PR22150, ld keeps a version reference for gc'd symbols
[deliverable/binutils-gdb.git] / gdb / rs6000-lynx178-tdep.c
1 /* Copyright (C) 2012-2017 Free Software Foundation, Inc.
2
3 This file is part of GDB.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "osabi.h"
20 #include "regcache.h"
21 #include "gdbcore.h"
22 #include "gdbtypes.h"
23 #include "infcall.h"
24 #include "ppc-tdep.h"
25 #include "value.h"
26 #include "xcoffread.h"
27
28 /* Implement the "push_dummy_call" gdbarch method. */
29
30 static CORE_ADDR
31 rs6000_lynx178_push_dummy_call (struct gdbarch *gdbarch,
32 struct value *function,
33 struct regcache *regcache, CORE_ADDR bp_addr,
34 int nargs, struct value **args, CORE_ADDR sp,
35 int struct_return, CORE_ADDR struct_addr)
36 {
37 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
38 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
39 int ii;
40 int len = 0;
41 int argno; /* current argument number */
42 int argbytes; /* current argument byte */
43 gdb_byte tmp_buffer[50];
44 int f_argno = 0; /* current floating point argno */
45 int wordsize = gdbarch_tdep (gdbarch)->wordsize;
46 CORE_ADDR func_addr = find_function_addr (function, NULL);
47
48 struct value *arg = 0;
49 struct type *type;
50
51 ULONGEST saved_sp;
52
53 /* The calling convention this function implements assumes the
54 processor has floating-point registers. We shouldn't be using it
55 on PPC variants that lack them. */
56 gdb_assert (ppc_floating_point_unit_p (gdbarch));
57
58 /* The first eight words of ther arguments are passed in registers.
59 Copy them appropriately. */
60 ii = 0;
61
62 /* If the function is returning a `struct', then the first word
63 (which will be passed in r3) is used for struct return address.
64 In that case we should advance one word and start from r4
65 register to copy parameters. */
66 if (struct_return)
67 {
68 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
69 struct_addr);
70 ii++;
71 }
72
73 /* Effectively indirect call... gcc does...
74
75 return_val example( float, int);
76
77 eabi:
78 float in fp0, int in r3
79 offset of stack on overflow 8/16
80 for varargs, must go by type.
81 power open:
82 float in r3&r4, int in r5
83 offset of stack on overflow different
84 both:
85 return in r3 or f0. If no float, must study how gcc emulates floats;
86 pay attention to arg promotion.
87 User may have to cast\args to handle promotion correctly
88 since gdb won't know if prototype supplied or not. */
89
90 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
91 {
92 int reg_size = register_size (gdbarch, ii + 3);
93
94 arg = args[argno];
95 type = check_typedef (value_type (arg));
96 len = TYPE_LENGTH (type);
97
98 if (TYPE_CODE (type) == TYPE_CODE_FLT)
99 {
100
101 /* Floating point arguments are passed in fpr's, as well as gpr's.
102 There are 13 fpr's reserved for passing parameters. At this point
103 there is no way we would run out of them.
104
105 Always store the floating point value using the register's
106 floating-point format. */
107 const int fp_regnum = tdep->ppc_fp0_regnum + 1 + f_argno;
108 gdb_byte reg_val[PPC_MAX_REGISTER_SIZE];
109 struct type *reg_type = register_type (gdbarch, fp_regnum);
110
111 gdb_assert (len <= 8);
112
113 convert_typed_floating (value_contents (arg), type,
114 reg_val, reg_type);
115 regcache_cooked_write (regcache, fp_regnum, reg_val);
116 ++f_argno;
117 }
118
119 if (len > reg_size)
120 {
121
122 /* Argument takes more than one register. */
123 while (argbytes < len)
124 {
125 gdb_byte word[PPC_MAX_REGISTER_SIZE];
126 memset (word, 0, reg_size);
127 memcpy (word,
128 ((char *) value_contents (arg)) + argbytes,
129 (len - argbytes) > reg_size
130 ? reg_size : len - argbytes);
131 regcache_cooked_write (regcache,
132 tdep->ppc_gp0_regnum + 3 + ii,
133 word);
134 ++ii, argbytes += reg_size;
135
136 if (ii >= 8)
137 goto ran_out_of_registers_for_arguments;
138 }
139 argbytes = 0;
140 --ii;
141 }
142 else
143 {
144 /* Argument can fit in one register. No problem. */
145 gdb_byte word[PPC_MAX_REGISTER_SIZE];
146
147 memset (word, 0, reg_size);
148 memcpy (word, value_contents (arg), len);
149 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
150 }
151 ++argno;
152 }
153
154 ran_out_of_registers_for_arguments:
155
156 regcache_cooked_read_unsigned (regcache,
157 gdbarch_sp_regnum (gdbarch),
158 &saved_sp);
159
160 /* Location for 8 parameters are always reserved. */
161 sp -= wordsize * 8;
162
163 /* Another six words for back chain, TOC register, link register, etc. */
164 sp -= wordsize * 6;
165
166 /* Stack pointer must be quadword aligned. */
167 sp = align_down (sp, 16);
168
169 /* If there are more arguments, allocate space for them in
170 the stack, then push them starting from the ninth one. */
171
172 if ((argno < nargs) || argbytes)
173 {
174 int space = 0, jj;
175
176 if (argbytes)
177 {
178 space += align_up (len - argbytes, 4);
179 jj = argno + 1;
180 }
181 else
182 jj = argno;
183
184 for (; jj < nargs; ++jj)
185 {
186 struct value *val = args[jj];
187
188 space += align_up (TYPE_LENGTH (value_type (val)), 4);
189 }
190
191 /* Add location required for the rest of the parameters. */
192 space = align_up (space, 16);
193 sp -= space;
194
195 /* This is another instance we need to be concerned about
196 securing our stack space. If we write anything underneath %sp
197 (r1), we might conflict with the kernel who thinks he is free
198 to use this area. So, update %sp first before doing anything
199 else. */
200
201 regcache_raw_write_signed (regcache,
202 gdbarch_sp_regnum (gdbarch), sp);
203
204 /* If the last argument copied into the registers didn't fit there
205 completely, push the rest of it into stack. */
206
207 if (argbytes)
208 {
209 write_memory (sp + 24 + (ii * 4),
210 value_contents (arg) + argbytes,
211 len - argbytes);
212 ++argno;
213 ii += align_up (len - argbytes, 4) / 4;
214 }
215
216 /* Push the rest of the arguments into stack. */
217 for (; argno < nargs; ++argno)
218 {
219
220 arg = args[argno];
221 type = check_typedef (value_type (arg));
222 len = TYPE_LENGTH (type);
223
224
225 /* Float types should be passed in fpr's, as well as in the
226 stack. */
227 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
228 {
229
230 gdb_assert (len <= 8);
231
232 regcache_cooked_write (regcache,
233 tdep->ppc_fp0_regnum + 1 + f_argno,
234 value_contents (arg));
235 ++f_argno;
236 }
237
238 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
239 ii += align_up (len, 4) / 4;
240 }
241 }
242
243 /* Set the stack pointer. According to the ABI, the SP is meant to
244 be set _before_ the corresponding stack space is used. On AIX,
245 this even applies when the target has been completely stopped!
246 Not doing this can lead to conflicts with the kernel which thinks
247 that it still has control over this not-yet-allocated stack
248 region. */
249 regcache_raw_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
250
251 /* Set back chain properly. */
252 store_unsigned_integer (tmp_buffer, wordsize, byte_order, saved_sp);
253 write_memory (sp, tmp_buffer, wordsize);
254
255 /* Point the inferior function call's return address at the dummy's
256 breakpoint. */
257 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
258
259 target_store_registers (regcache, -1);
260 return sp;
261 }
262
263 /* Implement the "return_value" gdbarch method. */
264
265 static enum return_value_convention
266 rs6000_lynx178_return_value (struct gdbarch *gdbarch, struct value *function,
267 struct type *valtype, struct regcache *regcache,
268 gdb_byte *readbuf, const gdb_byte *writebuf)
269 {
270 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
271 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
272
273 /* The calling convention this function implements assumes the
274 processor has floating-point registers. We shouldn't be using it
275 on PowerPC variants that lack them. */
276 gdb_assert (ppc_floating_point_unit_p (gdbarch));
277
278 /* AltiVec extension: Functions that declare a vector data type as a
279 return value place that return value in VR2. */
280 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
281 && TYPE_LENGTH (valtype) == 16)
282 {
283 if (readbuf)
284 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
285 if (writebuf)
286 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
287
288 return RETURN_VALUE_REGISTER_CONVENTION;
289 }
290
291 /* If the called subprogram returns an aggregate, there exists an
292 implicit first argument, whose value is the address of a caller-
293 allocated buffer into which the callee is assumed to store its
294 return value. All explicit parameters are appropriately
295 relabeled. */
296 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
297 || TYPE_CODE (valtype) == TYPE_CODE_UNION
298 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
299 return RETURN_VALUE_STRUCT_CONVENTION;
300
301 /* Scalar floating-point values are returned in FPR1 for float or
302 double, and in FPR1:FPR2 for quadword precision. Fortran
303 complex*8 and complex*16 are returned in FPR1:FPR2, and
304 complex*32 is returned in FPR1:FPR4. */
305 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
306 && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
307 {
308 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
309 gdb_byte regval[8];
310
311 /* FIXME: kettenis/2007-01-01: Add support for quadword
312 precision and complex. */
313
314 if (readbuf)
315 {
316 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
317 convert_typed_floating (regval, regtype, readbuf, valtype);
318 }
319 if (writebuf)
320 {
321 convert_typed_floating (writebuf, valtype, regval, regtype);
322 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
323 }
324
325 return RETURN_VALUE_REGISTER_CONVENTION;
326 }
327
328 /* Values of the types int, long, short, pointer, and char (length
329 is less than or equal to four bytes), as well as bit values of
330 lengths less than or equal to 32 bits, must be returned right
331 justified in GPR3 with signed values sign extended and unsigned
332 values zero extended, as necessary. */
333 if (TYPE_LENGTH (valtype) <= tdep->wordsize)
334 {
335 if (readbuf)
336 {
337 ULONGEST regval;
338
339 /* For reading we don't have to worry about sign extension. */
340 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
341 &regval);
342 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), byte_order,
343 regval);
344 }
345 if (writebuf)
346 {
347 /* For writing, use unpack_long since that should handle any
348 required sign extension. */
349 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
350 unpack_long (valtype, writebuf));
351 }
352
353 return RETURN_VALUE_REGISTER_CONVENTION;
354 }
355
356 /* Eight-byte non-floating-point scalar values must be returned in
357 GPR3:GPR4. */
358
359 if (TYPE_LENGTH (valtype) == 8)
360 {
361 gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
362 gdb_assert (tdep->wordsize == 4);
363
364 if (readbuf)
365 {
366 gdb_byte regval[8];
367
368 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval);
369 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
370 regval + 4);
371 memcpy (readbuf, regval, 8);
372 }
373 if (writebuf)
374 {
375 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
376 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
377 writebuf + 4);
378 }
379
380 return RETURN_VALUE_REGISTER_CONVENTION;
381 }
382
383 return RETURN_VALUE_STRUCT_CONVENTION;
384 }
385
386 /* PowerPC Lynx178 OSABI sniffer. */
387
388 static enum gdb_osabi
389 rs6000_lynx178_osabi_sniffer (bfd *abfd)
390 {
391 if (bfd_get_flavour (abfd) != bfd_target_xcoff_flavour)
392 return GDB_OSABI_UNKNOWN;
393
394 /* The only noticeable difference between Lynx178 XCOFF files and
395 AIX XCOFF files comes from the fact that there are no shared
396 libraries on Lynx178. So if the number of import files is
397 different from zero, it cannot be a Lynx178 binary. */
398 if (xcoff_get_n_import_files (abfd) != 0)
399 return GDB_OSABI_UNKNOWN;
400
401 return GDB_OSABI_LYNXOS178;
402 }
403
404 /* Callback for powerpc-lynx178 initialization. */
405
406 static void
407 rs6000_lynx178_init_osabi (struct gdbarch_info info, struct gdbarch *gdbarch)
408 {
409 set_gdbarch_push_dummy_call (gdbarch, rs6000_lynx178_push_dummy_call);
410 set_gdbarch_return_value (gdbarch, rs6000_lynx178_return_value);
411 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
412 }
413
414 void
415 _initialize_rs6000_lynx178_tdep (void)
416 {
417 gdbarch_register_osabi_sniffer (bfd_arch_rs6000,
418 bfd_target_xcoff_flavour,
419 rs6000_lynx178_osabi_sniffer);
420 gdbarch_register_osabi (bfd_arch_rs6000, 0, GDB_OSABI_LYNXOS178,
421 rs6000_lynx178_init_osabi);
422 }
423
This page took 0.037825 seconds and 4 git commands to generate.