* config/default.exp (ld_assemble): Pass flags parameter to
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include "gdb_stat.h"
63 #include "xml-support.h"
64
65 #include "memory-map.h"
66
67 #include "tracepoint.h"
68 #include "ax.h"
69 #include "ax-gdb.h"
70
71 /* Temp hacks for tracepoint encoding migration. */
72 static char *target_buf;
73 static long target_buf_size;
74 /*static*/ void
75 encode_actions (struct breakpoint *t, struct bp_location *tloc,
76 char ***tdp_actions, char ***stepping_actions);
77
78 /* The size to align memory write packets, when practical. The protocol
79 does not guarantee any alignment, and gdb will generate short
80 writes and unaligned writes, but even as a best-effort attempt this
81 can improve bulk transfers. For instance, if a write is misaligned
82 relative to the target's data bus, the stub may need to make an extra
83 round trip fetching data from the target. This doesn't make a
84 huge difference, but it's easy to do, so we try to be helpful.
85
86 The alignment chosen is arbitrary; usually data bus width is
87 important here, not the possibly larger cache line size. */
88 enum { REMOTE_ALIGN_WRITES = 16 };
89
90 /* Prototypes for local functions. */
91 static void cleanup_sigint_signal_handler (void *dummy);
92 static void initialize_sigint_signal_handler (void);
93 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
94 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
95 int forever);
96
97 static void handle_remote_sigint (int);
98 static void handle_remote_sigint_twice (int);
99 static void async_remote_interrupt (gdb_client_data);
100 void async_remote_interrupt_twice (gdb_client_data);
101
102 static void remote_files_info (struct target_ops *ignore);
103
104 static void remote_prepare_to_store (struct regcache *regcache);
105
106 static void remote_open (char *name, int from_tty);
107
108 static void extended_remote_open (char *name, int from_tty);
109
110 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
111
112 static void remote_close (int quitting);
113
114 static void remote_mourn (struct target_ops *ops);
115
116 static void extended_remote_restart (void);
117
118 static void extended_remote_mourn (struct target_ops *);
119
120 static void remote_mourn_1 (struct target_ops *);
121
122 static void remote_send (char **buf, long *sizeof_buf_p);
123
124 static int readchar (int timeout);
125
126 static void remote_kill (struct target_ops *ops);
127
128 static int tohex (int nib);
129
130 static int remote_can_async_p (void);
131
132 static int remote_is_async_p (void);
133
134 static void remote_async (void (*callback) (enum inferior_event_type event_type,
135 void *context), void *context);
136
137 static int remote_async_mask (int new_mask);
138
139 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
140
141 static void remote_interrupt (int signo);
142
143 static void remote_interrupt_twice (int signo);
144
145 static void interrupt_query (void);
146
147 static void set_general_thread (struct ptid ptid);
148 static void set_continue_thread (struct ptid ptid);
149
150 static void get_offsets (void);
151
152 static void skip_frame (void);
153
154 static long read_frame (char **buf_p, long *sizeof_buf);
155
156 static int hexnumlen (ULONGEST num);
157
158 static void init_remote_ops (void);
159
160 static void init_extended_remote_ops (void);
161
162 static void remote_stop (ptid_t);
163
164 static int ishex (int ch, int *val);
165
166 static int stubhex (int ch);
167
168 static int hexnumstr (char *, ULONGEST);
169
170 static int hexnumnstr (char *, ULONGEST, int);
171
172 static CORE_ADDR remote_address_masked (CORE_ADDR);
173
174 static void print_packet (char *);
175
176 static void compare_sections_command (char *, int);
177
178 static void packet_command (char *, int);
179
180 static int stub_unpack_int (char *buff, int fieldlength);
181
182 static ptid_t remote_current_thread (ptid_t oldptid);
183
184 static void remote_find_new_threads (void);
185
186 static void record_currthread (ptid_t currthread);
187
188 static int fromhex (int a);
189
190 extern int hex2bin (const char *hex, gdb_byte *bin, int count);
191
192 extern int bin2hex (const gdb_byte *bin, char *hex, int count);
193
194 static int putpkt_binary (char *buf, int cnt);
195
196 static void check_binary_download (CORE_ADDR addr);
197
198 struct packet_config;
199
200 static void show_packet_config_cmd (struct packet_config *config);
201
202 static void update_packet_config (struct packet_config *config);
203
204 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
205 struct cmd_list_element *c);
206
207 static void show_remote_protocol_packet_cmd (struct ui_file *file,
208 int from_tty,
209 struct cmd_list_element *c,
210 const char *value);
211
212 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
213 static ptid_t read_ptid (char *buf, char **obuf);
214
215 static void remote_set_permissions (void);
216
217 struct remote_state;
218 static int remote_get_trace_status (struct trace_status *ts);
219
220 static int remote_upload_tracepoints (struct uploaded_tp **utpp);
221
222 static int remote_upload_trace_state_variables (struct uploaded_tsv **utsvp);
223
224 static void remote_query_supported (void);
225
226 static void remote_check_symbols (struct objfile *objfile);
227
228 void _initialize_remote (void);
229
230 struct stop_reply;
231 static struct stop_reply *stop_reply_xmalloc (void);
232 static void stop_reply_xfree (struct stop_reply *);
233 static void do_stop_reply_xfree (void *arg);
234 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
235 static void push_stop_reply (struct stop_reply *);
236 static void remote_get_pending_stop_replies (void);
237 static void discard_pending_stop_replies (int pid);
238 static int peek_stop_reply (ptid_t ptid);
239
240 static void remote_async_inferior_event_handler (gdb_client_data);
241 static void remote_async_get_pending_events_handler (gdb_client_data);
242
243 static void remote_terminal_ours (void);
244
245 static int remote_read_description_p (struct target_ops *target);
246
247 static void remote_console_output (char *msg);
248
249 /* The non-stop remote protocol provisions for one pending stop reply.
250 This is where we keep it until it is acknowledged. */
251
252 static struct stop_reply *pending_stop_reply = NULL;
253
254 /* For "remote". */
255
256 static struct cmd_list_element *remote_cmdlist;
257
258 /* For "set remote" and "show remote". */
259
260 static struct cmd_list_element *remote_set_cmdlist;
261 static struct cmd_list_element *remote_show_cmdlist;
262
263 /* Description of the remote protocol state for the currently
264 connected target. This is per-target state, and independent of the
265 selected architecture. */
266
267 struct remote_state
268 {
269 /* A buffer to use for incoming packets, and its current size. The
270 buffer is grown dynamically for larger incoming packets.
271 Outgoing packets may also be constructed in this buffer.
272 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
273 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
274 packets. */
275 char *buf;
276 long buf_size;
277
278 /* If we negotiated packet size explicitly (and thus can bypass
279 heuristics for the largest packet size that will not overflow
280 a buffer in the stub), this will be set to that packet size.
281 Otherwise zero, meaning to use the guessed size. */
282 long explicit_packet_size;
283
284 /* remote_wait is normally called when the target is running and
285 waits for a stop reply packet. But sometimes we need to call it
286 when the target is already stopped. We can send a "?" packet
287 and have remote_wait read the response. Or, if we already have
288 the response, we can stash it in BUF and tell remote_wait to
289 skip calling getpkt. This flag is set when BUF contains a
290 stop reply packet and the target is not waiting. */
291 int cached_wait_status;
292
293 /* True, if in no ack mode. That is, neither GDB nor the stub will
294 expect acks from each other. The connection is assumed to be
295 reliable. */
296 int noack_mode;
297
298 /* True if we're connected in extended remote mode. */
299 int extended;
300
301 /* True if the stub reported support for multi-process
302 extensions. */
303 int multi_process_aware;
304
305 /* True if we resumed the target and we're waiting for the target to
306 stop. In the mean time, we can't start another command/query.
307 The remote server wouldn't be ready to process it, so we'd
308 timeout waiting for a reply that would never come and eventually
309 we'd close the connection. This can happen in asynchronous mode
310 because we allow GDB commands while the target is running. */
311 int waiting_for_stop_reply;
312
313 /* True if the stub reports support for non-stop mode. */
314 int non_stop_aware;
315
316 /* True if the stub reports support for vCont;t. */
317 int support_vCont_t;
318
319 /* True if the stub reports support for conditional tracepoints. */
320 int cond_tracepoints;
321
322 /* True if the stub reports support for fast tracepoints. */
323 int fast_tracepoints;
324
325 /* True if the stub reports support for static tracepoints. */
326 int static_tracepoints;
327
328 /* True if the stub can continue running a trace while GDB is
329 disconnected. */
330 int disconnected_tracing;
331
332 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
333 responded to that. */
334 int ctrlc_pending_p;
335 };
336
337 /* Private data that we'll store in (struct thread_info)->private. */
338 struct private_thread_info
339 {
340 char *extra;
341 int core;
342 };
343
344 static void
345 free_private_thread_info (struct private_thread_info *info)
346 {
347 xfree (info->extra);
348 xfree (info);
349 }
350
351 /* Returns true if the multi-process extensions are in effect. */
352 static int
353 remote_multi_process_p (struct remote_state *rs)
354 {
355 return rs->extended && rs->multi_process_aware;
356 }
357
358 /* This data could be associated with a target, but we do not always
359 have access to the current target when we need it, so for now it is
360 static. This will be fine for as long as only one target is in use
361 at a time. */
362 static struct remote_state remote_state;
363
364 static struct remote_state *
365 get_remote_state_raw (void)
366 {
367 return &remote_state;
368 }
369
370 /* Description of the remote protocol for a given architecture. */
371
372 struct packet_reg
373 {
374 long offset; /* Offset into G packet. */
375 long regnum; /* GDB's internal register number. */
376 LONGEST pnum; /* Remote protocol register number. */
377 int in_g_packet; /* Always part of G packet. */
378 /* long size in bytes; == register_size (target_gdbarch, regnum);
379 at present. */
380 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
381 at present. */
382 };
383
384 struct remote_arch_state
385 {
386 /* Description of the remote protocol registers. */
387 long sizeof_g_packet;
388
389 /* Description of the remote protocol registers indexed by REGNUM
390 (making an array gdbarch_num_regs in size). */
391 struct packet_reg *regs;
392
393 /* This is the size (in chars) of the first response to the ``g''
394 packet. It is used as a heuristic when determining the maximum
395 size of memory-read and memory-write packets. A target will
396 typically only reserve a buffer large enough to hold the ``g''
397 packet. The size does not include packet overhead (headers and
398 trailers). */
399 long actual_register_packet_size;
400
401 /* This is the maximum size (in chars) of a non read/write packet.
402 It is also used as a cap on the size of read/write packets. */
403 long remote_packet_size;
404 };
405
406 long sizeof_pkt = 2000;
407
408 /* Utility: generate error from an incoming stub packet. */
409 static void
410 trace_error (char *buf)
411 {
412 if (*buf++ != 'E')
413 return; /* not an error msg */
414 switch (*buf)
415 {
416 case '1': /* malformed packet error */
417 if (*++buf == '0') /* general case: */
418 error (_("remote.c: error in outgoing packet."));
419 else
420 error (_("remote.c: error in outgoing packet at field #%ld."),
421 strtol (buf, NULL, 16));
422 case '2':
423 error (_("trace API error 0x%s."), ++buf);
424 default:
425 error (_("Target returns error code '%s'."), buf);
426 }
427 }
428
429 /* Utility: wait for reply from stub, while accepting "O" packets. */
430 static char *
431 remote_get_noisy_reply (char **buf_p,
432 long *sizeof_buf)
433 {
434 do /* Loop on reply from remote stub. */
435 {
436 char *buf;
437
438 QUIT; /* Allow user to bail out with ^C. */
439 getpkt (buf_p, sizeof_buf, 0);
440 buf = *buf_p;
441 if (buf[0] == 'E')
442 trace_error (buf);
443 else if (strncmp (buf, "qRelocInsn:", strlen ("qRelocInsn:")) == 0)
444 {
445 ULONGEST ul;
446 CORE_ADDR from, to, org_to;
447 char *p, *pp;
448 int adjusted_size = 0;
449 volatile struct gdb_exception ex;
450
451 p = buf + strlen ("qRelocInsn:");
452 pp = unpack_varlen_hex (p, &ul);
453 if (*pp != ';')
454 error (_("invalid qRelocInsn packet: %s"), buf);
455 from = ul;
456
457 p = pp + 1;
458 unpack_varlen_hex (p, &ul);
459 to = ul;
460
461 org_to = to;
462
463 TRY_CATCH (ex, RETURN_MASK_ALL)
464 {
465 gdbarch_relocate_instruction (target_gdbarch, &to, from);
466 }
467 if (ex.reason >= 0)
468 {
469 adjusted_size = to - org_to;
470
471 sprintf (buf, "qRelocInsn:%x", adjusted_size);
472 putpkt (buf);
473 }
474 else if (ex.reason < 0 && ex.error == MEMORY_ERROR)
475 {
476 /* Propagate memory errors silently back to the target.
477 The stub may have limited the range of addresses we
478 can write to, for example. */
479 putpkt ("E01");
480 }
481 else
482 {
483 /* Something unexpectedly bad happened. Be verbose so
484 we can tell what, and propagate the error back to the
485 stub, so it doesn't get stuck waiting for a
486 response. */
487 exception_fprintf (gdb_stderr, ex,
488 _("warning: relocating instruction: "));
489 putpkt ("E01");
490 }
491 }
492 else if (buf[0] == 'O' && buf[1] != 'K')
493 remote_console_output (buf + 1); /* 'O' message from stub */
494 else
495 return buf; /* Here's the actual reply. */
496 }
497 while (1);
498 }
499
500 /* Handle for retreving the remote protocol data from gdbarch. */
501 static struct gdbarch_data *remote_gdbarch_data_handle;
502
503 static struct remote_arch_state *
504 get_remote_arch_state (void)
505 {
506 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
507 }
508
509 /* Fetch the global remote target state. */
510
511 static struct remote_state *
512 get_remote_state (void)
513 {
514 /* Make sure that the remote architecture state has been
515 initialized, because doing so might reallocate rs->buf. Any
516 function which calls getpkt also needs to be mindful of changes
517 to rs->buf, but this call limits the number of places which run
518 into trouble. */
519 get_remote_arch_state ();
520
521 return get_remote_state_raw ();
522 }
523
524 static int
525 compare_pnums (const void *lhs_, const void *rhs_)
526 {
527 const struct packet_reg * const *lhs = lhs_;
528 const struct packet_reg * const *rhs = rhs_;
529
530 if ((*lhs)->pnum < (*rhs)->pnum)
531 return -1;
532 else if ((*lhs)->pnum == (*rhs)->pnum)
533 return 0;
534 else
535 return 1;
536 }
537
538 static int
539 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
540 {
541 int regnum, num_remote_regs, offset;
542 struct packet_reg **remote_regs;
543
544 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
545 {
546 struct packet_reg *r = &regs[regnum];
547
548 if (register_size (gdbarch, regnum) == 0)
549 /* Do not try to fetch zero-sized (placeholder) registers. */
550 r->pnum = -1;
551 else
552 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
553
554 r->regnum = regnum;
555 }
556
557 /* Define the g/G packet format as the contents of each register
558 with a remote protocol number, in order of ascending protocol
559 number. */
560
561 remote_regs = alloca (gdbarch_num_regs (gdbarch)
562 * sizeof (struct packet_reg *));
563 for (num_remote_regs = 0, regnum = 0;
564 regnum < gdbarch_num_regs (gdbarch);
565 regnum++)
566 if (regs[regnum].pnum != -1)
567 remote_regs[num_remote_regs++] = &regs[regnum];
568
569 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
570 compare_pnums);
571
572 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
573 {
574 remote_regs[regnum]->in_g_packet = 1;
575 remote_regs[regnum]->offset = offset;
576 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
577 }
578
579 return offset;
580 }
581
582 /* Given the architecture described by GDBARCH, return the remote
583 protocol register's number and the register's offset in the g/G
584 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
585 If the target does not have a mapping for REGNUM, return false,
586 otherwise, return true. */
587
588 int
589 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
590 int *pnum, int *poffset)
591 {
592 int sizeof_g_packet;
593 struct packet_reg *regs;
594 struct cleanup *old_chain;
595
596 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
597
598 regs = xcalloc (gdbarch_num_regs (gdbarch), sizeof (struct packet_reg));
599 old_chain = make_cleanup (xfree, regs);
600
601 sizeof_g_packet = map_regcache_remote_table (gdbarch, regs);
602
603 *pnum = regs[regnum].pnum;
604 *poffset = regs[regnum].offset;
605
606 do_cleanups (old_chain);
607
608 return *pnum != -1;
609 }
610
611 static void *
612 init_remote_state (struct gdbarch *gdbarch)
613 {
614 struct remote_state *rs = get_remote_state_raw ();
615 struct remote_arch_state *rsa;
616
617 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
618
619 /* Use the architecture to build a regnum<->pnum table, which will be
620 1:1 unless a feature set specifies otherwise. */
621 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
622 gdbarch_num_regs (gdbarch),
623 struct packet_reg);
624
625 /* Record the maximum possible size of the g packet - it may turn out
626 to be smaller. */
627 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
628
629 /* Default maximum number of characters in a packet body. Many
630 remote stubs have a hardwired buffer size of 400 bytes
631 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
632 as the maximum packet-size to ensure that the packet and an extra
633 NUL character can always fit in the buffer. This stops GDB
634 trashing stubs that try to squeeze an extra NUL into what is
635 already a full buffer (As of 1999-12-04 that was most stubs). */
636 rsa->remote_packet_size = 400 - 1;
637
638 /* This one is filled in when a ``g'' packet is received. */
639 rsa->actual_register_packet_size = 0;
640
641 /* Should rsa->sizeof_g_packet needs more space than the
642 default, adjust the size accordingly. Remember that each byte is
643 encoded as two characters. 32 is the overhead for the packet
644 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
645 (``$NN:G...#NN'') is a better guess, the below has been padded a
646 little. */
647 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
648 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
649
650 /* Make sure that the packet buffer is plenty big enough for
651 this architecture. */
652 if (rs->buf_size < rsa->remote_packet_size)
653 {
654 rs->buf_size = 2 * rsa->remote_packet_size;
655 rs->buf = xrealloc (rs->buf, rs->buf_size);
656 }
657
658 return rsa;
659 }
660
661 /* Return the current allowed size of a remote packet. This is
662 inferred from the current architecture, and should be used to
663 limit the length of outgoing packets. */
664 static long
665 get_remote_packet_size (void)
666 {
667 struct remote_state *rs = get_remote_state ();
668 struct remote_arch_state *rsa = get_remote_arch_state ();
669
670 if (rs->explicit_packet_size)
671 return rs->explicit_packet_size;
672
673 return rsa->remote_packet_size;
674 }
675
676 static struct packet_reg *
677 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
678 {
679 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
680 return NULL;
681 else
682 {
683 struct packet_reg *r = &rsa->regs[regnum];
684
685 gdb_assert (r->regnum == regnum);
686 return r;
687 }
688 }
689
690 static struct packet_reg *
691 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
692 {
693 int i;
694
695 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
696 {
697 struct packet_reg *r = &rsa->regs[i];
698
699 if (r->pnum == pnum)
700 return r;
701 }
702 return NULL;
703 }
704
705 /* FIXME: graces/2002-08-08: These variables should eventually be
706 bound to an instance of the target object (as in gdbarch-tdep()),
707 when such a thing exists. */
708
709 /* This is set to the data address of the access causing the target
710 to stop for a watchpoint. */
711 static CORE_ADDR remote_watch_data_address;
712
713 /* This is non-zero if target stopped for a watchpoint. */
714 static int remote_stopped_by_watchpoint_p;
715
716 static struct target_ops remote_ops;
717
718 static struct target_ops extended_remote_ops;
719
720 static int remote_async_mask_value = 1;
721
722 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
723 ``forever'' still use the normal timeout mechanism. This is
724 currently used by the ASYNC code to guarentee that target reads
725 during the initial connect always time-out. Once getpkt has been
726 modified to return a timeout indication and, in turn
727 remote_wait()/wait_for_inferior() have gained a timeout parameter
728 this can go away. */
729 static int wait_forever_enabled_p = 1;
730
731 /* Allow the user to specify what sequence to send to the remote
732 when he requests a program interruption: Although ^C is usually
733 what remote systems expect (this is the default, here), it is
734 sometimes preferable to send a break. On other systems such
735 as the Linux kernel, a break followed by g, which is Magic SysRq g
736 is required in order to interrupt the execution. */
737 const char interrupt_sequence_control_c[] = "Ctrl-C";
738 const char interrupt_sequence_break[] = "BREAK";
739 const char interrupt_sequence_break_g[] = "BREAK-g";
740 static const char *interrupt_sequence_modes[] =
741 {
742 interrupt_sequence_control_c,
743 interrupt_sequence_break,
744 interrupt_sequence_break_g,
745 NULL
746 };
747 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
748
749 static void
750 show_interrupt_sequence (struct ui_file *file, int from_tty,
751 struct cmd_list_element *c,
752 const char *value)
753 {
754 if (interrupt_sequence_mode == interrupt_sequence_control_c)
755 fprintf_filtered (file,
756 _("Send the ASCII ETX character (Ctrl-c) "
757 "to the remote target to interrupt the "
758 "execution of the program.\n"));
759 else if (interrupt_sequence_mode == interrupt_sequence_break)
760 fprintf_filtered (file,
761 _("send a break signal to the remote target "
762 "to interrupt the execution of the program.\n"));
763 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
764 fprintf_filtered (file,
765 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
766 "the remote target to interrupt the execution "
767 "of Linux kernel.\n"));
768 else
769 internal_error (__FILE__, __LINE__,
770 _("Invalid value for interrupt_sequence_mode: %s."),
771 interrupt_sequence_mode);
772 }
773
774 /* This boolean variable specifies whether interrupt_sequence is sent
775 to the remote target when gdb connects to it.
776 This is mostly needed when you debug the Linux kernel: The Linux kernel
777 expects BREAK g which is Magic SysRq g for connecting gdb. */
778 static int interrupt_on_connect = 0;
779
780 /* This variable is used to implement the "set/show remotebreak" commands.
781 Since these commands are now deprecated in favor of "set/show remote
782 interrupt-sequence", it no longer has any effect on the code. */
783 static int remote_break;
784
785 static void
786 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
787 {
788 if (remote_break)
789 interrupt_sequence_mode = interrupt_sequence_break;
790 else
791 interrupt_sequence_mode = interrupt_sequence_control_c;
792 }
793
794 static void
795 show_remotebreak (struct ui_file *file, int from_tty,
796 struct cmd_list_element *c,
797 const char *value)
798 {
799 }
800
801 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
802 remote_open knows that we don't have a file open when the program
803 starts. */
804 static struct serial *remote_desc = NULL;
805
806 /* This variable sets the number of bits in an address that are to be
807 sent in a memory ("M" or "m") packet. Normally, after stripping
808 leading zeros, the entire address would be sent. This variable
809 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
810 initial implementation of remote.c restricted the address sent in
811 memory packets to ``host::sizeof long'' bytes - (typically 32
812 bits). Consequently, for 64 bit targets, the upper 32 bits of an
813 address was never sent. Since fixing this bug may cause a break in
814 some remote targets this variable is principly provided to
815 facilitate backward compatibility. */
816
817 static int remote_address_size;
818
819 /* Temporary to track who currently owns the terminal. See
820 remote_terminal_* for more details. */
821
822 static int remote_async_terminal_ours_p;
823
824 /* The executable file to use for "run" on the remote side. */
825
826 static char *remote_exec_file = "";
827
828 \f
829 /* User configurable variables for the number of characters in a
830 memory read/write packet. MIN (rsa->remote_packet_size,
831 rsa->sizeof_g_packet) is the default. Some targets need smaller
832 values (fifo overruns, et.al.) and some users need larger values
833 (speed up transfers). The variables ``preferred_*'' (the user
834 request), ``current_*'' (what was actually set) and ``forced_*''
835 (Positive - a soft limit, negative - a hard limit). */
836
837 struct memory_packet_config
838 {
839 char *name;
840 long size;
841 int fixed_p;
842 };
843
844 /* Compute the current size of a read/write packet. Since this makes
845 use of ``actual_register_packet_size'' the computation is dynamic. */
846
847 static long
848 get_memory_packet_size (struct memory_packet_config *config)
849 {
850 struct remote_state *rs = get_remote_state ();
851 struct remote_arch_state *rsa = get_remote_arch_state ();
852
853 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
854 law?) that some hosts don't cope very well with large alloca()
855 calls. Eventually the alloca() code will be replaced by calls to
856 xmalloc() and make_cleanups() allowing this restriction to either
857 be lifted or removed. */
858 #ifndef MAX_REMOTE_PACKET_SIZE
859 #define MAX_REMOTE_PACKET_SIZE 16384
860 #endif
861 /* NOTE: 20 ensures we can write at least one byte. */
862 #ifndef MIN_REMOTE_PACKET_SIZE
863 #define MIN_REMOTE_PACKET_SIZE 20
864 #endif
865 long what_they_get;
866 if (config->fixed_p)
867 {
868 if (config->size <= 0)
869 what_they_get = MAX_REMOTE_PACKET_SIZE;
870 else
871 what_they_get = config->size;
872 }
873 else
874 {
875 what_they_get = get_remote_packet_size ();
876 /* Limit the packet to the size specified by the user. */
877 if (config->size > 0
878 && what_they_get > config->size)
879 what_they_get = config->size;
880
881 /* Limit it to the size of the targets ``g'' response unless we have
882 permission from the stub to use a larger packet size. */
883 if (rs->explicit_packet_size == 0
884 && rsa->actual_register_packet_size > 0
885 && what_they_get > rsa->actual_register_packet_size)
886 what_they_get = rsa->actual_register_packet_size;
887 }
888 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
889 what_they_get = MAX_REMOTE_PACKET_SIZE;
890 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
891 what_they_get = MIN_REMOTE_PACKET_SIZE;
892
893 /* Make sure there is room in the global buffer for this packet
894 (including its trailing NUL byte). */
895 if (rs->buf_size < what_they_get + 1)
896 {
897 rs->buf_size = 2 * what_they_get;
898 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
899 }
900
901 return what_they_get;
902 }
903
904 /* Update the size of a read/write packet. If they user wants
905 something really big then do a sanity check. */
906
907 static void
908 set_memory_packet_size (char *args, struct memory_packet_config *config)
909 {
910 int fixed_p = config->fixed_p;
911 long size = config->size;
912
913 if (args == NULL)
914 error (_("Argument required (integer, `fixed' or `limited')."));
915 else if (strcmp (args, "hard") == 0
916 || strcmp (args, "fixed") == 0)
917 fixed_p = 1;
918 else if (strcmp (args, "soft") == 0
919 || strcmp (args, "limit") == 0)
920 fixed_p = 0;
921 else
922 {
923 char *end;
924
925 size = strtoul (args, &end, 0);
926 if (args == end)
927 error (_("Invalid %s (bad syntax)."), config->name);
928 #if 0
929 /* Instead of explicitly capping the size of a packet to
930 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
931 instead allowed to set the size to something arbitrarily
932 large. */
933 if (size > MAX_REMOTE_PACKET_SIZE)
934 error (_("Invalid %s (too large)."), config->name);
935 #endif
936 }
937 /* Extra checks? */
938 if (fixed_p && !config->fixed_p)
939 {
940 if (! query (_("The target may not be able to correctly handle a %s\n"
941 "of %ld bytes. Change the packet size? "),
942 config->name, size))
943 error (_("Packet size not changed."));
944 }
945 /* Update the config. */
946 config->fixed_p = fixed_p;
947 config->size = size;
948 }
949
950 static void
951 show_memory_packet_size (struct memory_packet_config *config)
952 {
953 printf_filtered (_("The %s is %ld. "), config->name, config->size);
954 if (config->fixed_p)
955 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
956 get_memory_packet_size (config));
957 else
958 printf_filtered (_("Packets are limited to %ld bytes.\n"),
959 get_memory_packet_size (config));
960 }
961
962 static struct memory_packet_config memory_write_packet_config =
963 {
964 "memory-write-packet-size",
965 };
966
967 static void
968 set_memory_write_packet_size (char *args, int from_tty)
969 {
970 set_memory_packet_size (args, &memory_write_packet_config);
971 }
972
973 static void
974 show_memory_write_packet_size (char *args, int from_tty)
975 {
976 show_memory_packet_size (&memory_write_packet_config);
977 }
978
979 static long
980 get_memory_write_packet_size (void)
981 {
982 return get_memory_packet_size (&memory_write_packet_config);
983 }
984
985 static struct memory_packet_config memory_read_packet_config =
986 {
987 "memory-read-packet-size",
988 };
989
990 static void
991 set_memory_read_packet_size (char *args, int from_tty)
992 {
993 set_memory_packet_size (args, &memory_read_packet_config);
994 }
995
996 static void
997 show_memory_read_packet_size (char *args, int from_tty)
998 {
999 show_memory_packet_size (&memory_read_packet_config);
1000 }
1001
1002 static long
1003 get_memory_read_packet_size (void)
1004 {
1005 long size = get_memory_packet_size (&memory_read_packet_config);
1006
1007 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1008 extra buffer size argument before the memory read size can be
1009 increased beyond this. */
1010 if (size > get_remote_packet_size ())
1011 size = get_remote_packet_size ();
1012 return size;
1013 }
1014
1015 \f
1016 /* Generic configuration support for packets the stub optionally
1017 supports. Allows the user to specify the use of the packet as well
1018 as allowing GDB to auto-detect support in the remote stub. */
1019
1020 enum packet_support
1021 {
1022 PACKET_SUPPORT_UNKNOWN = 0,
1023 PACKET_ENABLE,
1024 PACKET_DISABLE
1025 };
1026
1027 struct packet_config
1028 {
1029 const char *name;
1030 const char *title;
1031 enum auto_boolean detect;
1032 enum packet_support support;
1033 };
1034
1035 /* Analyze a packet's return value and update the packet config
1036 accordingly. */
1037
1038 enum packet_result
1039 {
1040 PACKET_ERROR,
1041 PACKET_OK,
1042 PACKET_UNKNOWN
1043 };
1044
1045 static void
1046 update_packet_config (struct packet_config *config)
1047 {
1048 switch (config->detect)
1049 {
1050 case AUTO_BOOLEAN_TRUE:
1051 config->support = PACKET_ENABLE;
1052 break;
1053 case AUTO_BOOLEAN_FALSE:
1054 config->support = PACKET_DISABLE;
1055 break;
1056 case AUTO_BOOLEAN_AUTO:
1057 config->support = PACKET_SUPPORT_UNKNOWN;
1058 break;
1059 }
1060 }
1061
1062 static void
1063 show_packet_config_cmd (struct packet_config *config)
1064 {
1065 char *support = "internal-error";
1066
1067 switch (config->support)
1068 {
1069 case PACKET_ENABLE:
1070 support = "enabled";
1071 break;
1072 case PACKET_DISABLE:
1073 support = "disabled";
1074 break;
1075 case PACKET_SUPPORT_UNKNOWN:
1076 support = "unknown";
1077 break;
1078 }
1079 switch (config->detect)
1080 {
1081 case AUTO_BOOLEAN_AUTO:
1082 printf_filtered (_("Support for the `%s' packet "
1083 "is auto-detected, currently %s.\n"),
1084 config->name, support);
1085 break;
1086 case AUTO_BOOLEAN_TRUE:
1087 case AUTO_BOOLEAN_FALSE:
1088 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1089 config->name, support);
1090 break;
1091 }
1092 }
1093
1094 static void
1095 add_packet_config_cmd (struct packet_config *config, const char *name,
1096 const char *title, int legacy)
1097 {
1098 char *set_doc;
1099 char *show_doc;
1100 char *cmd_name;
1101
1102 config->name = name;
1103 config->title = title;
1104 config->detect = AUTO_BOOLEAN_AUTO;
1105 config->support = PACKET_SUPPORT_UNKNOWN;
1106 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1107 name, title);
1108 show_doc = xstrprintf ("Show current use of remote "
1109 "protocol `%s' (%s) packet",
1110 name, title);
1111 /* set/show TITLE-packet {auto,on,off} */
1112 cmd_name = xstrprintf ("%s-packet", title);
1113 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1114 &config->detect, set_doc,
1115 show_doc, NULL, /* help_doc */
1116 set_remote_protocol_packet_cmd,
1117 show_remote_protocol_packet_cmd,
1118 &remote_set_cmdlist, &remote_show_cmdlist);
1119 /* The command code copies the documentation strings. */
1120 xfree (set_doc);
1121 xfree (show_doc);
1122 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1123 if (legacy)
1124 {
1125 char *legacy_name;
1126
1127 legacy_name = xstrprintf ("%s-packet", name);
1128 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1129 &remote_set_cmdlist);
1130 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1131 &remote_show_cmdlist);
1132 }
1133 }
1134
1135 static enum packet_result
1136 packet_check_result (const char *buf)
1137 {
1138 if (buf[0] != '\0')
1139 {
1140 /* The stub recognized the packet request. Check that the
1141 operation succeeded. */
1142 if (buf[0] == 'E'
1143 && isxdigit (buf[1]) && isxdigit (buf[2])
1144 && buf[3] == '\0')
1145 /* "Enn" - definitly an error. */
1146 return PACKET_ERROR;
1147
1148 /* Always treat "E." as an error. This will be used for
1149 more verbose error messages, such as E.memtypes. */
1150 if (buf[0] == 'E' && buf[1] == '.')
1151 return PACKET_ERROR;
1152
1153 /* The packet may or may not be OK. Just assume it is. */
1154 return PACKET_OK;
1155 }
1156 else
1157 /* The stub does not support the packet. */
1158 return PACKET_UNKNOWN;
1159 }
1160
1161 static enum packet_result
1162 packet_ok (const char *buf, struct packet_config *config)
1163 {
1164 enum packet_result result;
1165
1166 result = packet_check_result (buf);
1167 switch (result)
1168 {
1169 case PACKET_OK:
1170 case PACKET_ERROR:
1171 /* The stub recognized the packet request. */
1172 switch (config->support)
1173 {
1174 case PACKET_SUPPORT_UNKNOWN:
1175 if (remote_debug)
1176 fprintf_unfiltered (gdb_stdlog,
1177 "Packet %s (%s) is supported\n",
1178 config->name, config->title);
1179 config->support = PACKET_ENABLE;
1180 break;
1181 case PACKET_DISABLE:
1182 internal_error (__FILE__, __LINE__,
1183 _("packet_ok: attempt to use a disabled packet"));
1184 break;
1185 case PACKET_ENABLE:
1186 break;
1187 }
1188 break;
1189 case PACKET_UNKNOWN:
1190 /* The stub does not support the packet. */
1191 switch (config->support)
1192 {
1193 case PACKET_ENABLE:
1194 if (config->detect == AUTO_BOOLEAN_AUTO)
1195 /* If the stub previously indicated that the packet was
1196 supported then there is a protocol error.. */
1197 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1198 config->name, config->title);
1199 else
1200 /* The user set it wrong. */
1201 error (_("Enabled packet %s (%s) not recognized by stub"),
1202 config->name, config->title);
1203 break;
1204 case PACKET_SUPPORT_UNKNOWN:
1205 if (remote_debug)
1206 fprintf_unfiltered (gdb_stdlog,
1207 "Packet %s (%s) is NOT supported\n",
1208 config->name, config->title);
1209 config->support = PACKET_DISABLE;
1210 break;
1211 case PACKET_DISABLE:
1212 break;
1213 }
1214 break;
1215 }
1216
1217 return result;
1218 }
1219
1220 enum {
1221 PACKET_vCont = 0,
1222 PACKET_X,
1223 PACKET_qSymbol,
1224 PACKET_P,
1225 PACKET_p,
1226 PACKET_Z0,
1227 PACKET_Z1,
1228 PACKET_Z2,
1229 PACKET_Z3,
1230 PACKET_Z4,
1231 PACKET_vFile_open,
1232 PACKET_vFile_pread,
1233 PACKET_vFile_pwrite,
1234 PACKET_vFile_close,
1235 PACKET_vFile_unlink,
1236 PACKET_qXfer_auxv,
1237 PACKET_qXfer_features,
1238 PACKET_qXfer_libraries,
1239 PACKET_qXfer_memory_map,
1240 PACKET_qXfer_spu_read,
1241 PACKET_qXfer_spu_write,
1242 PACKET_qXfer_osdata,
1243 PACKET_qXfer_threads,
1244 PACKET_qXfer_statictrace_read,
1245 PACKET_qXfer_traceframe_info,
1246 PACKET_qGetTIBAddr,
1247 PACKET_qGetTLSAddr,
1248 PACKET_qSupported,
1249 PACKET_QPassSignals,
1250 PACKET_qSearch_memory,
1251 PACKET_vAttach,
1252 PACKET_vRun,
1253 PACKET_QStartNoAckMode,
1254 PACKET_vKill,
1255 PACKET_qXfer_siginfo_read,
1256 PACKET_qXfer_siginfo_write,
1257 PACKET_qAttached,
1258 PACKET_ConditionalTracepoints,
1259 PACKET_FastTracepoints,
1260 PACKET_StaticTracepoints,
1261 PACKET_bc,
1262 PACKET_bs,
1263 PACKET_TracepointSource,
1264 PACKET_QAllow,
1265 PACKET_MAX
1266 };
1267
1268 static struct packet_config remote_protocol_packets[PACKET_MAX];
1269
1270 static void
1271 set_remote_protocol_packet_cmd (char *args, int from_tty,
1272 struct cmd_list_element *c)
1273 {
1274 struct packet_config *packet;
1275
1276 for (packet = remote_protocol_packets;
1277 packet < &remote_protocol_packets[PACKET_MAX];
1278 packet++)
1279 {
1280 if (&packet->detect == c->var)
1281 {
1282 update_packet_config (packet);
1283 return;
1284 }
1285 }
1286 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1287 c->name);
1288 }
1289
1290 static void
1291 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1292 struct cmd_list_element *c,
1293 const char *value)
1294 {
1295 struct packet_config *packet;
1296
1297 for (packet = remote_protocol_packets;
1298 packet < &remote_protocol_packets[PACKET_MAX];
1299 packet++)
1300 {
1301 if (&packet->detect == c->var)
1302 {
1303 show_packet_config_cmd (packet);
1304 return;
1305 }
1306 }
1307 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1308 c->name);
1309 }
1310
1311 /* Should we try one of the 'Z' requests? */
1312
1313 enum Z_packet_type
1314 {
1315 Z_PACKET_SOFTWARE_BP,
1316 Z_PACKET_HARDWARE_BP,
1317 Z_PACKET_WRITE_WP,
1318 Z_PACKET_READ_WP,
1319 Z_PACKET_ACCESS_WP,
1320 NR_Z_PACKET_TYPES
1321 };
1322
1323 /* For compatibility with older distributions. Provide a ``set remote
1324 Z-packet ...'' command that updates all the Z packet types. */
1325
1326 static enum auto_boolean remote_Z_packet_detect;
1327
1328 static void
1329 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1330 struct cmd_list_element *c)
1331 {
1332 int i;
1333
1334 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1335 {
1336 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1337 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1338 }
1339 }
1340
1341 static void
1342 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1343 struct cmd_list_element *c,
1344 const char *value)
1345 {
1346 int i;
1347
1348 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1349 {
1350 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1351 }
1352 }
1353
1354 /* Should we try the 'ThreadInfo' query packet?
1355
1356 This variable (NOT available to the user: auto-detect only!)
1357 determines whether GDB will use the new, simpler "ThreadInfo"
1358 query or the older, more complex syntax for thread queries.
1359 This is an auto-detect variable (set to true at each connect,
1360 and set to false when the target fails to recognize it). */
1361
1362 static int use_threadinfo_query;
1363 static int use_threadextra_query;
1364
1365 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1366 static struct async_signal_handler *sigint_remote_twice_token;
1367 static struct async_signal_handler *sigint_remote_token;
1368
1369 \f
1370 /* Asynchronous signal handle registered as event loop source for
1371 when we have pending events ready to be passed to the core. */
1372
1373 static struct async_event_handler *remote_async_inferior_event_token;
1374
1375 /* Asynchronous signal handle registered as event loop source for when
1376 the remote sent us a %Stop notification. The registered callback
1377 will do a vStopped sequence to pull the rest of the events out of
1378 the remote side into our event queue. */
1379
1380 static struct async_event_handler *remote_async_get_pending_events_token;
1381 \f
1382
1383 static ptid_t magic_null_ptid;
1384 static ptid_t not_sent_ptid;
1385 static ptid_t any_thread_ptid;
1386
1387 /* These are the threads which we last sent to the remote system. The
1388 TID member will be -1 for all or -2 for not sent yet. */
1389
1390 static ptid_t general_thread;
1391 static ptid_t continue_thread;
1392
1393 /* This the traceframe which we last selected on the remote system.
1394 It will be -1 if no traceframe is selected. */
1395 static int remote_traceframe_number = -1;
1396
1397 /* Find out if the stub attached to PID (and hence GDB should offer to
1398 detach instead of killing it when bailing out). */
1399
1400 static int
1401 remote_query_attached (int pid)
1402 {
1403 struct remote_state *rs = get_remote_state ();
1404
1405 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1406 return 0;
1407
1408 if (remote_multi_process_p (rs))
1409 sprintf (rs->buf, "qAttached:%x", pid);
1410 else
1411 sprintf (rs->buf, "qAttached");
1412
1413 putpkt (rs->buf);
1414 getpkt (&rs->buf, &rs->buf_size, 0);
1415
1416 switch (packet_ok (rs->buf,
1417 &remote_protocol_packets[PACKET_qAttached]))
1418 {
1419 case PACKET_OK:
1420 if (strcmp (rs->buf, "1") == 0)
1421 return 1;
1422 break;
1423 case PACKET_ERROR:
1424 warning (_("Remote failure reply: %s"), rs->buf);
1425 break;
1426 case PACKET_UNKNOWN:
1427 break;
1428 }
1429
1430 return 0;
1431 }
1432
1433 /* Add PID to GDB's inferior table. Since we can be connected to a
1434 remote system before before knowing about any inferior, mark the
1435 target with execution when we find the first inferior. If ATTACHED
1436 is 1, then we had just attached to this inferior. If it is 0, then
1437 we just created this inferior. If it is -1, then try querying the
1438 remote stub to find out if it had attached to the inferior or
1439 not. */
1440
1441 static struct inferior *
1442 remote_add_inferior (int pid, int attached)
1443 {
1444 struct inferior *inf;
1445
1446 /* Check whether this process we're learning about is to be
1447 considered attached, or if is to be considered to have been
1448 spawned by the stub. */
1449 if (attached == -1)
1450 attached = remote_query_attached (pid);
1451
1452 if (gdbarch_has_global_solist (target_gdbarch))
1453 {
1454 /* If the target shares code across all inferiors, then every
1455 attach adds a new inferior. */
1456 inf = add_inferior (pid);
1457
1458 /* ... and every inferior is bound to the same program space.
1459 However, each inferior may still have its own address
1460 space. */
1461 inf->aspace = maybe_new_address_space ();
1462 inf->pspace = current_program_space;
1463 }
1464 else
1465 {
1466 /* In the traditional debugging scenario, there's a 1-1 match
1467 between program/address spaces. We simply bind the inferior
1468 to the program space's address space. */
1469 inf = current_inferior ();
1470 inferior_appeared (inf, pid);
1471 }
1472
1473 inf->attach_flag = attached;
1474
1475 return inf;
1476 }
1477
1478 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1479 according to RUNNING. */
1480
1481 static void
1482 remote_add_thread (ptid_t ptid, int running)
1483 {
1484 add_thread (ptid);
1485
1486 set_executing (ptid, running);
1487 set_running (ptid, running);
1488 }
1489
1490 /* Come here when we learn about a thread id from the remote target.
1491 It may be the first time we hear about such thread, so take the
1492 opportunity to add it to GDB's thread list. In case this is the
1493 first time we're noticing its corresponding inferior, add it to
1494 GDB's inferior list as well. */
1495
1496 static void
1497 remote_notice_new_inferior (ptid_t currthread, int running)
1498 {
1499 /* If this is a new thread, add it to GDB's thread list.
1500 If we leave it up to WFI to do this, bad things will happen. */
1501
1502 if (in_thread_list (currthread) && is_exited (currthread))
1503 {
1504 /* We're seeing an event on a thread id we knew had exited.
1505 This has to be a new thread reusing the old id. Add it. */
1506 remote_add_thread (currthread, running);
1507 return;
1508 }
1509
1510 if (!in_thread_list (currthread))
1511 {
1512 struct inferior *inf = NULL;
1513 int pid = ptid_get_pid (currthread);
1514
1515 if (ptid_is_pid (inferior_ptid)
1516 && pid == ptid_get_pid (inferior_ptid))
1517 {
1518 /* inferior_ptid has no thread member yet. This can happen
1519 with the vAttach -> remote_wait,"TAAthread:" path if the
1520 stub doesn't support qC. This is the first stop reported
1521 after an attach, so this is the main thread. Update the
1522 ptid in the thread list. */
1523 if (in_thread_list (pid_to_ptid (pid)))
1524 thread_change_ptid (inferior_ptid, currthread);
1525 else
1526 {
1527 remote_add_thread (currthread, running);
1528 inferior_ptid = currthread;
1529 }
1530 return;
1531 }
1532
1533 if (ptid_equal (magic_null_ptid, inferior_ptid))
1534 {
1535 /* inferior_ptid is not set yet. This can happen with the
1536 vRun -> remote_wait,"TAAthread:" path if the stub
1537 doesn't support qC. This is the first stop reported
1538 after an attach, so this is the main thread. Update the
1539 ptid in the thread list. */
1540 thread_change_ptid (inferior_ptid, currthread);
1541 return;
1542 }
1543
1544 /* When connecting to a target remote, or to a target
1545 extended-remote which already was debugging an inferior, we
1546 may not know about it yet. Add it before adding its child
1547 thread, so notifications are emitted in a sensible order. */
1548 if (!in_inferior_list (ptid_get_pid (currthread)))
1549 inf = remote_add_inferior (ptid_get_pid (currthread), -1);
1550
1551 /* This is really a new thread. Add it. */
1552 remote_add_thread (currthread, running);
1553
1554 /* If we found a new inferior, let the common code do whatever
1555 it needs to with it (e.g., read shared libraries, insert
1556 breakpoints). */
1557 if (inf != NULL)
1558 notice_new_inferior (currthread, running, 0);
1559 }
1560 }
1561
1562 /* Return the private thread data, creating it if necessary. */
1563
1564 struct private_thread_info *
1565 demand_private_info (ptid_t ptid)
1566 {
1567 struct thread_info *info = find_thread_ptid (ptid);
1568
1569 gdb_assert (info);
1570
1571 if (!info->private)
1572 {
1573 info->private = xmalloc (sizeof (*(info->private)));
1574 info->private_dtor = free_private_thread_info;
1575 info->private->core = -1;
1576 info->private->extra = 0;
1577 }
1578
1579 return info->private;
1580 }
1581
1582 /* Call this function as a result of
1583 1) A halt indication (T packet) containing a thread id
1584 2) A direct query of currthread
1585 3) Successful execution of set thread */
1586
1587 static void
1588 record_currthread (ptid_t currthread)
1589 {
1590 general_thread = currthread;
1591 }
1592
1593 static char *last_pass_packet;
1594
1595 /* If 'QPassSignals' is supported, tell the remote stub what signals
1596 it can simply pass through to the inferior without reporting. */
1597
1598 static void
1599 remote_pass_signals (int numsigs, unsigned char *pass_signals)
1600 {
1601 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1602 {
1603 char *pass_packet, *p;
1604 int count = 0, i;
1605
1606 gdb_assert (numsigs < 256);
1607 for (i = 0; i < numsigs; i++)
1608 {
1609 if (pass_signals[i])
1610 count++;
1611 }
1612 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1613 strcpy (pass_packet, "QPassSignals:");
1614 p = pass_packet + strlen (pass_packet);
1615 for (i = 0; i < numsigs; i++)
1616 {
1617 if (pass_signals[i])
1618 {
1619 if (i >= 16)
1620 *p++ = tohex (i >> 4);
1621 *p++ = tohex (i & 15);
1622 if (count)
1623 *p++ = ';';
1624 else
1625 break;
1626 count--;
1627 }
1628 }
1629 *p = 0;
1630 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1631 {
1632 struct remote_state *rs = get_remote_state ();
1633 char *buf = rs->buf;
1634
1635 putpkt (pass_packet);
1636 getpkt (&rs->buf, &rs->buf_size, 0);
1637 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1638 if (last_pass_packet)
1639 xfree (last_pass_packet);
1640 last_pass_packet = pass_packet;
1641 }
1642 else
1643 xfree (pass_packet);
1644 }
1645 }
1646
1647 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1648 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1649 thread. If GEN is set, set the general thread, if not, then set
1650 the step/continue thread. */
1651 static void
1652 set_thread (struct ptid ptid, int gen)
1653 {
1654 struct remote_state *rs = get_remote_state ();
1655 ptid_t state = gen ? general_thread : continue_thread;
1656 char *buf = rs->buf;
1657 char *endbuf = rs->buf + get_remote_packet_size ();
1658
1659 if (ptid_equal (state, ptid))
1660 return;
1661
1662 *buf++ = 'H';
1663 *buf++ = gen ? 'g' : 'c';
1664 if (ptid_equal (ptid, magic_null_ptid))
1665 xsnprintf (buf, endbuf - buf, "0");
1666 else if (ptid_equal (ptid, any_thread_ptid))
1667 xsnprintf (buf, endbuf - buf, "0");
1668 else if (ptid_equal (ptid, minus_one_ptid))
1669 xsnprintf (buf, endbuf - buf, "-1");
1670 else
1671 write_ptid (buf, endbuf, ptid);
1672 putpkt (rs->buf);
1673 getpkt (&rs->buf, &rs->buf_size, 0);
1674 if (gen)
1675 general_thread = ptid;
1676 else
1677 continue_thread = ptid;
1678 }
1679
1680 static void
1681 set_general_thread (struct ptid ptid)
1682 {
1683 set_thread (ptid, 1);
1684 }
1685
1686 static void
1687 set_continue_thread (struct ptid ptid)
1688 {
1689 set_thread (ptid, 0);
1690 }
1691
1692 /* Change the remote current process. Which thread within the process
1693 ends up selected isn't important, as long as it is the same process
1694 as what INFERIOR_PTID points to.
1695
1696 This comes from that fact that there is no explicit notion of
1697 "selected process" in the protocol. The selected process for
1698 general operations is the process the selected general thread
1699 belongs to. */
1700
1701 static void
1702 set_general_process (void)
1703 {
1704 struct remote_state *rs = get_remote_state ();
1705
1706 /* If the remote can't handle multiple processes, don't bother. */
1707 if (!remote_multi_process_p (rs))
1708 return;
1709
1710 /* We only need to change the remote current thread if it's pointing
1711 at some other process. */
1712 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1713 set_general_thread (inferior_ptid);
1714 }
1715
1716 \f
1717 /* Return nonzero if the thread PTID is still alive on the remote
1718 system. */
1719
1720 static int
1721 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1722 {
1723 struct remote_state *rs = get_remote_state ();
1724 char *p, *endp;
1725
1726 if (ptid_equal (ptid, magic_null_ptid))
1727 /* The main thread is always alive. */
1728 return 1;
1729
1730 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1731 /* The main thread is always alive. This can happen after a
1732 vAttach, if the remote side doesn't support
1733 multi-threading. */
1734 return 1;
1735
1736 p = rs->buf;
1737 endp = rs->buf + get_remote_packet_size ();
1738
1739 *p++ = 'T';
1740 write_ptid (p, endp, ptid);
1741
1742 putpkt (rs->buf);
1743 getpkt (&rs->buf, &rs->buf_size, 0);
1744 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1745 }
1746
1747 /* About these extended threadlist and threadinfo packets. They are
1748 variable length packets but, the fields within them are often fixed
1749 length. They are redundent enough to send over UDP as is the
1750 remote protocol in general. There is a matching unit test module
1751 in libstub. */
1752
1753 #define OPAQUETHREADBYTES 8
1754
1755 /* a 64 bit opaque identifier */
1756 typedef unsigned char threadref[OPAQUETHREADBYTES];
1757
1758 /* WARNING: This threadref data structure comes from the remote O.S.,
1759 libstub protocol encoding, and remote.c. It is not particularly
1760 changable. */
1761
1762 /* Right now, the internal structure is int. We want it to be bigger.
1763 Plan to fix this. */
1764
1765 typedef int gdb_threadref; /* Internal GDB thread reference. */
1766
1767 /* gdb_ext_thread_info is an internal GDB data structure which is
1768 equivalent to the reply of the remote threadinfo packet. */
1769
1770 struct gdb_ext_thread_info
1771 {
1772 threadref threadid; /* External form of thread reference. */
1773 int active; /* Has state interesting to GDB?
1774 regs, stack. */
1775 char display[256]; /* Brief state display, name,
1776 blocked/suspended. */
1777 char shortname[32]; /* To be used to name threads. */
1778 char more_display[256]; /* Long info, statistics, queue depth,
1779 whatever. */
1780 };
1781
1782 /* The volume of remote transfers can be limited by submitting
1783 a mask containing bits specifying the desired information.
1784 Use a union of these values as the 'selection' parameter to
1785 get_thread_info. FIXME: Make these TAG names more thread specific. */
1786
1787 #define TAG_THREADID 1
1788 #define TAG_EXISTS 2
1789 #define TAG_DISPLAY 4
1790 #define TAG_THREADNAME 8
1791 #define TAG_MOREDISPLAY 16
1792
1793 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1794
1795 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1796
1797 static char *unpack_nibble (char *buf, int *val);
1798
1799 static char *pack_nibble (char *buf, int nibble);
1800
1801 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1802
1803 static char *unpack_byte (char *buf, int *value);
1804
1805 static char *pack_int (char *buf, int value);
1806
1807 static char *unpack_int (char *buf, int *value);
1808
1809 static char *unpack_string (char *src, char *dest, int length);
1810
1811 static char *pack_threadid (char *pkt, threadref *id);
1812
1813 static char *unpack_threadid (char *inbuf, threadref *id);
1814
1815 void int_to_threadref (threadref *id, int value);
1816
1817 static int threadref_to_int (threadref *ref);
1818
1819 static void copy_threadref (threadref *dest, threadref *src);
1820
1821 static int threadmatch (threadref *dest, threadref *src);
1822
1823 static char *pack_threadinfo_request (char *pkt, int mode,
1824 threadref *id);
1825
1826 static int remote_unpack_thread_info_response (char *pkt,
1827 threadref *expectedref,
1828 struct gdb_ext_thread_info
1829 *info);
1830
1831
1832 static int remote_get_threadinfo (threadref *threadid,
1833 int fieldset, /*TAG mask */
1834 struct gdb_ext_thread_info *info);
1835
1836 static char *pack_threadlist_request (char *pkt, int startflag,
1837 int threadcount,
1838 threadref *nextthread);
1839
1840 static int parse_threadlist_response (char *pkt,
1841 int result_limit,
1842 threadref *original_echo,
1843 threadref *resultlist,
1844 int *doneflag);
1845
1846 static int remote_get_threadlist (int startflag,
1847 threadref *nextthread,
1848 int result_limit,
1849 int *done,
1850 int *result_count,
1851 threadref *threadlist);
1852
1853 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1854
1855 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1856 void *context, int looplimit);
1857
1858 static int remote_newthread_step (threadref *ref, void *context);
1859
1860
1861 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1862 buffer we're allowed to write to. Returns
1863 BUF+CHARACTERS_WRITTEN. */
1864
1865 static char *
1866 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1867 {
1868 int pid, tid;
1869 struct remote_state *rs = get_remote_state ();
1870
1871 if (remote_multi_process_p (rs))
1872 {
1873 pid = ptid_get_pid (ptid);
1874 if (pid < 0)
1875 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1876 else
1877 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1878 }
1879 tid = ptid_get_tid (ptid);
1880 if (tid < 0)
1881 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1882 else
1883 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1884
1885 return buf;
1886 }
1887
1888 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1889 passed the last parsed char. Returns null_ptid on error. */
1890
1891 static ptid_t
1892 read_ptid (char *buf, char **obuf)
1893 {
1894 char *p = buf;
1895 char *pp;
1896 ULONGEST pid = 0, tid = 0;
1897
1898 if (*p == 'p')
1899 {
1900 /* Multi-process ptid. */
1901 pp = unpack_varlen_hex (p + 1, &pid);
1902 if (*pp != '.')
1903 error (_("invalid remote ptid: %s"), p);
1904
1905 p = pp;
1906 pp = unpack_varlen_hex (p + 1, &tid);
1907 if (obuf)
1908 *obuf = pp;
1909 return ptid_build (pid, 0, tid);
1910 }
1911
1912 /* No multi-process. Just a tid. */
1913 pp = unpack_varlen_hex (p, &tid);
1914
1915 /* Since the stub is not sending a process id, then default to
1916 what's in inferior_ptid, unless it's null at this point. If so,
1917 then since there's no way to know the pid of the reported
1918 threads, use the magic number. */
1919 if (ptid_equal (inferior_ptid, null_ptid))
1920 pid = ptid_get_pid (magic_null_ptid);
1921 else
1922 pid = ptid_get_pid (inferior_ptid);
1923
1924 if (obuf)
1925 *obuf = pp;
1926 return ptid_build (pid, 0, tid);
1927 }
1928
1929 /* Encode 64 bits in 16 chars of hex. */
1930
1931 static const char hexchars[] = "0123456789abcdef";
1932
1933 static int
1934 ishex (int ch, int *val)
1935 {
1936 if ((ch >= 'a') && (ch <= 'f'))
1937 {
1938 *val = ch - 'a' + 10;
1939 return 1;
1940 }
1941 if ((ch >= 'A') && (ch <= 'F'))
1942 {
1943 *val = ch - 'A' + 10;
1944 return 1;
1945 }
1946 if ((ch >= '0') && (ch <= '9'))
1947 {
1948 *val = ch - '0';
1949 return 1;
1950 }
1951 return 0;
1952 }
1953
1954 static int
1955 stubhex (int ch)
1956 {
1957 if (ch >= 'a' && ch <= 'f')
1958 return ch - 'a' + 10;
1959 if (ch >= '0' && ch <= '9')
1960 return ch - '0';
1961 if (ch >= 'A' && ch <= 'F')
1962 return ch - 'A' + 10;
1963 return -1;
1964 }
1965
1966 static int
1967 stub_unpack_int (char *buff, int fieldlength)
1968 {
1969 int nibble;
1970 int retval = 0;
1971
1972 while (fieldlength)
1973 {
1974 nibble = stubhex (*buff++);
1975 retval |= nibble;
1976 fieldlength--;
1977 if (fieldlength)
1978 retval = retval << 4;
1979 }
1980 return retval;
1981 }
1982
1983 char *
1984 unpack_varlen_hex (char *buff, /* packet to parse */
1985 ULONGEST *result)
1986 {
1987 int nibble;
1988 ULONGEST retval = 0;
1989
1990 while (ishex (*buff, &nibble))
1991 {
1992 buff++;
1993 retval = retval << 4;
1994 retval |= nibble & 0x0f;
1995 }
1996 *result = retval;
1997 return buff;
1998 }
1999
2000 static char *
2001 unpack_nibble (char *buf, int *val)
2002 {
2003 *val = fromhex (*buf++);
2004 return buf;
2005 }
2006
2007 static char *
2008 pack_nibble (char *buf, int nibble)
2009 {
2010 *buf++ = hexchars[(nibble & 0x0f)];
2011 return buf;
2012 }
2013
2014 static char *
2015 pack_hex_byte (char *pkt, int byte)
2016 {
2017 *pkt++ = hexchars[(byte >> 4) & 0xf];
2018 *pkt++ = hexchars[(byte & 0xf)];
2019 return pkt;
2020 }
2021
2022 static char *
2023 unpack_byte (char *buf, int *value)
2024 {
2025 *value = stub_unpack_int (buf, 2);
2026 return buf + 2;
2027 }
2028
2029 static char *
2030 pack_int (char *buf, int value)
2031 {
2032 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2033 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2034 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2035 buf = pack_hex_byte (buf, (value & 0xff));
2036 return buf;
2037 }
2038
2039 static char *
2040 unpack_int (char *buf, int *value)
2041 {
2042 *value = stub_unpack_int (buf, 8);
2043 return buf + 8;
2044 }
2045
2046 #if 0 /* Currently unused, uncomment when needed. */
2047 static char *pack_string (char *pkt, char *string);
2048
2049 static char *
2050 pack_string (char *pkt, char *string)
2051 {
2052 char ch;
2053 int len;
2054
2055 len = strlen (string);
2056 if (len > 200)
2057 len = 200; /* Bigger than most GDB packets, junk??? */
2058 pkt = pack_hex_byte (pkt, len);
2059 while (len-- > 0)
2060 {
2061 ch = *string++;
2062 if ((ch == '\0') || (ch == '#'))
2063 ch = '*'; /* Protect encapsulation. */
2064 *pkt++ = ch;
2065 }
2066 return pkt;
2067 }
2068 #endif /* 0 (unused) */
2069
2070 static char *
2071 unpack_string (char *src, char *dest, int length)
2072 {
2073 while (length--)
2074 *dest++ = *src++;
2075 *dest = '\0';
2076 return src;
2077 }
2078
2079 static char *
2080 pack_threadid (char *pkt, threadref *id)
2081 {
2082 char *limit;
2083 unsigned char *altid;
2084
2085 altid = (unsigned char *) id;
2086 limit = pkt + BUF_THREAD_ID_SIZE;
2087 while (pkt < limit)
2088 pkt = pack_hex_byte (pkt, *altid++);
2089 return pkt;
2090 }
2091
2092
2093 static char *
2094 unpack_threadid (char *inbuf, threadref *id)
2095 {
2096 char *altref;
2097 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2098 int x, y;
2099
2100 altref = (char *) id;
2101
2102 while (inbuf < limit)
2103 {
2104 x = stubhex (*inbuf++);
2105 y = stubhex (*inbuf++);
2106 *altref++ = (x << 4) | y;
2107 }
2108 return inbuf;
2109 }
2110
2111 /* Externally, threadrefs are 64 bits but internally, they are still
2112 ints. This is due to a mismatch of specifications. We would like
2113 to use 64bit thread references internally. This is an adapter
2114 function. */
2115
2116 void
2117 int_to_threadref (threadref *id, int value)
2118 {
2119 unsigned char *scan;
2120
2121 scan = (unsigned char *) id;
2122 {
2123 int i = 4;
2124 while (i--)
2125 *scan++ = 0;
2126 }
2127 *scan++ = (value >> 24) & 0xff;
2128 *scan++ = (value >> 16) & 0xff;
2129 *scan++ = (value >> 8) & 0xff;
2130 *scan++ = (value & 0xff);
2131 }
2132
2133 static int
2134 threadref_to_int (threadref *ref)
2135 {
2136 int i, value = 0;
2137 unsigned char *scan;
2138
2139 scan = *ref;
2140 scan += 4;
2141 i = 4;
2142 while (i-- > 0)
2143 value = (value << 8) | ((*scan++) & 0xff);
2144 return value;
2145 }
2146
2147 static void
2148 copy_threadref (threadref *dest, threadref *src)
2149 {
2150 int i;
2151 unsigned char *csrc, *cdest;
2152
2153 csrc = (unsigned char *) src;
2154 cdest = (unsigned char *) dest;
2155 i = 8;
2156 while (i--)
2157 *cdest++ = *csrc++;
2158 }
2159
2160 static int
2161 threadmatch (threadref *dest, threadref *src)
2162 {
2163 /* Things are broken right now, so just assume we got a match. */
2164 #if 0
2165 unsigned char *srcp, *destp;
2166 int i, result;
2167 srcp = (char *) src;
2168 destp = (char *) dest;
2169
2170 result = 1;
2171 while (i-- > 0)
2172 result &= (*srcp++ == *destp++) ? 1 : 0;
2173 return result;
2174 #endif
2175 return 1;
2176 }
2177
2178 /*
2179 threadid:1, # always request threadid
2180 context_exists:2,
2181 display:4,
2182 unique_name:8,
2183 more_display:16
2184 */
2185
2186 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2187
2188 static char *
2189 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2190 {
2191 *pkt++ = 'q'; /* Info Query */
2192 *pkt++ = 'P'; /* process or thread info */
2193 pkt = pack_int (pkt, mode); /* mode */
2194 pkt = pack_threadid (pkt, id); /* threadid */
2195 *pkt = '\0'; /* terminate */
2196 return pkt;
2197 }
2198
2199 /* These values tag the fields in a thread info response packet. */
2200 /* Tagging the fields allows us to request specific fields and to
2201 add more fields as time goes by. */
2202
2203 #define TAG_THREADID 1 /* Echo the thread identifier. */
2204 #define TAG_EXISTS 2 /* Is this process defined enough to
2205 fetch registers and its stack? */
2206 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2207 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2208 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2209 the process. */
2210
2211 static int
2212 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2213 struct gdb_ext_thread_info *info)
2214 {
2215 struct remote_state *rs = get_remote_state ();
2216 int mask, length;
2217 int tag;
2218 threadref ref;
2219 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2220 int retval = 1;
2221
2222 /* info->threadid = 0; FIXME: implement zero_threadref. */
2223 info->active = 0;
2224 info->display[0] = '\0';
2225 info->shortname[0] = '\0';
2226 info->more_display[0] = '\0';
2227
2228 /* Assume the characters indicating the packet type have been
2229 stripped. */
2230 pkt = unpack_int (pkt, &mask); /* arg mask */
2231 pkt = unpack_threadid (pkt, &ref);
2232
2233 if (mask == 0)
2234 warning (_("Incomplete response to threadinfo request."));
2235 if (!threadmatch (&ref, expectedref))
2236 { /* This is an answer to a different request. */
2237 warning (_("ERROR RMT Thread info mismatch."));
2238 return 0;
2239 }
2240 copy_threadref (&info->threadid, &ref);
2241
2242 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2243
2244 /* Packets are terminated with nulls. */
2245 while ((pkt < limit) && mask && *pkt)
2246 {
2247 pkt = unpack_int (pkt, &tag); /* tag */
2248 pkt = unpack_byte (pkt, &length); /* length */
2249 if (!(tag & mask)) /* Tags out of synch with mask. */
2250 {
2251 warning (_("ERROR RMT: threadinfo tag mismatch."));
2252 retval = 0;
2253 break;
2254 }
2255 if (tag == TAG_THREADID)
2256 {
2257 if (length != 16)
2258 {
2259 warning (_("ERROR RMT: length of threadid is not 16."));
2260 retval = 0;
2261 break;
2262 }
2263 pkt = unpack_threadid (pkt, &ref);
2264 mask = mask & ~TAG_THREADID;
2265 continue;
2266 }
2267 if (tag == TAG_EXISTS)
2268 {
2269 info->active = stub_unpack_int (pkt, length);
2270 pkt += length;
2271 mask = mask & ~(TAG_EXISTS);
2272 if (length > 8)
2273 {
2274 warning (_("ERROR RMT: 'exists' length too long."));
2275 retval = 0;
2276 break;
2277 }
2278 continue;
2279 }
2280 if (tag == TAG_THREADNAME)
2281 {
2282 pkt = unpack_string (pkt, &info->shortname[0], length);
2283 mask = mask & ~TAG_THREADNAME;
2284 continue;
2285 }
2286 if (tag == TAG_DISPLAY)
2287 {
2288 pkt = unpack_string (pkt, &info->display[0], length);
2289 mask = mask & ~TAG_DISPLAY;
2290 continue;
2291 }
2292 if (tag == TAG_MOREDISPLAY)
2293 {
2294 pkt = unpack_string (pkt, &info->more_display[0], length);
2295 mask = mask & ~TAG_MOREDISPLAY;
2296 continue;
2297 }
2298 warning (_("ERROR RMT: unknown thread info tag."));
2299 break; /* Not a tag we know about. */
2300 }
2301 return retval;
2302 }
2303
2304 static int
2305 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2306 struct gdb_ext_thread_info *info)
2307 {
2308 struct remote_state *rs = get_remote_state ();
2309 int result;
2310
2311 pack_threadinfo_request (rs->buf, fieldset, threadid);
2312 putpkt (rs->buf);
2313 getpkt (&rs->buf, &rs->buf_size, 0);
2314
2315 if (rs->buf[0] == '\0')
2316 return 0;
2317
2318 result = remote_unpack_thread_info_response (rs->buf + 2,
2319 threadid, info);
2320 return result;
2321 }
2322
2323 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2324
2325 static char *
2326 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2327 threadref *nextthread)
2328 {
2329 *pkt++ = 'q'; /* info query packet */
2330 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2331 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2332 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2333 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2334 *pkt = '\0';
2335 return pkt;
2336 }
2337
2338 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2339
2340 static int
2341 parse_threadlist_response (char *pkt, int result_limit,
2342 threadref *original_echo, threadref *resultlist,
2343 int *doneflag)
2344 {
2345 struct remote_state *rs = get_remote_state ();
2346 char *limit;
2347 int count, resultcount, done;
2348
2349 resultcount = 0;
2350 /* Assume the 'q' and 'M chars have been stripped. */
2351 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2352 /* done parse past here */
2353 pkt = unpack_byte (pkt, &count); /* count field */
2354 pkt = unpack_nibble (pkt, &done);
2355 /* The first threadid is the argument threadid. */
2356 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2357 while ((count-- > 0) && (pkt < limit))
2358 {
2359 pkt = unpack_threadid (pkt, resultlist++);
2360 if (resultcount++ >= result_limit)
2361 break;
2362 }
2363 if (doneflag)
2364 *doneflag = done;
2365 return resultcount;
2366 }
2367
2368 static int
2369 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2370 int *done, int *result_count, threadref *threadlist)
2371 {
2372 struct remote_state *rs = get_remote_state ();
2373 static threadref echo_nextthread;
2374 int result = 1;
2375
2376 /* Trancate result limit to be smaller than the packet size. */
2377 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2378 >= get_remote_packet_size ())
2379 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2380
2381 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2382 putpkt (rs->buf);
2383 getpkt (&rs->buf, &rs->buf_size, 0);
2384
2385 if (*rs->buf == '\0')
2386 return 0;
2387 else
2388 *result_count =
2389 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2390 threadlist, done);
2391
2392 if (!threadmatch (&echo_nextthread, nextthread))
2393 {
2394 /* FIXME: This is a good reason to drop the packet. */
2395 /* Possably, there is a duplicate response. */
2396 /* Possabilities :
2397 retransmit immediatly - race conditions
2398 retransmit after timeout - yes
2399 exit
2400 wait for packet, then exit
2401 */
2402 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2403 return 0; /* I choose simply exiting. */
2404 }
2405 if (*result_count <= 0)
2406 {
2407 if (*done != 1)
2408 {
2409 warning (_("RMT ERROR : failed to get remote thread list."));
2410 result = 0;
2411 }
2412 return result; /* break; */
2413 }
2414 if (*result_count > result_limit)
2415 {
2416 *result_count = 0;
2417 warning (_("RMT ERROR: threadlist response longer than requested."));
2418 return 0;
2419 }
2420 return result;
2421 }
2422
2423 /* This is the interface between remote and threads, remotes upper
2424 interface. */
2425
2426 /* remote_find_new_threads retrieves the thread list and for each
2427 thread in the list, looks up the thread in GDB's internal list,
2428 adding the thread if it does not already exist. This involves
2429 getting partial thread lists from the remote target so, polling the
2430 quit_flag is required. */
2431
2432
2433 /* About this many threadisds fit in a packet. */
2434
2435 #define MAXTHREADLISTRESULTS 32
2436
2437 static int
2438 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2439 int looplimit)
2440 {
2441 int done, i, result_count;
2442 int startflag = 1;
2443 int result = 1;
2444 int loopcount = 0;
2445 static threadref nextthread;
2446 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2447
2448 done = 0;
2449 while (!done)
2450 {
2451 if (loopcount++ > looplimit)
2452 {
2453 result = 0;
2454 warning (_("Remote fetch threadlist -infinite loop-."));
2455 break;
2456 }
2457 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2458 &done, &result_count, resultthreadlist))
2459 {
2460 result = 0;
2461 break;
2462 }
2463 /* Clear for later iterations. */
2464 startflag = 0;
2465 /* Setup to resume next batch of thread references, set nextthread. */
2466 if (result_count >= 1)
2467 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2468 i = 0;
2469 while (result_count--)
2470 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2471 break;
2472 }
2473 return result;
2474 }
2475
2476 static int
2477 remote_newthread_step (threadref *ref, void *context)
2478 {
2479 int pid = ptid_get_pid (inferior_ptid);
2480 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2481
2482 if (!in_thread_list (ptid))
2483 add_thread (ptid);
2484 return 1; /* continue iterator */
2485 }
2486
2487 #define CRAZY_MAX_THREADS 1000
2488
2489 static ptid_t
2490 remote_current_thread (ptid_t oldpid)
2491 {
2492 struct remote_state *rs = get_remote_state ();
2493
2494 putpkt ("qC");
2495 getpkt (&rs->buf, &rs->buf_size, 0);
2496 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2497 return read_ptid (&rs->buf[2], NULL);
2498 else
2499 return oldpid;
2500 }
2501
2502 /* Find new threads for info threads command.
2503 * Original version, using John Metzler's thread protocol.
2504 */
2505
2506 static void
2507 remote_find_new_threads (void)
2508 {
2509 remote_threadlist_iterator (remote_newthread_step, 0,
2510 CRAZY_MAX_THREADS);
2511 }
2512
2513 #if defined(HAVE_LIBEXPAT)
2514
2515 typedef struct thread_item
2516 {
2517 ptid_t ptid;
2518 char *extra;
2519 int core;
2520 } thread_item_t;
2521 DEF_VEC_O(thread_item_t);
2522
2523 struct threads_parsing_context
2524 {
2525 VEC (thread_item_t) *items;
2526 };
2527
2528 static void
2529 start_thread (struct gdb_xml_parser *parser,
2530 const struct gdb_xml_element *element,
2531 void *user_data, VEC(gdb_xml_value_s) *attributes)
2532 {
2533 struct threads_parsing_context *data = user_data;
2534
2535 struct thread_item item;
2536 char *id;
2537 struct gdb_xml_value *attr;
2538
2539 id = xml_find_attribute (attributes, "id")->value;
2540 item.ptid = read_ptid (id, NULL);
2541
2542 attr = xml_find_attribute (attributes, "core");
2543 if (attr != NULL)
2544 item.core = *(ULONGEST *) attr->value;
2545 else
2546 item.core = -1;
2547
2548 item.extra = 0;
2549
2550 VEC_safe_push (thread_item_t, data->items, &item);
2551 }
2552
2553 static void
2554 end_thread (struct gdb_xml_parser *parser,
2555 const struct gdb_xml_element *element,
2556 void *user_data, const char *body_text)
2557 {
2558 struct threads_parsing_context *data = user_data;
2559
2560 if (body_text && *body_text)
2561 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
2562 }
2563
2564 const struct gdb_xml_attribute thread_attributes[] = {
2565 { "id", GDB_XML_AF_NONE, NULL, NULL },
2566 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2567 { NULL, GDB_XML_AF_NONE, NULL, NULL }
2568 };
2569
2570 const struct gdb_xml_element thread_children[] = {
2571 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2572 };
2573
2574 const struct gdb_xml_element threads_children[] = {
2575 { "thread", thread_attributes, thread_children,
2576 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2577 start_thread, end_thread },
2578 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2579 };
2580
2581 const struct gdb_xml_element threads_elements[] = {
2582 { "threads", NULL, threads_children,
2583 GDB_XML_EF_NONE, NULL, NULL },
2584 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2585 };
2586
2587 /* Discard the contents of the constructed thread info context. */
2588
2589 static void
2590 clear_threads_parsing_context (void *p)
2591 {
2592 struct threads_parsing_context *context = p;
2593 int i;
2594 struct thread_item *item;
2595
2596 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
2597 xfree (item->extra);
2598
2599 VEC_free (thread_item_t, context->items);
2600 }
2601
2602 #endif
2603
2604 /*
2605 * Find all threads for info threads command.
2606 * Uses new thread protocol contributed by Cisco.
2607 * Falls back and attempts to use the older method (above)
2608 * if the target doesn't respond to the new method.
2609 */
2610
2611 static void
2612 remote_threads_info (struct target_ops *ops)
2613 {
2614 struct remote_state *rs = get_remote_state ();
2615 char *bufp;
2616 ptid_t new_thread;
2617
2618 if (remote_desc == 0) /* paranoia */
2619 error (_("Command can only be used when connected to the remote target."));
2620
2621 #if defined(HAVE_LIBEXPAT)
2622 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2623 {
2624 char *xml = target_read_stralloc (&current_target,
2625 TARGET_OBJECT_THREADS, NULL);
2626
2627 struct cleanup *back_to = make_cleanup (xfree, xml);
2628
2629 if (xml && *xml)
2630 {
2631 struct threads_parsing_context context;
2632
2633 context.items = NULL;
2634 make_cleanup (clear_threads_parsing_context, &context);
2635
2636 if (gdb_xml_parse_quick (_("threads"), "threads.dtd",
2637 threads_elements, xml, &context) == 0)
2638 {
2639 int i;
2640 struct thread_item *item;
2641
2642 for (i = 0;
2643 VEC_iterate (thread_item_t, context.items, i, item);
2644 ++i)
2645 {
2646 if (!ptid_equal (item->ptid, null_ptid))
2647 {
2648 struct private_thread_info *info;
2649 /* In non-stop mode, we assume new found threads
2650 are running until proven otherwise with a
2651 stop reply. In all-stop, we can only get
2652 here if all threads are stopped. */
2653 int running = non_stop ? 1 : 0;
2654
2655 remote_notice_new_inferior (item->ptid, running);
2656
2657 info = demand_private_info (item->ptid);
2658 info->core = item->core;
2659 info->extra = item->extra;
2660 item->extra = NULL;
2661 }
2662 }
2663 }
2664 }
2665
2666 do_cleanups (back_to);
2667 return;
2668 }
2669 #endif
2670
2671 if (use_threadinfo_query)
2672 {
2673 putpkt ("qfThreadInfo");
2674 getpkt (&rs->buf, &rs->buf_size, 0);
2675 bufp = rs->buf;
2676 if (bufp[0] != '\0') /* q packet recognized */
2677 {
2678 while (*bufp++ == 'm') /* reply contains one or more TID */
2679 {
2680 do
2681 {
2682 new_thread = read_ptid (bufp, &bufp);
2683 if (!ptid_equal (new_thread, null_ptid))
2684 {
2685 /* In non-stop mode, we assume new found threads
2686 are running until proven otherwise with a
2687 stop reply. In all-stop, we can only get
2688 here if all threads are stopped. */
2689 int running = non_stop ? 1 : 0;
2690
2691 remote_notice_new_inferior (new_thread, running);
2692 }
2693 }
2694 while (*bufp++ == ','); /* comma-separated list */
2695 putpkt ("qsThreadInfo");
2696 getpkt (&rs->buf, &rs->buf_size, 0);
2697 bufp = rs->buf;
2698 }
2699 return; /* done */
2700 }
2701 }
2702
2703 /* Only qfThreadInfo is supported in non-stop mode. */
2704 if (non_stop)
2705 return;
2706
2707 /* Else fall back to old method based on jmetzler protocol. */
2708 use_threadinfo_query = 0;
2709 remote_find_new_threads ();
2710 return;
2711 }
2712
2713 /*
2714 * Collect a descriptive string about the given thread.
2715 * The target may say anything it wants to about the thread
2716 * (typically info about its blocked / runnable state, name, etc.).
2717 * This string will appear in the info threads display.
2718 *
2719 * Optional: targets are not required to implement this function.
2720 */
2721
2722 static char *
2723 remote_threads_extra_info (struct thread_info *tp)
2724 {
2725 struct remote_state *rs = get_remote_state ();
2726 int result;
2727 int set;
2728 threadref id;
2729 struct gdb_ext_thread_info threadinfo;
2730 static char display_buf[100]; /* arbitrary... */
2731 int n = 0; /* position in display_buf */
2732
2733 if (remote_desc == 0) /* paranoia */
2734 internal_error (__FILE__, __LINE__,
2735 _("remote_threads_extra_info"));
2736
2737 if (ptid_equal (tp->ptid, magic_null_ptid)
2738 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2739 /* This is the main thread which was added by GDB. The remote
2740 server doesn't know about it. */
2741 return NULL;
2742
2743 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2744 {
2745 struct thread_info *info = find_thread_ptid (tp->ptid);
2746
2747 if (info && info->private)
2748 return info->private->extra;
2749 else
2750 return NULL;
2751 }
2752
2753 if (use_threadextra_query)
2754 {
2755 char *b = rs->buf;
2756 char *endb = rs->buf + get_remote_packet_size ();
2757
2758 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2759 b += strlen (b);
2760 write_ptid (b, endb, tp->ptid);
2761
2762 putpkt (rs->buf);
2763 getpkt (&rs->buf, &rs->buf_size, 0);
2764 if (rs->buf[0] != 0)
2765 {
2766 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2767 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2768 display_buf [result] = '\0';
2769 return display_buf;
2770 }
2771 }
2772
2773 /* If the above query fails, fall back to the old method. */
2774 use_threadextra_query = 0;
2775 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2776 | TAG_MOREDISPLAY | TAG_DISPLAY;
2777 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2778 if (remote_get_threadinfo (&id, set, &threadinfo))
2779 if (threadinfo.active)
2780 {
2781 if (*threadinfo.shortname)
2782 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2783 " Name: %s,", threadinfo.shortname);
2784 if (*threadinfo.display)
2785 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2786 " State: %s,", threadinfo.display);
2787 if (*threadinfo.more_display)
2788 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2789 " Priority: %s", threadinfo.more_display);
2790
2791 if (n > 0)
2792 {
2793 /* For purely cosmetic reasons, clear up trailing commas. */
2794 if (',' == display_buf[n-1])
2795 display_buf[n-1] = ' ';
2796 return display_buf;
2797 }
2798 }
2799 return NULL;
2800 }
2801 \f
2802
2803 static int
2804 remote_static_tracepoint_marker_at (CORE_ADDR addr,
2805 struct static_tracepoint_marker *marker)
2806 {
2807 struct remote_state *rs = get_remote_state ();
2808 char *p = rs->buf;
2809
2810 sprintf (p, "qTSTMat:");
2811 p += strlen (p);
2812 p += hexnumstr (p, addr);
2813 putpkt (rs->buf);
2814 getpkt (&rs->buf, &rs->buf_size, 0);
2815 p = rs->buf;
2816
2817 if (*p == 'E')
2818 error (_("Remote failure reply: %s"), p);
2819
2820 if (*p++ == 'm')
2821 {
2822 parse_static_tracepoint_marker_definition (p, &p, marker);
2823 return 1;
2824 }
2825
2826 return 0;
2827 }
2828
2829 static void
2830 free_current_marker (void *arg)
2831 {
2832 struct static_tracepoint_marker **marker_p = arg;
2833
2834 if (*marker_p != NULL)
2835 {
2836 release_static_tracepoint_marker (*marker_p);
2837 xfree (*marker_p);
2838 }
2839 else
2840 *marker_p = NULL;
2841 }
2842
2843 static VEC(static_tracepoint_marker_p) *
2844 remote_static_tracepoint_markers_by_strid (const char *strid)
2845 {
2846 struct remote_state *rs = get_remote_state ();
2847 VEC(static_tracepoint_marker_p) *markers = NULL;
2848 struct static_tracepoint_marker *marker = NULL;
2849 struct cleanup *old_chain;
2850 char *p;
2851
2852 /* Ask for a first packet of static tracepoint marker
2853 definition. */
2854 putpkt ("qTfSTM");
2855 getpkt (&rs->buf, &rs->buf_size, 0);
2856 p = rs->buf;
2857 if (*p == 'E')
2858 error (_("Remote failure reply: %s"), p);
2859
2860 old_chain = make_cleanup (free_current_marker, &marker);
2861
2862 while (*p++ == 'm')
2863 {
2864 if (marker == NULL)
2865 marker = XCNEW (struct static_tracepoint_marker);
2866
2867 do
2868 {
2869 parse_static_tracepoint_marker_definition (p, &p, marker);
2870
2871 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
2872 {
2873 VEC_safe_push (static_tracepoint_marker_p,
2874 markers, marker);
2875 marker = NULL;
2876 }
2877 else
2878 {
2879 release_static_tracepoint_marker (marker);
2880 memset (marker, 0, sizeof (*marker));
2881 }
2882 }
2883 while (*p++ == ','); /* comma-separated list */
2884 /* Ask for another packet of static tracepoint definition. */
2885 putpkt ("qTsSTM");
2886 getpkt (&rs->buf, &rs->buf_size, 0);
2887 p = rs->buf;
2888 }
2889
2890 do_cleanups (old_chain);
2891 return markers;
2892 }
2893
2894 \f
2895 /* Implement the to_get_ada_task_ptid function for the remote targets. */
2896
2897 static ptid_t
2898 remote_get_ada_task_ptid (long lwp, long thread)
2899 {
2900 return ptid_build (ptid_get_pid (inferior_ptid), 0, lwp);
2901 }
2902 \f
2903
2904 /* Restart the remote side; this is an extended protocol operation. */
2905
2906 static void
2907 extended_remote_restart (void)
2908 {
2909 struct remote_state *rs = get_remote_state ();
2910
2911 /* Send the restart command; for reasons I don't understand the
2912 remote side really expects a number after the "R". */
2913 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2914 putpkt (rs->buf);
2915
2916 remote_fileio_reset ();
2917 }
2918 \f
2919 /* Clean up connection to a remote debugger. */
2920
2921 static void
2922 remote_close (int quitting)
2923 {
2924 if (remote_desc == NULL)
2925 return; /* already closed */
2926
2927 /* Make sure we leave stdin registered in the event loop, and we
2928 don't leave the async SIGINT signal handler installed. */
2929 remote_terminal_ours ();
2930
2931 serial_close (remote_desc);
2932 remote_desc = NULL;
2933
2934 /* We don't have a connection to the remote stub anymore. Get rid
2935 of all the inferiors and their threads we were controlling.
2936 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
2937 will be unable to find the thread corresponding to (pid, 0, 0). */
2938 inferior_ptid = null_ptid;
2939 discard_all_inferiors ();
2940
2941 /* We're no longer interested in any of these events. */
2942 discard_pending_stop_replies (-1);
2943
2944 if (remote_async_inferior_event_token)
2945 delete_async_event_handler (&remote_async_inferior_event_token);
2946 if (remote_async_get_pending_events_token)
2947 delete_async_event_handler (&remote_async_get_pending_events_token);
2948 }
2949
2950 /* Query the remote side for the text, data and bss offsets. */
2951
2952 static void
2953 get_offsets (void)
2954 {
2955 struct remote_state *rs = get_remote_state ();
2956 char *buf;
2957 char *ptr;
2958 int lose, num_segments = 0, do_sections, do_segments;
2959 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2960 struct section_offsets *offs;
2961 struct symfile_segment_data *data;
2962
2963 if (symfile_objfile == NULL)
2964 return;
2965
2966 putpkt ("qOffsets");
2967 getpkt (&rs->buf, &rs->buf_size, 0);
2968 buf = rs->buf;
2969
2970 if (buf[0] == '\000')
2971 return; /* Return silently. Stub doesn't support
2972 this command. */
2973 if (buf[0] == 'E')
2974 {
2975 warning (_("Remote failure reply: %s"), buf);
2976 return;
2977 }
2978
2979 /* Pick up each field in turn. This used to be done with scanf, but
2980 scanf will make trouble if CORE_ADDR size doesn't match
2981 conversion directives correctly. The following code will work
2982 with any size of CORE_ADDR. */
2983 text_addr = data_addr = bss_addr = 0;
2984 ptr = buf;
2985 lose = 0;
2986
2987 if (strncmp (ptr, "Text=", 5) == 0)
2988 {
2989 ptr += 5;
2990 /* Don't use strtol, could lose on big values. */
2991 while (*ptr && *ptr != ';')
2992 text_addr = (text_addr << 4) + fromhex (*ptr++);
2993
2994 if (strncmp (ptr, ";Data=", 6) == 0)
2995 {
2996 ptr += 6;
2997 while (*ptr && *ptr != ';')
2998 data_addr = (data_addr << 4) + fromhex (*ptr++);
2999 }
3000 else
3001 lose = 1;
3002
3003 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
3004 {
3005 ptr += 5;
3006 while (*ptr && *ptr != ';')
3007 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3008
3009 if (bss_addr != data_addr)
3010 warning (_("Target reported unsupported offsets: %s"), buf);
3011 }
3012 else
3013 lose = 1;
3014 }
3015 else if (strncmp (ptr, "TextSeg=", 8) == 0)
3016 {
3017 ptr += 8;
3018 /* Don't use strtol, could lose on big values. */
3019 while (*ptr && *ptr != ';')
3020 text_addr = (text_addr << 4) + fromhex (*ptr++);
3021 num_segments = 1;
3022
3023 if (strncmp (ptr, ";DataSeg=", 9) == 0)
3024 {
3025 ptr += 9;
3026 while (*ptr && *ptr != ';')
3027 data_addr = (data_addr << 4) + fromhex (*ptr++);
3028 num_segments++;
3029 }
3030 }
3031 else
3032 lose = 1;
3033
3034 if (lose)
3035 error (_("Malformed response to offset query, %s"), buf);
3036 else if (*ptr != '\0')
3037 warning (_("Target reported unsupported offsets: %s"), buf);
3038
3039 offs = ((struct section_offsets *)
3040 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3041 memcpy (offs, symfile_objfile->section_offsets,
3042 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3043
3044 data = get_symfile_segment_data (symfile_objfile->obfd);
3045 do_segments = (data != NULL);
3046 do_sections = num_segments == 0;
3047
3048 if (num_segments > 0)
3049 {
3050 segments[0] = text_addr;
3051 segments[1] = data_addr;
3052 }
3053 /* If we have two segments, we can still try to relocate everything
3054 by assuming that the .text and .data offsets apply to the whole
3055 text and data segments. Convert the offsets given in the packet
3056 to base addresses for symfile_map_offsets_to_segments. */
3057 else if (data && data->num_segments == 2)
3058 {
3059 segments[0] = data->segment_bases[0] + text_addr;
3060 segments[1] = data->segment_bases[1] + data_addr;
3061 num_segments = 2;
3062 }
3063 /* If the object file has only one segment, assume that it is text
3064 rather than data; main programs with no writable data are rare,
3065 but programs with no code are useless. Of course the code might
3066 have ended up in the data segment... to detect that we would need
3067 the permissions here. */
3068 else if (data && data->num_segments == 1)
3069 {
3070 segments[0] = data->segment_bases[0] + text_addr;
3071 num_segments = 1;
3072 }
3073 /* There's no way to relocate by segment. */
3074 else
3075 do_segments = 0;
3076
3077 if (do_segments)
3078 {
3079 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3080 offs, num_segments, segments);
3081
3082 if (ret == 0 && !do_sections)
3083 error (_("Can not handle qOffsets TextSeg "
3084 "response with this symbol file"));
3085
3086 if (ret > 0)
3087 do_sections = 0;
3088 }
3089
3090 if (data)
3091 free_symfile_segment_data (data);
3092
3093 if (do_sections)
3094 {
3095 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3096
3097 /* This is a temporary kludge to force data and bss to use the
3098 same offsets because that's what nlmconv does now. The real
3099 solution requires changes to the stub and remote.c that I
3100 don't have time to do right now. */
3101
3102 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3103 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3104 }
3105
3106 objfile_relocate (symfile_objfile, offs);
3107 }
3108
3109 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
3110 threads we know are stopped already. This is used during the
3111 initial remote connection in non-stop mode --- threads that are
3112 reported as already being stopped are left stopped. */
3113
3114 static int
3115 set_stop_requested_callback (struct thread_info *thread, void *data)
3116 {
3117 /* If we have a stop reply for this thread, it must be stopped. */
3118 if (peek_stop_reply (thread->ptid))
3119 set_stop_requested (thread->ptid, 1);
3120
3121 return 0;
3122 }
3123
3124 /* Send interrupt_sequence to remote target. */
3125 static void
3126 send_interrupt_sequence (void)
3127 {
3128 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3129 serial_write (remote_desc, "\x03", 1);
3130 else if (interrupt_sequence_mode == interrupt_sequence_break)
3131 serial_send_break (remote_desc);
3132 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3133 {
3134 serial_send_break (remote_desc);
3135 serial_write (remote_desc, "g", 1);
3136 }
3137 else
3138 internal_error (__FILE__, __LINE__,
3139 _("Invalid value for interrupt_sequence_mode: %s."),
3140 interrupt_sequence_mode);
3141 }
3142
3143 static void
3144 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3145 {
3146 struct remote_state *rs = get_remote_state ();
3147 struct packet_config *noack_config;
3148 char *wait_status = NULL;
3149
3150 immediate_quit++; /* Allow user to interrupt it. */
3151
3152 if (interrupt_on_connect)
3153 send_interrupt_sequence ();
3154
3155 /* Ack any packet which the remote side has already sent. */
3156 serial_write (remote_desc, "+", 1);
3157
3158 /* The first packet we send to the target is the optional "supported
3159 packets" request. If the target can answer this, it will tell us
3160 which later probes to skip. */
3161 remote_query_supported ();
3162
3163 /* If the stub wants to get a QAllow, compose one and send it. */
3164 if (remote_protocol_packets[PACKET_QAllow].support != PACKET_DISABLE)
3165 remote_set_permissions ();
3166
3167 /* Next, we possibly activate noack mode.
3168
3169 If the QStartNoAckMode packet configuration is set to AUTO,
3170 enable noack mode if the stub reported a wish for it with
3171 qSupported.
3172
3173 If set to TRUE, then enable noack mode even if the stub didn't
3174 report it in qSupported. If the stub doesn't reply OK, the
3175 session ends with an error.
3176
3177 If FALSE, then don't activate noack mode, regardless of what the
3178 stub claimed should be the default with qSupported. */
3179
3180 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
3181
3182 if (noack_config->detect == AUTO_BOOLEAN_TRUE
3183 || (noack_config->detect == AUTO_BOOLEAN_AUTO
3184 && noack_config->support == PACKET_ENABLE))
3185 {
3186 putpkt ("QStartNoAckMode");
3187 getpkt (&rs->buf, &rs->buf_size, 0);
3188 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
3189 rs->noack_mode = 1;
3190 }
3191
3192 if (extended_p)
3193 {
3194 /* Tell the remote that we are using the extended protocol. */
3195 putpkt ("!");
3196 getpkt (&rs->buf, &rs->buf_size, 0);
3197 }
3198
3199 /* Next, if the target can specify a description, read it. We do
3200 this before anything involving memory or registers. */
3201 target_find_description ();
3202
3203 /* Next, now that we know something about the target, update the
3204 address spaces in the program spaces. */
3205 update_address_spaces ();
3206
3207 /* On OSs where the list of libraries is global to all
3208 processes, we fetch them early. */
3209 if (gdbarch_has_global_solist (target_gdbarch))
3210 solib_add (NULL, from_tty, target, auto_solib_add);
3211
3212 if (non_stop)
3213 {
3214 if (!rs->non_stop_aware)
3215 error (_("Non-stop mode requested, but remote "
3216 "does not support non-stop"));
3217
3218 putpkt ("QNonStop:1");
3219 getpkt (&rs->buf, &rs->buf_size, 0);
3220
3221 if (strcmp (rs->buf, "OK") != 0)
3222 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
3223
3224 /* Find about threads and processes the stub is already
3225 controlling. We default to adding them in the running state.
3226 The '?' query below will then tell us about which threads are
3227 stopped. */
3228 remote_threads_info (target);
3229 }
3230 else if (rs->non_stop_aware)
3231 {
3232 /* Don't assume that the stub can operate in all-stop mode.
3233 Request it explicitely. */
3234 putpkt ("QNonStop:0");
3235 getpkt (&rs->buf, &rs->buf_size, 0);
3236
3237 if (strcmp (rs->buf, "OK") != 0)
3238 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
3239 }
3240
3241 /* Check whether the target is running now. */
3242 putpkt ("?");
3243 getpkt (&rs->buf, &rs->buf_size, 0);
3244
3245 if (!non_stop)
3246 {
3247 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3248 {
3249 if (!extended_p)
3250 error (_("The target is not running (try extended-remote?)"));
3251
3252 /* We're connected, but not running. Drop out before we
3253 call start_remote. */
3254 return;
3255 }
3256 else
3257 {
3258 /* Save the reply for later. */
3259 wait_status = alloca (strlen (rs->buf) + 1);
3260 strcpy (wait_status, rs->buf);
3261 }
3262
3263 /* Let the stub know that we want it to return the thread. */
3264 set_continue_thread (minus_one_ptid);
3265
3266 /* Without this, some commands which require an active target
3267 (such as kill) won't work. This variable serves (at least)
3268 double duty as both the pid of the target process (if it has
3269 such), and as a flag indicating that a target is active.
3270 These functions should be split out into seperate variables,
3271 especially since GDB will someday have a notion of debugging
3272 several processes. */
3273 inferior_ptid = magic_null_ptid;
3274
3275 /* Now, if we have thread information, update inferior_ptid. */
3276 inferior_ptid = remote_current_thread (inferior_ptid);
3277
3278 remote_add_inferior (ptid_get_pid (inferior_ptid), -1);
3279
3280 /* Always add the main thread. */
3281 add_thread_silent (inferior_ptid);
3282
3283 get_offsets (); /* Get text, data & bss offsets. */
3284
3285 /* If we could not find a description using qXfer, and we know
3286 how to do it some other way, try again. This is not
3287 supported for non-stop; it could be, but it is tricky if
3288 there are no stopped threads when we connect. */
3289 if (remote_read_description_p (target)
3290 && gdbarch_target_desc (target_gdbarch) == NULL)
3291 {
3292 target_clear_description ();
3293 target_find_description ();
3294 }
3295
3296 /* Use the previously fetched status. */
3297 gdb_assert (wait_status != NULL);
3298 strcpy (rs->buf, wait_status);
3299 rs->cached_wait_status = 1;
3300
3301 immediate_quit--;
3302 start_remote (from_tty); /* Initialize gdb process mechanisms. */
3303 }
3304 else
3305 {
3306 /* Clear WFI global state. Do this before finding about new
3307 threads and inferiors, and setting the current inferior.
3308 Otherwise we would clear the proceed status of the current
3309 inferior when we want its stop_soon state to be preserved
3310 (see notice_new_inferior). */
3311 init_wait_for_inferior ();
3312
3313 /* In non-stop, we will either get an "OK", meaning that there
3314 are no stopped threads at this time; or, a regular stop
3315 reply. In the latter case, there may be more than one thread
3316 stopped --- we pull them all out using the vStopped
3317 mechanism. */
3318 if (strcmp (rs->buf, "OK") != 0)
3319 {
3320 struct stop_reply *stop_reply;
3321 struct cleanup *old_chain;
3322
3323 stop_reply = stop_reply_xmalloc ();
3324 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3325
3326 remote_parse_stop_reply (rs->buf, stop_reply);
3327 discard_cleanups (old_chain);
3328
3329 /* get_pending_stop_replies acks this one, and gets the rest
3330 out. */
3331 pending_stop_reply = stop_reply;
3332 remote_get_pending_stop_replies ();
3333
3334 /* Make sure that threads that were stopped remain
3335 stopped. */
3336 iterate_over_threads (set_stop_requested_callback, NULL);
3337 }
3338
3339 if (target_can_async_p ())
3340 target_async (inferior_event_handler, 0);
3341
3342 if (thread_count () == 0)
3343 {
3344 if (!extended_p)
3345 error (_("The target is not running (try extended-remote?)"));
3346
3347 /* We're connected, but not running. Drop out before we
3348 call start_remote. */
3349 return;
3350 }
3351
3352 /* Let the stub know that we want it to return the thread. */
3353
3354 /* Force the stub to choose a thread. */
3355 set_general_thread (null_ptid);
3356
3357 /* Query it. */
3358 inferior_ptid = remote_current_thread (minus_one_ptid);
3359 if (ptid_equal (inferior_ptid, minus_one_ptid))
3360 error (_("remote didn't report the current thread in non-stop mode"));
3361
3362 get_offsets (); /* Get text, data & bss offsets. */
3363
3364 /* In non-stop mode, any cached wait status will be stored in
3365 the stop reply queue. */
3366 gdb_assert (wait_status == NULL);
3367
3368 /* Report all signals during attach/startup. */
3369 remote_pass_signals (0, NULL);
3370 }
3371
3372 /* If we connected to a live target, do some additional setup. */
3373 if (target_has_execution)
3374 {
3375 if (exec_bfd) /* No use without an exec file. */
3376 remote_check_symbols (symfile_objfile);
3377 }
3378
3379 /* Possibly the target has been engaged in a trace run started
3380 previously; find out where things are at. */
3381 if (remote_get_trace_status (current_trace_status ()) != -1)
3382 {
3383 struct uploaded_tp *uploaded_tps = NULL;
3384 struct uploaded_tsv *uploaded_tsvs = NULL;
3385
3386 if (current_trace_status ()->running)
3387 printf_filtered (_("Trace is already running on the target.\n"));
3388
3389 /* Get trace state variables first, they may be checked when
3390 parsing uploaded commands. */
3391
3392 remote_upload_trace_state_variables (&uploaded_tsvs);
3393
3394 merge_uploaded_trace_state_variables (&uploaded_tsvs);
3395
3396 remote_upload_tracepoints (&uploaded_tps);
3397
3398 merge_uploaded_tracepoints (&uploaded_tps);
3399 }
3400
3401 /* If breakpoints are global, insert them now. */
3402 if (gdbarch_has_global_breakpoints (target_gdbarch)
3403 && breakpoints_always_inserted_mode ())
3404 insert_breakpoints ();
3405 }
3406
3407 /* Open a connection to a remote debugger.
3408 NAME is the filename used for communication. */
3409
3410 static void
3411 remote_open (char *name, int from_tty)
3412 {
3413 remote_open_1 (name, from_tty, &remote_ops, 0);
3414 }
3415
3416 /* Open a connection to a remote debugger using the extended
3417 remote gdb protocol. NAME is the filename used for communication. */
3418
3419 static void
3420 extended_remote_open (char *name, int from_tty)
3421 {
3422 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3423 }
3424
3425 /* Generic code for opening a connection to a remote target. */
3426
3427 static void
3428 init_all_packet_configs (void)
3429 {
3430 int i;
3431
3432 for (i = 0; i < PACKET_MAX; i++)
3433 update_packet_config (&remote_protocol_packets[i]);
3434 }
3435
3436 /* Symbol look-up. */
3437
3438 static void
3439 remote_check_symbols (struct objfile *objfile)
3440 {
3441 struct remote_state *rs = get_remote_state ();
3442 char *msg, *reply, *tmp;
3443 struct minimal_symbol *sym;
3444 int end;
3445
3446 /* The remote side has no concept of inferiors that aren't running
3447 yet, it only knows about running processes. If we're connected
3448 but our current inferior is not running, we should not invite the
3449 remote target to request symbol lookups related to its
3450 (unrelated) current process. */
3451 if (!target_has_execution)
3452 return;
3453
3454 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
3455 return;
3456
3457 /* Make sure the remote is pointing at the right process. Note
3458 there's no way to select "no process". */
3459 set_general_process ();
3460
3461 /* Allocate a message buffer. We can't reuse the input buffer in RS,
3462 because we need both at the same time. */
3463 msg = alloca (get_remote_packet_size ());
3464
3465 /* Invite target to request symbol lookups. */
3466
3467 putpkt ("qSymbol::");
3468 getpkt (&rs->buf, &rs->buf_size, 0);
3469 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3470 reply = rs->buf;
3471
3472 while (strncmp (reply, "qSymbol:", 8) == 0)
3473 {
3474 tmp = &reply[8];
3475 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3476 msg[end] = '\0';
3477 sym = lookup_minimal_symbol (msg, NULL, NULL);
3478 if (sym == NULL)
3479 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3480 else
3481 {
3482 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
3483 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
3484
3485 /* If this is a function address, return the start of code
3486 instead of any data function descriptor. */
3487 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
3488 sym_addr,
3489 &current_target);
3490
3491 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3492 phex_nz (sym_addr, addr_size), &reply[8]);
3493 }
3494
3495 putpkt (msg);
3496 getpkt (&rs->buf, &rs->buf_size, 0);
3497 reply = rs->buf;
3498 }
3499 }
3500
3501 static struct serial *
3502 remote_serial_open (char *name)
3503 {
3504 static int udp_warning = 0;
3505
3506 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
3507 of in ser-tcp.c, because it is the remote protocol assuming that the
3508 serial connection is reliable and not the serial connection promising
3509 to be. */
3510 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
3511 {
3512 warning (_("The remote protocol may be unreliable over UDP.\n"
3513 "Some events may be lost, rendering further debugging "
3514 "impossible."));
3515 udp_warning = 1;
3516 }
3517
3518 return serial_open (name);
3519 }
3520
3521 /* Inform the target of our permission settings. The permission flags
3522 work without this, but if the target knows the settings, it can do
3523 a couple things. First, it can add its own check, to catch cases
3524 that somehow manage to get by the permissions checks in target
3525 methods. Second, if the target is wired to disallow particular
3526 settings (for instance, a system in the field that is not set up to
3527 be able to stop at a breakpoint), it can object to any unavailable
3528 permissions. */
3529
3530 void
3531 remote_set_permissions (void)
3532 {
3533 struct remote_state *rs = get_remote_state ();
3534
3535 sprintf (rs->buf, "QAllow:"
3536 "WriteReg:%x;WriteMem:%x;"
3537 "InsertBreak:%x;InsertTrace:%x;"
3538 "InsertFastTrace:%x;Stop:%x",
3539 may_write_registers, may_write_memory,
3540 may_insert_breakpoints, may_insert_tracepoints,
3541 may_insert_fast_tracepoints, may_stop);
3542 putpkt (rs->buf);
3543 getpkt (&rs->buf, &rs->buf_size, 0);
3544
3545 /* If the target didn't like the packet, warn the user. Do not try
3546 to undo the user's settings, that would just be maddening. */
3547 if (strcmp (rs->buf, "OK") != 0)
3548 warning (_("Remote refused setting permissions with: %s"), rs->buf);
3549 }
3550
3551 /* This type describes each known response to the qSupported
3552 packet. */
3553 struct protocol_feature
3554 {
3555 /* The name of this protocol feature. */
3556 const char *name;
3557
3558 /* The default for this protocol feature. */
3559 enum packet_support default_support;
3560
3561 /* The function to call when this feature is reported, or after
3562 qSupported processing if the feature is not supported.
3563 The first argument points to this structure. The second
3564 argument indicates whether the packet requested support be
3565 enabled, disabled, or probed (or the default, if this function
3566 is being called at the end of processing and this feature was
3567 not reported). The third argument may be NULL; if not NULL, it
3568 is a NUL-terminated string taken from the packet following
3569 this feature's name and an equals sign. */
3570 void (*func) (const struct protocol_feature *, enum packet_support,
3571 const char *);
3572
3573 /* The corresponding packet for this feature. Only used if
3574 FUNC is remote_supported_packet. */
3575 int packet;
3576 };
3577
3578 static void
3579 remote_supported_packet (const struct protocol_feature *feature,
3580 enum packet_support support,
3581 const char *argument)
3582 {
3583 if (argument)
3584 {
3585 warning (_("Remote qSupported response supplied an unexpected value for"
3586 " \"%s\"."), feature->name);
3587 return;
3588 }
3589
3590 if (remote_protocol_packets[feature->packet].support
3591 == PACKET_SUPPORT_UNKNOWN)
3592 remote_protocol_packets[feature->packet].support = support;
3593 }
3594
3595 static void
3596 remote_packet_size (const struct protocol_feature *feature,
3597 enum packet_support support, const char *value)
3598 {
3599 struct remote_state *rs = get_remote_state ();
3600
3601 int packet_size;
3602 char *value_end;
3603
3604 if (support != PACKET_ENABLE)
3605 return;
3606
3607 if (value == NULL || *value == '\0')
3608 {
3609 warning (_("Remote target reported \"%s\" without a size."),
3610 feature->name);
3611 return;
3612 }
3613
3614 errno = 0;
3615 packet_size = strtol (value, &value_end, 16);
3616 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3617 {
3618 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3619 feature->name, value);
3620 return;
3621 }
3622
3623 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3624 {
3625 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3626 packet_size, MAX_REMOTE_PACKET_SIZE);
3627 packet_size = MAX_REMOTE_PACKET_SIZE;
3628 }
3629
3630 /* Record the new maximum packet size. */
3631 rs->explicit_packet_size = packet_size;
3632 }
3633
3634 static void
3635 remote_multi_process_feature (const struct protocol_feature *feature,
3636 enum packet_support support, const char *value)
3637 {
3638 struct remote_state *rs = get_remote_state ();
3639
3640 rs->multi_process_aware = (support == PACKET_ENABLE);
3641 }
3642
3643 static void
3644 remote_non_stop_feature (const struct protocol_feature *feature,
3645 enum packet_support support, const char *value)
3646 {
3647 struct remote_state *rs = get_remote_state ();
3648
3649 rs->non_stop_aware = (support == PACKET_ENABLE);
3650 }
3651
3652 static void
3653 remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3654 enum packet_support support,
3655 const char *value)
3656 {
3657 struct remote_state *rs = get_remote_state ();
3658
3659 rs->cond_tracepoints = (support == PACKET_ENABLE);
3660 }
3661
3662 static void
3663 remote_fast_tracepoint_feature (const struct protocol_feature *feature,
3664 enum packet_support support,
3665 const char *value)
3666 {
3667 struct remote_state *rs = get_remote_state ();
3668
3669 rs->fast_tracepoints = (support == PACKET_ENABLE);
3670 }
3671
3672 static void
3673 remote_static_tracepoint_feature (const struct protocol_feature *feature,
3674 enum packet_support support,
3675 const char *value)
3676 {
3677 struct remote_state *rs = get_remote_state ();
3678
3679 rs->static_tracepoints = (support == PACKET_ENABLE);
3680 }
3681
3682 static void
3683 remote_disconnected_tracing_feature (const struct protocol_feature *feature,
3684 enum packet_support support,
3685 const char *value)
3686 {
3687 struct remote_state *rs = get_remote_state ();
3688
3689 rs->disconnected_tracing = (support == PACKET_ENABLE);
3690 }
3691
3692 static struct protocol_feature remote_protocol_features[] = {
3693 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3694 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3695 PACKET_qXfer_auxv },
3696 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3697 PACKET_qXfer_features },
3698 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3699 PACKET_qXfer_libraries },
3700 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
3701 PACKET_qXfer_memory_map },
3702 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
3703 PACKET_qXfer_spu_read },
3704 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
3705 PACKET_qXfer_spu_write },
3706 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
3707 PACKET_qXfer_osdata },
3708 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
3709 PACKET_qXfer_threads },
3710 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
3711 PACKET_qXfer_traceframe_info },
3712 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
3713 PACKET_QPassSignals },
3714 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
3715 PACKET_QStartNoAckMode },
3716 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
3717 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
3718 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
3719 PACKET_qXfer_siginfo_read },
3720 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
3721 PACKET_qXfer_siginfo_write },
3722 { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
3723 PACKET_ConditionalTracepoints },
3724 { "FastTracepoints", PACKET_DISABLE, remote_fast_tracepoint_feature,
3725 PACKET_FastTracepoints },
3726 { "StaticTracepoints", PACKET_DISABLE, remote_static_tracepoint_feature,
3727 PACKET_StaticTracepoints },
3728 { "DisconnectedTracing", PACKET_DISABLE, remote_disconnected_tracing_feature,
3729 -1 },
3730 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
3731 PACKET_bc },
3732 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
3733 PACKET_bs },
3734 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
3735 PACKET_TracepointSource },
3736 { "QAllow", PACKET_DISABLE, remote_supported_packet,
3737 PACKET_QAllow },
3738 };
3739
3740 static char *remote_support_xml;
3741
3742 /* Register string appended to "xmlRegisters=" in qSupported query. */
3743
3744 void
3745 register_remote_support_xml (const char *xml)
3746 {
3747 #if defined(HAVE_LIBEXPAT)
3748 if (remote_support_xml == NULL)
3749 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
3750 else
3751 {
3752 char *copy = xstrdup (remote_support_xml + 13);
3753 char *p = strtok (copy, ",");
3754
3755 do
3756 {
3757 if (strcmp (p, xml) == 0)
3758 {
3759 /* already there */
3760 xfree (copy);
3761 return;
3762 }
3763 }
3764 while ((p = strtok (NULL, ",")) != NULL);
3765 xfree (copy);
3766
3767 remote_support_xml = reconcat (remote_support_xml,
3768 remote_support_xml, ",", xml,
3769 (char *) NULL);
3770 }
3771 #endif
3772 }
3773
3774 static char *
3775 remote_query_supported_append (char *msg, const char *append)
3776 {
3777 if (msg)
3778 return reconcat (msg, msg, ";", append, (char *) NULL);
3779 else
3780 return xstrdup (append);
3781 }
3782
3783 static void
3784 remote_query_supported (void)
3785 {
3786 struct remote_state *rs = get_remote_state ();
3787 char *next;
3788 int i;
3789 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
3790
3791 /* The packet support flags are handled differently for this packet
3792 than for most others. We treat an error, a disabled packet, and
3793 an empty response identically: any features which must be reported
3794 to be used will be automatically disabled. An empty buffer
3795 accomplishes this, since that is also the representation for a list
3796 containing no features. */
3797
3798 rs->buf[0] = 0;
3799 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
3800 {
3801 char *q = NULL;
3802 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
3803
3804 if (rs->extended)
3805 q = remote_query_supported_append (q, "multiprocess+");
3806
3807 if (remote_support_xml)
3808 q = remote_query_supported_append (q, remote_support_xml);
3809
3810 q = remote_query_supported_append (q, "qRelocInsn+");
3811
3812 q = reconcat (q, "qSupported:", q, (char *) NULL);
3813 putpkt (q);
3814
3815 do_cleanups (old_chain);
3816
3817 getpkt (&rs->buf, &rs->buf_size, 0);
3818
3819 /* If an error occured, warn, but do not return - just reset the
3820 buffer to empty and go on to disable features. */
3821 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
3822 == PACKET_ERROR)
3823 {
3824 warning (_("Remote failure reply: %s"), rs->buf);
3825 rs->buf[0] = 0;
3826 }
3827 }
3828
3829 memset (seen, 0, sizeof (seen));
3830
3831 next = rs->buf;
3832 while (*next)
3833 {
3834 enum packet_support is_supported;
3835 char *p, *end, *name_end, *value;
3836
3837 /* First separate out this item from the rest of the packet. If
3838 there's another item after this, we overwrite the separator
3839 (terminated strings are much easier to work with). */
3840 p = next;
3841 end = strchr (p, ';');
3842 if (end == NULL)
3843 {
3844 end = p + strlen (p);
3845 next = end;
3846 }
3847 else
3848 {
3849 *end = '\0';
3850 next = end + 1;
3851
3852 if (end == p)
3853 {
3854 warning (_("empty item in \"qSupported\" response"));
3855 continue;
3856 }
3857 }
3858
3859 name_end = strchr (p, '=');
3860 if (name_end)
3861 {
3862 /* This is a name=value entry. */
3863 is_supported = PACKET_ENABLE;
3864 value = name_end + 1;
3865 *name_end = '\0';
3866 }
3867 else
3868 {
3869 value = NULL;
3870 switch (end[-1])
3871 {
3872 case '+':
3873 is_supported = PACKET_ENABLE;
3874 break;
3875
3876 case '-':
3877 is_supported = PACKET_DISABLE;
3878 break;
3879
3880 case '?':
3881 is_supported = PACKET_SUPPORT_UNKNOWN;
3882 break;
3883
3884 default:
3885 warning (_("unrecognized item \"%s\" "
3886 "in \"qSupported\" response"), p);
3887 continue;
3888 }
3889 end[-1] = '\0';
3890 }
3891
3892 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3893 if (strcmp (remote_protocol_features[i].name, p) == 0)
3894 {
3895 const struct protocol_feature *feature;
3896
3897 seen[i] = 1;
3898 feature = &remote_protocol_features[i];
3899 feature->func (feature, is_supported, value);
3900 break;
3901 }
3902 }
3903
3904 /* If we increased the packet size, make sure to increase the global
3905 buffer size also. We delay this until after parsing the entire
3906 qSupported packet, because this is the same buffer we were
3907 parsing. */
3908 if (rs->buf_size < rs->explicit_packet_size)
3909 {
3910 rs->buf_size = rs->explicit_packet_size;
3911 rs->buf = xrealloc (rs->buf, rs->buf_size);
3912 }
3913
3914 /* Handle the defaults for unmentioned features. */
3915 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3916 if (!seen[i])
3917 {
3918 const struct protocol_feature *feature;
3919
3920 feature = &remote_protocol_features[i];
3921 feature->func (feature, feature->default_support, NULL);
3922 }
3923 }
3924
3925
3926 static void
3927 remote_open_1 (char *name, int from_tty,
3928 struct target_ops *target, int extended_p)
3929 {
3930 struct remote_state *rs = get_remote_state ();
3931
3932 if (name == 0)
3933 error (_("To open a remote debug connection, you need to specify what\n"
3934 "serial device is attached to the remote system\n"
3935 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
3936
3937 /* See FIXME above. */
3938 if (!target_async_permitted)
3939 wait_forever_enabled_p = 1;
3940
3941 /* If we're connected to a running target, target_preopen will kill it.
3942 But if we're connected to a target system with no running process,
3943 then we will still be connected when it returns. Ask this question
3944 first, before target_preopen has a chance to kill anything. */
3945 if (remote_desc != NULL && !have_inferiors ())
3946 {
3947 if (!from_tty
3948 || query (_("Already connected to a remote target. Disconnect? ")))
3949 pop_target ();
3950 else
3951 error (_("Still connected."));
3952 }
3953
3954 target_preopen (from_tty);
3955
3956 unpush_target (target);
3957
3958 /* This time without a query. If we were connected to an
3959 extended-remote target and target_preopen killed the running
3960 process, we may still be connected. If we are starting "target
3961 remote" now, the extended-remote target will not have been
3962 removed by unpush_target. */
3963 if (remote_desc != NULL && !have_inferiors ())
3964 pop_target ();
3965
3966 /* Make sure we send the passed signals list the next time we resume. */
3967 xfree (last_pass_packet);
3968 last_pass_packet = NULL;
3969
3970 remote_fileio_reset ();
3971 reopen_exec_file ();
3972 reread_symbols ();
3973
3974 remote_desc = remote_serial_open (name);
3975 if (!remote_desc)
3976 perror_with_name (name);
3977
3978 if (baud_rate != -1)
3979 {
3980 if (serial_setbaudrate (remote_desc, baud_rate))
3981 {
3982 /* The requested speed could not be set. Error out to
3983 top level after closing remote_desc. Take care to
3984 set remote_desc to NULL to avoid closing remote_desc
3985 more than once. */
3986 serial_close (remote_desc);
3987 remote_desc = NULL;
3988 perror_with_name (name);
3989 }
3990 }
3991
3992 serial_raw (remote_desc);
3993
3994 /* If there is something sitting in the buffer we might take it as a
3995 response to a command, which would be bad. */
3996 serial_flush_input (remote_desc);
3997
3998 if (from_tty)
3999 {
4000 puts_filtered ("Remote debugging using ");
4001 puts_filtered (name);
4002 puts_filtered ("\n");
4003 }
4004 push_target (target); /* Switch to using remote target now. */
4005
4006 /* Register extra event sources in the event loop. */
4007 remote_async_inferior_event_token
4008 = create_async_event_handler (remote_async_inferior_event_handler,
4009 NULL);
4010 remote_async_get_pending_events_token
4011 = create_async_event_handler (remote_async_get_pending_events_handler,
4012 NULL);
4013
4014 /* Reset the target state; these things will be queried either by
4015 remote_query_supported or as they are needed. */
4016 init_all_packet_configs ();
4017 rs->cached_wait_status = 0;
4018 rs->explicit_packet_size = 0;
4019 rs->noack_mode = 0;
4020 rs->multi_process_aware = 0;
4021 rs->extended = extended_p;
4022 rs->non_stop_aware = 0;
4023 rs->waiting_for_stop_reply = 0;
4024 rs->ctrlc_pending_p = 0;
4025
4026 general_thread = not_sent_ptid;
4027 continue_thread = not_sent_ptid;
4028 remote_traceframe_number = -1;
4029
4030 /* Probe for ability to use "ThreadInfo" query, as required. */
4031 use_threadinfo_query = 1;
4032 use_threadextra_query = 1;
4033
4034 if (target_async_permitted)
4035 {
4036 /* With this target we start out by owning the terminal. */
4037 remote_async_terminal_ours_p = 1;
4038
4039 /* FIXME: cagney/1999-09-23: During the initial connection it is
4040 assumed that the target is already ready and able to respond to
4041 requests. Unfortunately remote_start_remote() eventually calls
4042 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
4043 around this. Eventually a mechanism that allows
4044 wait_for_inferior() to expect/get timeouts will be
4045 implemented. */
4046 wait_forever_enabled_p = 0;
4047 }
4048
4049 /* First delete any symbols previously loaded from shared libraries. */
4050 no_shared_libraries (NULL, 0);
4051
4052 /* Start afresh. */
4053 init_thread_list ();
4054
4055 /* Start the remote connection. If error() or QUIT, discard this
4056 target (we'd otherwise be in an inconsistent state) and then
4057 propogate the error on up the exception chain. This ensures that
4058 the caller doesn't stumble along blindly assuming that the
4059 function succeeded. The CLI doesn't have this problem but other
4060 UI's, such as MI do.
4061
4062 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
4063 this function should return an error indication letting the
4064 caller restore the previous state. Unfortunately the command
4065 ``target remote'' is directly wired to this function making that
4066 impossible. On a positive note, the CLI side of this problem has
4067 been fixed - the function set_cmd_context() makes it possible for
4068 all the ``target ....'' commands to share a common callback
4069 function. See cli-dump.c. */
4070 {
4071 volatile struct gdb_exception ex;
4072
4073 TRY_CATCH (ex, RETURN_MASK_ALL)
4074 {
4075 remote_start_remote (from_tty, target, extended_p);
4076 }
4077 if (ex.reason < 0)
4078 {
4079 /* Pop the partially set up target - unless something else did
4080 already before throwing the exception. */
4081 if (remote_desc != NULL)
4082 pop_target ();
4083 if (target_async_permitted)
4084 wait_forever_enabled_p = 1;
4085 throw_exception (ex);
4086 }
4087 }
4088
4089 if (target_async_permitted)
4090 wait_forever_enabled_p = 1;
4091 }
4092
4093 /* This takes a program previously attached to and detaches it. After
4094 this is done, GDB can be used to debug some other program. We
4095 better not have left any breakpoints in the target program or it'll
4096 die when it hits one. */
4097
4098 static void
4099 remote_detach_1 (char *args, int from_tty, int extended)
4100 {
4101 int pid = ptid_get_pid (inferior_ptid);
4102 struct remote_state *rs = get_remote_state ();
4103
4104 if (args)
4105 error (_("Argument given to \"detach\" when remotely debugging."));
4106
4107 if (!target_has_execution)
4108 error (_("No process to detach from."));
4109
4110 /* Tell the remote target to detach. */
4111 if (remote_multi_process_p (rs))
4112 sprintf (rs->buf, "D;%x", pid);
4113 else
4114 strcpy (rs->buf, "D");
4115
4116 putpkt (rs->buf);
4117 getpkt (&rs->buf, &rs->buf_size, 0);
4118
4119 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
4120 ;
4121 else if (rs->buf[0] == '\0')
4122 error (_("Remote doesn't know how to detach"));
4123 else
4124 error (_("Can't detach process."));
4125
4126 if (from_tty)
4127 {
4128 if (remote_multi_process_p (rs))
4129 printf_filtered (_("Detached from remote %s.\n"),
4130 target_pid_to_str (pid_to_ptid (pid)));
4131 else
4132 {
4133 if (extended)
4134 puts_filtered (_("Detached from remote process.\n"));
4135 else
4136 puts_filtered (_("Ending remote debugging.\n"));
4137 }
4138 }
4139
4140 discard_pending_stop_replies (pid);
4141 target_mourn_inferior ();
4142 }
4143
4144 static void
4145 remote_detach (struct target_ops *ops, char *args, int from_tty)
4146 {
4147 remote_detach_1 (args, from_tty, 0);
4148 }
4149
4150 static void
4151 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
4152 {
4153 remote_detach_1 (args, from_tty, 1);
4154 }
4155
4156 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
4157
4158 static void
4159 remote_disconnect (struct target_ops *target, char *args, int from_tty)
4160 {
4161 if (args)
4162 error (_("Argument given to \"disconnect\" when remotely debugging."));
4163
4164 /* Make sure we unpush even the extended remote targets; mourn
4165 won't do it. So call remote_mourn_1 directly instead of
4166 target_mourn_inferior. */
4167 remote_mourn_1 (target);
4168
4169 if (from_tty)
4170 puts_filtered ("Ending remote debugging.\n");
4171 }
4172
4173 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
4174 be chatty about it. */
4175
4176 static void
4177 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
4178 {
4179 struct remote_state *rs = get_remote_state ();
4180 int pid;
4181 char *wait_status = NULL;
4182
4183 pid = parse_pid_to_attach (args);
4184
4185 /* Remote PID can be freely equal to getpid, do not check it here the same
4186 way as in other targets. */
4187
4188 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4189 error (_("This target does not support attaching to a process"));
4190
4191 sprintf (rs->buf, "vAttach;%x", pid);
4192 putpkt (rs->buf);
4193 getpkt (&rs->buf, &rs->buf_size, 0);
4194
4195 if (packet_ok (rs->buf,
4196 &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
4197 {
4198 if (from_tty)
4199 printf_unfiltered (_("Attached to %s\n"),
4200 target_pid_to_str (pid_to_ptid (pid)));
4201
4202 if (!non_stop)
4203 {
4204 /* Save the reply for later. */
4205 wait_status = alloca (strlen (rs->buf) + 1);
4206 strcpy (wait_status, rs->buf);
4207 }
4208 else if (strcmp (rs->buf, "OK") != 0)
4209 error (_("Attaching to %s failed with: %s"),
4210 target_pid_to_str (pid_to_ptid (pid)),
4211 rs->buf);
4212 }
4213 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4214 error (_("This target does not support attaching to a process"));
4215 else
4216 error (_("Attaching to %s failed"),
4217 target_pid_to_str (pid_to_ptid (pid)));
4218
4219 set_current_inferior (remote_add_inferior (pid, 1));
4220
4221 inferior_ptid = pid_to_ptid (pid);
4222
4223 if (non_stop)
4224 {
4225 struct thread_info *thread;
4226
4227 /* Get list of threads. */
4228 remote_threads_info (target);
4229
4230 thread = first_thread_of_process (pid);
4231 if (thread)
4232 inferior_ptid = thread->ptid;
4233 else
4234 inferior_ptid = pid_to_ptid (pid);
4235
4236 /* Invalidate our notion of the remote current thread. */
4237 record_currthread (minus_one_ptid);
4238 }
4239 else
4240 {
4241 /* Now, if we have thread information, update inferior_ptid. */
4242 inferior_ptid = remote_current_thread (inferior_ptid);
4243
4244 /* Add the main thread to the thread list. */
4245 add_thread_silent (inferior_ptid);
4246 }
4247
4248 /* Next, if the target can specify a description, read it. We do
4249 this before anything involving memory or registers. */
4250 target_find_description ();
4251
4252 if (!non_stop)
4253 {
4254 /* Use the previously fetched status. */
4255 gdb_assert (wait_status != NULL);
4256
4257 if (target_can_async_p ())
4258 {
4259 struct stop_reply *stop_reply;
4260 struct cleanup *old_chain;
4261
4262 stop_reply = stop_reply_xmalloc ();
4263 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4264 remote_parse_stop_reply (wait_status, stop_reply);
4265 discard_cleanups (old_chain);
4266 push_stop_reply (stop_reply);
4267
4268 target_async (inferior_event_handler, 0);
4269 }
4270 else
4271 {
4272 gdb_assert (wait_status != NULL);
4273 strcpy (rs->buf, wait_status);
4274 rs->cached_wait_status = 1;
4275 }
4276 }
4277 else
4278 gdb_assert (wait_status == NULL);
4279 }
4280
4281 static void
4282 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
4283 {
4284 extended_remote_attach_1 (ops, args, from_tty);
4285 }
4286
4287 /* Convert hex digit A to a number. */
4288
4289 static int
4290 fromhex (int a)
4291 {
4292 if (a >= '0' && a <= '9')
4293 return a - '0';
4294 else if (a >= 'a' && a <= 'f')
4295 return a - 'a' + 10;
4296 else if (a >= 'A' && a <= 'F')
4297 return a - 'A' + 10;
4298 else
4299 error (_("Reply contains invalid hex digit %d"), a);
4300 }
4301
4302 int
4303 hex2bin (const char *hex, gdb_byte *bin, int count)
4304 {
4305 int i;
4306
4307 for (i = 0; i < count; i++)
4308 {
4309 if (hex[0] == 0 || hex[1] == 0)
4310 {
4311 /* Hex string is short, or of uneven length.
4312 Return the count that has been converted so far. */
4313 return i;
4314 }
4315 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
4316 hex += 2;
4317 }
4318 return i;
4319 }
4320
4321 /* Convert number NIB to a hex digit. */
4322
4323 static int
4324 tohex (int nib)
4325 {
4326 if (nib < 10)
4327 return '0' + nib;
4328 else
4329 return 'a' + nib - 10;
4330 }
4331
4332 int
4333 bin2hex (const gdb_byte *bin, char *hex, int count)
4334 {
4335 int i;
4336
4337 /* May use a length, or a nul-terminated string as input. */
4338 if (count == 0)
4339 count = strlen ((char *) bin);
4340
4341 for (i = 0; i < count; i++)
4342 {
4343 *hex++ = tohex ((*bin >> 4) & 0xf);
4344 *hex++ = tohex (*bin++ & 0xf);
4345 }
4346 *hex = 0;
4347 return i;
4348 }
4349 \f
4350 /* Check for the availability of vCont. This function should also check
4351 the response. */
4352
4353 static void
4354 remote_vcont_probe (struct remote_state *rs)
4355 {
4356 char *buf;
4357
4358 strcpy (rs->buf, "vCont?");
4359 putpkt (rs->buf);
4360 getpkt (&rs->buf, &rs->buf_size, 0);
4361 buf = rs->buf;
4362
4363 /* Make sure that the features we assume are supported. */
4364 if (strncmp (buf, "vCont", 5) == 0)
4365 {
4366 char *p = &buf[5];
4367 int support_s, support_S, support_c, support_C;
4368
4369 support_s = 0;
4370 support_S = 0;
4371 support_c = 0;
4372 support_C = 0;
4373 rs->support_vCont_t = 0;
4374 while (p && *p == ';')
4375 {
4376 p++;
4377 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4378 support_s = 1;
4379 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4380 support_S = 1;
4381 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4382 support_c = 1;
4383 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4384 support_C = 1;
4385 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4386 rs->support_vCont_t = 1;
4387
4388 p = strchr (p, ';');
4389 }
4390
4391 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
4392 BUF will make packet_ok disable the packet. */
4393 if (!support_s || !support_S || !support_c || !support_C)
4394 buf[0] = 0;
4395 }
4396
4397 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4398 }
4399
4400 /* Helper function for building "vCont" resumptions. Write a
4401 resumption to P. ENDP points to one-passed-the-end of the buffer
4402 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
4403 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4404 resumed thread should be single-stepped and/or signalled. If PTID
4405 equals minus_one_ptid, then all threads are resumed; if PTID
4406 represents a process, then all threads of the process are resumed;
4407 the thread to be stepped and/or signalled is given in the global
4408 INFERIOR_PTID. */
4409
4410 static char *
4411 append_resumption (char *p, char *endp,
4412 ptid_t ptid, int step, enum target_signal siggnal)
4413 {
4414 struct remote_state *rs = get_remote_state ();
4415
4416 if (step && siggnal != TARGET_SIGNAL_0)
4417 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4418 else if (step)
4419 p += xsnprintf (p, endp - p, ";s");
4420 else if (siggnal != TARGET_SIGNAL_0)
4421 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4422 else
4423 p += xsnprintf (p, endp - p, ";c");
4424
4425 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4426 {
4427 ptid_t nptid;
4428
4429 /* All (-1) threads of process. */
4430 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4431
4432 p += xsnprintf (p, endp - p, ":");
4433 p = write_ptid (p, endp, nptid);
4434 }
4435 else if (!ptid_equal (ptid, minus_one_ptid))
4436 {
4437 p += xsnprintf (p, endp - p, ":");
4438 p = write_ptid (p, endp, ptid);
4439 }
4440
4441 return p;
4442 }
4443
4444 /* Resume the remote inferior by using a "vCont" packet. The thread
4445 to be resumed is PTID; STEP and SIGGNAL indicate whether the
4446 resumed thread should be single-stepped and/or signalled. If PTID
4447 equals minus_one_ptid, then all threads are resumed; the thread to
4448 be stepped and/or signalled is given in the global INFERIOR_PTID.
4449 This function returns non-zero iff it resumes the inferior.
4450
4451 This function issues a strict subset of all possible vCont commands at the
4452 moment. */
4453
4454 static int
4455 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
4456 {
4457 struct remote_state *rs = get_remote_state ();
4458 char *p;
4459 char *endp;
4460
4461 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4462 remote_vcont_probe (rs);
4463
4464 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
4465 return 0;
4466
4467 p = rs->buf;
4468 endp = rs->buf + get_remote_packet_size ();
4469
4470 /* If we could generate a wider range of packets, we'd have to worry
4471 about overflowing BUF. Should there be a generic
4472 "multi-part-packet" packet? */
4473
4474 p += xsnprintf (p, endp - p, "vCont");
4475
4476 if (ptid_equal (ptid, magic_null_ptid))
4477 {
4478 /* MAGIC_NULL_PTID means that we don't have any active threads,
4479 so we don't have any TID numbers the inferior will
4480 understand. Make sure to only send forms that do not specify
4481 a TID. */
4482 append_resumption (p, endp, minus_one_ptid, step, siggnal);
4483 }
4484 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
4485 {
4486 /* Resume all threads (of all processes, or of a single
4487 process), with preference for INFERIOR_PTID. This assumes
4488 inferior_ptid belongs to the set of all threads we are about
4489 to resume. */
4490 if (step || siggnal != TARGET_SIGNAL_0)
4491 {
4492 /* Step inferior_ptid, with or without signal. */
4493 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
4494 }
4495
4496 /* And continue others without a signal. */
4497 append_resumption (p, endp, ptid, /*step=*/ 0, TARGET_SIGNAL_0);
4498 }
4499 else
4500 {
4501 /* Scheduler locking; resume only PTID. */
4502 append_resumption (p, endp, ptid, step, siggnal);
4503 }
4504
4505 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
4506 putpkt (rs->buf);
4507
4508 if (non_stop)
4509 {
4510 /* In non-stop, the stub replies to vCont with "OK". The stop
4511 reply will be reported asynchronously by means of a `%Stop'
4512 notification. */
4513 getpkt (&rs->buf, &rs->buf_size, 0);
4514 if (strcmp (rs->buf, "OK") != 0)
4515 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
4516 }
4517
4518 return 1;
4519 }
4520
4521 /* Tell the remote machine to resume. */
4522
4523 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
4524
4525 static int last_sent_step;
4526
4527 static void
4528 remote_resume (struct target_ops *ops,
4529 ptid_t ptid, int step, enum target_signal siggnal)
4530 {
4531 struct remote_state *rs = get_remote_state ();
4532 char *buf;
4533
4534 last_sent_signal = siggnal;
4535 last_sent_step = step;
4536
4537 /* The vCont packet doesn't need to specify threads via Hc. */
4538 /* No reverse support (yet) for vCont. */
4539 if (execution_direction != EXEC_REVERSE)
4540 if (remote_vcont_resume (ptid, step, siggnal))
4541 goto done;
4542
4543 /* All other supported resume packets do use Hc, so set the continue
4544 thread. */
4545 if (ptid_equal (ptid, minus_one_ptid))
4546 set_continue_thread (any_thread_ptid);
4547 else
4548 set_continue_thread (ptid);
4549
4550 buf = rs->buf;
4551 if (execution_direction == EXEC_REVERSE)
4552 {
4553 /* We don't pass signals to the target in reverse exec mode. */
4554 if (info_verbose && siggnal != TARGET_SIGNAL_0)
4555 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
4556 siggnal);
4557
4558 if (step
4559 && remote_protocol_packets[PACKET_bs].support == PACKET_DISABLE)
4560 error (_("Remote reverse-step not supported."));
4561 if (!step
4562 && remote_protocol_packets[PACKET_bc].support == PACKET_DISABLE)
4563 error (_("Remote reverse-continue not supported."));
4564
4565 strcpy (buf, step ? "bs" : "bc");
4566 }
4567 else if (siggnal != TARGET_SIGNAL_0)
4568 {
4569 buf[0] = step ? 'S' : 'C';
4570 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
4571 buf[2] = tohex (((int) siggnal) & 0xf);
4572 buf[3] = '\0';
4573 }
4574 else
4575 strcpy (buf, step ? "s" : "c");
4576
4577 putpkt (buf);
4578
4579 done:
4580 /* We are about to start executing the inferior, let's register it
4581 with the event loop. NOTE: this is the one place where all the
4582 execution commands end up. We could alternatively do this in each
4583 of the execution commands in infcmd.c. */
4584 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
4585 into infcmd.c in order to allow inferior function calls to work
4586 NOT asynchronously. */
4587 if (target_can_async_p ())
4588 target_async (inferior_event_handler, 0);
4589
4590 /* We've just told the target to resume. The remote server will
4591 wait for the inferior to stop, and then send a stop reply. In
4592 the mean time, we can't start another command/query ourselves
4593 because the stub wouldn't be ready to process it. This applies
4594 only to the base all-stop protocol, however. In non-stop (which
4595 only supports vCont), the stub replies with an "OK", and is
4596 immediate able to process further serial input. */
4597 if (!non_stop)
4598 rs->waiting_for_stop_reply = 1;
4599 }
4600 \f
4601
4602 /* Set up the signal handler for SIGINT, while the target is
4603 executing, ovewriting the 'regular' SIGINT signal handler. */
4604 static void
4605 initialize_sigint_signal_handler (void)
4606 {
4607 signal (SIGINT, handle_remote_sigint);
4608 }
4609
4610 /* Signal handler for SIGINT, while the target is executing. */
4611 static void
4612 handle_remote_sigint (int sig)
4613 {
4614 signal (sig, handle_remote_sigint_twice);
4615 mark_async_signal_handler_wrapper (sigint_remote_token);
4616 }
4617
4618 /* Signal handler for SIGINT, installed after SIGINT has already been
4619 sent once. It will take effect the second time that the user sends
4620 a ^C. */
4621 static void
4622 handle_remote_sigint_twice (int sig)
4623 {
4624 signal (sig, handle_remote_sigint);
4625 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
4626 }
4627
4628 /* Perform the real interruption of the target execution, in response
4629 to a ^C. */
4630 static void
4631 async_remote_interrupt (gdb_client_data arg)
4632 {
4633 if (remote_debug)
4634 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
4635
4636 target_stop (inferior_ptid);
4637 }
4638
4639 /* Perform interrupt, if the first attempt did not succeed. Just give
4640 up on the target alltogether. */
4641 void
4642 async_remote_interrupt_twice (gdb_client_data arg)
4643 {
4644 if (remote_debug)
4645 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
4646
4647 interrupt_query ();
4648 }
4649
4650 /* Reinstall the usual SIGINT handlers, after the target has
4651 stopped. */
4652 static void
4653 cleanup_sigint_signal_handler (void *dummy)
4654 {
4655 signal (SIGINT, handle_sigint);
4656 }
4657
4658 /* Send ^C to target to halt it. Target will respond, and send us a
4659 packet. */
4660 static void (*ofunc) (int);
4661
4662 /* The command line interface's stop routine. This function is installed
4663 as a signal handler for SIGINT. The first time a user requests a
4664 stop, we call remote_stop to send a break or ^C. If there is no
4665 response from the target (it didn't stop when the user requested it),
4666 we ask the user if he'd like to detach from the target. */
4667 static void
4668 remote_interrupt (int signo)
4669 {
4670 /* If this doesn't work, try more severe steps. */
4671 signal (signo, remote_interrupt_twice);
4672
4673 gdb_call_async_signal_handler (sigint_remote_token, 1);
4674 }
4675
4676 /* The user typed ^C twice. */
4677
4678 static void
4679 remote_interrupt_twice (int signo)
4680 {
4681 signal (signo, ofunc);
4682 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
4683 signal (signo, remote_interrupt);
4684 }
4685
4686 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
4687 thread, all threads of a remote process, or all threads of all
4688 processes. */
4689
4690 static void
4691 remote_stop_ns (ptid_t ptid)
4692 {
4693 struct remote_state *rs = get_remote_state ();
4694 char *p = rs->buf;
4695 char *endp = rs->buf + get_remote_packet_size ();
4696
4697 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4698 remote_vcont_probe (rs);
4699
4700 if (!rs->support_vCont_t)
4701 error (_("Remote server does not support stopping threads"));
4702
4703 if (ptid_equal (ptid, minus_one_ptid)
4704 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
4705 p += xsnprintf (p, endp - p, "vCont;t");
4706 else
4707 {
4708 ptid_t nptid;
4709
4710 p += xsnprintf (p, endp - p, "vCont;t:");
4711
4712 if (ptid_is_pid (ptid))
4713 /* All (-1) threads of process. */
4714 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4715 else
4716 {
4717 /* Small optimization: if we already have a stop reply for
4718 this thread, no use in telling the stub we want this
4719 stopped. */
4720 if (peek_stop_reply (ptid))
4721 return;
4722
4723 nptid = ptid;
4724 }
4725
4726 write_ptid (p, endp, nptid);
4727 }
4728
4729 /* In non-stop, we get an immediate OK reply. The stop reply will
4730 come in asynchronously by notification. */
4731 putpkt (rs->buf);
4732 getpkt (&rs->buf, &rs->buf_size, 0);
4733 if (strcmp (rs->buf, "OK") != 0)
4734 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
4735 }
4736
4737 /* All-stop version of target_stop. Sends a break or a ^C to stop the
4738 remote target. It is undefined which thread of which process
4739 reports the stop. */
4740
4741 static void
4742 remote_stop_as (ptid_t ptid)
4743 {
4744 struct remote_state *rs = get_remote_state ();
4745
4746 rs->ctrlc_pending_p = 1;
4747
4748 /* If the inferior is stopped already, but the core didn't know
4749 about it yet, just ignore the request. The cached wait status
4750 will be collected in remote_wait. */
4751 if (rs->cached_wait_status)
4752 return;
4753
4754 /* Send interrupt_sequence to remote target. */
4755 send_interrupt_sequence ();
4756 }
4757
4758 /* This is the generic stop called via the target vector. When a target
4759 interrupt is requested, either by the command line or the GUI, we
4760 will eventually end up here. */
4761
4762 static void
4763 remote_stop (ptid_t ptid)
4764 {
4765 if (remote_debug)
4766 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
4767
4768 if (non_stop)
4769 remote_stop_ns (ptid);
4770 else
4771 remote_stop_as (ptid);
4772 }
4773
4774 /* Ask the user what to do when an interrupt is received. */
4775
4776 static void
4777 interrupt_query (void)
4778 {
4779 target_terminal_ours ();
4780
4781 if (target_can_async_p ())
4782 {
4783 signal (SIGINT, handle_sigint);
4784 deprecated_throw_reason (RETURN_QUIT);
4785 }
4786 else
4787 {
4788 if (query (_("Interrupted while waiting for the program.\n\
4789 Give up (and stop debugging it)? ")))
4790 {
4791 pop_target ();
4792 deprecated_throw_reason (RETURN_QUIT);
4793 }
4794 }
4795
4796 target_terminal_inferior ();
4797 }
4798
4799 /* Enable/disable target terminal ownership. Most targets can use
4800 terminal groups to control terminal ownership. Remote targets are
4801 different in that explicit transfer of ownership to/from GDB/target
4802 is required. */
4803
4804 static void
4805 remote_terminal_inferior (void)
4806 {
4807 if (!target_async_permitted)
4808 /* Nothing to do. */
4809 return;
4810
4811 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
4812 idempotent. The event-loop GDB talking to an asynchronous target
4813 with a synchronous command calls this function from both
4814 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
4815 transfer the terminal to the target when it shouldn't this guard
4816 can go away. */
4817 if (!remote_async_terminal_ours_p)
4818 return;
4819 delete_file_handler (input_fd);
4820 remote_async_terminal_ours_p = 0;
4821 initialize_sigint_signal_handler ();
4822 /* NOTE: At this point we could also register our selves as the
4823 recipient of all input. Any characters typed could then be
4824 passed on down to the target. */
4825 }
4826
4827 static void
4828 remote_terminal_ours (void)
4829 {
4830 if (!target_async_permitted)
4831 /* Nothing to do. */
4832 return;
4833
4834 /* See FIXME in remote_terminal_inferior. */
4835 if (remote_async_terminal_ours_p)
4836 return;
4837 cleanup_sigint_signal_handler (NULL);
4838 add_file_handler (input_fd, stdin_event_handler, 0);
4839 remote_async_terminal_ours_p = 1;
4840 }
4841
4842 static void
4843 remote_console_output (char *msg)
4844 {
4845 char *p;
4846
4847 for (p = msg; p[0] && p[1]; p += 2)
4848 {
4849 char tb[2];
4850 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
4851
4852 tb[0] = c;
4853 tb[1] = 0;
4854 fputs_unfiltered (tb, gdb_stdtarg);
4855 }
4856 gdb_flush (gdb_stdtarg);
4857 }
4858
4859 typedef struct cached_reg
4860 {
4861 int num;
4862 gdb_byte data[MAX_REGISTER_SIZE];
4863 } cached_reg_t;
4864
4865 DEF_VEC_O(cached_reg_t);
4866
4867 struct stop_reply
4868 {
4869 struct stop_reply *next;
4870
4871 ptid_t ptid;
4872
4873 struct target_waitstatus ws;
4874
4875 VEC(cached_reg_t) *regcache;
4876
4877 int stopped_by_watchpoint_p;
4878 CORE_ADDR watch_data_address;
4879
4880 int solibs_changed;
4881 int replay_event;
4882
4883 int core;
4884 };
4885
4886 /* The list of already fetched and acknowledged stop events. */
4887 static struct stop_reply *stop_reply_queue;
4888
4889 static struct stop_reply *
4890 stop_reply_xmalloc (void)
4891 {
4892 struct stop_reply *r = XMALLOC (struct stop_reply);
4893
4894 r->next = NULL;
4895 return r;
4896 }
4897
4898 static void
4899 stop_reply_xfree (struct stop_reply *r)
4900 {
4901 if (r != NULL)
4902 {
4903 VEC_free (cached_reg_t, r->regcache);
4904 xfree (r);
4905 }
4906 }
4907
4908 /* Discard all pending stop replies of inferior PID. If PID is -1,
4909 discard everything. */
4910
4911 static void
4912 discard_pending_stop_replies (int pid)
4913 {
4914 struct stop_reply *prev = NULL, *reply, *next;
4915
4916 /* Discard the in-flight notification. */
4917 if (pending_stop_reply != NULL
4918 && (pid == -1
4919 || ptid_get_pid (pending_stop_reply->ptid) == pid))
4920 {
4921 stop_reply_xfree (pending_stop_reply);
4922 pending_stop_reply = NULL;
4923 }
4924
4925 /* Discard the stop replies we have already pulled with
4926 vStopped. */
4927 for (reply = stop_reply_queue; reply; reply = next)
4928 {
4929 next = reply->next;
4930 if (pid == -1
4931 || ptid_get_pid (reply->ptid) == pid)
4932 {
4933 if (reply == stop_reply_queue)
4934 stop_reply_queue = reply->next;
4935 else
4936 prev->next = reply->next;
4937
4938 stop_reply_xfree (reply);
4939 }
4940 else
4941 prev = reply;
4942 }
4943 }
4944
4945 /* Cleanup wrapper. */
4946
4947 static void
4948 do_stop_reply_xfree (void *arg)
4949 {
4950 struct stop_reply *r = arg;
4951
4952 stop_reply_xfree (r);
4953 }
4954
4955 /* Look for a queued stop reply belonging to PTID. If one is found,
4956 remove it from the queue, and return it. Returns NULL if none is
4957 found. If there are still queued events left to process, tell the
4958 event loop to get back to target_wait soon. */
4959
4960 static struct stop_reply *
4961 queued_stop_reply (ptid_t ptid)
4962 {
4963 struct stop_reply *it;
4964 struct stop_reply **it_link;
4965
4966 it = stop_reply_queue;
4967 it_link = &stop_reply_queue;
4968 while (it)
4969 {
4970 if (ptid_match (it->ptid, ptid))
4971 {
4972 *it_link = it->next;
4973 it->next = NULL;
4974 break;
4975 }
4976
4977 it_link = &it->next;
4978 it = *it_link;
4979 }
4980
4981 if (stop_reply_queue)
4982 /* There's still at least an event left. */
4983 mark_async_event_handler (remote_async_inferior_event_token);
4984
4985 return it;
4986 }
4987
4988 /* Push a fully parsed stop reply in the stop reply queue. Since we
4989 know that we now have at least one queued event left to pass to the
4990 core side, tell the event loop to get back to target_wait soon. */
4991
4992 static void
4993 push_stop_reply (struct stop_reply *new_event)
4994 {
4995 struct stop_reply *event;
4996
4997 if (stop_reply_queue)
4998 {
4999 for (event = stop_reply_queue;
5000 event && event->next;
5001 event = event->next)
5002 ;
5003
5004 event->next = new_event;
5005 }
5006 else
5007 stop_reply_queue = new_event;
5008
5009 mark_async_event_handler (remote_async_inferior_event_token);
5010 }
5011
5012 /* Returns true if we have a stop reply for PTID. */
5013
5014 static int
5015 peek_stop_reply (ptid_t ptid)
5016 {
5017 struct stop_reply *it;
5018
5019 for (it = stop_reply_queue; it; it = it->next)
5020 if (ptid_equal (ptid, it->ptid))
5021 {
5022 if (it->ws.kind == TARGET_WAITKIND_STOPPED)
5023 return 1;
5024 }
5025
5026 return 0;
5027 }
5028
5029 /* Parse the stop reply in BUF. Either the function succeeds, and the
5030 result is stored in EVENT, or throws an error. */
5031
5032 static void
5033 remote_parse_stop_reply (char *buf, struct stop_reply *event)
5034 {
5035 struct remote_arch_state *rsa = get_remote_arch_state ();
5036 ULONGEST addr;
5037 char *p;
5038
5039 event->ptid = null_ptid;
5040 event->ws.kind = TARGET_WAITKIND_IGNORE;
5041 event->ws.value.integer = 0;
5042 event->solibs_changed = 0;
5043 event->replay_event = 0;
5044 event->stopped_by_watchpoint_p = 0;
5045 event->regcache = NULL;
5046 event->core = -1;
5047
5048 switch (buf[0])
5049 {
5050 case 'T': /* Status with PC, SP, FP, ... */
5051 /* Expedited reply, containing Signal, {regno, reg} repeat. */
5052 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
5053 ss = signal number
5054 n... = register number
5055 r... = register contents
5056 */
5057
5058 p = &buf[3]; /* after Txx */
5059 while (*p)
5060 {
5061 char *p1;
5062 char *p_temp;
5063 int fieldsize;
5064 LONGEST pnum = 0;
5065
5066 /* If the packet contains a register number, save it in
5067 pnum and set p1 to point to the character following it.
5068 Otherwise p1 points to p. */
5069
5070 /* If this packet is an awatch packet, don't parse the 'a'
5071 as a register number. */
5072
5073 if (strncmp (p, "awatch", strlen("awatch")) != 0
5074 && strncmp (p, "core", strlen ("core") != 0))
5075 {
5076 /* Read the ``P'' register number. */
5077 pnum = strtol (p, &p_temp, 16);
5078 p1 = p_temp;
5079 }
5080 else
5081 p1 = p;
5082
5083 if (p1 == p) /* No register number present here. */
5084 {
5085 p1 = strchr (p, ':');
5086 if (p1 == NULL)
5087 error (_("Malformed packet(a) (missing colon): %s\n\
5088 Packet: '%s'\n"),
5089 p, buf);
5090 if (strncmp (p, "thread", p1 - p) == 0)
5091 event->ptid = read_ptid (++p1, &p);
5092 else if ((strncmp (p, "watch", p1 - p) == 0)
5093 || (strncmp (p, "rwatch", p1 - p) == 0)
5094 || (strncmp (p, "awatch", p1 - p) == 0))
5095 {
5096 event->stopped_by_watchpoint_p = 1;
5097 p = unpack_varlen_hex (++p1, &addr);
5098 event->watch_data_address = (CORE_ADDR) addr;
5099 }
5100 else if (strncmp (p, "library", p1 - p) == 0)
5101 {
5102 p1++;
5103 p_temp = p1;
5104 while (*p_temp && *p_temp != ';')
5105 p_temp++;
5106
5107 event->solibs_changed = 1;
5108 p = p_temp;
5109 }
5110 else if (strncmp (p, "replaylog", p1 - p) == 0)
5111 {
5112 /* NO_HISTORY event.
5113 p1 will indicate "begin" or "end", but
5114 it makes no difference for now, so ignore it. */
5115 event->replay_event = 1;
5116 p_temp = strchr (p1 + 1, ';');
5117 if (p_temp)
5118 p = p_temp;
5119 }
5120 else if (strncmp (p, "core", p1 - p) == 0)
5121 {
5122 ULONGEST c;
5123
5124 p = unpack_varlen_hex (++p1, &c);
5125 event->core = c;
5126 }
5127 else
5128 {
5129 /* Silently skip unknown optional info. */
5130 p_temp = strchr (p1 + 1, ';');
5131 if (p_temp)
5132 p = p_temp;
5133 }
5134 }
5135 else
5136 {
5137 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
5138 cached_reg_t cached_reg;
5139
5140 p = p1;
5141
5142 if (*p != ':')
5143 error (_("Malformed packet(b) (missing colon): %s\n\
5144 Packet: '%s'\n"),
5145 p, buf);
5146 ++p;
5147
5148 if (reg == NULL)
5149 error (_("Remote sent bad register number %s: %s\n\
5150 Packet: '%s'\n"),
5151 hex_string (pnum), p, buf);
5152
5153 cached_reg.num = reg->regnum;
5154
5155 fieldsize = hex2bin (p, cached_reg.data,
5156 register_size (target_gdbarch,
5157 reg->regnum));
5158 p += 2 * fieldsize;
5159 if (fieldsize < register_size (target_gdbarch,
5160 reg->regnum))
5161 warning (_("Remote reply is too short: %s"), buf);
5162
5163 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
5164 }
5165
5166 if (*p != ';')
5167 error (_("Remote register badly formatted: %s\nhere: %s"),
5168 buf, p);
5169 ++p;
5170 }
5171 /* fall through */
5172 case 'S': /* Old style status, just signal only. */
5173 if (event->solibs_changed)
5174 event->ws.kind = TARGET_WAITKIND_LOADED;
5175 else if (event->replay_event)
5176 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
5177 else
5178 {
5179 event->ws.kind = TARGET_WAITKIND_STOPPED;
5180 event->ws.value.sig = (enum target_signal)
5181 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
5182 }
5183 break;
5184 case 'W': /* Target exited. */
5185 case 'X':
5186 {
5187 char *p;
5188 int pid;
5189 ULONGEST value;
5190
5191 /* GDB used to accept only 2 hex chars here. Stubs should
5192 only send more if they detect GDB supports multi-process
5193 support. */
5194 p = unpack_varlen_hex (&buf[1], &value);
5195
5196 if (buf[0] == 'W')
5197 {
5198 /* The remote process exited. */
5199 event->ws.kind = TARGET_WAITKIND_EXITED;
5200 event->ws.value.integer = value;
5201 }
5202 else
5203 {
5204 /* The remote process exited with a signal. */
5205 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
5206 event->ws.value.sig = (enum target_signal) value;
5207 }
5208
5209 /* If no process is specified, assume inferior_ptid. */
5210 pid = ptid_get_pid (inferior_ptid);
5211 if (*p == '\0')
5212 ;
5213 else if (*p == ';')
5214 {
5215 p++;
5216
5217 if (p == '\0')
5218 ;
5219 else if (strncmp (p,
5220 "process:", sizeof ("process:") - 1) == 0)
5221 {
5222 ULONGEST upid;
5223
5224 p += sizeof ("process:") - 1;
5225 unpack_varlen_hex (p, &upid);
5226 pid = upid;
5227 }
5228 else
5229 error (_("unknown stop reply packet: %s"), buf);
5230 }
5231 else
5232 error (_("unknown stop reply packet: %s"), buf);
5233 event->ptid = pid_to_ptid (pid);
5234 }
5235 break;
5236 }
5237
5238 if (non_stop && ptid_equal (event->ptid, null_ptid))
5239 error (_("No process or thread specified in stop reply: %s"), buf);
5240 }
5241
5242 /* When the stub wants to tell GDB about a new stop reply, it sends a
5243 stop notification (%Stop). Those can come it at any time, hence,
5244 we have to make sure that any pending putpkt/getpkt sequence we're
5245 making is finished, before querying the stub for more events with
5246 vStopped. E.g., if we started a vStopped sequence immediatelly
5247 upon receiving the %Stop notification, something like this could
5248 happen:
5249
5250 1.1) --> Hg 1
5251 1.2) <-- OK
5252 1.3) --> g
5253 1.4) <-- %Stop
5254 1.5) --> vStopped
5255 1.6) <-- (registers reply to step #1.3)
5256
5257 Obviously, the reply in step #1.6 would be unexpected to a vStopped
5258 query.
5259
5260 To solve this, whenever we parse a %Stop notification sucessfully,
5261 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
5262 doing whatever we were doing:
5263
5264 2.1) --> Hg 1
5265 2.2) <-- OK
5266 2.3) --> g
5267 2.4) <-- %Stop
5268 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
5269 2.5) <-- (registers reply to step #2.3)
5270
5271 Eventualy after step #2.5, we return to the event loop, which
5272 notices there's an event on the
5273 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
5274 associated callback --- the function below. At this point, we're
5275 always safe to start a vStopped sequence. :
5276
5277 2.6) --> vStopped
5278 2.7) <-- T05 thread:2
5279 2.8) --> vStopped
5280 2.9) --> OK
5281 */
5282
5283 static void
5284 remote_get_pending_stop_replies (void)
5285 {
5286 struct remote_state *rs = get_remote_state ();
5287
5288 if (pending_stop_reply)
5289 {
5290 /* acknowledge */
5291 putpkt ("vStopped");
5292
5293 /* Now we can rely on it. */
5294 push_stop_reply (pending_stop_reply);
5295 pending_stop_reply = NULL;
5296
5297 while (1)
5298 {
5299 getpkt (&rs->buf, &rs->buf_size, 0);
5300 if (strcmp (rs->buf, "OK") == 0)
5301 break;
5302 else
5303 {
5304 struct cleanup *old_chain;
5305 struct stop_reply *stop_reply = stop_reply_xmalloc ();
5306
5307 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5308 remote_parse_stop_reply (rs->buf, stop_reply);
5309
5310 /* acknowledge */
5311 putpkt ("vStopped");
5312
5313 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
5314 {
5315 /* Now we can rely on it. */
5316 discard_cleanups (old_chain);
5317 push_stop_reply (stop_reply);
5318 }
5319 else
5320 /* We got an unknown stop reply. */
5321 do_cleanups (old_chain);
5322 }
5323 }
5324 }
5325 }
5326
5327
5328 /* Called when it is decided that STOP_REPLY holds the info of the
5329 event that is to be returned to the core. This function always
5330 destroys STOP_REPLY. */
5331
5332 static ptid_t
5333 process_stop_reply (struct stop_reply *stop_reply,
5334 struct target_waitstatus *status)
5335 {
5336 ptid_t ptid;
5337
5338 *status = stop_reply->ws;
5339 ptid = stop_reply->ptid;
5340
5341 /* If no thread/process was reported by the stub, assume the current
5342 inferior. */
5343 if (ptid_equal (ptid, null_ptid))
5344 ptid = inferior_ptid;
5345
5346 if (status->kind != TARGET_WAITKIND_EXITED
5347 && status->kind != TARGET_WAITKIND_SIGNALLED)
5348 {
5349 /* Expedited registers. */
5350 if (stop_reply->regcache)
5351 {
5352 struct regcache *regcache
5353 = get_thread_arch_regcache (ptid, target_gdbarch);
5354 cached_reg_t *reg;
5355 int ix;
5356
5357 for (ix = 0;
5358 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
5359 ix++)
5360 regcache_raw_supply (regcache, reg->num, reg->data);
5361 VEC_free (cached_reg_t, stop_reply->regcache);
5362 }
5363
5364 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
5365 remote_watch_data_address = stop_reply->watch_data_address;
5366
5367 remote_notice_new_inferior (ptid, 0);
5368 demand_private_info (ptid)->core = stop_reply->core;
5369 }
5370
5371 stop_reply_xfree (stop_reply);
5372 return ptid;
5373 }
5374
5375 /* The non-stop mode version of target_wait. */
5376
5377 static ptid_t
5378 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
5379 {
5380 struct remote_state *rs = get_remote_state ();
5381 struct stop_reply *stop_reply;
5382 int ret;
5383
5384 /* If in non-stop mode, get out of getpkt even if a
5385 notification is received. */
5386
5387 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5388 0 /* forever */);
5389 while (1)
5390 {
5391 if (ret != -1)
5392 switch (rs->buf[0])
5393 {
5394 case 'E': /* Error of some sort. */
5395 /* We're out of sync with the target now. Did it continue
5396 or not? We can't tell which thread it was in non-stop,
5397 so just ignore this. */
5398 warning (_("Remote failure reply: %s"), rs->buf);
5399 break;
5400 case 'O': /* Console output. */
5401 remote_console_output (rs->buf + 1);
5402 break;
5403 default:
5404 warning (_("Invalid remote reply: %s"), rs->buf);
5405 break;
5406 }
5407
5408 /* Acknowledge a pending stop reply that may have arrived in the
5409 mean time. */
5410 if (pending_stop_reply != NULL)
5411 remote_get_pending_stop_replies ();
5412
5413 /* If indeed we noticed a stop reply, we're done. */
5414 stop_reply = queued_stop_reply (ptid);
5415 if (stop_reply != NULL)
5416 return process_stop_reply (stop_reply, status);
5417
5418 /* Still no event. If we're just polling for an event, then
5419 return to the event loop. */
5420 if (options & TARGET_WNOHANG)
5421 {
5422 status->kind = TARGET_WAITKIND_IGNORE;
5423 return minus_one_ptid;
5424 }
5425
5426 /* Otherwise do a blocking wait. */
5427 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5428 1 /* forever */);
5429 }
5430 }
5431
5432 /* Wait until the remote machine stops, then return, storing status in
5433 STATUS just as `wait' would. */
5434
5435 static ptid_t
5436 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
5437 {
5438 struct remote_state *rs = get_remote_state ();
5439 ptid_t event_ptid = null_ptid;
5440 char *buf;
5441 struct stop_reply *stop_reply;
5442
5443 again:
5444
5445 status->kind = TARGET_WAITKIND_IGNORE;
5446 status->value.integer = 0;
5447
5448 stop_reply = queued_stop_reply (ptid);
5449 if (stop_reply != NULL)
5450 return process_stop_reply (stop_reply, status);
5451
5452 if (rs->cached_wait_status)
5453 /* Use the cached wait status, but only once. */
5454 rs->cached_wait_status = 0;
5455 else
5456 {
5457 int ret;
5458
5459 if (!target_is_async_p ())
5460 {
5461 ofunc = signal (SIGINT, remote_interrupt);
5462 /* If the user hit C-c before this packet, or between packets,
5463 pretend that it was hit right here. */
5464 if (quit_flag)
5465 {
5466 quit_flag = 0;
5467 remote_interrupt (SIGINT);
5468 }
5469 }
5470
5471 /* FIXME: cagney/1999-09-27: If we're in async mode we should
5472 _never_ wait for ever -> test on target_is_async_p().
5473 However, before we do that we need to ensure that the caller
5474 knows how to take the target into/out of async mode. */
5475 ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
5476 if (!target_is_async_p ())
5477 signal (SIGINT, ofunc);
5478 }
5479
5480 buf = rs->buf;
5481
5482 remote_stopped_by_watchpoint_p = 0;
5483
5484 /* We got something. */
5485 rs->waiting_for_stop_reply = 0;
5486
5487 /* Assume that the target has acknowledged Ctrl-C unless we receive
5488 an 'F' or 'O' packet. */
5489 if (buf[0] != 'F' && buf[0] != 'O')
5490 rs->ctrlc_pending_p = 0;
5491
5492 switch (buf[0])
5493 {
5494 case 'E': /* Error of some sort. */
5495 /* We're out of sync with the target now. Did it continue or
5496 not? Not is more likely, so report a stop. */
5497 warning (_("Remote failure reply: %s"), buf);
5498 status->kind = TARGET_WAITKIND_STOPPED;
5499 status->value.sig = TARGET_SIGNAL_0;
5500 break;
5501 case 'F': /* File-I/O request. */
5502 remote_fileio_request (buf, rs->ctrlc_pending_p);
5503 rs->ctrlc_pending_p = 0;
5504 break;
5505 case 'T': case 'S': case 'X': case 'W':
5506 {
5507 struct stop_reply *stop_reply;
5508 struct cleanup *old_chain;
5509
5510 stop_reply = stop_reply_xmalloc ();
5511 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5512 remote_parse_stop_reply (buf, stop_reply);
5513 discard_cleanups (old_chain);
5514 event_ptid = process_stop_reply (stop_reply, status);
5515 break;
5516 }
5517 case 'O': /* Console output. */
5518 remote_console_output (buf + 1);
5519
5520 /* The target didn't really stop; keep waiting. */
5521 rs->waiting_for_stop_reply = 1;
5522
5523 break;
5524 case '\0':
5525 if (last_sent_signal != TARGET_SIGNAL_0)
5526 {
5527 /* Zero length reply means that we tried 'S' or 'C' and the
5528 remote system doesn't support it. */
5529 target_terminal_ours_for_output ();
5530 printf_filtered
5531 ("Can't send signals to this remote system. %s not sent.\n",
5532 target_signal_to_name (last_sent_signal));
5533 last_sent_signal = TARGET_SIGNAL_0;
5534 target_terminal_inferior ();
5535
5536 strcpy ((char *) buf, last_sent_step ? "s" : "c");
5537 putpkt ((char *) buf);
5538
5539 /* We just told the target to resume, so a stop reply is in
5540 order. */
5541 rs->waiting_for_stop_reply = 1;
5542 break;
5543 }
5544 /* else fallthrough */
5545 default:
5546 warning (_("Invalid remote reply: %s"), buf);
5547 /* Keep waiting. */
5548 rs->waiting_for_stop_reply = 1;
5549 break;
5550 }
5551
5552 if (status->kind == TARGET_WAITKIND_IGNORE)
5553 {
5554 /* Nothing interesting happened. If we're doing a non-blocking
5555 poll, we're done. Otherwise, go back to waiting. */
5556 if (options & TARGET_WNOHANG)
5557 return minus_one_ptid;
5558 else
5559 goto again;
5560 }
5561 else if (status->kind != TARGET_WAITKIND_EXITED
5562 && status->kind != TARGET_WAITKIND_SIGNALLED)
5563 {
5564 if (!ptid_equal (event_ptid, null_ptid))
5565 record_currthread (event_ptid);
5566 else
5567 event_ptid = inferior_ptid;
5568 }
5569 else
5570 /* A process exit. Invalidate our notion of current thread. */
5571 record_currthread (minus_one_ptid);
5572
5573 return event_ptid;
5574 }
5575
5576 /* Wait until the remote machine stops, then return, storing status in
5577 STATUS just as `wait' would. */
5578
5579 static ptid_t
5580 remote_wait (struct target_ops *ops,
5581 ptid_t ptid, struct target_waitstatus *status, int options)
5582 {
5583 ptid_t event_ptid;
5584
5585 if (non_stop)
5586 event_ptid = remote_wait_ns (ptid, status, options);
5587 else
5588 event_ptid = remote_wait_as (ptid, status, options);
5589
5590 if (target_can_async_p ())
5591 {
5592 /* If there are are events left in the queue tell the event loop
5593 to return here. */
5594 if (stop_reply_queue)
5595 mark_async_event_handler (remote_async_inferior_event_token);
5596 }
5597
5598 return event_ptid;
5599 }
5600
5601 /* Fetch a single register using a 'p' packet. */
5602
5603 static int
5604 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
5605 {
5606 struct remote_state *rs = get_remote_state ();
5607 char *buf, *p;
5608 char regp[MAX_REGISTER_SIZE];
5609 int i;
5610
5611 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
5612 return 0;
5613
5614 if (reg->pnum == -1)
5615 return 0;
5616
5617 p = rs->buf;
5618 *p++ = 'p';
5619 p += hexnumstr (p, reg->pnum);
5620 *p++ = '\0';
5621 putpkt (rs->buf);
5622 getpkt (&rs->buf, &rs->buf_size, 0);
5623
5624 buf = rs->buf;
5625
5626 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
5627 {
5628 case PACKET_OK:
5629 break;
5630 case PACKET_UNKNOWN:
5631 return 0;
5632 case PACKET_ERROR:
5633 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
5634 gdbarch_register_name (get_regcache_arch (regcache),
5635 reg->regnum),
5636 buf);
5637 }
5638
5639 /* If this register is unfetchable, tell the regcache. */
5640 if (buf[0] == 'x')
5641 {
5642 regcache_raw_supply (regcache, reg->regnum, NULL);
5643 return 1;
5644 }
5645
5646 /* Otherwise, parse and supply the value. */
5647 p = buf;
5648 i = 0;
5649 while (p[0] != 0)
5650 {
5651 if (p[1] == 0)
5652 error (_("fetch_register_using_p: early buf termination"));
5653
5654 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
5655 p += 2;
5656 }
5657 regcache_raw_supply (regcache, reg->regnum, regp);
5658 return 1;
5659 }
5660
5661 /* Fetch the registers included in the target's 'g' packet. */
5662
5663 static int
5664 send_g_packet (void)
5665 {
5666 struct remote_state *rs = get_remote_state ();
5667 int buf_len;
5668
5669 sprintf (rs->buf, "g");
5670 remote_send (&rs->buf, &rs->buf_size);
5671
5672 /* We can get out of synch in various cases. If the first character
5673 in the buffer is not a hex character, assume that has happened
5674 and try to fetch another packet to read. */
5675 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
5676 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
5677 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
5678 && rs->buf[0] != 'x') /* New: unavailable register value. */
5679 {
5680 if (remote_debug)
5681 fprintf_unfiltered (gdb_stdlog,
5682 "Bad register packet; fetching a new packet\n");
5683 getpkt (&rs->buf, &rs->buf_size, 0);
5684 }
5685
5686 buf_len = strlen (rs->buf);
5687
5688 /* Sanity check the received packet. */
5689 if (buf_len % 2 != 0)
5690 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
5691
5692 return buf_len / 2;
5693 }
5694
5695 static void
5696 process_g_packet (struct regcache *regcache)
5697 {
5698 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5699 struct remote_state *rs = get_remote_state ();
5700 struct remote_arch_state *rsa = get_remote_arch_state ();
5701 int i, buf_len;
5702 char *p;
5703 char *regs;
5704
5705 buf_len = strlen (rs->buf);
5706
5707 /* Further sanity checks, with knowledge of the architecture. */
5708 if (buf_len > 2 * rsa->sizeof_g_packet)
5709 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
5710
5711 /* Save the size of the packet sent to us by the target. It is used
5712 as a heuristic when determining the max size of packets that the
5713 target can safely receive. */
5714 if (rsa->actual_register_packet_size == 0)
5715 rsa->actual_register_packet_size = buf_len;
5716
5717 /* If this is smaller than we guessed the 'g' packet would be,
5718 update our records. A 'g' reply that doesn't include a register's
5719 value implies either that the register is not available, or that
5720 the 'p' packet must be used. */
5721 if (buf_len < 2 * rsa->sizeof_g_packet)
5722 {
5723 rsa->sizeof_g_packet = buf_len / 2;
5724
5725 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5726 {
5727 if (rsa->regs[i].pnum == -1)
5728 continue;
5729
5730 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
5731 rsa->regs[i].in_g_packet = 0;
5732 else
5733 rsa->regs[i].in_g_packet = 1;
5734 }
5735 }
5736
5737 regs = alloca (rsa->sizeof_g_packet);
5738
5739 /* Unimplemented registers read as all bits zero. */
5740 memset (regs, 0, rsa->sizeof_g_packet);
5741
5742 /* Reply describes registers byte by byte, each byte encoded as two
5743 hex characters. Suck them all up, then supply them to the
5744 register cacheing/storage mechanism. */
5745
5746 p = rs->buf;
5747 for (i = 0; i < rsa->sizeof_g_packet; i++)
5748 {
5749 if (p[0] == 0 || p[1] == 0)
5750 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
5751 internal_error (__FILE__, __LINE__,
5752 _("unexpected end of 'g' packet reply"));
5753
5754 if (p[0] == 'x' && p[1] == 'x')
5755 regs[i] = 0; /* 'x' */
5756 else
5757 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
5758 p += 2;
5759 }
5760
5761 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5762 {
5763 struct packet_reg *r = &rsa->regs[i];
5764
5765 if (r->in_g_packet)
5766 {
5767 if (r->offset * 2 >= strlen (rs->buf))
5768 /* This shouldn't happen - we adjusted in_g_packet above. */
5769 internal_error (__FILE__, __LINE__,
5770 _("unexpected end of 'g' packet reply"));
5771 else if (rs->buf[r->offset * 2] == 'x')
5772 {
5773 gdb_assert (r->offset * 2 < strlen (rs->buf));
5774 /* The register isn't available, mark it as such (at
5775 the same time setting the value to zero). */
5776 regcache_raw_supply (regcache, r->regnum, NULL);
5777 }
5778 else
5779 regcache_raw_supply (regcache, r->regnum,
5780 regs + r->offset);
5781 }
5782 }
5783 }
5784
5785 static void
5786 fetch_registers_using_g (struct regcache *regcache)
5787 {
5788 send_g_packet ();
5789 process_g_packet (regcache);
5790 }
5791
5792 /* Make the remote selected traceframe match GDB's selected
5793 traceframe. */
5794
5795 static void
5796 set_remote_traceframe (void)
5797 {
5798 int newnum;
5799
5800 if (remote_traceframe_number == get_traceframe_number ())
5801 return;
5802
5803 /* Avoid recursion, remote_trace_find calls us again. */
5804 remote_traceframe_number = get_traceframe_number ();
5805
5806 newnum = target_trace_find (tfind_number,
5807 get_traceframe_number (), 0, 0, NULL);
5808
5809 /* Should not happen. If it does, all bets are off. */
5810 if (newnum != get_traceframe_number ())
5811 warning (_("could not set remote traceframe"));
5812 }
5813
5814 static void
5815 remote_fetch_registers (struct target_ops *ops,
5816 struct regcache *regcache, int regnum)
5817 {
5818 struct remote_arch_state *rsa = get_remote_arch_state ();
5819 int i;
5820
5821 set_remote_traceframe ();
5822 set_general_thread (inferior_ptid);
5823
5824 if (regnum >= 0)
5825 {
5826 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5827
5828 gdb_assert (reg != NULL);
5829
5830 /* If this register might be in the 'g' packet, try that first -
5831 we are likely to read more than one register. If this is the
5832 first 'g' packet, we might be overly optimistic about its
5833 contents, so fall back to 'p'. */
5834 if (reg->in_g_packet)
5835 {
5836 fetch_registers_using_g (regcache);
5837 if (reg->in_g_packet)
5838 return;
5839 }
5840
5841 if (fetch_register_using_p (regcache, reg))
5842 return;
5843
5844 /* This register is not available. */
5845 regcache_raw_supply (regcache, reg->regnum, NULL);
5846
5847 return;
5848 }
5849
5850 fetch_registers_using_g (regcache);
5851
5852 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5853 if (!rsa->regs[i].in_g_packet)
5854 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
5855 {
5856 /* This register is not available. */
5857 regcache_raw_supply (regcache, i, NULL);
5858 }
5859 }
5860
5861 /* Prepare to store registers. Since we may send them all (using a
5862 'G' request), we have to read out the ones we don't want to change
5863 first. */
5864
5865 static void
5866 remote_prepare_to_store (struct regcache *regcache)
5867 {
5868 struct remote_arch_state *rsa = get_remote_arch_state ();
5869 int i;
5870 gdb_byte buf[MAX_REGISTER_SIZE];
5871
5872 /* Make sure the entire registers array is valid. */
5873 switch (remote_protocol_packets[PACKET_P].support)
5874 {
5875 case PACKET_DISABLE:
5876 case PACKET_SUPPORT_UNKNOWN:
5877 /* Make sure all the necessary registers are cached. */
5878 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5879 if (rsa->regs[i].in_g_packet)
5880 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
5881 break;
5882 case PACKET_ENABLE:
5883 break;
5884 }
5885 }
5886
5887 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
5888 packet was not recognized. */
5889
5890 static int
5891 store_register_using_P (const struct regcache *regcache,
5892 struct packet_reg *reg)
5893 {
5894 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5895 struct remote_state *rs = get_remote_state ();
5896 /* Try storing a single register. */
5897 char *buf = rs->buf;
5898 gdb_byte regp[MAX_REGISTER_SIZE];
5899 char *p;
5900
5901 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
5902 return 0;
5903
5904 if (reg->pnum == -1)
5905 return 0;
5906
5907 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
5908 p = buf + strlen (buf);
5909 regcache_raw_collect (regcache, reg->regnum, regp);
5910 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
5911 putpkt (rs->buf);
5912 getpkt (&rs->buf, &rs->buf_size, 0);
5913
5914 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
5915 {
5916 case PACKET_OK:
5917 return 1;
5918 case PACKET_ERROR:
5919 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
5920 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
5921 case PACKET_UNKNOWN:
5922 return 0;
5923 default:
5924 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
5925 }
5926 }
5927
5928 /* Store register REGNUM, or all registers if REGNUM == -1, from the
5929 contents of the register cache buffer. FIXME: ignores errors. */
5930
5931 static void
5932 store_registers_using_G (const struct regcache *regcache)
5933 {
5934 struct remote_state *rs = get_remote_state ();
5935 struct remote_arch_state *rsa = get_remote_arch_state ();
5936 gdb_byte *regs;
5937 char *p;
5938
5939 /* Extract all the registers in the regcache copying them into a
5940 local buffer. */
5941 {
5942 int i;
5943
5944 regs = alloca (rsa->sizeof_g_packet);
5945 memset (regs, 0, rsa->sizeof_g_packet);
5946 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5947 {
5948 struct packet_reg *r = &rsa->regs[i];
5949
5950 if (r->in_g_packet)
5951 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
5952 }
5953 }
5954
5955 /* Command describes registers byte by byte,
5956 each byte encoded as two hex characters. */
5957 p = rs->buf;
5958 *p++ = 'G';
5959 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
5960 updated. */
5961 bin2hex (regs, p, rsa->sizeof_g_packet);
5962 putpkt (rs->buf);
5963 getpkt (&rs->buf, &rs->buf_size, 0);
5964 if (packet_check_result (rs->buf) == PACKET_ERROR)
5965 error (_("Could not write registers; remote failure reply '%s'"),
5966 rs->buf);
5967 }
5968
5969 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
5970 of the register cache buffer. FIXME: ignores errors. */
5971
5972 static void
5973 remote_store_registers (struct target_ops *ops,
5974 struct regcache *regcache, int regnum)
5975 {
5976 struct remote_arch_state *rsa = get_remote_arch_state ();
5977 int i;
5978
5979 set_remote_traceframe ();
5980 set_general_thread (inferior_ptid);
5981
5982 if (regnum >= 0)
5983 {
5984 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5985
5986 gdb_assert (reg != NULL);
5987
5988 /* Always prefer to store registers using the 'P' packet if
5989 possible; we often change only a small number of registers.
5990 Sometimes we change a larger number; we'd need help from a
5991 higher layer to know to use 'G'. */
5992 if (store_register_using_P (regcache, reg))
5993 return;
5994
5995 /* For now, don't complain if we have no way to write the
5996 register. GDB loses track of unavailable registers too
5997 easily. Some day, this may be an error. We don't have
5998 any way to read the register, either... */
5999 if (!reg->in_g_packet)
6000 return;
6001
6002 store_registers_using_G (regcache);
6003 return;
6004 }
6005
6006 store_registers_using_G (regcache);
6007
6008 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6009 if (!rsa->regs[i].in_g_packet)
6010 if (!store_register_using_P (regcache, &rsa->regs[i]))
6011 /* See above for why we do not issue an error here. */
6012 continue;
6013 }
6014 \f
6015
6016 /* Return the number of hex digits in num. */
6017
6018 static int
6019 hexnumlen (ULONGEST num)
6020 {
6021 int i;
6022
6023 for (i = 0; num != 0; i++)
6024 num >>= 4;
6025
6026 return max (i, 1);
6027 }
6028
6029 /* Set BUF to the minimum number of hex digits representing NUM. */
6030
6031 static int
6032 hexnumstr (char *buf, ULONGEST num)
6033 {
6034 int len = hexnumlen (num);
6035
6036 return hexnumnstr (buf, num, len);
6037 }
6038
6039
6040 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
6041
6042 static int
6043 hexnumnstr (char *buf, ULONGEST num, int width)
6044 {
6045 int i;
6046
6047 buf[width] = '\0';
6048
6049 for (i = width - 1; i >= 0; i--)
6050 {
6051 buf[i] = "0123456789abcdef"[(num & 0xf)];
6052 num >>= 4;
6053 }
6054
6055 return width;
6056 }
6057
6058 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
6059
6060 static CORE_ADDR
6061 remote_address_masked (CORE_ADDR addr)
6062 {
6063 int address_size = remote_address_size;
6064
6065 /* If "remoteaddresssize" was not set, default to target address size. */
6066 if (!address_size)
6067 address_size = gdbarch_addr_bit (target_gdbarch);
6068
6069 if (address_size > 0
6070 && address_size < (sizeof (ULONGEST) * 8))
6071 {
6072 /* Only create a mask when that mask can safely be constructed
6073 in a ULONGEST variable. */
6074 ULONGEST mask = 1;
6075
6076 mask = (mask << address_size) - 1;
6077 addr &= mask;
6078 }
6079 return addr;
6080 }
6081
6082 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
6083 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
6084 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
6085 (which may be more than *OUT_LEN due to escape characters). The
6086 total number of bytes in the output buffer will be at most
6087 OUT_MAXLEN. */
6088
6089 static int
6090 remote_escape_output (const gdb_byte *buffer, int len,
6091 gdb_byte *out_buf, int *out_len,
6092 int out_maxlen)
6093 {
6094 int input_index, output_index;
6095
6096 output_index = 0;
6097 for (input_index = 0; input_index < len; input_index++)
6098 {
6099 gdb_byte b = buffer[input_index];
6100
6101 if (b == '$' || b == '#' || b == '}')
6102 {
6103 /* These must be escaped. */
6104 if (output_index + 2 > out_maxlen)
6105 break;
6106 out_buf[output_index++] = '}';
6107 out_buf[output_index++] = b ^ 0x20;
6108 }
6109 else
6110 {
6111 if (output_index + 1 > out_maxlen)
6112 break;
6113 out_buf[output_index++] = b;
6114 }
6115 }
6116
6117 *out_len = input_index;
6118 return output_index;
6119 }
6120
6121 /* Convert BUFFER, escaped data LEN bytes long, into binary data
6122 in OUT_BUF. Return the number of bytes written to OUT_BUF.
6123 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
6124
6125 This function reverses remote_escape_output. It allows more
6126 escaped characters than that function does, in particular because
6127 '*' must be escaped to avoid the run-length encoding processing
6128 in reading packets. */
6129
6130 static int
6131 remote_unescape_input (const gdb_byte *buffer, int len,
6132 gdb_byte *out_buf, int out_maxlen)
6133 {
6134 int input_index, output_index;
6135 int escaped;
6136
6137 output_index = 0;
6138 escaped = 0;
6139 for (input_index = 0; input_index < len; input_index++)
6140 {
6141 gdb_byte b = buffer[input_index];
6142
6143 if (output_index + 1 > out_maxlen)
6144 {
6145 warning (_("Received too much data from remote target;"
6146 " ignoring overflow."));
6147 return output_index;
6148 }
6149
6150 if (escaped)
6151 {
6152 out_buf[output_index++] = b ^ 0x20;
6153 escaped = 0;
6154 }
6155 else if (b == '}')
6156 escaped = 1;
6157 else
6158 out_buf[output_index++] = b;
6159 }
6160
6161 if (escaped)
6162 error (_("Unmatched escape character in target response."));
6163
6164 return output_index;
6165 }
6166
6167 /* Determine whether the remote target supports binary downloading.
6168 This is accomplished by sending a no-op memory write of zero length
6169 to the target at the specified address. It does not suffice to send
6170 the whole packet, since many stubs strip the eighth bit and
6171 subsequently compute a wrong checksum, which causes real havoc with
6172 remote_write_bytes.
6173
6174 NOTE: This can still lose if the serial line is not eight-bit
6175 clean. In cases like this, the user should clear "remote
6176 X-packet". */
6177
6178 static void
6179 check_binary_download (CORE_ADDR addr)
6180 {
6181 struct remote_state *rs = get_remote_state ();
6182
6183 switch (remote_protocol_packets[PACKET_X].support)
6184 {
6185 case PACKET_DISABLE:
6186 break;
6187 case PACKET_ENABLE:
6188 break;
6189 case PACKET_SUPPORT_UNKNOWN:
6190 {
6191 char *p;
6192
6193 p = rs->buf;
6194 *p++ = 'X';
6195 p += hexnumstr (p, (ULONGEST) addr);
6196 *p++ = ',';
6197 p += hexnumstr (p, (ULONGEST) 0);
6198 *p++ = ':';
6199 *p = '\0';
6200
6201 putpkt_binary (rs->buf, (int) (p - rs->buf));
6202 getpkt (&rs->buf, &rs->buf_size, 0);
6203
6204 if (rs->buf[0] == '\0')
6205 {
6206 if (remote_debug)
6207 fprintf_unfiltered (gdb_stdlog,
6208 "binary downloading NOT "
6209 "supported by target\n");
6210 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
6211 }
6212 else
6213 {
6214 if (remote_debug)
6215 fprintf_unfiltered (gdb_stdlog,
6216 "binary downloading suppported by target\n");
6217 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
6218 }
6219 break;
6220 }
6221 }
6222 }
6223
6224 /* Write memory data directly to the remote machine.
6225 This does not inform the data cache; the data cache uses this.
6226 HEADER is the starting part of the packet.
6227 MEMADDR is the address in the remote memory space.
6228 MYADDR is the address of the buffer in our space.
6229 LEN is the number of bytes.
6230 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
6231 should send data as binary ('X'), or hex-encoded ('M').
6232
6233 The function creates packet of the form
6234 <HEADER><ADDRESS>,<LENGTH>:<DATA>
6235
6236 where encoding of <DATA> is termined by PACKET_FORMAT.
6237
6238 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
6239 are omitted.
6240
6241 Returns the number of bytes transferred, or 0 (setting errno) for
6242 error. Only transfer a single packet. */
6243
6244 static int
6245 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
6246 const gdb_byte *myaddr, int len,
6247 char packet_format, int use_length)
6248 {
6249 struct remote_state *rs = get_remote_state ();
6250 char *p;
6251 char *plen = NULL;
6252 int plenlen = 0;
6253 int todo;
6254 int nr_bytes;
6255 int payload_size;
6256 int payload_length;
6257 int header_length;
6258
6259 if (packet_format != 'X' && packet_format != 'M')
6260 internal_error (__FILE__, __LINE__,
6261 _("remote_write_bytes_aux: bad packet format"));
6262
6263 if (len <= 0)
6264 return 0;
6265
6266 payload_size = get_memory_write_packet_size ();
6267
6268 /* The packet buffer will be large enough for the payload;
6269 get_memory_packet_size ensures this. */
6270 rs->buf[0] = '\0';
6271
6272 /* Compute the size of the actual payload by subtracting out the
6273 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
6274
6275 payload_size -= strlen ("$,:#NN");
6276 if (!use_length)
6277 /* The comma won't be used. */
6278 payload_size += 1;
6279 header_length = strlen (header);
6280 payload_size -= header_length;
6281 payload_size -= hexnumlen (memaddr);
6282
6283 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
6284
6285 strcat (rs->buf, header);
6286 p = rs->buf + strlen (header);
6287
6288 /* Compute a best guess of the number of bytes actually transfered. */
6289 if (packet_format == 'X')
6290 {
6291 /* Best guess at number of bytes that will fit. */
6292 todo = min (len, payload_size);
6293 if (use_length)
6294 payload_size -= hexnumlen (todo);
6295 todo = min (todo, payload_size);
6296 }
6297 else
6298 {
6299 /* Num bytes that will fit. */
6300 todo = min (len, payload_size / 2);
6301 if (use_length)
6302 payload_size -= hexnumlen (todo);
6303 todo = min (todo, payload_size / 2);
6304 }
6305
6306 if (todo <= 0)
6307 internal_error (__FILE__, __LINE__,
6308 _("minumum packet size too small to write data"));
6309
6310 /* If we already need another packet, then try to align the end
6311 of this packet to a useful boundary. */
6312 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
6313 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
6314
6315 /* Append "<memaddr>". */
6316 memaddr = remote_address_masked (memaddr);
6317 p += hexnumstr (p, (ULONGEST) memaddr);
6318
6319 if (use_length)
6320 {
6321 /* Append ",". */
6322 *p++ = ',';
6323
6324 /* Append <len>. Retain the location/size of <len>. It may need to
6325 be adjusted once the packet body has been created. */
6326 plen = p;
6327 plenlen = hexnumstr (p, (ULONGEST) todo);
6328 p += plenlen;
6329 }
6330
6331 /* Append ":". */
6332 *p++ = ':';
6333 *p = '\0';
6334
6335 /* Append the packet body. */
6336 if (packet_format == 'X')
6337 {
6338 /* Binary mode. Send target system values byte by byte, in
6339 increasing byte addresses. Only escape certain critical
6340 characters. */
6341 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
6342 payload_size);
6343
6344 /* If not all TODO bytes fit, then we'll need another packet. Make
6345 a second try to keep the end of the packet aligned. Don't do
6346 this if the packet is tiny. */
6347 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
6348 {
6349 int new_nr_bytes;
6350
6351 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
6352 - memaddr);
6353 if (new_nr_bytes != nr_bytes)
6354 payload_length = remote_escape_output (myaddr, new_nr_bytes,
6355 p, &nr_bytes,
6356 payload_size);
6357 }
6358
6359 p += payload_length;
6360 if (use_length && nr_bytes < todo)
6361 {
6362 /* Escape chars have filled up the buffer prematurely,
6363 and we have actually sent fewer bytes than planned.
6364 Fix-up the length field of the packet. Use the same
6365 number of characters as before. */
6366 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
6367 *plen = ':'; /* overwrite \0 from hexnumnstr() */
6368 }
6369 }
6370 else
6371 {
6372 /* Normal mode: Send target system values byte by byte, in
6373 increasing byte addresses. Each byte is encoded as a two hex
6374 value. */
6375 nr_bytes = bin2hex (myaddr, p, todo);
6376 p += 2 * nr_bytes;
6377 }
6378
6379 putpkt_binary (rs->buf, (int) (p - rs->buf));
6380 getpkt (&rs->buf, &rs->buf_size, 0);
6381
6382 if (rs->buf[0] == 'E')
6383 {
6384 /* There is no correspondance between what the remote protocol
6385 uses for errors and errno codes. We would like a cleaner way
6386 of representing errors (big enough to include errno codes,
6387 bfd_error codes, and others). But for now just return EIO. */
6388 errno = EIO;
6389 return 0;
6390 }
6391
6392 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
6393 fewer bytes than we'd planned. */
6394 return nr_bytes;
6395 }
6396
6397 /* Write memory data directly to the remote machine.
6398 This does not inform the data cache; the data cache uses this.
6399 MEMADDR is the address in the remote memory space.
6400 MYADDR is the address of the buffer in our space.
6401 LEN is the number of bytes.
6402
6403 Returns number of bytes transferred, or 0 (setting errno) for
6404 error. Only transfer a single packet. */
6405
6406 static int
6407 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
6408 {
6409 char *packet_format = 0;
6410
6411 /* Check whether the target supports binary download. */
6412 check_binary_download (memaddr);
6413
6414 switch (remote_protocol_packets[PACKET_X].support)
6415 {
6416 case PACKET_ENABLE:
6417 packet_format = "X";
6418 break;
6419 case PACKET_DISABLE:
6420 packet_format = "M";
6421 break;
6422 case PACKET_SUPPORT_UNKNOWN:
6423 internal_error (__FILE__, __LINE__,
6424 _("remote_write_bytes: bad internal state"));
6425 default:
6426 internal_error (__FILE__, __LINE__, _("bad switch"));
6427 }
6428
6429 return remote_write_bytes_aux (packet_format,
6430 memaddr, myaddr, len, packet_format[0], 1);
6431 }
6432
6433 /* Read memory data directly from the remote machine.
6434 This does not use the data cache; the data cache uses this.
6435 MEMADDR is the address in the remote memory space.
6436 MYADDR is the address of the buffer in our space.
6437 LEN is the number of bytes.
6438
6439 Returns number of bytes transferred, or 0 for error. */
6440
6441 static int
6442 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
6443 {
6444 struct remote_state *rs = get_remote_state ();
6445 int max_buf_size; /* Max size of packet output buffer. */
6446 char *p;
6447 int todo;
6448 int i;
6449
6450 if (len <= 0)
6451 return 0;
6452
6453 max_buf_size = get_memory_read_packet_size ();
6454 /* The packet buffer will be large enough for the payload;
6455 get_memory_packet_size ensures this. */
6456
6457 /* Number if bytes that will fit. */
6458 todo = min (len, max_buf_size / 2);
6459
6460 /* Construct "m"<memaddr>","<len>". */
6461 memaddr = remote_address_masked (memaddr);
6462 p = rs->buf;
6463 *p++ = 'm';
6464 p += hexnumstr (p, (ULONGEST) memaddr);
6465 *p++ = ',';
6466 p += hexnumstr (p, (ULONGEST) todo);
6467 *p = '\0';
6468 putpkt (rs->buf);
6469 getpkt (&rs->buf, &rs->buf_size, 0);
6470 if (rs->buf[0] == 'E'
6471 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
6472 && rs->buf[3] == '\0')
6473 {
6474 /* There is no correspondance between what the remote protocol
6475 uses for errors and errno codes. We would like a cleaner way
6476 of representing errors (big enough to include errno codes,
6477 bfd_error codes, and others). But for now just return
6478 EIO. */
6479 errno = EIO;
6480 return 0;
6481 }
6482 /* Reply describes memory byte by byte, each byte encoded as two hex
6483 characters. */
6484 p = rs->buf;
6485 i = hex2bin (p, myaddr, todo);
6486 /* Return what we have. Let higher layers handle partial reads. */
6487 return i;
6488 }
6489 \f
6490
6491 /* Remote notification handler. */
6492
6493 static void
6494 handle_notification (char *buf, size_t length)
6495 {
6496 if (strncmp (buf, "Stop:", 5) == 0)
6497 {
6498 if (pending_stop_reply)
6499 {
6500 /* We've already parsed the in-flight stop-reply, but the
6501 stub for some reason thought we didn't, possibly due to
6502 timeout on its side. Just ignore it. */
6503 if (remote_debug)
6504 fprintf_unfiltered (gdb_stdlog, "ignoring resent notification\n");
6505 }
6506 else
6507 {
6508 struct cleanup *old_chain;
6509 struct stop_reply *reply = stop_reply_xmalloc ();
6510
6511 old_chain = make_cleanup (do_stop_reply_xfree, reply);
6512
6513 remote_parse_stop_reply (buf + 5, reply);
6514
6515 discard_cleanups (old_chain);
6516
6517 /* Be careful to only set it after parsing, since an error
6518 may be thrown then. */
6519 pending_stop_reply = reply;
6520
6521 /* Notify the event loop there's a stop reply to acknowledge
6522 and that there may be more events to fetch. */
6523 mark_async_event_handler (remote_async_get_pending_events_token);
6524
6525 if (remote_debug)
6526 fprintf_unfiltered (gdb_stdlog, "stop notification captured\n");
6527 }
6528 }
6529 else
6530 /* We ignore notifications we don't recognize, for compatibility
6531 with newer stubs. */
6532 ;
6533 }
6534
6535 \f
6536 /* Read or write LEN bytes from inferior memory at MEMADDR,
6537 transferring to or from debugger address BUFFER. Write to inferior
6538 if SHOULD_WRITE is nonzero. Returns length of data written or
6539 read; 0 for error. TARGET is unused. */
6540
6541 static int
6542 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
6543 int should_write, struct mem_attrib *attrib,
6544 struct target_ops *target)
6545 {
6546 int res;
6547
6548 set_remote_traceframe ();
6549 set_general_thread (inferior_ptid);
6550
6551 if (should_write)
6552 res = remote_write_bytes (mem_addr, buffer, mem_len);
6553 else
6554 res = remote_read_bytes (mem_addr, buffer, mem_len);
6555
6556 return res;
6557 }
6558
6559 /* Sends a packet with content determined by the printf format string
6560 FORMAT and the remaining arguments, then gets the reply. Returns
6561 whether the packet was a success, a failure, or unknown. */
6562
6563 static enum packet_result
6564 remote_send_printf (const char *format, ...)
6565 {
6566 struct remote_state *rs = get_remote_state ();
6567 int max_size = get_remote_packet_size ();
6568 va_list ap;
6569
6570 va_start (ap, format);
6571
6572 rs->buf[0] = '\0';
6573 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
6574 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
6575
6576 if (putpkt (rs->buf) < 0)
6577 error (_("Communication problem with target."));
6578
6579 rs->buf[0] = '\0';
6580 getpkt (&rs->buf, &rs->buf_size, 0);
6581
6582 return packet_check_result (rs->buf);
6583 }
6584
6585 static void
6586 restore_remote_timeout (void *p)
6587 {
6588 int value = *(int *)p;
6589
6590 remote_timeout = value;
6591 }
6592
6593 /* Flash writing can take quite some time. We'll set
6594 effectively infinite timeout for flash operations.
6595 In future, we'll need to decide on a better approach. */
6596 static const int remote_flash_timeout = 1000;
6597
6598 static void
6599 remote_flash_erase (struct target_ops *ops,
6600 ULONGEST address, LONGEST length)
6601 {
6602 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
6603 int saved_remote_timeout = remote_timeout;
6604 enum packet_result ret;
6605 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6606 &saved_remote_timeout);
6607
6608 remote_timeout = remote_flash_timeout;
6609
6610 ret = remote_send_printf ("vFlashErase:%s,%s",
6611 phex (address, addr_size),
6612 phex (length, 4));
6613 switch (ret)
6614 {
6615 case PACKET_UNKNOWN:
6616 error (_("Remote target does not support flash erase"));
6617 case PACKET_ERROR:
6618 error (_("Error erasing flash with vFlashErase packet"));
6619 default:
6620 break;
6621 }
6622
6623 do_cleanups (back_to);
6624 }
6625
6626 static LONGEST
6627 remote_flash_write (struct target_ops *ops,
6628 ULONGEST address, LONGEST length,
6629 const gdb_byte *data)
6630 {
6631 int saved_remote_timeout = remote_timeout;
6632 int ret;
6633 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6634 &saved_remote_timeout);
6635
6636 remote_timeout = remote_flash_timeout;
6637 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
6638 do_cleanups (back_to);
6639
6640 return ret;
6641 }
6642
6643 static void
6644 remote_flash_done (struct target_ops *ops)
6645 {
6646 int saved_remote_timeout = remote_timeout;
6647 int ret;
6648 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6649 &saved_remote_timeout);
6650
6651 remote_timeout = remote_flash_timeout;
6652 ret = remote_send_printf ("vFlashDone");
6653 do_cleanups (back_to);
6654
6655 switch (ret)
6656 {
6657 case PACKET_UNKNOWN:
6658 error (_("Remote target does not support vFlashDone"));
6659 case PACKET_ERROR:
6660 error (_("Error finishing flash operation"));
6661 default:
6662 break;
6663 }
6664 }
6665
6666 static void
6667 remote_files_info (struct target_ops *ignore)
6668 {
6669 puts_filtered ("Debugging a target over a serial line.\n");
6670 }
6671 \f
6672 /* Stuff for dealing with the packets which are part of this protocol.
6673 See comment at top of file for details. */
6674
6675 /* Read a single character from the remote end. */
6676
6677 static int
6678 readchar (int timeout)
6679 {
6680 int ch;
6681
6682 ch = serial_readchar (remote_desc, timeout);
6683
6684 if (ch >= 0)
6685 return ch;
6686
6687 switch ((enum serial_rc) ch)
6688 {
6689 case SERIAL_EOF:
6690 pop_target ();
6691 error (_("Remote connection closed"));
6692 /* no return */
6693 case SERIAL_ERROR:
6694 pop_target ();
6695 perror_with_name (_("Remote communication error. "
6696 "Target disconnected."));
6697 /* no return */
6698 case SERIAL_TIMEOUT:
6699 break;
6700 }
6701 return ch;
6702 }
6703
6704 /* Send the command in *BUF to the remote machine, and read the reply
6705 into *BUF. Report an error if we get an error reply. Resize
6706 *BUF using xrealloc if necessary to hold the result, and update
6707 *SIZEOF_BUF. */
6708
6709 static void
6710 remote_send (char **buf,
6711 long *sizeof_buf)
6712 {
6713 putpkt (*buf);
6714 getpkt (buf, sizeof_buf, 0);
6715
6716 if ((*buf)[0] == 'E')
6717 error (_("Remote failure reply: %s"), *buf);
6718 }
6719
6720 /* Return a pointer to an xmalloc'ed string representing an escaped
6721 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
6722 etc. The caller is responsible for releasing the returned
6723 memory. */
6724
6725 static char *
6726 escape_buffer (const char *buf, int n)
6727 {
6728 struct cleanup *old_chain;
6729 struct ui_file *stb;
6730 char *str;
6731
6732 stb = mem_fileopen ();
6733 old_chain = make_cleanup_ui_file_delete (stb);
6734
6735 fputstrn_unfiltered (buf, n, 0, stb);
6736 str = ui_file_xstrdup (stb, NULL);
6737 do_cleanups (old_chain);
6738 return str;
6739 }
6740
6741 /* Display a null-terminated packet on stdout, for debugging, using C
6742 string notation. */
6743
6744 static void
6745 print_packet (char *buf)
6746 {
6747 puts_filtered ("\"");
6748 fputstr_filtered (buf, '"', gdb_stdout);
6749 puts_filtered ("\"");
6750 }
6751
6752 int
6753 putpkt (char *buf)
6754 {
6755 return putpkt_binary (buf, strlen (buf));
6756 }
6757
6758 /* Send a packet to the remote machine, with error checking. The data
6759 of the packet is in BUF. The string in BUF can be at most
6760 get_remote_packet_size () - 5 to account for the $, # and checksum,
6761 and for a possible /0 if we are debugging (remote_debug) and want
6762 to print the sent packet as a string. */
6763
6764 static int
6765 putpkt_binary (char *buf, int cnt)
6766 {
6767 struct remote_state *rs = get_remote_state ();
6768 int i;
6769 unsigned char csum = 0;
6770 char *buf2 = alloca (cnt + 6);
6771
6772 int ch;
6773 int tcount = 0;
6774 char *p;
6775
6776 /* Catch cases like trying to read memory or listing threads while
6777 we're waiting for a stop reply. The remote server wouldn't be
6778 ready to handle this request, so we'd hang and timeout. We don't
6779 have to worry about this in synchronous mode, because in that
6780 case it's not possible to issue a command while the target is
6781 running. This is not a problem in non-stop mode, because in that
6782 case, the stub is always ready to process serial input. */
6783 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
6784 error (_("Cannot execute this command while the target is running."));
6785
6786 /* We're sending out a new packet. Make sure we don't look at a
6787 stale cached response. */
6788 rs->cached_wait_status = 0;
6789
6790 /* Copy the packet into buffer BUF2, encapsulating it
6791 and giving it a checksum. */
6792
6793 p = buf2;
6794 *p++ = '$';
6795
6796 for (i = 0; i < cnt; i++)
6797 {
6798 csum += buf[i];
6799 *p++ = buf[i];
6800 }
6801 *p++ = '#';
6802 *p++ = tohex ((csum >> 4) & 0xf);
6803 *p++ = tohex (csum & 0xf);
6804
6805 /* Send it over and over until we get a positive ack. */
6806
6807 while (1)
6808 {
6809 int started_error_output = 0;
6810
6811 if (remote_debug)
6812 {
6813 struct cleanup *old_chain;
6814 char *str;
6815
6816 *p = '\0';
6817 str = escape_buffer (buf2, p - buf2);
6818 old_chain = make_cleanup (xfree, str);
6819 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
6820 gdb_flush (gdb_stdlog);
6821 do_cleanups (old_chain);
6822 }
6823 if (serial_write (remote_desc, buf2, p - buf2))
6824 perror_with_name (_("putpkt: write failed"));
6825
6826 /* If this is a no acks version of the remote protocol, send the
6827 packet and move on. */
6828 if (rs->noack_mode)
6829 break;
6830
6831 /* Read until either a timeout occurs (-2) or '+' is read.
6832 Handle any notification that arrives in the mean time. */
6833 while (1)
6834 {
6835 ch = readchar (remote_timeout);
6836
6837 if (remote_debug)
6838 {
6839 switch (ch)
6840 {
6841 case '+':
6842 case '-':
6843 case SERIAL_TIMEOUT:
6844 case '$':
6845 case '%':
6846 if (started_error_output)
6847 {
6848 putchar_unfiltered ('\n');
6849 started_error_output = 0;
6850 }
6851 }
6852 }
6853
6854 switch (ch)
6855 {
6856 case '+':
6857 if (remote_debug)
6858 fprintf_unfiltered (gdb_stdlog, "Ack\n");
6859 return 1;
6860 case '-':
6861 if (remote_debug)
6862 fprintf_unfiltered (gdb_stdlog, "Nak\n");
6863 /* FALLTHROUGH */
6864 case SERIAL_TIMEOUT:
6865 tcount++;
6866 if (tcount > 3)
6867 return 0;
6868 break; /* Retransmit buffer. */
6869 case '$':
6870 {
6871 if (remote_debug)
6872 fprintf_unfiltered (gdb_stdlog,
6873 "Packet instead of Ack, ignoring it\n");
6874 /* It's probably an old response sent because an ACK
6875 was lost. Gobble up the packet and ack it so it
6876 doesn't get retransmitted when we resend this
6877 packet. */
6878 skip_frame ();
6879 serial_write (remote_desc, "+", 1);
6880 continue; /* Now, go look for +. */
6881 }
6882
6883 case '%':
6884 {
6885 int val;
6886
6887 /* If we got a notification, handle it, and go back to looking
6888 for an ack. */
6889 /* We've found the start of a notification. Now
6890 collect the data. */
6891 val = read_frame (&rs->buf, &rs->buf_size);
6892 if (val >= 0)
6893 {
6894 if (remote_debug)
6895 {
6896 struct cleanup *old_chain;
6897 char *str;
6898
6899 str = escape_buffer (rs->buf, val);
6900 old_chain = make_cleanup (xfree, str);
6901 fprintf_unfiltered (gdb_stdlog,
6902 " Notification received: %s\n",
6903 str);
6904 do_cleanups (old_chain);
6905 }
6906 handle_notification (rs->buf, val);
6907 /* We're in sync now, rewait for the ack. */
6908 tcount = 0;
6909 }
6910 else
6911 {
6912 if (remote_debug)
6913 {
6914 if (!started_error_output)
6915 {
6916 started_error_output = 1;
6917 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6918 }
6919 fputc_unfiltered (ch & 0177, gdb_stdlog);
6920 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
6921 }
6922 }
6923 continue;
6924 }
6925 /* fall-through */
6926 default:
6927 if (remote_debug)
6928 {
6929 if (!started_error_output)
6930 {
6931 started_error_output = 1;
6932 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6933 }
6934 fputc_unfiltered (ch & 0177, gdb_stdlog);
6935 }
6936 continue;
6937 }
6938 break; /* Here to retransmit. */
6939 }
6940
6941 #if 0
6942 /* This is wrong. If doing a long backtrace, the user should be
6943 able to get out next time we call QUIT, without anything as
6944 violent as interrupt_query. If we want to provide a way out of
6945 here without getting to the next QUIT, it should be based on
6946 hitting ^C twice as in remote_wait. */
6947 if (quit_flag)
6948 {
6949 quit_flag = 0;
6950 interrupt_query ();
6951 }
6952 #endif
6953 }
6954 return 0;
6955 }
6956
6957 /* Come here after finding the start of a frame when we expected an
6958 ack. Do our best to discard the rest of this packet. */
6959
6960 static void
6961 skip_frame (void)
6962 {
6963 int c;
6964
6965 while (1)
6966 {
6967 c = readchar (remote_timeout);
6968 switch (c)
6969 {
6970 case SERIAL_TIMEOUT:
6971 /* Nothing we can do. */
6972 return;
6973 case '#':
6974 /* Discard the two bytes of checksum and stop. */
6975 c = readchar (remote_timeout);
6976 if (c >= 0)
6977 c = readchar (remote_timeout);
6978
6979 return;
6980 case '*': /* Run length encoding. */
6981 /* Discard the repeat count. */
6982 c = readchar (remote_timeout);
6983 if (c < 0)
6984 return;
6985 break;
6986 default:
6987 /* A regular character. */
6988 break;
6989 }
6990 }
6991 }
6992
6993 /* Come here after finding the start of the frame. Collect the rest
6994 into *BUF, verifying the checksum, length, and handling run-length
6995 compression. NUL terminate the buffer. If there is not enough room,
6996 expand *BUF using xrealloc.
6997
6998 Returns -1 on error, number of characters in buffer (ignoring the
6999 trailing NULL) on success. (could be extended to return one of the
7000 SERIAL status indications). */
7001
7002 static long
7003 read_frame (char **buf_p,
7004 long *sizeof_buf)
7005 {
7006 unsigned char csum;
7007 long bc;
7008 int c;
7009 char *buf = *buf_p;
7010 struct remote_state *rs = get_remote_state ();
7011
7012 csum = 0;
7013 bc = 0;
7014
7015 while (1)
7016 {
7017 c = readchar (remote_timeout);
7018 switch (c)
7019 {
7020 case SERIAL_TIMEOUT:
7021 if (remote_debug)
7022 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
7023 return -1;
7024 case '$':
7025 if (remote_debug)
7026 fputs_filtered ("Saw new packet start in middle of old one\n",
7027 gdb_stdlog);
7028 return -1; /* Start a new packet, count retries. */
7029 case '#':
7030 {
7031 unsigned char pktcsum;
7032 int check_0 = 0;
7033 int check_1 = 0;
7034
7035 buf[bc] = '\0';
7036
7037 check_0 = readchar (remote_timeout);
7038 if (check_0 >= 0)
7039 check_1 = readchar (remote_timeout);
7040
7041 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
7042 {
7043 if (remote_debug)
7044 fputs_filtered ("Timeout in checksum, retrying\n",
7045 gdb_stdlog);
7046 return -1;
7047 }
7048 else if (check_0 < 0 || check_1 < 0)
7049 {
7050 if (remote_debug)
7051 fputs_filtered ("Communication error in checksum\n",
7052 gdb_stdlog);
7053 return -1;
7054 }
7055
7056 /* Don't recompute the checksum; with no ack packets we
7057 don't have any way to indicate a packet retransmission
7058 is necessary. */
7059 if (rs->noack_mode)
7060 return bc;
7061
7062 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
7063 if (csum == pktcsum)
7064 return bc;
7065
7066 if (remote_debug)
7067 {
7068 struct cleanup *old_chain;
7069 char *str;
7070
7071 str = escape_buffer (buf, bc);
7072 old_chain = make_cleanup (xfree, str);
7073 fprintf_unfiltered (gdb_stdlog,
7074 "Bad checksum, sentsum=0x%x, "
7075 "csum=0x%x, buf=%s\n",
7076 pktcsum, csum, str);
7077 do_cleanups (old_chain);
7078 }
7079 /* Number of characters in buffer ignoring trailing
7080 NULL. */
7081 return -1;
7082 }
7083 case '*': /* Run length encoding. */
7084 {
7085 int repeat;
7086
7087 csum += c;
7088 c = readchar (remote_timeout);
7089 csum += c;
7090 repeat = c - ' ' + 3; /* Compute repeat count. */
7091
7092 /* The character before ``*'' is repeated. */
7093
7094 if (repeat > 0 && repeat <= 255 && bc > 0)
7095 {
7096 if (bc + repeat - 1 >= *sizeof_buf - 1)
7097 {
7098 /* Make some more room in the buffer. */
7099 *sizeof_buf += repeat;
7100 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7101 buf = *buf_p;
7102 }
7103
7104 memset (&buf[bc], buf[bc - 1], repeat);
7105 bc += repeat;
7106 continue;
7107 }
7108
7109 buf[bc] = '\0';
7110 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
7111 return -1;
7112 }
7113 default:
7114 if (bc >= *sizeof_buf - 1)
7115 {
7116 /* Make some more room in the buffer. */
7117 *sizeof_buf *= 2;
7118 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7119 buf = *buf_p;
7120 }
7121
7122 buf[bc++] = c;
7123 csum += c;
7124 continue;
7125 }
7126 }
7127 }
7128
7129 /* Read a packet from the remote machine, with error checking, and
7130 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7131 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7132 rather than timing out; this is used (in synchronous mode) to wait
7133 for a target that is is executing user code to stop. */
7134 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
7135 don't have to change all the calls to getpkt to deal with the
7136 return value, because at the moment I don't know what the right
7137 thing to do it for those. */
7138 void
7139 getpkt (char **buf,
7140 long *sizeof_buf,
7141 int forever)
7142 {
7143 int timed_out;
7144
7145 timed_out = getpkt_sane (buf, sizeof_buf, forever);
7146 }
7147
7148
7149 /* Read a packet from the remote machine, with error checking, and
7150 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7151 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7152 rather than timing out; this is used (in synchronous mode) to wait
7153 for a target that is is executing user code to stop. If FOREVER ==
7154 0, this function is allowed to time out gracefully and return an
7155 indication of this to the caller. Otherwise return the number of
7156 bytes read. If EXPECTING_NOTIF, consider receiving a notification
7157 enough reason to return to the caller. */
7158
7159 static int
7160 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
7161 int expecting_notif)
7162 {
7163 struct remote_state *rs = get_remote_state ();
7164 int c;
7165 int tries;
7166 int timeout;
7167 int val = -1;
7168
7169 /* We're reading a new response. Make sure we don't look at a
7170 previously cached response. */
7171 rs->cached_wait_status = 0;
7172
7173 strcpy (*buf, "timeout");
7174
7175 if (forever)
7176 timeout = watchdog > 0 ? watchdog : -1;
7177 else if (expecting_notif)
7178 timeout = 0; /* There should already be a char in the buffer. If
7179 not, bail out. */
7180 else
7181 timeout = remote_timeout;
7182
7183 #define MAX_TRIES 3
7184
7185 /* Process any number of notifications, and then return when
7186 we get a packet. */
7187 for (;;)
7188 {
7189 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
7190 times. */
7191 for (tries = 1; tries <= MAX_TRIES; tries++)
7192 {
7193 /* This can loop forever if the remote side sends us
7194 characters continuously, but if it pauses, we'll get
7195 SERIAL_TIMEOUT from readchar because of timeout. Then
7196 we'll count that as a retry.
7197
7198 Note that even when forever is set, we will only wait
7199 forever prior to the start of a packet. After that, we
7200 expect characters to arrive at a brisk pace. They should
7201 show up within remote_timeout intervals. */
7202 do
7203 c = readchar (timeout);
7204 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
7205
7206 if (c == SERIAL_TIMEOUT)
7207 {
7208 if (expecting_notif)
7209 return -1; /* Don't complain, it's normal to not get
7210 anything in this case. */
7211
7212 if (forever) /* Watchdog went off? Kill the target. */
7213 {
7214 QUIT;
7215 pop_target ();
7216 error (_("Watchdog timeout has expired. Target detached."));
7217 }
7218 if (remote_debug)
7219 fputs_filtered ("Timed out.\n", gdb_stdlog);
7220 }
7221 else
7222 {
7223 /* We've found the start of a packet or notification.
7224 Now collect the data. */
7225 val = read_frame (buf, sizeof_buf);
7226 if (val >= 0)
7227 break;
7228 }
7229
7230 serial_write (remote_desc, "-", 1);
7231 }
7232
7233 if (tries > MAX_TRIES)
7234 {
7235 /* We have tried hard enough, and just can't receive the
7236 packet/notification. Give up. */
7237 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
7238
7239 /* Skip the ack char if we're in no-ack mode. */
7240 if (!rs->noack_mode)
7241 serial_write (remote_desc, "+", 1);
7242 return -1;
7243 }
7244
7245 /* If we got an ordinary packet, return that to our caller. */
7246 if (c == '$')
7247 {
7248 if (remote_debug)
7249 {
7250 struct cleanup *old_chain;
7251 char *str;
7252
7253 str = escape_buffer (*buf, val);
7254 old_chain = make_cleanup (xfree, str);
7255 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
7256 do_cleanups (old_chain);
7257 }
7258
7259 /* Skip the ack char if we're in no-ack mode. */
7260 if (!rs->noack_mode)
7261 serial_write (remote_desc, "+", 1);
7262 return val;
7263 }
7264
7265 /* If we got a notification, handle it, and go back to looking
7266 for a packet. */
7267 else
7268 {
7269 gdb_assert (c == '%');
7270
7271 if (remote_debug)
7272 {
7273 struct cleanup *old_chain;
7274 char *str;
7275
7276 str = escape_buffer (*buf, val);
7277 old_chain = make_cleanup (xfree, str);
7278 fprintf_unfiltered (gdb_stdlog,
7279 " Notification received: %s\n",
7280 str);
7281 do_cleanups (old_chain);
7282 }
7283
7284 handle_notification (*buf, val);
7285
7286 /* Notifications require no acknowledgement. */
7287
7288 if (expecting_notif)
7289 return -1;
7290 }
7291 }
7292 }
7293
7294 static int
7295 getpkt_sane (char **buf, long *sizeof_buf, int forever)
7296 {
7297 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
7298 }
7299
7300 static int
7301 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
7302 {
7303 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
7304 }
7305
7306 \f
7307 static void
7308 remote_kill (struct target_ops *ops)
7309 {
7310 /* Use catch_errors so the user can quit from gdb even when we
7311 aren't on speaking terms with the remote system. */
7312 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
7313
7314 /* Don't wait for it to die. I'm not really sure it matters whether
7315 we do or not. For the existing stubs, kill is a noop. */
7316 target_mourn_inferior ();
7317 }
7318
7319 static int
7320 remote_vkill (int pid, struct remote_state *rs)
7321 {
7322 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7323 return -1;
7324
7325 /* Tell the remote target to detach. */
7326 sprintf (rs->buf, "vKill;%x", pid);
7327 putpkt (rs->buf);
7328 getpkt (&rs->buf, &rs->buf_size, 0);
7329
7330 if (packet_ok (rs->buf,
7331 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
7332 return 0;
7333 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7334 return -1;
7335 else
7336 return 1;
7337 }
7338
7339 static void
7340 extended_remote_kill (struct target_ops *ops)
7341 {
7342 int res;
7343 int pid = ptid_get_pid (inferior_ptid);
7344 struct remote_state *rs = get_remote_state ();
7345
7346 res = remote_vkill (pid, rs);
7347 if (res == -1 && !remote_multi_process_p (rs))
7348 {
7349 /* Don't try 'k' on a multi-process aware stub -- it has no way
7350 to specify the pid. */
7351
7352 putpkt ("k");
7353 #if 0
7354 getpkt (&rs->buf, &rs->buf_size, 0);
7355 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
7356 res = 1;
7357 #else
7358 /* Don't wait for it to die. I'm not really sure it matters whether
7359 we do or not. For the existing stubs, kill is a noop. */
7360 res = 0;
7361 #endif
7362 }
7363
7364 if (res != 0)
7365 error (_("Can't kill process"));
7366
7367 target_mourn_inferior ();
7368 }
7369
7370 static void
7371 remote_mourn (struct target_ops *ops)
7372 {
7373 remote_mourn_1 (ops);
7374 }
7375
7376 /* Worker function for remote_mourn. */
7377 static void
7378 remote_mourn_1 (struct target_ops *target)
7379 {
7380 unpush_target (target);
7381
7382 /* remote_close takes care of doing most of the clean up. */
7383 generic_mourn_inferior ();
7384 }
7385
7386 static void
7387 extended_remote_mourn_1 (struct target_ops *target)
7388 {
7389 struct remote_state *rs = get_remote_state ();
7390
7391 /* In case we got here due to an error, but we're going to stay
7392 connected. */
7393 rs->waiting_for_stop_reply = 0;
7394
7395 /* We're no longer interested in these events. */
7396 discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
7397
7398 /* If the current general thread belonged to the process we just
7399 detached from or has exited, the remote side current general
7400 thread becomes undefined. Considering a case like this:
7401
7402 - We just got here due to a detach.
7403 - The process that we're detaching from happens to immediately
7404 report a global breakpoint being hit in non-stop mode, in the
7405 same thread we had selected before.
7406 - GDB attaches to this process again.
7407 - This event happens to be the next event we handle.
7408
7409 GDB would consider that the current general thread didn't need to
7410 be set on the stub side (with Hg), since for all it knew,
7411 GENERAL_THREAD hadn't changed.
7412
7413 Notice that although in all-stop mode, the remote server always
7414 sets the current thread to the thread reporting the stop event,
7415 that doesn't happen in non-stop mode; in non-stop, the stub *must
7416 not* change the current thread when reporting a breakpoint hit,
7417 due to the decoupling of event reporting and event handling.
7418
7419 To keep things simple, we always invalidate our notion of the
7420 current thread. */
7421 record_currthread (minus_one_ptid);
7422
7423 /* Unlike "target remote", we do not want to unpush the target; then
7424 the next time the user says "run", we won't be connected. */
7425
7426 /* Call common code to mark the inferior as not running. */
7427 generic_mourn_inferior ();
7428
7429 if (!have_inferiors ())
7430 {
7431 if (!remote_multi_process_p (rs))
7432 {
7433 /* Check whether the target is running now - some remote stubs
7434 automatically restart after kill. */
7435 putpkt ("?");
7436 getpkt (&rs->buf, &rs->buf_size, 0);
7437
7438 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
7439 {
7440 /* Assume that the target has been restarted. Set
7441 inferior_ptid so that bits of core GDB realizes
7442 there's something here, e.g., so that the user can
7443 say "kill" again. */
7444 inferior_ptid = magic_null_ptid;
7445 }
7446 }
7447 }
7448 }
7449
7450 static void
7451 extended_remote_mourn (struct target_ops *ops)
7452 {
7453 extended_remote_mourn_1 (ops);
7454 }
7455
7456 static int
7457 extended_remote_run (char *args)
7458 {
7459 struct remote_state *rs = get_remote_state ();
7460 int len;
7461
7462 /* If the user has disabled vRun support, or we have detected that
7463 support is not available, do not try it. */
7464 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7465 return -1;
7466
7467 strcpy (rs->buf, "vRun;");
7468 len = strlen (rs->buf);
7469
7470 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
7471 error (_("Remote file name too long for run packet"));
7472 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
7473
7474 gdb_assert (args != NULL);
7475 if (*args)
7476 {
7477 struct cleanup *back_to;
7478 int i;
7479 char **argv;
7480
7481 argv = gdb_buildargv (args);
7482 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
7483 for (i = 0; argv[i] != NULL; i++)
7484 {
7485 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
7486 error (_("Argument list too long for run packet"));
7487 rs->buf[len++] = ';';
7488 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
7489 }
7490 do_cleanups (back_to);
7491 }
7492
7493 rs->buf[len++] = '\0';
7494
7495 putpkt (rs->buf);
7496 getpkt (&rs->buf, &rs->buf_size, 0);
7497
7498 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
7499 {
7500 /* We have a wait response; we don't need it, though. All is well. */
7501 return 0;
7502 }
7503 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7504 /* It wasn't disabled before, but it is now. */
7505 return -1;
7506 else
7507 {
7508 if (remote_exec_file[0] == '\0')
7509 error (_("Running the default executable on the remote target failed; "
7510 "try \"set remote exec-file\"?"));
7511 else
7512 error (_("Running \"%s\" on the remote target failed"),
7513 remote_exec_file);
7514 }
7515 }
7516
7517 /* In the extended protocol we want to be able to do things like
7518 "run" and have them basically work as expected. So we need
7519 a special create_inferior function. We support changing the
7520 executable file and the command line arguments, but not the
7521 environment. */
7522
7523 static void
7524 extended_remote_create_inferior_1 (char *exec_file, char *args,
7525 char **env, int from_tty)
7526 {
7527 /* If running asynchronously, register the target file descriptor
7528 with the event loop. */
7529 if (target_can_async_p ())
7530 target_async (inferior_event_handler, 0);
7531
7532 /* Now restart the remote server. */
7533 if (extended_remote_run (args) == -1)
7534 {
7535 /* vRun was not supported. Fail if we need it to do what the
7536 user requested. */
7537 if (remote_exec_file[0])
7538 error (_("Remote target does not support \"set remote exec-file\""));
7539 if (args[0])
7540 error (_("Remote target does not support \"set args\" or run <ARGS>"));
7541
7542 /* Fall back to "R". */
7543 extended_remote_restart ();
7544 }
7545
7546 if (!have_inferiors ())
7547 {
7548 /* Clean up from the last time we ran, before we mark the target
7549 running again. This will mark breakpoints uninserted, and
7550 get_offsets may insert breakpoints. */
7551 init_thread_list ();
7552 init_wait_for_inferior ();
7553 }
7554
7555 /* Now mark the inferior as running before we do anything else. */
7556 inferior_ptid = magic_null_ptid;
7557
7558 /* Now, if we have thread information, update inferior_ptid. */
7559 inferior_ptid = remote_current_thread (inferior_ptid);
7560
7561 remote_add_inferior (ptid_get_pid (inferior_ptid), 0);
7562 add_thread_silent (inferior_ptid);
7563
7564 /* Get updated offsets, if the stub uses qOffsets. */
7565 get_offsets ();
7566 }
7567
7568 static void
7569 extended_remote_create_inferior (struct target_ops *ops,
7570 char *exec_file, char *args,
7571 char **env, int from_tty)
7572 {
7573 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
7574 }
7575 \f
7576
7577 /* Insert a breakpoint. On targets that have software breakpoint
7578 support, we ask the remote target to do the work; on targets
7579 which don't, we insert a traditional memory breakpoint. */
7580
7581 static int
7582 remote_insert_breakpoint (struct gdbarch *gdbarch,
7583 struct bp_target_info *bp_tgt)
7584 {
7585 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
7586 If it succeeds, then set the support to PACKET_ENABLE. If it
7587 fails, and the user has explicitly requested the Z support then
7588 report an error, otherwise, mark it disabled and go on. */
7589
7590 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7591 {
7592 CORE_ADDR addr = bp_tgt->placed_address;
7593 struct remote_state *rs;
7594 char *p;
7595 int bpsize;
7596
7597 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
7598
7599 rs = get_remote_state ();
7600 p = rs->buf;
7601
7602 *(p++) = 'Z';
7603 *(p++) = '0';
7604 *(p++) = ',';
7605 addr = (ULONGEST) remote_address_masked (addr);
7606 p += hexnumstr (p, addr);
7607 sprintf (p, ",%d", bpsize);
7608
7609 putpkt (rs->buf);
7610 getpkt (&rs->buf, &rs->buf_size, 0);
7611
7612 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
7613 {
7614 case PACKET_ERROR:
7615 return -1;
7616 case PACKET_OK:
7617 bp_tgt->placed_address = addr;
7618 bp_tgt->placed_size = bpsize;
7619 return 0;
7620 case PACKET_UNKNOWN:
7621 break;
7622 }
7623 }
7624
7625 return memory_insert_breakpoint (gdbarch, bp_tgt);
7626 }
7627
7628 static int
7629 remote_remove_breakpoint (struct gdbarch *gdbarch,
7630 struct bp_target_info *bp_tgt)
7631 {
7632 CORE_ADDR addr = bp_tgt->placed_address;
7633 struct remote_state *rs = get_remote_state ();
7634
7635 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7636 {
7637 char *p = rs->buf;
7638
7639 *(p++) = 'z';
7640 *(p++) = '0';
7641 *(p++) = ',';
7642
7643 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
7644 p += hexnumstr (p, addr);
7645 sprintf (p, ",%d", bp_tgt->placed_size);
7646
7647 putpkt (rs->buf);
7648 getpkt (&rs->buf, &rs->buf_size, 0);
7649
7650 return (rs->buf[0] == 'E');
7651 }
7652
7653 return memory_remove_breakpoint (gdbarch, bp_tgt);
7654 }
7655
7656 static int
7657 watchpoint_to_Z_packet (int type)
7658 {
7659 switch (type)
7660 {
7661 case hw_write:
7662 return Z_PACKET_WRITE_WP;
7663 break;
7664 case hw_read:
7665 return Z_PACKET_READ_WP;
7666 break;
7667 case hw_access:
7668 return Z_PACKET_ACCESS_WP;
7669 break;
7670 default:
7671 internal_error (__FILE__, __LINE__,
7672 _("hw_bp_to_z: bad watchpoint type %d"), type);
7673 }
7674 }
7675
7676 static int
7677 remote_insert_watchpoint (CORE_ADDR addr, int len, int type,
7678 struct expression *cond)
7679 {
7680 struct remote_state *rs = get_remote_state ();
7681 char *p;
7682 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7683
7684 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7685 return 1;
7686
7687 sprintf (rs->buf, "Z%x,", packet);
7688 p = strchr (rs->buf, '\0');
7689 addr = remote_address_masked (addr);
7690 p += hexnumstr (p, (ULONGEST) addr);
7691 sprintf (p, ",%x", len);
7692
7693 putpkt (rs->buf);
7694 getpkt (&rs->buf, &rs->buf_size, 0);
7695
7696 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7697 {
7698 case PACKET_ERROR:
7699 return -1;
7700 case PACKET_UNKNOWN:
7701 return 1;
7702 case PACKET_OK:
7703 return 0;
7704 }
7705 internal_error (__FILE__, __LINE__,
7706 _("remote_insert_watchpoint: reached end of function"));
7707 }
7708
7709
7710 static int
7711 remote_remove_watchpoint (CORE_ADDR addr, int len, int type,
7712 struct expression *cond)
7713 {
7714 struct remote_state *rs = get_remote_state ();
7715 char *p;
7716 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7717
7718 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7719 return -1;
7720
7721 sprintf (rs->buf, "z%x,", packet);
7722 p = strchr (rs->buf, '\0');
7723 addr = remote_address_masked (addr);
7724 p += hexnumstr (p, (ULONGEST) addr);
7725 sprintf (p, ",%x", len);
7726 putpkt (rs->buf);
7727 getpkt (&rs->buf, &rs->buf_size, 0);
7728
7729 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7730 {
7731 case PACKET_ERROR:
7732 case PACKET_UNKNOWN:
7733 return -1;
7734 case PACKET_OK:
7735 return 0;
7736 }
7737 internal_error (__FILE__, __LINE__,
7738 _("remote_remove_watchpoint: reached end of function"));
7739 }
7740
7741
7742 int remote_hw_watchpoint_limit = -1;
7743 int remote_hw_breakpoint_limit = -1;
7744
7745 static int
7746 remote_check_watch_resources (int type, int cnt, int ot)
7747 {
7748 if (type == bp_hardware_breakpoint)
7749 {
7750 if (remote_hw_breakpoint_limit == 0)
7751 return 0;
7752 else if (remote_hw_breakpoint_limit < 0)
7753 return 1;
7754 else if (cnt <= remote_hw_breakpoint_limit)
7755 return 1;
7756 }
7757 else
7758 {
7759 if (remote_hw_watchpoint_limit == 0)
7760 return 0;
7761 else if (remote_hw_watchpoint_limit < 0)
7762 return 1;
7763 else if (ot)
7764 return -1;
7765 else if (cnt <= remote_hw_watchpoint_limit)
7766 return 1;
7767 }
7768 return -1;
7769 }
7770
7771 static int
7772 remote_stopped_by_watchpoint (void)
7773 {
7774 return remote_stopped_by_watchpoint_p;
7775 }
7776
7777 static int
7778 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
7779 {
7780 int rc = 0;
7781
7782 if (remote_stopped_by_watchpoint ())
7783 {
7784 *addr_p = remote_watch_data_address;
7785 rc = 1;
7786 }
7787
7788 return rc;
7789 }
7790
7791
7792 static int
7793 remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
7794 struct bp_target_info *bp_tgt)
7795 {
7796 CORE_ADDR addr;
7797 struct remote_state *rs;
7798 char *p;
7799
7800 /* The length field should be set to the size of a breakpoint
7801 instruction, even though we aren't inserting one ourselves. */
7802
7803 gdbarch_remote_breakpoint_from_pc
7804 (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
7805
7806 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7807 return -1;
7808
7809 rs = get_remote_state ();
7810 p = rs->buf;
7811
7812 *(p++) = 'Z';
7813 *(p++) = '1';
7814 *(p++) = ',';
7815
7816 addr = remote_address_masked (bp_tgt->placed_address);
7817 p += hexnumstr (p, (ULONGEST) addr);
7818 sprintf (p, ",%x", bp_tgt->placed_size);
7819
7820 putpkt (rs->buf);
7821 getpkt (&rs->buf, &rs->buf_size, 0);
7822
7823 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7824 {
7825 case PACKET_ERROR:
7826 case PACKET_UNKNOWN:
7827 return -1;
7828 case PACKET_OK:
7829 return 0;
7830 }
7831 internal_error (__FILE__, __LINE__,
7832 _("remote_insert_hw_breakpoint: reached end of function"));
7833 }
7834
7835
7836 static int
7837 remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
7838 struct bp_target_info *bp_tgt)
7839 {
7840 CORE_ADDR addr;
7841 struct remote_state *rs = get_remote_state ();
7842 char *p = rs->buf;
7843
7844 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7845 return -1;
7846
7847 *(p++) = 'z';
7848 *(p++) = '1';
7849 *(p++) = ',';
7850
7851 addr = remote_address_masked (bp_tgt->placed_address);
7852 p += hexnumstr (p, (ULONGEST) addr);
7853 sprintf (p, ",%x", bp_tgt->placed_size);
7854
7855 putpkt (rs->buf);
7856 getpkt (&rs->buf, &rs->buf_size, 0);
7857
7858 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7859 {
7860 case PACKET_ERROR:
7861 case PACKET_UNKNOWN:
7862 return -1;
7863 case PACKET_OK:
7864 return 0;
7865 }
7866 internal_error (__FILE__, __LINE__,
7867 _("remote_remove_hw_breakpoint: reached end of function"));
7868 }
7869
7870 /* Table used by the crc32 function to calcuate the checksum. */
7871
7872 static unsigned long crc32_table[256] =
7873 {0, 0};
7874
7875 static unsigned long
7876 crc32 (const unsigned char *buf, int len, unsigned int crc)
7877 {
7878 if (!crc32_table[1])
7879 {
7880 /* Initialize the CRC table and the decoding table. */
7881 int i, j;
7882 unsigned int c;
7883
7884 for (i = 0; i < 256; i++)
7885 {
7886 for (c = i << 24, j = 8; j > 0; --j)
7887 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
7888 crc32_table[i] = c;
7889 }
7890 }
7891
7892 while (len--)
7893 {
7894 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
7895 buf++;
7896 }
7897 return crc;
7898 }
7899
7900 /* Verify memory using the "qCRC:" request. */
7901
7902 static int
7903 remote_verify_memory (struct target_ops *ops,
7904 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
7905 {
7906 struct remote_state *rs = get_remote_state ();
7907 unsigned long host_crc, target_crc;
7908 char *tmp;
7909
7910 /* FIXME: assumes lma can fit into long. */
7911 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
7912 (long) lma, (long) size);
7913 putpkt (rs->buf);
7914
7915 /* Be clever; compute the host_crc before waiting for target
7916 reply. */
7917 host_crc = crc32 (data, size, 0xffffffff);
7918
7919 getpkt (&rs->buf, &rs->buf_size, 0);
7920 if (rs->buf[0] == 'E')
7921 return -1;
7922
7923 if (rs->buf[0] != 'C')
7924 error (_("remote target does not support this operation"));
7925
7926 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
7927 target_crc = target_crc * 16 + fromhex (*tmp);
7928
7929 return (host_crc == target_crc);
7930 }
7931
7932 /* compare-sections command
7933
7934 With no arguments, compares each loadable section in the exec bfd
7935 with the same memory range on the target, and reports mismatches.
7936 Useful for verifying the image on the target against the exec file. */
7937
7938 static void
7939 compare_sections_command (char *args, int from_tty)
7940 {
7941 asection *s;
7942 struct cleanup *old_chain;
7943 char *sectdata;
7944 const char *sectname;
7945 bfd_size_type size;
7946 bfd_vma lma;
7947 int matched = 0;
7948 int mismatched = 0;
7949 int res;
7950
7951 if (!exec_bfd)
7952 error (_("command cannot be used without an exec file"));
7953
7954 for (s = exec_bfd->sections; s; s = s->next)
7955 {
7956 if (!(s->flags & SEC_LOAD))
7957 continue; /* Skip non-loadable section. */
7958
7959 size = bfd_get_section_size (s);
7960 if (size == 0)
7961 continue; /* Skip zero-length section. */
7962
7963 sectname = bfd_get_section_name (exec_bfd, s);
7964 if (args && strcmp (args, sectname) != 0)
7965 continue; /* Not the section selected by user. */
7966
7967 matched = 1; /* Do this section. */
7968 lma = s->lma;
7969
7970 sectdata = xmalloc (size);
7971 old_chain = make_cleanup (xfree, sectdata);
7972 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
7973
7974 res = target_verify_memory (sectdata, lma, size);
7975
7976 if (res == -1)
7977 error (_("target memory fault, section %s, range %s -- %s"), sectname,
7978 paddress (target_gdbarch, lma),
7979 paddress (target_gdbarch, lma + size));
7980
7981 printf_filtered ("Section %s, range %s -- %s: ", sectname,
7982 paddress (target_gdbarch, lma),
7983 paddress (target_gdbarch, lma + size));
7984 if (res)
7985 printf_filtered ("matched.\n");
7986 else
7987 {
7988 printf_filtered ("MIS-MATCHED!\n");
7989 mismatched++;
7990 }
7991
7992 do_cleanups (old_chain);
7993 }
7994 if (mismatched > 0)
7995 warning (_("One or more sections of the remote executable does not match\n\
7996 the loaded file\n"));
7997 if (args && !matched)
7998 printf_filtered (_("No loaded section named '%s'.\n"), args);
7999 }
8000
8001 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
8002 into remote target. The number of bytes written to the remote
8003 target is returned, or -1 for error. */
8004
8005 static LONGEST
8006 remote_write_qxfer (struct target_ops *ops, const char *object_name,
8007 const char *annex, const gdb_byte *writebuf,
8008 ULONGEST offset, LONGEST len,
8009 struct packet_config *packet)
8010 {
8011 int i, buf_len;
8012 ULONGEST n;
8013 struct remote_state *rs = get_remote_state ();
8014 int max_size = get_memory_write_packet_size ();
8015
8016 if (packet->support == PACKET_DISABLE)
8017 return -1;
8018
8019 /* Insert header. */
8020 i = snprintf (rs->buf, max_size,
8021 "qXfer:%s:write:%s:%s:",
8022 object_name, annex ? annex : "",
8023 phex_nz (offset, sizeof offset));
8024 max_size -= (i + 1);
8025
8026 /* Escape as much data as fits into rs->buf. */
8027 buf_len = remote_escape_output
8028 (writebuf, len, (rs->buf + i), &max_size, max_size);
8029
8030 if (putpkt_binary (rs->buf, i + buf_len) < 0
8031 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8032 || packet_ok (rs->buf, packet) != PACKET_OK)
8033 return -1;
8034
8035 unpack_varlen_hex (rs->buf, &n);
8036 return n;
8037 }
8038
8039 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
8040 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
8041 number of bytes read is returned, or 0 for EOF, or -1 for error.
8042 The number of bytes read may be less than LEN without indicating an
8043 EOF. PACKET is checked and updated to indicate whether the remote
8044 target supports this object. */
8045
8046 static LONGEST
8047 remote_read_qxfer (struct target_ops *ops, const char *object_name,
8048 const char *annex,
8049 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
8050 struct packet_config *packet)
8051 {
8052 static char *finished_object;
8053 static char *finished_annex;
8054 static ULONGEST finished_offset;
8055
8056 struct remote_state *rs = get_remote_state ();
8057 LONGEST i, n, packet_len;
8058
8059 if (packet->support == PACKET_DISABLE)
8060 return -1;
8061
8062 /* Check whether we've cached an end-of-object packet that matches
8063 this request. */
8064 if (finished_object)
8065 {
8066 if (strcmp (object_name, finished_object) == 0
8067 && strcmp (annex ? annex : "", finished_annex) == 0
8068 && offset == finished_offset)
8069 return 0;
8070
8071 /* Otherwise, we're now reading something different. Discard
8072 the cache. */
8073 xfree (finished_object);
8074 xfree (finished_annex);
8075 finished_object = NULL;
8076 finished_annex = NULL;
8077 }
8078
8079 /* Request only enough to fit in a single packet. The actual data
8080 may not, since we don't know how much of it will need to be escaped;
8081 the target is free to respond with slightly less data. We subtract
8082 five to account for the response type and the protocol frame. */
8083 n = min (get_remote_packet_size () - 5, len);
8084 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
8085 object_name, annex ? annex : "",
8086 phex_nz (offset, sizeof offset),
8087 phex_nz (n, sizeof n));
8088 i = putpkt (rs->buf);
8089 if (i < 0)
8090 return -1;
8091
8092 rs->buf[0] = '\0';
8093 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8094 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
8095 return -1;
8096
8097 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
8098 error (_("Unknown remote qXfer reply: %s"), rs->buf);
8099
8100 /* 'm' means there is (or at least might be) more data after this
8101 batch. That does not make sense unless there's at least one byte
8102 of data in this reply. */
8103 if (rs->buf[0] == 'm' && packet_len == 1)
8104 error (_("Remote qXfer reply contained no data."));
8105
8106 /* Got some data. */
8107 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
8108
8109 /* 'l' is an EOF marker, possibly including a final block of data,
8110 or possibly empty. If we have the final block of a non-empty
8111 object, record this fact to bypass a subsequent partial read. */
8112 if (rs->buf[0] == 'l' && offset + i > 0)
8113 {
8114 finished_object = xstrdup (object_name);
8115 finished_annex = xstrdup (annex ? annex : "");
8116 finished_offset = offset + i;
8117 }
8118
8119 return i;
8120 }
8121
8122 static LONGEST
8123 remote_xfer_partial (struct target_ops *ops, enum target_object object,
8124 const char *annex, gdb_byte *readbuf,
8125 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
8126 {
8127 struct remote_state *rs;
8128 int i;
8129 char *p2;
8130 char query_type;
8131
8132 set_remote_traceframe ();
8133 set_general_thread (inferior_ptid);
8134
8135 rs = get_remote_state ();
8136
8137 /* Handle memory using the standard memory routines. */
8138 if (object == TARGET_OBJECT_MEMORY)
8139 {
8140 int xfered;
8141
8142 errno = 0;
8143
8144 /* If the remote target is connected but not running, we should
8145 pass this request down to a lower stratum (e.g. the executable
8146 file). */
8147 if (!target_has_execution)
8148 return 0;
8149
8150 if (writebuf != NULL)
8151 xfered = remote_write_bytes (offset, writebuf, len);
8152 else
8153 xfered = remote_read_bytes (offset, readbuf, len);
8154
8155 if (xfered > 0)
8156 return xfered;
8157 else if (xfered == 0 && errno == 0)
8158 return 0;
8159 else
8160 return -1;
8161 }
8162
8163 /* Handle SPU memory using qxfer packets. */
8164 if (object == TARGET_OBJECT_SPU)
8165 {
8166 if (readbuf)
8167 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
8168 &remote_protocol_packets
8169 [PACKET_qXfer_spu_read]);
8170 else
8171 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
8172 &remote_protocol_packets
8173 [PACKET_qXfer_spu_write]);
8174 }
8175
8176 /* Handle extra signal info using qxfer packets. */
8177 if (object == TARGET_OBJECT_SIGNAL_INFO)
8178 {
8179 if (readbuf)
8180 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
8181 &remote_protocol_packets
8182 [PACKET_qXfer_siginfo_read]);
8183 else
8184 return remote_write_qxfer (ops, "siginfo", annex,
8185 writebuf, offset, len,
8186 &remote_protocol_packets
8187 [PACKET_qXfer_siginfo_write]);
8188 }
8189
8190 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
8191 {
8192 if (readbuf)
8193 return remote_read_qxfer (ops, "statictrace", annex,
8194 readbuf, offset, len,
8195 &remote_protocol_packets
8196 [PACKET_qXfer_statictrace_read]);
8197 else
8198 return -1;
8199 }
8200
8201 /* Only handle flash writes. */
8202 if (writebuf != NULL)
8203 {
8204 LONGEST xfered;
8205
8206 switch (object)
8207 {
8208 case TARGET_OBJECT_FLASH:
8209 xfered = remote_flash_write (ops, offset, len, writebuf);
8210
8211 if (xfered > 0)
8212 return xfered;
8213 else if (xfered == 0 && errno == 0)
8214 return 0;
8215 else
8216 return -1;
8217
8218 default:
8219 return -1;
8220 }
8221 }
8222
8223 /* Map pre-existing objects onto letters. DO NOT do this for new
8224 objects!!! Instead specify new query packets. */
8225 switch (object)
8226 {
8227 case TARGET_OBJECT_AVR:
8228 query_type = 'R';
8229 break;
8230
8231 case TARGET_OBJECT_AUXV:
8232 gdb_assert (annex == NULL);
8233 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
8234 &remote_protocol_packets[PACKET_qXfer_auxv]);
8235
8236 case TARGET_OBJECT_AVAILABLE_FEATURES:
8237 return remote_read_qxfer
8238 (ops, "features", annex, readbuf, offset, len,
8239 &remote_protocol_packets[PACKET_qXfer_features]);
8240
8241 case TARGET_OBJECT_LIBRARIES:
8242 return remote_read_qxfer
8243 (ops, "libraries", annex, readbuf, offset, len,
8244 &remote_protocol_packets[PACKET_qXfer_libraries]);
8245
8246 case TARGET_OBJECT_MEMORY_MAP:
8247 gdb_assert (annex == NULL);
8248 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
8249 &remote_protocol_packets[PACKET_qXfer_memory_map]);
8250
8251 case TARGET_OBJECT_OSDATA:
8252 /* Should only get here if we're connected. */
8253 gdb_assert (remote_desc);
8254 return remote_read_qxfer
8255 (ops, "osdata", annex, readbuf, offset, len,
8256 &remote_protocol_packets[PACKET_qXfer_osdata]);
8257
8258 case TARGET_OBJECT_THREADS:
8259 gdb_assert (annex == NULL);
8260 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
8261 &remote_protocol_packets[PACKET_qXfer_threads]);
8262
8263 case TARGET_OBJECT_TRACEFRAME_INFO:
8264 gdb_assert (annex == NULL);
8265 return remote_read_qxfer
8266 (ops, "traceframe-info", annex, readbuf, offset, len,
8267 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
8268 default:
8269 return -1;
8270 }
8271
8272 /* Note: a zero OFFSET and LEN can be used to query the minimum
8273 buffer size. */
8274 if (offset == 0 && len == 0)
8275 return (get_remote_packet_size ());
8276 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
8277 large enough let the caller deal with it. */
8278 if (len < get_remote_packet_size ())
8279 return -1;
8280 len = get_remote_packet_size ();
8281
8282 /* Except for querying the minimum buffer size, target must be open. */
8283 if (!remote_desc)
8284 error (_("remote query is only available after target open"));
8285
8286 gdb_assert (annex != NULL);
8287 gdb_assert (readbuf != NULL);
8288
8289 p2 = rs->buf;
8290 *p2++ = 'q';
8291 *p2++ = query_type;
8292
8293 /* We used one buffer char for the remote protocol q command and
8294 another for the query type. As the remote protocol encapsulation
8295 uses 4 chars plus one extra in case we are debugging
8296 (remote_debug), we have PBUFZIZ - 7 left to pack the query
8297 string. */
8298 i = 0;
8299 while (annex[i] && (i < (get_remote_packet_size () - 8)))
8300 {
8301 /* Bad caller may have sent forbidden characters. */
8302 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
8303 *p2++ = annex[i];
8304 i++;
8305 }
8306 *p2 = '\0';
8307 gdb_assert (annex[i] == '\0');
8308
8309 i = putpkt (rs->buf);
8310 if (i < 0)
8311 return i;
8312
8313 getpkt (&rs->buf, &rs->buf_size, 0);
8314 strcpy ((char *) readbuf, rs->buf);
8315
8316 return strlen ((char *) readbuf);
8317 }
8318
8319 static int
8320 remote_search_memory (struct target_ops* ops,
8321 CORE_ADDR start_addr, ULONGEST search_space_len,
8322 const gdb_byte *pattern, ULONGEST pattern_len,
8323 CORE_ADDR *found_addrp)
8324 {
8325 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
8326 struct remote_state *rs = get_remote_state ();
8327 int max_size = get_memory_write_packet_size ();
8328 struct packet_config *packet =
8329 &remote_protocol_packets[PACKET_qSearch_memory];
8330 /* Number of packet bytes used to encode the pattern;
8331 this could be more than PATTERN_LEN due to escape characters. */
8332 int escaped_pattern_len;
8333 /* Amount of pattern that was encodable in the packet. */
8334 int used_pattern_len;
8335 int i;
8336 int found;
8337 ULONGEST found_addr;
8338
8339 /* Don't go to the target if we don't have to.
8340 This is done before checking packet->support to avoid the possibility that
8341 a success for this edge case means the facility works in general. */
8342 if (pattern_len > search_space_len)
8343 return 0;
8344 if (pattern_len == 0)
8345 {
8346 *found_addrp = start_addr;
8347 return 1;
8348 }
8349
8350 /* If we already know the packet isn't supported, fall back to the simple
8351 way of searching memory. */
8352
8353 if (packet->support == PACKET_DISABLE)
8354 {
8355 /* Target doesn't provided special support, fall back and use the
8356 standard support (copy memory and do the search here). */
8357 return simple_search_memory (ops, start_addr, search_space_len,
8358 pattern, pattern_len, found_addrp);
8359 }
8360
8361 /* Insert header. */
8362 i = snprintf (rs->buf, max_size,
8363 "qSearch:memory:%s;%s;",
8364 phex_nz (start_addr, addr_size),
8365 phex_nz (search_space_len, sizeof (search_space_len)));
8366 max_size -= (i + 1);
8367
8368 /* Escape as much data as fits into rs->buf. */
8369 escaped_pattern_len =
8370 remote_escape_output (pattern, pattern_len, (rs->buf + i),
8371 &used_pattern_len, max_size);
8372
8373 /* Bail if the pattern is too large. */
8374 if (used_pattern_len != pattern_len)
8375 error (_("Pattern is too large to transmit to remote target."));
8376
8377 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
8378 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8379 || packet_ok (rs->buf, packet) != PACKET_OK)
8380 {
8381 /* The request may not have worked because the command is not
8382 supported. If so, fall back to the simple way. */
8383 if (packet->support == PACKET_DISABLE)
8384 {
8385 return simple_search_memory (ops, start_addr, search_space_len,
8386 pattern, pattern_len, found_addrp);
8387 }
8388 return -1;
8389 }
8390
8391 if (rs->buf[0] == '0')
8392 found = 0;
8393 else if (rs->buf[0] == '1')
8394 {
8395 found = 1;
8396 if (rs->buf[1] != ',')
8397 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8398 unpack_varlen_hex (rs->buf + 2, &found_addr);
8399 *found_addrp = found_addr;
8400 }
8401 else
8402 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8403
8404 return found;
8405 }
8406
8407 static void
8408 remote_rcmd (char *command,
8409 struct ui_file *outbuf)
8410 {
8411 struct remote_state *rs = get_remote_state ();
8412 char *p = rs->buf;
8413
8414 if (!remote_desc)
8415 error (_("remote rcmd is only available after target open"));
8416
8417 /* Send a NULL command across as an empty command. */
8418 if (command == NULL)
8419 command = "";
8420
8421 /* The query prefix. */
8422 strcpy (rs->buf, "qRcmd,");
8423 p = strchr (rs->buf, '\0');
8424
8425 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
8426 > get_remote_packet_size ())
8427 error (_("\"monitor\" command ``%s'' is too long."), command);
8428
8429 /* Encode the actual command. */
8430 bin2hex ((gdb_byte *) command, p, 0);
8431
8432 if (putpkt (rs->buf) < 0)
8433 error (_("Communication problem with target."));
8434
8435 /* get/display the response */
8436 while (1)
8437 {
8438 char *buf;
8439
8440 /* XXX - see also remote_get_noisy_reply(). */
8441 rs->buf[0] = '\0';
8442 getpkt (&rs->buf, &rs->buf_size, 0);
8443 buf = rs->buf;
8444 if (buf[0] == '\0')
8445 error (_("Target does not support this command."));
8446 if (buf[0] == 'O' && buf[1] != 'K')
8447 {
8448 remote_console_output (buf + 1); /* 'O' message from stub. */
8449 continue;
8450 }
8451 if (strcmp (buf, "OK") == 0)
8452 break;
8453 if (strlen (buf) == 3 && buf[0] == 'E'
8454 && isdigit (buf[1]) && isdigit (buf[2]))
8455 {
8456 error (_("Protocol error with Rcmd"));
8457 }
8458 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
8459 {
8460 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
8461
8462 fputc_unfiltered (c, outbuf);
8463 }
8464 break;
8465 }
8466 }
8467
8468 static VEC(mem_region_s) *
8469 remote_memory_map (struct target_ops *ops)
8470 {
8471 VEC(mem_region_s) *result = NULL;
8472 char *text = target_read_stralloc (&current_target,
8473 TARGET_OBJECT_MEMORY_MAP, NULL);
8474
8475 if (text)
8476 {
8477 struct cleanup *back_to = make_cleanup (xfree, text);
8478
8479 result = parse_memory_map (text);
8480 do_cleanups (back_to);
8481 }
8482
8483 return result;
8484 }
8485
8486 static void
8487 packet_command (char *args, int from_tty)
8488 {
8489 struct remote_state *rs = get_remote_state ();
8490
8491 if (!remote_desc)
8492 error (_("command can only be used with remote target"));
8493
8494 if (!args)
8495 error (_("remote-packet command requires packet text as argument"));
8496
8497 puts_filtered ("sending: ");
8498 print_packet (args);
8499 puts_filtered ("\n");
8500 putpkt (args);
8501
8502 getpkt (&rs->buf, &rs->buf_size, 0);
8503 puts_filtered ("received: ");
8504 print_packet (rs->buf);
8505 puts_filtered ("\n");
8506 }
8507
8508 #if 0
8509 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
8510
8511 static void display_thread_info (struct gdb_ext_thread_info *info);
8512
8513 static void threadset_test_cmd (char *cmd, int tty);
8514
8515 static void threadalive_test (char *cmd, int tty);
8516
8517 static void threadlist_test_cmd (char *cmd, int tty);
8518
8519 int get_and_display_threadinfo (threadref *ref);
8520
8521 static void threadinfo_test_cmd (char *cmd, int tty);
8522
8523 static int thread_display_step (threadref *ref, void *context);
8524
8525 static void threadlist_update_test_cmd (char *cmd, int tty);
8526
8527 static void init_remote_threadtests (void);
8528
8529 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
8530
8531 static void
8532 threadset_test_cmd (char *cmd, int tty)
8533 {
8534 int sample_thread = SAMPLE_THREAD;
8535
8536 printf_filtered (_("Remote threadset test\n"));
8537 set_general_thread (sample_thread);
8538 }
8539
8540
8541 static void
8542 threadalive_test (char *cmd, int tty)
8543 {
8544 int sample_thread = SAMPLE_THREAD;
8545 int pid = ptid_get_pid (inferior_ptid);
8546 ptid_t ptid = ptid_build (pid, 0, sample_thread);
8547
8548 if (remote_thread_alive (ptid))
8549 printf_filtered ("PASS: Thread alive test\n");
8550 else
8551 printf_filtered ("FAIL: Thread alive test\n");
8552 }
8553
8554 void output_threadid (char *title, threadref *ref);
8555
8556 void
8557 output_threadid (char *title, threadref *ref)
8558 {
8559 char hexid[20];
8560
8561 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
8562 hexid[16] = 0;
8563 printf_filtered ("%s %s\n", title, (&hexid[0]));
8564 }
8565
8566 static void
8567 threadlist_test_cmd (char *cmd, int tty)
8568 {
8569 int startflag = 1;
8570 threadref nextthread;
8571 int done, result_count;
8572 threadref threadlist[3];
8573
8574 printf_filtered ("Remote Threadlist test\n");
8575 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
8576 &result_count, &threadlist[0]))
8577 printf_filtered ("FAIL: threadlist test\n");
8578 else
8579 {
8580 threadref *scan = threadlist;
8581 threadref *limit = scan + result_count;
8582
8583 while (scan < limit)
8584 output_threadid (" thread ", scan++);
8585 }
8586 }
8587
8588 void
8589 display_thread_info (struct gdb_ext_thread_info *info)
8590 {
8591 output_threadid ("Threadid: ", &info->threadid);
8592 printf_filtered ("Name: %s\n ", info->shortname);
8593 printf_filtered ("State: %s\n", info->display);
8594 printf_filtered ("other: %s\n\n", info->more_display);
8595 }
8596
8597 int
8598 get_and_display_threadinfo (threadref *ref)
8599 {
8600 int result;
8601 int set;
8602 struct gdb_ext_thread_info threadinfo;
8603
8604 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
8605 | TAG_MOREDISPLAY | TAG_DISPLAY;
8606 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
8607 display_thread_info (&threadinfo);
8608 return result;
8609 }
8610
8611 static void
8612 threadinfo_test_cmd (char *cmd, int tty)
8613 {
8614 int athread = SAMPLE_THREAD;
8615 threadref thread;
8616 int set;
8617
8618 int_to_threadref (&thread, athread);
8619 printf_filtered ("Remote Threadinfo test\n");
8620 if (!get_and_display_threadinfo (&thread))
8621 printf_filtered ("FAIL cannot get thread info\n");
8622 }
8623
8624 static int
8625 thread_display_step (threadref *ref, void *context)
8626 {
8627 /* output_threadid(" threadstep ",ref); *//* simple test */
8628 return get_and_display_threadinfo (ref);
8629 }
8630
8631 static void
8632 threadlist_update_test_cmd (char *cmd, int tty)
8633 {
8634 printf_filtered ("Remote Threadlist update test\n");
8635 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
8636 }
8637
8638 static void
8639 init_remote_threadtests (void)
8640 {
8641 add_com ("tlist", class_obscure, threadlist_test_cmd,
8642 _("Fetch and print the remote list of "
8643 "thread identifiers, one pkt only"));
8644 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
8645 _("Fetch and display info about one thread"));
8646 add_com ("tset", class_obscure, threadset_test_cmd,
8647 _("Test setting to a different thread"));
8648 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
8649 _("Iterate through updating all remote thread info"));
8650 add_com ("talive", class_obscure, threadalive_test,
8651 _(" Remote thread alive test "));
8652 }
8653
8654 #endif /* 0 */
8655
8656 /* Convert a thread ID to a string. Returns the string in a static
8657 buffer. */
8658
8659 static char *
8660 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
8661 {
8662 static char buf[64];
8663 struct remote_state *rs = get_remote_state ();
8664
8665 if (ptid_is_pid (ptid))
8666 {
8667 /* Printing an inferior target id. */
8668
8669 /* When multi-process extensions are off, there's no way in the
8670 remote protocol to know the remote process id, if there's any
8671 at all. There's one exception --- when we're connected with
8672 target extended-remote, and we manually attached to a process
8673 with "attach PID". We don't record anywhere a flag that
8674 allows us to distinguish that case from the case of
8675 connecting with extended-remote and the stub already being
8676 attached to a process, and reporting yes to qAttached, hence
8677 no smart special casing here. */
8678 if (!remote_multi_process_p (rs))
8679 {
8680 xsnprintf (buf, sizeof buf, "Remote target");
8681 return buf;
8682 }
8683
8684 return normal_pid_to_str (ptid);
8685 }
8686 else
8687 {
8688 if (ptid_equal (magic_null_ptid, ptid))
8689 xsnprintf (buf, sizeof buf, "Thread <main>");
8690 else if (remote_multi_process_p (rs))
8691 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
8692 ptid_get_pid (ptid), ptid_get_tid (ptid));
8693 else
8694 xsnprintf (buf, sizeof buf, "Thread %ld",
8695 ptid_get_tid (ptid));
8696 return buf;
8697 }
8698 }
8699
8700 /* Get the address of the thread local variable in OBJFILE which is
8701 stored at OFFSET within the thread local storage for thread PTID. */
8702
8703 static CORE_ADDR
8704 remote_get_thread_local_address (struct target_ops *ops,
8705 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
8706 {
8707 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
8708 {
8709 struct remote_state *rs = get_remote_state ();
8710 char *p = rs->buf;
8711 char *endp = rs->buf + get_remote_packet_size ();
8712 enum packet_result result;
8713
8714 strcpy (p, "qGetTLSAddr:");
8715 p += strlen (p);
8716 p = write_ptid (p, endp, ptid);
8717 *p++ = ',';
8718 p += hexnumstr (p, offset);
8719 *p++ = ',';
8720 p += hexnumstr (p, lm);
8721 *p++ = '\0';
8722
8723 putpkt (rs->buf);
8724 getpkt (&rs->buf, &rs->buf_size, 0);
8725 result = packet_ok (rs->buf,
8726 &remote_protocol_packets[PACKET_qGetTLSAddr]);
8727 if (result == PACKET_OK)
8728 {
8729 ULONGEST result;
8730
8731 unpack_varlen_hex (rs->buf, &result);
8732 return result;
8733 }
8734 else if (result == PACKET_UNKNOWN)
8735 throw_error (TLS_GENERIC_ERROR,
8736 _("Remote target doesn't support qGetTLSAddr packet"));
8737 else
8738 throw_error (TLS_GENERIC_ERROR,
8739 _("Remote target failed to process qGetTLSAddr request"));
8740 }
8741 else
8742 throw_error (TLS_GENERIC_ERROR,
8743 _("TLS not supported or disabled on this target"));
8744 /* Not reached. */
8745 return 0;
8746 }
8747
8748 /* Provide thread local base, i.e. Thread Information Block address.
8749 Returns 1 if ptid is found and thread_local_base is non zero. */
8750
8751 int
8752 remote_get_tib_address (ptid_t ptid, CORE_ADDR *addr)
8753 {
8754 if (remote_protocol_packets[PACKET_qGetTIBAddr].support != PACKET_DISABLE)
8755 {
8756 struct remote_state *rs = get_remote_state ();
8757 char *p = rs->buf;
8758 char *endp = rs->buf + get_remote_packet_size ();
8759 enum packet_result result;
8760
8761 strcpy (p, "qGetTIBAddr:");
8762 p += strlen (p);
8763 p = write_ptid (p, endp, ptid);
8764 *p++ = '\0';
8765
8766 putpkt (rs->buf);
8767 getpkt (&rs->buf, &rs->buf_size, 0);
8768 result = packet_ok (rs->buf,
8769 &remote_protocol_packets[PACKET_qGetTIBAddr]);
8770 if (result == PACKET_OK)
8771 {
8772 ULONGEST result;
8773
8774 unpack_varlen_hex (rs->buf, &result);
8775 if (addr)
8776 *addr = (CORE_ADDR) result;
8777 return 1;
8778 }
8779 else if (result == PACKET_UNKNOWN)
8780 error (_("Remote target doesn't support qGetTIBAddr packet"));
8781 else
8782 error (_("Remote target failed to process qGetTIBAddr request"));
8783 }
8784 else
8785 error (_("qGetTIBAddr not supported or disabled on this target"));
8786 /* Not reached. */
8787 return 0;
8788 }
8789
8790 /* Support for inferring a target description based on the current
8791 architecture and the size of a 'g' packet. While the 'g' packet
8792 can have any size (since optional registers can be left off the
8793 end), some sizes are easily recognizable given knowledge of the
8794 approximate architecture. */
8795
8796 struct remote_g_packet_guess
8797 {
8798 int bytes;
8799 const struct target_desc *tdesc;
8800 };
8801 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
8802 DEF_VEC_O(remote_g_packet_guess_s);
8803
8804 struct remote_g_packet_data
8805 {
8806 VEC(remote_g_packet_guess_s) *guesses;
8807 };
8808
8809 static struct gdbarch_data *remote_g_packet_data_handle;
8810
8811 static void *
8812 remote_g_packet_data_init (struct obstack *obstack)
8813 {
8814 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
8815 }
8816
8817 void
8818 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
8819 const struct target_desc *tdesc)
8820 {
8821 struct remote_g_packet_data *data
8822 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
8823 struct remote_g_packet_guess new_guess, *guess;
8824 int ix;
8825
8826 gdb_assert (tdesc != NULL);
8827
8828 for (ix = 0;
8829 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8830 ix++)
8831 if (guess->bytes == bytes)
8832 internal_error (__FILE__, __LINE__,
8833 _("Duplicate g packet description added for size %d"),
8834 bytes);
8835
8836 new_guess.bytes = bytes;
8837 new_guess.tdesc = tdesc;
8838 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
8839 }
8840
8841 /* Return 1 if remote_read_description would do anything on this target
8842 and architecture, 0 otherwise. */
8843
8844 static int
8845 remote_read_description_p (struct target_ops *target)
8846 {
8847 struct remote_g_packet_data *data
8848 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8849
8850 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8851 return 1;
8852
8853 return 0;
8854 }
8855
8856 static const struct target_desc *
8857 remote_read_description (struct target_ops *target)
8858 {
8859 struct remote_g_packet_data *data
8860 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8861
8862 /* Do not try this during initial connection, when we do not know
8863 whether there is a running but stopped thread. */
8864 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
8865 return NULL;
8866
8867 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8868 {
8869 struct remote_g_packet_guess *guess;
8870 int ix;
8871 int bytes = send_g_packet ();
8872
8873 for (ix = 0;
8874 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8875 ix++)
8876 if (guess->bytes == bytes)
8877 return guess->tdesc;
8878
8879 /* We discard the g packet. A minor optimization would be to
8880 hold on to it, and fill the register cache once we have selected
8881 an architecture, but it's too tricky to do safely. */
8882 }
8883
8884 return NULL;
8885 }
8886
8887 /* Remote file transfer support. This is host-initiated I/O, not
8888 target-initiated; for target-initiated, see remote-fileio.c. */
8889
8890 /* If *LEFT is at least the length of STRING, copy STRING to
8891 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8892 decrease *LEFT. Otherwise raise an error. */
8893
8894 static void
8895 remote_buffer_add_string (char **buffer, int *left, char *string)
8896 {
8897 int len = strlen (string);
8898
8899 if (len > *left)
8900 error (_("Packet too long for target."));
8901
8902 memcpy (*buffer, string, len);
8903 *buffer += len;
8904 *left -= len;
8905
8906 /* NUL-terminate the buffer as a convenience, if there is
8907 room. */
8908 if (*left)
8909 **buffer = '\0';
8910 }
8911
8912 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
8913 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8914 decrease *LEFT. Otherwise raise an error. */
8915
8916 static void
8917 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
8918 int len)
8919 {
8920 if (2 * len > *left)
8921 error (_("Packet too long for target."));
8922
8923 bin2hex (bytes, *buffer, len);
8924 *buffer += 2 * len;
8925 *left -= 2 * len;
8926
8927 /* NUL-terminate the buffer as a convenience, if there is
8928 room. */
8929 if (*left)
8930 **buffer = '\0';
8931 }
8932
8933 /* If *LEFT is large enough, convert VALUE to hex and add it to
8934 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8935 decrease *LEFT. Otherwise raise an error. */
8936
8937 static void
8938 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
8939 {
8940 int len = hexnumlen (value);
8941
8942 if (len > *left)
8943 error (_("Packet too long for target."));
8944
8945 hexnumstr (*buffer, value);
8946 *buffer += len;
8947 *left -= len;
8948
8949 /* NUL-terminate the buffer as a convenience, if there is
8950 room. */
8951 if (*left)
8952 **buffer = '\0';
8953 }
8954
8955 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
8956 value, *REMOTE_ERRNO to the remote error number or zero if none
8957 was included, and *ATTACHMENT to point to the start of the annex
8958 if any. The length of the packet isn't needed here; there may
8959 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
8960
8961 Return 0 if the packet could be parsed, -1 if it could not. If
8962 -1 is returned, the other variables may not be initialized. */
8963
8964 static int
8965 remote_hostio_parse_result (char *buffer, int *retcode,
8966 int *remote_errno, char **attachment)
8967 {
8968 char *p, *p2;
8969
8970 *remote_errno = 0;
8971 *attachment = NULL;
8972
8973 if (buffer[0] != 'F')
8974 return -1;
8975
8976 errno = 0;
8977 *retcode = strtol (&buffer[1], &p, 16);
8978 if (errno != 0 || p == &buffer[1])
8979 return -1;
8980
8981 /* Check for ",errno". */
8982 if (*p == ',')
8983 {
8984 errno = 0;
8985 *remote_errno = strtol (p + 1, &p2, 16);
8986 if (errno != 0 || p + 1 == p2)
8987 return -1;
8988 p = p2;
8989 }
8990
8991 /* Check for ";attachment". If there is no attachment, the
8992 packet should end here. */
8993 if (*p == ';')
8994 {
8995 *attachment = p + 1;
8996 return 0;
8997 }
8998 else if (*p == '\0')
8999 return 0;
9000 else
9001 return -1;
9002 }
9003
9004 /* Send a prepared I/O packet to the target and read its response.
9005 The prepared packet is in the global RS->BUF before this function
9006 is called, and the answer is there when we return.
9007
9008 COMMAND_BYTES is the length of the request to send, which may include
9009 binary data. WHICH_PACKET is the packet configuration to check
9010 before attempting a packet. If an error occurs, *REMOTE_ERRNO
9011 is set to the error number and -1 is returned. Otherwise the value
9012 returned by the function is returned.
9013
9014 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
9015 attachment is expected; an error will be reported if there's a
9016 mismatch. If one is found, *ATTACHMENT will be set to point into
9017 the packet buffer and *ATTACHMENT_LEN will be set to the
9018 attachment's length. */
9019
9020 static int
9021 remote_hostio_send_command (int command_bytes, int which_packet,
9022 int *remote_errno, char **attachment,
9023 int *attachment_len)
9024 {
9025 struct remote_state *rs = get_remote_state ();
9026 int ret, bytes_read;
9027 char *attachment_tmp;
9028
9029 if (!remote_desc
9030 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
9031 {
9032 *remote_errno = FILEIO_ENOSYS;
9033 return -1;
9034 }
9035
9036 putpkt_binary (rs->buf, command_bytes);
9037 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
9038
9039 /* If it timed out, something is wrong. Don't try to parse the
9040 buffer. */
9041 if (bytes_read < 0)
9042 {
9043 *remote_errno = FILEIO_EINVAL;
9044 return -1;
9045 }
9046
9047 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
9048 {
9049 case PACKET_ERROR:
9050 *remote_errno = FILEIO_EINVAL;
9051 return -1;
9052 case PACKET_UNKNOWN:
9053 *remote_errno = FILEIO_ENOSYS;
9054 return -1;
9055 case PACKET_OK:
9056 break;
9057 }
9058
9059 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
9060 &attachment_tmp))
9061 {
9062 *remote_errno = FILEIO_EINVAL;
9063 return -1;
9064 }
9065
9066 /* Make sure we saw an attachment if and only if we expected one. */
9067 if ((attachment_tmp == NULL && attachment != NULL)
9068 || (attachment_tmp != NULL && attachment == NULL))
9069 {
9070 *remote_errno = FILEIO_EINVAL;
9071 return -1;
9072 }
9073
9074 /* If an attachment was found, it must point into the packet buffer;
9075 work out how many bytes there were. */
9076 if (attachment_tmp != NULL)
9077 {
9078 *attachment = attachment_tmp;
9079 *attachment_len = bytes_read - (*attachment - rs->buf);
9080 }
9081
9082 return ret;
9083 }
9084
9085 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
9086 remote file descriptor, or -1 if an error occurs (and set
9087 *REMOTE_ERRNO). */
9088
9089 static int
9090 remote_hostio_open (const char *filename, int flags, int mode,
9091 int *remote_errno)
9092 {
9093 struct remote_state *rs = get_remote_state ();
9094 char *p = rs->buf;
9095 int left = get_remote_packet_size () - 1;
9096
9097 remote_buffer_add_string (&p, &left, "vFile:open:");
9098
9099 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9100 strlen (filename));
9101 remote_buffer_add_string (&p, &left, ",");
9102
9103 remote_buffer_add_int (&p, &left, flags);
9104 remote_buffer_add_string (&p, &left, ",");
9105
9106 remote_buffer_add_int (&p, &left, mode);
9107
9108 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
9109 remote_errno, NULL, NULL);
9110 }
9111
9112 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
9113 Return the number of bytes written, or -1 if an error occurs (and
9114 set *REMOTE_ERRNO). */
9115
9116 static int
9117 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
9118 ULONGEST offset, int *remote_errno)
9119 {
9120 struct remote_state *rs = get_remote_state ();
9121 char *p = rs->buf;
9122 int left = get_remote_packet_size ();
9123 int out_len;
9124
9125 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
9126
9127 remote_buffer_add_int (&p, &left, fd);
9128 remote_buffer_add_string (&p, &left, ",");
9129
9130 remote_buffer_add_int (&p, &left, offset);
9131 remote_buffer_add_string (&p, &left, ",");
9132
9133 p += remote_escape_output (write_buf, len, p, &out_len,
9134 get_remote_packet_size () - (p - rs->buf));
9135
9136 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
9137 remote_errno, NULL, NULL);
9138 }
9139
9140 /* Read up to LEN bytes FD on the remote target into READ_BUF
9141 Return the number of bytes read, or -1 if an error occurs (and
9142 set *REMOTE_ERRNO). */
9143
9144 static int
9145 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
9146 ULONGEST offset, int *remote_errno)
9147 {
9148 struct remote_state *rs = get_remote_state ();
9149 char *p = rs->buf;
9150 char *attachment;
9151 int left = get_remote_packet_size ();
9152 int ret, attachment_len;
9153 int read_len;
9154
9155 remote_buffer_add_string (&p, &left, "vFile:pread:");
9156
9157 remote_buffer_add_int (&p, &left, fd);
9158 remote_buffer_add_string (&p, &left, ",");
9159
9160 remote_buffer_add_int (&p, &left, len);
9161 remote_buffer_add_string (&p, &left, ",");
9162
9163 remote_buffer_add_int (&p, &left, offset);
9164
9165 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
9166 remote_errno, &attachment,
9167 &attachment_len);
9168
9169 if (ret < 0)
9170 return ret;
9171
9172 read_len = remote_unescape_input (attachment, attachment_len,
9173 read_buf, len);
9174 if (read_len != ret)
9175 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
9176
9177 return ret;
9178 }
9179
9180 /* Close FD on the remote target. Return 0, or -1 if an error occurs
9181 (and set *REMOTE_ERRNO). */
9182
9183 static int
9184 remote_hostio_close (int fd, int *remote_errno)
9185 {
9186 struct remote_state *rs = get_remote_state ();
9187 char *p = rs->buf;
9188 int left = get_remote_packet_size () - 1;
9189
9190 remote_buffer_add_string (&p, &left, "vFile:close:");
9191
9192 remote_buffer_add_int (&p, &left, fd);
9193
9194 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
9195 remote_errno, NULL, NULL);
9196 }
9197
9198 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
9199 occurs (and set *REMOTE_ERRNO). */
9200
9201 static int
9202 remote_hostio_unlink (const char *filename, int *remote_errno)
9203 {
9204 struct remote_state *rs = get_remote_state ();
9205 char *p = rs->buf;
9206 int left = get_remote_packet_size () - 1;
9207
9208 remote_buffer_add_string (&p, &left, "vFile:unlink:");
9209
9210 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9211 strlen (filename));
9212
9213 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
9214 remote_errno, NULL, NULL);
9215 }
9216
9217 static int
9218 remote_fileio_errno_to_host (int errnum)
9219 {
9220 switch (errnum)
9221 {
9222 case FILEIO_EPERM:
9223 return EPERM;
9224 case FILEIO_ENOENT:
9225 return ENOENT;
9226 case FILEIO_EINTR:
9227 return EINTR;
9228 case FILEIO_EIO:
9229 return EIO;
9230 case FILEIO_EBADF:
9231 return EBADF;
9232 case FILEIO_EACCES:
9233 return EACCES;
9234 case FILEIO_EFAULT:
9235 return EFAULT;
9236 case FILEIO_EBUSY:
9237 return EBUSY;
9238 case FILEIO_EEXIST:
9239 return EEXIST;
9240 case FILEIO_ENODEV:
9241 return ENODEV;
9242 case FILEIO_ENOTDIR:
9243 return ENOTDIR;
9244 case FILEIO_EISDIR:
9245 return EISDIR;
9246 case FILEIO_EINVAL:
9247 return EINVAL;
9248 case FILEIO_ENFILE:
9249 return ENFILE;
9250 case FILEIO_EMFILE:
9251 return EMFILE;
9252 case FILEIO_EFBIG:
9253 return EFBIG;
9254 case FILEIO_ENOSPC:
9255 return ENOSPC;
9256 case FILEIO_ESPIPE:
9257 return ESPIPE;
9258 case FILEIO_EROFS:
9259 return EROFS;
9260 case FILEIO_ENOSYS:
9261 return ENOSYS;
9262 case FILEIO_ENAMETOOLONG:
9263 return ENAMETOOLONG;
9264 }
9265 return -1;
9266 }
9267
9268 static char *
9269 remote_hostio_error (int errnum)
9270 {
9271 int host_error = remote_fileio_errno_to_host (errnum);
9272
9273 if (host_error == -1)
9274 error (_("Unknown remote I/O error %d"), errnum);
9275 else
9276 error (_("Remote I/O error: %s"), safe_strerror (host_error));
9277 }
9278
9279 static void
9280 remote_hostio_close_cleanup (void *opaque)
9281 {
9282 int fd = *(int *) opaque;
9283 int remote_errno;
9284
9285 remote_hostio_close (fd, &remote_errno);
9286 }
9287
9288
9289 static void *
9290 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
9291 {
9292 const char *filename = bfd_get_filename (abfd);
9293 int fd, remote_errno;
9294 int *stream;
9295
9296 gdb_assert (remote_filename_p (filename));
9297
9298 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
9299 if (fd == -1)
9300 {
9301 errno = remote_fileio_errno_to_host (remote_errno);
9302 bfd_set_error (bfd_error_system_call);
9303 return NULL;
9304 }
9305
9306 stream = xmalloc (sizeof (int));
9307 *stream = fd;
9308 return stream;
9309 }
9310
9311 static int
9312 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
9313 {
9314 int fd = *(int *)stream;
9315 int remote_errno;
9316
9317 xfree (stream);
9318
9319 /* Ignore errors on close; these may happen if the remote
9320 connection was already torn down. */
9321 remote_hostio_close (fd, &remote_errno);
9322
9323 return 1;
9324 }
9325
9326 static file_ptr
9327 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
9328 file_ptr nbytes, file_ptr offset)
9329 {
9330 int fd = *(int *)stream;
9331 int remote_errno;
9332 file_ptr pos, bytes;
9333
9334 pos = 0;
9335 while (nbytes > pos)
9336 {
9337 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
9338 offset + pos, &remote_errno);
9339 if (bytes == 0)
9340 /* Success, but no bytes, means end-of-file. */
9341 break;
9342 if (bytes == -1)
9343 {
9344 errno = remote_fileio_errno_to_host (remote_errno);
9345 bfd_set_error (bfd_error_system_call);
9346 return -1;
9347 }
9348
9349 pos += bytes;
9350 }
9351
9352 return pos;
9353 }
9354
9355 static int
9356 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
9357 {
9358 /* FIXME: We should probably implement remote_hostio_stat. */
9359 sb->st_size = INT_MAX;
9360 return 0;
9361 }
9362
9363 int
9364 remote_filename_p (const char *filename)
9365 {
9366 return strncmp (filename, "remote:", 7) == 0;
9367 }
9368
9369 bfd *
9370 remote_bfd_open (const char *remote_file, const char *target)
9371 {
9372 return bfd_openr_iovec (remote_file, target,
9373 remote_bfd_iovec_open, NULL,
9374 remote_bfd_iovec_pread,
9375 remote_bfd_iovec_close,
9376 remote_bfd_iovec_stat);
9377 }
9378
9379 void
9380 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
9381 {
9382 struct cleanup *back_to, *close_cleanup;
9383 int retcode, fd, remote_errno, bytes, io_size;
9384 FILE *file;
9385 gdb_byte *buffer;
9386 int bytes_in_buffer;
9387 int saw_eof;
9388 ULONGEST offset;
9389
9390 if (!remote_desc)
9391 error (_("command can only be used with remote target"));
9392
9393 file = fopen (local_file, "rb");
9394 if (file == NULL)
9395 perror_with_name (local_file);
9396 back_to = make_cleanup_fclose (file);
9397
9398 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
9399 | FILEIO_O_TRUNC),
9400 0700, &remote_errno);
9401 if (fd == -1)
9402 remote_hostio_error (remote_errno);
9403
9404 /* Send up to this many bytes at once. They won't all fit in the
9405 remote packet limit, so we'll transfer slightly fewer. */
9406 io_size = get_remote_packet_size ();
9407 buffer = xmalloc (io_size);
9408 make_cleanup (xfree, buffer);
9409
9410 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9411
9412 bytes_in_buffer = 0;
9413 saw_eof = 0;
9414 offset = 0;
9415 while (bytes_in_buffer || !saw_eof)
9416 {
9417 if (!saw_eof)
9418 {
9419 bytes = fread (buffer + bytes_in_buffer, 1,
9420 io_size - bytes_in_buffer,
9421 file);
9422 if (bytes == 0)
9423 {
9424 if (ferror (file))
9425 error (_("Error reading %s."), local_file);
9426 else
9427 {
9428 /* EOF. Unless there is something still in the
9429 buffer from the last iteration, we are done. */
9430 saw_eof = 1;
9431 if (bytes_in_buffer == 0)
9432 break;
9433 }
9434 }
9435 }
9436 else
9437 bytes = 0;
9438
9439 bytes += bytes_in_buffer;
9440 bytes_in_buffer = 0;
9441
9442 retcode = remote_hostio_pwrite (fd, buffer, bytes,
9443 offset, &remote_errno);
9444
9445 if (retcode < 0)
9446 remote_hostio_error (remote_errno);
9447 else if (retcode == 0)
9448 error (_("Remote write of %d bytes returned 0!"), bytes);
9449 else if (retcode < bytes)
9450 {
9451 /* Short write. Save the rest of the read data for the next
9452 write. */
9453 bytes_in_buffer = bytes - retcode;
9454 memmove (buffer, buffer + retcode, bytes_in_buffer);
9455 }
9456
9457 offset += retcode;
9458 }
9459
9460 discard_cleanups (close_cleanup);
9461 if (remote_hostio_close (fd, &remote_errno))
9462 remote_hostio_error (remote_errno);
9463
9464 if (from_tty)
9465 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
9466 do_cleanups (back_to);
9467 }
9468
9469 void
9470 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
9471 {
9472 struct cleanup *back_to, *close_cleanup;
9473 int fd, remote_errno, bytes, io_size;
9474 FILE *file;
9475 gdb_byte *buffer;
9476 ULONGEST offset;
9477
9478 if (!remote_desc)
9479 error (_("command can only be used with remote target"));
9480
9481 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
9482 if (fd == -1)
9483 remote_hostio_error (remote_errno);
9484
9485 file = fopen (local_file, "wb");
9486 if (file == NULL)
9487 perror_with_name (local_file);
9488 back_to = make_cleanup_fclose (file);
9489
9490 /* Send up to this many bytes at once. They won't all fit in the
9491 remote packet limit, so we'll transfer slightly fewer. */
9492 io_size = get_remote_packet_size ();
9493 buffer = xmalloc (io_size);
9494 make_cleanup (xfree, buffer);
9495
9496 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9497
9498 offset = 0;
9499 while (1)
9500 {
9501 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
9502 if (bytes == 0)
9503 /* Success, but no bytes, means end-of-file. */
9504 break;
9505 if (bytes == -1)
9506 remote_hostio_error (remote_errno);
9507
9508 offset += bytes;
9509
9510 bytes = fwrite (buffer, 1, bytes, file);
9511 if (bytes == 0)
9512 perror_with_name (local_file);
9513 }
9514
9515 discard_cleanups (close_cleanup);
9516 if (remote_hostio_close (fd, &remote_errno))
9517 remote_hostio_error (remote_errno);
9518
9519 if (from_tty)
9520 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
9521 do_cleanups (back_to);
9522 }
9523
9524 void
9525 remote_file_delete (const char *remote_file, int from_tty)
9526 {
9527 int retcode, remote_errno;
9528
9529 if (!remote_desc)
9530 error (_("command can only be used with remote target"));
9531
9532 retcode = remote_hostio_unlink (remote_file, &remote_errno);
9533 if (retcode == -1)
9534 remote_hostio_error (remote_errno);
9535
9536 if (from_tty)
9537 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
9538 }
9539
9540 static void
9541 remote_put_command (char *args, int from_tty)
9542 {
9543 struct cleanup *back_to;
9544 char **argv;
9545
9546 if (args == NULL)
9547 error_no_arg (_("file to put"));
9548
9549 argv = gdb_buildargv (args);
9550 back_to = make_cleanup_freeargv (argv);
9551 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9552 error (_("Invalid parameters to remote put"));
9553
9554 remote_file_put (argv[0], argv[1], from_tty);
9555
9556 do_cleanups (back_to);
9557 }
9558
9559 static void
9560 remote_get_command (char *args, int from_tty)
9561 {
9562 struct cleanup *back_to;
9563 char **argv;
9564
9565 if (args == NULL)
9566 error_no_arg (_("file to get"));
9567
9568 argv = gdb_buildargv (args);
9569 back_to = make_cleanup_freeargv (argv);
9570 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9571 error (_("Invalid parameters to remote get"));
9572
9573 remote_file_get (argv[0], argv[1], from_tty);
9574
9575 do_cleanups (back_to);
9576 }
9577
9578 static void
9579 remote_delete_command (char *args, int from_tty)
9580 {
9581 struct cleanup *back_to;
9582 char **argv;
9583
9584 if (args == NULL)
9585 error_no_arg (_("file to delete"));
9586
9587 argv = gdb_buildargv (args);
9588 back_to = make_cleanup_freeargv (argv);
9589 if (argv[0] == NULL || argv[1] != NULL)
9590 error (_("Invalid parameters to remote delete"));
9591
9592 remote_file_delete (argv[0], from_tty);
9593
9594 do_cleanups (back_to);
9595 }
9596
9597 static void
9598 remote_command (char *args, int from_tty)
9599 {
9600 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
9601 }
9602
9603 static int
9604 remote_can_execute_reverse (void)
9605 {
9606 if (remote_protocol_packets[PACKET_bs].support == PACKET_ENABLE
9607 || remote_protocol_packets[PACKET_bc].support == PACKET_ENABLE)
9608 return 1;
9609 else
9610 return 0;
9611 }
9612
9613 static int
9614 remote_supports_non_stop (void)
9615 {
9616 return 1;
9617 }
9618
9619 static int
9620 remote_supports_multi_process (void)
9621 {
9622 struct remote_state *rs = get_remote_state ();
9623
9624 return remote_multi_process_p (rs);
9625 }
9626
9627 int
9628 remote_supports_cond_tracepoints (void)
9629 {
9630 struct remote_state *rs = get_remote_state ();
9631
9632 return rs->cond_tracepoints;
9633 }
9634
9635 int
9636 remote_supports_fast_tracepoints (void)
9637 {
9638 struct remote_state *rs = get_remote_state ();
9639
9640 return rs->fast_tracepoints;
9641 }
9642
9643 static int
9644 remote_supports_static_tracepoints (void)
9645 {
9646 struct remote_state *rs = get_remote_state ();
9647
9648 return rs->static_tracepoints;
9649 }
9650
9651 static void
9652 remote_trace_init (void)
9653 {
9654 putpkt ("QTinit");
9655 remote_get_noisy_reply (&target_buf, &target_buf_size);
9656 if (strcmp (target_buf, "OK") != 0)
9657 error (_("Target does not support this command."));
9658 }
9659
9660 static void free_actions_list (char **actions_list);
9661 static void free_actions_list_cleanup_wrapper (void *);
9662 static void
9663 free_actions_list_cleanup_wrapper (void *al)
9664 {
9665 free_actions_list (al);
9666 }
9667
9668 static void
9669 free_actions_list (char **actions_list)
9670 {
9671 int ndx;
9672
9673 if (actions_list == 0)
9674 return;
9675
9676 for (ndx = 0; actions_list[ndx]; ndx++)
9677 xfree (actions_list[ndx]);
9678
9679 xfree (actions_list);
9680 }
9681
9682 /* Recursive routine to walk through command list including loops, and
9683 download packets for each command. */
9684
9685 static void
9686 remote_download_command_source (int num, ULONGEST addr,
9687 struct command_line *cmds)
9688 {
9689 struct remote_state *rs = get_remote_state ();
9690 struct command_line *cmd;
9691
9692 for (cmd = cmds; cmd; cmd = cmd->next)
9693 {
9694 QUIT; /* Allow user to bail out with ^C. */
9695 strcpy (rs->buf, "QTDPsrc:");
9696 encode_source_string (num, addr, "cmd", cmd->line,
9697 rs->buf + strlen (rs->buf),
9698 rs->buf_size - strlen (rs->buf));
9699 putpkt (rs->buf);
9700 remote_get_noisy_reply (&target_buf, &target_buf_size);
9701 if (strcmp (target_buf, "OK"))
9702 warning (_("Target does not support source download."));
9703
9704 if (cmd->control_type == while_control
9705 || cmd->control_type == while_stepping_control)
9706 {
9707 remote_download_command_source (num, addr, *cmd->body_list);
9708
9709 QUIT; /* Allow user to bail out with ^C. */
9710 strcpy (rs->buf, "QTDPsrc:");
9711 encode_source_string (num, addr, "cmd", "end",
9712 rs->buf + strlen (rs->buf),
9713 rs->buf_size - strlen (rs->buf));
9714 putpkt (rs->buf);
9715 remote_get_noisy_reply (&target_buf, &target_buf_size);
9716 if (strcmp (target_buf, "OK"))
9717 warning (_("Target does not support source download."));
9718 }
9719 }
9720 }
9721
9722 static void
9723 remote_download_tracepoint (struct breakpoint *t)
9724 {
9725 struct bp_location *loc;
9726 CORE_ADDR tpaddr;
9727 char addrbuf[40];
9728 char buf[2048];
9729 char **tdp_actions;
9730 char **stepping_actions;
9731 int ndx;
9732 struct cleanup *old_chain = NULL;
9733 struct agent_expr *aexpr;
9734 struct cleanup *aexpr_chain = NULL;
9735 char *pkt;
9736
9737 /* Iterate over all the tracepoint locations. It's up to the target to
9738 notice multiple tracepoint packets with the same number but different
9739 addresses, and treat them as multiple locations. */
9740 for (loc = t->loc; loc; loc = loc->next)
9741 {
9742 encode_actions (t, loc, &tdp_actions, &stepping_actions);
9743 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
9744 tdp_actions);
9745 (void) make_cleanup (free_actions_list_cleanup_wrapper,
9746 stepping_actions);
9747
9748 tpaddr = loc->address;
9749 sprintf_vma (addrbuf, tpaddr);
9750 sprintf (buf, "QTDP:%x:%s:%c:%lx:%x", t->number,
9751 addrbuf, /* address */
9752 (t->enable_state == bp_enabled ? 'E' : 'D'),
9753 t->step_count, t->pass_count);
9754 /* Fast tracepoints are mostly handled by the target, but we can
9755 tell the target how big of an instruction block should be moved
9756 around. */
9757 if (t->type == bp_fast_tracepoint)
9758 {
9759 /* Only test for support at download time; we may not know
9760 target capabilities at definition time. */
9761 if (remote_supports_fast_tracepoints ())
9762 {
9763 int isize;
9764
9765 if (gdbarch_fast_tracepoint_valid_at (target_gdbarch,
9766 tpaddr, &isize, NULL))
9767 sprintf (buf + strlen (buf), ":F%x", isize);
9768 else
9769 /* If it passed validation at definition but fails now,
9770 something is very wrong. */
9771 internal_error (__FILE__, __LINE__,
9772 _("Fast tracepoint not "
9773 "valid during download"));
9774 }
9775 else
9776 /* Fast tracepoints are functionally identical to regular
9777 tracepoints, so don't take lack of support as a reason to
9778 give up on the trace run. */
9779 warning (_("Target does not support fast tracepoints, "
9780 "downloading %d as regular tracepoint"), t->number);
9781 }
9782 else if (t->type == bp_static_tracepoint)
9783 {
9784 /* Only test for support at download time; we may not know
9785 target capabilities at definition time. */
9786 if (remote_supports_static_tracepoints ())
9787 {
9788 struct static_tracepoint_marker marker;
9789
9790 if (target_static_tracepoint_marker_at (tpaddr, &marker))
9791 strcat (buf, ":S");
9792 else
9793 error (_("Static tracepoint not valid during download"));
9794 }
9795 else
9796 /* Fast tracepoints are functionally identical to regular
9797 tracepoints, so don't take lack of support as a reason
9798 to give up on the trace run. */
9799 error (_("Target does not support static tracepoints"));
9800 }
9801 /* If the tracepoint has a conditional, make it into an agent
9802 expression and append to the definition. */
9803 if (loc->cond)
9804 {
9805 /* Only test support at download time, we may not know target
9806 capabilities at definition time. */
9807 if (remote_supports_cond_tracepoints ())
9808 {
9809 aexpr = gen_eval_for_expr (tpaddr, loc->cond);
9810 aexpr_chain = make_cleanup_free_agent_expr (aexpr);
9811 sprintf (buf + strlen (buf), ":X%x,", aexpr->len);
9812 pkt = buf + strlen (buf);
9813 for (ndx = 0; ndx < aexpr->len; ++ndx)
9814 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
9815 *pkt = '\0';
9816 do_cleanups (aexpr_chain);
9817 }
9818 else
9819 warning (_("Target does not support conditional tracepoints, "
9820 "ignoring tp %d cond"), t->number);
9821 }
9822
9823 if (t->commands || *default_collect)
9824 strcat (buf, "-");
9825 putpkt (buf);
9826 remote_get_noisy_reply (&target_buf, &target_buf_size);
9827 if (strcmp (target_buf, "OK"))
9828 error (_("Target does not support tracepoints."));
9829
9830 /* do_single_steps (t); */
9831 if (tdp_actions)
9832 {
9833 for (ndx = 0; tdp_actions[ndx]; ndx++)
9834 {
9835 QUIT; /* Allow user to bail out with ^C. */
9836 sprintf (buf, "QTDP:-%x:%s:%s%c",
9837 t->number, addrbuf, /* address */
9838 tdp_actions[ndx],
9839 ((tdp_actions[ndx + 1] || stepping_actions)
9840 ? '-' : 0));
9841 putpkt (buf);
9842 remote_get_noisy_reply (&target_buf,
9843 &target_buf_size);
9844 if (strcmp (target_buf, "OK"))
9845 error (_("Error on target while setting tracepoints."));
9846 }
9847 }
9848 if (stepping_actions)
9849 {
9850 for (ndx = 0; stepping_actions[ndx]; ndx++)
9851 {
9852 QUIT; /* Allow user to bail out with ^C. */
9853 sprintf (buf, "QTDP:-%x:%s:%s%s%s",
9854 t->number, addrbuf, /* address */
9855 ((ndx == 0) ? "S" : ""),
9856 stepping_actions[ndx],
9857 (stepping_actions[ndx + 1] ? "-" : ""));
9858 putpkt (buf);
9859 remote_get_noisy_reply (&target_buf,
9860 &target_buf_size);
9861 if (strcmp (target_buf, "OK"))
9862 error (_("Error on target while setting tracepoints."));
9863 }
9864 }
9865
9866 if (remote_protocol_packets[PACKET_TracepointSource].support
9867 == PACKET_ENABLE)
9868 {
9869 if (t->addr_string)
9870 {
9871 strcpy (buf, "QTDPsrc:");
9872 encode_source_string (t->number, loc->address,
9873 "at", t->addr_string, buf + strlen (buf),
9874 2048 - strlen (buf));
9875
9876 putpkt (buf);
9877 remote_get_noisy_reply (&target_buf, &target_buf_size);
9878 if (strcmp (target_buf, "OK"))
9879 warning (_("Target does not support source download."));
9880 }
9881 if (t->cond_string)
9882 {
9883 strcpy (buf, "QTDPsrc:");
9884 encode_source_string (t->number, loc->address,
9885 "cond", t->cond_string, buf + strlen (buf),
9886 2048 - strlen (buf));
9887 putpkt (buf);
9888 remote_get_noisy_reply (&target_buf, &target_buf_size);
9889 if (strcmp (target_buf, "OK"))
9890 warning (_("Target does not support source download."));
9891 }
9892 remote_download_command_source (t->number, loc->address,
9893 breakpoint_commands (t));
9894 }
9895
9896 do_cleanups (old_chain);
9897 }
9898 }
9899
9900 static void
9901 remote_download_trace_state_variable (struct trace_state_variable *tsv)
9902 {
9903 struct remote_state *rs = get_remote_state ();
9904 char *p;
9905
9906 sprintf (rs->buf, "QTDV:%x:%s:%x:",
9907 tsv->number, phex ((ULONGEST) tsv->initial_value, 8), tsv->builtin);
9908 p = rs->buf + strlen (rs->buf);
9909 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
9910 error (_("Trace state variable name too long for tsv definition packet"));
9911 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, 0);
9912 *p++ = '\0';
9913 putpkt (rs->buf);
9914 remote_get_noisy_reply (&target_buf, &target_buf_size);
9915 if (*target_buf == '\0')
9916 error (_("Target does not support this command."));
9917 if (strcmp (target_buf, "OK") != 0)
9918 error (_("Error on target while downloading trace state variable."));
9919 }
9920
9921 static void
9922 remote_trace_set_readonly_regions (void)
9923 {
9924 asection *s;
9925 bfd_size_type size;
9926 bfd_vma vma;
9927 int anysecs = 0;
9928
9929 if (!exec_bfd)
9930 return; /* No information to give. */
9931
9932 strcpy (target_buf, "QTro");
9933 for (s = exec_bfd->sections; s; s = s->next)
9934 {
9935 char tmp1[40], tmp2[40];
9936
9937 if ((s->flags & SEC_LOAD) == 0 ||
9938 /* (s->flags & SEC_CODE) == 0 || */
9939 (s->flags & SEC_READONLY) == 0)
9940 continue;
9941
9942 anysecs = 1;
9943 vma = bfd_get_section_vma (,s);
9944 size = bfd_get_section_size (s);
9945 sprintf_vma (tmp1, vma);
9946 sprintf_vma (tmp2, vma + size);
9947 sprintf (target_buf + strlen (target_buf),
9948 ":%s,%s", tmp1, tmp2);
9949 }
9950 if (anysecs)
9951 {
9952 putpkt (target_buf);
9953 getpkt (&target_buf, &target_buf_size, 0);
9954 }
9955 }
9956
9957 static void
9958 remote_trace_start (void)
9959 {
9960 putpkt ("QTStart");
9961 remote_get_noisy_reply (&target_buf, &target_buf_size);
9962 if (*target_buf == '\0')
9963 error (_("Target does not support this command."));
9964 if (strcmp (target_buf, "OK") != 0)
9965 error (_("Bogus reply from target: %s"), target_buf);
9966 }
9967
9968 static int
9969 remote_get_trace_status (struct trace_status *ts)
9970 {
9971 char *p;
9972 /* FIXME we need to get register block size some other way. */
9973 extern int trace_regblock_size;
9974
9975 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
9976
9977 putpkt ("qTStatus");
9978 p = remote_get_noisy_reply (&target_buf, &target_buf_size);
9979
9980 /* If the remote target doesn't do tracing, flag it. */
9981 if (*p == '\0')
9982 return -1;
9983
9984 /* We're working with a live target. */
9985 ts->from_file = 0;
9986
9987 /* Set some defaults. */
9988 ts->running_known = 0;
9989 ts->stop_reason = trace_stop_reason_unknown;
9990 ts->traceframe_count = -1;
9991 ts->buffer_free = 0;
9992
9993 if (*p++ != 'T')
9994 error (_("Bogus trace status reply from target: %s"), target_buf);
9995
9996 parse_trace_status (p, ts);
9997
9998 return ts->running;
9999 }
10000
10001 static void
10002 remote_trace_stop (void)
10003 {
10004 putpkt ("QTStop");
10005 remote_get_noisy_reply (&target_buf, &target_buf_size);
10006 if (*target_buf == '\0')
10007 error (_("Target does not support this command."));
10008 if (strcmp (target_buf, "OK") != 0)
10009 error (_("Bogus reply from target: %s"), target_buf);
10010 }
10011
10012 static int
10013 remote_trace_find (enum trace_find_type type, int num,
10014 ULONGEST addr1, ULONGEST addr2,
10015 int *tpp)
10016 {
10017 struct remote_state *rs = get_remote_state ();
10018 char *p, *reply;
10019 int target_frameno = -1, target_tracept = -1;
10020
10021 /* Lookups other than by absolute frame number depend on the current
10022 trace selected, so make sure it is correct on the remote end
10023 first. */
10024 if (type != tfind_number)
10025 set_remote_traceframe ();
10026
10027 p = rs->buf;
10028 strcpy (p, "QTFrame:");
10029 p = strchr (p, '\0');
10030 switch (type)
10031 {
10032 case tfind_number:
10033 sprintf (p, "%x", num);
10034 break;
10035 case tfind_pc:
10036 sprintf (p, "pc:%s", phex_nz (addr1, 0));
10037 break;
10038 case tfind_tp:
10039 sprintf (p, "tdp:%x", num);
10040 break;
10041 case tfind_range:
10042 sprintf (p, "range:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
10043 break;
10044 case tfind_outside:
10045 sprintf (p, "outside:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
10046 break;
10047 default:
10048 error (_("Unknown trace find type %d"), type);
10049 }
10050
10051 putpkt (rs->buf);
10052 reply = remote_get_noisy_reply (&(rs->buf), &sizeof_pkt);
10053 if (*reply == '\0')
10054 error (_("Target does not support this command."));
10055
10056 while (reply && *reply)
10057 switch (*reply)
10058 {
10059 case 'F':
10060 p = ++reply;
10061 target_frameno = (int) strtol (p, &reply, 16);
10062 if (reply == p)
10063 error (_("Unable to parse trace frame number"));
10064 /* Don't update our remote traceframe number cache on failure
10065 to select a remote traceframe. */
10066 if (target_frameno == -1)
10067 return -1;
10068 break;
10069 case 'T':
10070 p = ++reply;
10071 target_tracept = (int) strtol (p, &reply, 16);
10072 if (reply == p)
10073 error (_("Unable to parse tracepoint number"));
10074 break;
10075 case 'O': /* "OK"? */
10076 if (reply[1] == 'K' && reply[2] == '\0')
10077 reply += 2;
10078 else
10079 error (_("Bogus reply from target: %s"), reply);
10080 break;
10081 default:
10082 error (_("Bogus reply from target: %s"), reply);
10083 }
10084 if (tpp)
10085 *tpp = target_tracept;
10086
10087 remote_traceframe_number = target_frameno;
10088 return target_frameno;
10089 }
10090
10091 static int
10092 remote_get_trace_state_variable_value (int tsvnum, LONGEST *val)
10093 {
10094 struct remote_state *rs = get_remote_state ();
10095 char *reply;
10096 ULONGEST uval;
10097
10098 set_remote_traceframe ();
10099
10100 sprintf (rs->buf, "qTV:%x", tsvnum);
10101 putpkt (rs->buf);
10102 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10103 if (reply && *reply)
10104 {
10105 if (*reply == 'V')
10106 {
10107 unpack_varlen_hex (reply + 1, &uval);
10108 *val = (LONGEST) uval;
10109 return 1;
10110 }
10111 }
10112 return 0;
10113 }
10114
10115 static int
10116 remote_save_trace_data (const char *filename)
10117 {
10118 struct remote_state *rs = get_remote_state ();
10119 char *p, *reply;
10120
10121 p = rs->buf;
10122 strcpy (p, "QTSave:");
10123 p += strlen (p);
10124 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
10125 error (_("Remote file name too long for trace save packet"));
10126 p += 2 * bin2hex ((gdb_byte *) filename, p, 0);
10127 *p++ = '\0';
10128 putpkt (rs->buf);
10129 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10130 if (*reply != '\0')
10131 error (_("Target does not support this command."));
10132 if (strcmp (reply, "OK") != 0)
10133 error (_("Bogus reply from target: %s"), reply);
10134 return 0;
10135 }
10136
10137 /* This is basically a memory transfer, but needs to be its own packet
10138 because we don't know how the target actually organizes its trace
10139 memory, plus we want to be able to ask for as much as possible, but
10140 not be unhappy if we don't get as much as we ask for. */
10141
10142 static LONGEST
10143 remote_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
10144 {
10145 struct remote_state *rs = get_remote_state ();
10146 char *reply;
10147 char *p;
10148 int rslt;
10149
10150 p = rs->buf;
10151 strcpy (p, "qTBuffer:");
10152 p += strlen (p);
10153 p += hexnumstr (p, offset);
10154 *p++ = ',';
10155 p += hexnumstr (p, len);
10156 *p++ = '\0';
10157
10158 putpkt (rs->buf);
10159 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10160 if (reply && *reply)
10161 {
10162 /* 'l' by itself means we're at the end of the buffer and
10163 there is nothing more to get. */
10164 if (*reply == 'l')
10165 return 0;
10166
10167 /* Convert the reply into binary. Limit the number of bytes to
10168 convert according to our passed-in buffer size, rather than
10169 what was returned in the packet; if the target is
10170 unexpectedly generous and gives us a bigger reply than we
10171 asked for, we don't want to crash. */
10172 rslt = hex2bin (target_buf, buf, len);
10173 return rslt;
10174 }
10175
10176 /* Something went wrong, flag as an error. */
10177 return -1;
10178 }
10179
10180 static void
10181 remote_set_disconnected_tracing (int val)
10182 {
10183 struct remote_state *rs = get_remote_state ();
10184
10185 if (rs->disconnected_tracing)
10186 {
10187 char *reply;
10188
10189 sprintf (rs->buf, "QTDisconnected:%x", val);
10190 putpkt (rs->buf);
10191 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10192 if (*reply == '\0')
10193 error (_("Target does not support this command."));
10194 if (strcmp (reply, "OK") != 0)
10195 error (_("Bogus reply from target: %s"), reply);
10196 }
10197 else if (val)
10198 warning (_("Target does not support disconnected tracing."));
10199 }
10200
10201 static int
10202 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
10203 {
10204 struct thread_info *info = find_thread_ptid (ptid);
10205
10206 if (info && info->private)
10207 return info->private->core;
10208 return -1;
10209 }
10210
10211 static void
10212 remote_set_circular_trace_buffer (int val)
10213 {
10214 struct remote_state *rs = get_remote_state ();
10215 char *reply;
10216
10217 sprintf (rs->buf, "QTBuffer:circular:%x", val);
10218 putpkt (rs->buf);
10219 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10220 if (*reply == '\0')
10221 error (_("Target does not support this command."));
10222 if (strcmp (reply, "OK") != 0)
10223 error (_("Bogus reply from target: %s"), reply);
10224 }
10225
10226 static struct traceframe_info *
10227 remote_traceframe_info (void)
10228 {
10229 char *text;
10230
10231 text = target_read_stralloc (&current_target,
10232 TARGET_OBJECT_TRACEFRAME_INFO, NULL);
10233 if (text != NULL)
10234 {
10235 struct traceframe_info *info;
10236 struct cleanup *back_to = make_cleanup (xfree, text);
10237
10238 info = parse_traceframe_info (text);
10239 do_cleanups (back_to);
10240 return info;
10241 }
10242
10243 return NULL;
10244 }
10245
10246 static void
10247 init_remote_ops (void)
10248 {
10249 remote_ops.to_shortname = "remote";
10250 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
10251 remote_ops.to_doc =
10252 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
10253 Specify the serial device it is connected to\n\
10254 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
10255 remote_ops.to_open = remote_open;
10256 remote_ops.to_close = remote_close;
10257 remote_ops.to_detach = remote_detach;
10258 remote_ops.to_disconnect = remote_disconnect;
10259 remote_ops.to_resume = remote_resume;
10260 remote_ops.to_wait = remote_wait;
10261 remote_ops.to_fetch_registers = remote_fetch_registers;
10262 remote_ops.to_store_registers = remote_store_registers;
10263 remote_ops.to_prepare_to_store = remote_prepare_to_store;
10264 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
10265 remote_ops.to_files_info = remote_files_info;
10266 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
10267 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
10268 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
10269 remote_ops.to_stopped_data_address = remote_stopped_data_address;
10270 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
10271 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
10272 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
10273 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
10274 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
10275 remote_ops.to_kill = remote_kill;
10276 remote_ops.to_load = generic_load;
10277 remote_ops.to_mourn_inferior = remote_mourn;
10278 remote_ops.to_pass_signals = remote_pass_signals;
10279 remote_ops.to_thread_alive = remote_thread_alive;
10280 remote_ops.to_find_new_threads = remote_threads_info;
10281 remote_ops.to_pid_to_str = remote_pid_to_str;
10282 remote_ops.to_extra_thread_info = remote_threads_extra_info;
10283 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
10284 remote_ops.to_stop = remote_stop;
10285 remote_ops.to_xfer_partial = remote_xfer_partial;
10286 remote_ops.to_rcmd = remote_rcmd;
10287 remote_ops.to_log_command = serial_log_command;
10288 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
10289 remote_ops.to_stratum = process_stratum;
10290 remote_ops.to_has_all_memory = default_child_has_all_memory;
10291 remote_ops.to_has_memory = default_child_has_memory;
10292 remote_ops.to_has_stack = default_child_has_stack;
10293 remote_ops.to_has_registers = default_child_has_registers;
10294 remote_ops.to_has_execution = default_child_has_execution;
10295 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
10296 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
10297 remote_ops.to_magic = OPS_MAGIC;
10298 remote_ops.to_memory_map = remote_memory_map;
10299 remote_ops.to_flash_erase = remote_flash_erase;
10300 remote_ops.to_flash_done = remote_flash_done;
10301 remote_ops.to_read_description = remote_read_description;
10302 remote_ops.to_search_memory = remote_search_memory;
10303 remote_ops.to_can_async_p = remote_can_async_p;
10304 remote_ops.to_is_async_p = remote_is_async_p;
10305 remote_ops.to_async = remote_async;
10306 remote_ops.to_async_mask = remote_async_mask;
10307 remote_ops.to_terminal_inferior = remote_terminal_inferior;
10308 remote_ops.to_terminal_ours = remote_terminal_ours;
10309 remote_ops.to_supports_non_stop = remote_supports_non_stop;
10310 remote_ops.to_supports_multi_process = remote_supports_multi_process;
10311 remote_ops.to_trace_init = remote_trace_init;
10312 remote_ops.to_download_tracepoint = remote_download_tracepoint;
10313 remote_ops.to_download_trace_state_variable
10314 = remote_download_trace_state_variable;
10315 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
10316 remote_ops.to_trace_start = remote_trace_start;
10317 remote_ops.to_get_trace_status = remote_get_trace_status;
10318 remote_ops.to_trace_stop = remote_trace_stop;
10319 remote_ops.to_trace_find = remote_trace_find;
10320 remote_ops.to_get_trace_state_variable_value
10321 = remote_get_trace_state_variable_value;
10322 remote_ops.to_save_trace_data = remote_save_trace_data;
10323 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
10324 remote_ops.to_upload_trace_state_variables
10325 = remote_upload_trace_state_variables;
10326 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
10327 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
10328 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
10329 remote_ops.to_core_of_thread = remote_core_of_thread;
10330 remote_ops.to_verify_memory = remote_verify_memory;
10331 remote_ops.to_get_tib_address = remote_get_tib_address;
10332 remote_ops.to_set_permissions = remote_set_permissions;
10333 remote_ops.to_static_tracepoint_marker_at
10334 = remote_static_tracepoint_marker_at;
10335 remote_ops.to_static_tracepoint_markers_by_strid
10336 = remote_static_tracepoint_markers_by_strid;
10337 remote_ops.to_traceframe_info = remote_traceframe_info;
10338 }
10339
10340 /* Set up the extended remote vector by making a copy of the standard
10341 remote vector and adding to it. */
10342
10343 static void
10344 init_extended_remote_ops (void)
10345 {
10346 extended_remote_ops = remote_ops;
10347
10348 extended_remote_ops.to_shortname = "extended-remote";
10349 extended_remote_ops.to_longname =
10350 "Extended remote serial target in gdb-specific protocol";
10351 extended_remote_ops.to_doc =
10352 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
10353 Specify the serial device it is connected to (e.g. /dev/ttya).";
10354 extended_remote_ops.to_open = extended_remote_open;
10355 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
10356 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
10357 extended_remote_ops.to_detach = extended_remote_detach;
10358 extended_remote_ops.to_attach = extended_remote_attach;
10359 extended_remote_ops.to_kill = extended_remote_kill;
10360 }
10361
10362 static int
10363 remote_can_async_p (void)
10364 {
10365 if (!target_async_permitted)
10366 /* We only enable async when the user specifically asks for it. */
10367 return 0;
10368
10369 /* We're async whenever the serial device is. */
10370 return remote_async_mask_value && serial_can_async_p (remote_desc);
10371 }
10372
10373 static int
10374 remote_is_async_p (void)
10375 {
10376 if (!target_async_permitted)
10377 /* We only enable async when the user specifically asks for it. */
10378 return 0;
10379
10380 /* We're async whenever the serial device is. */
10381 return remote_async_mask_value && serial_is_async_p (remote_desc);
10382 }
10383
10384 /* Pass the SERIAL event on and up to the client. One day this code
10385 will be able to delay notifying the client of an event until the
10386 point where an entire packet has been received. */
10387
10388 static void (*async_client_callback) (enum inferior_event_type event_type,
10389 void *context);
10390 static void *async_client_context;
10391 static serial_event_ftype remote_async_serial_handler;
10392
10393 static void
10394 remote_async_serial_handler (struct serial *scb, void *context)
10395 {
10396 /* Don't propogate error information up to the client. Instead let
10397 the client find out about the error by querying the target. */
10398 async_client_callback (INF_REG_EVENT, async_client_context);
10399 }
10400
10401 static void
10402 remote_async_inferior_event_handler (gdb_client_data data)
10403 {
10404 inferior_event_handler (INF_REG_EVENT, NULL);
10405 }
10406
10407 static void
10408 remote_async_get_pending_events_handler (gdb_client_data data)
10409 {
10410 remote_get_pending_stop_replies ();
10411 }
10412
10413 static void
10414 remote_async (void (*callback) (enum inferior_event_type event_type,
10415 void *context), void *context)
10416 {
10417 if (remote_async_mask_value == 0)
10418 internal_error (__FILE__, __LINE__,
10419 _("Calling remote_async when async is masked"));
10420
10421 if (callback != NULL)
10422 {
10423 serial_async (remote_desc, remote_async_serial_handler, NULL);
10424 async_client_callback = callback;
10425 async_client_context = context;
10426 }
10427 else
10428 serial_async (remote_desc, NULL, NULL);
10429 }
10430
10431 static int
10432 remote_async_mask (int new_mask)
10433 {
10434 int curr_mask = remote_async_mask_value;
10435
10436 remote_async_mask_value = new_mask;
10437 return curr_mask;
10438 }
10439
10440 static void
10441 set_remote_cmd (char *args, int from_tty)
10442 {
10443 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
10444 }
10445
10446 static void
10447 show_remote_cmd (char *args, int from_tty)
10448 {
10449 /* We can't just use cmd_show_list here, because we want to skip
10450 the redundant "show remote Z-packet" and the legacy aliases. */
10451 struct cleanup *showlist_chain;
10452 struct cmd_list_element *list = remote_show_cmdlist;
10453
10454 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
10455 for (; list != NULL; list = list->next)
10456 if (strcmp (list->name, "Z-packet") == 0)
10457 continue;
10458 else if (list->type == not_set_cmd)
10459 /* Alias commands are exactly like the original, except they
10460 don't have the normal type. */
10461 continue;
10462 else
10463 {
10464 struct cleanup *option_chain
10465 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
10466
10467 ui_out_field_string (uiout, "name", list->name);
10468 ui_out_text (uiout, ": ");
10469 if (list->type == show_cmd)
10470 do_setshow_command ((char *) NULL, from_tty, list);
10471 else
10472 cmd_func (list, NULL, from_tty);
10473 /* Close the tuple. */
10474 do_cleanups (option_chain);
10475 }
10476
10477 /* Close the tuple. */
10478 do_cleanups (showlist_chain);
10479 }
10480
10481
10482 /* Function to be called whenever a new objfile (shlib) is detected. */
10483 static void
10484 remote_new_objfile (struct objfile *objfile)
10485 {
10486 if (remote_desc != 0) /* Have a remote connection. */
10487 remote_check_symbols (objfile);
10488 }
10489
10490 /* Pull all the tracepoints defined on the target and create local
10491 data structures representing them. We don't want to create real
10492 tracepoints yet, we don't want to mess up the user's existing
10493 collection. */
10494
10495 static int
10496 remote_upload_tracepoints (struct uploaded_tp **utpp)
10497 {
10498 struct remote_state *rs = get_remote_state ();
10499 char *p;
10500
10501 /* Ask for a first packet of tracepoint definition. */
10502 putpkt ("qTfP");
10503 getpkt (&rs->buf, &rs->buf_size, 0);
10504 p = rs->buf;
10505 while (*p && *p != 'l')
10506 {
10507 parse_tracepoint_definition (p, utpp);
10508 /* Ask for another packet of tracepoint definition. */
10509 putpkt ("qTsP");
10510 getpkt (&rs->buf, &rs->buf_size, 0);
10511 p = rs->buf;
10512 }
10513 return 0;
10514 }
10515
10516 static int
10517 remote_upload_trace_state_variables (struct uploaded_tsv **utsvp)
10518 {
10519 struct remote_state *rs = get_remote_state ();
10520 char *p;
10521
10522 /* Ask for a first packet of variable definition. */
10523 putpkt ("qTfV");
10524 getpkt (&rs->buf, &rs->buf_size, 0);
10525 p = rs->buf;
10526 while (*p && *p != 'l')
10527 {
10528 parse_tsv_definition (p, utsvp);
10529 /* Ask for another packet of variable definition. */
10530 putpkt ("qTsV");
10531 getpkt (&rs->buf, &rs->buf_size, 0);
10532 p = rs->buf;
10533 }
10534 return 0;
10535 }
10536
10537 void
10538 _initialize_remote (void)
10539 {
10540 struct remote_state *rs;
10541 struct cmd_list_element *cmd;
10542 char *cmd_name;
10543
10544 /* architecture specific data */
10545 remote_gdbarch_data_handle =
10546 gdbarch_data_register_post_init (init_remote_state);
10547 remote_g_packet_data_handle =
10548 gdbarch_data_register_pre_init (remote_g_packet_data_init);
10549
10550 /* Initialize the per-target state. At the moment there is only one
10551 of these, not one per target. Only one target is active at a
10552 time. The default buffer size is unimportant; it will be expanded
10553 whenever a larger buffer is needed. */
10554 rs = get_remote_state_raw ();
10555 rs->buf_size = 400;
10556 rs->buf = xmalloc (rs->buf_size);
10557
10558 init_remote_ops ();
10559 add_target (&remote_ops);
10560
10561 init_extended_remote_ops ();
10562 add_target (&extended_remote_ops);
10563
10564 /* Hook into new objfile notification. */
10565 observer_attach_new_objfile (remote_new_objfile);
10566
10567 /* Set up signal handlers. */
10568 sigint_remote_token =
10569 create_async_signal_handler (async_remote_interrupt, NULL);
10570 sigint_remote_twice_token =
10571 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
10572
10573 #if 0
10574 init_remote_threadtests ();
10575 #endif
10576
10577 /* set/show remote ... */
10578
10579 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
10580 Remote protocol specific variables\n\
10581 Configure various remote-protocol specific variables such as\n\
10582 the packets being used"),
10583 &remote_set_cmdlist, "set remote ",
10584 0 /* allow-unknown */, &setlist);
10585 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
10586 Remote protocol specific variables\n\
10587 Configure various remote-protocol specific variables such as\n\
10588 the packets being used"),
10589 &remote_show_cmdlist, "show remote ",
10590 0 /* allow-unknown */, &showlist);
10591
10592 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
10593 Compare section data on target to the exec file.\n\
10594 Argument is a single section name (default: all loaded sections)."),
10595 &cmdlist);
10596
10597 add_cmd ("packet", class_maintenance, packet_command, _("\
10598 Send an arbitrary packet to a remote target.\n\
10599 maintenance packet TEXT\n\
10600 If GDB is talking to an inferior via the GDB serial protocol, then\n\
10601 this command sends the string TEXT to the inferior, and displays the\n\
10602 response packet. GDB supplies the initial `$' character, and the\n\
10603 terminating `#' character and checksum."),
10604 &maintenancelist);
10605
10606 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
10607 Set whether to send break if interrupted."), _("\
10608 Show whether to send break if interrupted."), _("\
10609 If set, a break, instead of a cntrl-c, is sent to the remote target."),
10610 set_remotebreak, show_remotebreak,
10611 &setlist, &showlist);
10612 cmd_name = "remotebreak";
10613 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
10614 deprecate_cmd (cmd, "set remote interrupt-sequence");
10615 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
10616 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
10617 deprecate_cmd (cmd, "show remote interrupt-sequence");
10618
10619 add_setshow_enum_cmd ("interrupt-sequence", class_support,
10620 interrupt_sequence_modes, &interrupt_sequence_mode,
10621 _("\
10622 Set interrupt sequence to remote target."), _("\
10623 Show interrupt sequence to remote target."), _("\
10624 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
10625 NULL, show_interrupt_sequence,
10626 &remote_set_cmdlist,
10627 &remote_show_cmdlist);
10628
10629 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
10630 &interrupt_on_connect, _("\
10631 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
10632 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
10633 If set, interrupt sequence is sent to remote target."),
10634 NULL, NULL,
10635 &remote_set_cmdlist, &remote_show_cmdlist);
10636
10637 /* Install commands for configuring memory read/write packets. */
10638
10639 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
10640 Set the maximum number of bytes per memory write packet (deprecated)."),
10641 &setlist);
10642 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
10643 Show the maximum number of bytes per memory write packet (deprecated)."),
10644 &showlist);
10645 add_cmd ("memory-write-packet-size", no_class,
10646 set_memory_write_packet_size, _("\
10647 Set the maximum number of bytes per memory-write packet.\n\
10648 Specify the number of bytes in a packet or 0 (zero) for the\n\
10649 default packet size. The actual limit is further reduced\n\
10650 dependent on the target. Specify ``fixed'' to disable the\n\
10651 further restriction and ``limit'' to enable that restriction."),
10652 &remote_set_cmdlist);
10653 add_cmd ("memory-read-packet-size", no_class,
10654 set_memory_read_packet_size, _("\
10655 Set the maximum number of bytes per memory-read packet.\n\
10656 Specify the number of bytes in a packet or 0 (zero) for the\n\
10657 default packet size. The actual limit is further reduced\n\
10658 dependent on the target. Specify ``fixed'' to disable the\n\
10659 further restriction and ``limit'' to enable that restriction."),
10660 &remote_set_cmdlist);
10661 add_cmd ("memory-write-packet-size", no_class,
10662 show_memory_write_packet_size,
10663 _("Show the maximum number of bytes per memory-write packet."),
10664 &remote_show_cmdlist);
10665 add_cmd ("memory-read-packet-size", no_class,
10666 show_memory_read_packet_size,
10667 _("Show the maximum number of bytes per memory-read packet."),
10668 &remote_show_cmdlist);
10669
10670 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
10671 &remote_hw_watchpoint_limit, _("\
10672 Set the maximum number of target hardware watchpoints."), _("\
10673 Show the maximum number of target hardware watchpoints."), _("\
10674 Specify a negative limit for unlimited."),
10675 NULL, NULL, /* FIXME: i18n: The maximum
10676 number of target hardware
10677 watchpoints is %s. */
10678 &remote_set_cmdlist, &remote_show_cmdlist);
10679 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
10680 &remote_hw_breakpoint_limit, _("\
10681 Set the maximum number of target hardware breakpoints."), _("\
10682 Show the maximum number of target hardware breakpoints."), _("\
10683 Specify a negative limit for unlimited."),
10684 NULL, NULL, /* FIXME: i18n: The maximum
10685 number of target hardware
10686 breakpoints is %s. */
10687 &remote_set_cmdlist, &remote_show_cmdlist);
10688
10689 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
10690 &remote_address_size, _("\
10691 Set the maximum size of the address (in bits) in a memory packet."), _("\
10692 Show the maximum size of the address (in bits) in a memory packet."), NULL,
10693 NULL,
10694 NULL, /* FIXME: i18n: */
10695 &setlist, &showlist);
10696
10697 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
10698 "X", "binary-download", 1);
10699
10700 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
10701 "vCont", "verbose-resume", 0);
10702
10703 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
10704 "QPassSignals", "pass-signals", 0);
10705
10706 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
10707 "qSymbol", "symbol-lookup", 0);
10708
10709 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
10710 "P", "set-register", 1);
10711
10712 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
10713 "p", "fetch-register", 1);
10714
10715 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
10716 "Z0", "software-breakpoint", 0);
10717
10718 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
10719 "Z1", "hardware-breakpoint", 0);
10720
10721 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
10722 "Z2", "write-watchpoint", 0);
10723
10724 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
10725 "Z3", "read-watchpoint", 0);
10726
10727 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
10728 "Z4", "access-watchpoint", 0);
10729
10730 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
10731 "qXfer:auxv:read", "read-aux-vector", 0);
10732
10733 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
10734 "qXfer:features:read", "target-features", 0);
10735
10736 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
10737 "qXfer:libraries:read", "library-info", 0);
10738
10739 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
10740 "qXfer:memory-map:read", "memory-map", 0);
10741
10742 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
10743 "qXfer:spu:read", "read-spu-object", 0);
10744
10745 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
10746 "qXfer:spu:write", "write-spu-object", 0);
10747
10748 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
10749 "qXfer:osdata:read", "osdata", 0);
10750
10751 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
10752 "qXfer:threads:read", "threads", 0);
10753
10754 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
10755 "qXfer:siginfo:read", "read-siginfo-object", 0);
10756
10757 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
10758 "qXfer:siginfo:write", "write-siginfo-object", 0);
10759
10760 add_packet_config_cmd
10761 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
10762 "qXfer:trace-frame-info:read", "traceframe-info", 0);
10763
10764 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
10765 "qGetTLSAddr", "get-thread-local-storage-address",
10766 0);
10767
10768 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
10769 "qGetTIBAddr", "get-thread-information-block-address",
10770 0);
10771
10772 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
10773 "bc", "reverse-continue", 0);
10774
10775 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
10776 "bs", "reverse-step", 0);
10777
10778 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
10779 "qSupported", "supported-packets", 0);
10780
10781 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
10782 "qSearch:memory", "search-memory", 0);
10783
10784 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
10785 "vFile:open", "hostio-open", 0);
10786
10787 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
10788 "vFile:pread", "hostio-pread", 0);
10789
10790 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
10791 "vFile:pwrite", "hostio-pwrite", 0);
10792
10793 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
10794 "vFile:close", "hostio-close", 0);
10795
10796 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
10797 "vFile:unlink", "hostio-unlink", 0);
10798
10799 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
10800 "vAttach", "attach", 0);
10801
10802 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
10803 "vRun", "run", 0);
10804
10805 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
10806 "QStartNoAckMode", "noack", 0);
10807
10808 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
10809 "vKill", "kill", 0);
10810
10811 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
10812 "qAttached", "query-attached", 0);
10813
10814 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
10815 "ConditionalTracepoints",
10816 "conditional-tracepoints", 0);
10817 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
10818 "FastTracepoints", "fast-tracepoints", 0);
10819
10820 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
10821 "TracepointSource", "TracepointSource", 0);
10822
10823 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
10824 "QAllow", "allow", 0);
10825
10826 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
10827 "StaticTracepoints", "static-tracepoints", 0);
10828
10829 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
10830 "qXfer:statictrace:read", "read-sdata-object", 0);
10831
10832 /* Keep the old ``set remote Z-packet ...'' working. Each individual
10833 Z sub-packet has its own set and show commands, but users may
10834 have sets to this variable in their .gdbinit files (or in their
10835 documentation). */
10836 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
10837 &remote_Z_packet_detect, _("\
10838 Set use of remote protocol `Z' packets"), _("\
10839 Show use of remote protocol `Z' packets "), _("\
10840 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
10841 packets."),
10842 set_remote_protocol_Z_packet_cmd,
10843 show_remote_protocol_Z_packet_cmd,
10844 /* FIXME: i18n: Use of remote protocol
10845 `Z' packets is %s. */
10846 &remote_set_cmdlist, &remote_show_cmdlist);
10847
10848 add_prefix_cmd ("remote", class_files, remote_command, _("\
10849 Manipulate files on the remote system\n\
10850 Transfer files to and from the remote target system."),
10851 &remote_cmdlist, "remote ",
10852 0 /* allow-unknown */, &cmdlist);
10853
10854 add_cmd ("put", class_files, remote_put_command,
10855 _("Copy a local file to the remote system."),
10856 &remote_cmdlist);
10857
10858 add_cmd ("get", class_files, remote_get_command,
10859 _("Copy a remote file to the local system."),
10860 &remote_cmdlist);
10861
10862 add_cmd ("delete", class_files, remote_delete_command,
10863 _("Delete a remote file."),
10864 &remote_cmdlist);
10865
10866 remote_exec_file = xstrdup ("");
10867 add_setshow_string_noescape_cmd ("exec-file", class_files,
10868 &remote_exec_file, _("\
10869 Set the remote pathname for \"run\""), _("\
10870 Show the remote pathname for \"run\""), NULL, NULL, NULL,
10871 &remote_set_cmdlist, &remote_show_cmdlist);
10872
10873 /* Eventually initialize fileio. See fileio.c */
10874 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
10875
10876 /* Take advantage of the fact that the LWP field is not used, to tag
10877 special ptids with it set to != 0. */
10878 magic_null_ptid = ptid_build (42000, 1, -1);
10879 not_sent_ptid = ptid_build (42000, 1, -2);
10880 any_thread_ptid = ptid_build (42000, 1, 0);
10881
10882 target_buf_size = 2048;
10883 target_buf = xmalloc (target_buf_size);
10884 }
10885
This page took 0.269701 seconds and 5 git commands to generate.