* README: Mention gdbserver/README.
[deliverable/binutils-gdb.git] / gdb / rs6000-nat.c
1 /* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "inferior.h"
24 #include "target.h"
25 #include "gdbcore.h"
26 #include "xcoffsolib.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "libbfd.h" /* For bfd_default_set_arch_mach (FIXME) */
30 #include "bfd.h"
31 #include "exceptions.h"
32 #include "gdb-stabs.h"
33 #include "regcache.h"
34 #include "arch-utils.h"
35 #include "inf-ptrace.h"
36 #include "ppc-tdep.h"
37 #include "rs6000-tdep.h"
38 #include "exec.h"
39 #include "gdb_stdint.h"
40 #include "observer.h"
41
42 #include <sys/ptrace.h>
43 #include <sys/reg.h>
44
45 #include <sys/param.h>
46 #include <sys/dir.h>
47 #include <sys/user.h>
48 #include <signal.h>
49 #include <sys/ioctl.h>
50 #include <fcntl.h>
51 #include <errno.h>
52
53 #include <a.out.h>
54 #include <sys/file.h>
55 #include "gdb_stat.h"
56 #include <sys/core.h>
57 #define __LDINFO_PTRACE32__ /* for __ld_info32 */
58 #define __LDINFO_PTRACE64__ /* for __ld_info64 */
59 #include <sys/ldr.h>
60 #include <sys/systemcfg.h>
61
62 /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
63 debugging 32-bit and 64-bit processes. Define a typedef and macros for
64 accessing fields in the appropriate structures. */
65
66 /* In 32-bit compilation mode (which is the only mode from which ptrace()
67 works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
68
69 #ifdef __ld_info32
70 # define ARCH3264
71 #endif
72
73 /* Return whether the current architecture is 64-bit. */
74
75 #ifndef ARCH3264
76 # define ARCH64() 0
77 #else
78 # define ARCH64() (register_size (current_gdbarch, 0) == 8)
79 #endif
80
81 /* Union of 32-bit and 64-bit versions of ld_info. */
82
83 typedef union {
84 #ifndef ARCH3264
85 struct ld_info l32;
86 struct ld_info l64;
87 #else
88 struct __ld_info32 l32;
89 struct __ld_info64 l64;
90 #endif
91 } LdInfo;
92
93 /* If compiling with 32-bit and 64-bit debugging capability (e.g. AIX 4.x),
94 declare and initialize a variable named VAR suitable for use as the arch64
95 parameter to the various LDI_*() macros. */
96
97 #ifndef ARCH3264
98 # define ARCH64_DECL(var)
99 #else
100 # define ARCH64_DECL(var) int var = ARCH64 ()
101 #endif
102
103 /* Return LDI's FIELD for a 64-bit process if ARCH64 and for a 32-bit process
104 otherwise. This technique only works for FIELDs with the same data type in
105 32-bit and 64-bit versions of ld_info. */
106
107 #ifndef ARCH3264
108 # define LDI_FIELD(ldi, arch64, field) (ldi)->l32.ldinfo_##field
109 #else
110 # define LDI_FIELD(ldi, arch64, field) \
111 (arch64 ? (ldi)->l64.ldinfo_##field : (ldi)->l32.ldinfo_##field)
112 #endif
113
114 /* Return various LDI fields for a 64-bit process if ARCH64 and for a 32-bit
115 process otherwise. */
116
117 #define LDI_NEXT(ldi, arch64) LDI_FIELD(ldi, arch64, next)
118 #define LDI_FD(ldi, arch64) LDI_FIELD(ldi, arch64, fd)
119 #define LDI_FILENAME(ldi, arch64) LDI_FIELD(ldi, arch64, filename)
120
121 extern struct vmap *map_vmap (bfd * bf, bfd * arch);
122
123 static void vmap_exec (void);
124
125 static void vmap_ldinfo (LdInfo *);
126
127 static struct vmap *add_vmap (LdInfo *);
128
129 static int objfile_symbol_add (void *);
130
131 static void vmap_symtab (struct vmap *);
132
133 static void exec_one_dummy_insn (void);
134
135 extern void fixup_breakpoints (CORE_ADDR low, CORE_ADDR high, CORE_ADDR delta);
136
137 /* Given REGNO, a gdb register number, return the corresponding
138 number suitable for use as a ptrace() parameter. Return -1 if
139 there's no suitable mapping. Also, set the int pointed to by
140 ISFLOAT to indicate whether REGNO is a floating point register. */
141
142 static int
143 regmap (int regno, int *isfloat)
144 {
145 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
146
147 *isfloat = 0;
148 if (tdep->ppc_gp0_regnum <= regno
149 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
150 return regno;
151 else if (tdep->ppc_fp0_regnum >= 0
152 && tdep->ppc_fp0_regnum <= regno
153 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
154 {
155 *isfloat = 1;
156 return regno - tdep->ppc_fp0_regnum + FPR0;
157 }
158 else if (regno == gdbarch_pc_regnum (current_gdbarch))
159 return IAR;
160 else if (regno == tdep->ppc_ps_regnum)
161 return MSR;
162 else if (regno == tdep->ppc_cr_regnum)
163 return CR;
164 else if (regno == tdep->ppc_lr_regnum)
165 return LR;
166 else if (regno == tdep->ppc_ctr_regnum)
167 return CTR;
168 else if (regno == tdep->ppc_xer_regnum)
169 return XER;
170 else if (tdep->ppc_fpscr_regnum >= 0
171 && regno == tdep->ppc_fpscr_regnum)
172 return FPSCR;
173 else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum)
174 return MQ;
175 else
176 return -1;
177 }
178
179 /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
180
181 static int
182 rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
183 {
184 int ret = ptrace (req, id, (int *)addr, data, buf);
185 #if 0
186 printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
187 req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
188 #endif
189 return ret;
190 }
191
192 /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
193
194 static int
195 rs6000_ptrace64 (int req, int id, long long addr, int data, void *buf)
196 {
197 #ifdef ARCH3264
198 int ret = ptracex (req, id, addr, data, buf);
199 #else
200 int ret = 0;
201 #endif
202 #if 0
203 printf ("rs6000_ptrace64 (%d, %d, 0x%llx, %08x, 0x%x) = 0x%x\n",
204 req, id, addr, data, (unsigned int)buf, ret);
205 #endif
206 return ret;
207 }
208
209 /* Fetch register REGNO from the inferior. */
210
211 static void
212 fetch_register (struct regcache *regcache, int regno)
213 {
214 struct gdbarch *gdbarch = get_regcache_arch (regcache);
215 int addr[MAX_REGISTER_SIZE];
216 int nr, isfloat;
217
218 /* Retrieved values may be -1, so infer errors from errno. */
219 errno = 0;
220
221 nr = regmap (regno, &isfloat);
222
223 /* Floating-point registers. */
224 if (isfloat)
225 rs6000_ptrace32 (PT_READ_FPR, PIDGET (inferior_ptid), addr, nr, 0);
226
227 /* Bogus register number. */
228 else if (nr < 0)
229 {
230 if (regno >= gdbarch_num_regs (gdbarch))
231 fprintf_unfiltered (gdb_stderr,
232 "gdb error: register no %d not implemented.\n",
233 regno);
234 return;
235 }
236
237 /* Fixed-point registers. */
238 else
239 {
240 if (!ARCH64 ())
241 *addr = rs6000_ptrace32 (PT_READ_GPR, PIDGET (inferior_ptid), (int *)nr, 0, 0);
242 else
243 {
244 /* PT_READ_GPR requires the buffer parameter to point to long long,
245 even if the register is really only 32 bits. */
246 long long buf;
247 rs6000_ptrace64 (PT_READ_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
248 if (register_size (gdbarch, regno) == 8)
249 memcpy (addr, &buf, 8);
250 else
251 *addr = buf;
252 }
253 }
254
255 if (!errno)
256 regcache_raw_supply (regcache, regno, (char *) addr);
257 else
258 {
259 #if 0
260 /* FIXME: this happens 3 times at the start of each 64-bit program. */
261 perror ("ptrace read");
262 #endif
263 errno = 0;
264 }
265 }
266
267 /* Store register REGNO back into the inferior. */
268
269 static void
270 store_register (const struct regcache *regcache, int regno)
271 {
272 struct gdbarch *gdbarch = get_regcache_arch (regcache);
273 int addr[MAX_REGISTER_SIZE];
274 int nr, isfloat;
275
276 /* Fetch the register's value from the register cache. */
277 regcache_raw_collect (regcache, regno, addr);
278
279 /* -1 can be a successful return value, so infer errors from errno. */
280 errno = 0;
281
282 nr = regmap (regno, &isfloat);
283
284 /* Floating-point registers. */
285 if (isfloat)
286 rs6000_ptrace32 (PT_WRITE_FPR, PIDGET (inferior_ptid), addr, nr, 0);
287
288 /* Bogus register number. */
289 else if (nr < 0)
290 {
291 if (regno >= gdbarch_num_regs (gdbarch))
292 fprintf_unfiltered (gdb_stderr,
293 "gdb error: register no %d not implemented.\n",
294 regno);
295 }
296
297 /* Fixed-point registers. */
298 else
299 {
300 if (regno == gdbarch_sp_regnum (gdbarch))
301 /* Execute one dummy instruction (which is a breakpoint) in inferior
302 process to give kernel a chance to do internal housekeeping.
303 Otherwise the following ptrace(2) calls will mess up user stack
304 since kernel will get confused about the bottom of the stack
305 (%sp). */
306 exec_one_dummy_insn ();
307
308 /* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors,
309 the register's value is passed by value, but for 64-bit inferiors,
310 the address of a buffer containing the value is passed. */
311 if (!ARCH64 ())
312 rs6000_ptrace32 (PT_WRITE_GPR, PIDGET (inferior_ptid), (int *)nr, *addr, 0);
313 else
314 {
315 /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
316 area, even if the register is really only 32 bits. */
317 long long buf;
318 if (register_size (gdbarch, regno) == 8)
319 memcpy (&buf, addr, 8);
320 else
321 buf = *addr;
322 rs6000_ptrace64 (PT_WRITE_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
323 }
324 }
325
326 if (errno)
327 {
328 perror ("ptrace write");
329 errno = 0;
330 }
331 }
332
333 /* Read from the inferior all registers if REGNO == -1 and just register
334 REGNO otherwise. */
335
336 static void
337 rs6000_fetch_inferior_registers (struct regcache *regcache, int regno)
338 {
339 struct gdbarch *gdbarch = get_regcache_arch (regcache);
340 if (regno != -1)
341 fetch_register (regcache, regno);
342
343 else
344 {
345 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
346
347 /* Read 32 general purpose registers. */
348 for (regno = tdep->ppc_gp0_regnum;
349 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
350 regno++)
351 {
352 fetch_register (regcache, regno);
353 }
354
355 /* Read general purpose floating point registers. */
356 if (tdep->ppc_fp0_regnum >= 0)
357 for (regno = 0; regno < ppc_num_fprs; regno++)
358 fetch_register (regcache, tdep->ppc_fp0_regnum + regno);
359
360 /* Read special registers. */
361 fetch_register (regcache, gdbarch_pc_regnum (gdbarch));
362 fetch_register (regcache, tdep->ppc_ps_regnum);
363 fetch_register (regcache, tdep->ppc_cr_regnum);
364 fetch_register (regcache, tdep->ppc_lr_regnum);
365 fetch_register (regcache, tdep->ppc_ctr_regnum);
366 fetch_register (regcache, tdep->ppc_xer_regnum);
367 if (tdep->ppc_fpscr_regnum >= 0)
368 fetch_register (regcache, tdep->ppc_fpscr_regnum);
369 if (tdep->ppc_mq_regnum >= 0)
370 fetch_register (regcache, tdep->ppc_mq_regnum);
371 }
372 }
373
374 /* Store our register values back into the inferior.
375 If REGNO is -1, do this for all registers.
376 Otherwise, REGNO specifies which register (so we can save time). */
377
378 static void
379 rs6000_store_inferior_registers (struct regcache *regcache, int regno)
380 {
381 struct gdbarch *gdbarch = get_regcache_arch (regcache);
382 if (regno != -1)
383 store_register (regcache, regno);
384
385 else
386 {
387 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
388
389 /* Write general purpose registers first. */
390 for (regno = tdep->ppc_gp0_regnum;
391 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
392 regno++)
393 {
394 store_register (regcache, regno);
395 }
396
397 /* Write floating point registers. */
398 if (tdep->ppc_fp0_regnum >= 0)
399 for (regno = 0; regno < ppc_num_fprs; regno++)
400 store_register (regcache, tdep->ppc_fp0_regnum + regno);
401
402 /* Write special registers. */
403 store_register (regcache, gdbarch_pc_regnum (gdbarch));
404 store_register (regcache, tdep->ppc_ps_regnum);
405 store_register (regcache, tdep->ppc_cr_regnum);
406 store_register (regcache, tdep->ppc_lr_regnum);
407 store_register (regcache, tdep->ppc_ctr_regnum);
408 store_register (regcache, tdep->ppc_xer_regnum);
409 if (tdep->ppc_fpscr_regnum >= 0)
410 store_register (regcache, tdep->ppc_fpscr_regnum);
411 if (tdep->ppc_mq_regnum >= 0)
412 store_register (regcache, tdep->ppc_mq_regnum);
413 }
414 }
415
416
417 /* Attempt a transfer all LEN bytes starting at OFFSET between the
418 inferior's OBJECT:ANNEX space and GDB's READBUF/WRITEBUF buffer.
419 Return the number of bytes actually transferred. */
420
421 static LONGEST
422 rs6000_xfer_partial (struct target_ops *ops, enum target_object object,
423 const char *annex, gdb_byte *readbuf,
424 const gdb_byte *writebuf,
425 ULONGEST offset, LONGEST len)
426 {
427 pid_t pid = ptid_get_pid (inferior_ptid);
428 int arch64 = ARCH64 ();
429
430 switch (object)
431 {
432 case TARGET_OBJECT_MEMORY:
433 {
434 union
435 {
436 PTRACE_TYPE_RET word;
437 gdb_byte byte[sizeof (PTRACE_TYPE_RET)];
438 } buffer;
439 ULONGEST rounded_offset;
440 LONGEST partial_len;
441
442 /* Round the start offset down to the next long word
443 boundary. */
444 rounded_offset = offset & -(ULONGEST) sizeof (PTRACE_TYPE_RET);
445
446 /* Since ptrace will transfer a single word starting at that
447 rounded_offset the partial_len needs to be adjusted down to
448 that (remember this function only does a single transfer).
449 Should the required length be even less, adjust it down
450 again. */
451 partial_len = (rounded_offset + sizeof (PTRACE_TYPE_RET)) - offset;
452 if (partial_len > len)
453 partial_len = len;
454
455 if (writebuf)
456 {
457 /* If OFFSET:PARTIAL_LEN is smaller than
458 ROUNDED_OFFSET:WORDSIZE then a read/modify write will
459 be needed. Read in the entire word. */
460 if (rounded_offset < offset
461 || (offset + partial_len
462 < rounded_offset + sizeof (PTRACE_TYPE_RET)))
463 {
464 /* Need part of initial word -- fetch it. */
465 if (arch64)
466 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
467 rounded_offset, 0, NULL);
468 else
469 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
470 (int *)(uintptr_t)rounded_offset,
471 0, NULL);
472 }
473
474 /* Copy data to be written over corresponding part of
475 buffer. */
476 memcpy (buffer.byte + (offset - rounded_offset),
477 writebuf, partial_len);
478
479 errno = 0;
480 if (arch64)
481 rs6000_ptrace64 (PT_WRITE_D, pid,
482 rounded_offset, buffer.word, NULL);
483 else
484 rs6000_ptrace32 (PT_WRITE_D, pid,
485 (int *)(uintptr_t)rounded_offset, buffer.word, NULL);
486 if (errno)
487 return 0;
488 }
489
490 if (readbuf)
491 {
492 errno = 0;
493 if (arch64)
494 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
495 rounded_offset, 0, NULL);
496 else
497 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
498 (int *)(uintptr_t)rounded_offset,
499 0, NULL);
500 if (errno)
501 return 0;
502
503 /* Copy appropriate bytes out of the buffer. */
504 memcpy (readbuf, buffer.byte + (offset - rounded_offset),
505 partial_len);
506 }
507
508 return partial_len;
509 }
510
511 default:
512 return -1;
513 }
514 }
515
516 /* Wait for the child specified by PTID to do something. Return the
517 process ID of the child, or MINUS_ONE_PTID in case of error; store
518 the status in *OURSTATUS. */
519
520 static ptid_t
521 rs6000_wait (ptid_t ptid, struct target_waitstatus *ourstatus)
522 {
523 pid_t pid;
524 int status, save_errno;
525
526 do
527 {
528 set_sigint_trap ();
529 set_sigio_trap ();
530
531 do
532 {
533 pid = waitpid (ptid_get_pid (ptid), &status, 0);
534 save_errno = errno;
535 }
536 while (pid == -1 && errno == EINTR);
537
538 clear_sigio_trap ();
539 clear_sigint_trap ();
540
541 if (pid == -1)
542 {
543 fprintf_unfiltered (gdb_stderr,
544 _("Child process unexpectedly missing: %s.\n"),
545 safe_strerror (save_errno));
546
547 /* Claim it exited with unknown signal. */
548 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
549 ourstatus->value.sig = TARGET_SIGNAL_UNKNOWN;
550 return minus_one_ptid;
551 }
552
553 /* Ignore terminated detached child processes. */
554 if (!WIFSTOPPED (status) && pid != ptid_get_pid (inferior_ptid))
555 pid = -1;
556 }
557 while (pid == -1);
558
559 /* AIX has a couple of strange returns from wait(). */
560
561 /* stop after load" status. */
562 if (status == 0x57c)
563 ourstatus->kind = TARGET_WAITKIND_LOADED;
564 /* signal 0. I have no idea why wait(2) returns with this status word. */
565 else if (status == 0x7f)
566 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
567 /* A normal waitstatus. Let the usual macros deal with it. */
568 else
569 store_waitstatus (ourstatus, status);
570
571 return pid_to_ptid (pid);
572 }
573
574 /* Execute one dummy breakpoint instruction. This way we give the kernel
575 a chance to do some housekeeping and update inferior's internal data,
576 including u_area. */
577
578 static void
579 exec_one_dummy_insn (void)
580 {
581 #define DUMMY_INSN_ADDR gdbarch_tdep (current_gdbarch)->text_segment_base+0x200
582
583 int ret, status, pid;
584 CORE_ADDR prev_pc;
585 void *bp;
586
587 /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
588 assume that this address will never be executed again by the real
589 code. */
590
591 bp = deprecated_insert_raw_breakpoint (DUMMY_INSN_ADDR);
592
593 /* You might think this could be done with a single ptrace call, and
594 you'd be correct for just about every platform I've ever worked
595 on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
596 the inferior never hits the breakpoint (it's also worth noting
597 powerpc-ibm-aix4.1.3 works correctly). */
598 prev_pc = read_pc ();
599 write_pc (DUMMY_INSN_ADDR);
600 if (ARCH64 ())
601 ret = rs6000_ptrace64 (PT_CONTINUE, PIDGET (inferior_ptid), 1, 0, NULL);
602 else
603 ret = rs6000_ptrace32 (PT_CONTINUE, PIDGET (inferior_ptid), (int *)1, 0, NULL);
604
605 if (ret != 0)
606 perror ("pt_continue");
607
608 do
609 {
610 pid = wait (&status);
611 }
612 while (pid != PIDGET (inferior_ptid));
613
614 write_pc (prev_pc);
615 deprecated_remove_raw_breakpoint (bp);
616 }
617 \f
618
619 /* Copy information about text and data sections from LDI to VP for a 64-bit
620 process if ARCH64 and for a 32-bit process otherwise. */
621
622 static void
623 vmap_secs (struct vmap *vp, LdInfo *ldi, int arch64)
624 {
625 if (arch64)
626 {
627 vp->tstart = (CORE_ADDR) ldi->l64.ldinfo_textorg;
628 vp->tend = vp->tstart + ldi->l64.ldinfo_textsize;
629 vp->dstart = (CORE_ADDR) ldi->l64.ldinfo_dataorg;
630 vp->dend = vp->dstart + ldi->l64.ldinfo_datasize;
631 }
632 else
633 {
634 vp->tstart = (unsigned long) ldi->l32.ldinfo_textorg;
635 vp->tend = vp->tstart + ldi->l32.ldinfo_textsize;
636 vp->dstart = (unsigned long) ldi->l32.ldinfo_dataorg;
637 vp->dend = vp->dstart + ldi->l32.ldinfo_datasize;
638 }
639
640 /* The run time loader maps the file header in addition to the text
641 section and returns a pointer to the header in ldinfo_textorg.
642 Adjust the text start address to point to the real start address
643 of the text section. */
644 vp->tstart += vp->toffs;
645 }
646
647 /* handle symbol translation on vmapping */
648
649 static void
650 vmap_symtab (struct vmap *vp)
651 {
652 struct objfile *objfile;
653 struct section_offsets *new_offsets;
654 int i;
655
656 objfile = vp->objfile;
657 if (objfile == NULL)
658 {
659 /* OK, it's not an objfile we opened ourselves.
660 Currently, that can only happen with the exec file, so
661 relocate the symbols for the symfile. */
662 if (symfile_objfile == NULL)
663 return;
664 objfile = symfile_objfile;
665 }
666 else if (!vp->loaded)
667 /* If symbols are not yet loaded, offsets are not yet valid. */
668 return;
669
670 new_offsets =
671 (struct section_offsets *)
672 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
673
674 for (i = 0; i < objfile->num_sections; ++i)
675 new_offsets->offsets[i] = ANOFFSET (objfile->section_offsets, i);
676
677 /* The symbols in the object file are linked to the VMA of the section,
678 relocate them VMA relative. */
679 new_offsets->offsets[SECT_OFF_TEXT (objfile)] = vp->tstart - vp->tvma;
680 new_offsets->offsets[SECT_OFF_DATA (objfile)] = vp->dstart - vp->dvma;
681 new_offsets->offsets[SECT_OFF_BSS (objfile)] = vp->dstart - vp->dvma;
682
683 objfile_relocate (objfile, new_offsets);
684 }
685 \f
686 /* Add symbols for an objfile. */
687
688 static int
689 objfile_symbol_add (void *arg)
690 {
691 struct objfile *obj = (struct objfile *) arg;
692
693 syms_from_objfile (obj, NULL, 0, 0, 0, 0);
694 new_symfile_objfile (obj, 0, 0);
695 return 1;
696 }
697
698 /* Add symbols for a vmap. Return zero upon error. */
699
700 int
701 vmap_add_symbols (struct vmap *vp)
702 {
703 if (catch_errors (objfile_symbol_add, vp->objfile,
704 "Error while reading shared library symbols:\n",
705 RETURN_MASK_ALL))
706 {
707 /* Note this is only done if symbol reading was successful. */
708 vp->loaded = 1;
709 vmap_symtab (vp);
710 return 1;
711 }
712 return 0;
713 }
714
715 /* Add a new vmap entry based on ldinfo() information.
716
717 If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a
718 core file), the caller should set it to -1, and we will open the file.
719
720 Return the vmap new entry. */
721
722 static struct vmap *
723 add_vmap (LdInfo *ldi)
724 {
725 bfd *abfd, *last;
726 char *mem, *objname, *filename;
727 struct objfile *obj;
728 struct vmap *vp;
729 int fd;
730 ARCH64_DECL (arch64);
731
732 /* This ldi structure was allocated using alloca() in
733 xcoff_relocate_symtab(). Now we need to have persistent object
734 and member names, so we should save them. */
735
736 filename = LDI_FILENAME (ldi, arch64);
737 mem = filename + strlen (filename) + 1;
738 mem = savestring (mem, strlen (mem));
739 objname = savestring (filename, strlen (filename));
740
741 fd = LDI_FD (ldi, arch64);
742 if (fd < 0)
743 /* Note that this opens it once for every member; a possible
744 enhancement would be to only open it once for every object. */
745 abfd = bfd_openr (objname, gnutarget);
746 else
747 abfd = bfd_fdopenr (objname, gnutarget, fd);
748 if (!abfd)
749 {
750 warning (_("Could not open `%s' as an executable file: %s"),
751 objname, bfd_errmsg (bfd_get_error ()));
752 return NULL;
753 }
754
755 /* make sure we have an object file */
756
757 if (bfd_check_format (abfd, bfd_object))
758 vp = map_vmap (abfd, 0);
759
760 else if (bfd_check_format (abfd, bfd_archive))
761 {
762 last = 0;
763 /* FIXME??? am I tossing BFDs? bfd? */
764 while ((last = bfd_openr_next_archived_file (abfd, last)))
765 if (strcmp (mem, last->filename) == 0)
766 break;
767
768 if (!last)
769 {
770 warning (_("\"%s\": member \"%s\" missing."), objname, mem);
771 bfd_close (abfd);
772 return NULL;
773 }
774
775 if (!bfd_check_format (last, bfd_object))
776 {
777 warning (_("\"%s\": member \"%s\" not in executable format: %s."),
778 objname, mem, bfd_errmsg (bfd_get_error ()));
779 bfd_close (last);
780 bfd_close (abfd);
781 return NULL;
782 }
783
784 vp = map_vmap (last, abfd);
785 }
786 else
787 {
788 warning (_("\"%s\": not in executable format: %s."),
789 objname, bfd_errmsg (bfd_get_error ()));
790 bfd_close (abfd);
791 return NULL;
792 }
793 obj = allocate_objfile (vp->bfd, 0);
794 vp->objfile = obj;
795
796 /* Always add symbols for the main objfile. */
797 if (vp == vmap || auto_solib_add)
798 vmap_add_symbols (vp);
799 return vp;
800 }
801 \f
802 /* update VMAP info with ldinfo() information
803 Input is ptr to ldinfo() results. */
804
805 static void
806 vmap_ldinfo (LdInfo *ldi)
807 {
808 struct stat ii, vi;
809 struct vmap *vp;
810 int got_one, retried;
811 int got_exec_file = 0;
812 uint next;
813 int arch64 = ARCH64 ();
814
815 /* For each *ldi, see if we have a corresponding *vp.
816 If so, update the mapping, and symbol table.
817 If not, add an entry and symbol table. */
818
819 do
820 {
821 char *name = LDI_FILENAME (ldi, arch64);
822 char *memb = name + strlen (name) + 1;
823 int fd = LDI_FD (ldi, arch64);
824
825 retried = 0;
826
827 if (fstat (fd, &ii) < 0)
828 {
829 /* The kernel sets ld_info to -1, if the process is still using the
830 object, and the object is removed. Keep the symbol info for the
831 removed object and issue a warning. */
832 warning (_("%s (fd=%d) has disappeared, keeping its symbols"),
833 name, fd);
834 continue;
835 }
836 retry:
837 for (got_one = 0, vp = vmap; vp; vp = vp->nxt)
838 {
839 struct objfile *objfile;
840
841 /* First try to find a `vp', which is the same as in ldinfo.
842 If not the same, just continue and grep the next `vp'. If same,
843 relocate its tstart, tend, dstart, dend values. If no such `vp'
844 found, get out of this for loop, add this ldi entry as a new vmap
845 (add_vmap) and come back, find its `vp' and so on... */
846
847 /* The filenames are not always sufficient to match on. */
848
849 if ((name[0] == '/' && strcmp (name, vp->name) != 0)
850 || (memb[0] && strcmp (memb, vp->member) != 0))
851 continue;
852
853 /* See if we are referring to the same file.
854 We have to check objfile->obfd, symfile.c:reread_symbols might
855 have updated the obfd after a change. */
856 objfile = vp->objfile == NULL ? symfile_objfile : vp->objfile;
857 if (objfile == NULL
858 || objfile->obfd == NULL
859 || bfd_stat (objfile->obfd, &vi) < 0)
860 {
861 warning (_("Unable to stat %s, keeping its symbols"), name);
862 continue;
863 }
864
865 if (ii.st_dev != vi.st_dev || ii.st_ino != vi.st_ino)
866 continue;
867
868 if (!retried)
869 close (fd);
870
871 ++got_one;
872
873 /* Found a corresponding VMAP. Remap! */
874
875 vmap_secs (vp, ldi, arch64);
876
877 /* The objfile is only NULL for the exec file. */
878 if (vp->objfile == NULL)
879 got_exec_file = 1;
880
881 /* relocate symbol table(s). */
882 vmap_symtab (vp);
883
884 /* Announce new object files. Doing this after symbol relocation
885 makes aix-thread.c's job easier. */
886 if (vp->objfile)
887 observer_notify_new_objfile (vp->objfile);
888
889 /* There may be more, so we don't break out of the loop. */
890 }
891
892 /* if there was no matching *vp, we must perforce create the sucker(s) */
893 if (!got_one && !retried)
894 {
895 add_vmap (ldi);
896 ++retried;
897 goto retry;
898 }
899 }
900 while ((next = LDI_NEXT (ldi, arch64))
901 && (ldi = (void *) (next + (char *) ldi)));
902
903 /* If we don't find the symfile_objfile anywhere in the ldinfo, it
904 is unlikely that the symbol file is relocated to the proper
905 address. And we might have attached to a process which is
906 running a different copy of the same executable. */
907 if (symfile_objfile != NULL && !got_exec_file)
908 {
909 warning (_("Symbol file %s\nis not mapped; discarding it.\n\
910 If in fact that file has symbols which the mapped files listed by\n\
911 \"info files\" lack, you can load symbols with the \"symbol-file\" or\n\
912 \"add-symbol-file\" commands (note that you must take care of relocating\n\
913 symbols to the proper address)."),
914 symfile_objfile->name);
915 free_objfile (symfile_objfile);
916 symfile_objfile = NULL;
917 }
918 breakpoint_re_set ();
919 }
920 \f
921 /* As well as symbol tables, exec_sections need relocation. After
922 the inferior process' termination, there will be a relocated symbol
923 table exist with no corresponding inferior process. At that time, we
924 need to use `exec' bfd, rather than the inferior process's memory space
925 to look up symbols.
926
927 `exec_sections' need to be relocated only once, as long as the exec
928 file remains unchanged.
929 */
930
931 static void
932 vmap_exec (void)
933 {
934 static bfd *execbfd;
935 int i;
936
937 if (execbfd == exec_bfd)
938 return;
939
940 execbfd = exec_bfd;
941
942 if (!vmap || !exec_ops.to_sections)
943 error (_("vmap_exec: vmap or exec_ops.to_sections == 0."));
944
945 for (i = 0; &exec_ops.to_sections[i] < exec_ops.to_sections_end; i++)
946 {
947 if (strcmp (".text", exec_ops.to_sections[i].the_bfd_section->name) == 0)
948 {
949 exec_ops.to_sections[i].addr += vmap->tstart - vmap->tvma;
950 exec_ops.to_sections[i].endaddr += vmap->tstart - vmap->tvma;
951 }
952 else if (strcmp (".data",
953 exec_ops.to_sections[i].the_bfd_section->name) == 0)
954 {
955 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
956 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
957 }
958 else if (strcmp (".bss",
959 exec_ops.to_sections[i].the_bfd_section->name) == 0)
960 {
961 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
962 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
963 }
964 }
965 }
966
967 /* Set the current architecture from the host running GDB. Called when
968 starting a child process. */
969
970 static void (*super_create_inferior) (char *exec_file, char *allargs,
971 char **env, int from_tty);
972 static void
973 rs6000_create_inferior (char *exec_file, char *allargs, char **env, int from_tty)
974 {
975 enum bfd_architecture arch;
976 unsigned long mach;
977 bfd abfd;
978 struct gdbarch_info info;
979
980 super_create_inferior (exec_file, allargs, env, from_tty);
981
982 if (__power_rs ())
983 {
984 arch = bfd_arch_rs6000;
985 mach = bfd_mach_rs6k;
986 }
987 else
988 {
989 arch = bfd_arch_powerpc;
990 mach = bfd_mach_ppc;
991 }
992
993 /* FIXME: schauer/2002-02-25:
994 We don't know if we are executing a 32 or 64 bit executable,
995 and have no way to pass the proper word size to rs6000_gdbarch_init.
996 So we have to avoid switching to a new architecture, if the architecture
997 matches already.
998 Blindly calling rs6000_gdbarch_init used to work in older versions of
999 GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
1000 determine the wordsize. */
1001 if (exec_bfd)
1002 {
1003 const struct bfd_arch_info *exec_bfd_arch_info;
1004
1005 exec_bfd_arch_info = bfd_get_arch_info (exec_bfd);
1006 if (arch == exec_bfd_arch_info->arch)
1007 return;
1008 }
1009
1010 bfd_default_set_arch_mach (&abfd, arch, mach);
1011
1012 gdbarch_info_init (&info);
1013 info.bfd_arch_info = bfd_get_arch_info (&abfd);
1014 info.abfd = exec_bfd;
1015
1016 if (!gdbarch_update_p (info))
1017 internal_error (__FILE__, __LINE__,
1018 _("rs6000_create_inferior: failed to select architecture"));
1019 }
1020
1021 \f
1022 /* xcoff_relocate_symtab - hook for symbol table relocation.
1023
1024 This is only applicable to live processes, and is a no-op when
1025 debugging a core file. */
1026
1027 void
1028 xcoff_relocate_symtab (unsigned int pid)
1029 {
1030 int load_segs = 64; /* number of load segments */
1031 int rc;
1032 LdInfo *ldi = NULL;
1033 int arch64 = ARCH64 ();
1034 int ldisize = arch64 ? sizeof (ldi->l64) : sizeof (ldi->l32);
1035 int size;
1036
1037 if (ptid_equal (inferior_ptid, null_ptid))
1038 return;
1039
1040 do
1041 {
1042 size = load_segs * ldisize;
1043 ldi = (void *) xrealloc (ldi, size);
1044
1045 #if 0
1046 /* According to my humble theory, AIX has some timing problems and
1047 when the user stack grows, kernel doesn't update stack info in time
1048 and ptrace calls step on user stack. That is why we sleep here a
1049 little, and give kernel to update its internals. */
1050 usleep (36000);
1051 #endif
1052
1053 if (arch64)
1054 rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, size, NULL);
1055 else
1056 rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi, size, NULL);
1057
1058 if (rc == -1)
1059 {
1060 if (errno == ENOMEM)
1061 load_segs *= 2;
1062 else
1063 perror_with_name (_("ptrace ldinfo"));
1064 }
1065 else
1066 {
1067 vmap_ldinfo (ldi);
1068 vmap_exec (); /* relocate the exec and core sections as well. */
1069 }
1070 } while (rc == -1);
1071 if (ldi)
1072 xfree (ldi);
1073 }
1074 \f
1075 /* Core file stuff. */
1076
1077 /* Relocate symtabs and read in shared library info, based on symbols
1078 from the core file. */
1079
1080 void
1081 xcoff_relocate_core (struct target_ops *target)
1082 {
1083 struct bfd_section *ldinfo_sec;
1084 int offset = 0;
1085 LdInfo *ldi;
1086 struct vmap *vp;
1087 int arch64 = ARCH64 ();
1088
1089 /* Size of a struct ld_info except for the variable-length filename. */
1090 int nonfilesz = (int)LDI_FILENAME ((LdInfo *)0, arch64);
1091
1092 /* Allocated size of buffer. */
1093 int buffer_size = nonfilesz;
1094 char *buffer = xmalloc (buffer_size);
1095 struct cleanup *old = make_cleanup (free_current_contents, &buffer);
1096
1097 ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
1098 if (ldinfo_sec == NULL)
1099 {
1100 bfd_err:
1101 fprintf_filtered (gdb_stderr, "Couldn't get ldinfo from core file: %s\n",
1102 bfd_errmsg (bfd_get_error ()));
1103 do_cleanups (old);
1104 return;
1105 }
1106 do
1107 {
1108 int i;
1109 int names_found = 0;
1110
1111 /* Read in everything but the name. */
1112 if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer,
1113 offset, nonfilesz) == 0)
1114 goto bfd_err;
1115
1116 /* Now the name. */
1117 i = nonfilesz;
1118 do
1119 {
1120 if (i == buffer_size)
1121 {
1122 buffer_size *= 2;
1123 buffer = xrealloc (buffer, buffer_size);
1124 }
1125 if (bfd_get_section_contents (core_bfd, ldinfo_sec, &buffer[i],
1126 offset + i, 1) == 0)
1127 goto bfd_err;
1128 if (buffer[i++] == '\0')
1129 ++names_found;
1130 }
1131 while (names_found < 2);
1132
1133 ldi = (LdInfo *) buffer;
1134
1135 /* Can't use a file descriptor from the core file; need to open it. */
1136 if (arch64)
1137 ldi->l64.ldinfo_fd = -1;
1138 else
1139 ldi->l32.ldinfo_fd = -1;
1140
1141 /* The first ldinfo is for the exec file, allocated elsewhere. */
1142 if (offset == 0 && vmap != NULL)
1143 vp = vmap;
1144 else
1145 vp = add_vmap (ldi);
1146
1147 /* Process next shared library upon error. */
1148 offset += LDI_NEXT (ldi, arch64);
1149 if (vp == NULL)
1150 continue;
1151
1152 vmap_secs (vp, ldi, arch64);
1153
1154 /* Unless this is the exec file,
1155 add our sections to the section table for the core target. */
1156 if (vp != vmap)
1157 {
1158 struct section_table *stp;
1159
1160 target_resize_to_sections (target, 2);
1161 stp = target->to_sections_end - 2;
1162
1163 stp->bfd = vp->bfd;
1164 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".text");
1165 stp->addr = vp->tstart;
1166 stp->endaddr = vp->tend;
1167 stp++;
1168
1169 stp->bfd = vp->bfd;
1170 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".data");
1171 stp->addr = vp->dstart;
1172 stp->endaddr = vp->dend;
1173 }
1174
1175 vmap_symtab (vp);
1176
1177 if (vp != vmap && vp->objfile)
1178 observer_notify_new_objfile (vp->objfile);
1179 }
1180 while (LDI_NEXT (ldi, arch64) != 0);
1181 vmap_exec ();
1182 breakpoint_re_set ();
1183 do_cleanups (old);
1184 }
1185 \f
1186 /* Under AIX, we have to pass the correct TOC pointer to a function
1187 when calling functions in the inferior.
1188 We try to find the relative toc offset of the objfile containing PC
1189 and add the current load address of the data segment from the vmap. */
1190
1191 static CORE_ADDR
1192 find_toc_address (CORE_ADDR pc)
1193 {
1194 struct vmap *vp;
1195 extern CORE_ADDR get_toc_offset (struct objfile *); /* xcoffread.c */
1196
1197 for (vp = vmap; vp; vp = vp->nxt)
1198 {
1199 if (pc >= vp->tstart && pc < vp->tend)
1200 {
1201 /* vp->objfile is only NULL for the exec file. */
1202 return vp->dstart + get_toc_offset (vp->objfile == NULL
1203 ? symfile_objfile
1204 : vp->objfile);
1205 }
1206 }
1207 error (_("Unable to find TOC entry for pc %s."), hex_string (pc));
1208 }
1209 \f
1210
1211 void
1212 _initialize_rs6000_nat (void)
1213 {
1214 struct target_ops *t;
1215
1216 t = inf_ptrace_target ();
1217 t->to_fetch_registers = rs6000_fetch_inferior_registers;
1218 t->to_store_registers = rs6000_store_inferior_registers;
1219 t->to_xfer_partial = rs6000_xfer_partial;
1220
1221 super_create_inferior = t->to_create_inferior;
1222 t->to_create_inferior = rs6000_create_inferior;
1223
1224 t->to_wait = rs6000_wait;
1225
1226 add_target (t);
1227
1228 /* Initialize hook in rs6000-tdep.c for determining the TOC address
1229 when calling functions in the inferior. */
1230 rs6000_find_toc_address_hook = find_toc_address;
1231 }
This page took 0.057349 seconds and 4 git commands to generate.