_chars = remote_packet_max_chars;
9740
9741 std::string str
9742 = escape_buffer (buf->data (),
9743 std::min (val, max_chars));
9744
9745 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9746 str.c_str ());
9747
9748 if (val > max_chars)
9749 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9750 val - max_chars);
9751
9752 fprintf_unfiltered (gdb_stdlog, "\n");
9753 }
9754
9755 /* Skip the ack char if we're in no-ack mode. */
9756 if (!rs->noack_mode)
9757 remote_serial_write ("+", 1);
9758 if (is_notif != NULL)
9759 *is_notif = 0;
9760 return val;
9761 }
9762
9763 /* If we got a notification, handle it, and go back to looking
9764 for a packet. */
9765 else
9766 {
9767 gdb_assert (c == '%');
9768
9769 if (remote_debug)
9770 {
9771 std::string str = escape_buffer (buf->data (), val);
9772
9773 fprintf_unfiltered (gdb_stdlog,
9774 " Notification received: %s\n",
9775 str.c_str ());
9776 }
9777 if (is_notif != NULL)
9778 *is_notif = 1;
9779
9780 handle_notification (rs->notif_state, buf->data ());
9781
9782 /* Notifications require no acknowledgement. */
9783
9784 if (expecting_notif)
9785 return val;
9786 }
9787 }
9788 }
9789
9790 int
9791 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
9792 {
9793 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
9794 }
9795
9796 int
9797 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
9798 int *is_notif)
9799 {
9800 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
9801 }
9802
9803 /* Kill any new fork children of process PID that haven't been
9804 processed by follow_fork. */
9805
9806 void
9807 remote_target::kill_new_fork_children (int pid)
9808 {
9809 remote_state *rs = get_remote_state ();
9810 struct notif_client *notif = &notif_client_stop;
9811
9812 /* Kill the fork child threads of any threads in process PID
9813 that are stopped at a fork event. */
9814 for (thread_info *thread : all_non_exited_threads (this))
9815 {
9816 struct target_waitstatus *ws = &thread->pending_follow;
9817
9818 if (is_pending_fork_parent (ws, pid, thread->ptid))
9819 {
9820 int child_pid = ws->value.related_pid.pid ();
9821 int res;
9822
9823 res = remote_vkill (child_pid);
9824 if (res != 0)
9825 error (_("Can't kill fork child process %d"), child_pid);
9826 }
9827 }
9828
9829 /* Check for any pending fork events (not reported or processed yet)
9830 in process PID and kill those fork child threads as well. */
9831 remote_notif_get_pending_events (notif);
9832 for (auto &event : rs->stop_reply_queue)
9833 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
9834 {
9835 int child_pid = event->ws.value.related_pid.pid ();
9836 int res;
9837
9838 res = remote_vkill (child_pid);
9839 if (res != 0)
9840 error (_("Can't kill fork child process %d"), child_pid);
9841 }
9842 }
9843
9844 \f
9845 /* Target hook to kill the current inferior. */
9846
9847 void
9848 remote_target::kill ()
9849 {
9850 int res = -1;
9851 int pid = inferior_ptid.pid ();
9852 struct remote_state *rs = get_remote_state ();
9853
9854 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9855 {
9856 /* If we're stopped while forking and we haven't followed yet,
9857 kill the child task. We need to do this before killing the
9858 parent task because if this is a vfork then the parent will
9859 be sleeping. */
9860 kill_new_fork_children (pid);
9861
9862 res = remote_vkill (pid);
9863 if (res == 0)
9864 {
9865 target_mourn_inferior (inferior_ptid);
9866 return;
9867 }
9868 }
9869
9870 /* If we are in 'target remote' mode and we are killing the only
9871 inferior, then we will tell gdbserver to exit and unpush the
9872 target. */
9873 if (res == -1 && !remote_multi_process_p (rs)
9874 && number_of_live_inferiors (this) == 1)
9875 {
9876 remote_kill_k ();
9877
9878 /* We've killed the remote end, we get to mourn it. If we are
9879 not in extended mode, mourning the inferior also unpushes
9880 remote_ops from the target stack, which closes the remote
9881 connection. */
9882 target_mourn_inferior (inferior_ptid);
9883
9884 return;
9885 }
9886
9887 error (_("Can't kill process"));
9888 }
9889
9890 /* Send a kill request to the target using the 'vKill' packet. */
9891
9892 int
9893 remote_target::remote_vkill (int pid)
9894 {
9895 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9896 return -1;
9897
9898 remote_state *rs = get_remote_state ();
9899
9900 /* Tell the remote target to detach. */
9901 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
9902 putpkt (rs->buf);
9903 getpkt (&rs->buf, 0);
9904
9905 switch (packet_ok (rs->buf,
9906 &remote_protocol_packets[PACKET_vKill]))
9907 {
9908 case PACKET_OK:
9909 return 0;
9910 case PACKET_ERROR:
9911 return 1;
9912 case PACKET_UNKNOWN:
9913 return -1;
9914 default:
9915 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9916 }
9917 }
9918
9919 /* Send a kill request to the target using the 'k' packet. */
9920
9921 void
9922 remote_target::remote_kill_k ()
9923 {
9924 /* Catch errors so the user can quit from gdb even when we
9925 aren't on speaking terms with the remote system. */
9926 try
9927 {
9928 putpkt ("k");
9929 }
9930 catch (const gdb_exception_error &ex)
9931 {
9932 if (ex.error == TARGET_CLOSE_ERROR)
9933 {
9934 /* If we got an (EOF) error that caused the target
9935 to go away, then we're done, that's what we wanted.
9936 "k" is susceptible to cause a premature EOF, given
9937 that the remote server isn't actually required to
9938 reply to "k", and it can happen that it doesn't
9939 even get to reply ACK to the "k". */
9940 return;
9941 }
9942
9943 /* Otherwise, something went wrong. We didn't actually kill
9944 the target. Just propagate the exception, and let the
9945 user or higher layers decide what to do. */
9946 throw;
9947 }
9948 }
9949
9950 void
9951 remote_target::mourn_inferior ()
9952 {
9953 struct remote_state *rs = get_remote_state ();
9954
9955 /* We're no longer interested in notification events of an inferior
9956 that exited or was killed/detached. */
9957 discard_pending_stop_replies (current_inferior ());
9958
9959 /* In 'target remote' mode with one inferior, we close the connection. */
9960 if (!rs->extended && number_of_live_inferiors (this) <= 1)
9961 {
9962 remote_unpush_target (this);
9963 return;
9964 }
9965
9966 /* In case we got here due to an error, but we're going to stay
9967 connected. */
9968 rs->waiting_for_stop_reply = 0;
9969
9970 /* If the current general thread belonged to the process we just
9971 detached from or has exited, the remote side current general
9972 thread becomes undefined. Considering a case like this:
9973
9974 - We just got here due to a detach.
9975 - The process that we're detaching from happens to immediately
9976 report a global breakpoint being hit in non-stop mode, in the
9977 same thread we had selected before.
9978 - GDB attaches to this process again.
9979 - This event happens to be the next event we handle.
9980
9981 GDB would consider that the current general thread didn't need to
9982 be set on the stub side (with Hg), since for all it knew,
9983 GENERAL_THREAD hadn't changed.
9984
9985 Notice that although in all-stop mode, the remote server always
9986 sets the current thread to the thread reporting the stop event,
9987 that doesn't happen in non-stop mode; in non-stop, the stub *must
9988 not* change the current thread when reporting a breakpoint hit,
9989 due to the decoupling of event reporting and event handling.
9990
9991 To keep things simple, we always invalidate our notion of the
9992 current thread. */
9993 record_currthread (rs, minus_one_ptid);
9994
9995 /* Call common code to mark the inferior as not running. */
9996 generic_mourn_inferior ();
9997 }
9998
9999 bool
10000 extended_remote_target::supports_disable_randomization ()
10001 {
10002 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
10003 }
10004
10005 void
10006 remote_target::extended_remote_disable_randomization (int val)
10007 {
10008 struct remote_state *rs = get_remote_state ();
10009 char *reply;
10010
10011 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10012 "QDisableRandomization:%x", val);
10013 putpkt (rs->buf);
10014 reply = remote_get_noisy_reply ();
10015 if (*reply == '\0')
10016 error (_("Target does not support QDisableRandomization."));
10017 if (strcmp (reply, "OK") != 0)
10018 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
10019 }
10020
10021 int
10022 remote_target::extended_remote_run (const std::string &args)
10023 {
10024 struct remote_state *rs = get_remote_state ();
10025 int len;
10026 const char *remote_exec_file = get_remote_exec_file ();
10027
10028 /* If the user has disabled vRun support, or we have detected that
10029 support is not available, do not try it. */
10030 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
10031 return -1;
10032
10033 strcpy (rs->buf.data (), "vRun;");
10034 len = strlen (rs->buf.data ());
10035
10036 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
10037 error (_("Remote file name too long for run packet"));
10038 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
10039 strlen (remote_exec_file));
10040
10041 if (!args.empty ())
10042 {
10043 int i;
10044
10045 gdb_argv argv (args.c_str ());
10046 for (i = 0; argv[i] != NULL; i++)
10047 {
10048 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
10049 error (_("Argument list too long for run packet"));
10050 rs->buf[len++] = ';';
10051 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
10052 strlen (argv[i]));
10053 }
10054 }
10055
10056 rs->buf[len++] = '\0';
10057
10058 putpkt (rs->buf);
10059 getpkt (&rs->buf, 0);
10060
10061 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
10062 {
10063 case PACKET_OK:
10064 /* We have a wait response. All is well. */
10065 return 0;
10066 case PACKET_UNKNOWN:
10067 return -1;
10068 case PACKET_ERROR:
10069 if (remote_exec_file[0] == '\0')
10070 error (_("Running the default executable on the remote target failed; "
10071 "try \"set remote exec-file\"?"));
10072 else
10073 error (_("Running \"%s\" on the remote target failed"),
10074 remote_exec_file);
10075 default:
10076 gdb_assert_not_reached (_("bad switch"));
10077 }
10078 }
10079
10080 /* Helper function to send set/unset environment packets. ACTION is
10081 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
10082 or "QEnvironmentUnsetVariable". VALUE is the variable to be
10083 sent. */
10084
10085 void
10086 remote_target::send_environment_packet (const char *action,
10087 const char *packet,
10088 const char *value)
10089 {
10090 remote_state *rs = get_remote_state ();
10091
10092 /* Convert the environment variable to an hex string, which
10093 is the best format to be transmitted over the wire. */
10094 std::string encoded_value = bin2hex ((const gdb_byte *) value,
10095 strlen (value));
10096
10097 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10098 "%s:%s", packet, encoded_value.c_str ());
10099
10100 putpkt (rs->buf);
10101 getpkt (&rs->buf, 0);
10102 if (strcmp (rs->buf.data (), "OK") != 0)
10103 warning (_("Unable to %s environment variable '%s' on remote."),
10104 action, value);
10105 }
10106
10107 /* Helper function to handle the QEnvironment* packets. */
10108
10109 void
10110 remote_target::extended_remote_environment_support ()
10111 {
10112 remote_state *rs = get_remote_state ();
10113
10114 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10115 {
10116 putpkt ("QEnvironmentReset");
10117 getpkt (&rs->buf, 0);
10118 if (strcmp (rs->buf.data (), "OK") != 0)
10119 warning (_("Unable to reset environment on remote."));
10120 }
10121
10122 gdb_environ *e = &current_inferior ()->environment;
10123
10124 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10125 for (const std::string &el : e->user_set_env ())
10126 send_environment_packet ("set", "QEnvironmentHexEncoded",
10127 el.c_str ());
10128
10129 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10130 for (const std::string &el : e->user_unset_env ())
10131 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10132 }
10133
10134 /* Helper function to set the current working directory for the
10135 inferior in the remote target. */
10136
10137 void
10138 remote_target::extended_remote_set_inferior_cwd ()
10139 {
10140 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10141 {
10142 const char *inferior_cwd = get_inferior_cwd ();
10143 remote_state *rs = get_remote_state ();
10144
10145 if (inferior_cwd != NULL)
10146 {
10147 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10148 strlen (inferior_cwd));
10149
10150 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10151 "QSetWorkingDir:%s", hexpath.c_str ());
10152 }
10153 else
10154 {
10155 /* An empty inferior_cwd means that the user wants us to
10156 reset the remote server's inferior's cwd. */
10157 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10158 "QSetWorkingDir:");
10159 }
10160
10161 putpkt (rs->buf);
10162 getpkt (&rs->buf, 0);
10163 if (packet_ok (rs->buf,
10164 &remote_protocol_packets[PACKET_QSetWorkingDir])
10165 != PACKET_OK)
10166 error (_("\
10167 Remote replied unexpectedly while setting the inferior's working\n\
10168 directory: %s"),
10169 rs->buf.data ());
10170
10171 }
10172 }
10173
10174 /* In the extended protocol we want to be able to do things like
10175 "run" and have them basically work as expected. So we need
10176 a special create_inferior function. We support changing the
10177 executable file and the command line arguments, but not the
10178 environment. */
10179
10180 void
10181 extended_remote_target::create_inferior (const char *exec_file,
10182 const std::string &args,
10183 char **env, int from_tty)
10184 {
10185 int run_worked;
10186 char *stop_reply;
10187 struct remote_state *rs = get_remote_state ();
10188 const char *remote_exec_file = get_remote_exec_file ();
10189
10190 /* If running asynchronously, register the target file descriptor
10191 with the event loop. */
10192 if (target_can_async_p ())
10193 target_async (1);
10194
10195 /* Disable address space randomization if requested (and supported). */
10196 if (supports_disable_randomization ())
10197 extended_remote_disable_randomization (disable_randomization);
10198
10199 /* If startup-with-shell is on, we inform gdbserver to start the
10200 remote inferior using a shell. */
10201 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10202 {
10203 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10204 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10205 putpkt (rs->buf);
10206 getpkt (&rs->buf, 0);
10207 if (strcmp (rs->buf.data (), "OK") != 0)
10208 error (_("\
10209 Remote replied unexpectedly while setting startup-with-shell: %s"),
10210 rs->buf.data ());
10211 }
10212
10213 extended_remote_environment_support ();
10214
10215 extended_remote_set_inferior_cwd ();
10216
10217 /* Now restart the remote server. */
10218 run_worked = extended_remote_run (args) != -1;
10219 if (!run_worked)
10220 {
10221 /* vRun was not supported. Fail if we need it to do what the
10222 user requested. */
10223 if (remote_exec_file[0])
10224 error (_("Remote target does not support \"set remote exec-file\""));
10225 if (!args.empty ())
10226 error (_("Remote target does not support \"set args\" or run ARGS"));
10227
10228 /* Fall back to "R". */
10229 extended_remote_restart ();
10230 }
10231
10232 /* vRun's success return is a stop reply. */
10233 stop_reply = run_worked ? rs->buf.data () : NULL;
10234 add_current_inferior_and_thread (stop_reply);
10235
10236 /* Get updated offsets, if the stub uses qOffsets. */
10237 get_offsets ();
10238 }
10239 \f
10240
10241 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10242 the list of conditions (in agent expression bytecode format), if any, the
10243 target needs to evaluate. The output is placed into the packet buffer
10244 started from BUF and ended at BUF_END. */
10245
10246 static int
10247 remote_add_target_side_condition (struct gdbarch *gdbarch,
10248 struct bp_target_info *bp_tgt, char *buf,
10249 char *buf_end)
10250 {
10251 if (bp_tgt->conditions.empty ())
10252 return 0;
10253
10254 buf += strlen (buf);
10255 xsnprintf (buf, buf_end - buf, "%s", ";");
10256 buf++;
10257
10258 /* Send conditions to the target. */
10259 for (agent_expr *aexpr : bp_tgt->conditions)
10260 {
10261 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10262 buf += strlen (buf);
10263 for (int i = 0; i < aexpr->len; ++i)
10264 buf = pack_hex_byte (buf, aexpr->buf[i]);
10265 *buf = '\0';
10266 }
10267 return 0;
10268 }
10269
10270 static void
10271 remote_add_target_side_commands (struct gdbarch *gdbarch,
10272 struct bp_target_info *bp_tgt, char *buf)
10273 {
10274 if (bp_tgt->tcommands.empty ())
10275 return;
10276
10277 buf += strlen (buf);
10278
10279 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10280 buf += strlen (buf);
10281
10282 /* Concatenate all the agent expressions that are commands into the
10283 cmds parameter. */
10284 for (agent_expr *aexpr : bp_tgt->tcommands)
10285 {
10286 sprintf (buf, "X%x,", aexpr->len);
10287 buf += strlen (buf);
10288 for (int i = 0; i < aexpr->len; ++i)
10289 buf = pack_hex_byte (buf, aexpr->buf[i]);
10290 *buf = '\0';
10291 }
10292 }
10293
10294 /* Insert a breakpoint. On targets that have software breakpoint
10295 support, we ask the remote target to do the work; on targets
10296 which don't, we insert a traditional memory breakpoint. */
10297
10298 int
10299 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10300 struct bp_target_info *bp_tgt)
10301 {
10302 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10303 If it succeeds, then set the support to PACKET_ENABLE. If it
10304 fails, and the user has explicitly requested the Z support then
10305 report an error, otherwise, mark it disabled and go on. */
10306
10307 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10308 {
10309 CORE_ADDR addr = bp_tgt->reqstd_address;
10310 struct remote_state *rs;
10311 char *p, *endbuf;
10312
10313 /* Make sure the remote is pointing at the right process, if
10314 necessary. */
10315 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10316 set_general_process ();
10317
10318 rs = get_remote_state ();
10319 p = rs->buf.data ();
10320 endbuf = p + get_remote_packet_size ();
10321
10322 *(p++) = 'Z';
10323 *(p++) = '0';
10324 *(p++) = ',';
10325 addr = (ULONGEST) remote_address_masked (addr);
10326 p += hexnumstr (p, addr);
10327 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10328
10329 if (supports_evaluation_of_breakpoint_conditions ())
10330 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10331
10332 if (can_run_breakpoint_commands ())
10333 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10334
10335 putpkt (rs->buf);
10336 getpkt (&rs->buf, 0);
10337
10338 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10339 {
10340 case PACKET_ERROR:
10341 return -1;
10342 case PACKET_OK:
10343 return 0;
10344 case PACKET_UNKNOWN:
10345 break;
10346 }
10347 }
10348
10349 /* If this breakpoint has target-side commands but this stub doesn't
10350 support Z0 packets, throw error. */
10351 if (!bp_tgt->tcommands.empty ())
10352 throw_error (NOT_SUPPORTED_ERROR, _("\
10353 Target doesn't support breakpoints that have target side commands."));
10354
10355 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10356 }
10357
10358 int
10359 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10360 struct bp_target_info *bp_tgt,
10361 enum remove_bp_reason reason)
10362 {
10363 CORE_ADDR addr = bp_tgt->placed_address;
10364 struct remote_state *rs = get_remote_state ();
10365
10366 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10367 {
10368 char *p = rs->buf.data ();
10369 char *endbuf = p + get_remote_packet_size ();
10370
10371 /* Make sure the remote is pointing at the right process, if
10372 necessary. */
10373 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10374 set_general_process ();
10375
10376 *(p++) = 'z';
10377 *(p++) = '0';
10378 *(p++) = ',';
10379
10380 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10381 p += hexnumstr (p, addr);
10382 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10383
10384 putpkt (rs->buf);
10385 getpkt (&rs->buf, 0);
10386
10387 return (rs->buf[0] == 'E');
10388 }
10389
10390 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10391 }
10392
10393 static enum Z_packet_type
10394 watchpoint_to_Z_packet (int type)
10395 {
10396 switch (type)
10397 {
10398 case hw_write:
10399 return Z_PACKET_WRITE_WP;
10400 break;
10401 case hw_read:
10402 return Z_PACKET_READ_WP;
10403 break;
10404 case hw_access:
10405 return Z_PACKET_ACCESS_WP;
10406 break;
10407 default:
10408 internal_error (__FILE__, __LINE__,
10409 _("hw_bp_to_z: bad watchpoint type %d"), type);
10410 }
10411 }
10412
10413 int
10414 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10415 enum target_hw_bp_type type, struct expression *cond)
10416 {
10417 struct remote_state *rs = get_remote_state ();
10418 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10419 char *p;
10420 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10421
10422 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10423 return 1;
10424
10425 /* Make sure the remote is pointing at the right process, if
10426 necessary. */
10427 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10428 set_general_process ();
10429
10430 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10431 p = strchr (rs->buf.data (), '\0');
10432 addr = remote_address_masked (addr);
10433 p += hexnumstr (p, (ULONGEST) addr);
10434 xsnprintf (p, endbuf - p, ",%x", len);
10435
10436 putpkt (rs->buf);
10437 getpkt (&rs->buf, 0);
10438
10439 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10440 {
10441 case PACKET_ERROR:
10442 return -1;
10443 case PACKET_UNKNOWN:
10444 return 1;
10445 case PACKET_OK:
10446 return 0;
10447 }
10448 internal_error (__FILE__, __LINE__,
10449 _("remote_insert_watchpoint: reached end of function"));
10450 }
10451
10452 bool
10453 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10454 CORE_ADDR start, int length)
10455 {
10456 CORE_ADDR diff = remote_address_masked (addr - start);
10457
10458 return diff < length;
10459 }
10460
10461
10462 int
10463 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10464 enum target_hw_bp_type type, struct expression *cond)
10465 {
10466 struct remote_state *rs = get_remote_state ();
10467 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10468 char *p;
10469 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10470
10471 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10472 return -1;
10473
10474 /* Make sure the remote is pointing at the right process, if
10475 necessary. */
10476 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10477 set_general_process ();
10478
10479 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10480 p = strchr (rs->buf.data (), '\0');
10481 addr = remote_address_masked (addr);
10482 p += hexnumstr (p, (ULONGEST) addr);
10483 xsnprintf (p, endbuf - p, ",%x", len);
10484 putpkt (rs->buf);
10485 getpkt (&rs->buf, 0);
10486
10487 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10488 {
10489 case PACKET_ERROR:
10490 case PACKET_UNKNOWN:
10491 return -1;
10492 case PACKET_OK:
10493 return 0;
10494 }
10495 internal_error (__FILE__, __LINE__,
10496 _("remote_remove_watchpoint: reached end of function"));
10497 }
10498
10499
10500 static int remote_hw_watchpoint_limit = -1;
10501 static int remote_hw_watchpoint_length_limit = -1;
10502 static int remote_hw_breakpoint_limit = -1;
10503
10504 int
10505 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10506 {
10507 if (remote_hw_watchpoint_length_limit == 0)
10508 return 0;
10509 else if (remote_hw_watchpoint_length_limit < 0)
10510 return 1;
10511 else if (len <= remote_hw_watchpoint_length_limit)
10512 return 1;
10513 else
10514 return 0;
10515 }
10516
10517 int
10518 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10519 {
10520 if (type == bp_hardware_breakpoint)
10521 {
10522 if (remote_hw_breakpoint_limit == 0)
10523 return 0;
10524 else if (remote_hw_breakpoint_limit < 0)
10525 return 1;
10526 else if (cnt <= remote_hw_breakpoint_limit)
10527 return 1;
10528 }
10529 else
10530 {
10531 if (remote_hw_watchpoint_limit == 0)
10532 return 0;
10533 else if (remote_hw_watchpoint_limit < 0)
10534 return 1;
10535 else if (ot)
10536 return -1;
10537 else if (cnt <= remote_hw_watchpoint_limit)
10538 return 1;
10539 }
10540 return -1;
10541 }
10542
10543 /* The to_stopped_by_sw_breakpoint method of target remote. */
10544
10545 bool
10546 remote_target::stopped_by_sw_breakpoint ()
10547 {
10548 struct thread_info *thread = inferior_thread ();
10549
10550 return (thread->priv != NULL
10551 && (get_remote_thread_info (thread)->stop_reason
10552 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10553 }
10554
10555 /* The to_supports_stopped_by_sw_breakpoint method of target
10556 remote. */
10557
10558 bool
10559 remote_target::supports_stopped_by_sw_breakpoint ()
10560 {
10561 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10562 }
10563
10564 /* The to_stopped_by_hw_breakpoint method of target remote. */
10565
10566 bool
10567 remote_target::stopped_by_hw_breakpoint ()
10568 {
10569 struct thread_info *thread = inferior_thread ();
10570
10571 return (thread->priv != NULL
10572 && (get_remote_thread_info (thread)->stop_reason
10573 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10574 }
10575
10576 /* The to_supports_stopped_by_hw_breakpoint method of target
10577 remote. */
10578
10579 bool
10580 remote_target::supports_stopped_by_hw_breakpoint ()
10581 {
10582 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10583 }
10584
10585 bool
10586 remote_target::stopped_by_watchpoint ()
10587 {
10588 struct thread_info *thread = inferior_thread ();
10589
10590 return (thread->priv != NULL
10591 && (get_remote_thread_info (thread)->stop_reason
10592 == TARGET_STOPPED_BY_WATCHPOINT));
10593 }
10594
10595 bool
10596 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10597 {
10598 struct thread_info *thread = inferior_thread ();
10599
10600 if (thread->priv != NULL
10601 && (get_remote_thread_info (thread)->stop_reason
10602 == TARGET_STOPPED_BY_WATCHPOINT))
10603 {
10604 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10605 return true;
10606 }
10607
10608 return false;
10609 }
10610
10611
10612 int
10613 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10614 struct bp_target_info *bp_tgt)
10615 {
10616 CORE_ADDR addr = bp_tgt->reqstd_address;
10617 struct remote_state *rs;
10618 char *p, *endbuf;
10619 char *message;
10620
10621 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10622 return -1;
10623
10624 /* Make sure the remote is pointing at the right process, if
10625 necessary. */
10626 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10627 set_general_process ();
10628
10629 rs = get_remote_state ();
10630 p = rs->buf.data ();
10631 endbuf = p + get_remote_packet_size ();
10632
10633 *(p++) = 'Z';
10634 *(p++) = '1';
10635 *(p++) = ',';
10636
10637 addr = remote_address_masked (addr);
10638 p += hexnumstr (p, (ULONGEST) addr);
10639 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10640
10641 if (supports_evaluation_of_breakpoint_conditions ())
10642 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10643
10644 if (can_run_breakpoint_commands ())
10645 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10646
10647 putpkt (rs->buf);
10648 getpkt (&rs->buf, 0);
10649
10650 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10651 {
10652 case PACKET_ERROR:
10653 if (rs->buf[1] == '.')
10654 {
10655 message = strchr (&rs->buf[2], '.');
10656 if (message)
10657 error (_("Remote failure reply: %s"), message + 1);
10658 }
10659 return -1;
10660 case PACKET_UNKNOWN:
10661 return -1;
10662 case PACKET_OK:
10663 return 0;
10664 }
10665 internal_error (__FILE__, __LINE__,
10666 _("remote_insert_hw_breakpoint: reached end of function"));
10667 }
10668
10669
10670 int
10671 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10672 struct bp_target_info *bp_tgt)
10673 {
10674 CORE_ADDR addr;
10675 struct remote_state *rs = get_remote_state ();
10676 char *p = rs->buf.data ();
10677 char *endbuf = p + get_remote_packet_size ();
10678
10679 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10680 return -1;
10681
10682 /* Make sure the remote is pointing at the right process, if
10683 necessary. */
10684 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10685 set_general_process ();
10686
10687 *(p++) = 'z';
10688 *(p++) = '1';
10689 *(p++) = ',';
10690
10691 addr = remote_address_masked (bp_tgt->placed_address);
10692 p += hexnumstr (p, (ULONGEST) addr);
10693 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10694
10695 putpkt (rs->buf);
10696 getpkt (&rs->buf, 0);
10697
10698 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10699 {
10700 case PACKET_ERROR:
10701 case PACKET_UNKNOWN:
10702 return -1;
10703 case PACKET_OK:
10704 return 0;
10705 }
10706 internal_error (__FILE__, __LINE__,
10707 _("remote_remove_hw_breakpoint: reached end of function"));
10708 }
10709
10710 /* Verify memory using the "qCRC:" request. */
10711
10712 int
10713 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10714 {
10715 struct remote_state *rs = get_remote_state ();
10716 unsigned long host_crc, target_crc;
10717 char *tmp;
10718
10719 /* It doesn't make sense to use qCRC if the remote target is
10720 connected but not running. */
10721 if (target_has_execution ()
10722 && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10723 {
10724 enum packet_result result;
10725
10726 /* Make sure the remote is pointing at the right process. */
10727 set_general_process ();
10728
10729 /* FIXME: assumes lma can fit into long. */
10730 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10731 (long) lma, (long) size);
10732 putpkt (rs->buf);
10733
10734 /* Be clever; compute the host_crc before waiting for target
10735 reply. */
10736 host_crc = xcrc32 (data, size, 0xffffffff);
10737
10738 getpkt (&rs->buf, 0);
10739
10740 result = packet_ok (rs->buf,
10741 &remote_protocol_packets[PACKET_qCRC]);
10742 if (result == PACKET_ERROR)
10743 return -1;
10744 else if (result == PACKET_OK)
10745 {
10746 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10747 target_crc = target_crc * 16 + fromhex (*tmp);
10748
10749 return (host_crc == target_crc);
10750 }
10751 }
10752
10753 return simple_verify_memory (this, data, lma, size);
10754 }
10755
10756 /* compare-sections command
10757
10758 With no arguments, compares each loadable section in the exec bfd
10759 with the same memory range on the target, and reports mismatches.
10760 Useful for verifying the image on the target against the exec file. */
10761
10762 static void
10763 compare_sections_command (const char *args, int from_tty)
10764 {
10765 asection *s;
10766 const char *sectname;
10767 bfd_size_type size;
10768 bfd_vma lma;
10769 int matched = 0;
10770 int mismatched = 0;
10771 int res;
10772 int read_only = 0;
10773
10774 if (!current_program_space->exec_bfd ())
10775 error (_("command cannot be used without an exec file"));
10776
10777 if (args != NULL && strcmp (args, "-r") == 0)
10778 {
10779 read_only = 1;
10780 args = NULL;
10781 }
10782
10783 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
10784 {
10785 if (!(s->flags & SEC_LOAD))
10786 continue; /* Skip non-loadable section. */
10787
10788 if (read_only && (s->flags & SEC_READONLY) == 0)
10789 continue; /* Skip writeable sections */
10790
10791 size = bfd_section_size (s);
10792 if (size == 0)
10793 continue; /* Skip zero-length section. */
10794
10795 sectname = bfd_section_name (s);
10796 if (args && strcmp (args, sectname) != 0)
10797 continue; /* Not the section selected by user. */
10798
10799 matched = 1; /* Do this section. */
10800 lma = s->lma;
10801
10802 gdb::byte_vector sectdata (size);
10803 bfd_get_section_contents (current_program_space->exec_bfd (), s,
10804 sectdata.data (), 0, size);
10805
10806 res = target_verify_memory (sectdata.data (), lma, size);
10807
10808 if (res == -1)
10809 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10810 paddress (target_gdbarch (), lma),
10811 paddress (target_gdbarch (), lma + size));
10812
10813 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10814 paddress (target_gdbarch (), lma),
10815 paddress (target_gdbarch (), lma + size));
10816 if (res)
10817 printf_filtered ("matched.\n");
10818 else
10819 {
10820 printf_filtered ("MIS-MATCHED!\n");
10821 mismatched++;
10822 }
10823 }
10824 if (mismatched > 0)
10825 warning (_("One or more sections of the target image does not match\n\
10826 the loaded file\n"));
10827 if (args && !matched)
10828 printf_filtered (_("No loaded section named '%s'.\n"), args);
10829 }
10830
10831 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10832 into remote target. The number of bytes written to the remote
10833 target is returned, or -1 for error. */
10834
10835 target_xfer_status
10836 remote_target::remote_write_qxfer (const char *object_name,
10837 const char *annex, const gdb_byte *writebuf,
10838 ULONGEST offset, LONGEST len,
10839 ULONGEST *xfered_len,
10840 struct packet_config *packet)
10841 {
10842 int i, buf_len;
10843 ULONGEST n;
10844 struct remote_state *rs = get_remote_state ();
10845 int max_size = get_memory_write_packet_size ();
10846
10847 if (packet_config_support (packet) == PACKET_DISABLE)
10848 return TARGET_XFER_E_IO;
10849
10850 /* Insert header. */
10851 i = snprintf (rs->buf.data (), max_size,
10852 "qXfer:%s:write:%s:%s:",
10853 object_name, annex ? annex : "",
10854 phex_nz (offset, sizeof offset));
10855 max_size -= (i + 1);
10856
10857 /* Escape as much data as fits into rs->buf. */
10858 buf_len = remote_escape_output
10859 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
10860
10861 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
10862 || getpkt_sane (&rs->buf, 0) < 0
10863 || packet_ok (rs->buf, packet) != PACKET_OK)
10864 return TARGET_XFER_E_IO;
10865
10866 unpack_varlen_hex (rs->buf.data (), &n);
10867
10868 *xfered_len = n;
10869 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10870 }
10871
10872 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10873 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10874 number of bytes read is returned, or 0 for EOF, or -1 for error.
10875 The number of bytes read may be less than LEN without indicating an
10876 EOF. PACKET is checked and updated to indicate whether the remote
10877 target supports this object. */
10878
10879 target_xfer_status
10880 remote_target::remote_read_qxfer (const char *object_name,
10881 const char *annex,
10882 gdb_byte *readbuf, ULONGEST offset,
10883 LONGEST len,
10884 ULONGEST *xfered_len,
10885 struct packet_config *packet)
10886 {
10887 struct remote_state *rs = get_remote_state ();
10888 LONGEST i, n, packet_len;
10889
10890 if (packet_config_support (packet) == PACKET_DISABLE)
10891 return TARGET_XFER_E_IO;
10892
10893 /* Check whether we've cached an end-of-object packet that matches
10894 this request. */
10895 if (rs->finished_object)
10896 {
10897 if (strcmp (object_name, rs->finished_object) == 0
10898 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10899 && offset == rs->finished_offset)
10900 return TARGET_XFER_EOF;
10901
10902
10903 /* Otherwise, we're now reading something different. Discard
10904 the cache. */
10905 xfree (rs->finished_object);
10906 xfree (rs->finished_annex);
10907 rs->finished_object = NULL;
10908 rs->finished_annex = NULL;
10909 }
10910
10911 /* Request only enough to fit in a single packet. The actual data
10912 may not, since we don't know how much of it will need to be escaped;
10913 the target is free to respond with slightly less data. We subtract
10914 five to account for the response type and the protocol frame. */
10915 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10916 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
10917 "qXfer:%s:read:%s:%s,%s",
10918 object_name, annex ? annex : "",
10919 phex_nz (offset, sizeof offset),
10920 phex_nz (n, sizeof n));
10921 i = putpkt (rs->buf);
10922 if (i < 0)
10923 return TARGET_XFER_E_IO;
10924
10925 rs->buf[0] = '\0';
10926 packet_len = getpkt_sane (&rs->buf, 0);
10927 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10928 return TARGET_XFER_E_IO;
10929
10930 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10931 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
10932
10933 /* 'm' means there is (or at least might be) more data after this
10934 batch. That does not make sense unless there's at least one byte
10935 of data in this reply. */
10936 if (rs->buf[0] == 'm' && packet_len == 1)
10937 error (_("Remote qXfer reply contained no data."));
10938
10939 /* Got some data. */
10940 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
10941 packet_len - 1, readbuf, n);
10942
10943 /* 'l' is an EOF marker, possibly including a final block of data,
10944 or possibly empty. If we have the final block of a non-empty
10945 object, record this fact to bypass a subsequent partial read. */
10946 if (rs->buf[0] == 'l' && offset + i > 0)
10947 {
10948 rs->finished_object = xstrdup (object_name);
10949 rs->finished_annex = xstrdup (annex ? annex : "");
10950 rs->finished_offset = offset + i;
10951 }
10952
10953 if (i == 0)
10954 return TARGET_XFER_EOF;
10955 else
10956 {
10957 *xfered_len = i;
10958 return TARGET_XFER_OK;
10959 }
10960 }
10961
10962 enum target_xfer_status
10963 remote_target::xfer_partial (enum target_object object,
10964 const char *annex, gdb_byte *readbuf,
10965 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10966 ULONGEST *xfered_len)
10967 {
10968 struct remote_state *rs;
10969 int i;
10970 char *p2;
10971 char query_type;
10972 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10973
10974 set_remote_traceframe ();
10975 set_general_thread (inferior_ptid);
10976
10977 rs = get_remote_state ();
10978
10979 /* Handle memory using the standard memory routines. */
10980 if (object == TARGET_OBJECT_MEMORY)
10981 {
10982 /* If the remote target is connected but not running, we should
10983 pass this request down to a lower stratum (e.g. the executable
10984 file). */
10985 if (!target_has_execution ())
10986 return TARGET_XFER_EOF;
10987
10988 if (writebuf != NULL)
10989 return remote_write_bytes (offset, writebuf, len, unit_size,
10990 xfered_len);
10991 else
10992 return remote_read_bytes (offset, readbuf, len, unit_size,
10993 xfered_len);
10994 }
10995
10996 /* Handle extra signal info using qxfer packets. */
10997 if (object == TARGET_OBJECT_SIGNAL_INFO)
10998 {
10999 if (readbuf)
11000 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
11001 xfered_len, &remote_protocol_packets
11002 [PACKET_qXfer_siginfo_read]);
11003 else
11004 return remote_write_qxfer ("siginfo", annex,
11005 writebuf, offset, len, xfered_len,
11006 &remote_protocol_packets
11007 [PACKET_qXfer_siginfo_write]);
11008 }
11009
11010 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
11011 {
11012 if (readbuf)
11013 return remote_read_qxfer ("statictrace", annex,
11014 readbuf, offset, len, xfered_len,
11015 &remote_protocol_packets
11016 [PACKET_qXfer_statictrace_read]);
11017 else
11018 return TARGET_XFER_E_IO;
11019 }
11020
11021 /* Only handle flash writes. */
11022 if (writebuf != NULL)
11023 {
11024 switch (object)
11025 {
11026 case TARGET_OBJECT_FLASH:
11027 return remote_flash_write (offset, len, xfered_len,
11028 writebuf);
11029
11030 default:
11031 return TARGET_XFER_E_IO;
11032 }
11033 }
11034
11035 /* Map pre-existing objects onto letters. DO NOT do this for new
11036 objects!!! Instead specify new query packets. */
11037 switch (object)
11038 {
11039 case TARGET_OBJECT_AVR:
11040 query_type = 'R';
11041 break;
11042
11043 case TARGET_OBJECT_AUXV:
11044 gdb_assert (annex == NULL);
11045 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
11046 xfered_len,
11047 &remote_protocol_packets[PACKET_qXfer_auxv]);
11048
11049 case TARGET_OBJECT_AVAILABLE_FEATURES:
11050 return remote_read_qxfer
11051 ("features", annex, readbuf, offset, len, xfered_len,
11052 &remote_protocol_packets[PACKET_qXfer_features]);
11053
11054 case TARGET_OBJECT_LIBRARIES:
11055 return remote_read_qxfer
11056 ("libraries", annex, readbuf, offset, len, xfered_len,
11057 &remote_protocol_packets[PACKET_qXfer_libraries]);
11058
11059 case TARGET_OBJECT_LIBRARIES_SVR4:
11060 return remote_read_qxfer
11061 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
11062 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
11063
11064 case TARGET_OBJECT_MEMORY_MAP:
11065 gdb_assert (annex == NULL);
11066 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
11067 xfered_len,
11068 &remote_protocol_packets[PACKET_qXfer_memory_map]);
11069
11070 case TARGET_OBJECT_OSDATA:
11071 /* Should only get here if we're connected. */
11072 gdb_assert (rs->remote_desc);
11073 return remote_read_qxfer
11074 ("osdata", annex, readbuf, offset, len, xfered_len,
11075 &remote_protocol_packets[PACKET_qXfer_osdata]);
11076
11077 case TARGET_OBJECT_THREADS:
11078 gdb_assert (annex == NULL);
11079 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
11080 xfered_len,
11081 &remote_protocol_packets[PACKET_qXfer_threads]);
11082
11083 case TARGET_OBJECT_TRACEFRAME_INFO:
11084 gdb_assert (annex == NULL);
11085 return remote_read_qxfer
11086 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11087 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11088
11089 case TARGET_OBJECT_FDPIC:
11090 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11091 xfered_len,
11092 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11093
11094 case TARGET_OBJECT_OPENVMS_UIB:
11095 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11096 xfered_len,
11097 &remote_protocol_packets[PACKET_qXfer_uib]);
11098
11099 case TARGET_OBJECT_BTRACE:
11100 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11101 xfered_len,
11102 &remote_protocol_packets[PACKET_qXfer_btrace]);
11103
11104 case TARGET_OBJECT_BTRACE_CONF:
11105 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11106 len, xfered_len,
11107 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11108
11109 case TARGET_OBJECT_EXEC_FILE:
11110 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11111 len, xfered_len,
11112 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11113
11114 default:
11115 return TARGET_XFER_E_IO;
11116 }
11117
11118 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11119 large enough let the caller deal with it. */
11120 if (len < get_remote_packet_size ())
11121 return TARGET_XFER_E_IO;
11122 len = get_remote_packet_size ();
11123
11124 /* Except for querying the minimum buffer size, target must be open. */
11125 if (!rs->remote_desc)
11126 error (_("remote query is only available after target open"));
11127
11128 gdb_assert (annex != NULL);
11129 gdb_assert (readbuf != NULL);
11130
11131 p2 = rs->buf.data ();
11132 *p2++ = 'q';
11133 *p2++ = query_type;
11134
11135 /* We used one buffer char for the remote protocol q command and
11136 another for the query type. As the remote protocol encapsulation
11137 uses 4 chars plus one extra in case we are debugging
11138 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11139 string. */
11140 i = 0;
11141 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11142 {
11143 /* Bad caller may have sent forbidden characters. */
11144 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11145 *p2++ = annex[i];
11146 i++;
11147 }
11148 *p2 = '\0';
11149 gdb_assert (annex[i] == '\0');
11150
11151 i = putpkt (rs->buf);
11152 if (i < 0)
11153 return TARGET_XFER_E_IO;
11154
11155 getpkt (&rs->buf, 0);
11156 strcpy ((char *) readbuf, rs->buf.data ());
11157
11158 *xfered_len = strlen ((char *) readbuf);
11159 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11160 }
11161
11162 /* Implementation of to_get_memory_xfer_limit. */
11163
11164 ULONGEST
11165 remote_target::get_memory_xfer_limit ()
11166 {
11167 return get_memory_write_packet_size ();
11168 }
11169
11170 int
11171 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11172 const gdb_byte *pattern, ULONGEST pattern_len,
11173 CORE_ADDR *found_addrp)
11174 {
11175 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11176 struct remote_state *rs = get_remote_state ();
11177 int max_size = get_memory_write_packet_size ();
11178 struct packet_config *packet =
11179 &remote_protocol_packets[PACKET_qSearch_memory];
11180 /* Number of packet bytes used to encode the pattern;
11181 this could be more than PATTERN_LEN due to escape characters. */
11182 int escaped_pattern_len;
11183 /* Amount of pattern that was encodable in the packet. */
11184 int used_pattern_len;
11185 int i;
11186 int found;
11187 ULONGEST found_addr;
11188
11189 auto read_memory = [=] (CORE_ADDR addr, gdb_byte *result, size_t len)
11190 {
11191 return (target_read (this, TARGET_OBJECT_MEMORY, NULL, result, addr, len)
11192 == len);
11193 };
11194
11195 /* Don't go to the target if we don't have to. This is done before
11196 checking packet_config_support to avoid the possibility that a
11197 success for this edge case means the facility works in
11198 general. */
11199 if (pattern_len > search_space_len)
11200 return 0;
11201 if (pattern_len == 0)
11202 {
11203 *found_addrp = start_addr;
11204 return 1;
11205 }
11206
11207 /* If we already know the packet isn't supported, fall back to the simple
11208 way of searching memory. */
11209
11210 if (packet_config_support (packet) == PACKET_DISABLE)
11211 {
11212 /* Target doesn't provided special support, fall back and use the
11213 standard support (copy memory and do the search here). */
11214 return simple_search_memory (read_memory, start_addr, search_space_len,
11215 pattern, pattern_len, found_addrp);
11216 }
11217
11218 /* Make sure the remote is pointing at the right process. */
11219 set_general_process ();
11220
11221 /* Insert header. */
11222 i = snprintf (rs->buf.data (), max_size,
11223 "qSearch:memory:%s;%s;",
11224 phex_nz (start_addr, addr_size),
11225 phex_nz (search_space_len, sizeof (search_space_len)));
11226 max_size -= (i + 1);
11227
11228 /* Escape as much data as fits into rs->buf. */
11229 escaped_pattern_len =
11230 remote_escape_output (pattern, pattern_len, 1,
11231 (gdb_byte *) rs->buf.data () + i,
11232 &used_pattern_len, max_size);
11233
11234 /* Bail if the pattern is too large. */
11235 if (used_pattern_len != pattern_len)
11236 error (_("Pattern is too large to transmit to remote target."));
11237
11238 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11239 || getpkt_sane (&rs->buf, 0) < 0
11240 || packet_ok (rs->buf, packet) != PACKET_OK)
11241 {
11242 /* The request may not have worked because the command is not
11243 supported. If so, fall back to the simple way. */
11244 if (packet_config_support (packet) == PACKET_DISABLE)
11245 {
11246 return simple_search_memory (read_memory, start_addr, search_space_len,
11247 pattern, pattern_len, found_addrp);
11248 }
11249 return -1;
11250 }
11251
11252 if (rs->buf[0] == '0')
11253 found = 0;
11254 else if (rs->buf[0] == '1')
11255 {
11256 found = 1;
11257 if (rs->buf[1] != ',')
11258 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11259 unpack_varlen_hex (&rs->buf[2], &found_addr);
11260 *found_addrp = found_addr;
11261 }
11262 else
11263 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11264
11265 return found;
11266 }
11267
11268 void
11269 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11270 {
11271 struct remote_state *rs = get_remote_state ();
11272 char *p = rs->buf.data ();
11273
11274 if (!rs->remote_desc)
11275 error (_("remote rcmd is only available after target open"));
11276
11277 /* Send a NULL command across as an empty command. */
11278 if (command == NULL)
11279 command = "";
11280
11281 /* The query prefix. */
11282 strcpy (rs->buf.data (), "qRcmd,");
11283 p = strchr (rs->buf.data (), '\0');
11284
11285 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11286 > get_remote_packet_size ())
11287 error (_("\"monitor\" command ``%s'' is too long."), command);
11288
11289 /* Encode the actual command. */
11290 bin2hex ((const gdb_byte *) command, p, strlen (command));
11291
11292 if (putpkt (rs->buf) < 0)
11293 error (_("Communication problem with target."));
11294
11295 /* get/display the response */
11296 while (1)
11297 {
11298 char *buf;
11299
11300 /* XXX - see also remote_get_noisy_reply(). */
11301 QUIT; /* Allow user to bail out with ^C. */
11302 rs->buf[0] = '\0';
11303 if (getpkt_sane (&rs->buf, 0) == -1)
11304 {
11305 /* Timeout. Continue to (try to) read responses.
11306 This is better than stopping with an error, assuming the stub
11307 is still executing the (long) monitor command.
11308 If needed, the user can interrupt gdb using C-c, obtaining
11309 an effect similar to stop on timeout. */
11310 continue;
11311 }
11312 buf = rs->buf.data ();
11313 if (buf[0] == '\0')
11314 error (_("Target does not support this command."));
11315 if (buf[0] == 'O' && buf[1] != 'K')
11316 {
11317 remote_console_output (buf + 1); /* 'O' message from stub. */
11318 continue;
11319 }
11320 if (strcmp (buf, "OK") == 0)
11321 break;
11322 if (strlen (buf) == 3 && buf[0] == 'E'
11323 && isdigit (buf[1]) && isdigit (buf[2]))
11324 {
11325 error (_("Protocol error with Rcmd"));
11326 }
11327 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11328 {
11329 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11330
11331 fputc_unfiltered (c, outbuf);
11332 }
11333 break;
11334 }
11335 }
11336
11337 std::vector<mem_region>
11338 remote_target::memory_map ()
11339 {
11340 std::vector<mem_region> result;
11341 gdb::optional<gdb::char_vector> text
11342 = target_read_stralloc (current_top_target (), TARGET_OBJECT_MEMORY_MAP, NULL);
11343
11344 if (text)
11345 result = parse_memory_map (text->data ());
11346
11347 return result;
11348 }
11349
11350 static void
11351 packet_command (const char *args, int from_tty)
11352 {
11353 remote_target *remote = get_current_remote_target ();
11354
11355 if (remote == nullptr)
11356 error (_("command can only be used with remote target"));
11357
11358 remote->packet_command (args, from_tty);
11359 }
11360
11361 void
11362 remote_target::packet_command (const char *args, int from_tty)
11363 {
11364 if (!args)
11365 error (_("remote-packet command requires packet text as argument"));
11366
11367 puts_filtered ("sending: ");
11368 print_packet (args);
11369 puts_filtered ("\n");
11370 putpkt (args);
11371
11372 remote_state *rs = get_remote_state ();
11373
11374 getpkt (&rs->buf, 0);
11375 puts_filtered ("received: ");
11376 print_packet (rs->buf.data ());
11377 puts_filtered ("\n");
11378 }
11379
11380 #if 0
11381 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11382
11383 static void display_thread_info (struct gdb_ext_thread_info *info);
11384
11385 static void threadset_test_cmd (char *cmd, int tty);
11386
11387 static void threadalive_test (char *cmd, int tty);
11388
11389 static void threadlist_test_cmd (char *cmd, int tty);
11390
11391 int get_and_display_threadinfo (threadref *ref);
11392
11393 static void threadinfo_test_cmd (char *cmd, int tty);
11394
11395 static int thread_display_step (threadref *ref, void *context);
11396
11397 static void threadlist_update_test_cmd (char *cmd, int tty);
11398
11399 static void init_remote_threadtests (void);
11400
11401 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11402
11403 static void
11404 threadset_test_cmd (const char *cmd, int tty)
11405 {
11406 int sample_thread = SAMPLE_THREAD;
11407
11408 printf_filtered (_("Remote threadset test\n"));
11409 set_general_thread (sample_thread);
11410 }
11411
11412
11413 static void
11414 threadalive_test (const char *cmd, int tty)
11415 {
11416 int sample_thread = SAMPLE_THREAD;
11417 int pid = inferior_ptid.pid ();
11418 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11419
11420 if (remote_thread_alive (ptid))
11421 printf_filtered ("PASS: Thread alive test\n");
11422 else
11423 printf_filtered ("FAIL: Thread alive test\n");
11424 }
11425
11426 void output_threadid (char *title, threadref *ref);
11427
11428 void
11429 output_threadid (char *title, threadref *ref)
11430 {
11431 char hexid[20];
11432
11433 pack_threadid (&hexid[0], ref); /* Convert thread id into hex. */
11434 hexid[16] = 0;
11435 printf_filtered ("%s %s\n", title, (&hexid[0]));
11436 }
11437
11438 static void
11439 threadlist_test_cmd (const char *cmd, int tty)
11440 {
11441 int startflag = 1;
11442 threadref nextthread;
11443 int done, result_count;
11444 threadref threadlist[3];
11445
11446 printf_filtered ("Remote Threadlist test\n");
11447 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11448 &result_count, &threadlist[0]))
11449 printf_filtered ("FAIL: threadlist test\n");
11450 else
11451 {
11452 threadref *scan = threadlist;
11453 threadref *limit = scan + result_count;
11454
11455 while (scan < limit)
11456 output_threadid (" thread ", scan++);
11457 }
11458 }
11459
11460 void
11461 display_thread_info (struct gdb_ext_thread_info *info)
11462 {
11463 output_threadid ("Threadid: ", &info->threadid);
11464 printf_filtered ("Name: %s\n ", info->shortname);
11465 printf_filtered ("State: %s\n", info->display);
11466 printf_filtered ("other: %s\n\n", info->more_display);
11467 }
11468
11469 int
11470 get_and_display_threadinfo (threadref *ref)
11471 {
11472 int result;
11473 int set;
11474 struct gdb_ext_thread_info threadinfo;
11475
11476 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11477 | TAG_MOREDISPLAY | TAG_DISPLAY;
11478 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11479 display_thread_info (&threadinfo);
11480 return result;
11481 }
11482
11483 static void
11484 threadinfo_test_cmd (const char *cmd, int tty)
11485 {
11486 int athread = SAMPLE_THREAD;
11487 threadref thread;
11488 int set;
11489
11490 int_to_threadref (&thread, athread);
11491 printf_filtered ("Remote Threadinfo test\n");
11492 if (!get_and_display_threadinfo (&thread))
11493 printf_filtered ("FAIL cannot get thread info\n");
11494 }
11495
11496 static int
11497 thread_display_step (threadref *ref, void *context)
11498 {
11499 /* output_threadid(" threadstep ",ref); *//* simple test */
11500 return get_and_display_threadinfo (ref);
11501 }
11502
11503 static void
11504 threadlist_update_test_cmd (const char *cmd, int tty)
11505 {
11506 printf_filtered ("Remote Threadlist update test\n");
11507 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11508 }
11509
11510 static void
11511 init_remote_threadtests (void)
11512 {
11513 add_com ("tlist", class_obscure, threadlist_test_cmd,
11514 _("Fetch and print the remote list of "
11515 "thread identifiers, one pkt only."));
11516 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11517 _("Fetch and display info about one thread."));
11518 add_com ("tset", class_obscure, threadset_test_cmd,
11519 _("Test setting to a different thread."));
11520 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11521 _("Iterate through updating all remote thread info."));
11522 add_com ("talive", class_obscure, threadalive_test,
11523 _("Remote thread alive test."));
11524 }
11525
11526 #endif /* 0 */
11527
11528 /* Convert a thread ID to a string. */
11529
11530 std::string
11531 remote_target::pid_to_str (ptid_t ptid)
11532 {
11533 struct remote_state *rs = get_remote_state ();
11534
11535 if (ptid == null_ptid)
11536 return normal_pid_to_str (ptid);
11537 else if (ptid.is_pid ())
11538 {
11539 /* Printing an inferior target id. */
11540
11541 /* When multi-process extensions are off, there's no way in the
11542 remote protocol to know the remote process id, if there's any
11543 at all. There's one exception --- when we're connected with
11544 target extended-remote, and we manually attached to a process
11545 with "attach PID". We don't record anywhere a flag that
11546 allows us to distinguish that case from the case of
11547 connecting with extended-remote and the stub already being
11548 attached to a process, and reporting yes to qAttached, hence
11549 no smart special casing here. */
11550 if (!remote_multi_process_p (rs))
11551 return "Remote target";
11552
11553 return normal_pid_to_str (ptid);
11554 }
11555 else
11556 {
11557 if (magic_null_ptid == ptid)
11558 return "Thread <main>";
11559 else if (remote_multi_process_p (rs))
11560 if (ptid.lwp () == 0)
11561 return normal_pid_to_str (ptid);
11562 else
11563 return string_printf ("Thread %d.%ld",
11564 ptid.pid (), ptid.lwp ());
11565 else
11566 return string_printf ("Thread %ld", ptid.lwp ());
11567 }
11568 }
11569
11570 /* Get the address of the thread local variable in OBJFILE which is
11571 stored at OFFSET within the thread local storage for thread PTID. */
11572
11573 CORE_ADDR
11574 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11575 CORE_ADDR offset)
11576 {
11577 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11578 {
11579 struct remote_state *rs = get_remote_state ();
11580 char *p = rs->buf.data ();
11581 char *endp = p + get_remote_packet_size ();
11582 enum packet_result result;
11583
11584 strcpy (p, "qGetTLSAddr:");
11585 p += strlen (p);
11586 p = write_ptid (p, endp, ptid);
11587 *p++ = ',';
11588 p += hexnumstr (p, offset);
11589 *p++ = ',';
11590 p += hexnumstr (p, lm);
11591 *p++ = '\0';
11592
11593 putpkt (rs->buf);
11594 getpkt (&rs->buf, 0);
11595 result = packet_ok (rs->buf,
11596 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11597 if (result == PACKET_OK)
11598 {
11599 ULONGEST addr;
11600
11601 unpack_varlen_hex (rs->buf.data (), &addr);
11602 return addr;
11603 }
11604 else if (result == PACKET_UNKNOWN)
11605 throw_error (TLS_GENERIC_ERROR,
11606 _("Remote target doesn't support qGetTLSAddr packet"));
11607 else
11608 throw_error (TLS_GENERIC_ERROR,
11609 _("Remote target failed to process qGetTLSAddr request"));
11610 }
11611 else
11612 throw_error (TLS_GENERIC_ERROR,
11613 _("TLS not supported or disabled on this target"));
11614 /* Not reached. */
11615 return 0;
11616 }
11617
11618 /* Provide thread local base, i.e. Thread Information Block address.
11619 Returns 1 if ptid is found and thread_local_base is non zero. */
11620
11621 bool
11622 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11623 {
11624 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11625 {
11626 struct remote_state *rs = get_remote_state ();
11627 char *p = rs->buf.data ();
11628 char *endp = p + get_remote_packet_size ();
11629 enum packet_result result;
11630
11631 strcpy (p, "qGetTIBAddr:");
11632 p += strlen (p);
11633 p = write_ptid (p, endp, ptid);
11634 *p++ = '\0';
11635
11636 putpkt (rs->buf);
11637 getpkt (&rs->buf, 0);
11638 result = packet_ok (rs->buf,
11639 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11640 if (result == PACKET_OK)
11641 {
11642 ULONGEST val;
11643 unpack_varlen_hex (rs->buf.data (), &val);
11644 if (addr)
11645 *addr = (CORE_ADDR) val;
11646 return true;
11647 }
11648 else if (result == PACKET_UNKNOWN)
11649 error (_("Remote target doesn't support qGetTIBAddr packet"));
11650 else
11651 error (_("Remote target failed to process qGetTIBAddr request"));
11652 }
11653 else
11654 error (_("qGetTIBAddr not supported or disabled on this target"));
11655 /* Not reached. */
11656 return false;
11657 }
11658
11659 /* Support for inferring a target description based on the current
11660 architecture and the size of a 'g' packet. While the 'g' packet
11661 can have any size (since optional registers can be left off the
11662 end), some sizes are easily recognizable given knowledge of the
11663 approximate architecture. */
11664
11665 struct remote_g_packet_guess
11666 {
11667 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11668 : bytes (bytes_),
11669 tdesc (tdesc_)
11670 {
11671 }
11672
11673 int bytes;
11674 const struct target_desc *tdesc;
11675 };
11676
11677 struct remote_g_packet_data : public allocate_on_obstack
11678 {
11679 std::vector<remote_g_packet_guess> guesses;
11680 };
11681
11682 static struct gdbarch_data *remote_g_packet_data_handle;
11683
11684 static void *
11685 remote_g_packet_data_init (struct obstack *obstack)
11686 {
11687 return new (obstack) remote_g_packet_data;
11688 }
11689
11690 void
11691 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11692 const struct target_desc *tdesc)
11693 {
11694 struct remote_g_packet_data *data
11695 = ((struct remote_g_packet_data *)
11696 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11697
11698 gdb_assert (tdesc != NULL);
11699
11700 for (const remote_g_packet_guess &guess : data->guesses)
11701 if (guess.bytes == bytes)
11702 internal_error (__FILE__, __LINE__,
11703 _("Duplicate g packet description added for size %d"),
11704 bytes);
11705
11706 data->guesses.emplace_back (bytes, tdesc);
11707 }
11708
11709 /* Return true if remote_read_description would do anything on this target
11710 and architecture, false otherwise. */
11711
11712 static bool
11713 remote_read_description_p (struct target_ops *target)
11714 {
11715 struct remote_g_packet_data *data
11716 = ((struct remote_g_packet_data *)
11717 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11718
11719 return !data->guesses.empty ();
11720 }
11721
11722 const struct target_desc *
11723 remote_target::read_description ()
11724 {
11725 struct remote_g_packet_data *data
11726 = ((struct remote_g_packet_data *)
11727 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11728
11729 /* Do not try this during initial connection, when we do not know
11730 whether there is a running but stopped thread. */
11731 if (!target_has_execution () || inferior_ptid == null_ptid)
11732 return beneath ()->read_description ();
11733
11734 if (!data->guesses.empty ())
11735 {
11736 int bytes = send_g_packet ();
11737
11738 for (const remote_g_packet_guess &guess : data->guesses)
11739 if (guess.bytes == bytes)
11740 return guess.tdesc;
11741
11742 /* We discard the g packet. A minor optimization would be to
11743 hold on to it, and fill the register cache once we have selected
11744 an architecture, but it's too tricky to do safely. */
11745 }
11746
11747 return beneath ()->read_description ();
11748 }
11749
11750 /* Remote file transfer support. This is host-initiated I/O, not
11751 target-initiated; for target-initiated, see remote-fileio.c. */
11752
11753 /* If *LEFT is at least the length of STRING, copy STRING to
11754 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11755 decrease *LEFT. Otherwise raise an error. */
11756
11757 static void
11758 remote_buffer_add_string (char **buffer, int *left, const char *string)
11759 {
11760 int len = strlen (string);
11761
11762 if (len > *left)
11763 error (_("Packet too long for target."));
11764
11765 memcpy (*buffer, string, len);
11766 *buffer += len;
11767 *left -= len;
11768
11769 /* NUL-terminate the buffer as a convenience, if there is
11770 room. */
11771 if (*left)
11772 **buffer = '\0';
11773 }
11774
11775 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11776 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11777 decrease *LEFT. Otherwise raise an error. */
11778
11779 static void
11780 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11781 int len)
11782 {
11783 if (2 * len > *left)
11784 error (_("Packet too long for target."));
11785
11786 bin2hex (bytes, *buffer, len);
11787 *buffer += 2 * len;
11788 *left -= 2 * len;
11789
11790 /* NUL-terminate the buffer as a convenience, if there is
11791 room. */
11792 if (*left)
11793 **buffer = '\0';
11794 }
11795
11796 /* If *LEFT is large enough, convert VALUE to hex and add it to
11797 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11798 decrease *LEFT. Otherwise raise an error. */
11799
11800 static void
11801 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11802 {
11803 int len = hexnumlen (value);
11804
11805 if (len > *left)
11806 error (_("Packet too long for target."));
11807
11808 hexnumstr (*buffer, value);
11809 *buffer += len;
11810 *left -= len;
11811
11812 /* NUL-terminate the buffer as a convenience, if there is
11813 room. */
11814 if (*left)
11815 **buffer = '\0';
11816 }
11817
11818 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11819 value, *REMOTE_ERRNO to the remote error number or zero if none
11820 was included, and *ATTACHMENT to point to the start of the annex
11821 if any. The length of the packet isn't needed here; there may
11822 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11823
11824 Return 0 if the packet could be parsed, -1 if it could not. If
11825 -1 is returned, the other variables may not be initialized. */
11826
11827 static int
11828 remote_hostio_parse_result (char *buffer, int *retcode,
11829 int *remote_errno, char **attachment)
11830 {
11831 char *p, *p2;
11832
11833 *remote_errno = 0;
11834 *attachment = NULL;
11835
11836 if (buffer[0] != 'F')
11837 return -1;
11838
11839 errno = 0;
11840 *retcode = strtol (&buffer[1], &p, 16);
11841 if (errno != 0 || p == &buffer[1])
11842 return -1;
11843
11844 /* Check for ",errno". */
11845 if (*p == ',')
11846 {
11847 errno = 0;
11848 *remote_errno = strtol (p + 1, &p2, 16);
11849 if (errno != 0 || p + 1 == p2)
11850 return -1;
11851 p = p2;
11852 }
11853
11854 /* Check for ";attachment". If there is no attachment, the
11855 packet should end here. */
11856 if (*p == ';')
11857 {
11858 *attachment = p + 1;
11859 return 0;
11860 }
11861 else if (*p == '\0')
11862 return 0;
11863 else
11864 return -1;
11865 }
11866
11867 /* Send a prepared I/O packet to the target and read its response.
11868 The prepared packet is in the global RS->BUF before this function
11869 is called, and the answer is there when we return.
11870
11871 COMMAND_BYTES is the length of the request to send, which may include
11872 binary data. WHICH_PACKET is the packet configuration to check
11873 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11874 is set to the error number and -1 is returned. Otherwise the value
11875 returned by the function is returned.
11876
11877 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11878 attachment is expected; an error will be reported if there's a
11879 mismatch. If one is found, *ATTACHMENT will be set to point into
11880 the packet buffer and *ATTACHMENT_LEN will be set to the
11881 attachment's length. */
11882
11883 int
11884 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
11885 int *remote_errno, char **attachment,
11886 int *attachment_len)
11887 {
11888 struct remote_state *rs = get_remote_state ();
11889 int ret, bytes_read;
11890 char *attachment_tmp;
11891
11892 if (packet_support (which_packet) == PACKET_DISABLE)
11893 {
11894 *remote_errno = FILEIO_ENOSYS;
11895 return -1;
11896 }
11897
11898 putpkt_binary (rs->buf.data (), command_bytes);
11899 bytes_read = getpkt_sane (&rs->buf, 0);
11900
11901 /* If it timed out, something is wrong. Don't try to parse the
11902 buffer. */
11903 if (bytes_read < 0)
11904 {
11905 *remote_errno = FILEIO_EINVAL;
11906 return -1;
11907 }
11908
11909 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11910 {
11911 case PACKET_ERROR:
11912 *remote_errno = FILEIO_EINVAL;
11913 return -1;
11914 case PACKET_UNKNOWN:
11915 *remote_errno = FILEIO_ENOSYS;
11916 return -1;
11917 case PACKET_OK:
11918 break;
11919 }
11920
11921 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
11922 &attachment_tmp))
11923 {
11924 *remote_errno = FILEIO_EINVAL;
11925 return -1;
11926 }
11927
11928 /* Make sure we saw an attachment if and only if we expected one. */
11929 if ((attachment_tmp == NULL && attachment != NULL)
11930 || (attachment_tmp != NULL && attachment == NULL))
11931 {
11932 *remote_errno = FILEIO_EINVAL;
11933 return -1;
11934 }
11935
11936 /* If an attachment was found, it must point into the packet buffer;
11937 work out how many bytes there were. */
11938 if (attachment_tmp != NULL)
11939 {
11940 *attachment = attachment_tmp;
11941 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
11942 }
11943
11944 return ret;
11945 }
11946
11947 /* See declaration.h. */
11948
11949 void
11950 readahead_cache::invalidate ()
11951 {
11952 this->fd = -1;
11953 }
11954
11955 /* See declaration.h. */
11956
11957 void
11958 readahead_cache::invalidate_fd (int fd)
11959 {
11960 if (this->fd == fd)
11961 this->fd = -1;
11962 }
11963
11964 /* Set the filesystem remote_hostio functions that take FILENAME
11965 arguments will use. Return 0 on success, or -1 if an error
11966 occurs (and set *REMOTE_ERRNO). */
11967
11968 int
11969 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
11970 int *remote_errno)
11971 {
11972 struct remote_state *rs = get_remote_state ();
11973 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11974 char *p = rs->buf.data ();
11975 int left = get_remote_packet_size () - 1;
11976 char arg[9];
11977 int ret;
11978
11979 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11980 return 0;
11981
11982 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11983 return 0;
11984
11985 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11986
11987 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11988 remote_buffer_add_string (&p, &left, arg);
11989
11990 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
11991 remote_errno, NULL, NULL);
11992
11993 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11994 return 0;
11995
11996 if (ret == 0)
11997 rs->fs_pid = required_pid;
11998
11999 return ret;
12000 }
12001
12002 /* Implementation of to_fileio_open. */
12003
12004 int
12005 remote_target::remote_hostio_open (inferior *inf, const char *filename,
12006 int flags, int mode, int warn_if_slow,
12007 int *remote_errno)
12008 {
12009 struct remote_state *rs = get_remote_state ();
12010 char *p = rs->buf.data ();
12011 int left = get_remote_packet_size () - 1;
12012
12013 if (warn_if_slow)
12014 {
12015 static int warning_issued = 0;
12016
12017 printf_unfiltered (_("Reading %s from remote target...\n"),
12018 filename);
12019
12020 if (!warning_issued)
12021 {
12022 warning (_("File transfers from remote targets can be slow."
12023 " Use \"set sysroot\" to access files locally"
12024 " instead."));
12025 warning_issued = 1;
12026 }
12027 }
12028
12029 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12030 return -1;
12031
12032 remote_buffer_add_string (&p, &left, "vFile:open:");
12033
12034 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12035 strlen (filename));
12036 remote_buffer_add_string (&p, &left, ",");
12037
12038 remote_buffer_add_int (&p, &left, flags);
12039 remote_buffer_add_string (&p, &left, ",");
12040
12041 remote_buffer_add_int (&p, &left, mode);
12042
12043 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
12044 remote_errno, NULL, NULL);
12045 }
12046
12047 int
12048 remote_target::fileio_open (struct inferior *inf, const char *filename,
12049 int flags, int mode, int warn_if_slow,
12050 int *remote_errno)
12051 {
12052 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
12053 remote_errno);
12054 }
12055
12056 /* Implementation of to_fileio_pwrite. */
12057
12058 int
12059 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
12060 ULONGEST offset, int *remote_errno)
12061 {
12062 struct remote_state *rs = get_remote_state ();
12063 char *p = rs->buf.data ();
12064 int left = get_remote_packet_size ();
12065 int out_len;
12066
12067 rs->readahead_cache.invalidate_fd (fd);
12068
12069 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
12070
12071 remote_buffer_add_int (&p, &left, fd);
12072 remote_buffer_add_string (&p, &left, ",");
12073
12074 remote_buffer_add_int (&p, &left, offset);
12075 remote_buffer_add_string (&p, &left, ",");
12076
12077 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
12078 (get_remote_packet_size ()
12079 - (p - rs->buf.data ())));
12080
12081 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
12082 remote_errno, NULL, NULL);
12083 }
12084
12085 int
12086 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12087 ULONGEST offset, int *remote_errno)
12088 {
12089 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12090 }
12091
12092 /* Helper for the implementation of to_fileio_pread. Read the file
12093 from the remote side with vFile:pread. */
12094
12095 int
12096 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12097 ULONGEST offset, int *remote_errno)
12098 {
12099 struct remote_state *rs = get_remote_state ();
12100 char *p = rs->buf.data ();
12101 char *attachment;
12102 int left = get_remote_packet_size ();
12103 int ret, attachment_len;
12104 int read_len;
12105
12106 remote_buffer_add_string (&p, &left, "vFile:pread:");
12107
12108 remote_buffer_add_int (&p, &left, fd);
12109 remote_buffer_add_string (&p, &left, ",");
12110
12111 remote_buffer_add_int (&p, &left, len);
12112 remote_buffer_add_string (&p, &left, ",");
12113
12114 remote_buffer_add_int (&p, &left, offset);
12115
12116 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
12117 remote_errno, &attachment,
12118 &attachment_len);
12119
12120 if (ret < 0)
12121 return ret;
12122
12123 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12124 read_buf, len);
12125 if (read_len != ret)
12126 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12127
12128 return ret;
12129 }
12130
12131 /* See declaration.h. */
12132
12133 int
12134 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12135 ULONGEST offset)
12136 {
12137 if (this->fd == fd
12138 && this->offset <= offset
12139 && offset < this->offset + this->bufsize)
12140 {
12141 ULONGEST max = this->offset + this->bufsize;
12142
12143 if (offset + len > max)
12144 len = max - offset;
12145
12146 memcpy (read_buf, this->buf + offset - this->offset, len);
12147 return len;
12148 }
12149
12150 return 0;
12151 }
12152
12153 /* Implementation of to_fileio_pread. */
12154
12155 int
12156 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12157 ULONGEST offset, int *remote_errno)
12158 {
12159 int ret;
12160 struct remote_state *rs = get_remote_state ();
12161 readahead_cache *cache = &rs->readahead_cache;
12162
12163 ret = cache->pread (fd, read_buf, len, offset);
12164 if (ret > 0)
12165 {
12166 cache->hit_count++;
12167
12168 if (remote_debug)
12169 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
12170 pulongest (cache->hit_count));
12171 return ret;
12172 }
12173
12174 cache->miss_count++;
12175 if (remote_debug)
12176 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
12177 pulongest (cache->miss_count));
12178
12179 cache->fd = fd;
12180 cache->offset = offset;
12181 cache->bufsize = get_remote_packet_size ();
12182 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12183
12184 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12185 cache->offset, remote_errno);
12186 if (ret <= 0)
12187 {
12188 cache->invalidate_fd (fd);
12189 return ret;
12190 }
12191
12192 cache->bufsize = ret;
12193 return cache->pread (fd, read_buf, len, offset);
12194 }
12195
12196 int
12197 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12198 ULONGEST offset, int *remote_errno)
12199 {
12200 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12201 }
12202
12203 /* Implementation of to_fileio_close. */
12204
12205 int
12206 remote_target::remote_hostio_close (int fd, int *remote_errno)
12207 {
12208 struct remote_state *rs = get_remote_state ();
12209 char *p = rs->buf.data ();
12210 int left = get_remote_packet_size () - 1;
12211
12212 rs->readahead_cache.invalidate_fd (fd);
12213
12214 remote_buffer_add_string (&p, &left, "vFile:close:");
12215
12216 remote_buffer_add_int (&p, &left, fd);
12217
12218 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12219 remote_errno, NULL, NULL);
12220 }
12221
12222 int
12223 remote_target::fileio_close (int fd, int *remote_errno)
12224 {
12225 return remote_hostio_close (fd, remote_errno);
12226 }
12227
12228 /* Implementation of to_fileio_unlink. */
12229
12230 int
12231 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12232 int *remote_errno)
12233 {
12234 struct remote_state *rs = get_remote_state ();
12235 char *p = rs->buf.data ();
12236 int left = get_remote_packet_size () - 1;
12237
12238 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12239 return -1;
12240
12241 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12242
12243 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12244 strlen (filename));
12245
12246 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12247 remote_errno, NULL, NULL);
12248 }
12249
12250 int
12251 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12252 int *remote_errno)
12253 {
12254 return remote_hostio_unlink (inf, filename, remote_errno);
12255 }
12256
12257 /* Implementation of to_fileio_readlink. */
12258
12259 gdb::optional<std::string>
12260 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12261 int *remote_errno)
12262 {
12263 struct remote_state *rs = get_remote_state ();
12264 char *p = rs->buf.data ();
12265 char *attachment;
12266 int left = get_remote_packet_size ();
12267 int len, attachment_len;
12268 int read_len;
12269
12270 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12271 return {};
12272
12273 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12274
12275 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12276 strlen (filename));
12277
12278 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12279 remote_errno, &attachment,
12280 &attachment_len);
12281
12282 if (len < 0)
12283 return {};
12284
12285 std::string ret (len, '\0');
12286
12287 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12288 (gdb_byte *) &ret[0], len);
12289 if (read_len != len)
12290 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12291
12292 return ret;
12293 }
12294
12295 /* Implementation of to_fileio_fstat. */
12296
12297 int
12298 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12299 {
12300 struct remote_state *rs = get_remote_state ();
12301 char *p = rs->buf.data ();
12302 int left = get_remote_packet_size ();
12303 int attachment_len, ret;
12304 char *attachment;
12305 struct fio_stat fst;
12306 int read_len;
12307
12308 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12309
12310 remote_buffer_add_int (&p, &left, fd);
12311
12312 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12313 remote_errno, &attachment,
12314 &attachment_len);
12315 if (ret < 0)
12316 {
12317 if (*remote_errno != FILEIO_ENOSYS)
12318 return ret;
12319
12320 /* Strictly we should return -1, ENOSYS here, but when
12321 "set sysroot remote:" was implemented in August 2008
12322 BFD's need for a stat function was sidestepped with
12323 this hack. This was not remedied until March 2015
12324 so we retain the previous behavior to avoid breaking
12325 compatibility.
12326
12327 Note that the memset is a March 2015 addition; older
12328 GDBs set st_size *and nothing else* so the structure
12329 would have garbage in all other fields. This might
12330 break something but retaining the previous behavior
12331 here would be just too wrong. */
12332
12333 memset (st, 0, sizeof (struct stat));
12334 st->st_size = INT_MAX;
12335 return 0;
12336 }
12337
12338 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12339 (gdb_byte *) &fst, sizeof (fst));
12340
12341 if (read_len != ret)
12342 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12343
12344 if (read_len != sizeof (fst))
12345 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12346 read_len, (int) sizeof (fst));
12347
12348 remote_fileio_to_host_stat (&fst, st);
12349
12350 return 0;
12351 }
12352
12353 /* Implementation of to_filesystem_is_local. */
12354
12355 bool
12356 remote_target::filesystem_is_local ()
12357 {
12358 /* Valgrind GDB presents itself as a remote target but works
12359 on the local filesystem: it does not implement remote get
12360 and users are not expected to set a sysroot. To handle
12361 this case we treat the remote filesystem as local if the
12362 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12363 does not support vFile:open. */
12364 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12365 {
12366 enum packet_support ps = packet_support (PACKET_vFile_open);
12367
12368 if (ps == PACKET_SUPPORT_UNKNOWN)
12369 {
12370 int fd, remote_errno;
12371
12372 /* Try opening a file to probe support. The supplied
12373 filename is irrelevant, we only care about whether
12374 the stub recognizes the packet or not. */
12375 fd = remote_hostio_open (NULL, "just probing",
12376 FILEIO_O_RDONLY, 0700, 0,
12377 &remote_errno);
12378
12379 if (fd >= 0)
12380 remote_hostio_close (fd, &remote_errno);
12381
12382 ps = packet_support (PACKET_vFile_open);
12383 }
12384
12385 if (ps == PACKET_DISABLE)
12386 {
12387 static int warning_issued = 0;
12388
12389 if (!warning_issued)
12390 {
12391 warning (_("remote target does not support file"
12392 " transfer, attempting to access files"
12393 " from local filesystem."));
12394 warning_issued = 1;
12395 }
12396
12397 return true;
12398 }
12399 }
12400
12401 return false;
12402 }
12403
12404 static int
12405 remote_fileio_errno_to_host (int errnum)
12406 {
12407 switch (errnum)
12408 {
12409 case FILEIO_EPERM:
12410 return EPERM;
12411 case FILEIO_ENOENT:
12412 return ENOENT;
12413 case FILEIO_EINTR:
12414 return EINTR;
12415 case FILEIO_EIO:
12416 return EIO;
12417 case FILEIO_EBADF:
12418 return EBADF;
12419 case FILEIO_EACCES:
12420 return EACCES;
12421 case FILEIO_EFAULT:
12422 return EFAULT;
12423 case FILEIO_EBUSY:
12424 return EBUSY;
12425 case FILEIO_EEXIST:
12426 return EEXIST;
12427 case FILEIO_ENODEV:
12428 return ENODEV;
12429 case FILEIO_ENOTDIR:
12430 return ENOTDIR;
12431 case FILEIO_EISDIR:
12432 return EISDIR;
12433 case FILEIO_EINVAL:
12434 return EINVAL;
12435 case FILEIO_ENFILE:
12436 return ENFILE;
12437 case FILEIO_EMFILE:
12438 return EMFILE;
12439 case FILEIO_EFBIG:
12440 return EFBIG;
12441 case FILEIO_ENOSPC:
12442 return ENOSPC;
12443 case FILEIO_ESPIPE:
12444 return ESPIPE;
12445 case FILEIO_EROFS:
12446 return EROFS;
12447 case FILEIO_ENOSYS:
12448 return ENOSYS;
12449 case FILEIO_ENAMETOOLONG:
12450 return ENAMETOOLONG;
12451 }
12452 return -1;
12453 }
12454
12455 static char *
12456 remote_hostio_error (int errnum)
12457 {
12458 int host_error = remote_fileio_errno_to_host (errnum);
12459
12460 if (host_error == -1)
12461 error (_("Unknown remote I/O error %d"), errnum);
12462 else
12463 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12464 }
12465
12466 /* A RAII wrapper around a remote file descriptor. */
12467
12468 class scoped_remote_fd
12469 {
12470 public:
12471 scoped_remote_fd (remote_target *remote, int fd)
12472 : m_remote (remote), m_fd (fd)
12473 {
12474 }
12475
12476 ~scoped_remote_fd ()
12477 {
12478 if (m_fd != -1)
12479 {
12480 try
12481 {
12482 int remote_errno;
12483 m_remote->remote_hostio_close (m_fd, &remote_errno);
12484 }
12485 catch (...)
12486 {
12487 /* Swallow exception before it escapes the dtor. If
12488 something goes wrong, likely the connection is gone,
12489 and there's nothing else that can be done. */
12490 }
12491 }
12492 }
12493
12494 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12495
12496 /* Release ownership of the file descriptor, and return it. */
12497 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12498 {
12499 int fd = m_fd;
12500 m_fd = -1;
12501 return fd;
12502 }
12503
12504 /* Return the owned file descriptor. */
12505 int get () const noexcept
12506 {
12507 return m_fd;
12508 }
12509
12510 private:
12511 /* The remote target. */
12512 remote_target *m_remote;
12513
12514 /* The owned remote I/O file descriptor. */
12515 int m_fd;
12516 };
12517
12518 void
12519 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12520 {
12521 remote_target *remote = get_current_remote_target ();
12522
12523 if (remote == nullptr)
12524 error (_("command can only be used with remote target"));
12525
12526 remote->remote_file_put (local_file, remote_file, from_tty);
12527 }
12528
12529 void
12530 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12531 int from_tty)
12532 {
12533 int retcode, remote_errno, bytes, io_size;
12534 int bytes_in_buffer;
12535 int saw_eof;
12536 ULONGEST offset;
12537
12538 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12539 if (file == NULL)
12540 perror_with_name (local_file);
12541
12542 scoped_remote_fd fd
12543 (this, remote_hostio_open (NULL,
12544 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12545 | FILEIO_O_TRUNC),
12546 0700, 0, &remote_errno));
12547 if (fd.get () == -1)
12548 remote_hostio_error (remote_errno);
12549
12550 /* Send up to this many bytes at once. They won't all fit in the
12551 remote packet limit, so we'll transfer slightly fewer. */
12552 io_size = get_remote_packet_size ();
12553 gdb::byte_vector buffer (io_size);
12554
12555 bytes_in_buffer = 0;
12556 saw_eof = 0;
12557 offset = 0;
12558 while (bytes_in_buffer || !saw_eof)
12559 {
12560 if (!saw_eof)
12561 {
12562 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12563 io_size - bytes_in_buffer,
12564 file.get ());
12565 if (bytes == 0)
12566 {
12567 if (ferror (file.get ()))
12568 error (_("Error reading %s."), local_file);
12569 else
12570 {
12571 /* EOF. Unless there is something still in the
12572 buffer from the last iteration, we are done. */
12573 saw_eof = 1;
12574 if (bytes_in_buffer == 0)
12575 break;
12576 }
12577 }
12578 }
12579 else
12580 bytes = 0;
12581
12582 bytes += bytes_in_buffer;
12583 bytes_in_buffer = 0;
12584
12585 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12586 offset, &remote_errno);
12587
12588 if (retcode < 0)
12589 remote_hostio_error (remote_errno);
12590 else if (retcode == 0)
12591 error (_("Remote write of %d bytes returned 0!"), bytes);
12592 else if (retcode < bytes)
12593 {
12594 /* Short write. Save the rest of the read data for the next
12595 write. */
12596 bytes_in_buffer = bytes - retcode;
12597 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12598 }
12599
12600 offset += retcode;
12601 }
12602
12603 if (remote_hostio_close (fd.release (), &remote_errno))
12604 remote_hostio_error (remote_errno);
12605
12606 if (from_tty)
12607 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12608 }
12609
12610 void
12611 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12612 {
12613 remote_target *remote = get_current_remote_target ();
12614
12615 if (remote == nullptr)
12616 error (_("command can only be used with remote target"));
12617
12618 remote->remote_file_get (remote_file, local_file, from_tty);
12619 }
12620
12621 void
12622 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12623 int from_tty)
12624 {
12625 int remote_errno, bytes, io_size;
12626 ULONGEST offset;
12627
12628 scoped_remote_fd fd
12629 (this, remote_hostio_open (NULL,
12630 remote_file, FILEIO_O_RDONLY, 0, 0,
12631 &remote_errno));
12632 if (fd.get () == -1)
12633 remote_hostio_error (remote_errno);
12634
12635 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12636 if (file == NULL)
12637 perror_with_name (local_file);
12638
12639 /* Send up to this many bytes at once. They won't all fit in the
12640 remote packet limit, so we'll transfer slightly fewer. */
12641 io_size = get_remote_packet_size ();
12642 gdb::byte_vector buffer (io_size);
12643
12644 offset = 0;
12645 while (1)
12646 {
12647 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12648 &remote_errno);
12649 if (bytes == 0)
12650 /* Success, but no bytes, means end-of-file. */
12651 break;
12652 if (bytes == -1)
12653 remote_hostio_error (remote_errno);
12654
12655 offset += bytes;
12656
12657 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12658 if (bytes == 0)
12659 perror_with_name (local_file);
12660 }
12661
12662 if (remote_hostio_close (fd.release (), &remote_errno))
12663 remote_hostio_error (remote_errno);
12664
12665 if (from_tty)
12666 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12667 }
12668
12669 void
12670 remote_file_delete (const char *remote_file, int from_tty)
12671 {
12672 remote_target *remote = get_current_remote_target ();
12673
12674 if (remote == nullptr)
12675 error (_("command can only be used with remote target"));
12676
12677 remote->remote_file_delete (remote_file, from_tty);
12678 }
12679
12680 void
12681 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12682 {
12683 int retcode, remote_errno;
12684
12685 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12686 if (retcode == -1)
12687 remote_hostio_error (remote_errno);
12688
12689 if (from_tty)
12690 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12691 }
12692
12693 static void
12694 remote_put_command (const char *args, int from_tty)
12695 {
12696 if (args == NULL)
12697 error_no_arg (_("file to put"));
12698
12699 gdb_argv argv (args);
12700 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12701 error (_("Invalid parameters to remote put"));
12702
12703 remote_file_put (argv[0], argv[1], from_tty);
12704 }
12705
12706 static void
12707 remote_get_command (const char *args, int from_tty)
12708 {
12709 if (args == NULL)
12710 error_no_arg (_("file to get"));
12711
12712 gdb_argv argv (args);
12713 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12714 error (_("Invalid parameters to remote get"));
12715
12716 remote_file_get (argv[0], argv[1], from_tty);
12717 }
12718
12719 static void
12720 remote_delete_command (const char *args, int from_tty)
12721 {
12722 if (args == NULL)
12723 error_no_arg (_("file to delete"));
12724
12725 gdb_argv argv (args);
12726 if (argv[0] == NULL || argv[1] != NULL)
12727 error (_("Invalid parameters to remote delete"));
12728
12729 remote_file_delete (argv[0], from_tty);
12730 }
12731
12732 bool
12733 remote_target::can_execute_reverse ()
12734 {
12735 if (packet_support (PACKET_bs) == PACKET_ENABLE
12736 || packet_support (PACKET_bc) == PACKET_ENABLE)
12737 return true;
12738 else
12739 return false;
12740 }
12741
12742 bool
12743 remote_target::supports_non_stop ()
12744 {
12745 return true;
12746 }
12747
12748 bool
12749 remote_target::supports_disable_randomization ()
12750 {
12751 /* Only supported in extended mode. */
12752 return false;
12753 }
12754
12755 bool
12756 remote_target::supports_multi_process ()
12757 {
12758 struct remote_state *rs = get_remote_state ();
12759
12760 return remote_multi_process_p (rs);
12761 }
12762
12763 static int
12764 remote_supports_cond_tracepoints ()
12765 {
12766 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12767 }
12768
12769 bool
12770 remote_target::supports_evaluation_of_breakpoint_conditions ()
12771 {
12772 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12773 }
12774
12775 static int
12776 remote_supports_fast_tracepoints ()
12777 {
12778 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12779 }
12780
12781 static int
12782 remote_supports_static_tracepoints ()
12783 {
12784 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12785 }
12786
12787 static int
12788 remote_supports_install_in_trace ()
12789 {
12790 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12791 }
12792
12793 bool
12794 remote_target::supports_enable_disable_tracepoint ()
12795 {
12796 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12797 == PACKET_ENABLE);
12798 }
12799
12800 bool
12801 remote_target::supports_string_tracing ()
12802 {
12803 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12804 }
12805
12806 bool
12807 remote_target::can_run_breakpoint_commands ()
12808 {
12809 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12810 }
12811
12812 void
12813 remote_target::trace_init ()
12814 {
12815 struct remote_state *rs = get_remote_state ();
12816
12817 putpkt ("QTinit");
12818 remote_get_noisy_reply ();
12819 if (strcmp (rs->buf.data (), "OK") != 0)
12820 error (_("Target does not support this command."));
12821 }
12822
12823 /* Recursive routine to walk through command list including loops, and
12824 download packets for each command. */
12825
12826 void
12827 remote_target::remote_download_command_source (int num, ULONGEST addr,
12828 struct command_line *cmds)
12829 {
12830 struct remote_state *rs = get_remote_state ();
12831 struct command_line *cmd;
12832
12833 for (cmd = cmds; cmd; cmd = cmd->next)
12834 {
12835 QUIT; /* Allow user to bail out with ^C. */
12836 strcpy (rs->buf.data (), "QTDPsrc:");
12837 encode_source_string (num, addr, "cmd", cmd->line,
12838 rs->buf.data () + strlen (rs->buf.data ()),
12839 rs->buf.size () - strlen (rs->buf.data ()));
12840 putpkt (rs->buf);
12841 remote_get_noisy_reply ();
12842 if (strcmp (rs->buf.data (), "OK"))
12843 warning (_("Target does not support source download."));
12844
12845 if (cmd->control_type == while_control
12846 || cmd->control_type == while_stepping_control)
12847 {
12848 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12849
12850 QUIT; /* Allow user to bail out with ^C. */
12851 strcpy (rs->buf.data (), "QTDPsrc:");
12852 encode_source_string (num, addr, "cmd", "end",
12853 rs->buf.data () + strlen (rs->buf.data ()),
12854 rs->buf.size () - strlen (rs->buf.data ()));
12855 putpkt (rs->buf);
12856 remote_get_noisy_reply ();
12857 if (strcmp (rs->buf.data (), "OK"))
12858 warning (_("Target does not support source download."));
12859 }
12860 }
12861 }
12862
12863 void
12864 remote_target::download_tracepoint (struct bp_location *loc)
12865 {
12866 CORE_ADDR tpaddr;
12867 char addrbuf[40];
12868 std::vector<std::string> tdp_actions;
12869 std::vector<std::string> stepping_actions;
12870 char *pkt;
12871 struct breakpoint *b = loc->owner;
12872 struct tracepoint *t = (struct tracepoint *) b;
12873 struct remote_state *rs = get_remote_state ();
12874 int ret;
12875 const char *err_msg = _("Tracepoint packet too large for target.");
12876 size_t size_left;
12877
12878 /* We use a buffer other than rs->buf because we'll build strings
12879 across multiple statements, and other statements in between could
12880 modify rs->buf. */
12881 gdb::char_vector buf (get_remote_packet_size ());
12882
12883 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12884
12885 tpaddr = loc->address;
12886 strcpy (addrbuf, phex (tpaddr, sizeof (CORE_ADDR)));
12887 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
12888 b->number, addrbuf, /* address */
12889 (b->enable_state == bp_enabled ? 'E' : 'D'),
12890 t->step_count, t->pass_count);
12891
12892 if (ret < 0 || ret >= buf.size ())
12893 error ("%s", err_msg);
12894
12895 /* Fast tracepoints are mostly handled by the target, but we can
12896 tell the target how big of an instruction block should be moved
12897 around. */
12898 if (b->type == bp_fast_tracepoint)
12899 {
12900 /* Only test for support at download time; we may not know
12901 target capabilities at definition time. */
12902 if (remote_supports_fast_tracepoints ())
12903 {
12904 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12905 NULL))
12906 {
12907 size_left = buf.size () - strlen (buf.data ());
12908 ret = snprintf (buf.data () + strlen (buf.data ()),
12909 size_left, ":F%x",
12910 gdb_insn_length (loc->gdbarch, tpaddr));
12911
12912 if (ret < 0 || ret >= size_left)
12913 error ("%s", err_msg);
12914 }
12915 else
12916 /* If it passed validation at definition but fails now,
12917 something is very wrong. */
12918 internal_error (__FILE__, __LINE__,
12919 _("Fast tracepoint not "
12920 "valid during download"));
12921 }
12922 else
12923 /* Fast tracepoints are functionally identical to regular
12924 tracepoints, so don't take lack of support as a reason to
12925 give up on the trace run. */
12926 warning (_("Target does not support fast tracepoints, "
12927 "downloading %d as regular tracepoint"), b->number);
12928 }
12929 else if (b->type == bp_static_tracepoint)
12930 {
12931 /* Only test for support at download time; we may not know
12932 target capabilities at definition time. */
12933 if (remote_supports_static_tracepoints ())
12934 {
12935 struct static_tracepoint_marker marker;
12936
12937 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12938 {
12939 size_left = buf.size () - strlen (buf.data ());
12940 ret = snprintf (buf.data () + strlen (buf.data ()),
12941 size_left, ":S");
12942
12943 if (ret < 0 || ret >= size_left)
12944 error ("%s", err_msg);
12945 }
12946 else
12947 error (_("Static tracepoint not valid during download"));
12948 }
12949 else
12950 /* Fast tracepoints are functionally identical to regular
12951 tracepoints, so don't take lack of support as a reason
12952 to give up on the trace run. */
12953 error (_("Target does not support static tracepoints"));
12954 }
12955 /* If the tracepoint has a conditional, make it into an agent
12956 expression and append to the definition. */
12957 if (loc->cond)
12958 {
12959 /* Only test support at download time, we may not know target
12960 capabilities at definition time. */
12961 if (remote_supports_cond_tracepoints ())
12962 {
12963 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
12964 loc->cond.get ());
12965
12966 size_left = buf.size () - strlen (buf.data ());
12967
12968 ret = snprintf (buf.data () + strlen (buf.data ()),
12969 size_left, ":X%x,", aexpr->len);
12970
12971 if (ret < 0 || ret >= size_left)
12972 error ("%s", err_msg);
12973
12974 size_left = buf.size () - strlen (buf.data ());
12975
12976 /* Two bytes to encode each aexpr byte, plus the terminating
12977 null byte. */
12978 if (aexpr->len * 2 + 1 > size_left)
12979 error ("%s", err_msg);
12980
12981 pkt = buf.data () + strlen (buf.data ());
12982
12983 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12984 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12985 *pkt = '\0';
12986 }
12987 else
12988 warning (_("Target does not support conditional tracepoints, "
12989 "ignoring tp %d cond"), b->number);
12990 }
12991
12992 if (b->commands || *default_collect)
12993 {
12994 size_left = buf.size () - strlen (buf.data ());
12995
12996 ret = snprintf (buf.data () + strlen (buf.data ()),
12997 size_left, "-");
12998
12999 if (ret < 0 || ret >= size_left)
13000 error ("%s", err_msg);
13001 }
13002
13003 putpkt (buf.data ());
13004 remote_get_noisy_reply ();
13005 if (strcmp (rs->buf.data (), "OK"))
13006 error (_("Target does not support tracepoints."));
13007
13008 /* do_single_steps (t); */
13009 for (auto action_it = tdp_actions.begin ();
13010 action_it != tdp_actions.end (); action_it++)
13011 {
13012 QUIT; /* Allow user to bail out with ^C. */
13013
13014 bool has_more = ((action_it + 1) != tdp_actions.end ()
13015 || !stepping_actions.empty ());
13016
13017 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
13018 b->number, addrbuf, /* address */
13019 action_it->c_str (),
13020 has_more ? '-' : 0);
13021
13022 if (ret < 0 || ret >= buf.size ())
13023 error ("%s", err_msg);
13024
13025 putpkt (buf.data ());
13026 remote_get_noisy_reply ();
13027 if (strcmp (rs->buf.data (), "OK"))
13028 error (_("Error on target while setting tracepoints."));
13029 }
13030
13031 for (auto action_it = stepping_actions.begin ();
13032 action_it != stepping_actions.end (); action_it++)
13033 {
13034 QUIT; /* Allow user to bail out with ^C. */
13035
13036 bool is_first = action_it == stepping_actions.begin ();
13037 bool has_more = (action_it + 1) != stepping_actions.end ();
13038
13039 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
13040 b->number, addrbuf, /* address */
13041 is_first ? "S" : "",
13042 action_it->c_str (),
13043 has_more ? "-" : "");
13044
13045 if (ret < 0 || ret >= buf.size ())
13046 error ("%s", err_msg);
13047
13048 putpkt (buf.data ());
13049 remote_get_noisy_reply ();
13050 if (strcmp (rs->buf.data (), "OK"))
13051 error (_("Error on target while setting tracepoints."));
13052 }
13053
13054 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
13055 {
13056 if (b->location != NULL)
13057 {
13058 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13059
13060 if (ret < 0 || ret >= buf.size ())
13061 error ("%s", err_msg);
13062
13063 encode_source_string (b->number, loc->address, "at",
13064 event_location_to_string (b->location.get ()),
13065 buf.data () + strlen (buf.data ()),
13066 buf.size () - strlen (buf.data ()));
13067 putpkt (buf.data ());
13068 remote_get_noisy_reply ();
13069 if (strcmp (rs->buf.data (), "OK"))
13070 warning (_("Target does not support source download."));
13071 }
13072 if (b->cond_string)
13073 {
13074 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13075
13076 if (ret < 0 || ret >= buf.size ())
13077 error ("%s", err_msg);
13078
13079 encode_source_string (b->number, loc->address,
13080 "cond", b->cond_string,
13081 buf.data () + strlen (buf.data ()),
13082 buf.size () - strlen (buf.data ()));
13083 putpkt (buf.data ());
13084 remote_get_noisy_reply ();
13085 if (strcmp (rs->buf.data (), "OK"))
13086 warning (_("Target does not support source download."));
13087 }
13088 remote_download_command_source (b->number, loc->address,
13089 breakpoint_commands (b));
13090 }
13091 }
13092
13093 bool
13094 remote_target::can_download_tracepoint ()
13095 {
13096 struct remote_state *rs = get_remote_state ();
13097 struct trace_status *ts;
13098 int status;
13099
13100 /* Don't try to install tracepoints until we've relocated our
13101 symbols, and fetched and merged the target's tracepoint list with
13102 ours. */
13103 if (rs->starting_up)
13104 return false;
13105
13106 ts = current_trace_status ();
13107 status = get_trace_status (ts);
13108
13109 if (status == -1 || !ts->running_known || !ts->running)
13110 return false;
13111
13112 /* If we are in a tracing experiment, but remote stub doesn't support
13113 installing tracepoint in trace, we have to return. */
13114 if (!remote_supports_install_in_trace ())
13115 return false;
13116
13117 return true;
13118 }
13119
13120
13121 void
13122 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13123 {
13124 struct remote_state *rs = get_remote_state ();
13125 char *p;
13126
13127 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13128 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13129 tsv.builtin);
13130 p = rs->buf.data () + strlen (rs->buf.data ());
13131 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13132 >= get_remote_packet_size ())
13133 error (_("Trace state variable name too long for tsv definition packet"));
13134 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13135 *p++ = '\0';
13136 putpkt (rs->buf);
13137 remote_get_noisy_reply ();
13138 if (rs->buf[0] == '\0')
13139 error (_("Target does not support this command."));
13140 if (strcmp (rs->buf.data (), "OK") != 0)
13141 error (_("Error on target while downloading trace state variable."));
13142 }
13143
13144 void
13145 remote_target::enable_tracepoint (struct bp_location *location)
13146 {
13147 struct remote_state *rs = get_remote_state ();
13148
13149 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13150 location->owner->number,
13151 phex (location->address, sizeof (CORE_ADDR)));
13152 putpkt (rs->buf);
13153 remote_get_noisy_reply ();
13154 if (rs->buf[0] == '\0')
13155 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13156 if (strcmp (rs->buf.data (), "OK") != 0)
13157 error (_("Error on target while enabling tracepoint."));
13158 }
13159
13160 void
13161 remote_target::disable_tracepoint (struct bp_location *location)
13162 {
13163 struct remote_state *rs = get_remote_state ();
13164
13165 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13166 location->owner->number,
13167 phex (location->address, sizeof (CORE_ADDR)));
13168 putpkt (rs->buf);
13169 remote_get_noisy_reply ();
13170 if (rs->buf[0] == '\0')
13171 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13172 if (strcmp (rs->buf.data (), "OK") != 0)
13173 error (_("Error on target while disabling tracepoint."));
13174 }
13175
13176 void
13177 remote_target::trace_set_readonly_regions ()
13178 {
13179 asection *s;
13180 bfd_size_type size;
13181 bfd_vma vma;
13182 int anysecs = 0;
13183 int offset = 0;
13184
13185 if (!current_program_space->exec_bfd ())
13186 return; /* No information to give. */
13187
13188 struct remote_state *rs = get_remote_state ();
13189
13190 strcpy (rs->buf.data (), "QTro");
13191 offset = strlen (rs->buf.data ());
13192 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
13193 {
13194 char tmp1[40], tmp2[40];
13195 int sec_length;
13196
13197 if ((s->flags & SEC_LOAD) == 0 ||
13198 /* (s->flags & SEC_CODE) == 0 || */
13199 (s->flags & SEC_READONLY) == 0)
13200 continue;
13201
13202 anysecs = 1;
13203 vma = bfd_section_vma (s);
13204 size = bfd_section_size (s);
13205 sprintf_vma (tmp1, vma);
13206 sprintf_vma (tmp2, vma + size);
13207 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13208 if (offset + sec_length + 1 > rs->buf.size ())
13209 {
13210 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13211 warning (_("\
13212 Too many sections for read-only sections definition packet."));
13213 break;
13214 }
13215 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13216 tmp1, tmp2);
13217 offset += sec_length;
13218 }
13219 if (anysecs)
13220 {
13221 putpkt (rs->buf);
13222 getpkt (&rs->buf, 0);
13223 }
13224 }
13225
13226 void
13227 remote_target::trace_start ()
13228 {
13229 struct remote_state *rs = get_remote_state ();
13230
13231 putpkt ("QTStart");
13232 remote_get_noisy_reply ();
13233 if (rs->buf[0] == '\0')
13234 error (_("Target does not support this command."));
13235 if (strcmp (rs->buf.data (), "OK") != 0)
13236 error (_("Bogus reply from target: %s"), rs->buf.data ());
13237 }
13238
13239 int
13240 remote_target::get_trace_status (struct trace_status *ts)
13241 {
13242 /* Initialize it just to avoid a GCC false warning. */
13243 char *p = NULL;
13244 enum packet_result result;
13245 struct remote_state *rs = get_remote_state ();
13246
13247 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13248 return -1;
13249
13250 /* FIXME we need to get register block size some other way. */
13251 trace_regblock_size
13252 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13253
13254 putpkt ("qTStatus");
13255
13256 try
13257 {
13258 p = remote_get_noisy_reply ();
13259 }
13260 catch (const gdb_exception_error &ex)
13261 {
13262 if (ex.error != TARGET_CLOSE_ERROR)
13263 {
13264 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13265 return -1;
13266 }
13267 throw;
13268 }
13269
13270 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13271
13272 /* If the remote target doesn't do tracing, flag it. */
13273 if (result == PACKET_UNKNOWN)
13274 return -1;
13275
13276 /* We're working with a live target. */
13277 ts->filename = NULL;
13278
13279 if (*p++ != 'T')
13280 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13281
13282 /* Function 'parse_trace_status' sets default value of each field of
13283 'ts' at first, so we don't have to do it here. */
13284 parse_trace_status (p, ts);
13285
13286 return ts->running;
13287 }
13288
13289 void
13290 remote_target::get_tracepoint_status (struct breakpoint *bp,
13291 struct uploaded_tp *utp)
13292 {
13293 struct remote_state *rs = get_remote_state ();
13294 char *reply;
13295 struct bp_location *loc;
13296 struct tracepoint *tp = (struct tracepoint *) bp;
13297 size_t size = get_remote_packet_size ();
13298
13299 if (tp)
13300 {
13301 tp->hit_count = 0;
13302 tp->traceframe_usage = 0;
13303 for (loc = tp->loc; loc; loc = loc->next)
13304 {
13305 /* If the tracepoint was never downloaded, don't go asking for
13306 any status. */
13307 if (tp->number_on_target == 0)
13308 continue;
13309 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13310 phex_nz (loc->address, 0));
13311 putpkt (rs->buf);
13312 reply = remote_get_noisy_reply ();
13313 if (reply && *reply)
13314 {
13315 if (*reply == 'V')
13316 parse_tracepoint_status (reply + 1, bp, utp);
13317 }
13318 }
13319 }
13320 else if (utp)
13321 {
13322 utp->hit_count = 0;
13323 utp->traceframe_usage = 0;
13324 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13325 phex_nz (utp->addr, 0));
13326 putpkt (rs->buf);
13327 reply = remote_get_noisy_reply ();
13328 if (reply && *reply)
13329 {
13330 if (*reply == 'V')
13331 parse_tracepoint_status (reply + 1, bp, utp);
13332 }
13333 }
13334 }
13335
13336 void
13337 remote_target::trace_stop ()
13338 {
13339 struct remote_state *rs = get_remote_state ();
13340
13341 putpkt ("QTStop");
13342 remote_get_noisy_reply ();
13343 if (rs->buf[0] == '\0')
13344 error (_("Target does not support this command."));
13345 if (strcmp (rs->buf.data (), "OK") != 0)
13346 error (_("Bogus reply from target: %s"), rs->buf.data ());
13347 }
13348
13349 int
13350 remote_target::trace_find (enum trace_find_type type, int num,
13351 CORE_ADDR addr1, CORE_ADDR addr2,
13352 int *tpp)
13353 {
13354 struct remote_state *rs = get_remote_state ();
13355 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13356 char *p, *reply;
13357 int target_frameno = -1, target_tracept = -1;
13358
13359 /* Lookups other than by absolute frame number depend on the current
13360 trace selected, so make sure it is correct on the remote end
13361 first. */
13362 if (type != tfind_number)
13363 set_remote_traceframe ();
13364
13365 p = rs->buf.data ();
13366 strcpy (p, "QTFrame:");
13367 p = strchr (p, '\0');
13368 switch (type)
13369 {
13370 case tfind_number:
13371 xsnprintf (p, endbuf - p, "%x", num);
13372 break;
13373 case tfind_pc:
13374 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13375 break;
13376 case tfind_tp:
13377 xsnprintf (p, endbuf - p, "tdp:%x", num);
13378 break;
13379 case tfind_range:
13380 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13381 phex_nz (addr2, 0));
13382 break;
13383 case tfind_outside:
13384 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13385 phex_nz (addr2, 0));
13386 break;
13387 default:
13388 error (_("Unknown trace find type %d"), type);
13389 }
13390
13391 putpkt (rs->buf);
13392 reply = remote_get_noisy_reply ();
13393 if (*reply == '\0')
13394 error (_("Target does not support this command."));
13395
13396 while (reply && *reply)
13397 switch (*reply)
13398 {
13399 case 'F':
13400 p = ++reply;
13401 target_frameno = (int) strtol (p, &reply, 16);
13402 if (reply == p)
13403 error (_("Unable to parse trace frame number"));
13404 /* Don't update our remote traceframe number cache on failure
13405 to select a remote traceframe. */
13406 if (target_frameno == -1)
13407 return -1;
13408 break;
13409 case 'T':
13410 p = ++reply;
13411 target_tracept = (int) strtol (p, &reply, 16);
13412 if (reply == p)
13413 error (_("Unable to parse tracepoint number"));
13414 break;
13415 case 'O': /* "OK"? */
13416 if (reply[1] == 'K' && reply[2] == '\0')
13417 reply += 2;
13418 else
13419 error (_("Bogus reply from target: %s"), reply);
13420 break;
13421 default:
13422 error (_("Bogus reply from target: %s"), reply);
13423 }
13424 if (tpp)
13425 *tpp = target_tracept;
13426
13427 rs->remote_traceframe_number = target_frameno;
13428 return target_frameno;
13429 }
13430
13431 bool
13432 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13433 {
13434 struct remote_state *rs = get_remote_state ();
13435 char *reply;
13436 ULONGEST uval;
13437
13438 set_remote_traceframe ();
13439
13440 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13441 putpkt (rs->buf);
13442 reply = remote_get_noisy_reply ();
13443 if (reply && *reply)
13444 {
13445 if (*reply == 'V')
13446 {
13447 unpack_varlen_hex (reply + 1, &uval);
13448 *val = (LONGEST) uval;
13449 return true;
13450 }
13451 }
13452 return false;
13453 }
13454
13455 int
13456 remote_target::save_trace_data (const char *filename)
13457 {
13458 struct remote_state *rs = get_remote_state ();
13459 char *p, *reply;
13460
13461 p = rs->buf.data ();
13462 strcpy (p, "QTSave:");
13463 p += strlen (p);
13464 if ((p - rs->buf.data ()) + strlen (filename) * 2
13465 >= get_remote_packet_size ())
13466 error (_("Remote file name too long for trace save packet"));
13467 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13468 *p++ = '\0';
13469 putpkt (rs->buf);
13470 reply = remote_get_noisy_reply ();
13471 if (*reply == '\0')
13472 error (_("Target does not support this command."));
13473 if (strcmp (reply, "OK") != 0)
13474 error (_("Bogus reply from target: %s"), reply);
13475 return 0;
13476 }
13477
13478 /* This is basically a memory transfer, but needs to be its own packet
13479 because we don't know how the target actually organizes its trace
13480 memory, plus we want to be able to ask for as much as possible, but
13481 not be unhappy if we don't get as much as we ask for. */
13482
13483 LONGEST
13484 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13485 {
13486 struct remote_state *rs = get_remote_state ();
13487 char *reply;
13488 char *p;
13489 int rslt;
13490
13491 p = rs->buf.data ();
13492 strcpy (p, "qTBuffer:");
13493 p += strlen (p);
13494 p += hexnumstr (p, offset);
13495 *p++ = ',';
13496 p += hexnumstr (p, len);
13497 *p++ = '\0';
13498
13499 putpkt (rs->buf);
13500 reply = remote_get_noisy_reply ();
13501 if (reply && *reply)
13502 {
13503 /* 'l' by itself means we're at the end of the buffer and
13504 there is nothing more to get. */
13505 if (*reply == 'l')
13506 return 0;
13507
13508 /* Convert the reply into binary. Limit the number of bytes to
13509 convert according to our passed-in buffer size, rather than
13510 what was returned in the packet; if the target is
13511 unexpectedly generous and gives us a bigger reply than we
13512 asked for, we don't want to crash. */
13513 rslt = hex2bin (reply, buf, len);
13514 return rslt;
13515 }
13516
13517 /* Something went wrong, flag as an error. */
13518 return -1;
13519 }
13520
13521 void
13522 remote_target::set_disconnected_tracing (int val)
13523 {
13524 struct remote_state *rs = get_remote_state ();
13525
13526 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13527 {
13528 char *reply;
13529
13530 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13531 "QTDisconnected:%x", val);
13532 putpkt (rs->buf);
13533 reply = remote_get_noisy_reply ();
13534 if (*reply == '\0')
13535 error (_("Target does not support this command."));
13536 if (strcmp (reply, "OK") != 0)
13537 error (_("Bogus reply from target: %s"), reply);
13538 }
13539 else if (val)
13540 warning (_("Target does not support disconnected tracing."));
13541 }
13542
13543 int
13544 remote_target::core_of_thread (ptid_t ptid)
13545 {
13546 thread_info *info = find_thread_ptid (this, ptid);
13547
13548 if (info != NULL && info->priv != NULL)
13549 return get_remote_thread_info (info)->core;
13550
13551 return -1;
13552 }
13553
13554 void
13555 remote_target::set_circular_trace_buffer (int val)
13556 {
13557 struct remote_state *rs = get_remote_state ();
13558 char *reply;
13559
13560 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13561 "QTBuffer:circular:%x", val);
13562 putpkt (rs->buf);
13563 reply = remote_get_noisy_reply ();
13564 if (*reply == '\0')
13565 error (_("Target does not support this command."));
13566 if (strcmp (reply, "OK") != 0)
13567 error (_("Bogus reply from target: %s"), reply);
13568 }
13569
13570 traceframe_info_up
13571 remote_target::traceframe_info ()
13572 {
13573 gdb::optional<gdb::char_vector> text
13574 = target_read_stralloc (current_top_target (), TARGET_OBJECT_TRACEFRAME_INFO,
13575 NULL);
13576 if (text)
13577 return parse_traceframe_info (text->data ());
13578
13579 return NULL;
13580 }
13581
13582 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13583 instruction on which a fast tracepoint may be placed. Returns -1
13584 if the packet is not supported, and 0 if the minimum instruction
13585 length is unknown. */
13586
13587 int
13588 remote_target::get_min_fast_tracepoint_insn_len ()
13589 {
13590 struct remote_state *rs = get_remote_state ();
13591 char *reply;
13592
13593 /* If we're not debugging a process yet, the IPA can't be
13594 loaded. */
13595 if (!target_has_execution ())
13596 return 0;
13597
13598 /* Make sure the remote is pointing at the right process. */
13599 set_general_process ();
13600
13601 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13602 putpkt (rs->buf);
13603 reply = remote_get_noisy_reply ();
13604 if (*reply == '\0')
13605 return -1;
13606 else
13607 {
13608 ULONGEST min_insn_len;
13609
13610 unpack_varlen_hex (reply, &min_insn_len);
13611
13612 return (int) min_insn_len;
13613 }
13614 }
13615
13616 void
13617 remote_target::set_trace_buffer_size (LONGEST val)
13618 {
13619 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13620 {
13621 struct remote_state *rs = get_remote_state ();
13622 char *buf = rs->buf.data ();
13623 char *endbuf = buf + get_remote_packet_size ();
13624 enum packet_result result;
13625
13626 gdb_assert (val >= 0 || val == -1);
13627 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13628 /* Send -1 as literal "-1" to avoid host size dependency. */
13629 if (val < 0)
13630 {
13631 *buf++ = '-';
13632 buf += hexnumstr (buf, (ULONGEST) -val);
13633 }
13634 else
13635 buf += hexnumstr (buf, (ULONGEST) val);
13636
13637 putpkt (rs->buf);
13638 remote_get_noisy_reply ();
13639 result = packet_ok (rs->buf,
13640 &remote_protocol_packets[PACKET_QTBuffer_size]);
13641
13642 if (result != PACKET_OK)
13643 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13644 }
13645 }
13646
13647 bool
13648 remote_target::set_trace_notes (const char *user, const char *notes,
13649 const char *stop_notes)
13650 {
13651 struct remote_state *rs = get_remote_state ();
13652 char *reply;
13653 char *buf = rs->buf.data ();
13654 char *endbuf = buf + get_remote_packet_size ();
13655 int nbytes;
13656
13657 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13658 if (user)
13659 {
13660 buf += xsnprintf (buf, endbuf - buf, "user:");
13661 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13662 buf += 2 * nbytes;
13663 *buf++ = ';';
13664 }
13665 if (notes)
13666 {
13667 buf += xsnprintf (buf, endbuf - buf, "notes:");
13668 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13669 buf += 2 * nbytes;
13670 *buf++ = ';';
13671 }
13672 if (stop_notes)
13673 {
13674 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13675 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13676 buf += 2 * nbytes;
13677 *buf++ = ';';
13678 }
13679 /* Ensure the buffer is terminated. */
13680 *buf = '\0';
13681
13682 putpkt (rs->buf);
13683 reply = remote_get_noisy_reply ();
13684 if (*reply == '\0')
13685 return false;
13686
13687 if (strcmp (reply, "OK") != 0)
13688 error (_("Bogus reply from target: %s"), reply);
13689
13690 return true;
13691 }
13692
13693 bool
13694 remote_target::use_agent (bool use)
13695 {
13696 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13697 {
13698 struct remote_state *rs = get_remote_state ();
13699
13700 /* If the stub supports QAgent. */
13701 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13702 putpkt (rs->buf);
13703 getpkt (&rs->buf, 0);
13704
13705 if (strcmp (rs->buf.data (), "OK") == 0)
13706 {
13707 ::use_agent = use;
13708 return true;
13709 }
13710 }
13711
13712 return false;
13713 }
13714
13715 bool
13716 remote_target::can_use_agent ()
13717 {
13718 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13719 }
13720
13721 struct btrace_target_info
13722 {
13723 /* The ptid of the traced thread. */
13724 ptid_t ptid;
13725
13726 /* The obtained branch trace configuration. */
13727 struct btrace_config conf;
13728 };
13729
13730 /* Reset our idea of our target's btrace configuration. */
13731
13732 static void
13733 remote_btrace_reset (remote_state *rs)
13734 {
13735 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13736 }
13737
13738 /* Synchronize the configuration with the target. */
13739
13740 void
13741 remote_target::btrace_sync_conf (const btrace_config *conf)
13742 {
13743 struct packet_config *packet;
13744 struct remote_state *rs;
13745 char *buf, *pos, *endbuf;
13746
13747 rs = get_remote_state ();
13748 buf = rs->buf.data ();
13749 endbuf = buf + get_remote_packet_size ();
13750
13751 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13752 if (packet_config_support (packet) == PACKET_ENABLE
13753 && conf->bts.size != rs->btrace_config.bts.size)
13754 {
13755 pos = buf;
13756 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13757 conf->bts.size);
13758
13759 putpkt (buf);
13760 getpkt (&rs->buf, 0);
13761
13762 if (packet_ok (buf, packet) == PACKET_ERROR)
13763 {
13764 if (buf[0] == 'E' && buf[1] == '.')
13765 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13766 else
13767 error (_("Failed to configure the BTS buffer size."));
13768 }
13769
13770 rs->btrace_config.bts.size = conf->bts.size;
13771 }
13772
13773 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13774 if (packet_config_support (packet) == PACKET_ENABLE
13775 && conf->pt.size != rs->btrace_config.pt.size)
13776 {
13777 pos = buf;
13778 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13779 conf->pt.size);
13780
13781 putpkt (buf);
13782 getpkt (&rs->buf, 0);
13783
13784 if (packet_ok (buf, packet) == PACKET_ERROR)
13785 {
13786 if (buf[0] == 'E' && buf[1] == '.')
13787 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13788 else
13789 error (_("Failed to configure the trace buffer size."));
13790 }
13791
13792 rs->btrace_config.pt.size = conf->pt.size;
13793 }
13794 }
13795
13796 /* Read the current thread's btrace configuration from the target and
13797 store it into CONF. */
13798
13799 static void
13800 btrace_read_config (struct btrace_config *conf)
13801 {
13802 gdb::optional<gdb::char_vector> xml
13803 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE_CONF, "");
13804 if (xml)
13805 parse_xml_btrace_conf (conf, xml->data ());
13806 }
13807
13808 /* Maybe reopen target btrace. */
13809
13810 void
13811 remote_target::remote_btrace_maybe_reopen ()
13812 {
13813 struct remote_state *rs = get_remote_state ();
13814 int btrace_target_pushed = 0;
13815 #if !defined (HAVE_LIBIPT)
13816 int warned = 0;
13817 #endif
13818
13819 /* Don't bother walking the entirety of the remote thread list when
13820 we know the feature isn't supported by the remote. */
13821 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
13822 return;
13823
13824 scoped_restore_current_thread restore_thread;
13825
13826 for (thread_info *tp : all_non_exited_threads (this))
13827 {
13828 set_general_thread (tp->ptid);
13829
13830 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13831 btrace_read_config (&rs->btrace_config);
13832
13833 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13834 continue;
13835
13836 #if !defined (HAVE_LIBIPT)
13837 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13838 {
13839 if (!warned)
13840 {
13841 warned = 1;
13842 warning (_("Target is recording using Intel Processor Trace "
13843 "but support was disabled at compile time."));
13844 }
13845
13846 continue;
13847 }
13848 #endif /* !defined (HAVE_LIBIPT) */
13849
13850 /* Push target, once, but before anything else happens. This way our
13851 changes to the threads will be cleaned up by unpushing the target
13852 in case btrace_read_config () throws. */
13853 if (!btrace_target_pushed)
13854 {
13855 btrace_target_pushed = 1;
13856 record_btrace_push_target ();
13857 printf_filtered (_("Target is recording using %s.\n"),
13858 btrace_format_string (rs->btrace_config.format));
13859 }
13860
13861 tp->btrace.target = XCNEW (struct btrace_target_info);
13862 tp->btrace.target->ptid = tp->ptid;
13863 tp->btrace.target->conf = rs->btrace_config;
13864 }
13865 }
13866
13867 /* Enable branch tracing. */
13868
13869 struct btrace_target_info *
13870 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13871 {
13872 struct btrace_target_info *tinfo = NULL;
13873 struct packet_config *packet = NULL;
13874 struct remote_state *rs = get_remote_state ();
13875 char *buf = rs->buf.data ();
13876 char *endbuf = buf + get_remote_packet_size ();
13877
13878 switch (conf->format)
13879 {
13880 case BTRACE_FORMAT_BTS:
13881 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13882 break;
13883
13884 case BTRACE_FORMAT_PT:
13885 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13886 break;
13887 }
13888
13889 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13890 error (_("Target does not support branch tracing."));
13891
13892 btrace_sync_conf (conf);
13893
13894 set_general_thread (ptid);
13895
13896 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13897 putpkt (rs->buf);
13898 getpkt (&rs->buf, 0);
13899
13900 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13901 {
13902 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13903 error (_("Could not enable branch tracing for %s: %s"),
13904 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
13905 else
13906 error (_("Could not enable branch tracing for %s."),
13907 target_pid_to_str (ptid).c_str ());
13908 }
13909
13910 tinfo = XCNEW (struct btrace_target_info);
13911 tinfo->ptid = ptid;
13912
13913 /* If we fail to read the configuration, we lose some information, but the
13914 tracing itself is not impacted. */
13915 try
13916 {
13917 btrace_read_config (&tinfo->conf);
13918 }
13919 catch (const gdb_exception_error &err)
13920 {
13921 if (err.message != NULL)
13922 warning ("%s", err.what ());
13923 }
13924
13925 return tinfo;
13926 }
13927
13928 /* Disable branch tracing. */
13929
13930 void
13931 remote_target::disable_btrace (struct btrace_target_info *tinfo)
13932 {
13933 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13934 struct remote_state *rs = get_remote_state ();
13935 char *buf = rs->buf.data ();
13936 char *endbuf = buf + get_remote_packet_size ();
13937
13938 if (packet_config_support (packet) != PACKET_ENABLE)
13939 error (_("Target does not support branch tracing."));
13940
13941 set_general_thread (tinfo->ptid);
13942
13943 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13944 putpkt (rs->buf);
13945 getpkt (&rs->buf, 0);
13946
13947 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13948 {
13949 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13950 error (_("Could not disable branch tracing for %s: %s"),
13951 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
13952 else
13953 error (_("Could not disable branch tracing for %s."),
13954 target_pid_to_str (tinfo->ptid).c_str ());
13955 }
13956
13957 xfree (tinfo);
13958 }
13959
13960 /* Teardown branch tracing. */
13961
13962 void
13963 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
13964 {
13965 /* We must not talk to the target during teardown. */
13966 xfree (tinfo);
13967 }
13968
13969 /* Read the branch trace. */
13970
13971 enum btrace_error
13972 remote_target::read_btrace (struct btrace_data *btrace,
13973 struct btrace_target_info *tinfo,
13974 enum btrace_read_type type)
13975 {
13976 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13977 const char *annex;
13978
13979 if (packet_config_support (packet) != PACKET_ENABLE)
13980 error (_("Target does not support branch tracing."));
13981
13982 #if !defined(HAVE_LIBEXPAT)
13983 error (_("Cannot process branch tracing result. XML parsing not supported."));
13984 #endif
13985
13986 switch (type)
13987 {
13988 case BTRACE_READ_ALL:
13989 annex = "all";
13990 break;
13991 case BTRACE_READ_NEW:
13992 annex = "new";
13993 break;
13994 case BTRACE_READ_DELTA:
13995 annex = "delta";
13996 break;
13997 default:
13998 internal_error (__FILE__, __LINE__,
13999 _("Bad branch tracing read type: %u."),
14000 (unsigned int) type);
14001 }
14002
14003 gdb::optional<gdb::char_vector> xml
14004 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE, annex);
14005 if (!xml)
14006 return BTRACE_ERR_UNKNOWN;
14007
14008 parse_xml_btrace (btrace, xml->data ());
14009
14010 return BTRACE_ERR_NONE;
14011 }
14012
14013 const struct btrace_config *
14014 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
14015 {
14016 return &tinfo->conf;
14017 }
14018
14019 bool
14020 remote_target::augmented_libraries_svr4_read ()
14021 {
14022 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
14023 == PACKET_ENABLE);
14024 }
14025
14026 /* Implementation of to_load. */
14027
14028 void
14029 remote_target::load (const char *name, int from_tty)
14030 {
14031 generic_load (name, from_tty);
14032 }
14033
14034 /* Accepts an integer PID; returns a string representing a file that
14035 can be opened on the remote side to get the symbols for the child
14036 process. Returns NULL if the operation is not supported. */
14037
14038 char *
14039 remote_target::pid_to_exec_file (int pid)
14040 {
14041 static gdb::optional<gdb::char_vector> filename;
14042 char *annex = NULL;
14043
14044 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
14045 return NULL;
14046
14047 inferior *inf = find_inferior_pid (this, pid);
14048 if (inf == NULL)
14049 internal_error (__FILE__, __LINE__,
14050 _("not currently attached to process %d"), pid);
14051
14052 if (!inf->fake_pid_p)
14053 {
14054 const int annex_size = 9;
14055
14056 annex = (char *) alloca (annex_size);
14057 xsnprintf (annex, annex_size, "%x", pid);
14058 }
14059
14060 filename = target_read_stralloc (current_top_target (),
14061 TARGET_OBJECT_EXEC_FILE, annex);
14062
14063 return filename ? filename->data () : nullptr;
14064 }
14065
14066 /* Implement the to_can_do_single_step target_ops method. */
14067
14068 int
14069 remote_target::can_do_single_step ()
14070 {
14071 /* We can only tell whether target supports single step or not by
14072 supported s and S vCont actions if the stub supports vContSupported
14073 feature. If the stub doesn't support vContSupported feature,
14074 we have conservatively to think target doesn't supports single
14075 step. */
14076 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
14077 {
14078 struct remote_state *rs = get_remote_state ();
14079
14080 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14081 remote_vcont_probe ();
14082
14083 return rs->supports_vCont.s && rs->supports_vCont.S;
14084 }
14085 else
14086 return 0;
14087 }
14088
14089 /* Implementation of the to_execution_direction method for the remote
14090 target. */
14091
14092 enum exec_direction_kind
14093 remote_target::execution_direction ()
14094 {
14095 struct remote_state *rs = get_remote_state ();
14096
14097 return rs->last_resume_exec_dir;
14098 }
14099
14100 /* Return pointer to the thread_info struct which corresponds to
14101 THREAD_HANDLE (having length HANDLE_LEN). */
14102
14103 thread_info *
14104 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14105 int handle_len,
14106 inferior *inf)
14107 {
14108 for (thread_info *tp : all_non_exited_threads (this))
14109 {
14110 remote_thread_info *priv = get_remote_thread_info (tp);
14111
14112 if (tp->inf == inf && priv != NULL)
14113 {
14114 if (handle_len != priv->thread_handle.size ())
14115 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14116 handle_len, priv->thread_handle.size ());
14117 if (memcmp (thread_handle, priv->thread_handle.data (),
14118 handle_len) == 0)
14119 return tp;
14120 }
14121 }
14122
14123 return NULL;
14124 }
14125
14126 gdb::byte_vector
14127 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
14128 {
14129 remote_thread_info *priv = get_remote_thread_info (tp);
14130 return priv->thread_handle;
14131 }
14132
14133 bool
14134 remote_target::can_async_p ()
14135 {
14136 struct remote_state *rs = get_remote_state ();
14137
14138 /* We don't go async if the user has explicitly prevented it with the
14139 "maint set target-async" command. */
14140 if (!target_async_permitted)
14141 return false;
14142
14143 /* We're async whenever the serial device is. */
14144 return serial_can_async_p (rs->remote_desc);
14145 }
14146
14147 bool
14148 remote_target::is_async_p ()
14149 {
14150 struct remote_state *rs = get_remote_state ();
14151
14152 if (!target_async_permitted)
14153 /* We only enable async when the user specifically asks for it. */
14154 return false;
14155
14156 /* We're async whenever the serial device is. */
14157 return serial_is_async_p (rs->remote_desc);
14158 }
14159
14160 /* Pass the SERIAL event on and up to the client. One day this code
14161 will be able to delay notifying the client of an event until the
14162 point where an entire packet has been received. */
14163
14164 static serial_event_ftype remote_async_serial_handler;
14165
14166 static void
14167 remote_async_serial_handler (struct serial *scb, void *context)
14168 {
14169 /* Don't propogate error information up to the client. Instead let
14170 the client find out about the error by querying the target. */
14171 inferior_event_handler (INF_REG_EVENT);
14172 }
14173
14174 static void
14175 remote_async_inferior_event_handler (gdb_client_data data)
14176 {
14177 inferior_event_handler (INF_REG_EVENT);
14178
14179 remote_target *remote = (remote_target *) data;
14180 remote_state *rs = remote->get_remote_state ();
14181
14182 /* inferior_event_handler may have consumed an event pending on the
14183 infrun side without calling target_wait on the REMOTE target, or
14184 may have pulled an event out of a different target. Keep trying
14185 for this remote target as long it still has either pending events
14186 or unacknowledged notifications. */
14187
14188 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL
14189 || !rs->stop_reply_queue.empty ())
14190 mark_async_event_handler (rs->remote_async_inferior_event_token);
14191 }
14192
14193 int
14194 remote_target::async_wait_fd ()
14195 {
14196 struct remote_state *rs = get_remote_state ();
14197 return rs->remote_desc->fd;
14198 }
14199
14200 void
14201 remote_target::async (int enable)
14202 {
14203 struct remote_state *rs = get_remote_state ();
14204
14205 if (enable)
14206 {
14207 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14208
14209 /* If there are pending events in the stop reply queue tell the
14210 event loop to process them. */
14211 if (!rs->stop_reply_queue.empty ())
14212 mark_async_event_handler (rs->remote_async_inferior_event_token);
14213 /* For simplicity, below we clear the pending events token
14214 without remembering whether it is marked, so here we always
14215 mark it. If there's actually no pending notification to
14216 process, this ends up being a no-op (other than a spurious
14217 event-loop wakeup). */
14218 if (target_is_non_stop_p ())
14219 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14220 }
14221 else
14222 {
14223 serial_async (rs->remote_desc, NULL, NULL);
14224 /* If the core is disabling async, it doesn't want to be
14225 disturbed with target events. Clear all async event sources
14226 too. */
14227 clear_async_event_handler (rs->remote_async_inferior_event_token);
14228 if (target_is_non_stop_p ())
14229 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14230 }
14231 }
14232
14233 /* Implementation of the to_thread_events method. */
14234
14235 void
14236 remote_target::thread_events (int enable)
14237 {
14238 struct remote_state *rs = get_remote_state ();
14239 size_t size = get_remote_packet_size ();
14240
14241 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14242 return;
14243
14244 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14245 putpkt (rs->buf);
14246 getpkt (&rs->buf, 0);
14247
14248 switch (packet_ok (rs->buf,
14249 &remote_protocol_packets[PACKET_QThreadEvents]))
14250 {
14251 case PACKET_OK:
14252 if (strcmp (rs->buf.data (), "OK") != 0)
14253 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14254 break;
14255 case PACKET_ERROR:
14256 warning (_("Remote failure reply: %s"), rs->buf.data ());
14257 break;
14258 case PACKET_UNKNOWN:
14259 break;
14260 }
14261 }
14262
14263 static void
14264 show_remote_cmd (const char *args, int from_tty)
14265 {
14266 /* We can't just use cmd_show_list here, because we want to skip
14267 the redundant "show remote Z-packet" and the legacy aliases. */
14268 struct cmd_list_element *list = remote_show_cmdlist;
14269 struct ui_out *uiout = current_uiout;
14270
14271 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14272 for (; list != NULL; list = list->next)
14273 if (strcmp (list->name, "Z-packet") == 0)
14274 continue;
14275 else if (list->type == not_set_cmd)
14276 /* Alias commands are exactly like the original, except they
14277 don't have the normal type. */
14278 continue;
14279 else
14280 {
14281 ui_out_emit_tuple option_emitter (uiout, "option");
14282
14283 uiout->field_string ("name", list->name);
14284 uiout->text (": ");
14285 if (list->type == show_cmd)
14286 do_show_command (NULL, from_tty, list);
14287 else
14288 cmd_func (list, NULL, from_tty);
14289 }
14290 }
14291
14292
14293 /* Function to be called whenever a new objfile (shlib) is detected. */
14294 static void
14295 remote_new_objfile (struct objfile *objfile)
14296 {
14297 remote_target *remote = get_current_remote_target ();
14298
14299 if (remote != NULL) /* Have a remote connection. */
14300 remote->remote_check_symbols ();
14301 }
14302
14303 /* Pull all the tracepoints defined on the target and create local
14304 data structures representing them. We don't want to create real
14305 tracepoints yet, we don't want to mess up the user's existing
14306 collection. */
14307
14308 int
14309 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14310 {
14311 struct remote_state *rs = get_remote_state ();
14312 char *p;
14313
14314 /* Ask for a first packet of tracepoint definition. */
14315 putpkt ("qTfP");
14316 getpkt (&rs->buf, 0);
14317 p = rs->buf.data ();
14318 while (*p && *p != 'l')
14319 {
14320 parse_tracepoint_definition (p, utpp);
14321 /* Ask for another packet of tracepoint definition. */
14322 putpkt ("qTsP");
14323 getpkt (&rs->buf, 0);
14324 p = rs->buf.data ();
14325 }
14326 return 0;
14327 }
14328
14329 int
14330 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14331 {
14332 struct remote_state *rs = get_remote_state ();
14333 char *p;
14334
14335 /* Ask for a first packet of variable definition. */
14336 putpkt ("qTfV");
14337 getpkt (&rs->buf, 0);
14338 p = rs->buf.data ();
14339 while (*p && *p != 'l')
14340 {
14341 parse_tsv_definition (p, utsvp);
14342 /* Ask for another packet of variable definition. */
14343 putpkt ("qTsV");
14344 getpkt (&rs->buf, 0);
14345 p = rs->buf.data ();
14346 }
14347 return 0;
14348 }
14349
14350 /* The "set/show range-stepping" show hook. */
14351
14352 static void
14353 show_range_stepping (struct ui_file *file, int from_tty,
14354 struct cmd_list_element *c,
14355 const char *value)
14356 {
14357 fprintf_filtered (file,
14358 _("Debugger's willingness to use range stepping "
14359 "is %s.\n"), value);
14360 }
14361
14362 /* Return true if the vCont;r action is supported by the remote
14363 stub. */
14364
14365 bool
14366 remote_target::vcont_r_supported ()
14367 {
14368 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14369 remote_vcont_probe ();
14370
14371 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14372 && get_remote_state ()->supports_vCont.r);
14373 }
14374
14375 /* The "set/show range-stepping" set hook. */
14376
14377 static void
14378 set_range_stepping (const char *ignore_args, int from_tty,
14379 struct cmd_list_element *c)
14380 {
14381 /* When enabling, check whether range stepping is actually supported
14382 by the target, and warn if not. */
14383 if (use_range_stepping)
14384 {
14385 remote_target *remote = get_current_remote_target ();
14386 if (remote == NULL
14387 || !remote->vcont_r_supported ())
14388 warning (_("Range stepping is not supported by the current target"));
14389 }
14390 }
14391
14392 void _initialize_remote ();
14393 void
14394 _initialize_remote ()
14395 {
14396 struct cmd_list_element *cmd;
14397 const char *cmd_name;
14398
14399 /* architecture specific data */
14400 remote_g_packet_data_handle =
14401 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14402
14403 add_target (remote_target_info, remote_target::open);
14404 add_target (extended_remote_target_info, extended_remote_target::open);
14405
14406 /* Hook into new objfile notification. */
14407 gdb::observers::new_objfile.attach (remote_new_objfile);
14408
14409 #if 0
14410 init_remote_threadtests ();
14411 #endif
14412
14413 /* set/show remote ... */
14414
14415 add_basic_prefix_cmd ("remote", class_maintenance, _("\
14416 Remote protocol specific variables.\n\
14417 Configure various remote-protocol specific variables such as\n\
14418 the packets being used."),
14419 &remote_set_cmdlist, "set remote ",
14420 0 /* allow-unknown */, &setlist);
14421 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14422 Remote protocol specific variables.\n\
14423 Configure various remote-protocol specific variables such as\n\
14424 the packets being used."),
14425 &remote_show_cmdlist, "show remote ",
14426 0 /* allow-unknown */, &showlist);
14427
14428 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14429 Compare section data on target to the exec file.\n\
14430 Argument is a single section name (default: all loaded sections).\n\
14431 To compare only read-only loaded sections, specify the -r option."),
14432 &cmdlist);
14433
14434 add_cmd ("packet", class_maintenance, packet_command, _("\
14435 Send an arbitrary packet to a remote target.\n\
14436 maintenance packet TEXT\n\
14437 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14438 this command sends the string TEXT to the inferior, and displays the\n\
14439 response packet. GDB supplies the initial `$' character, and the\n\
14440 terminating `#' character and checksum."),
14441 &maintenancelist);
14442
14443 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14444 Set whether to send break if interrupted."), _("\
14445 Show whether to send break if interrupted."), _("\
14446 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14447 set_remotebreak, show_remotebreak,
14448 &setlist, &showlist);
14449 cmd_name = "remotebreak";
14450 cmd = lookup_cmd (&cmd_name, setlist, "", NULL, -1, 1);
14451 deprecate_cmd (cmd, "set remote interrupt-sequence");
14452 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14453 cmd = lookup_cmd (&cmd_name, showlist, "", NULL, -1, 1);
14454 deprecate_cmd (cmd, "show remote interrupt-sequence");
14455
14456 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14457 interrupt_sequence_modes, &interrupt_sequence_mode,
14458 _("\
14459 Set interrupt sequence to remote target."), _("\
14460 Show interrupt sequence to remote target."), _("\
14461 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14462 NULL, show_interrupt_sequence,
14463 &remote_set_cmdlist,
14464 &remote_show_cmdlist);
14465
14466 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14467 &interrupt_on_connect, _("\
14468 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14469 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14470 If set, interrupt sequence is sent to remote target."),
14471 NULL, NULL,
14472 &remote_set_cmdlist, &remote_show_cmdlist);
14473
14474 /* Install commands for configuring memory read/write packets. */
14475
14476 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14477 Set the maximum number of bytes per memory write packet (deprecated)."),
14478 &setlist);
14479 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14480 Show the maximum number of bytes per memory write packet (deprecated)."),
14481 &showlist);
14482 add_cmd ("memory-write-packet-size", no_class,
14483 set_memory_write_packet_size, _("\
14484 Set the maximum number of bytes per memory-write packet.\n\
14485 Specify the number of bytes in a packet or 0 (zero) for the\n\
14486 default packet size. The actual limit is further reduced\n\
14487 dependent on the target. Specify ``fixed'' to disable the\n\
14488 further restriction and ``limit'' to enable that restriction."),
14489 &remote_set_cmdlist);
14490 add_cmd ("memory-read-packet-size", no_class,
14491 set_memory_read_packet_size, _("\
14492 Set the maximum number of bytes per memory-read packet.\n\
14493 Specify the number of bytes in a packet or 0 (zero) for the\n\
14494 default packet size. The actual limit is further reduced\n\
14495 dependent on the target. Specify ``fixed'' to disable the\n\
14496 further restriction and ``limit'' to enable that restriction."),
14497 &remote_set_cmdlist);
14498 add_cmd ("memory-write-packet-size", no_class,
14499 show_memory_write_packet_size,
14500 _("Show the maximum number of bytes per memory-write packet."),
14501 &remote_show_cmdlist);
14502 add_cmd ("memory-read-packet-size", no_class,
14503 show_memory_read_packet_size,
14504 _("Show the maximum number of bytes per memory-read packet."),
14505 &remote_show_cmdlist);
14506
14507 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14508 &remote_hw_watchpoint_limit, _("\
14509 Set the maximum number of target hardware watchpoints."), _("\
14510 Show the maximum number of target hardware watchpoints."), _("\
14511 Specify \"unlimited\" for unlimited hardware watchpoints."),
14512 NULL, show_hardware_watchpoint_limit,
14513 &remote_set_cmdlist,
14514 &remote_show_cmdlist);
14515 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14516 no_class,
14517 &remote_hw_watchpoint_length_limit, _("\
14518 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14519 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14520 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14521 NULL, show_hardware_watchpoint_length_limit,
14522 &remote_set_cmdlist, &remote_show_cmdlist);
14523 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14524 &remote_hw_breakpoint_limit, _("\
14525 Set the maximum number of target hardware breakpoints."), _("\
14526 Show the maximum number of target hardware breakpoints."), _("\
14527 Specify \"unlimited\" for unlimited hardware breakpoints."),
14528 NULL, show_hardware_breakpoint_limit,
14529 &remote_set_cmdlist, &remote_show_cmdlist);
14530
14531 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14532 &remote_address_size, _("\
14533 Set the maximum size of the address (in bits) in a memory packet."), _("\
14534 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14535 NULL,
14536 NULL, /* FIXME: i18n: */
14537 &setlist, &showlist);
14538
14539 init_all_packet_configs ();
14540
14541 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14542 "X", "binary-download", 1);
14543
14544 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14545 "vCont", "verbose-resume", 0);
14546
14547 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14548 "QPassSignals", "pass-signals", 0);
14549
14550 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14551 "QCatchSyscalls", "catch-syscalls", 0);
14552
14553 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14554 "QProgramSignals", "program-signals", 0);
14555
14556 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14557 "QSetWorkingDir", "set-working-dir", 0);
14558
14559 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14560 "QStartupWithShell", "startup-with-shell", 0);
14561
14562 add_packet_config_cmd (&remote_protocol_packets
14563 [PACKET_QEnvironmentHexEncoded],
14564 "QEnvironmentHexEncoded", "environment-hex-encoded",
14565 0);
14566
14567 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14568 "QEnvironmentReset", "environment-reset",
14569 0);
14570
14571 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14572 "QEnvironmentUnset", "environment-unset",
14573 0);
14574
14575 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14576 "qSymbol", "symbol-lookup", 0);
14577
14578 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14579 "P", "set-register", 1);
14580
14581 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14582 "p", "fetch-register", 1);
14583
14584 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14585 "Z0", "software-breakpoint", 0);
14586
14587 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14588 "Z1", "hardware-breakpoint", 0);
14589
14590 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14591 "Z2", "write-watchpoint", 0);
14592
14593 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14594 "Z3", "read-watchpoint", 0);
14595
14596 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14597 "Z4", "access-watchpoint", 0);
14598
14599 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14600 "qXfer:auxv:read", "read-aux-vector", 0);
14601
14602 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14603 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14604
14605 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14606 "qXfer:features:read", "target-features", 0);
14607
14608 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14609 "qXfer:libraries:read", "library-info", 0);
14610
14611 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14612 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14613
14614 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14615 "qXfer:memory-map:read", "memory-map", 0);
14616
14617 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14618 "qXfer:osdata:read", "osdata", 0);
14619
14620 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14621 "qXfer:threads:read", "threads", 0);
14622
14623 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14624 "qXfer:siginfo:read", "read-siginfo-object", 0);
14625
14626 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14627 "qXfer:siginfo:write", "write-siginfo-object", 0);
14628
14629 add_packet_config_cmd
14630 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14631 "qXfer:traceframe-info:read", "traceframe-info", 0);
14632
14633 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14634 "qXfer:uib:read", "unwind-info-block", 0);
14635
14636 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14637 "qGetTLSAddr", "get-thread-local-storage-address",
14638 0);
14639
14640 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14641 "qGetTIBAddr", "get-thread-information-block-address",
14642 0);
14643
14644 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14645 "bc", "reverse-continue", 0);
14646
14647 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14648 "bs", "reverse-step", 0);
14649
14650 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14651 "qSupported", "supported-packets", 0);
14652
14653 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14654 "qSearch:memory", "search-memory", 0);
14655
14656 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14657 "qTStatus", "trace-status", 0);
14658
14659 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14660 "vFile:setfs", "hostio-setfs", 0);
14661
14662 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14663 "vFile:open", "hostio-open", 0);
14664
14665 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14666 "vFile:pread", "hostio-pread", 0);
14667
14668 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14669 "vFile:pwrite", "hostio-pwrite", 0);
14670
14671 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14672 "vFile:close", "hostio-close", 0);
14673
14674 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14675 "vFile:unlink", "hostio-unlink", 0);
14676
14677 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14678 "vFile:readlink", "hostio-readlink", 0);
14679
14680 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14681 "vFile:fstat", "hostio-fstat", 0);
14682
14683 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14684 "vAttach", "attach", 0);
14685
14686 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14687 "vRun", "run", 0);
14688
14689 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14690 "QStartNoAckMode", "noack", 0);
14691
14692 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14693 "vKill", "kill", 0);
14694
14695 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14696 "qAttached", "query-attached", 0);
14697
14698 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14699 "ConditionalTracepoints",
14700 "conditional-tracepoints", 0);
14701
14702 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14703 "ConditionalBreakpoints",
14704 "conditional-breakpoints", 0);
14705
14706 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14707 "BreakpointCommands",
14708 "breakpoint-commands", 0);
14709
14710 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14711 "FastTracepoints", "fast-tracepoints", 0);
14712
14713 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14714 "TracepointSource", "TracepointSource", 0);
14715
14716 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14717 "QAllow", "allow", 0);
14718
14719 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14720 "StaticTracepoints", "static-tracepoints", 0);
14721
14722 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14723 "InstallInTrace", "install-in-trace", 0);
14724
14725 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14726 "qXfer:statictrace:read", "read-sdata-object", 0);
14727
14728 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14729 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14730
14731 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14732 "QDisableRandomization", "disable-randomization", 0);
14733
14734 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14735 "QAgent", "agent", 0);
14736
14737 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14738 "QTBuffer:size", "trace-buffer-size", 0);
14739
14740 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14741 "Qbtrace:off", "disable-btrace", 0);
14742
14743 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14744 "Qbtrace:bts", "enable-btrace-bts", 0);
14745
14746 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14747 "Qbtrace:pt", "enable-btrace-pt", 0);
14748
14749 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14750 "qXfer:btrace", "read-btrace", 0);
14751
14752 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14753 "qXfer:btrace-conf", "read-btrace-conf", 0);
14754
14755 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14756 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14757
14758 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14759 "multiprocess-feature", "multiprocess-feature", 0);
14760
14761 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14762 "swbreak-feature", "swbreak-feature", 0);
14763
14764 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14765 "hwbreak-feature", "hwbreak-feature", 0);
14766
14767 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14768 "fork-event-feature", "fork-event-feature", 0);
14769
14770 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14771 "vfork-event-feature", "vfork-event-feature", 0);
14772
14773 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14774 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14775
14776 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14777 "vContSupported", "verbose-resume-supported", 0);
14778
14779 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14780 "exec-event-feature", "exec-event-feature", 0);
14781
14782 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14783 "vCtrlC", "ctrl-c", 0);
14784
14785 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14786 "QThreadEvents", "thread-events", 0);
14787
14788 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14789 "N stop reply", "no-resumed-stop-reply", 0);
14790
14791 /* Assert that we've registered "set remote foo-packet" commands
14792 for all packet configs. */
14793 {
14794 int i;
14795
14796 for (i = 0; i < PACKET_MAX; i++)
14797 {
14798 /* Ideally all configs would have a command associated. Some
14799 still don't though. */
14800 int excepted;
14801
14802 switch (i)
14803 {
14804 case PACKET_QNonStop:
14805 case PACKET_EnableDisableTracepoints_feature:
14806 case PACKET_tracenz_feature:
14807 case PACKET_DisconnectedTracing_feature:
14808 case PACKET_augmented_libraries_svr4_read_feature:
14809 case PACKET_qCRC:
14810 /* Additions to this list need to be well justified:
14811 pre-existing packets are OK; new packets are not. */
14812 excepted = 1;
14813 break;
14814 default:
14815 excepted = 0;
14816 break;
14817 }
14818
14819 /* This catches both forgetting to add a config command, and
14820 forgetting to remove a packet from the exception list. */
14821 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14822 }
14823 }
14824
14825 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14826 Z sub-packet has its own set and show commands, but users may
14827 have sets to this variable in their .gdbinit files (or in their
14828 documentation). */
14829 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14830 &remote_Z_packet_detect, _("\
14831 Set use of remote protocol `Z' packets."), _("\
14832 Show use of remote protocol `Z' packets."), _("\
14833 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14834 packets."),
14835 set_remote_protocol_Z_packet_cmd,
14836 show_remote_protocol_Z_packet_cmd,
14837 /* FIXME: i18n: Use of remote protocol
14838 `Z' packets is %s. */
14839 &remote_set_cmdlist, &remote_show_cmdlist);
14840
14841 add_basic_prefix_cmd ("remote", class_files, _("\
14842 Manipulate files on the remote system.\n\
14843 Transfer files to and from the remote target system."),
14844 &remote_cmdlist, "remote ",
14845 0 /* allow-unknown */, &cmdlist);
14846
14847 add_cmd ("put", class_files, remote_put_command,
14848 _("Copy a local file to the remote system."),
14849 &remote_cmdlist);
14850
14851 add_cmd ("get", class_files, remote_get_command,
14852 _("Copy a remote file to the local system."),
14853 &remote_cmdlist);
14854
14855 add_cmd ("delete", class_files, remote_delete_command,
14856 _("Delete a remote file."),
14857 &remote_cmdlist);
14858
14859 add_setshow_string_noescape_cmd ("exec-file", class_files,
14860 &remote_exec_file_var, _("\
14861 Set the remote pathname for \"run\"."), _("\
14862 Show the remote pathname for \"run\"."), NULL,
14863 set_remote_exec_file,
14864 show_remote_exec_file,
14865 &remote_set_cmdlist,
14866 &remote_show_cmdlist);
14867
14868 add_setshow_boolean_cmd ("range-stepping", class_run,
14869 &use_range_stepping, _("\
14870 Enable or disable range stepping."), _("\
14871 Show whether target-assisted range stepping is enabled."), _("\
14872 If on, and the target supports it, when stepping a source line, GDB\n\
14873 tells the target to step the corresponding range of addresses itself instead\n\
14874 of issuing multiple single-steps. This speeds up source level\n\
14875 stepping. If off, GDB always issues single-steps, even if range\n\
14876 stepping is supported by the target. The default is on."),
14877 set_range_stepping,
14878 show_range_stepping,
14879 &setlist,
14880 &showlist);
14881
14882 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
14883 Set watchdog timer."), _("\
14884 Show watchdog timer."), _("\
14885 When non-zero, this timeout is used instead of waiting forever for a target\n\
14886 to finish a low-level step or continue operation. If the specified amount\n\
14887 of time passes without a response from the target, an error occurs."),
14888 NULL,
14889 show_watchdog,
14890 &setlist, &showlist);
14891
14892 add_setshow_zuinteger_unlimited_cmd ("remote-packet-max-chars", no_class,
14893 &remote_packet_max_chars, _("\
14894 Set the maximum number of characters to display for each remote packet."), _("\
14895 Show the maximum number of characters to display for each remote packet."), _("\
14896 Specify \"unlimited\" to display all the characters."),
14897 NULL, show_remote_packet_max_chars,
14898 &setdebuglist, &showdebuglist);
14899
14900 /* Eventually initialize fileio. See fileio.c */
14901 initialize_remote_fileio (&remote_set_cmdlist, &remote_show_cmdlist);
14902 }
This page took 0.31067 seconds and 5 git commands to generate.