Correct disassembly of dot product instructions.
[deliverable/binutils-gdb.git] / gdb / rl78-tdep.c
1 /* Target-dependent code for the Renesas RL78 for GDB, the GNU debugger.
2
3 Copyright (C) 2011-2017 Free Software Foundation, Inc.
4
5 Contributed by Red Hat, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "prologue-value.h"
25 #include "target.h"
26 #include "regcache.h"
27 #include "opcode/rl78.h"
28 #include "dis-asm.h"
29 #include "gdbtypes.h"
30 #include "frame.h"
31 #include "frame-unwind.h"
32 #include "frame-base.h"
33 #include "value.h"
34 #include "gdbcore.h"
35 #include "dwarf2-frame.h"
36 #include "reggroups.h"
37
38 #include "elf/rl78.h"
39 #include "elf-bfd.h"
40
41 /* Register Banks. */
42
43 enum
44 {
45 RL78_BANK0 = 0,
46 RL78_BANK1 = 1,
47 RL78_BANK2 = 2,
48 RL78_BANK3 = 3,
49 RL78_NUMBANKS = 4,
50 RL78_REGS_PER_BANK = 8
51 };
52
53 /* Register Numbers. */
54
55 enum
56 {
57 /* All general purpose registers are 8 bits wide. */
58 RL78_RAW_BANK0_R0_REGNUM = 0,
59 RL78_RAW_BANK0_R1_REGNUM,
60 RL78_RAW_BANK0_R2_REGNUM,
61 RL78_RAW_BANK0_R3_REGNUM,
62 RL78_RAW_BANK0_R4_REGNUM,
63 RL78_RAW_BANK0_R5_REGNUM,
64 RL78_RAW_BANK0_R6_REGNUM,
65 RL78_RAW_BANK0_R7_REGNUM,
66
67 RL78_RAW_BANK1_R0_REGNUM,
68 RL78_RAW_BANK1_R1_REGNUM,
69 RL78_RAW_BANK1_R2_REGNUM,
70 RL78_RAW_BANK1_R3_REGNUM,
71 RL78_RAW_BANK1_R4_REGNUM,
72 RL78_RAW_BANK1_R5_REGNUM,
73 RL78_RAW_BANK1_R6_REGNUM,
74 RL78_RAW_BANK1_R7_REGNUM,
75
76 RL78_RAW_BANK2_R0_REGNUM,
77 RL78_RAW_BANK2_R1_REGNUM,
78 RL78_RAW_BANK2_R2_REGNUM,
79 RL78_RAW_BANK2_R3_REGNUM,
80 RL78_RAW_BANK2_R4_REGNUM,
81 RL78_RAW_BANK2_R5_REGNUM,
82 RL78_RAW_BANK2_R6_REGNUM,
83 RL78_RAW_BANK2_R7_REGNUM,
84
85 RL78_RAW_BANK3_R0_REGNUM,
86 RL78_RAW_BANK3_R1_REGNUM,
87 RL78_RAW_BANK3_R2_REGNUM,
88 RL78_RAW_BANK3_R3_REGNUM,
89 RL78_RAW_BANK3_R4_REGNUM,
90 RL78_RAW_BANK3_R5_REGNUM,
91 RL78_RAW_BANK3_R6_REGNUM,
92 RL78_RAW_BANK3_R7_REGNUM,
93
94 RL78_PSW_REGNUM, /* 8 bits */
95 RL78_ES_REGNUM, /* 8 bits */
96 RL78_CS_REGNUM, /* 8 bits */
97 RL78_RAW_PC_REGNUM, /* 20 bits; we'll use 32 bits for it. */
98
99 /* Fixed address SFRs (some of those above are SFRs too.) */
100 RL78_SPL_REGNUM, /* 8 bits; lower half of SP */
101 RL78_SPH_REGNUM, /* 8 bits; upper half of SP */
102 RL78_PMC_REGNUM, /* 8 bits */
103 RL78_MEM_REGNUM, /* 8 bits ?? */
104
105 RL78_NUM_REGS,
106
107 /* Pseudo registers. */
108 RL78_PC_REGNUM = RL78_NUM_REGS,
109 RL78_SP_REGNUM,
110
111 RL78_X_REGNUM,
112 RL78_A_REGNUM,
113 RL78_C_REGNUM,
114 RL78_B_REGNUM,
115 RL78_E_REGNUM,
116 RL78_D_REGNUM,
117 RL78_L_REGNUM,
118 RL78_H_REGNUM,
119
120 RL78_AX_REGNUM,
121 RL78_BC_REGNUM,
122 RL78_DE_REGNUM,
123 RL78_HL_REGNUM,
124
125 RL78_BANK0_R0_REGNUM,
126 RL78_BANK0_R1_REGNUM,
127 RL78_BANK0_R2_REGNUM,
128 RL78_BANK0_R3_REGNUM,
129 RL78_BANK0_R4_REGNUM,
130 RL78_BANK0_R5_REGNUM,
131 RL78_BANK0_R6_REGNUM,
132 RL78_BANK0_R7_REGNUM,
133
134 RL78_BANK1_R0_REGNUM,
135 RL78_BANK1_R1_REGNUM,
136 RL78_BANK1_R2_REGNUM,
137 RL78_BANK1_R3_REGNUM,
138 RL78_BANK1_R4_REGNUM,
139 RL78_BANK1_R5_REGNUM,
140 RL78_BANK1_R6_REGNUM,
141 RL78_BANK1_R7_REGNUM,
142
143 RL78_BANK2_R0_REGNUM,
144 RL78_BANK2_R1_REGNUM,
145 RL78_BANK2_R2_REGNUM,
146 RL78_BANK2_R3_REGNUM,
147 RL78_BANK2_R4_REGNUM,
148 RL78_BANK2_R5_REGNUM,
149 RL78_BANK2_R6_REGNUM,
150 RL78_BANK2_R7_REGNUM,
151
152 RL78_BANK3_R0_REGNUM,
153 RL78_BANK3_R1_REGNUM,
154 RL78_BANK3_R2_REGNUM,
155 RL78_BANK3_R3_REGNUM,
156 RL78_BANK3_R4_REGNUM,
157 RL78_BANK3_R5_REGNUM,
158 RL78_BANK3_R6_REGNUM,
159 RL78_BANK3_R7_REGNUM,
160
161 RL78_BANK0_RP0_REGNUM,
162 RL78_BANK0_RP1_REGNUM,
163 RL78_BANK0_RP2_REGNUM,
164 RL78_BANK0_RP3_REGNUM,
165
166 RL78_BANK1_RP0_REGNUM,
167 RL78_BANK1_RP1_REGNUM,
168 RL78_BANK1_RP2_REGNUM,
169 RL78_BANK1_RP3_REGNUM,
170
171 RL78_BANK2_RP0_REGNUM,
172 RL78_BANK2_RP1_REGNUM,
173 RL78_BANK2_RP2_REGNUM,
174 RL78_BANK2_RP3_REGNUM,
175
176 RL78_BANK3_RP0_REGNUM,
177 RL78_BANK3_RP1_REGNUM,
178 RL78_BANK3_RP2_REGNUM,
179 RL78_BANK3_RP3_REGNUM,
180
181 /* These are the same as the above 16 registers, but have
182 a pointer type for use as base registers in expression
183 evaluation. These are not user visible registers. */
184 RL78_BANK0_RP0_PTR_REGNUM,
185 RL78_BANK0_RP1_PTR_REGNUM,
186 RL78_BANK0_RP2_PTR_REGNUM,
187 RL78_BANK0_RP3_PTR_REGNUM,
188
189 RL78_BANK1_RP0_PTR_REGNUM,
190 RL78_BANK1_RP1_PTR_REGNUM,
191 RL78_BANK1_RP2_PTR_REGNUM,
192 RL78_BANK1_RP3_PTR_REGNUM,
193
194 RL78_BANK2_RP0_PTR_REGNUM,
195 RL78_BANK2_RP1_PTR_REGNUM,
196 RL78_BANK2_RP2_PTR_REGNUM,
197 RL78_BANK2_RP3_PTR_REGNUM,
198
199 RL78_BANK3_RP0_PTR_REGNUM,
200 RL78_BANK3_RP1_PTR_REGNUM,
201 RL78_BANK3_RP2_PTR_REGNUM,
202 RL78_BANK3_RP3_PTR_REGNUM,
203
204 RL78_NUM_TOTAL_REGS,
205 RL78_NUM_PSEUDO_REGS = RL78_NUM_TOTAL_REGS - RL78_NUM_REGS
206 };
207
208 #define RL78_SP_ADDR 0xffff8
209
210 /* Architecture specific data. */
211
212 struct gdbarch_tdep
213 {
214 /* The ELF header flags specify the multilib used. */
215 int elf_flags;
216
217 struct type *rl78_void,
218 *rl78_uint8,
219 *rl78_int8,
220 *rl78_uint16,
221 *rl78_int16,
222 *rl78_uint32,
223 *rl78_int32,
224 *rl78_data_pointer,
225 *rl78_code_pointer,
226 *rl78_psw_type;
227 };
228
229 /* This structure holds the results of a prologue analysis. */
230
231 struct rl78_prologue
232 {
233 /* The offset from the frame base to the stack pointer --- always
234 zero or negative.
235
236 Calling this a "size" is a bit misleading, but given that the
237 stack grows downwards, using offsets for everything keeps one
238 from going completely sign-crazy: you never change anything's
239 sign for an ADD instruction; always change the second operand's
240 sign for a SUB instruction; and everything takes care of
241 itself. */
242 int frame_size;
243
244 /* Non-zero if this function has initialized the frame pointer from
245 the stack pointer, zero otherwise. */
246 int has_frame_ptr;
247
248 /* If has_frame_ptr is non-zero, this is the offset from the frame
249 base to where the frame pointer points. This is always zero or
250 negative. */
251 int frame_ptr_offset;
252
253 /* The address of the first instruction at which the frame has been
254 set up and the arguments are where the debug info says they are
255 --- as best as we can tell. */
256 CORE_ADDR prologue_end;
257
258 /* reg_offset[R] is the offset from the CFA at which register R is
259 saved, or 1 if register R has not been saved. (Real values are
260 always zero or negative.) */
261 int reg_offset[RL78_NUM_TOTAL_REGS];
262 };
263
264 /* Construct type for PSW register. */
265
266 static struct type *
267 rl78_psw_type (struct gdbarch *gdbarch)
268 {
269 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
270
271 if (tdep->rl78_psw_type == NULL)
272 {
273 tdep->rl78_psw_type = arch_flags_type (gdbarch,
274 "builtin_type_rl78_psw", 8);
275 append_flags_type_flag (tdep->rl78_psw_type, 0, "CY");
276 append_flags_type_flag (tdep->rl78_psw_type, 1, "ISP0");
277 append_flags_type_flag (tdep->rl78_psw_type, 2, "ISP1");
278 append_flags_type_flag (tdep->rl78_psw_type, 3, "RBS0");
279 append_flags_type_flag (tdep->rl78_psw_type, 4, "AC");
280 append_flags_type_flag (tdep->rl78_psw_type, 5, "RBS1");
281 append_flags_type_flag (tdep->rl78_psw_type, 6, "Z");
282 append_flags_type_flag (tdep->rl78_psw_type, 7, "IE");
283 }
284
285 return tdep->rl78_psw_type;
286 }
287
288 /* Implement the "register_type" gdbarch method. */
289
290 static struct type *
291 rl78_register_type (struct gdbarch *gdbarch, int reg_nr)
292 {
293 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
294
295 if (reg_nr == RL78_PC_REGNUM)
296 return tdep->rl78_code_pointer;
297 else if (reg_nr == RL78_RAW_PC_REGNUM)
298 return tdep->rl78_uint32;
299 else if (reg_nr == RL78_PSW_REGNUM)
300 return rl78_psw_type (gdbarch);
301 else if (reg_nr <= RL78_MEM_REGNUM
302 || (RL78_X_REGNUM <= reg_nr && reg_nr <= RL78_H_REGNUM)
303 || (RL78_BANK0_R0_REGNUM <= reg_nr
304 && reg_nr <= RL78_BANK3_R7_REGNUM))
305 return tdep->rl78_int8;
306 else if (reg_nr == RL78_SP_REGNUM
307 || (RL78_BANK0_RP0_PTR_REGNUM <= reg_nr
308 && reg_nr <= RL78_BANK3_RP3_PTR_REGNUM))
309 return tdep->rl78_data_pointer;
310 else
311 return tdep->rl78_int16;
312 }
313
314 /* Implement the "register_name" gdbarch method. */
315
316 static const char *
317 rl78_register_name (struct gdbarch *gdbarch, int regnr)
318 {
319 static const char *const reg_names[] =
320 {
321 "", /* bank0_r0 */
322 "", /* bank0_r1 */
323 "", /* bank0_r2 */
324 "", /* bank0_r3 */
325 "", /* bank0_r4 */
326 "", /* bank0_r5 */
327 "", /* bank0_r6 */
328 "", /* bank0_r7 */
329
330 "", /* bank1_r0 */
331 "", /* bank1_r1 */
332 "", /* bank1_r2 */
333 "", /* bank1_r3 */
334 "", /* bank1_r4 */
335 "", /* bank1_r5 */
336 "", /* bank1_r6 */
337 "", /* bank1_r7 */
338
339 "", /* bank2_r0 */
340 "", /* bank2_r1 */
341 "", /* bank2_r2 */
342 "", /* bank2_r3 */
343 "", /* bank2_r4 */
344 "", /* bank2_r5 */
345 "", /* bank2_r6 */
346 "", /* bank2_r7 */
347
348 "", /* bank3_r0 */
349 "", /* bank3_r1 */
350 "", /* bank3_r2 */
351 "", /* bank3_r3 */
352 "", /* bank3_r4 */
353 "", /* bank3_r5 */
354 "", /* bank3_r6 */
355 "", /* bank3_r7 */
356
357 "psw",
358 "es",
359 "cs",
360 "",
361
362 "", /* spl */
363 "", /* sph */
364 "pmc",
365 "mem",
366
367 "pc",
368 "sp",
369
370 "x",
371 "a",
372 "c",
373 "b",
374 "e",
375 "d",
376 "l",
377 "h",
378
379 "ax",
380 "bc",
381 "de",
382 "hl",
383
384 "bank0_r0",
385 "bank0_r1",
386 "bank0_r2",
387 "bank0_r3",
388 "bank0_r4",
389 "bank0_r5",
390 "bank0_r6",
391 "bank0_r7",
392
393 "bank1_r0",
394 "bank1_r1",
395 "bank1_r2",
396 "bank1_r3",
397 "bank1_r4",
398 "bank1_r5",
399 "bank1_r6",
400 "bank1_r7",
401
402 "bank2_r0",
403 "bank2_r1",
404 "bank2_r2",
405 "bank2_r3",
406 "bank2_r4",
407 "bank2_r5",
408 "bank2_r6",
409 "bank2_r7",
410
411 "bank3_r0",
412 "bank3_r1",
413 "bank3_r2",
414 "bank3_r3",
415 "bank3_r4",
416 "bank3_r5",
417 "bank3_r6",
418 "bank3_r7",
419
420 "bank0_rp0",
421 "bank0_rp1",
422 "bank0_rp2",
423 "bank0_rp3",
424
425 "bank1_rp0",
426 "bank1_rp1",
427 "bank1_rp2",
428 "bank1_rp3",
429
430 "bank2_rp0",
431 "bank2_rp1",
432 "bank2_rp2",
433 "bank2_rp3",
434
435 "bank3_rp0",
436 "bank3_rp1",
437 "bank3_rp2",
438 "bank3_rp3",
439
440 /* The 16 register slots would be named
441 bank0_rp0_ptr_regnum ... bank3_rp3_ptr_regnum, but we don't
442 want these to be user visible registers. */
443 "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", ""
444 };
445
446 return reg_names[regnr];
447 }
448
449 /* Implement the "register_name" gdbarch method for the g10 variant. */
450
451 static const char *
452 rl78_g10_register_name (struct gdbarch *gdbarch, int regnr)
453 {
454 static const char *const reg_names[] =
455 {
456 "", /* bank0_r0 */
457 "", /* bank0_r1 */
458 "", /* bank0_r2 */
459 "", /* bank0_r3 */
460 "", /* bank0_r4 */
461 "", /* bank0_r5 */
462 "", /* bank0_r6 */
463 "", /* bank0_r7 */
464
465 "", /* bank1_r0 */
466 "", /* bank1_r1 */
467 "", /* bank1_r2 */
468 "", /* bank1_r3 */
469 "", /* bank1_r4 */
470 "", /* bank1_r5 */
471 "", /* bank1_r6 */
472 "", /* bank1_r7 */
473
474 "", /* bank2_r0 */
475 "", /* bank2_r1 */
476 "", /* bank2_r2 */
477 "", /* bank2_r3 */
478 "", /* bank2_r4 */
479 "", /* bank2_r5 */
480 "", /* bank2_r6 */
481 "", /* bank2_r7 */
482
483 "", /* bank3_r0 */
484 "", /* bank3_r1 */
485 "", /* bank3_r2 */
486 "", /* bank3_r3 */
487 "", /* bank3_r4 */
488 "", /* bank3_r5 */
489 "", /* bank3_r6 */
490 "", /* bank3_r7 */
491
492 "psw",
493 "es",
494 "cs",
495 "",
496
497 "", /* spl */
498 "", /* sph */
499 "pmc",
500 "mem",
501
502 "pc",
503 "sp",
504
505 "x",
506 "a",
507 "c",
508 "b",
509 "e",
510 "d",
511 "l",
512 "h",
513
514 "ax",
515 "bc",
516 "de",
517 "hl",
518
519 "bank0_r0",
520 "bank0_r1",
521 "bank0_r2",
522 "bank0_r3",
523 "bank0_r4",
524 "bank0_r5",
525 "bank0_r6",
526 "bank0_r7",
527
528 "",
529 "",
530 "",
531 "",
532 "",
533 "",
534 "",
535 "",
536
537 "",
538 "",
539 "",
540 "",
541 "",
542 "",
543 "",
544 "",
545
546 "",
547 "",
548 "",
549 "",
550 "",
551 "",
552 "",
553 "",
554
555 "bank0_rp0",
556 "bank0_rp1",
557 "bank0_rp2",
558 "bank0_rp3",
559
560 "",
561 "",
562 "",
563 "",
564
565 "",
566 "",
567 "",
568 "",
569
570 "",
571 "",
572 "",
573 "",
574
575 /* The 16 register slots would be named
576 bank0_rp0_ptr_regnum ... bank3_rp3_ptr_regnum, but we don't
577 want these to be user visible registers. */
578 "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", ""
579 };
580
581 return reg_names[regnr];
582 }
583
584 /* Implement the "register_reggroup_p" gdbarch method. */
585
586 static int
587 rl78_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
588 struct reggroup *group)
589 {
590 if (group == all_reggroup)
591 return 1;
592
593 /* All other registers are saved and restored. */
594 if (group == save_reggroup || group == restore_reggroup)
595 {
596 if ((regnum < RL78_NUM_REGS
597 && regnum != RL78_SPL_REGNUM
598 && regnum != RL78_SPH_REGNUM
599 && regnum != RL78_RAW_PC_REGNUM)
600 || regnum == RL78_SP_REGNUM
601 || regnum == RL78_PC_REGNUM)
602 return 1;
603 else
604 return 0;
605 }
606
607 if ((RL78_BANK0_R0_REGNUM <= regnum && regnum <= RL78_BANK3_R7_REGNUM)
608 || regnum == RL78_ES_REGNUM
609 || regnum == RL78_CS_REGNUM
610 || regnum == RL78_SPL_REGNUM
611 || regnum == RL78_SPH_REGNUM
612 || regnum == RL78_PMC_REGNUM
613 || regnum == RL78_MEM_REGNUM
614 || regnum == RL78_RAW_PC_REGNUM
615 || (RL78_BANK0_RP0_REGNUM <= regnum && regnum <= RL78_BANK3_RP3_REGNUM))
616 return group == system_reggroup;
617
618 return group == general_reggroup;
619 }
620
621 /* Strip bits to form an instruction address. (When fetching a
622 32-bit address from the stack, the high eight bits are garbage.
623 This function strips off those unused bits.) */
624
625 static CORE_ADDR
626 rl78_make_instruction_address (CORE_ADDR addr)
627 {
628 return addr & 0xffffff;
629 }
630
631 /* Set / clear bits necessary to make a data address. */
632
633 static CORE_ADDR
634 rl78_make_data_address (CORE_ADDR addr)
635 {
636 return (addr & 0xffff) | 0xf0000;
637 }
638
639 /* Implement the "pseudo_register_read" gdbarch method. */
640
641 static enum register_status
642 rl78_pseudo_register_read (struct gdbarch *gdbarch,
643 struct regcache *regcache,
644 int reg, gdb_byte *buffer)
645 {
646 enum register_status status;
647
648 if (RL78_BANK0_R0_REGNUM <= reg && reg <= RL78_BANK3_R7_REGNUM)
649 {
650 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM
651 + (reg - RL78_BANK0_R0_REGNUM);
652
653 status = regcache_raw_read (regcache, raw_regnum, buffer);
654 }
655 else if (RL78_BANK0_RP0_REGNUM <= reg && reg <= RL78_BANK3_RP3_REGNUM)
656 {
657 int raw_regnum = 2 * (reg - RL78_BANK0_RP0_REGNUM)
658 + RL78_RAW_BANK0_R0_REGNUM;
659
660 status = regcache_raw_read (regcache, raw_regnum, buffer);
661 if (status == REG_VALID)
662 status = regcache_raw_read (regcache, raw_regnum + 1, buffer + 1);
663 }
664 else if (RL78_BANK0_RP0_PTR_REGNUM <= reg && reg <= RL78_BANK3_RP3_PTR_REGNUM)
665 {
666 int raw_regnum = 2 * (reg - RL78_BANK0_RP0_PTR_REGNUM)
667 + RL78_RAW_BANK0_R0_REGNUM;
668
669 status = regcache_raw_read (regcache, raw_regnum, buffer);
670 if (status == REG_VALID)
671 status = regcache_raw_read (regcache, raw_regnum + 1, buffer + 1);
672 }
673 else if (reg == RL78_SP_REGNUM)
674 {
675 status = regcache_raw_read (regcache, RL78_SPL_REGNUM, buffer);
676 if (status == REG_VALID)
677 status = regcache_raw_read (regcache, RL78_SPH_REGNUM, buffer + 1);
678 }
679 else if (reg == RL78_PC_REGNUM)
680 {
681 gdb_byte rawbuf[4];
682
683 status = regcache_raw_read (regcache, RL78_RAW_PC_REGNUM, rawbuf);
684 memcpy (buffer, rawbuf, 3);
685 }
686 else if (RL78_X_REGNUM <= reg && reg <= RL78_H_REGNUM)
687 {
688 ULONGEST psw;
689
690 status = regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw);
691 if (status == REG_VALID)
692 {
693 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
694 int bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
695 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
696 + (reg - RL78_X_REGNUM);
697 status = regcache_raw_read (regcache, raw_regnum, buffer);
698 }
699 }
700 else if (RL78_AX_REGNUM <= reg && reg <= RL78_HL_REGNUM)
701 {
702 ULONGEST psw;
703
704 status = regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw);
705 if (status == REG_VALID)
706 {
707 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
708 int bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
709 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
710 + 2 * (reg - RL78_AX_REGNUM);
711 status = regcache_raw_read (regcache, raw_regnum, buffer);
712 if (status == REG_VALID)
713 status = regcache_raw_read (regcache, raw_regnum + 1,
714 buffer + 1);
715 }
716 }
717 else
718 gdb_assert_not_reached ("invalid pseudo register number");
719 return status;
720 }
721
722 /* Implement the "pseudo_register_write" gdbarch method. */
723
724 static void
725 rl78_pseudo_register_write (struct gdbarch *gdbarch,
726 struct regcache *regcache,
727 int reg, const gdb_byte *buffer)
728 {
729 if (RL78_BANK0_R0_REGNUM <= reg && reg <= RL78_BANK3_R7_REGNUM)
730 {
731 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM
732 + (reg - RL78_BANK0_R0_REGNUM);
733
734 regcache_raw_write (regcache, raw_regnum, buffer);
735 }
736 else if (RL78_BANK0_RP0_REGNUM <= reg && reg <= RL78_BANK3_RP3_REGNUM)
737 {
738 int raw_regnum = 2 * (reg - RL78_BANK0_RP0_REGNUM)
739 + RL78_RAW_BANK0_R0_REGNUM;
740
741 regcache_raw_write (regcache, raw_regnum, buffer);
742 regcache_raw_write (regcache, raw_regnum + 1, buffer + 1);
743 }
744 else if (RL78_BANK0_RP0_PTR_REGNUM <= reg && reg <= RL78_BANK3_RP3_PTR_REGNUM)
745 {
746 int raw_regnum = 2 * (reg - RL78_BANK0_RP0_PTR_REGNUM)
747 + RL78_RAW_BANK0_R0_REGNUM;
748
749 regcache_raw_write (regcache, raw_regnum, buffer);
750 regcache_raw_write (regcache, raw_regnum + 1, buffer + 1);
751 }
752 else if (reg == RL78_SP_REGNUM)
753 {
754 regcache_raw_write (regcache, RL78_SPL_REGNUM, buffer);
755 regcache_raw_write (regcache, RL78_SPH_REGNUM, buffer + 1);
756 }
757 else if (reg == RL78_PC_REGNUM)
758 {
759 gdb_byte rawbuf[4];
760
761 memcpy (rawbuf, buffer, 3);
762 rawbuf[3] = 0;
763 regcache_raw_write (regcache, RL78_RAW_PC_REGNUM, rawbuf);
764 }
765 else if (RL78_X_REGNUM <= reg && reg <= RL78_H_REGNUM)
766 {
767 ULONGEST psw;
768 int bank;
769 int raw_regnum;
770
771 regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw);
772 bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
773 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
774 raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
775 + (reg - RL78_X_REGNUM);
776 regcache_raw_write (regcache, raw_regnum, buffer);
777 }
778 else if (RL78_AX_REGNUM <= reg && reg <= RL78_HL_REGNUM)
779 {
780 ULONGEST psw;
781 int bank, raw_regnum;
782
783 regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw);
784 bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
785 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
786 raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
787 + 2 * (reg - RL78_AX_REGNUM);
788 regcache_raw_write (regcache, raw_regnum, buffer);
789 regcache_raw_write (regcache, raw_regnum + 1, buffer + 1);
790 }
791 else
792 gdb_assert_not_reached ("invalid pseudo register number");
793 }
794
795 /* The documented BRK instruction is actually a two byte sequence,
796 {0x61, 0xcc}, but instructions may be as short as one byte.
797 Correspondence with Renesas revealed that the one byte sequence
798 0xff is used when a one byte breakpoint instruction is required. */
799 constexpr gdb_byte rl78_break_insn[] = { 0xff };
800
801 typedef BP_MANIPULATION (rl78_break_insn) rl78_breakpoint;
802
803 /* Define a "handle" struct for fetching the next opcode. */
804
805 struct rl78_get_opcode_byte_handle
806 {
807 CORE_ADDR pc;
808 };
809
810 static int
811 opc_reg_to_gdb_regnum (int opcreg)
812 {
813 switch (opcreg)
814 {
815 case RL78_Reg_X:
816 return RL78_X_REGNUM;
817 case RL78_Reg_A:
818 return RL78_A_REGNUM;
819 case RL78_Reg_C:
820 return RL78_C_REGNUM;
821 case RL78_Reg_B:
822 return RL78_B_REGNUM;
823 case RL78_Reg_E:
824 return RL78_E_REGNUM;
825 case RL78_Reg_D:
826 return RL78_D_REGNUM;
827 case RL78_Reg_L:
828 return RL78_L_REGNUM;
829 case RL78_Reg_H:
830 return RL78_H_REGNUM;
831 case RL78_Reg_AX:
832 return RL78_AX_REGNUM;
833 case RL78_Reg_BC:
834 return RL78_BC_REGNUM;
835 case RL78_Reg_DE:
836 return RL78_DE_REGNUM;
837 case RL78_Reg_HL:
838 return RL78_HL_REGNUM;
839 case RL78_Reg_SP:
840 return RL78_SP_REGNUM;
841 case RL78_Reg_PSW:
842 return RL78_PSW_REGNUM;
843 case RL78_Reg_CS:
844 return RL78_CS_REGNUM;
845 case RL78_Reg_ES:
846 return RL78_ES_REGNUM;
847 case RL78_Reg_PMC:
848 return RL78_PMC_REGNUM;
849 case RL78_Reg_MEM:
850 return RL78_MEM_REGNUM;
851 default:
852 internal_error (__FILE__, __LINE__,
853 _("Undefined mapping for opc reg %d"),
854 opcreg);
855 }
856
857 /* Not reached. */
858 return 0;
859 }
860
861 /* Fetch a byte on behalf of the opcode decoder. HANDLE contains
862 the memory address of the next byte to fetch. If successful,
863 the address in the handle is updated and the byte fetched is
864 returned as the value of the function. If not successful, -1
865 is returned. */
866
867 static int
868 rl78_get_opcode_byte (void *handle)
869 {
870 struct rl78_get_opcode_byte_handle *opcdata
871 = (struct rl78_get_opcode_byte_handle *) handle;
872 int status;
873 gdb_byte byte;
874
875 status = target_read_memory (opcdata->pc, &byte, 1);
876 if (status == 0)
877 {
878 opcdata->pc += 1;
879 return byte;
880 }
881 else
882 return -1;
883 }
884
885 /* Function for finding saved registers in a 'struct pv_area'; this
886 function is passed to pv_area::scan.
887
888 If VALUE is a saved register, ADDR says it was saved at a constant
889 offset from the frame base, and SIZE indicates that the whole
890 register was saved, record its offset. */
891
892 static void
893 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size,
894 pv_t value)
895 {
896 struct rl78_prologue *result = (struct rl78_prologue *) result_untyped;
897
898 if (value.kind == pvk_register
899 && value.k == 0
900 && pv_is_register (addr, RL78_SP_REGNUM)
901 && size == register_size (target_gdbarch (), value.reg))
902 result->reg_offset[value.reg] = addr.k;
903 }
904
905 /* Analyze a prologue starting at START_PC, going no further than
906 LIMIT_PC. Fill in RESULT as appropriate. */
907
908 static void
909 rl78_analyze_prologue (CORE_ADDR start_pc,
910 CORE_ADDR limit_pc, struct rl78_prologue *result)
911 {
912 CORE_ADDR pc, next_pc;
913 int rn;
914 pv_t reg[RL78_NUM_TOTAL_REGS];
915 CORE_ADDR after_last_frame_setup_insn = start_pc;
916 int bank = 0;
917
918 memset (result, 0, sizeof (*result));
919
920 for (rn = 0; rn < RL78_NUM_TOTAL_REGS; rn++)
921 {
922 reg[rn] = pv_register (rn, 0);
923 result->reg_offset[rn] = 1;
924 }
925
926 pv_area stack (RL78_SP_REGNUM, gdbarch_addr_bit (target_gdbarch ()));
927
928 /* The call instruction has saved the return address on the stack. */
929 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -4);
930 stack.store (reg[RL78_SP_REGNUM], 4, reg[RL78_PC_REGNUM]);
931
932 pc = start_pc;
933 while (pc < limit_pc)
934 {
935 int bytes_read;
936 struct rl78_get_opcode_byte_handle opcode_handle;
937 RL78_Opcode_Decoded opc;
938
939 opcode_handle.pc = pc;
940 bytes_read = rl78_decode_opcode (pc, &opc, rl78_get_opcode_byte,
941 &opcode_handle, RL78_ISA_DEFAULT);
942 next_pc = pc + bytes_read;
943
944 if (opc.id == RLO_sel)
945 {
946 bank = opc.op[1].addend;
947 }
948 else if (opc.id == RLO_mov
949 && opc.op[0].type == RL78_Operand_PreDec
950 && opc.op[0].reg == RL78_Reg_SP
951 && opc.op[1].type == RL78_Operand_Register)
952 {
953 int rsrc = (bank * RL78_REGS_PER_BANK)
954 + 2 * (opc.op[1].reg - RL78_Reg_AX);
955
956 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -1);
957 stack.store (reg[RL78_SP_REGNUM], 1, reg[rsrc]);
958 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -1);
959 stack.store (reg[RL78_SP_REGNUM], 1, reg[rsrc + 1]);
960 after_last_frame_setup_insn = next_pc;
961 }
962 else if (opc.id == RLO_sub
963 && opc.op[0].type == RL78_Operand_Register
964 && opc.op[0].reg == RL78_Reg_SP
965 && opc.op[1].type == RL78_Operand_Immediate)
966 {
967 int addend = opc.op[1].addend;
968
969 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM],
970 -addend);
971 after_last_frame_setup_insn = next_pc;
972 }
973 else if (opc.id == RLO_mov
974 && opc.size == RL78_Word
975 && opc.op[0].type == RL78_Operand_Register
976 && opc.op[1].type == RL78_Operand_Indirect
977 && opc.op[1].addend == RL78_SP_ADDR)
978 {
979 reg[opc_reg_to_gdb_regnum (opc.op[0].reg)]
980 = reg[RL78_SP_REGNUM];
981 }
982 else if (opc.id == RLO_sub
983 && opc.size == RL78_Word
984 && opc.op[0].type == RL78_Operand_Register
985 && opc.op[1].type == RL78_Operand_Immediate)
986 {
987 int addend = opc.op[1].addend;
988 int regnum = opc_reg_to_gdb_regnum (opc.op[0].reg);
989
990 reg[regnum] = pv_add_constant (reg[regnum], -addend);
991 }
992 else if (opc.id == RLO_mov
993 && opc.size == RL78_Word
994 && opc.op[0].type == RL78_Operand_Indirect
995 && opc.op[0].addend == RL78_SP_ADDR
996 && opc.op[1].type == RL78_Operand_Register)
997 {
998 reg[RL78_SP_REGNUM]
999 = reg[opc_reg_to_gdb_regnum (opc.op[1].reg)];
1000 after_last_frame_setup_insn = next_pc;
1001 }
1002 else
1003 {
1004 /* Terminate the prologue scan. */
1005 break;
1006 }
1007
1008 pc = next_pc;
1009 }
1010
1011 /* Is the frame size (offset, really) a known constant? */
1012 if (pv_is_register (reg[RL78_SP_REGNUM], RL78_SP_REGNUM))
1013 result->frame_size = reg[RL78_SP_REGNUM].k;
1014
1015 /* Record where all the registers were saved. */
1016 stack.scan (check_for_saved, (void *) result);
1017
1018 result->prologue_end = after_last_frame_setup_insn;
1019 }
1020
1021 /* Implement the "addr_bits_remove" gdbarch method. */
1022
1023 static CORE_ADDR
1024 rl78_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
1025 {
1026 return addr & 0xffffff;
1027 }
1028
1029 /* Implement the "address_to_pointer" gdbarch method. */
1030
1031 static void
1032 rl78_address_to_pointer (struct gdbarch *gdbarch,
1033 struct type *type, gdb_byte *buf, CORE_ADDR addr)
1034 {
1035 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1036
1037 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
1038 addr & 0xffffff);
1039 }
1040
1041 /* Implement the "pointer_to_address" gdbarch method. */
1042
1043 static CORE_ADDR
1044 rl78_pointer_to_address (struct gdbarch *gdbarch,
1045 struct type *type, const gdb_byte *buf)
1046 {
1047 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1048 CORE_ADDR addr
1049 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
1050
1051 /* Is it a code address? */
1052 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
1053 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
1054 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type))
1055 || TYPE_LENGTH (type) == 4)
1056 return rl78_make_instruction_address (addr);
1057 else
1058 return rl78_make_data_address (addr);
1059 }
1060
1061 /* Implement the "skip_prologue" gdbarch method. */
1062
1063 static CORE_ADDR
1064 rl78_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1065 {
1066 const char *name;
1067 CORE_ADDR func_addr, func_end;
1068 struct rl78_prologue p;
1069
1070 /* Try to find the extent of the function that contains PC. */
1071 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
1072 return pc;
1073
1074 rl78_analyze_prologue (pc, func_end, &p);
1075 return p.prologue_end;
1076 }
1077
1078 /* Implement the "unwind_pc" gdbarch method. */
1079
1080 static CORE_ADDR
1081 rl78_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
1082 {
1083 return rl78_addr_bits_remove
1084 (arch, frame_unwind_register_unsigned (next_frame,
1085 RL78_PC_REGNUM));
1086 }
1087
1088 /* Implement the "unwind_sp" gdbarch method. */
1089
1090 static CORE_ADDR
1091 rl78_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
1092 {
1093 return frame_unwind_register_unsigned (next_frame, RL78_SP_REGNUM);
1094 }
1095
1096 /* Given a frame described by THIS_FRAME, decode the prologue of its
1097 associated function if there is not cache entry as specified by
1098 THIS_PROLOGUE_CACHE. Save the decoded prologue in the cache and
1099 return that struct as the value of this function. */
1100
1101 static struct rl78_prologue *
1102 rl78_analyze_frame_prologue (struct frame_info *this_frame,
1103 void **this_prologue_cache)
1104 {
1105 if (!*this_prologue_cache)
1106 {
1107 CORE_ADDR func_start, stop_addr;
1108
1109 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct rl78_prologue);
1110
1111 func_start = get_frame_func (this_frame);
1112 stop_addr = get_frame_pc (this_frame);
1113
1114 /* If we couldn't find any function containing the PC, then
1115 just initialize the prologue cache, but don't do anything. */
1116 if (!func_start)
1117 stop_addr = func_start;
1118
1119 rl78_analyze_prologue (func_start, stop_addr,
1120 (struct rl78_prologue *) *this_prologue_cache);
1121 }
1122
1123 return (struct rl78_prologue *) *this_prologue_cache;
1124 }
1125
1126 /* Given a frame and a prologue cache, return this frame's base. */
1127
1128 static CORE_ADDR
1129 rl78_frame_base (struct frame_info *this_frame, void **this_prologue_cache)
1130 {
1131 struct rl78_prologue *p
1132 = rl78_analyze_frame_prologue (this_frame, this_prologue_cache);
1133 CORE_ADDR sp = get_frame_register_unsigned (this_frame, RL78_SP_REGNUM);
1134
1135 return rl78_make_data_address (sp - p->frame_size);
1136 }
1137
1138 /* Implement the "frame_this_id" method for unwinding frames. */
1139
1140 static void
1141 rl78_this_id (struct frame_info *this_frame,
1142 void **this_prologue_cache, struct frame_id *this_id)
1143 {
1144 *this_id = frame_id_build (rl78_frame_base (this_frame,
1145 this_prologue_cache),
1146 get_frame_func (this_frame));
1147 }
1148
1149 /* Implement the "frame_prev_register" method for unwinding frames. */
1150
1151 static struct value *
1152 rl78_prev_register (struct frame_info *this_frame,
1153 void **this_prologue_cache, int regnum)
1154 {
1155 struct rl78_prologue *p
1156 = rl78_analyze_frame_prologue (this_frame, this_prologue_cache);
1157 CORE_ADDR frame_base = rl78_frame_base (this_frame, this_prologue_cache);
1158
1159 if (regnum == RL78_SP_REGNUM)
1160 return frame_unwind_got_constant (this_frame, regnum, frame_base);
1161
1162 else if (regnum == RL78_SPL_REGNUM)
1163 return frame_unwind_got_constant (this_frame, regnum,
1164 (frame_base & 0xff));
1165
1166 else if (regnum == RL78_SPH_REGNUM)
1167 return frame_unwind_got_constant (this_frame, regnum,
1168 ((frame_base >> 8) & 0xff));
1169
1170 /* If prologue analysis says we saved this register somewhere,
1171 return a description of the stack slot holding it. */
1172 else if (p->reg_offset[regnum] != 1)
1173 {
1174 struct value *rv =
1175 frame_unwind_got_memory (this_frame, regnum,
1176 frame_base + p->reg_offset[regnum]);
1177
1178 if (regnum == RL78_PC_REGNUM)
1179 {
1180 ULONGEST pc = rl78_make_instruction_address (value_as_long (rv));
1181
1182 return frame_unwind_got_constant (this_frame, regnum, pc);
1183 }
1184 return rv;
1185 }
1186
1187 /* Otherwise, presume we haven't changed the value of this
1188 register, and get it from the next frame. */
1189 else
1190 return frame_unwind_got_register (this_frame, regnum, regnum);
1191 }
1192
1193 static const struct frame_unwind rl78_unwind =
1194 {
1195 NORMAL_FRAME,
1196 default_frame_unwind_stop_reason,
1197 rl78_this_id,
1198 rl78_prev_register,
1199 NULL,
1200 default_frame_sniffer
1201 };
1202
1203 /* Implement the "dwarf_reg_to_regnum" gdbarch method. */
1204
1205 static int
1206 rl78_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1207 {
1208 if (0 <= reg && reg <= 31)
1209 {
1210 if ((reg & 1) == 0)
1211 /* Map even registers to their 16-bit counterparts which have a
1212 pointer type. This is usually what is required from the DWARF
1213 info. */
1214 return (reg >> 1) + RL78_BANK0_RP0_PTR_REGNUM;
1215 else
1216 return reg;
1217 }
1218 else if (reg == 32)
1219 return RL78_SP_REGNUM;
1220 else if (reg == 33)
1221 return -1; /* ap */
1222 else if (reg == 34)
1223 return RL78_PSW_REGNUM;
1224 else if (reg == 35)
1225 return RL78_ES_REGNUM;
1226 else if (reg == 36)
1227 return RL78_CS_REGNUM;
1228 else if (reg == 37)
1229 return RL78_PC_REGNUM;
1230 else
1231 return -1;
1232 }
1233
1234 /* Implement the `register_sim_regno' gdbarch method. */
1235
1236 static int
1237 rl78_register_sim_regno (struct gdbarch *gdbarch, int regnum)
1238 {
1239 gdb_assert (regnum < RL78_NUM_REGS);
1240
1241 /* So long as regnum is in [0, RL78_NUM_REGS), it's valid. We
1242 just want to override the default here which disallows register
1243 numbers which have no names. */
1244 return regnum;
1245 }
1246
1247 /* Implement the "return_value" gdbarch method. */
1248
1249 static enum return_value_convention
1250 rl78_return_value (struct gdbarch *gdbarch,
1251 struct value *function,
1252 struct type *valtype,
1253 struct regcache *regcache,
1254 gdb_byte *readbuf, const gdb_byte *writebuf)
1255 {
1256 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1257 ULONGEST valtype_len = TYPE_LENGTH (valtype);
1258 int is_g10 = gdbarch_tdep (gdbarch)->elf_flags & E_FLAG_RL78_G10;
1259
1260 if (valtype_len > 8)
1261 return RETURN_VALUE_STRUCT_CONVENTION;
1262
1263 if (readbuf)
1264 {
1265 ULONGEST u;
1266 int argreg = RL78_RAW_BANK1_R0_REGNUM;
1267 CORE_ADDR g10_raddr = 0xffec8;
1268 int offset = 0;
1269
1270 while (valtype_len > 0)
1271 {
1272 if (is_g10)
1273 u = read_memory_integer (g10_raddr, 1,
1274 gdbarch_byte_order (gdbarch));
1275 else
1276 regcache_cooked_read_unsigned (regcache, argreg, &u);
1277 store_unsigned_integer (readbuf + offset, 1, byte_order, u);
1278 valtype_len -= 1;
1279 offset += 1;
1280 argreg++;
1281 g10_raddr++;
1282 }
1283 }
1284
1285 if (writebuf)
1286 {
1287 ULONGEST u;
1288 int argreg = RL78_RAW_BANK1_R0_REGNUM;
1289 CORE_ADDR g10_raddr = 0xffec8;
1290 int offset = 0;
1291
1292 while (valtype_len > 0)
1293 {
1294 u = extract_unsigned_integer (writebuf + offset, 1, byte_order);
1295 if (is_g10) {
1296 gdb_byte b = u & 0xff;
1297 write_memory (g10_raddr, &b, 1);
1298 }
1299 else
1300 regcache_cooked_write_unsigned (regcache, argreg, u);
1301 valtype_len -= 1;
1302 offset += 1;
1303 argreg++;
1304 g10_raddr++;
1305 }
1306 }
1307
1308 return RETURN_VALUE_REGISTER_CONVENTION;
1309 }
1310
1311
1312 /* Implement the "frame_align" gdbarch method. */
1313
1314 static CORE_ADDR
1315 rl78_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1316 {
1317 return rl78_make_data_address (align_down (sp, 2));
1318 }
1319
1320
1321 /* Implement the "dummy_id" gdbarch method. */
1322
1323 static struct frame_id
1324 rl78_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1325 {
1326 return
1327 frame_id_build (rl78_make_data_address
1328 (get_frame_register_unsigned
1329 (this_frame, RL78_SP_REGNUM)),
1330 get_frame_pc (this_frame));
1331 }
1332
1333
1334 /* Implement the "push_dummy_call" gdbarch method. */
1335
1336 static CORE_ADDR
1337 rl78_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1338 struct regcache *regcache, CORE_ADDR bp_addr,
1339 int nargs, struct value **args, CORE_ADDR sp,
1340 int struct_return, CORE_ADDR struct_addr)
1341 {
1342 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1343 gdb_byte buf[4];
1344 int i;
1345
1346 /* Push arguments in reverse order. */
1347 for (i = nargs - 1; i >= 0; i--)
1348 {
1349 struct type *value_type = value_enclosing_type (args[i]);
1350 int len = TYPE_LENGTH (value_type);
1351 int container_len = (len + 1) & ~1;
1352
1353 sp -= container_len;
1354 write_memory (rl78_make_data_address (sp),
1355 value_contents_all (args[i]), len);
1356 }
1357
1358 /* Store struct value address. */
1359 if (struct_return)
1360 {
1361 store_unsigned_integer (buf, 2, byte_order, struct_addr);
1362 sp -= 2;
1363 write_memory (rl78_make_data_address (sp), buf, 2);
1364 }
1365
1366 /* Store return address. */
1367 sp -= 4;
1368 store_unsigned_integer (buf, 4, byte_order, bp_addr);
1369 write_memory (rl78_make_data_address (sp), buf, 4);
1370
1371 /* Finally, update the stack pointer... */
1372 regcache_cooked_write_unsigned (regcache, RL78_SP_REGNUM, sp);
1373
1374 /* DWARF2/GCC uses the stack address *before* the function call as a
1375 frame's CFA. */
1376 return rl78_make_data_address (sp + 4);
1377 }
1378
1379 /* Allocate and initialize a gdbarch object. */
1380
1381 static struct gdbarch *
1382 rl78_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1383 {
1384 struct gdbarch *gdbarch;
1385 struct gdbarch_tdep *tdep;
1386 int elf_flags;
1387
1388 /* Extract the elf_flags if available. */
1389 if (info.abfd != NULL
1390 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1391 elf_flags = elf_elfheader (info.abfd)->e_flags;
1392 else
1393 elf_flags = 0;
1394
1395
1396 /* Try to find the architecture in the list of already defined
1397 architectures. */
1398 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1399 arches != NULL;
1400 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1401 {
1402 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1403 continue;
1404
1405 return arches->gdbarch;
1406 }
1407
1408 /* None found, create a new architecture from the information
1409 provided. */
1410 tdep = XCNEW (struct gdbarch_tdep);
1411 gdbarch = gdbarch_alloc (&info, tdep);
1412 tdep->elf_flags = elf_flags;
1413
1414 /* Initialize types. */
1415 tdep->rl78_void = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
1416 "void");
1417 tdep->rl78_uint8 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
1418 tdep->rl78_int8 = arch_integer_type (gdbarch, 8, 0, "int8_t");
1419 tdep->rl78_uint16 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
1420 tdep->rl78_int16 = arch_integer_type (gdbarch, 16, 0, "int16_t");
1421 tdep->rl78_uint32 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
1422 tdep->rl78_int32 = arch_integer_type (gdbarch, 32, 0, "int32_t");
1423
1424 tdep->rl78_data_pointer
1425 = arch_pointer_type (gdbarch, 16, "rl78_data_addr_t", tdep->rl78_void);
1426 tdep->rl78_code_pointer
1427 = arch_pointer_type (gdbarch, 32, "rl78_code_addr_t", tdep->rl78_void);
1428
1429 /* Registers. */
1430 set_gdbarch_num_regs (gdbarch, RL78_NUM_REGS);
1431 set_gdbarch_num_pseudo_regs (gdbarch, RL78_NUM_PSEUDO_REGS);
1432 if (tdep->elf_flags & E_FLAG_RL78_G10)
1433 set_gdbarch_register_name (gdbarch, rl78_g10_register_name);
1434 else
1435 set_gdbarch_register_name (gdbarch, rl78_register_name);
1436 set_gdbarch_register_type (gdbarch, rl78_register_type);
1437 set_gdbarch_pc_regnum (gdbarch, RL78_PC_REGNUM);
1438 set_gdbarch_sp_regnum (gdbarch, RL78_SP_REGNUM);
1439 set_gdbarch_pseudo_register_read (gdbarch, rl78_pseudo_register_read);
1440 set_gdbarch_pseudo_register_write (gdbarch, rl78_pseudo_register_write);
1441 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rl78_dwarf_reg_to_regnum);
1442 set_gdbarch_register_reggroup_p (gdbarch, rl78_register_reggroup_p);
1443 set_gdbarch_register_sim_regno (gdbarch, rl78_register_sim_regno);
1444
1445 /* Data types. */
1446 set_gdbarch_char_signed (gdbarch, 0);
1447 set_gdbarch_short_bit (gdbarch, 16);
1448 set_gdbarch_int_bit (gdbarch, 16);
1449 set_gdbarch_long_bit (gdbarch, 32);
1450 set_gdbarch_long_long_bit (gdbarch, 64);
1451 set_gdbarch_ptr_bit (gdbarch, 16);
1452 set_gdbarch_addr_bit (gdbarch, 32);
1453 set_gdbarch_dwarf2_addr_size (gdbarch, 4);
1454 set_gdbarch_float_bit (gdbarch, 32);
1455 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1456 set_gdbarch_double_bit (gdbarch, 32);
1457 set_gdbarch_long_double_bit (gdbarch, 64);
1458 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1459 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
1460 set_gdbarch_pointer_to_address (gdbarch, rl78_pointer_to_address);
1461 set_gdbarch_address_to_pointer (gdbarch, rl78_address_to_pointer);
1462 set_gdbarch_addr_bits_remove (gdbarch, rl78_addr_bits_remove);
1463
1464 /* Breakpoints. */
1465 set_gdbarch_breakpoint_kind_from_pc (gdbarch, rl78_breakpoint::kind_from_pc);
1466 set_gdbarch_sw_breakpoint_from_kind (gdbarch, rl78_breakpoint::bp_from_kind);
1467 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1468
1469 /* Frames, prologues, etc. */
1470 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1471 set_gdbarch_skip_prologue (gdbarch, rl78_skip_prologue);
1472 set_gdbarch_unwind_pc (gdbarch, rl78_unwind_pc);
1473 set_gdbarch_unwind_sp (gdbarch, rl78_unwind_sp);
1474 set_gdbarch_frame_align (gdbarch, rl78_frame_align);
1475
1476 dwarf2_append_unwinders (gdbarch);
1477 frame_unwind_append_unwinder (gdbarch, &rl78_unwind);
1478
1479 /* Dummy frames, return values. */
1480 set_gdbarch_dummy_id (gdbarch, rl78_dummy_id);
1481 set_gdbarch_push_dummy_call (gdbarch, rl78_push_dummy_call);
1482 set_gdbarch_return_value (gdbarch, rl78_return_value);
1483
1484 /* Virtual tables. */
1485 set_gdbarch_vbit_in_delta (gdbarch, 1);
1486
1487 return gdbarch;
1488 }
1489
1490 /* Register the above initialization routine. */
1491
1492 void
1493 _initialize_rl78_tdep (void)
1494 {
1495 register_gdbarch_init (bfd_arch_rl78, rl78_gdbarch_init);
1496 }
This page took 0.061075 seconds and 4 git commands to generate.