MSP430 Assembler: Leave placement of .lower and .upper sections to generic linker...
[deliverable/binutils-gdb.git] / gdb / rl78-tdep.c
1 /* Target-dependent code for the Renesas RL78 for GDB, the GNU debugger.
2
3 Copyright (C) 2011-2019 Free Software Foundation, Inc.
4
5 Contributed by Red Hat, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "prologue-value.h"
25 #include "target.h"
26 #include "regcache.h"
27 #include "opcode/rl78.h"
28 #include "dis-asm.h"
29 #include "gdbtypes.h"
30 #include "frame.h"
31 #include "frame-unwind.h"
32 #include "frame-base.h"
33 #include "value.h"
34 #include "gdbcore.h"
35 #include "dwarf2-frame.h"
36 #include "reggroups.h"
37
38 #include "elf/rl78.h"
39 #include "elf-bfd.h"
40
41 /* Register Banks. */
42
43 enum
44 {
45 RL78_BANK0 = 0,
46 RL78_BANK1 = 1,
47 RL78_BANK2 = 2,
48 RL78_BANK3 = 3,
49 RL78_NUMBANKS = 4,
50 RL78_REGS_PER_BANK = 8
51 };
52
53 /* Register Numbers. */
54
55 enum
56 {
57 /* All general purpose registers are 8 bits wide. */
58 RL78_RAW_BANK0_R0_REGNUM = 0,
59 RL78_RAW_BANK0_R1_REGNUM,
60 RL78_RAW_BANK0_R2_REGNUM,
61 RL78_RAW_BANK0_R3_REGNUM,
62 RL78_RAW_BANK0_R4_REGNUM,
63 RL78_RAW_BANK0_R5_REGNUM,
64 RL78_RAW_BANK0_R6_REGNUM,
65 RL78_RAW_BANK0_R7_REGNUM,
66
67 RL78_RAW_BANK1_R0_REGNUM,
68 RL78_RAW_BANK1_R1_REGNUM,
69 RL78_RAW_BANK1_R2_REGNUM,
70 RL78_RAW_BANK1_R3_REGNUM,
71 RL78_RAW_BANK1_R4_REGNUM,
72 RL78_RAW_BANK1_R5_REGNUM,
73 RL78_RAW_BANK1_R6_REGNUM,
74 RL78_RAW_BANK1_R7_REGNUM,
75
76 RL78_RAW_BANK2_R0_REGNUM,
77 RL78_RAW_BANK2_R1_REGNUM,
78 RL78_RAW_BANK2_R2_REGNUM,
79 RL78_RAW_BANK2_R3_REGNUM,
80 RL78_RAW_BANK2_R4_REGNUM,
81 RL78_RAW_BANK2_R5_REGNUM,
82 RL78_RAW_BANK2_R6_REGNUM,
83 RL78_RAW_BANK2_R7_REGNUM,
84
85 RL78_RAW_BANK3_R0_REGNUM,
86 RL78_RAW_BANK3_R1_REGNUM,
87 RL78_RAW_BANK3_R2_REGNUM,
88 RL78_RAW_BANK3_R3_REGNUM,
89 RL78_RAW_BANK3_R4_REGNUM,
90 RL78_RAW_BANK3_R5_REGNUM,
91 RL78_RAW_BANK3_R6_REGNUM,
92 RL78_RAW_BANK3_R7_REGNUM,
93
94 RL78_PSW_REGNUM, /* 8 bits */
95 RL78_ES_REGNUM, /* 8 bits */
96 RL78_CS_REGNUM, /* 8 bits */
97 RL78_RAW_PC_REGNUM, /* 20 bits; we'll use 32 bits for it. */
98
99 /* Fixed address SFRs (some of those above are SFRs too.) */
100 RL78_SPL_REGNUM, /* 8 bits; lower half of SP */
101 RL78_SPH_REGNUM, /* 8 bits; upper half of SP */
102 RL78_PMC_REGNUM, /* 8 bits */
103 RL78_MEM_REGNUM, /* 8 bits ?? */
104
105 RL78_NUM_REGS,
106
107 /* Pseudo registers. */
108 RL78_PC_REGNUM = RL78_NUM_REGS,
109 RL78_SP_REGNUM,
110
111 RL78_X_REGNUM,
112 RL78_A_REGNUM,
113 RL78_C_REGNUM,
114 RL78_B_REGNUM,
115 RL78_E_REGNUM,
116 RL78_D_REGNUM,
117 RL78_L_REGNUM,
118 RL78_H_REGNUM,
119
120 RL78_AX_REGNUM,
121 RL78_BC_REGNUM,
122 RL78_DE_REGNUM,
123 RL78_HL_REGNUM,
124
125 RL78_BANK0_R0_REGNUM,
126 RL78_BANK0_R1_REGNUM,
127 RL78_BANK0_R2_REGNUM,
128 RL78_BANK0_R3_REGNUM,
129 RL78_BANK0_R4_REGNUM,
130 RL78_BANK0_R5_REGNUM,
131 RL78_BANK0_R6_REGNUM,
132 RL78_BANK0_R7_REGNUM,
133
134 RL78_BANK1_R0_REGNUM,
135 RL78_BANK1_R1_REGNUM,
136 RL78_BANK1_R2_REGNUM,
137 RL78_BANK1_R3_REGNUM,
138 RL78_BANK1_R4_REGNUM,
139 RL78_BANK1_R5_REGNUM,
140 RL78_BANK1_R6_REGNUM,
141 RL78_BANK1_R7_REGNUM,
142
143 RL78_BANK2_R0_REGNUM,
144 RL78_BANK2_R1_REGNUM,
145 RL78_BANK2_R2_REGNUM,
146 RL78_BANK2_R3_REGNUM,
147 RL78_BANK2_R4_REGNUM,
148 RL78_BANK2_R5_REGNUM,
149 RL78_BANK2_R6_REGNUM,
150 RL78_BANK2_R7_REGNUM,
151
152 RL78_BANK3_R0_REGNUM,
153 RL78_BANK3_R1_REGNUM,
154 RL78_BANK3_R2_REGNUM,
155 RL78_BANK3_R3_REGNUM,
156 RL78_BANK3_R4_REGNUM,
157 RL78_BANK3_R5_REGNUM,
158 RL78_BANK3_R6_REGNUM,
159 RL78_BANK3_R7_REGNUM,
160
161 RL78_BANK0_RP0_REGNUM,
162 RL78_BANK0_RP1_REGNUM,
163 RL78_BANK0_RP2_REGNUM,
164 RL78_BANK0_RP3_REGNUM,
165
166 RL78_BANK1_RP0_REGNUM,
167 RL78_BANK1_RP1_REGNUM,
168 RL78_BANK1_RP2_REGNUM,
169 RL78_BANK1_RP3_REGNUM,
170
171 RL78_BANK2_RP0_REGNUM,
172 RL78_BANK2_RP1_REGNUM,
173 RL78_BANK2_RP2_REGNUM,
174 RL78_BANK2_RP3_REGNUM,
175
176 RL78_BANK3_RP0_REGNUM,
177 RL78_BANK3_RP1_REGNUM,
178 RL78_BANK3_RP2_REGNUM,
179 RL78_BANK3_RP3_REGNUM,
180
181 /* These are the same as the above 16 registers, but have
182 a pointer type for use as base registers in expression
183 evaluation. These are not user visible registers. */
184 RL78_BANK0_RP0_PTR_REGNUM,
185 RL78_BANK0_RP1_PTR_REGNUM,
186 RL78_BANK0_RP2_PTR_REGNUM,
187 RL78_BANK0_RP3_PTR_REGNUM,
188
189 RL78_BANK1_RP0_PTR_REGNUM,
190 RL78_BANK1_RP1_PTR_REGNUM,
191 RL78_BANK1_RP2_PTR_REGNUM,
192 RL78_BANK1_RP3_PTR_REGNUM,
193
194 RL78_BANK2_RP0_PTR_REGNUM,
195 RL78_BANK2_RP1_PTR_REGNUM,
196 RL78_BANK2_RP2_PTR_REGNUM,
197 RL78_BANK2_RP3_PTR_REGNUM,
198
199 RL78_BANK3_RP0_PTR_REGNUM,
200 RL78_BANK3_RP1_PTR_REGNUM,
201 RL78_BANK3_RP2_PTR_REGNUM,
202 RL78_BANK3_RP3_PTR_REGNUM,
203
204 RL78_NUM_TOTAL_REGS,
205 RL78_NUM_PSEUDO_REGS = RL78_NUM_TOTAL_REGS - RL78_NUM_REGS
206 };
207
208 #define RL78_SP_ADDR 0xffff8
209
210 /* Architecture specific data. */
211
212 struct gdbarch_tdep
213 {
214 /* The ELF header flags specify the multilib used. */
215 int elf_flags;
216
217 struct type *rl78_void,
218 *rl78_uint8,
219 *rl78_int8,
220 *rl78_uint16,
221 *rl78_int16,
222 *rl78_uint32,
223 *rl78_int32,
224 *rl78_data_pointer,
225 *rl78_code_pointer,
226 *rl78_psw_type;
227 };
228
229 /* This structure holds the results of a prologue analysis. */
230
231 struct rl78_prologue
232 {
233 /* The offset from the frame base to the stack pointer --- always
234 zero or negative.
235
236 Calling this a "size" is a bit misleading, but given that the
237 stack grows downwards, using offsets for everything keeps one
238 from going completely sign-crazy: you never change anything's
239 sign for an ADD instruction; always change the second operand's
240 sign for a SUB instruction; and everything takes care of
241 itself. */
242 int frame_size;
243
244 /* Non-zero if this function has initialized the frame pointer from
245 the stack pointer, zero otherwise. */
246 int has_frame_ptr;
247
248 /* If has_frame_ptr is non-zero, this is the offset from the frame
249 base to where the frame pointer points. This is always zero or
250 negative. */
251 int frame_ptr_offset;
252
253 /* The address of the first instruction at which the frame has been
254 set up and the arguments are where the debug info says they are
255 --- as best as we can tell. */
256 CORE_ADDR prologue_end;
257
258 /* reg_offset[R] is the offset from the CFA at which register R is
259 saved, or 1 if register R has not been saved. (Real values are
260 always zero or negative.) */
261 int reg_offset[RL78_NUM_TOTAL_REGS];
262 };
263
264 /* Construct type for PSW register. */
265
266 static struct type *
267 rl78_psw_type (struct gdbarch *gdbarch)
268 {
269 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
270
271 if (tdep->rl78_psw_type == NULL)
272 {
273 tdep->rl78_psw_type = arch_flags_type (gdbarch,
274 "builtin_type_rl78_psw", 8);
275 append_flags_type_flag (tdep->rl78_psw_type, 0, "CY");
276 append_flags_type_flag (tdep->rl78_psw_type, 1, "ISP0");
277 append_flags_type_flag (tdep->rl78_psw_type, 2, "ISP1");
278 append_flags_type_flag (tdep->rl78_psw_type, 3, "RBS0");
279 append_flags_type_flag (tdep->rl78_psw_type, 4, "AC");
280 append_flags_type_flag (tdep->rl78_psw_type, 5, "RBS1");
281 append_flags_type_flag (tdep->rl78_psw_type, 6, "Z");
282 append_flags_type_flag (tdep->rl78_psw_type, 7, "IE");
283 }
284
285 return tdep->rl78_psw_type;
286 }
287
288 /* Implement the "register_type" gdbarch method. */
289
290 static struct type *
291 rl78_register_type (struct gdbarch *gdbarch, int reg_nr)
292 {
293 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
294
295 if (reg_nr == RL78_PC_REGNUM)
296 return tdep->rl78_code_pointer;
297 else if (reg_nr == RL78_RAW_PC_REGNUM)
298 return tdep->rl78_uint32;
299 else if (reg_nr == RL78_PSW_REGNUM)
300 return rl78_psw_type (gdbarch);
301 else if (reg_nr <= RL78_MEM_REGNUM
302 || (RL78_X_REGNUM <= reg_nr && reg_nr <= RL78_H_REGNUM)
303 || (RL78_BANK0_R0_REGNUM <= reg_nr
304 && reg_nr <= RL78_BANK3_R7_REGNUM))
305 return tdep->rl78_int8;
306 else if (reg_nr == RL78_SP_REGNUM
307 || (RL78_BANK0_RP0_PTR_REGNUM <= reg_nr
308 && reg_nr <= RL78_BANK3_RP3_PTR_REGNUM))
309 return tdep->rl78_data_pointer;
310 else
311 return tdep->rl78_int16;
312 }
313
314 /* Implement the "register_name" gdbarch method. */
315
316 static const char *
317 rl78_register_name (struct gdbarch *gdbarch, int regnr)
318 {
319 static const char *const reg_names[] =
320 {
321 "", /* bank0_r0 */
322 "", /* bank0_r1 */
323 "", /* bank0_r2 */
324 "", /* bank0_r3 */
325 "", /* bank0_r4 */
326 "", /* bank0_r5 */
327 "", /* bank0_r6 */
328 "", /* bank0_r7 */
329
330 "", /* bank1_r0 */
331 "", /* bank1_r1 */
332 "", /* bank1_r2 */
333 "", /* bank1_r3 */
334 "", /* bank1_r4 */
335 "", /* bank1_r5 */
336 "", /* bank1_r6 */
337 "", /* bank1_r7 */
338
339 "", /* bank2_r0 */
340 "", /* bank2_r1 */
341 "", /* bank2_r2 */
342 "", /* bank2_r3 */
343 "", /* bank2_r4 */
344 "", /* bank2_r5 */
345 "", /* bank2_r6 */
346 "", /* bank2_r7 */
347
348 "", /* bank3_r0 */
349 "", /* bank3_r1 */
350 "", /* bank3_r2 */
351 "", /* bank3_r3 */
352 "", /* bank3_r4 */
353 "", /* bank3_r5 */
354 "", /* bank3_r6 */
355 "", /* bank3_r7 */
356
357 "psw",
358 "es",
359 "cs",
360 "",
361
362 "", /* spl */
363 "", /* sph */
364 "pmc",
365 "mem",
366
367 "pc",
368 "sp",
369
370 "x",
371 "a",
372 "c",
373 "b",
374 "e",
375 "d",
376 "l",
377 "h",
378
379 "ax",
380 "bc",
381 "de",
382 "hl",
383
384 "bank0_r0",
385 "bank0_r1",
386 "bank0_r2",
387 "bank0_r3",
388 "bank0_r4",
389 "bank0_r5",
390 "bank0_r6",
391 "bank0_r7",
392
393 "bank1_r0",
394 "bank1_r1",
395 "bank1_r2",
396 "bank1_r3",
397 "bank1_r4",
398 "bank1_r5",
399 "bank1_r6",
400 "bank1_r7",
401
402 "bank2_r0",
403 "bank2_r1",
404 "bank2_r2",
405 "bank2_r3",
406 "bank2_r4",
407 "bank2_r5",
408 "bank2_r6",
409 "bank2_r7",
410
411 "bank3_r0",
412 "bank3_r1",
413 "bank3_r2",
414 "bank3_r3",
415 "bank3_r4",
416 "bank3_r5",
417 "bank3_r6",
418 "bank3_r7",
419
420 "bank0_rp0",
421 "bank0_rp1",
422 "bank0_rp2",
423 "bank0_rp3",
424
425 "bank1_rp0",
426 "bank1_rp1",
427 "bank1_rp2",
428 "bank1_rp3",
429
430 "bank2_rp0",
431 "bank2_rp1",
432 "bank2_rp2",
433 "bank2_rp3",
434
435 "bank3_rp0",
436 "bank3_rp1",
437 "bank3_rp2",
438 "bank3_rp3",
439
440 /* The 16 register slots would be named
441 bank0_rp0_ptr_regnum ... bank3_rp3_ptr_regnum, but we don't
442 want these to be user visible registers. */
443 "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", ""
444 };
445
446 return reg_names[regnr];
447 }
448
449 /* Implement the "register_name" gdbarch method for the g10 variant. */
450
451 static const char *
452 rl78_g10_register_name (struct gdbarch *gdbarch, int regnr)
453 {
454 static const char *const reg_names[] =
455 {
456 "", /* bank0_r0 */
457 "", /* bank0_r1 */
458 "", /* bank0_r2 */
459 "", /* bank0_r3 */
460 "", /* bank0_r4 */
461 "", /* bank0_r5 */
462 "", /* bank0_r6 */
463 "", /* bank0_r7 */
464
465 "", /* bank1_r0 */
466 "", /* bank1_r1 */
467 "", /* bank1_r2 */
468 "", /* bank1_r3 */
469 "", /* bank1_r4 */
470 "", /* bank1_r5 */
471 "", /* bank1_r6 */
472 "", /* bank1_r7 */
473
474 "", /* bank2_r0 */
475 "", /* bank2_r1 */
476 "", /* bank2_r2 */
477 "", /* bank2_r3 */
478 "", /* bank2_r4 */
479 "", /* bank2_r5 */
480 "", /* bank2_r6 */
481 "", /* bank2_r7 */
482
483 "", /* bank3_r0 */
484 "", /* bank3_r1 */
485 "", /* bank3_r2 */
486 "", /* bank3_r3 */
487 "", /* bank3_r4 */
488 "", /* bank3_r5 */
489 "", /* bank3_r6 */
490 "", /* bank3_r7 */
491
492 "psw",
493 "es",
494 "cs",
495 "",
496
497 "", /* spl */
498 "", /* sph */
499 "pmc",
500 "mem",
501
502 "pc",
503 "sp",
504
505 "x",
506 "a",
507 "c",
508 "b",
509 "e",
510 "d",
511 "l",
512 "h",
513
514 "ax",
515 "bc",
516 "de",
517 "hl",
518
519 "bank0_r0",
520 "bank0_r1",
521 "bank0_r2",
522 "bank0_r3",
523 "bank0_r4",
524 "bank0_r5",
525 "bank0_r6",
526 "bank0_r7",
527
528 "",
529 "",
530 "",
531 "",
532 "",
533 "",
534 "",
535 "",
536
537 "",
538 "",
539 "",
540 "",
541 "",
542 "",
543 "",
544 "",
545
546 "",
547 "",
548 "",
549 "",
550 "",
551 "",
552 "",
553 "",
554
555 "bank0_rp0",
556 "bank0_rp1",
557 "bank0_rp2",
558 "bank0_rp3",
559
560 "",
561 "",
562 "",
563 "",
564
565 "",
566 "",
567 "",
568 "",
569
570 "",
571 "",
572 "",
573 "",
574
575 /* The 16 register slots would be named
576 bank0_rp0_ptr_regnum ... bank3_rp3_ptr_regnum, but we don't
577 want these to be user visible registers. */
578 "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", ""
579 };
580
581 return reg_names[regnr];
582 }
583
584 /* Implement the "register_reggroup_p" gdbarch method. */
585
586 static int
587 rl78_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
588 struct reggroup *group)
589 {
590 if (group == all_reggroup)
591 return 1;
592
593 /* All other registers are saved and restored. */
594 if (group == save_reggroup || group == restore_reggroup)
595 {
596 if ((regnum < RL78_NUM_REGS
597 && regnum != RL78_SPL_REGNUM
598 && regnum != RL78_SPH_REGNUM
599 && regnum != RL78_RAW_PC_REGNUM)
600 || regnum == RL78_SP_REGNUM
601 || regnum == RL78_PC_REGNUM)
602 return 1;
603 else
604 return 0;
605 }
606
607 if ((RL78_BANK0_R0_REGNUM <= regnum && regnum <= RL78_BANK3_R7_REGNUM)
608 || regnum == RL78_ES_REGNUM
609 || regnum == RL78_CS_REGNUM
610 || regnum == RL78_SPL_REGNUM
611 || regnum == RL78_SPH_REGNUM
612 || regnum == RL78_PMC_REGNUM
613 || regnum == RL78_MEM_REGNUM
614 || regnum == RL78_RAW_PC_REGNUM
615 || (RL78_BANK0_RP0_REGNUM <= regnum && regnum <= RL78_BANK3_RP3_REGNUM))
616 return group == system_reggroup;
617
618 return group == general_reggroup;
619 }
620
621 /* Strip bits to form an instruction address. (When fetching a
622 32-bit address from the stack, the high eight bits are garbage.
623 This function strips off those unused bits.) */
624
625 static CORE_ADDR
626 rl78_make_instruction_address (CORE_ADDR addr)
627 {
628 return addr & 0xffffff;
629 }
630
631 /* Set / clear bits necessary to make a data address. */
632
633 static CORE_ADDR
634 rl78_make_data_address (CORE_ADDR addr)
635 {
636 return (addr & 0xffff) | 0xf0000;
637 }
638
639 /* Implement the "pseudo_register_read" gdbarch method. */
640
641 static enum register_status
642 rl78_pseudo_register_read (struct gdbarch *gdbarch,
643 readable_regcache *regcache,
644 int reg, gdb_byte *buffer)
645 {
646 enum register_status status;
647
648 if (RL78_BANK0_R0_REGNUM <= reg && reg <= RL78_BANK3_R7_REGNUM)
649 {
650 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM
651 + (reg - RL78_BANK0_R0_REGNUM);
652
653 status = regcache->raw_read (raw_regnum, buffer);
654 }
655 else if (RL78_BANK0_RP0_REGNUM <= reg && reg <= RL78_BANK3_RP3_REGNUM)
656 {
657 int raw_regnum = 2 * (reg - RL78_BANK0_RP0_REGNUM)
658 + RL78_RAW_BANK0_R0_REGNUM;
659
660 status = regcache->raw_read (raw_regnum, buffer);
661 if (status == REG_VALID)
662 status = regcache->raw_read (raw_regnum + 1, buffer + 1);
663 }
664 else if (RL78_BANK0_RP0_PTR_REGNUM <= reg && reg <= RL78_BANK3_RP3_PTR_REGNUM)
665 {
666 int raw_regnum = 2 * (reg - RL78_BANK0_RP0_PTR_REGNUM)
667 + RL78_RAW_BANK0_R0_REGNUM;
668
669 status = regcache->raw_read (raw_regnum, buffer);
670 if (status == REG_VALID)
671 status = regcache->raw_read (raw_regnum + 1, buffer + 1);
672 }
673 else if (reg == RL78_SP_REGNUM)
674 {
675 status = regcache->raw_read (RL78_SPL_REGNUM, buffer);
676 if (status == REG_VALID)
677 status = regcache->raw_read (RL78_SPH_REGNUM, buffer + 1);
678 }
679 else if (reg == RL78_PC_REGNUM)
680 {
681 gdb_byte rawbuf[4];
682
683 status = regcache->raw_read (RL78_RAW_PC_REGNUM, rawbuf);
684 memcpy (buffer, rawbuf, 3);
685 }
686 else if (RL78_X_REGNUM <= reg && reg <= RL78_H_REGNUM)
687 {
688 ULONGEST psw;
689
690 status = regcache->raw_read (RL78_PSW_REGNUM, &psw);
691 if (status == REG_VALID)
692 {
693 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
694 int bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
695 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
696 + (reg - RL78_X_REGNUM);
697 status = regcache->raw_read (raw_regnum, buffer);
698 }
699 }
700 else if (RL78_AX_REGNUM <= reg && reg <= RL78_HL_REGNUM)
701 {
702 ULONGEST psw;
703
704 status = regcache->raw_read (RL78_PSW_REGNUM, &psw);
705 if (status == REG_VALID)
706 {
707 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
708 int bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
709 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
710 + 2 * (reg - RL78_AX_REGNUM);
711 status = regcache->raw_read (raw_regnum, buffer);
712 if (status == REG_VALID)
713 status = regcache->raw_read (raw_regnum + 1, buffer + 1);
714 }
715 }
716 else
717 gdb_assert_not_reached ("invalid pseudo register number");
718 return status;
719 }
720
721 /* Implement the "pseudo_register_write" gdbarch method. */
722
723 static void
724 rl78_pseudo_register_write (struct gdbarch *gdbarch,
725 struct regcache *regcache,
726 int reg, const gdb_byte *buffer)
727 {
728 if (RL78_BANK0_R0_REGNUM <= reg && reg <= RL78_BANK3_R7_REGNUM)
729 {
730 int raw_regnum = RL78_RAW_BANK0_R0_REGNUM
731 + (reg - RL78_BANK0_R0_REGNUM);
732
733 regcache->raw_write (raw_regnum, buffer);
734 }
735 else if (RL78_BANK0_RP0_REGNUM <= reg && reg <= RL78_BANK3_RP3_REGNUM)
736 {
737 int raw_regnum = 2 * (reg - RL78_BANK0_RP0_REGNUM)
738 + RL78_RAW_BANK0_R0_REGNUM;
739
740 regcache->raw_write (raw_regnum, buffer);
741 regcache->raw_write (raw_regnum + 1, buffer + 1);
742 }
743 else if (RL78_BANK0_RP0_PTR_REGNUM <= reg && reg <= RL78_BANK3_RP3_PTR_REGNUM)
744 {
745 int raw_regnum = 2 * (reg - RL78_BANK0_RP0_PTR_REGNUM)
746 + RL78_RAW_BANK0_R0_REGNUM;
747
748 regcache->raw_write (raw_regnum, buffer);
749 regcache->raw_write (raw_regnum + 1, buffer + 1);
750 }
751 else if (reg == RL78_SP_REGNUM)
752 {
753 regcache->raw_write (RL78_SPL_REGNUM, buffer);
754 regcache->raw_write (RL78_SPH_REGNUM, buffer + 1);
755 }
756 else if (reg == RL78_PC_REGNUM)
757 {
758 gdb_byte rawbuf[4];
759
760 memcpy (rawbuf, buffer, 3);
761 rawbuf[3] = 0;
762 regcache->raw_write (RL78_RAW_PC_REGNUM, rawbuf);
763 }
764 else if (RL78_X_REGNUM <= reg && reg <= RL78_H_REGNUM)
765 {
766 ULONGEST psw;
767 int bank;
768 int raw_regnum;
769
770 regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw);
771 bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
772 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
773 raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
774 + (reg - RL78_X_REGNUM);
775 regcache->raw_write (raw_regnum, buffer);
776 }
777 else if (RL78_AX_REGNUM <= reg && reg <= RL78_HL_REGNUM)
778 {
779 ULONGEST psw;
780 int bank, raw_regnum;
781
782 regcache_raw_read_unsigned (regcache, RL78_PSW_REGNUM, &psw);
783 bank = ((psw >> 3) & 1) | ((psw >> 4) & 1);
784 /* RSB0 is at bit 3; RSBS1 is at bit 5. */
785 raw_regnum = RL78_RAW_BANK0_R0_REGNUM + bank * RL78_REGS_PER_BANK
786 + 2 * (reg - RL78_AX_REGNUM);
787 regcache->raw_write (raw_regnum, buffer);
788 regcache->raw_write (raw_regnum + 1, buffer + 1);
789 }
790 else
791 gdb_assert_not_reached ("invalid pseudo register number");
792 }
793
794 /* The documented BRK instruction is actually a two byte sequence,
795 {0x61, 0xcc}, but instructions may be as short as one byte.
796 Correspondence with Renesas revealed that the one byte sequence
797 0xff is used when a one byte breakpoint instruction is required. */
798 constexpr gdb_byte rl78_break_insn[] = { 0xff };
799
800 typedef BP_MANIPULATION (rl78_break_insn) rl78_breakpoint;
801
802 /* Define a "handle" struct for fetching the next opcode. */
803
804 struct rl78_get_opcode_byte_handle
805 {
806 CORE_ADDR pc;
807 };
808
809 static int
810 opc_reg_to_gdb_regnum (int opcreg)
811 {
812 switch (opcreg)
813 {
814 case RL78_Reg_X:
815 return RL78_X_REGNUM;
816 case RL78_Reg_A:
817 return RL78_A_REGNUM;
818 case RL78_Reg_C:
819 return RL78_C_REGNUM;
820 case RL78_Reg_B:
821 return RL78_B_REGNUM;
822 case RL78_Reg_E:
823 return RL78_E_REGNUM;
824 case RL78_Reg_D:
825 return RL78_D_REGNUM;
826 case RL78_Reg_L:
827 return RL78_L_REGNUM;
828 case RL78_Reg_H:
829 return RL78_H_REGNUM;
830 case RL78_Reg_AX:
831 return RL78_AX_REGNUM;
832 case RL78_Reg_BC:
833 return RL78_BC_REGNUM;
834 case RL78_Reg_DE:
835 return RL78_DE_REGNUM;
836 case RL78_Reg_HL:
837 return RL78_HL_REGNUM;
838 case RL78_Reg_SP:
839 return RL78_SP_REGNUM;
840 case RL78_Reg_PSW:
841 return RL78_PSW_REGNUM;
842 case RL78_Reg_CS:
843 return RL78_CS_REGNUM;
844 case RL78_Reg_ES:
845 return RL78_ES_REGNUM;
846 case RL78_Reg_PMC:
847 return RL78_PMC_REGNUM;
848 case RL78_Reg_MEM:
849 return RL78_MEM_REGNUM;
850 default:
851 internal_error (__FILE__, __LINE__,
852 _("Undefined mapping for opc reg %d"),
853 opcreg);
854 }
855
856 /* Not reached. */
857 return 0;
858 }
859
860 /* Fetch a byte on behalf of the opcode decoder. HANDLE contains
861 the memory address of the next byte to fetch. If successful,
862 the address in the handle is updated and the byte fetched is
863 returned as the value of the function. If not successful, -1
864 is returned. */
865
866 static int
867 rl78_get_opcode_byte (void *handle)
868 {
869 struct rl78_get_opcode_byte_handle *opcdata
870 = (struct rl78_get_opcode_byte_handle *) handle;
871 int status;
872 gdb_byte byte;
873
874 status = target_read_memory (opcdata->pc, &byte, 1);
875 if (status == 0)
876 {
877 opcdata->pc += 1;
878 return byte;
879 }
880 else
881 return -1;
882 }
883
884 /* Function for finding saved registers in a 'struct pv_area'; this
885 function is passed to pv_area::scan.
886
887 If VALUE is a saved register, ADDR says it was saved at a constant
888 offset from the frame base, and SIZE indicates that the whole
889 register was saved, record its offset. */
890
891 static void
892 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size,
893 pv_t value)
894 {
895 struct rl78_prologue *result = (struct rl78_prologue *) result_untyped;
896
897 if (value.kind == pvk_register
898 && value.k == 0
899 && pv_is_register (addr, RL78_SP_REGNUM)
900 && size == register_size (target_gdbarch (), value.reg))
901 result->reg_offset[value.reg] = addr.k;
902 }
903
904 /* Analyze a prologue starting at START_PC, going no further than
905 LIMIT_PC. Fill in RESULT as appropriate. */
906
907 static void
908 rl78_analyze_prologue (CORE_ADDR start_pc,
909 CORE_ADDR limit_pc, struct rl78_prologue *result)
910 {
911 CORE_ADDR pc, next_pc;
912 int rn;
913 pv_t reg[RL78_NUM_TOTAL_REGS];
914 CORE_ADDR after_last_frame_setup_insn = start_pc;
915 int bank = 0;
916
917 memset (result, 0, sizeof (*result));
918
919 for (rn = 0; rn < RL78_NUM_TOTAL_REGS; rn++)
920 {
921 reg[rn] = pv_register (rn, 0);
922 result->reg_offset[rn] = 1;
923 }
924
925 pv_area stack (RL78_SP_REGNUM, gdbarch_addr_bit (target_gdbarch ()));
926
927 /* The call instruction has saved the return address on the stack. */
928 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -4);
929 stack.store (reg[RL78_SP_REGNUM], 4, reg[RL78_PC_REGNUM]);
930
931 pc = start_pc;
932 while (pc < limit_pc)
933 {
934 int bytes_read;
935 struct rl78_get_opcode_byte_handle opcode_handle;
936 RL78_Opcode_Decoded opc;
937
938 opcode_handle.pc = pc;
939 bytes_read = rl78_decode_opcode (pc, &opc, rl78_get_opcode_byte,
940 &opcode_handle, RL78_ISA_DEFAULT);
941 next_pc = pc + bytes_read;
942
943 if (opc.id == RLO_sel)
944 {
945 bank = opc.op[1].addend;
946 }
947 else if (opc.id == RLO_mov
948 && opc.op[0].type == RL78_Operand_PreDec
949 && opc.op[0].reg == RL78_Reg_SP
950 && opc.op[1].type == RL78_Operand_Register)
951 {
952 int rsrc = (bank * RL78_REGS_PER_BANK)
953 + 2 * (opc.op[1].reg - RL78_Reg_AX);
954
955 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -1);
956 stack.store (reg[RL78_SP_REGNUM], 1, reg[rsrc]);
957 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM], -1);
958 stack.store (reg[RL78_SP_REGNUM], 1, reg[rsrc + 1]);
959 after_last_frame_setup_insn = next_pc;
960 }
961 else if (opc.id == RLO_sub
962 && opc.op[0].type == RL78_Operand_Register
963 && opc.op[0].reg == RL78_Reg_SP
964 && opc.op[1].type == RL78_Operand_Immediate)
965 {
966 int addend = opc.op[1].addend;
967
968 reg[RL78_SP_REGNUM] = pv_add_constant (reg[RL78_SP_REGNUM],
969 -addend);
970 after_last_frame_setup_insn = next_pc;
971 }
972 else if (opc.id == RLO_mov
973 && opc.size == RL78_Word
974 && opc.op[0].type == RL78_Operand_Register
975 && opc.op[1].type == RL78_Operand_Indirect
976 && opc.op[1].addend == RL78_SP_ADDR)
977 {
978 reg[opc_reg_to_gdb_regnum (opc.op[0].reg)]
979 = reg[RL78_SP_REGNUM];
980 }
981 else if (opc.id == RLO_sub
982 && opc.size == RL78_Word
983 && opc.op[0].type == RL78_Operand_Register
984 && opc.op[1].type == RL78_Operand_Immediate)
985 {
986 int addend = opc.op[1].addend;
987 int regnum = opc_reg_to_gdb_regnum (opc.op[0].reg);
988
989 reg[regnum] = pv_add_constant (reg[regnum], -addend);
990 }
991 else if (opc.id == RLO_mov
992 && opc.size == RL78_Word
993 && opc.op[0].type == RL78_Operand_Indirect
994 && opc.op[0].addend == RL78_SP_ADDR
995 && opc.op[1].type == RL78_Operand_Register)
996 {
997 reg[RL78_SP_REGNUM]
998 = reg[opc_reg_to_gdb_regnum (opc.op[1].reg)];
999 after_last_frame_setup_insn = next_pc;
1000 }
1001 else
1002 {
1003 /* Terminate the prologue scan. */
1004 break;
1005 }
1006
1007 pc = next_pc;
1008 }
1009
1010 /* Is the frame size (offset, really) a known constant? */
1011 if (pv_is_register (reg[RL78_SP_REGNUM], RL78_SP_REGNUM))
1012 result->frame_size = reg[RL78_SP_REGNUM].k;
1013
1014 /* Record where all the registers were saved. */
1015 stack.scan (check_for_saved, (void *) result);
1016
1017 result->prologue_end = after_last_frame_setup_insn;
1018 }
1019
1020 /* Implement the "addr_bits_remove" gdbarch method. */
1021
1022 static CORE_ADDR
1023 rl78_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
1024 {
1025 return addr & 0xffffff;
1026 }
1027
1028 /* Implement the "address_to_pointer" gdbarch method. */
1029
1030 static void
1031 rl78_address_to_pointer (struct gdbarch *gdbarch,
1032 struct type *type, gdb_byte *buf, CORE_ADDR addr)
1033 {
1034 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1035
1036 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
1037 addr & 0xffffff);
1038 }
1039
1040 /* Implement the "pointer_to_address" gdbarch method. */
1041
1042 static CORE_ADDR
1043 rl78_pointer_to_address (struct gdbarch *gdbarch,
1044 struct type *type, const gdb_byte *buf)
1045 {
1046 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1047 CORE_ADDR addr
1048 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
1049
1050 /* Is it a code address? */
1051 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
1052 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
1053 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type))
1054 || TYPE_LENGTH (type) == 4)
1055 return rl78_make_instruction_address (addr);
1056 else
1057 return rl78_make_data_address (addr);
1058 }
1059
1060 /* Implement the "skip_prologue" gdbarch method. */
1061
1062 static CORE_ADDR
1063 rl78_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1064 {
1065 const char *name;
1066 CORE_ADDR func_addr, func_end;
1067 struct rl78_prologue p;
1068
1069 /* Try to find the extent of the function that contains PC. */
1070 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
1071 return pc;
1072
1073 rl78_analyze_prologue (pc, func_end, &p);
1074 return p.prologue_end;
1075 }
1076
1077 /* Implement the "unwind_pc" gdbarch method. */
1078
1079 static CORE_ADDR
1080 rl78_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
1081 {
1082 return rl78_addr_bits_remove
1083 (arch, frame_unwind_register_unsigned (next_frame,
1084 RL78_PC_REGNUM));
1085 }
1086
1087 /* Implement the "unwind_sp" gdbarch method. */
1088
1089 static CORE_ADDR
1090 rl78_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
1091 {
1092 return frame_unwind_register_unsigned (next_frame, RL78_SP_REGNUM);
1093 }
1094
1095 /* Given a frame described by THIS_FRAME, decode the prologue of its
1096 associated function if there is not cache entry as specified by
1097 THIS_PROLOGUE_CACHE. Save the decoded prologue in the cache and
1098 return that struct as the value of this function. */
1099
1100 static struct rl78_prologue *
1101 rl78_analyze_frame_prologue (struct frame_info *this_frame,
1102 void **this_prologue_cache)
1103 {
1104 if (!*this_prologue_cache)
1105 {
1106 CORE_ADDR func_start, stop_addr;
1107
1108 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct rl78_prologue);
1109
1110 func_start = get_frame_func (this_frame);
1111 stop_addr = get_frame_pc (this_frame);
1112
1113 /* If we couldn't find any function containing the PC, then
1114 just initialize the prologue cache, but don't do anything. */
1115 if (!func_start)
1116 stop_addr = func_start;
1117
1118 rl78_analyze_prologue (func_start, stop_addr,
1119 (struct rl78_prologue *) *this_prologue_cache);
1120 }
1121
1122 return (struct rl78_prologue *) *this_prologue_cache;
1123 }
1124
1125 /* Given a frame and a prologue cache, return this frame's base. */
1126
1127 static CORE_ADDR
1128 rl78_frame_base (struct frame_info *this_frame, void **this_prologue_cache)
1129 {
1130 struct rl78_prologue *p
1131 = rl78_analyze_frame_prologue (this_frame, this_prologue_cache);
1132 CORE_ADDR sp = get_frame_register_unsigned (this_frame, RL78_SP_REGNUM);
1133
1134 return rl78_make_data_address (sp - p->frame_size);
1135 }
1136
1137 /* Implement the "frame_this_id" method for unwinding frames. */
1138
1139 static void
1140 rl78_this_id (struct frame_info *this_frame,
1141 void **this_prologue_cache, struct frame_id *this_id)
1142 {
1143 *this_id = frame_id_build (rl78_frame_base (this_frame,
1144 this_prologue_cache),
1145 get_frame_func (this_frame));
1146 }
1147
1148 /* Implement the "frame_prev_register" method for unwinding frames. */
1149
1150 static struct value *
1151 rl78_prev_register (struct frame_info *this_frame,
1152 void **this_prologue_cache, int regnum)
1153 {
1154 struct rl78_prologue *p
1155 = rl78_analyze_frame_prologue (this_frame, this_prologue_cache);
1156 CORE_ADDR frame_base = rl78_frame_base (this_frame, this_prologue_cache);
1157
1158 if (regnum == RL78_SP_REGNUM)
1159 return frame_unwind_got_constant (this_frame, regnum, frame_base);
1160
1161 else if (regnum == RL78_SPL_REGNUM)
1162 return frame_unwind_got_constant (this_frame, regnum,
1163 (frame_base & 0xff));
1164
1165 else if (regnum == RL78_SPH_REGNUM)
1166 return frame_unwind_got_constant (this_frame, regnum,
1167 ((frame_base >> 8) & 0xff));
1168
1169 /* If prologue analysis says we saved this register somewhere,
1170 return a description of the stack slot holding it. */
1171 else if (p->reg_offset[regnum] != 1)
1172 {
1173 struct value *rv =
1174 frame_unwind_got_memory (this_frame, regnum,
1175 frame_base + p->reg_offset[regnum]);
1176
1177 if (regnum == RL78_PC_REGNUM)
1178 {
1179 ULONGEST pc = rl78_make_instruction_address (value_as_long (rv));
1180
1181 return frame_unwind_got_constant (this_frame, regnum, pc);
1182 }
1183 return rv;
1184 }
1185
1186 /* Otherwise, presume we haven't changed the value of this
1187 register, and get it from the next frame. */
1188 else
1189 return frame_unwind_got_register (this_frame, regnum, regnum);
1190 }
1191
1192 static const struct frame_unwind rl78_unwind =
1193 {
1194 NORMAL_FRAME,
1195 default_frame_unwind_stop_reason,
1196 rl78_this_id,
1197 rl78_prev_register,
1198 NULL,
1199 default_frame_sniffer
1200 };
1201
1202 /* Implement the "dwarf_reg_to_regnum" gdbarch method. */
1203
1204 static int
1205 rl78_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1206 {
1207 if (0 <= reg && reg <= 31)
1208 {
1209 if ((reg & 1) == 0)
1210 /* Map even registers to their 16-bit counterparts which have a
1211 pointer type. This is usually what is required from the DWARF
1212 info. */
1213 return (reg >> 1) + RL78_BANK0_RP0_PTR_REGNUM;
1214 else
1215 return reg;
1216 }
1217 else if (reg == 32)
1218 return RL78_SP_REGNUM;
1219 else if (reg == 33)
1220 return -1; /* ap */
1221 else if (reg == 34)
1222 return RL78_PSW_REGNUM;
1223 else if (reg == 35)
1224 return RL78_ES_REGNUM;
1225 else if (reg == 36)
1226 return RL78_CS_REGNUM;
1227 else if (reg == 37)
1228 return RL78_PC_REGNUM;
1229 else
1230 return -1;
1231 }
1232
1233 /* Implement the `register_sim_regno' gdbarch method. */
1234
1235 static int
1236 rl78_register_sim_regno (struct gdbarch *gdbarch, int regnum)
1237 {
1238 gdb_assert (regnum < RL78_NUM_REGS);
1239
1240 /* So long as regnum is in [0, RL78_NUM_REGS), it's valid. We
1241 just want to override the default here which disallows register
1242 numbers which have no names. */
1243 return regnum;
1244 }
1245
1246 /* Implement the "return_value" gdbarch method. */
1247
1248 static enum return_value_convention
1249 rl78_return_value (struct gdbarch *gdbarch,
1250 struct value *function,
1251 struct type *valtype,
1252 struct regcache *regcache,
1253 gdb_byte *readbuf, const gdb_byte *writebuf)
1254 {
1255 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1256 ULONGEST valtype_len = TYPE_LENGTH (valtype);
1257 int is_g10 = gdbarch_tdep (gdbarch)->elf_flags & E_FLAG_RL78_G10;
1258
1259 if (valtype_len > 8)
1260 return RETURN_VALUE_STRUCT_CONVENTION;
1261
1262 if (readbuf)
1263 {
1264 ULONGEST u;
1265 int argreg = RL78_RAW_BANK1_R0_REGNUM;
1266 CORE_ADDR g10_raddr = 0xffec8;
1267 int offset = 0;
1268
1269 while (valtype_len > 0)
1270 {
1271 if (is_g10)
1272 u = read_memory_integer (g10_raddr, 1,
1273 gdbarch_byte_order (gdbarch));
1274 else
1275 regcache_cooked_read_unsigned (regcache, argreg, &u);
1276 store_unsigned_integer (readbuf + offset, 1, byte_order, u);
1277 valtype_len -= 1;
1278 offset += 1;
1279 argreg++;
1280 g10_raddr++;
1281 }
1282 }
1283
1284 if (writebuf)
1285 {
1286 ULONGEST u;
1287 int argreg = RL78_RAW_BANK1_R0_REGNUM;
1288 CORE_ADDR g10_raddr = 0xffec8;
1289 int offset = 0;
1290
1291 while (valtype_len > 0)
1292 {
1293 u = extract_unsigned_integer (writebuf + offset, 1, byte_order);
1294 if (is_g10) {
1295 gdb_byte b = u & 0xff;
1296 write_memory (g10_raddr, &b, 1);
1297 }
1298 else
1299 regcache_cooked_write_unsigned (regcache, argreg, u);
1300 valtype_len -= 1;
1301 offset += 1;
1302 argreg++;
1303 g10_raddr++;
1304 }
1305 }
1306
1307 return RETURN_VALUE_REGISTER_CONVENTION;
1308 }
1309
1310
1311 /* Implement the "frame_align" gdbarch method. */
1312
1313 static CORE_ADDR
1314 rl78_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1315 {
1316 return rl78_make_data_address (align_down (sp, 2));
1317 }
1318
1319
1320 /* Implement the "dummy_id" gdbarch method. */
1321
1322 static struct frame_id
1323 rl78_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1324 {
1325 return
1326 frame_id_build (rl78_make_data_address
1327 (get_frame_register_unsigned
1328 (this_frame, RL78_SP_REGNUM)),
1329 get_frame_pc (this_frame));
1330 }
1331
1332
1333 /* Implement the "push_dummy_call" gdbarch method. */
1334
1335 static CORE_ADDR
1336 rl78_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1337 struct regcache *regcache, CORE_ADDR bp_addr,
1338 int nargs, struct value **args, CORE_ADDR sp,
1339 function_call_return_method return_method,
1340 CORE_ADDR struct_addr)
1341 {
1342 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1343 gdb_byte buf[4];
1344 int i;
1345
1346 /* Push arguments in reverse order. */
1347 for (i = nargs - 1; i >= 0; i--)
1348 {
1349 struct type *value_type = value_enclosing_type (args[i]);
1350 int len = TYPE_LENGTH (value_type);
1351 int container_len = (len + 1) & ~1;
1352
1353 sp -= container_len;
1354 write_memory (rl78_make_data_address (sp),
1355 value_contents_all (args[i]), len);
1356 }
1357
1358 /* Store struct value address. */
1359 if (return_method == return_method_struct)
1360 {
1361 store_unsigned_integer (buf, 2, byte_order, struct_addr);
1362 sp -= 2;
1363 write_memory (rl78_make_data_address (sp), buf, 2);
1364 }
1365
1366 /* Store return address. */
1367 sp -= 4;
1368 store_unsigned_integer (buf, 4, byte_order, bp_addr);
1369 write_memory (rl78_make_data_address (sp), buf, 4);
1370
1371 /* Finally, update the stack pointer... */
1372 regcache_cooked_write_unsigned (regcache, RL78_SP_REGNUM, sp);
1373
1374 /* DWARF2/GCC uses the stack address *before* the function call as a
1375 frame's CFA. */
1376 return rl78_make_data_address (sp + 4);
1377 }
1378
1379 /* Allocate and initialize a gdbarch object. */
1380
1381 static struct gdbarch *
1382 rl78_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1383 {
1384 struct gdbarch *gdbarch;
1385 struct gdbarch_tdep *tdep;
1386 int elf_flags;
1387
1388 /* Extract the elf_flags if available. */
1389 if (info.abfd != NULL
1390 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1391 elf_flags = elf_elfheader (info.abfd)->e_flags;
1392 else
1393 elf_flags = 0;
1394
1395
1396 /* Try to find the architecture in the list of already defined
1397 architectures. */
1398 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1399 arches != NULL;
1400 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1401 {
1402 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1403 continue;
1404
1405 return arches->gdbarch;
1406 }
1407
1408 /* None found, create a new architecture from the information
1409 provided. */
1410 tdep = XCNEW (struct gdbarch_tdep);
1411 gdbarch = gdbarch_alloc (&info, tdep);
1412 tdep->elf_flags = elf_flags;
1413
1414 /* Initialize types. */
1415 tdep->rl78_void = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
1416 "void");
1417 tdep->rl78_uint8 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
1418 tdep->rl78_int8 = arch_integer_type (gdbarch, 8, 0, "int8_t");
1419 tdep->rl78_uint16 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
1420 tdep->rl78_int16 = arch_integer_type (gdbarch, 16, 0, "int16_t");
1421 tdep->rl78_uint32 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
1422 tdep->rl78_int32 = arch_integer_type (gdbarch, 32, 0, "int32_t");
1423
1424 tdep->rl78_data_pointer
1425 = arch_pointer_type (gdbarch, 16, "rl78_data_addr_t", tdep->rl78_void);
1426 tdep->rl78_code_pointer
1427 = arch_pointer_type (gdbarch, 32, "rl78_code_addr_t", tdep->rl78_void);
1428
1429 /* Registers. */
1430 set_gdbarch_num_regs (gdbarch, RL78_NUM_REGS);
1431 set_gdbarch_num_pseudo_regs (gdbarch, RL78_NUM_PSEUDO_REGS);
1432 if (tdep->elf_flags & E_FLAG_RL78_G10)
1433 set_gdbarch_register_name (gdbarch, rl78_g10_register_name);
1434 else
1435 set_gdbarch_register_name (gdbarch, rl78_register_name);
1436 set_gdbarch_register_type (gdbarch, rl78_register_type);
1437 set_gdbarch_pc_regnum (gdbarch, RL78_PC_REGNUM);
1438 set_gdbarch_sp_regnum (gdbarch, RL78_SP_REGNUM);
1439 set_gdbarch_pseudo_register_read (gdbarch, rl78_pseudo_register_read);
1440 set_gdbarch_pseudo_register_write (gdbarch, rl78_pseudo_register_write);
1441 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rl78_dwarf_reg_to_regnum);
1442 set_gdbarch_register_reggroup_p (gdbarch, rl78_register_reggroup_p);
1443 set_gdbarch_register_sim_regno (gdbarch, rl78_register_sim_regno);
1444
1445 /* Data types. */
1446 set_gdbarch_char_signed (gdbarch, 0);
1447 set_gdbarch_short_bit (gdbarch, 16);
1448 set_gdbarch_int_bit (gdbarch, 16);
1449 set_gdbarch_long_bit (gdbarch, 32);
1450 set_gdbarch_long_long_bit (gdbarch, 64);
1451 set_gdbarch_ptr_bit (gdbarch, 16);
1452 set_gdbarch_addr_bit (gdbarch, 32);
1453 set_gdbarch_dwarf2_addr_size (gdbarch, 4);
1454 set_gdbarch_float_bit (gdbarch, 32);
1455 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1456 set_gdbarch_double_bit (gdbarch, 32);
1457 set_gdbarch_long_double_bit (gdbarch, 64);
1458 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1459 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
1460 set_gdbarch_pointer_to_address (gdbarch, rl78_pointer_to_address);
1461 set_gdbarch_address_to_pointer (gdbarch, rl78_address_to_pointer);
1462 set_gdbarch_addr_bits_remove (gdbarch, rl78_addr_bits_remove);
1463
1464 /* Breakpoints. */
1465 set_gdbarch_breakpoint_kind_from_pc (gdbarch, rl78_breakpoint::kind_from_pc);
1466 set_gdbarch_sw_breakpoint_from_kind (gdbarch, rl78_breakpoint::bp_from_kind);
1467 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1468
1469 /* Frames, prologues, etc. */
1470 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1471 set_gdbarch_skip_prologue (gdbarch, rl78_skip_prologue);
1472 set_gdbarch_unwind_pc (gdbarch, rl78_unwind_pc);
1473 set_gdbarch_unwind_sp (gdbarch, rl78_unwind_sp);
1474 set_gdbarch_frame_align (gdbarch, rl78_frame_align);
1475
1476 dwarf2_append_unwinders (gdbarch);
1477 frame_unwind_append_unwinder (gdbarch, &rl78_unwind);
1478
1479 /* Dummy frames, return values. */
1480 set_gdbarch_dummy_id (gdbarch, rl78_dummy_id);
1481 set_gdbarch_push_dummy_call (gdbarch, rl78_push_dummy_call);
1482 set_gdbarch_return_value (gdbarch, rl78_return_value);
1483
1484 /* Virtual tables. */
1485 set_gdbarch_vbit_in_delta (gdbarch, 1);
1486
1487 return gdbarch;
1488 }
1489
1490 /* Register the above initialization routine. */
1491
1492 void
1493 _initialize_rl78_tdep (void)
1494 {
1495 register_gdbarch_init (bfd_arch_rl78, rl78_gdbarch_init);
1496 }
This page took 0.095298 seconds and 4 git commands to generate.