Mark the linker's -Bsymbolic-functions test as an expected failure for MIPS targets.
[deliverable/binutils-gdb.git] / gdb / rs6000-lynx178-tdep.c
1 /* Copyright (C) 2012-2016 Free Software Foundation, Inc.
2
3 This file is part of GDB.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "osabi.h"
20 #include "regcache.h"
21 #include "gdbcore.h"
22 #include "gdbtypes.h"
23 #include "infcall.h"
24 #include "ppc-tdep.h"
25 #include "value.h"
26 #include "xcoffread.h"
27
28 /* Implement the "push_dummy_call" gdbarch method. */
29
30 static CORE_ADDR
31 rs6000_lynx178_push_dummy_call (struct gdbarch *gdbarch,
32 struct value *function,
33 struct regcache *regcache, CORE_ADDR bp_addr,
34 int nargs, struct value **args, CORE_ADDR sp,
35 int struct_return, CORE_ADDR struct_addr)
36 {
37 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
38 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
39 int ii;
40 int len = 0;
41 int argno; /* current argument number */
42 int argbytes; /* current argument byte */
43 gdb_byte tmp_buffer[50];
44 int f_argno = 0; /* current floating point argno */
45 int wordsize = gdbarch_tdep (gdbarch)->wordsize;
46 CORE_ADDR func_addr = find_function_addr (function, NULL);
47
48 struct value *arg = 0;
49 struct type *type;
50
51 ULONGEST saved_sp;
52
53 /* The calling convention this function implements assumes the
54 processor has floating-point registers. We shouldn't be using it
55 on PPC variants that lack them. */
56 gdb_assert (ppc_floating_point_unit_p (gdbarch));
57
58 /* The first eight words of ther arguments are passed in registers.
59 Copy them appropriately. */
60 ii = 0;
61
62 /* If the function is returning a `struct', then the first word
63 (which will be passed in r3) is used for struct return address.
64 In that case we should advance one word and start from r4
65 register to copy parameters. */
66 if (struct_return)
67 {
68 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
69 struct_addr);
70 ii++;
71 }
72
73 /* Effectively indirect call... gcc does...
74
75 return_val example( float, int);
76
77 eabi:
78 float in fp0, int in r3
79 offset of stack on overflow 8/16
80 for varargs, must go by type.
81 power open:
82 float in r3&r4, int in r5
83 offset of stack on overflow different
84 both:
85 return in r3 or f0. If no float, must study how gcc emulates floats;
86 pay attention to arg promotion.
87 User may have to cast\args to handle promotion correctly
88 since gdb won't know if prototype supplied or not. */
89
90 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
91 {
92 int reg_size = register_size (gdbarch, ii + 3);
93
94 arg = args[argno];
95 type = check_typedef (value_type (arg));
96 len = TYPE_LENGTH (type);
97
98 if (TYPE_CODE (type) == TYPE_CODE_FLT)
99 {
100
101 /* Floating point arguments are passed in fpr's, as well as gpr's.
102 There are 13 fpr's reserved for passing parameters. At this point
103 there is no way we would run out of them.
104
105 Always store the floating point value using the register's
106 floating-point format. */
107 const int fp_regnum = tdep->ppc_fp0_regnum + 1 + f_argno;
108 gdb_byte reg_val[MAX_REGISTER_SIZE];
109 struct type *reg_type = register_type (gdbarch, fp_regnum);
110
111 gdb_assert (len <= 8);
112
113 convert_typed_floating (value_contents (arg), type,
114 reg_val, reg_type);
115 regcache_cooked_write (regcache, fp_regnum, reg_val);
116 ++f_argno;
117 }
118
119 if (len > reg_size)
120 {
121
122 /* Argument takes more than one register. */
123 while (argbytes < len)
124 {
125 gdb_byte word[MAX_REGISTER_SIZE];
126 memset (word, 0, reg_size);
127 memcpy (word,
128 ((char *) value_contents (arg)) + argbytes,
129 (len - argbytes) > reg_size
130 ? reg_size : len - argbytes);
131 regcache_cooked_write (regcache,
132 tdep->ppc_gp0_regnum + 3 + ii,
133 word);
134 ++ii, argbytes += reg_size;
135
136 if (ii >= 8)
137 goto ran_out_of_registers_for_arguments;
138 }
139 argbytes = 0;
140 --ii;
141 }
142 else
143 {
144 /* Argument can fit in one register. No problem. */
145 int adj = gdbarch_byte_order (gdbarch)
146 == BFD_ENDIAN_BIG ? reg_size - len : 0;
147 gdb_byte word[MAX_REGISTER_SIZE];
148
149 memset (word, 0, reg_size);
150 memcpy (word, value_contents (arg), len);
151 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
152 }
153 ++argno;
154 }
155
156 ran_out_of_registers_for_arguments:
157
158 regcache_cooked_read_unsigned (regcache,
159 gdbarch_sp_regnum (gdbarch),
160 &saved_sp);
161
162 /* Location for 8 parameters are always reserved. */
163 sp -= wordsize * 8;
164
165 /* Another six words for back chain, TOC register, link register, etc. */
166 sp -= wordsize * 6;
167
168 /* Stack pointer must be quadword aligned. */
169 sp = align_down (sp, 16);
170
171 /* If there are more arguments, allocate space for them in
172 the stack, then push them starting from the ninth one. */
173
174 if ((argno < nargs) || argbytes)
175 {
176 int space = 0, jj;
177
178 if (argbytes)
179 {
180 space += align_up (len - argbytes, 4);
181 jj = argno + 1;
182 }
183 else
184 jj = argno;
185
186 for (; jj < nargs; ++jj)
187 {
188 struct value *val = args[jj];
189
190 space += align_up (TYPE_LENGTH (value_type (val)), 4);
191 }
192
193 /* Add location required for the rest of the parameters. */
194 space = align_up (space, 16);
195 sp -= space;
196
197 /* This is another instance we need to be concerned about
198 securing our stack space. If we write anything underneath %sp
199 (r1), we might conflict with the kernel who thinks he is free
200 to use this area. So, update %sp first before doing anything
201 else. */
202
203 regcache_raw_write_signed (regcache,
204 gdbarch_sp_regnum (gdbarch), sp);
205
206 /* If the last argument copied into the registers didn't fit there
207 completely, push the rest of it into stack. */
208
209 if (argbytes)
210 {
211 write_memory (sp + 24 + (ii * 4),
212 value_contents (arg) + argbytes,
213 len - argbytes);
214 ++argno;
215 ii += align_up (len - argbytes, 4) / 4;
216 }
217
218 /* Push the rest of the arguments into stack. */
219 for (; argno < nargs; ++argno)
220 {
221
222 arg = args[argno];
223 type = check_typedef (value_type (arg));
224 len = TYPE_LENGTH (type);
225
226
227 /* Float types should be passed in fpr's, as well as in the
228 stack. */
229 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
230 {
231
232 gdb_assert (len <= 8);
233
234 regcache_cooked_write (regcache,
235 tdep->ppc_fp0_regnum + 1 + f_argno,
236 value_contents (arg));
237 ++f_argno;
238 }
239
240 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
241 ii += align_up (len, 4) / 4;
242 }
243 }
244
245 /* Set the stack pointer. According to the ABI, the SP is meant to
246 be set _before_ the corresponding stack space is used. On AIX,
247 this even applies when the target has been completely stopped!
248 Not doing this can lead to conflicts with the kernel which thinks
249 that it still has control over this not-yet-allocated stack
250 region. */
251 regcache_raw_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
252
253 /* Set back chain properly. */
254 store_unsigned_integer (tmp_buffer, wordsize, byte_order, saved_sp);
255 write_memory (sp, tmp_buffer, wordsize);
256
257 /* Point the inferior function call's return address at the dummy's
258 breakpoint. */
259 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
260
261 target_store_registers (regcache, -1);
262 return sp;
263 }
264
265 /* Implement the "return_value" gdbarch method. */
266
267 static enum return_value_convention
268 rs6000_lynx178_return_value (struct gdbarch *gdbarch, struct value *function,
269 struct type *valtype, struct regcache *regcache,
270 gdb_byte *readbuf, const gdb_byte *writebuf)
271 {
272 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
273 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
274
275 /* The calling convention this function implements assumes the
276 processor has floating-point registers. We shouldn't be using it
277 on PowerPC variants that lack them. */
278 gdb_assert (ppc_floating_point_unit_p (gdbarch));
279
280 /* AltiVec extension: Functions that declare a vector data type as a
281 return value place that return value in VR2. */
282 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
283 && TYPE_LENGTH (valtype) == 16)
284 {
285 if (readbuf)
286 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
287 if (writebuf)
288 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
289
290 return RETURN_VALUE_REGISTER_CONVENTION;
291 }
292
293 /* If the called subprogram returns an aggregate, there exists an
294 implicit first argument, whose value is the address of a caller-
295 allocated buffer into which the callee is assumed to store its
296 return value. All explicit parameters are appropriately
297 relabeled. */
298 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
299 || TYPE_CODE (valtype) == TYPE_CODE_UNION
300 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
301 return RETURN_VALUE_STRUCT_CONVENTION;
302
303 /* Scalar floating-point values are returned in FPR1 for float or
304 double, and in FPR1:FPR2 for quadword precision. Fortran
305 complex*8 and complex*16 are returned in FPR1:FPR2, and
306 complex*32 is returned in FPR1:FPR4. */
307 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
308 && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
309 {
310 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
311 gdb_byte regval[8];
312
313 /* FIXME: kettenis/2007-01-01: Add support for quadword
314 precision and complex. */
315
316 if (readbuf)
317 {
318 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
319 convert_typed_floating (regval, regtype, readbuf, valtype);
320 }
321 if (writebuf)
322 {
323 convert_typed_floating (writebuf, valtype, regval, regtype);
324 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
325 }
326
327 return RETURN_VALUE_REGISTER_CONVENTION;
328 }
329
330 /* Values of the types int, long, short, pointer, and char (length
331 is less than or equal to four bytes), as well as bit values of
332 lengths less than or equal to 32 bits, must be returned right
333 justified in GPR3 with signed values sign extended and unsigned
334 values zero extended, as necessary. */
335 if (TYPE_LENGTH (valtype) <= tdep->wordsize)
336 {
337 if (readbuf)
338 {
339 ULONGEST regval;
340
341 /* For reading we don't have to worry about sign extension. */
342 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
343 &regval);
344 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), byte_order,
345 regval);
346 }
347 if (writebuf)
348 {
349 /* For writing, use unpack_long since that should handle any
350 required sign extension. */
351 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
352 unpack_long (valtype, writebuf));
353 }
354
355 return RETURN_VALUE_REGISTER_CONVENTION;
356 }
357
358 /* Eight-byte non-floating-point scalar values must be returned in
359 GPR3:GPR4. */
360
361 if (TYPE_LENGTH (valtype) == 8)
362 {
363 gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
364 gdb_assert (tdep->wordsize == 4);
365
366 if (readbuf)
367 {
368 gdb_byte regval[8];
369
370 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval);
371 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
372 regval + 4);
373 memcpy (readbuf, regval, 8);
374 }
375 if (writebuf)
376 {
377 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
378 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
379 writebuf + 4);
380 }
381
382 return RETURN_VALUE_REGISTER_CONVENTION;
383 }
384
385 return RETURN_VALUE_STRUCT_CONVENTION;
386 }
387
388 /* PowerPC Lynx178 OSABI sniffer. */
389
390 static enum gdb_osabi
391 rs6000_lynx178_osabi_sniffer (bfd *abfd)
392 {
393 if (bfd_get_flavour (abfd) != bfd_target_xcoff_flavour)
394 return GDB_OSABI_UNKNOWN;
395
396 /* The only noticeable difference between Lynx178 XCOFF files and
397 AIX XCOFF files comes from the fact that there are no shared
398 libraries on Lynx178. So if the number of import files is
399 different from zero, it cannot be a Lynx178 binary. */
400 if (xcoff_get_n_import_files (abfd) != 0)
401 return GDB_OSABI_UNKNOWN;
402
403 return GDB_OSABI_LYNXOS178;
404 }
405
406 /* Callback for powerpc-lynx178 initialization. */
407
408 static void
409 rs6000_lynx178_init_osabi (struct gdbarch_info info, struct gdbarch *gdbarch)
410 {
411 set_gdbarch_push_dummy_call (gdbarch, rs6000_lynx178_push_dummy_call);
412 set_gdbarch_return_value (gdbarch, rs6000_lynx178_return_value);
413 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
414 }
415
416 /* -Wmissing-prototypes. */
417 extern initialize_file_ftype _initialize_rs6000_lynx178_tdep;
418
419 void
420 _initialize_rs6000_lynx178_tdep (void)
421 {
422 gdbarch_register_osabi_sniffer (bfd_arch_rs6000,
423 bfd_target_xcoff_flavour,
424 rs6000_lynx178_osabi_sniffer);
425 gdbarch_register_osabi (bfd_arch_rs6000, 0, GDB_OSABI_LYNXOS178,
426 rs6000_lynx178_init_osabi);
427 }
428
This page took 0.058721 seconds and 4 git commands to generate.