Fix SBO bit in disassembly mask for ldrah on AArch64.
[deliverable/binutils-gdb.git] / gdb / rs6000-aix-tdep.c
1 /* Native support code for PPC AIX, for GDB the GNU debugger.
2
3 Copyright (C) 2006-2018 Free Software Foundation, Inc.
4
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "osabi.h"
24 #include "regcache.h"
25 #include "regset.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "target.h"
29 #include "value.h"
30 #include "infcall.h"
31 #include "objfiles.h"
32 #include "breakpoint.h"
33 #include "rs6000-tdep.h"
34 #include "ppc-tdep.h"
35 #include "rs6000-aix-tdep.h"
36 #include "xcoffread.h"
37 #include "solib.h"
38 #include "solib-aix.h"
39 #include "target-float.h"
40 #include "xml-utils.h"
41
42 /* If the kernel has to deliver a signal, it pushes a sigcontext
43 structure on the stack and then calls the signal handler, passing
44 the address of the sigcontext in an argument register. Usually
45 the signal handler doesn't save this register, so we have to
46 access the sigcontext structure via an offset from the signal handler
47 frame.
48 The following constants were determined by experimentation on AIX 3.2. */
49 #define SIG_FRAME_PC_OFFSET 96
50 #define SIG_FRAME_LR_OFFSET 108
51 #define SIG_FRAME_FP_OFFSET 284
52
53
54 /* Core file support. */
55
56 static struct ppc_reg_offsets rs6000_aix32_reg_offsets =
57 {
58 /* General-purpose registers. */
59 208, /* r0_offset */
60 4, /* gpr_size */
61 4, /* xr_size */
62 24, /* pc_offset */
63 28, /* ps_offset */
64 32, /* cr_offset */
65 36, /* lr_offset */
66 40, /* ctr_offset */
67 44, /* xer_offset */
68 48, /* mq_offset */
69
70 /* Floating-point registers. */
71 336, /* f0_offset */
72 56, /* fpscr_offset */
73 4 /* fpscr_size */
74 };
75
76 static struct ppc_reg_offsets rs6000_aix64_reg_offsets =
77 {
78 /* General-purpose registers. */
79 0, /* r0_offset */
80 8, /* gpr_size */
81 4, /* xr_size */
82 264, /* pc_offset */
83 256, /* ps_offset */
84 288, /* cr_offset */
85 272, /* lr_offset */
86 280, /* ctr_offset */
87 292, /* xer_offset */
88 -1, /* mq_offset */
89
90 /* Floating-point registers. */
91 312, /* f0_offset */
92 296, /* fpscr_offset */
93 4 /* fpscr_size */
94 };
95
96
97 /* Supply register REGNUM in the general-purpose register set REGSET
98 from the buffer specified by GREGS and LEN to register cache
99 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
100
101 static void
102 rs6000_aix_supply_regset (const struct regset *regset,
103 struct regcache *regcache, int regnum,
104 const void *gregs, size_t len)
105 {
106 ppc_supply_gregset (regset, regcache, regnum, gregs, len);
107 ppc_supply_fpregset (regset, regcache, regnum, gregs, len);
108 }
109
110 /* Collect register REGNUM in the general-purpose register set
111 REGSET, from register cache REGCACHE into the buffer specified by
112 GREGS and LEN. If REGNUM is -1, do this for all registers in
113 REGSET. */
114
115 static void
116 rs6000_aix_collect_regset (const struct regset *regset,
117 const struct regcache *regcache, int regnum,
118 void *gregs, size_t len)
119 {
120 ppc_collect_gregset (regset, regcache, regnum, gregs, len);
121 ppc_collect_fpregset (regset, regcache, regnum, gregs, len);
122 }
123
124 /* AIX register set. */
125
126 static const struct regset rs6000_aix32_regset =
127 {
128 &rs6000_aix32_reg_offsets,
129 rs6000_aix_supply_regset,
130 rs6000_aix_collect_regset,
131 };
132
133 static const struct regset rs6000_aix64_regset =
134 {
135 &rs6000_aix64_reg_offsets,
136 rs6000_aix_supply_regset,
137 rs6000_aix_collect_regset,
138 };
139
140 /* Iterate over core file register note sections. */
141
142 static void
143 rs6000_aix_iterate_over_regset_sections (struct gdbarch *gdbarch,
144 iterate_over_regset_sections_cb *cb,
145 void *cb_data,
146 const struct regcache *regcache)
147 {
148 if (gdbarch_tdep (gdbarch)->wordsize == 4)
149 cb (".reg", 592, &rs6000_aix32_regset, NULL, cb_data);
150 else
151 cb (".reg", 576, &rs6000_aix64_regset, NULL, cb_data);
152 }
153
154
155 /* Pass the arguments in either registers, or in the stack. In RS/6000,
156 the first eight words of the argument list (that might be less than
157 eight parameters if some parameters occupy more than one word) are
158 passed in r3..r10 registers. Float and double parameters are
159 passed in fpr's, in addition to that. Rest of the parameters if any
160 are passed in user stack. There might be cases in which half of the
161 parameter is copied into registers, the other half is pushed into
162 stack.
163
164 Stack must be aligned on 64-bit boundaries when synthesizing
165 function calls.
166
167 If the function is returning a structure, then the return address is passed
168 in r3, then the first 7 words of the parameters can be passed in registers,
169 starting from r4. */
170
171 static CORE_ADDR
172 rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
173 struct regcache *regcache, CORE_ADDR bp_addr,
174 int nargs, struct value **args, CORE_ADDR sp,
175 int struct_return, CORE_ADDR struct_addr)
176 {
177 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
178 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
179 int ii;
180 int len = 0;
181 int argno; /* current argument number */
182 int argbytes; /* current argument byte */
183 gdb_byte tmp_buffer[50];
184 int f_argno = 0; /* current floating point argno */
185 int wordsize = gdbarch_tdep (gdbarch)->wordsize;
186 CORE_ADDR func_addr = find_function_addr (function, NULL);
187
188 struct value *arg = 0;
189 struct type *type;
190
191 ULONGEST saved_sp;
192
193 /* The calling convention this function implements assumes the
194 processor has floating-point registers. We shouldn't be using it
195 on PPC variants that lack them. */
196 gdb_assert (ppc_floating_point_unit_p (gdbarch));
197
198 /* The first eight words of ther arguments are passed in registers.
199 Copy them appropriately. */
200 ii = 0;
201
202 /* If the function is returning a `struct', then the first word
203 (which will be passed in r3) is used for struct return address.
204 In that case we should advance one word and start from r4
205 register to copy parameters. */
206 if (struct_return)
207 {
208 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
209 struct_addr);
210 ii++;
211 }
212
213 /* effectively indirect call... gcc does...
214
215 return_val example( float, int);
216
217 eabi:
218 float in fp0, int in r3
219 offset of stack on overflow 8/16
220 for varargs, must go by type.
221 power open:
222 float in r3&r4, int in r5
223 offset of stack on overflow different
224 both:
225 return in r3 or f0. If no float, must study how gcc emulates floats;
226 pay attention to arg promotion.
227 User may have to cast\args to handle promotion correctly
228 since gdb won't know if prototype supplied or not. */
229
230 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
231 {
232 int reg_size = register_size (gdbarch, ii + 3);
233
234 arg = args[argno];
235 type = check_typedef (value_type (arg));
236 len = TYPE_LENGTH (type);
237
238 if (TYPE_CODE (type) == TYPE_CODE_FLT)
239 {
240 /* Floating point arguments are passed in fpr's, as well as gpr's.
241 There are 13 fpr's reserved for passing parameters. At this point
242 there is no way we would run out of them.
243
244 Always store the floating point value using the register's
245 floating-point format. */
246 const int fp_regnum = tdep->ppc_fp0_regnum + 1 + f_argno;
247 gdb_byte reg_val[PPC_MAX_REGISTER_SIZE];
248 struct type *reg_type = register_type (gdbarch, fp_regnum);
249
250 gdb_assert (len <= 8);
251
252 target_float_convert (value_contents (arg), type, reg_val, reg_type);
253 regcache->cooked_write (fp_regnum, reg_val);
254 ++f_argno;
255 }
256
257 if (len > reg_size)
258 {
259
260 /* Argument takes more than one register. */
261 while (argbytes < len)
262 {
263 gdb_byte word[PPC_MAX_REGISTER_SIZE];
264 memset (word, 0, reg_size);
265 memcpy (word,
266 ((char *) value_contents (arg)) + argbytes,
267 (len - argbytes) > reg_size
268 ? reg_size : len - argbytes);
269 regcache->cooked_write (tdep->ppc_gp0_regnum + 3 + ii, word);
270 ++ii, argbytes += reg_size;
271
272 if (ii >= 8)
273 goto ran_out_of_registers_for_arguments;
274 }
275 argbytes = 0;
276 --ii;
277 }
278 else
279 {
280 /* Argument can fit in one register. No problem. */
281 gdb_byte word[PPC_MAX_REGISTER_SIZE];
282
283 memset (word, 0, reg_size);
284 memcpy (word, value_contents (arg), len);
285 regcache->cooked_write (tdep->ppc_gp0_regnum + 3 +ii, word);
286 }
287 ++argno;
288 }
289
290 ran_out_of_registers_for_arguments:
291
292 regcache_cooked_read_unsigned (regcache,
293 gdbarch_sp_regnum (gdbarch),
294 &saved_sp);
295
296 /* Location for 8 parameters are always reserved. */
297 sp -= wordsize * 8;
298
299 /* Another six words for back chain, TOC register, link register, etc. */
300 sp -= wordsize * 6;
301
302 /* Stack pointer must be quadword aligned. */
303 sp &= -16;
304
305 /* If there are more arguments, allocate space for them in
306 the stack, then push them starting from the ninth one. */
307
308 if ((argno < nargs) || argbytes)
309 {
310 int space = 0, jj;
311
312 if (argbytes)
313 {
314 space += ((len - argbytes + 3) & -4);
315 jj = argno + 1;
316 }
317 else
318 jj = argno;
319
320 for (; jj < nargs; ++jj)
321 {
322 struct value *val = args[jj];
323 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
324 }
325
326 /* Add location required for the rest of the parameters. */
327 space = (space + 15) & -16;
328 sp -= space;
329
330 /* This is another instance we need to be concerned about
331 securing our stack space. If we write anything underneath %sp
332 (r1), we might conflict with the kernel who thinks he is free
333 to use this area. So, update %sp first before doing anything
334 else. */
335
336 regcache_raw_write_signed (regcache,
337 gdbarch_sp_regnum (gdbarch), sp);
338
339 /* If the last argument copied into the registers didn't fit there
340 completely, push the rest of it into stack. */
341
342 if (argbytes)
343 {
344 write_memory (sp + 24 + (ii * 4),
345 value_contents (arg) + argbytes,
346 len - argbytes);
347 ++argno;
348 ii += ((len - argbytes + 3) & -4) / 4;
349 }
350
351 /* Push the rest of the arguments into stack. */
352 for (; argno < nargs; ++argno)
353 {
354
355 arg = args[argno];
356 type = check_typedef (value_type (arg));
357 len = TYPE_LENGTH (type);
358
359
360 /* Float types should be passed in fpr's, as well as in the
361 stack. */
362 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
363 {
364
365 gdb_assert (len <= 8);
366
367 regcache->cooked_write (tdep->ppc_fp0_regnum + 1 + f_argno,
368 value_contents (arg));
369 ++f_argno;
370 }
371
372 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
373 ii += ((len + 3) & -4) / 4;
374 }
375 }
376
377 /* Set the stack pointer. According to the ABI, the SP is meant to
378 be set _before_ the corresponding stack space is used. On AIX,
379 this even applies when the target has been completely stopped!
380 Not doing this can lead to conflicts with the kernel which thinks
381 that it still has control over this not-yet-allocated stack
382 region. */
383 regcache_raw_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
384
385 /* Set back chain properly. */
386 store_unsigned_integer (tmp_buffer, wordsize, byte_order, saved_sp);
387 write_memory (sp, tmp_buffer, wordsize);
388
389 /* Point the inferior function call's return address at the dummy's
390 breakpoint. */
391 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
392
393 /* Set the TOC register value. */
394 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum,
395 solib_aix_get_toc_value (func_addr));
396
397 target_store_registers (regcache, -1);
398 return sp;
399 }
400
401 static enum return_value_convention
402 rs6000_return_value (struct gdbarch *gdbarch, struct value *function,
403 struct type *valtype, struct regcache *regcache,
404 gdb_byte *readbuf, const gdb_byte *writebuf)
405 {
406 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
407 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
408
409 /* The calling convention this function implements assumes the
410 processor has floating-point registers. We shouldn't be using it
411 on PowerPC variants that lack them. */
412 gdb_assert (ppc_floating_point_unit_p (gdbarch));
413
414 /* AltiVec extension: Functions that declare a vector data type as a
415 return value place that return value in VR2. */
416 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
417 && TYPE_LENGTH (valtype) == 16)
418 {
419 if (readbuf)
420 regcache->cooked_read (tdep->ppc_vr0_regnum + 2, readbuf);
421 if (writebuf)
422 regcache->cooked_write (tdep->ppc_vr0_regnum + 2, writebuf);
423
424 return RETURN_VALUE_REGISTER_CONVENTION;
425 }
426
427 /* If the called subprogram returns an aggregate, there exists an
428 implicit first argument, whose value is the address of a caller-
429 allocated buffer into which the callee is assumed to store its
430 return value. All explicit parameters are appropriately
431 relabeled. */
432 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
433 || TYPE_CODE (valtype) == TYPE_CODE_UNION
434 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
435 return RETURN_VALUE_STRUCT_CONVENTION;
436
437 /* Scalar floating-point values are returned in FPR1 for float or
438 double, and in FPR1:FPR2 for quadword precision. Fortran
439 complex*8 and complex*16 are returned in FPR1:FPR2, and
440 complex*32 is returned in FPR1:FPR4. */
441 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
442 && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
443 {
444 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
445 gdb_byte regval[8];
446
447 /* FIXME: kettenis/2007-01-01: Add support for quadword
448 precision and complex. */
449
450 if (readbuf)
451 {
452 regcache->cooked_read (tdep->ppc_fp0_regnum + 1, regval);
453 target_float_convert (regval, regtype, readbuf, valtype);
454 }
455 if (writebuf)
456 {
457 target_float_convert (writebuf, valtype, regval, regtype);
458 regcache->cooked_write (tdep->ppc_fp0_regnum + 1, regval);
459 }
460
461 return RETURN_VALUE_REGISTER_CONVENTION;
462 }
463
464 /* Values of the types int, long, short, pointer, and char (length
465 is less than or equal to four bytes), as well as bit values of
466 lengths less than or equal to 32 bits, must be returned right
467 justified in GPR3 with signed values sign extended and unsigned
468 values zero extended, as necessary. */
469 if (TYPE_LENGTH (valtype) <= tdep->wordsize)
470 {
471 if (readbuf)
472 {
473 ULONGEST regval;
474
475 /* For reading we don't have to worry about sign extension. */
476 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
477 &regval);
478 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), byte_order,
479 regval);
480 }
481 if (writebuf)
482 {
483 /* For writing, use unpack_long since that should handle any
484 required sign extension. */
485 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
486 unpack_long (valtype, writebuf));
487 }
488
489 return RETURN_VALUE_REGISTER_CONVENTION;
490 }
491
492 /* Eight-byte non-floating-point scalar values must be returned in
493 GPR3:GPR4. */
494
495 if (TYPE_LENGTH (valtype) == 8)
496 {
497 gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
498 gdb_assert (tdep->wordsize == 4);
499
500 if (readbuf)
501 {
502 gdb_byte regval[8];
503
504 regcache->cooked_read (tdep->ppc_gp0_regnum + 3, regval);
505 regcache->cooked_read (tdep->ppc_gp0_regnum + 4, regval + 4);
506 memcpy (readbuf, regval, 8);
507 }
508 if (writebuf)
509 {
510 regcache->cooked_write (tdep->ppc_gp0_regnum + 3, writebuf);
511 regcache->cooked_write (tdep->ppc_gp0_regnum + 4, writebuf + 4);
512 }
513
514 return RETURN_VALUE_REGISTER_CONVENTION;
515 }
516
517 return RETURN_VALUE_STRUCT_CONVENTION;
518 }
519
520 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
521
522 Usually a function pointer's representation is simply the address
523 of the function. On the RS/6000 however, a function pointer is
524 represented by a pointer to an OPD entry. This OPD entry contains
525 three words, the first word is the address of the function, the
526 second word is the TOC pointer (r2), and the third word is the
527 static chain value. Throughout GDB it is currently assumed that a
528 function pointer contains the address of the function, which is not
529 easy to fix. In addition, the conversion of a function address to
530 a function pointer would require allocation of an OPD entry in the
531 inferior's memory space, with all its drawbacks. To be able to
532 call C++ virtual methods in the inferior (which are called via
533 function pointers), find_function_addr uses this function to get the
534 function address from a function pointer. */
535
536 /* Return real function address if ADDR (a function pointer) is in the data
537 space and is therefore a special function pointer. */
538
539 static CORE_ADDR
540 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
541 CORE_ADDR addr,
542 struct target_ops *targ)
543 {
544 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
545 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
546 struct obj_section *s;
547
548 s = find_pc_section (addr);
549
550 /* Normally, functions live inside a section that is executable.
551 So, if ADDR points to a non-executable section, then treat it
552 as a function descriptor and return the target address iff
553 the target address itself points to a section that is executable. */
554 if (s && (s->the_bfd_section->flags & SEC_CODE) == 0)
555 {
556 CORE_ADDR pc = 0;
557 struct obj_section *pc_section;
558
559 TRY
560 {
561 pc = read_memory_unsigned_integer (addr, tdep->wordsize, byte_order);
562 }
563 CATCH (e, RETURN_MASK_ERROR)
564 {
565 /* An error occured during reading. Probably a memory error
566 due to the section not being loaded yet. This address
567 cannot be a function descriptor. */
568 return addr;
569 }
570 END_CATCH
571
572 pc_section = find_pc_section (pc);
573
574 if (pc_section && (pc_section->the_bfd_section->flags & SEC_CODE))
575 return pc;
576 }
577
578 return addr;
579 }
580
581
582 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
583
584 static CORE_ADDR
585 branch_dest (struct regcache *regcache, int opcode, int instr,
586 CORE_ADDR pc, CORE_ADDR safety)
587 {
588 struct gdbarch *gdbarch = regcache->arch ();
589 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
590 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
591 CORE_ADDR dest;
592 int immediate;
593 int absolute;
594 int ext_op;
595
596 absolute = (int) ((instr >> 1) & 1);
597
598 switch (opcode)
599 {
600 case 18:
601 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
602 if (absolute)
603 dest = immediate;
604 else
605 dest = pc + immediate;
606 break;
607
608 case 16:
609 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
610 if (absolute)
611 dest = immediate;
612 else
613 dest = pc + immediate;
614 break;
615
616 case 19:
617 ext_op = (instr >> 1) & 0x3ff;
618
619 if (ext_op == 16) /* br conditional register */
620 {
621 dest = regcache_raw_get_unsigned (regcache, tdep->ppc_lr_regnum) & ~3;
622
623 /* If we are about to return from a signal handler, dest is
624 something like 0x3c90. The current frame is a signal handler
625 caller frame, upon completion of the sigreturn system call
626 execution will return to the saved PC in the frame. */
627 if (dest < AIX_TEXT_SEGMENT_BASE)
628 {
629 struct frame_info *frame = get_current_frame ();
630
631 dest = read_memory_unsigned_integer
632 (get_frame_base (frame) + SIG_FRAME_PC_OFFSET,
633 tdep->wordsize, byte_order);
634 }
635 }
636
637 else if (ext_op == 528) /* br cond to count reg */
638 {
639 dest = regcache_raw_get_unsigned (regcache,
640 tdep->ppc_ctr_regnum) & ~3;
641
642 /* If we are about to execute a system call, dest is something
643 like 0x22fc or 0x3b00. Upon completion the system call
644 will return to the address in the link register. */
645 if (dest < AIX_TEXT_SEGMENT_BASE)
646 dest = regcache_raw_get_unsigned (regcache,
647 tdep->ppc_lr_regnum) & ~3;
648 }
649 else
650 return -1;
651 break;
652
653 default:
654 return -1;
655 }
656 return (dest < AIX_TEXT_SEGMENT_BASE) ? safety : dest;
657 }
658
659 /* AIX does not support PT_STEP. Simulate it. */
660
661 static std::vector<CORE_ADDR>
662 rs6000_software_single_step (struct regcache *regcache)
663 {
664 struct gdbarch *gdbarch = regcache->arch ();
665 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
666 int ii, insn;
667 CORE_ADDR loc;
668 CORE_ADDR breaks[2];
669 int opcode;
670
671 loc = regcache_read_pc (regcache);
672
673 insn = read_memory_integer (loc, 4, byte_order);
674
675 std::vector<CORE_ADDR> next_pcs = ppc_deal_with_atomic_sequence (regcache);
676 if (!next_pcs.empty ())
677 return next_pcs;
678
679 breaks[0] = loc + PPC_INSN_SIZE;
680 opcode = insn >> 26;
681 breaks[1] = branch_dest (regcache, opcode, insn, loc, breaks[0]);
682
683 /* Don't put two breakpoints on the same address. */
684 if (breaks[1] == breaks[0])
685 breaks[1] = -1;
686
687 for (ii = 0; ii < 2; ++ii)
688 {
689 /* ignore invalid breakpoint. */
690 if (breaks[ii] == -1)
691 continue;
692
693 next_pcs.push_back (breaks[ii]);
694 }
695
696 errno = 0; /* FIXME, don't ignore errors! */
697 /* What errors? {read,write}_memory call error(). */
698 return next_pcs;
699 }
700
701 /* Implement the "auto_wide_charset" gdbarch method for this platform. */
702
703 static const char *
704 rs6000_aix_auto_wide_charset (void)
705 {
706 return "UTF-16";
707 }
708
709 /* Implement an osabi sniffer for RS6000/AIX.
710
711 This function assumes that ABFD's flavour is XCOFF. In other words,
712 it should be registered as a sniffer for bfd_target_xcoff_flavour
713 objfiles only. A failed assertion will be raised if this condition
714 is not met. */
715
716 static enum gdb_osabi
717 rs6000_aix_osabi_sniffer (bfd *abfd)
718 {
719 gdb_assert (bfd_get_flavour (abfd) == bfd_target_xcoff_flavour);
720
721 /* The only noticeable difference between Lynx178 XCOFF files and
722 AIX XCOFF files comes from the fact that there are no shared
723 libraries on Lynx178. On AIX, we are betting that an executable
724 linked with no shared library will never exist. */
725 if (xcoff_get_n_import_files (abfd) <= 0)
726 return GDB_OSABI_UNKNOWN;
727
728 return GDB_OSABI_AIX;
729 }
730
731 /* A structure encoding the offset and size of a field within
732 a struct. */
733
734 struct field_info
735 {
736 int offset;
737 int size;
738 };
739
740 /* A structure describing the layout of all the fields of interest
741 in AIX's struct ld_info. Each field in this struct corresponds
742 to the field of the same name in struct ld_info. */
743
744 struct ld_info_desc
745 {
746 struct field_info ldinfo_next;
747 struct field_info ldinfo_fd;
748 struct field_info ldinfo_textorg;
749 struct field_info ldinfo_textsize;
750 struct field_info ldinfo_dataorg;
751 struct field_info ldinfo_datasize;
752 struct field_info ldinfo_filename;
753 };
754
755 /* The following data has been generated by compiling and running
756 the following program on AIX 5.3. */
757
758 #if 0
759 #include <stddef.h>
760 #include <stdio.h>
761 #define __LDINFO_PTRACE32__
762 #define __LDINFO_PTRACE64__
763 #include <sys/ldr.h>
764
765 #define pinfo(type,member) \
766 { \
767 struct type ldi = {0}; \
768 \
769 printf (" {%d, %d},\t/* %s */\n", \
770 offsetof (struct type, member), \
771 sizeof (ldi.member), \
772 #member); \
773 } \
774 while (0)
775
776 int
777 main (void)
778 {
779 printf ("static const struct ld_info_desc ld_info32_desc =\n{\n");
780 pinfo (__ld_info32, ldinfo_next);
781 pinfo (__ld_info32, ldinfo_fd);
782 pinfo (__ld_info32, ldinfo_textorg);
783 pinfo (__ld_info32, ldinfo_textsize);
784 pinfo (__ld_info32, ldinfo_dataorg);
785 pinfo (__ld_info32, ldinfo_datasize);
786 pinfo (__ld_info32, ldinfo_filename);
787 printf ("};\n");
788
789 printf ("\n");
790
791 printf ("static const struct ld_info_desc ld_info64_desc =\n{\n");
792 pinfo (__ld_info64, ldinfo_next);
793 pinfo (__ld_info64, ldinfo_fd);
794 pinfo (__ld_info64, ldinfo_textorg);
795 pinfo (__ld_info64, ldinfo_textsize);
796 pinfo (__ld_info64, ldinfo_dataorg);
797 pinfo (__ld_info64, ldinfo_datasize);
798 pinfo (__ld_info64, ldinfo_filename);
799 printf ("};\n");
800
801 return 0;
802 }
803 #endif /* 0 */
804
805 /* Layout of the 32bit version of struct ld_info. */
806
807 static const struct ld_info_desc ld_info32_desc =
808 {
809 {0, 4}, /* ldinfo_next */
810 {4, 4}, /* ldinfo_fd */
811 {8, 4}, /* ldinfo_textorg */
812 {12, 4}, /* ldinfo_textsize */
813 {16, 4}, /* ldinfo_dataorg */
814 {20, 4}, /* ldinfo_datasize */
815 {24, 2}, /* ldinfo_filename */
816 };
817
818 /* Layout of the 64bit version of struct ld_info. */
819
820 static const struct ld_info_desc ld_info64_desc =
821 {
822 {0, 4}, /* ldinfo_next */
823 {8, 4}, /* ldinfo_fd */
824 {16, 8}, /* ldinfo_textorg */
825 {24, 8}, /* ldinfo_textsize */
826 {32, 8}, /* ldinfo_dataorg */
827 {40, 8}, /* ldinfo_datasize */
828 {48, 2}, /* ldinfo_filename */
829 };
830
831 /* A structured representation of one entry read from the ld_info
832 binary data provided by the AIX loader. */
833
834 struct ld_info
835 {
836 ULONGEST next;
837 int fd;
838 CORE_ADDR textorg;
839 ULONGEST textsize;
840 CORE_ADDR dataorg;
841 ULONGEST datasize;
842 char *filename;
843 char *member_name;
844 };
845
846 /* Return a struct ld_info object corresponding to the entry at
847 LDI_BUF.
848
849 Note that the filename and member_name strings still point
850 to the data in LDI_BUF. So LDI_BUF must not be deallocated
851 while the struct ld_info object returned is in use. */
852
853 static struct ld_info
854 rs6000_aix_extract_ld_info (struct gdbarch *gdbarch,
855 const gdb_byte *ldi_buf)
856 {
857 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
858 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
859 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
860 const struct ld_info_desc desc
861 = tdep->wordsize == 8 ? ld_info64_desc : ld_info32_desc;
862 struct ld_info info;
863
864 info.next = extract_unsigned_integer (ldi_buf + desc.ldinfo_next.offset,
865 desc.ldinfo_next.size,
866 byte_order);
867 info.fd = extract_signed_integer (ldi_buf + desc.ldinfo_fd.offset,
868 desc.ldinfo_fd.size,
869 byte_order);
870 info.textorg = extract_typed_address (ldi_buf + desc.ldinfo_textorg.offset,
871 ptr_type);
872 info.textsize
873 = extract_unsigned_integer (ldi_buf + desc.ldinfo_textsize.offset,
874 desc.ldinfo_textsize.size,
875 byte_order);
876 info.dataorg = extract_typed_address (ldi_buf + desc.ldinfo_dataorg.offset,
877 ptr_type);
878 info.datasize
879 = extract_unsigned_integer (ldi_buf + desc.ldinfo_datasize.offset,
880 desc.ldinfo_datasize.size,
881 byte_order);
882 info.filename = (char *) ldi_buf + desc.ldinfo_filename.offset;
883 info.member_name = info.filename + strlen (info.filename) + 1;
884
885 return info;
886 }
887
888 /* Append to OBJSTACK an XML string description of the shared library
889 corresponding to LDI, following the TARGET_OBJECT_LIBRARIES_AIX
890 format. */
891
892 static void
893 rs6000_aix_shared_library_to_xml (struct ld_info *ldi,
894 struct obstack *obstack)
895 {
896 obstack_grow_str (obstack, "<library name=\"");
897 std::string p = xml_escape_text (ldi->filename);
898 obstack_grow_str (obstack, p.c_str ());
899 obstack_grow_str (obstack, "\"");
900
901 if (ldi->member_name[0] != '\0')
902 {
903 obstack_grow_str (obstack, " member=\"");
904 p = xml_escape_text (ldi->member_name);
905 obstack_grow_str (obstack, p.c_str ());
906 obstack_grow_str (obstack, "\"");
907 }
908
909 obstack_grow_str (obstack, " text_addr=\"");
910 obstack_grow_str (obstack, core_addr_to_string (ldi->textorg));
911 obstack_grow_str (obstack, "\"");
912
913 obstack_grow_str (obstack, " text_size=\"");
914 obstack_grow_str (obstack, pulongest (ldi->textsize));
915 obstack_grow_str (obstack, "\"");
916
917 obstack_grow_str (obstack, " data_addr=\"");
918 obstack_grow_str (obstack, core_addr_to_string (ldi->dataorg));
919 obstack_grow_str (obstack, "\"");
920
921 obstack_grow_str (obstack, " data_size=\"");
922 obstack_grow_str (obstack, pulongest (ldi->datasize));
923 obstack_grow_str (obstack, "\"");
924
925 obstack_grow_str (obstack, "></library>");
926 }
927
928 /* Convert the ld_info binary data provided by the AIX loader into
929 an XML representation following the TARGET_OBJECT_LIBRARIES_AIX
930 format.
931
932 LDI_BUF is a buffer containing the ld_info data.
933 READBUF, OFFSET and LEN follow the same semantics as target_ops'
934 to_xfer_partial target_ops method.
935
936 If CLOSE_LDINFO_FD is nonzero, then this routine also closes
937 the ldinfo_fd file descriptor. This is useful when the ldinfo
938 data is obtained via ptrace, as ptrace opens a file descriptor
939 for each and every entry; but we cannot use this descriptor
940 as the consumer of the XML library list might live in a different
941 process. */
942
943 ULONGEST
944 rs6000_aix_ld_info_to_xml (struct gdbarch *gdbarch, const gdb_byte *ldi_buf,
945 gdb_byte *readbuf, ULONGEST offset, ULONGEST len,
946 int close_ldinfo_fd)
947 {
948 struct obstack obstack;
949 const char *buf;
950 ULONGEST len_avail;
951
952 obstack_init (&obstack);
953 obstack_grow_str (&obstack, "<library-list-aix version=\"1.0\">\n");
954
955 while (1)
956 {
957 struct ld_info ldi = rs6000_aix_extract_ld_info (gdbarch, ldi_buf);
958
959 rs6000_aix_shared_library_to_xml (&ldi, &obstack);
960 if (close_ldinfo_fd)
961 close (ldi.fd);
962
963 if (!ldi.next)
964 break;
965 ldi_buf = ldi_buf + ldi.next;
966 }
967
968 obstack_grow_str0 (&obstack, "</library-list-aix>\n");
969
970 buf = (const char *) obstack_finish (&obstack);
971 len_avail = strlen (buf);
972 if (offset >= len_avail)
973 len= 0;
974 else
975 {
976 if (len > len_avail - offset)
977 len = len_avail - offset;
978 memcpy (readbuf, buf + offset, len);
979 }
980
981 obstack_free (&obstack, NULL);
982 return len;
983 }
984
985 /* Implement the core_xfer_shared_libraries_aix gdbarch method. */
986
987 static ULONGEST
988 rs6000_aix_core_xfer_shared_libraries_aix (struct gdbarch *gdbarch,
989 gdb_byte *readbuf,
990 ULONGEST offset,
991 ULONGEST len)
992 {
993 struct bfd_section *ldinfo_sec;
994 int ldinfo_size;
995
996 ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
997 if (ldinfo_sec == NULL)
998 error (_("cannot find .ldinfo section from core file: %s"),
999 bfd_errmsg (bfd_get_error ()));
1000 ldinfo_size = bfd_get_section_size (ldinfo_sec);
1001
1002 gdb::byte_vector ldinfo_buf (ldinfo_size);
1003
1004 if (! bfd_get_section_contents (core_bfd, ldinfo_sec,
1005 ldinfo_buf.data (), 0, ldinfo_size))
1006 error (_("unable to read .ldinfo section from core file: %s"),
1007 bfd_errmsg (bfd_get_error ()));
1008
1009 return rs6000_aix_ld_info_to_xml (gdbarch, ldinfo_buf.data (), readbuf,
1010 offset, len, 0);
1011 }
1012
1013 static void
1014 rs6000_aix_init_osabi (struct gdbarch_info info, struct gdbarch *gdbarch)
1015 {
1016 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1017
1018 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
1019 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
1020
1021 /* Displaced stepping is currently not supported in combination with
1022 software single-stepping. */
1023 set_gdbarch_displaced_step_copy_insn (gdbarch, NULL);
1024 set_gdbarch_displaced_step_fixup (gdbarch, NULL);
1025 set_gdbarch_displaced_step_location (gdbarch, NULL);
1026
1027 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
1028 set_gdbarch_return_value (gdbarch, rs6000_return_value);
1029 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1030
1031 /* Handle RS/6000 function pointers (which are really function
1032 descriptors). */
1033 set_gdbarch_convert_from_func_ptr_addr
1034 (gdbarch, rs6000_convert_from_func_ptr_addr);
1035
1036 /* Core file support. */
1037 set_gdbarch_iterate_over_regset_sections
1038 (gdbarch, rs6000_aix_iterate_over_regset_sections);
1039 set_gdbarch_core_xfer_shared_libraries_aix
1040 (gdbarch, rs6000_aix_core_xfer_shared_libraries_aix);
1041
1042 if (tdep->wordsize == 8)
1043 tdep->lr_frame_offset = 16;
1044 else
1045 tdep->lr_frame_offset = 8;
1046
1047 if (tdep->wordsize == 4)
1048 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
1049 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
1050 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
1051 224. */
1052 set_gdbarch_frame_red_zone_size (gdbarch, 224);
1053 else
1054 set_gdbarch_frame_red_zone_size (gdbarch, 0);
1055
1056 if (tdep->wordsize == 8)
1057 set_gdbarch_wchar_bit (gdbarch, 32);
1058 else
1059 set_gdbarch_wchar_bit (gdbarch, 16);
1060 set_gdbarch_wchar_signed (gdbarch, 0);
1061 set_gdbarch_auto_wide_charset (gdbarch, rs6000_aix_auto_wide_charset);
1062
1063 set_solib_ops (gdbarch, &solib_aix_so_ops);
1064 }
1065
1066 void
1067 _initialize_rs6000_aix_tdep (void)
1068 {
1069 gdbarch_register_osabi_sniffer (bfd_arch_rs6000,
1070 bfd_target_xcoff_flavour,
1071 rs6000_aix_osabi_sniffer);
1072 gdbarch_register_osabi_sniffer (bfd_arch_powerpc,
1073 bfd_target_xcoff_flavour,
1074 rs6000_aix_osabi_sniffer);
1075
1076 gdbarch_register_osabi (bfd_arch_rs6000, 0, GDB_OSABI_AIX,
1077 rs6000_aix_init_osabi);
1078 gdbarch_register_osabi (bfd_arch_powerpc, 0, GDB_OSABI_AIX,
1079 rs6000_aix_init_osabi);
1080 }
1081
This page took 0.053047 seconds and 4 git commands to generate.