* dwarf2read.c (dwarf2_get_pc_bounds): Complain if offset
[deliverable/binutils-gdb.git] / gdb / rs6000-nat.c
1 /* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "inferior.h"
25 #include "target.h"
26 #include "gdbcore.h"
27 #include "xcoffsolib.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "libbfd.h" /* For bfd_cache_lookup (FIXME) */
31 #include "bfd.h"
32 #include "gdb-stabs.h"
33 #include "regcache.h"
34 #include "arch-utils.h"
35 #include "language.h" /* for local_hex_string(). */
36 #include "ppc-tdep.h"
37
38 #include <sys/ptrace.h>
39 #include <sys/reg.h>
40
41 #include <sys/param.h>
42 #include <sys/dir.h>
43 #include <sys/user.h>
44 #include <signal.h>
45 #include <sys/ioctl.h>
46 #include <fcntl.h>
47 #include <errno.h>
48
49 #include <a.out.h>
50 #include <sys/file.h>
51 #include "gdb_stat.h"
52 #include <sys/core.h>
53 #define __LDINFO_PTRACE32__ /* for __ld_info32 */
54 #define __LDINFO_PTRACE64__ /* for __ld_info64 */
55 #include <sys/ldr.h>
56 #include <sys/systemcfg.h>
57
58 /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
59 debugging 32-bit and 64-bit processes. Define a typedef and macros for
60 accessing fields in the appropriate structures. */
61
62 /* In 32-bit compilation mode (which is the only mode from which ptrace()
63 works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
64
65 #ifdef __ld_info32
66 # define ARCH3264
67 #endif
68
69 /* Return whether the current architecture is 64-bit. */
70
71 #ifndef ARCH3264
72 # define ARCH64() 0
73 #else
74 # define ARCH64() (REGISTER_RAW_SIZE (0) == 8)
75 #endif
76
77 /* Union of 32-bit and 64-bit ".reg" core file sections. */
78
79 typedef union {
80 #ifdef ARCH3264
81 struct __context64 r64;
82 #else
83 struct mstsave r64;
84 #endif
85 struct mstsave r32;
86 } CoreRegs;
87
88 /* Union of 32-bit and 64-bit versions of ld_info. */
89
90 typedef union {
91 #ifndef ARCH3264
92 struct ld_info l32;
93 struct ld_info l64;
94 #else
95 struct __ld_info32 l32;
96 struct __ld_info64 l64;
97 #endif
98 } LdInfo;
99
100 /* If compiling with 32-bit and 64-bit debugging capability (e.g. AIX 4.x),
101 declare and initialize a variable named VAR suitable for use as the arch64
102 parameter to the various LDI_*() macros. */
103
104 #ifndef ARCH3264
105 # define ARCH64_DECL(var)
106 #else
107 # define ARCH64_DECL(var) int var = ARCH64 ()
108 #endif
109
110 /* Return LDI's FIELD for a 64-bit process if ARCH64 and for a 32-bit process
111 otherwise. This technique only works for FIELDs with the same data type in
112 32-bit and 64-bit versions of ld_info. */
113
114 #ifndef ARCH3264
115 # define LDI_FIELD(ldi, arch64, field) (ldi)->l32.ldinfo_##field
116 #else
117 # define LDI_FIELD(ldi, arch64, field) \
118 (arch64 ? (ldi)->l64.ldinfo_##field : (ldi)->l32.ldinfo_##field)
119 #endif
120
121 /* Return various LDI fields for a 64-bit process if ARCH64 and for a 32-bit
122 process otherwise. */
123
124 #define LDI_NEXT(ldi, arch64) LDI_FIELD(ldi, arch64, next)
125 #define LDI_FD(ldi, arch64) LDI_FIELD(ldi, arch64, fd)
126 #define LDI_FILENAME(ldi, arch64) LDI_FIELD(ldi, arch64, filename)
127
128 extern struct vmap *map_vmap (bfd * bf, bfd * arch);
129
130 extern struct target_ops exec_ops;
131
132 static void vmap_exec (void);
133
134 static void vmap_ldinfo (LdInfo *);
135
136 static struct vmap *add_vmap (LdInfo *);
137
138 static int objfile_symbol_add (void *);
139
140 static void vmap_symtab (struct vmap *);
141
142 static void fetch_core_registers (char *, unsigned int, int, CORE_ADDR);
143
144 static void exec_one_dummy_insn (void);
145
146 extern void fixup_breakpoints (CORE_ADDR low, CORE_ADDR high, CORE_ADDR delta);
147
148 /* Given REGNO, a gdb register number, return the corresponding
149 number suitable for use as a ptrace() parameter. Return -1 if
150 there's no suitable mapping. Also, set the int pointed to by
151 ISFLOAT to indicate whether REGNO is a floating point register. */
152
153 static int
154 regmap (int regno, int *isfloat)
155 {
156 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
157
158 *isfloat = 0;
159 if (tdep->ppc_gp0_regnum <= regno && regno <= tdep->ppc_gplast_regnum)
160 return regno;
161 else if (FP0_REGNUM <= regno && regno <= FPLAST_REGNUM)
162 {
163 *isfloat = 1;
164 return regno - FP0_REGNUM + FPR0;
165 }
166 else if (regno == PC_REGNUM)
167 return IAR;
168 else if (regno == tdep->ppc_ps_regnum)
169 return MSR;
170 else if (regno == tdep->ppc_cr_regnum)
171 return CR;
172 else if (regno == tdep->ppc_lr_regnum)
173 return LR;
174 else if (regno == tdep->ppc_ctr_regnum)
175 return CTR;
176 else if (regno == tdep->ppc_xer_regnum)
177 return XER;
178 else if (regno == tdep->ppc_fpscr_regnum)
179 return FPSCR;
180 else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum)
181 return MQ;
182 else
183 return -1;
184 }
185
186 /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
187
188 static int
189 rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
190 {
191 int ret = ptrace (req, id, (int *)addr, data, buf);
192 #if 0
193 printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
194 req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
195 #endif
196 return ret;
197 }
198
199 /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
200
201 static int
202 rs6000_ptrace64 (int req, int id, long long addr, int data, int *buf)
203 {
204 #ifdef ARCH3264
205 int ret = ptracex (req, id, addr, data, buf);
206 #else
207 int ret = 0;
208 #endif
209 #if 0
210 printf ("rs6000_ptrace64 (%d, %d, 0x%llx, %08x, 0x%x) = 0x%x\n",
211 req, id, addr, data, (unsigned int)buf, ret);
212 #endif
213 return ret;
214 }
215
216 /* Fetch register REGNO from the inferior. */
217
218 static void
219 fetch_register (int regno)
220 {
221 int addr[MAX_REGISTER_SIZE];
222 int nr, isfloat;
223
224 /* Retrieved values may be -1, so infer errors from errno. */
225 errno = 0;
226
227 nr = regmap (regno, &isfloat);
228
229 /* Floating-point registers. */
230 if (isfloat)
231 rs6000_ptrace32 (PT_READ_FPR, PIDGET (inferior_ptid), addr, nr, 0);
232
233 /* Bogus register number. */
234 else if (nr < 0)
235 {
236 if (regno >= NUM_REGS)
237 fprintf_unfiltered (gdb_stderr,
238 "gdb error: register no %d not implemented.\n",
239 regno);
240 return;
241 }
242
243 /* Fixed-point registers. */
244 else
245 {
246 if (!ARCH64 ())
247 *addr = rs6000_ptrace32 (PT_READ_GPR, PIDGET (inferior_ptid), (int *)nr, 0, 0);
248 else
249 {
250 /* PT_READ_GPR requires the buffer parameter to point to long long,
251 even if the register is really only 32 bits. */
252 long long buf;
253 rs6000_ptrace64 (PT_READ_GPR, PIDGET (inferior_ptid), nr, 0, (int *)&buf);
254 if (REGISTER_RAW_SIZE (regno) == 8)
255 memcpy (addr, &buf, 8);
256 else
257 *addr = buf;
258 }
259 }
260
261 if (!errno)
262 supply_register (regno, (char *) addr);
263 else
264 {
265 #if 0
266 /* FIXME: this happens 3 times at the start of each 64-bit program. */
267 perror ("ptrace read");
268 #endif
269 errno = 0;
270 }
271 }
272
273 /* Store register REGNO back into the inferior. */
274
275 static void
276 store_register (int regno)
277 {
278 int addr[MAX_REGISTER_SIZE];
279 int nr, isfloat;
280
281 /* Fetch the register's value from the register cache. */
282 regcache_collect (regno, addr);
283
284 /* -1 can be a successful return value, so infer errors from errno. */
285 errno = 0;
286
287 nr = regmap (regno, &isfloat);
288
289 /* Floating-point registers. */
290 if (isfloat)
291 rs6000_ptrace32 (PT_WRITE_FPR, PIDGET (inferior_ptid), addr, nr, 0);
292
293 /* Bogus register number. */
294 else if (nr < 0)
295 {
296 if (regno >= NUM_REGS)
297 fprintf_unfiltered (gdb_stderr,
298 "gdb error: register no %d not implemented.\n",
299 regno);
300 }
301
302 /* Fixed-point registers. */
303 else
304 {
305 if (regno == SP_REGNUM)
306 /* Execute one dummy instruction (which is a breakpoint) in inferior
307 process to give kernel a chance to do internal housekeeping.
308 Otherwise the following ptrace(2) calls will mess up user stack
309 since kernel will get confused about the bottom of the stack
310 (%sp). */
311 exec_one_dummy_insn ();
312
313 /* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors,
314 the register's value is passed by value, but for 64-bit inferiors,
315 the address of a buffer containing the value is passed. */
316 if (!ARCH64 ())
317 rs6000_ptrace32 (PT_WRITE_GPR, PIDGET (inferior_ptid), (int *)nr, *addr, 0);
318 else
319 {
320 /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
321 area, even if the register is really only 32 bits. */
322 long long buf;
323 if (REGISTER_RAW_SIZE (regno) == 8)
324 memcpy (&buf, addr, 8);
325 else
326 buf = *addr;
327 rs6000_ptrace64 (PT_WRITE_GPR, PIDGET (inferior_ptid), nr, 0, (int *)&buf);
328 }
329 }
330
331 if (errno)
332 {
333 perror ("ptrace write");
334 errno = 0;
335 }
336 }
337
338 /* Read from the inferior all registers if REGNO == -1 and just register
339 REGNO otherwise. */
340
341 void
342 fetch_inferior_registers (int regno)
343 {
344 if (regno != -1)
345 fetch_register (regno);
346
347 else
348 {
349 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
350
351 /* Read 32 general purpose registers. */
352 for (regno = tdep->ppc_gp0_regnum;
353 regno <= tdep->ppc_gplast_regnum;
354 regno++)
355 {
356 fetch_register (regno);
357 }
358
359 /* Read general purpose floating point registers. */
360 for (regno = FP0_REGNUM; regno <= FPLAST_REGNUM; regno++)
361 fetch_register (regno);
362
363 /* Read special registers. */
364 fetch_register (PC_REGNUM);
365 fetch_register (tdep->ppc_ps_regnum);
366 fetch_register (tdep->ppc_cr_regnum);
367 fetch_register (tdep->ppc_lr_regnum);
368 fetch_register (tdep->ppc_ctr_regnum);
369 fetch_register (tdep->ppc_xer_regnum);
370 fetch_register (tdep->ppc_fpscr_regnum);
371 if (tdep->ppc_mq_regnum >= 0)
372 fetch_register (tdep->ppc_mq_regnum);
373 }
374 }
375
376 /* Store our register values back into the inferior.
377 If REGNO is -1, do this for all registers.
378 Otherwise, REGNO specifies which register (so we can save time). */
379
380 void
381 store_inferior_registers (int regno)
382 {
383 if (regno != -1)
384 store_register (regno);
385
386 else
387 {
388 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
389
390 /* Write general purpose registers first. */
391 for (regno = tdep->ppc_gp0_regnum;
392 regno <= tdep->ppc_gplast_regnum;
393 regno++)
394 {
395 store_register (regno);
396 }
397
398 /* Write floating point registers. */
399 for (regno = FP0_REGNUM; regno <= FPLAST_REGNUM; regno++)
400 store_register (regno);
401
402 /* Write special registers. */
403 store_register (PC_REGNUM);
404 store_register (tdep->ppc_ps_regnum);
405 store_register (tdep->ppc_cr_regnum);
406 store_register (tdep->ppc_lr_regnum);
407 store_register (tdep->ppc_ctr_regnum);
408 store_register (tdep->ppc_xer_regnum);
409 store_register (tdep->ppc_fpscr_regnum);
410 if (tdep->ppc_mq_regnum >= 0)
411 store_register (tdep->ppc_mq_regnum);
412 }
413 }
414
415 /* Store in *TO the 32-bit word at 32-bit-aligned ADDR in the child
416 process, which is 64-bit if ARCH64 and 32-bit otherwise. Return
417 success. */
418
419 static int
420 read_word (CORE_ADDR from, int *to, int arch64)
421 {
422 /* Retrieved values may be -1, so infer errors from errno. */
423 errno = 0;
424
425 if (arch64)
426 *to = rs6000_ptrace64 (PT_READ_I, PIDGET (inferior_ptid), from, 0, NULL);
427 else
428 *to = rs6000_ptrace32 (PT_READ_I, PIDGET (inferior_ptid), (int *)(long) from,
429 0, NULL);
430
431 return !errno;
432 }
433
434 /* Copy LEN bytes to or from inferior's memory starting at MEMADDR
435 to debugger memory starting at MYADDR. Copy to inferior if
436 WRITE is nonzero.
437
438 Returns the length copied, which is either the LEN argument or zero.
439 This xfer function does not do partial moves, since child_ops
440 doesn't allow memory operations to cross below us in the target stack
441 anyway. */
442
443 int
444 child_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len,
445 int write, struct mem_attrib *attrib,
446 struct target_ops *target)
447 {
448 /* Round starting address down to 32-bit word boundary. */
449 int mask = sizeof (int) - 1;
450 CORE_ADDR addr = memaddr & ~(CORE_ADDR)mask;
451
452 /* Round ending address up to 32-bit word boundary. */
453 int count = ((memaddr + len - addr + mask) & ~(CORE_ADDR)mask)
454 / sizeof (int);
455
456 /* Allocate word transfer buffer. */
457 /* FIXME (alloca): This code, cloned from infptrace.c, is unsafe
458 because it uses alloca to allocate a buffer of arbitrary size.
459 For very large xfers, this could crash GDB's stack. */
460 int *buf = (int *) alloca (count * sizeof (int));
461
462 int arch64 = ARCH64 ();
463 int i;
464
465 if (!write)
466 {
467 /* Retrieve memory a word at a time. */
468 for (i = 0; i < count; i++, addr += sizeof (int))
469 {
470 if (!read_word (addr, buf + i, arch64))
471 return 0;
472 QUIT;
473 }
474
475 /* Copy memory to supplied buffer. */
476 addr -= count * sizeof (int);
477 memcpy (myaddr, (char *)buf + (memaddr - addr), len);
478 }
479 else
480 {
481 /* Fetch leading memory needed for alignment. */
482 if (addr < memaddr)
483 if (!read_word (addr, buf, arch64))
484 return 0;
485
486 /* Fetch trailing memory needed for alignment. */
487 if (addr + count * sizeof (int) > memaddr + len)
488 if (!read_word (addr + (count - 1) * sizeof (int),
489 buf + count - 1, arch64))
490 return 0;
491
492 /* Copy supplied data into memory buffer. */
493 memcpy ((char *)buf + (memaddr - addr), myaddr, len);
494
495 /* Store memory one word at a time. */
496 for (i = 0, errno = 0; i < count; i++, addr += sizeof (int))
497 {
498 if (arch64)
499 rs6000_ptrace64 (PT_WRITE_D, PIDGET (inferior_ptid), addr, buf[i], NULL);
500 else
501 rs6000_ptrace32 (PT_WRITE_D, PIDGET (inferior_ptid), (int *)(long) addr,
502 buf[i], NULL);
503
504 if (errno)
505 return 0;
506 QUIT;
507 }
508 }
509
510 return len;
511 }
512
513 /* Execute one dummy breakpoint instruction. This way we give the kernel
514 a chance to do some housekeeping and update inferior's internal data,
515 including u_area. */
516
517 static void
518 exec_one_dummy_insn (void)
519 {
520 #define DUMMY_INSN_ADDR (TEXT_SEGMENT_BASE)+0x200
521
522 char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
523 int ret, status, pid;
524 CORE_ADDR prev_pc;
525
526 /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
527 assume that this address will never be executed again by the real
528 code. */
529
530 target_insert_breakpoint (DUMMY_INSN_ADDR, shadow_contents);
531
532 /* You might think this could be done with a single ptrace call, and
533 you'd be correct for just about every platform I've ever worked
534 on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
535 the inferior never hits the breakpoint (it's also worth noting
536 powerpc-ibm-aix4.1.3 works correctly). */
537 prev_pc = read_pc ();
538 write_pc (DUMMY_INSN_ADDR);
539 if (ARCH64 ())
540 ret = rs6000_ptrace64 (PT_CONTINUE, PIDGET (inferior_ptid), 1, 0, NULL);
541 else
542 ret = rs6000_ptrace32 (PT_CONTINUE, PIDGET (inferior_ptid), (int *)1, 0, NULL);
543
544 if (ret != 0)
545 perror ("pt_continue");
546
547 do
548 {
549 pid = wait (&status);
550 }
551 while (pid != PIDGET (inferior_ptid));
552
553 write_pc (prev_pc);
554 target_remove_breakpoint (DUMMY_INSN_ADDR, shadow_contents);
555 }
556
557 /* Fetch registers from the register section in core bfd. */
558
559 static void
560 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
561 int which, CORE_ADDR reg_addr)
562 {
563 CoreRegs *regs;
564 int regi;
565 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
566
567 if (which != 0)
568 {
569 fprintf_unfiltered
570 (gdb_stderr,
571 "Gdb error: unknown parameter to fetch_core_registers().\n");
572 return;
573 }
574
575 regs = (CoreRegs *) core_reg_sect;
576
577 /* Put the register values from the core file section in the regcache. */
578
579 if (ARCH64 ())
580 {
581 for (regi = 0; regi < 32; regi++)
582 supply_register (regi, (char *) &regs->r64.gpr[regi]);
583
584 for (regi = 0; regi < 32; regi++)
585 supply_register (FP0_REGNUM + regi, (char *) &regs->r64.fpr[regi]);
586
587 supply_register (PC_REGNUM, (char *) &regs->r64.iar);
588 supply_register (tdep->ppc_ps_regnum, (char *) &regs->r64.msr);
589 supply_register (tdep->ppc_cr_regnum, (char *) &regs->r64.cr);
590 supply_register (tdep->ppc_lr_regnum, (char *) &regs->r64.lr);
591 supply_register (tdep->ppc_ctr_regnum, (char *) &regs->r64.ctr);
592 supply_register (tdep->ppc_xer_regnum, (char *) &regs->r64.xer);
593 supply_register (tdep->ppc_fpscr_regnum, (char *) &regs->r64.fpscr);
594 }
595 else
596 {
597 for (regi = 0; regi < 32; regi++)
598 supply_register (regi, (char *) &regs->r32.gpr[regi]);
599
600 for (regi = 0; regi < 32; regi++)
601 supply_register (FP0_REGNUM + regi, (char *) &regs->r32.fpr[regi]);
602
603 supply_register (PC_REGNUM, (char *) &regs->r32.iar);
604 supply_register (tdep->ppc_ps_regnum, (char *) &regs->r32.msr);
605 supply_register (tdep->ppc_cr_regnum, (char *) &regs->r32.cr);
606 supply_register (tdep->ppc_lr_regnum, (char *) &regs->r32.lr);
607 supply_register (tdep->ppc_ctr_regnum, (char *) &regs->r32.ctr);
608 supply_register (tdep->ppc_xer_regnum, (char *) &regs->r32.xer);
609 supply_register (tdep->ppc_fpscr_regnum, (char *) &regs->r32.fpscr);
610 if (tdep->ppc_mq_regnum >= 0)
611 supply_register (tdep->ppc_mq_regnum, (char *) &regs->r32.mq);
612 }
613 }
614 \f
615
616 /* Copy information about text and data sections from LDI to VP for a 64-bit
617 process if ARCH64 and for a 32-bit process otherwise. */
618
619 static void
620 vmap_secs (struct vmap *vp, LdInfo *ldi, int arch64)
621 {
622 if (arch64)
623 {
624 vp->tstart = (CORE_ADDR) ldi->l64.ldinfo_textorg;
625 vp->tend = vp->tstart + ldi->l64.ldinfo_textsize;
626 vp->dstart = (CORE_ADDR) ldi->l64.ldinfo_dataorg;
627 vp->dend = vp->dstart + ldi->l64.ldinfo_datasize;
628 }
629 else
630 {
631 vp->tstart = (unsigned long) ldi->l32.ldinfo_textorg;
632 vp->tend = vp->tstart + ldi->l32.ldinfo_textsize;
633 vp->dstart = (unsigned long) ldi->l32.ldinfo_dataorg;
634 vp->dend = vp->dstart + ldi->l32.ldinfo_datasize;
635 }
636
637 /* The run time loader maps the file header in addition to the text
638 section and returns a pointer to the header in ldinfo_textorg.
639 Adjust the text start address to point to the real start address
640 of the text section. */
641 vp->tstart += vp->toffs;
642 }
643
644 /* handle symbol translation on vmapping */
645
646 static void
647 vmap_symtab (struct vmap *vp)
648 {
649 struct objfile *objfile;
650 struct section_offsets *new_offsets;
651 int i;
652
653 objfile = vp->objfile;
654 if (objfile == NULL)
655 {
656 /* OK, it's not an objfile we opened ourselves.
657 Currently, that can only happen with the exec file, so
658 relocate the symbols for the symfile. */
659 if (symfile_objfile == NULL)
660 return;
661 objfile = symfile_objfile;
662 }
663 else if (!vp->loaded)
664 /* If symbols are not yet loaded, offsets are not yet valid. */
665 return;
666
667 new_offsets =
668 (struct section_offsets *)
669 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
670
671 for (i = 0; i < objfile->num_sections; ++i)
672 new_offsets->offsets[i] = ANOFFSET (objfile->section_offsets, i);
673
674 /* The symbols in the object file are linked to the VMA of the section,
675 relocate them VMA relative. */
676 new_offsets->offsets[SECT_OFF_TEXT (objfile)] = vp->tstart - vp->tvma;
677 new_offsets->offsets[SECT_OFF_DATA (objfile)] = vp->dstart - vp->dvma;
678 new_offsets->offsets[SECT_OFF_BSS (objfile)] = vp->dstart - vp->dvma;
679
680 objfile_relocate (objfile, new_offsets);
681 }
682 \f
683 /* Add symbols for an objfile. */
684
685 static int
686 objfile_symbol_add (void *arg)
687 {
688 struct objfile *obj = (struct objfile *) arg;
689
690 syms_from_objfile (obj, NULL, 0, 0, 0, 0);
691 new_symfile_objfile (obj, 0, 0);
692 return 1;
693 }
694
695 /* Add symbols for a vmap. Return zero upon error. */
696
697 int
698 vmap_add_symbols (struct vmap *vp)
699 {
700 if (catch_errors (objfile_symbol_add, vp->objfile,
701 "Error while reading shared library symbols:\n",
702 RETURN_MASK_ALL))
703 {
704 /* Note this is only done if symbol reading was successful. */
705 vp->loaded = 1;
706 vmap_symtab (vp);
707 return 1;
708 }
709 return 0;
710 }
711
712 /* Add a new vmap entry based on ldinfo() information.
713
714 If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a
715 core file), the caller should set it to -1, and we will open the file.
716
717 Return the vmap new entry. */
718
719 static struct vmap *
720 add_vmap (LdInfo *ldi)
721 {
722 bfd *abfd, *last;
723 char *mem, *objname, *filename;
724 struct objfile *obj;
725 struct vmap *vp;
726 int fd;
727 ARCH64_DECL (arch64);
728
729 /* This ldi structure was allocated using alloca() in
730 xcoff_relocate_symtab(). Now we need to have persistent object
731 and member names, so we should save them. */
732
733 filename = LDI_FILENAME (ldi, arch64);
734 mem = filename + strlen (filename) + 1;
735 mem = savestring (mem, strlen (mem));
736 objname = savestring (filename, strlen (filename));
737
738 fd = LDI_FD (ldi, arch64);
739 if (fd < 0)
740 /* Note that this opens it once for every member; a possible
741 enhancement would be to only open it once for every object. */
742 abfd = bfd_openr (objname, gnutarget);
743 else
744 abfd = bfd_fdopenr (objname, gnutarget, fd);
745 if (!abfd)
746 {
747 warning ("Could not open `%s' as an executable file: %s",
748 objname, bfd_errmsg (bfd_get_error ()));
749 return NULL;
750 }
751
752 /* make sure we have an object file */
753
754 if (bfd_check_format (abfd, bfd_object))
755 vp = map_vmap (abfd, 0);
756
757 else if (bfd_check_format (abfd, bfd_archive))
758 {
759 last = 0;
760 /* FIXME??? am I tossing BFDs? bfd? */
761 while ((last = bfd_openr_next_archived_file (abfd, last)))
762 if (STREQ (mem, last->filename))
763 break;
764
765 if (!last)
766 {
767 warning ("\"%s\": member \"%s\" missing.", objname, mem);
768 bfd_close (abfd);
769 return NULL;
770 }
771
772 if (!bfd_check_format (last, bfd_object))
773 {
774 warning ("\"%s\": member \"%s\" not in executable format: %s.",
775 objname, mem, bfd_errmsg (bfd_get_error ()));
776 bfd_close (last);
777 bfd_close (abfd);
778 return NULL;
779 }
780
781 vp = map_vmap (last, abfd);
782 }
783 else
784 {
785 warning ("\"%s\": not in executable format: %s.",
786 objname, bfd_errmsg (bfd_get_error ()));
787 bfd_close (abfd);
788 return NULL;
789 }
790 obj = allocate_objfile (vp->bfd, 0);
791 vp->objfile = obj;
792
793 /* Always add symbols for the main objfile. */
794 if (vp == vmap || auto_solib_add)
795 vmap_add_symbols (vp);
796 return vp;
797 }
798 \f
799 /* update VMAP info with ldinfo() information
800 Input is ptr to ldinfo() results. */
801
802 static void
803 vmap_ldinfo (LdInfo *ldi)
804 {
805 struct stat ii, vi;
806 struct vmap *vp;
807 int got_one, retried;
808 int got_exec_file = 0;
809 uint next;
810 int arch64 = ARCH64 ();
811
812 /* For each *ldi, see if we have a corresponding *vp.
813 If so, update the mapping, and symbol table.
814 If not, add an entry and symbol table. */
815
816 do
817 {
818 char *name = LDI_FILENAME (ldi, arch64);
819 char *memb = name + strlen (name) + 1;
820 int fd = LDI_FD (ldi, arch64);
821
822 retried = 0;
823
824 if (fstat (fd, &ii) < 0)
825 {
826 /* The kernel sets ld_info to -1, if the process is still using the
827 object, and the object is removed. Keep the symbol info for the
828 removed object and issue a warning. */
829 warning ("%s (fd=%d) has disappeared, keeping its symbols",
830 name, fd);
831 continue;
832 }
833 retry:
834 for (got_one = 0, vp = vmap; vp; vp = vp->nxt)
835 {
836 struct objfile *objfile;
837
838 /* First try to find a `vp', which is the same as in ldinfo.
839 If not the same, just continue and grep the next `vp'. If same,
840 relocate its tstart, tend, dstart, dend values. If no such `vp'
841 found, get out of this for loop, add this ldi entry as a new vmap
842 (add_vmap) and come back, find its `vp' and so on... */
843
844 /* The filenames are not always sufficient to match on. */
845
846 if ((name[0] == '/' && !STREQ (name, vp->name))
847 || (memb[0] && !STREQ (memb, vp->member)))
848 continue;
849
850 /* See if we are referring to the same file.
851 We have to check objfile->obfd, symfile.c:reread_symbols might
852 have updated the obfd after a change. */
853 objfile = vp->objfile == NULL ? symfile_objfile : vp->objfile;
854 if (objfile == NULL
855 || objfile->obfd == NULL
856 || bfd_stat (objfile->obfd, &vi) < 0)
857 {
858 warning ("Unable to stat %s, keeping its symbols", name);
859 continue;
860 }
861
862 if (ii.st_dev != vi.st_dev || ii.st_ino != vi.st_ino)
863 continue;
864
865 if (!retried)
866 close (fd);
867
868 ++got_one;
869
870 /* Found a corresponding VMAP. Remap! */
871
872 vmap_secs (vp, ldi, arch64);
873
874 /* The objfile is only NULL for the exec file. */
875 if (vp->objfile == NULL)
876 got_exec_file = 1;
877
878 /* relocate symbol table(s). */
879 vmap_symtab (vp);
880
881 /* Announce new object files. Doing this after symbol relocation
882 makes aix-thread.c's job easier. */
883 if (target_new_objfile_hook && vp->objfile)
884 target_new_objfile_hook (vp->objfile);
885
886 /* There may be more, so we don't break out of the loop. */
887 }
888
889 /* if there was no matching *vp, we must perforce create the sucker(s) */
890 if (!got_one && !retried)
891 {
892 add_vmap (ldi);
893 ++retried;
894 goto retry;
895 }
896 }
897 while ((next = LDI_NEXT (ldi, arch64))
898 && (ldi = (void *) (next + (char *) ldi)));
899
900 /* If we don't find the symfile_objfile anywhere in the ldinfo, it
901 is unlikely that the symbol file is relocated to the proper
902 address. And we might have attached to a process which is
903 running a different copy of the same executable. */
904 if (symfile_objfile != NULL && !got_exec_file)
905 {
906 warning ("Symbol file %s\nis not mapped; discarding it.\n\
907 If in fact that file has symbols which the mapped files listed by\n\
908 \"info files\" lack, you can load symbols with the \"symbol-file\" or\n\
909 \"add-symbol-file\" commands (note that you must take care of relocating\n\
910 symbols to the proper address).",
911 symfile_objfile->name);
912 free_objfile (symfile_objfile);
913 symfile_objfile = NULL;
914 }
915 breakpoint_re_set ();
916 }
917 \f
918 /* As well as symbol tables, exec_sections need relocation. After
919 the inferior process' termination, there will be a relocated symbol
920 table exist with no corresponding inferior process. At that time, we
921 need to use `exec' bfd, rather than the inferior process's memory space
922 to look up symbols.
923
924 `exec_sections' need to be relocated only once, as long as the exec
925 file remains unchanged.
926 */
927
928 static void
929 vmap_exec (void)
930 {
931 static bfd *execbfd;
932 int i;
933
934 if (execbfd == exec_bfd)
935 return;
936
937 execbfd = exec_bfd;
938
939 if (!vmap || !exec_ops.to_sections)
940 error ("vmap_exec: vmap or exec_ops.to_sections == 0\n");
941
942 for (i = 0; &exec_ops.to_sections[i] < exec_ops.to_sections_end; i++)
943 {
944 if (STREQ (".text", exec_ops.to_sections[i].the_bfd_section->name))
945 {
946 exec_ops.to_sections[i].addr += vmap->tstart - vmap->tvma;
947 exec_ops.to_sections[i].endaddr += vmap->tstart - vmap->tvma;
948 }
949 else if (STREQ (".data", exec_ops.to_sections[i].the_bfd_section->name))
950 {
951 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
952 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
953 }
954 else if (STREQ (".bss", exec_ops.to_sections[i].the_bfd_section->name))
955 {
956 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
957 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
958 }
959 }
960 }
961
962 /* Set the current architecture from the host running GDB. Called when
963 starting a child process. */
964
965 static void
966 set_host_arch (int pid)
967 {
968 enum bfd_architecture arch;
969 unsigned long mach;
970 bfd abfd;
971 struct gdbarch_info info;
972
973 if (__power_rs ())
974 {
975 arch = bfd_arch_rs6000;
976 mach = bfd_mach_rs6k;
977 }
978 else
979 {
980 arch = bfd_arch_powerpc;
981 mach = bfd_mach_ppc;
982 }
983
984 /* FIXME: schauer/2002-02-25:
985 We don't know if we are executing a 32 or 64 bit executable,
986 and have no way to pass the proper word size to rs6000_gdbarch_init.
987 So we have to avoid switching to a new architecture, if the architecture
988 matches already.
989 Blindly calling rs6000_gdbarch_init used to work in older versions of
990 GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
991 determine the wordsize. */
992 if (exec_bfd)
993 {
994 const struct bfd_arch_info *exec_bfd_arch_info;
995
996 exec_bfd_arch_info = bfd_get_arch_info (exec_bfd);
997 if (arch == exec_bfd_arch_info->arch)
998 return;
999 }
1000
1001 bfd_default_set_arch_mach (&abfd, arch, mach);
1002
1003 gdbarch_info_init (&info);
1004 info.bfd_arch_info = bfd_get_arch_info (&abfd);
1005
1006 if (!gdbarch_update_p (info))
1007 {
1008 internal_error (__FILE__, __LINE__,
1009 "set_host_arch: failed to select architecture");
1010 }
1011 }
1012
1013 \f
1014 /* xcoff_relocate_symtab - hook for symbol table relocation.
1015 also reads shared libraries.. */
1016
1017 void
1018 xcoff_relocate_symtab (unsigned int pid)
1019 {
1020 int load_segs = 64; /* number of load segments */
1021 int rc;
1022 LdInfo *ldi = NULL;
1023 int arch64 = ARCH64 ();
1024 int ldisize = arch64 ? sizeof (ldi->l64) : sizeof (ldi->l32);
1025 int size;
1026
1027 do
1028 {
1029 size = load_segs * ldisize;
1030 ldi = (void *) xrealloc (ldi, size);
1031
1032 #if 0
1033 /* According to my humble theory, AIX has some timing problems and
1034 when the user stack grows, kernel doesn't update stack info in time
1035 and ptrace calls step on user stack. That is why we sleep here a
1036 little, and give kernel to update its internals. */
1037 usleep (36000);
1038 #endif
1039
1040 if (arch64)
1041 rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, size, NULL);
1042 else
1043 rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi, size, NULL);
1044
1045 if (rc == -1)
1046 {
1047 if (errno == ENOMEM)
1048 load_segs *= 2;
1049 else
1050 perror_with_name ("ptrace ldinfo");
1051 }
1052 else
1053 {
1054 vmap_ldinfo (ldi);
1055 vmap_exec (); /* relocate the exec and core sections as well. */
1056 }
1057 } while (rc == -1);
1058 if (ldi)
1059 xfree (ldi);
1060 }
1061 \f
1062 /* Core file stuff. */
1063
1064 /* Relocate symtabs and read in shared library info, based on symbols
1065 from the core file. */
1066
1067 void
1068 xcoff_relocate_core (struct target_ops *target)
1069 {
1070 sec_ptr ldinfo_sec;
1071 int offset = 0;
1072 LdInfo *ldi;
1073 struct vmap *vp;
1074 int arch64 = ARCH64 ();
1075
1076 /* Size of a struct ld_info except for the variable-length filename. */
1077 int nonfilesz = (int)LDI_FILENAME ((LdInfo *)0, arch64);
1078
1079 /* Allocated size of buffer. */
1080 int buffer_size = nonfilesz;
1081 char *buffer = xmalloc (buffer_size);
1082 struct cleanup *old = make_cleanup (free_current_contents, &buffer);
1083
1084 ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
1085 if (ldinfo_sec == NULL)
1086 {
1087 bfd_err:
1088 fprintf_filtered (gdb_stderr, "Couldn't get ldinfo from core file: %s\n",
1089 bfd_errmsg (bfd_get_error ()));
1090 do_cleanups (old);
1091 return;
1092 }
1093 do
1094 {
1095 int i;
1096 int names_found = 0;
1097
1098 /* Read in everything but the name. */
1099 if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer,
1100 offset, nonfilesz) == 0)
1101 goto bfd_err;
1102
1103 /* Now the name. */
1104 i = nonfilesz;
1105 do
1106 {
1107 if (i == buffer_size)
1108 {
1109 buffer_size *= 2;
1110 buffer = xrealloc (buffer, buffer_size);
1111 }
1112 if (bfd_get_section_contents (core_bfd, ldinfo_sec, &buffer[i],
1113 offset + i, 1) == 0)
1114 goto bfd_err;
1115 if (buffer[i++] == '\0')
1116 ++names_found;
1117 }
1118 while (names_found < 2);
1119
1120 ldi = (LdInfo *) buffer;
1121
1122 /* Can't use a file descriptor from the core file; need to open it. */
1123 if (arch64)
1124 ldi->l64.ldinfo_fd = -1;
1125 else
1126 ldi->l32.ldinfo_fd = -1;
1127
1128 /* The first ldinfo is for the exec file, allocated elsewhere. */
1129 if (offset == 0 && vmap != NULL)
1130 vp = vmap;
1131 else
1132 vp = add_vmap (ldi);
1133
1134 /* Process next shared library upon error. */
1135 offset += LDI_NEXT (ldi, arch64);
1136 if (vp == NULL)
1137 continue;
1138
1139 vmap_secs (vp, ldi, arch64);
1140
1141 /* Unless this is the exec file,
1142 add our sections to the section table for the core target. */
1143 if (vp != vmap)
1144 {
1145 struct section_table *stp;
1146
1147 target_resize_to_sections (target, 2);
1148 stp = target->to_sections_end - 2;
1149
1150 stp->bfd = vp->bfd;
1151 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".text");
1152 stp->addr = vp->tstart;
1153 stp->endaddr = vp->tend;
1154 stp++;
1155
1156 stp->bfd = vp->bfd;
1157 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".data");
1158 stp->addr = vp->dstart;
1159 stp->endaddr = vp->dend;
1160 }
1161
1162 vmap_symtab (vp);
1163
1164 if (target_new_objfile_hook && vp != vmap && vp->objfile)
1165 target_new_objfile_hook (vp->objfile);
1166 }
1167 while (LDI_NEXT (ldi, arch64) != 0);
1168 vmap_exec ();
1169 breakpoint_re_set ();
1170 do_cleanups (old);
1171 }
1172
1173 int
1174 kernel_u_size (void)
1175 {
1176 return (sizeof (struct user));
1177 }
1178 \f
1179 /* Under AIX, we have to pass the correct TOC pointer to a function
1180 when calling functions in the inferior.
1181 We try to find the relative toc offset of the objfile containing PC
1182 and add the current load address of the data segment from the vmap. */
1183
1184 static CORE_ADDR
1185 find_toc_address (CORE_ADDR pc)
1186 {
1187 struct vmap *vp;
1188 extern CORE_ADDR get_toc_offset (struct objfile *); /* xcoffread.c */
1189
1190 for (vp = vmap; vp; vp = vp->nxt)
1191 {
1192 if (pc >= vp->tstart && pc < vp->tend)
1193 {
1194 /* vp->objfile is only NULL for the exec file. */
1195 return vp->dstart + get_toc_offset (vp->objfile == NULL
1196 ? symfile_objfile
1197 : vp->objfile);
1198 }
1199 }
1200 error ("Unable to find TOC entry for pc %s\n", local_hex_string (pc));
1201 }
1202 \f
1203 /* Register that we are able to handle rs6000 core file formats. */
1204
1205 static struct core_fns rs6000_core_fns =
1206 {
1207 bfd_target_xcoff_flavour, /* core_flavour */
1208 default_check_format, /* check_format */
1209 default_core_sniffer, /* core_sniffer */
1210 fetch_core_registers, /* core_read_registers */
1211 NULL /* next */
1212 };
1213
1214 void
1215 _initialize_core_rs6000 (void)
1216 {
1217 /* Initialize hook in rs6000-tdep.c for determining the TOC address when
1218 calling functions in the inferior. */
1219 rs6000_find_toc_address_hook = find_toc_address;
1220
1221 /* Initialize hook in rs6000-tdep.c to set the current architecture when
1222 starting a child process. */
1223 rs6000_set_host_arch_hook = set_host_arch;
1224
1225 add_core_fns (&rs6000_core_fns);
1226 }
This page took 0.084241 seconds and 4 git commands to generate.