2012-04-20 Sergio Durigan Junior <sergiodj@redhat.com>
[deliverable/binutils-gdb.git] / gdb / rs6000-nat.c
1 /* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-1987, 1989, 1991-2004, 2007-2012 Free Software
4 Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdbcore.h"
25 #include "xcoffsolib.h"
26 #include "symfile.h"
27 #include "objfiles.h"
28 #include "libbfd.h" /* For bfd_default_set_arch_mach (FIXME) */
29 #include "bfd.h"
30 #include "exceptions.h"
31 #include "gdb-stabs.h"
32 #include "regcache.h"
33 #include "arch-utils.h"
34 #include "inf-ptrace.h"
35 #include "ppc-tdep.h"
36 #include "rs6000-tdep.h"
37 #include "exec.h"
38 #include "observer.h"
39 #include "xcoffread.h"
40
41 #include <sys/ptrace.h>
42 #include <sys/reg.h>
43
44 #include <sys/param.h>
45 #include <sys/dir.h>
46 #include <sys/user.h>
47 #include <signal.h>
48 #include <sys/ioctl.h>
49 #include <fcntl.h>
50 #include <errno.h>
51
52 #include <a.out.h>
53 #include <sys/file.h>
54 #include "gdb_stat.h"
55 #include <sys/core.h>
56 #define __LDINFO_PTRACE32__ /* for __ld_info32 */
57 #define __LDINFO_PTRACE64__ /* for __ld_info64 */
58 #include <sys/ldr.h>
59 #include <sys/systemcfg.h>
60
61 /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
62 debugging 32-bit and 64-bit processes. Define a typedef and macros for
63 accessing fields in the appropriate structures. */
64
65 /* In 32-bit compilation mode (which is the only mode from which ptrace()
66 works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
67
68 #ifdef __ld_info32
69 # define ARCH3264
70 #endif
71
72 /* Return whether the current architecture is 64-bit. */
73
74 #ifndef ARCH3264
75 # define ARCH64() 0
76 #else
77 # define ARCH64() (register_size (target_gdbarch, 0) == 8)
78 #endif
79
80 /* Union of 32-bit and 64-bit versions of ld_info. */
81
82 typedef union {
83 #ifndef ARCH3264
84 struct ld_info l32;
85 struct ld_info l64;
86 #else
87 struct __ld_info32 l32;
88 struct __ld_info64 l64;
89 #endif
90 } LdInfo;
91
92 /* If compiling with 32-bit and 64-bit debugging capability (e.g. AIX 4.x),
93 declare and initialize a variable named VAR suitable for use as the arch64
94 parameter to the various LDI_*() macros. */
95
96 #ifndef ARCH3264
97 # define ARCH64_DECL(var)
98 #else
99 # define ARCH64_DECL(var) int var = ARCH64 ()
100 #endif
101
102 /* Return LDI's FIELD for a 64-bit process if ARCH64 and for a 32-bit process
103 otherwise. This technique only works for FIELDs with the same data type in
104 32-bit and 64-bit versions of ld_info. */
105
106 #ifndef ARCH3264
107 # define LDI_FIELD(ldi, arch64, field) (ldi)->l32.ldinfo_##field
108 #else
109 # define LDI_FIELD(ldi, arch64, field) \
110 (arch64 ? (ldi)->l64.ldinfo_##field : (ldi)->l32.ldinfo_##field)
111 #endif
112
113 /* Return various LDI fields for a 64-bit process if ARCH64 and for a 32-bit
114 process otherwise. */
115
116 #define LDI_NEXT(ldi, arch64) LDI_FIELD(ldi, arch64, next)
117 #define LDI_FD(ldi, arch64) LDI_FIELD(ldi, arch64, fd)
118 #define LDI_FILENAME(ldi, arch64) LDI_FIELD(ldi, arch64, filename)
119
120 extern struct vmap *map_vmap (bfd * bf, bfd * arch);
121
122 static void vmap_exec (void);
123
124 static void vmap_ldinfo (LdInfo *);
125
126 static struct vmap *add_vmap (LdInfo *);
127
128 static int objfile_symbol_add (void *);
129
130 static void vmap_symtab (struct vmap *);
131
132 static void exec_one_dummy_insn (struct regcache *);
133
134 extern void fixup_breakpoints (CORE_ADDR low, CORE_ADDR high, CORE_ADDR delta);
135
136 /* Given REGNO, a gdb register number, return the corresponding
137 number suitable for use as a ptrace() parameter. Return -1 if
138 there's no suitable mapping. Also, set the int pointed to by
139 ISFLOAT to indicate whether REGNO is a floating point register. */
140
141 static int
142 regmap (struct gdbarch *gdbarch, int regno, int *isfloat)
143 {
144 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
145
146 *isfloat = 0;
147 if (tdep->ppc_gp0_regnum <= regno
148 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
149 return regno;
150 else if (tdep->ppc_fp0_regnum >= 0
151 && tdep->ppc_fp0_regnum <= regno
152 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
153 {
154 *isfloat = 1;
155 return regno - tdep->ppc_fp0_regnum + FPR0;
156 }
157 else if (regno == gdbarch_pc_regnum (gdbarch))
158 return IAR;
159 else if (regno == tdep->ppc_ps_regnum)
160 return MSR;
161 else if (regno == tdep->ppc_cr_regnum)
162 return CR;
163 else if (regno == tdep->ppc_lr_regnum)
164 return LR;
165 else if (regno == tdep->ppc_ctr_regnum)
166 return CTR;
167 else if (regno == tdep->ppc_xer_regnum)
168 return XER;
169 else if (tdep->ppc_fpscr_regnum >= 0
170 && regno == tdep->ppc_fpscr_regnum)
171 return FPSCR;
172 else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum)
173 return MQ;
174 else
175 return -1;
176 }
177
178 /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
179
180 static int
181 rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
182 {
183 int ret = ptrace (req, id, (int *)addr, data, buf);
184 #if 0
185 printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
186 req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
187 #endif
188 return ret;
189 }
190
191 /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
192
193 static int
194 rs6000_ptrace64 (int req, int id, long long addr, int data, void *buf)
195 {
196 #ifdef ARCH3264
197 int ret = ptracex (req, id, addr, data, buf);
198 #else
199 int ret = 0;
200 #endif
201 #if 0
202 printf ("rs6000_ptrace64 (%d, %d, %s, %08x, 0x%x) = 0x%x\n",
203 req, id, hex_string (addr), data, (unsigned int)buf, ret);
204 #endif
205 return ret;
206 }
207
208 /* Fetch register REGNO from the inferior. */
209
210 static void
211 fetch_register (struct regcache *regcache, int regno)
212 {
213 struct gdbarch *gdbarch = get_regcache_arch (regcache);
214 int addr[MAX_REGISTER_SIZE];
215 int nr, isfloat;
216
217 /* Retrieved values may be -1, so infer errors from errno. */
218 errno = 0;
219
220 nr = regmap (gdbarch, regno, &isfloat);
221
222 /* Floating-point registers. */
223 if (isfloat)
224 rs6000_ptrace32 (PT_READ_FPR, PIDGET (inferior_ptid), addr, nr, 0);
225
226 /* Bogus register number. */
227 else if (nr < 0)
228 {
229 if (regno >= gdbarch_num_regs (gdbarch))
230 fprintf_unfiltered (gdb_stderr,
231 "gdb error: register no %d not implemented.\n",
232 regno);
233 return;
234 }
235
236 /* Fixed-point registers. */
237 else
238 {
239 if (!ARCH64 ())
240 *addr = rs6000_ptrace32 (PT_READ_GPR, PIDGET (inferior_ptid),
241 (int *) nr, 0, 0);
242 else
243 {
244 /* PT_READ_GPR requires the buffer parameter to point to long long,
245 even if the register is really only 32 bits. */
246 long long buf;
247 rs6000_ptrace64 (PT_READ_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
248 if (register_size (gdbarch, regno) == 8)
249 memcpy (addr, &buf, 8);
250 else
251 *addr = buf;
252 }
253 }
254
255 if (!errno)
256 regcache_raw_supply (regcache, regno, (char *) addr);
257 else
258 {
259 #if 0
260 /* FIXME: this happens 3 times at the start of each 64-bit program. */
261 perror (_("ptrace read"));
262 #endif
263 errno = 0;
264 }
265 }
266
267 /* Store register REGNO back into the inferior. */
268
269 static void
270 store_register (struct regcache *regcache, int regno)
271 {
272 struct gdbarch *gdbarch = get_regcache_arch (regcache);
273 int addr[MAX_REGISTER_SIZE];
274 int nr, isfloat;
275
276 /* Fetch the register's value from the register cache. */
277 regcache_raw_collect (regcache, regno, addr);
278
279 /* -1 can be a successful return value, so infer errors from errno. */
280 errno = 0;
281
282 nr = regmap (gdbarch, regno, &isfloat);
283
284 /* Floating-point registers. */
285 if (isfloat)
286 rs6000_ptrace32 (PT_WRITE_FPR, PIDGET (inferior_ptid), addr, nr, 0);
287
288 /* Bogus register number. */
289 else if (nr < 0)
290 {
291 if (regno >= gdbarch_num_regs (gdbarch))
292 fprintf_unfiltered (gdb_stderr,
293 "gdb error: register no %d not implemented.\n",
294 regno);
295 }
296
297 /* Fixed-point registers. */
298 else
299 {
300 if (regno == gdbarch_sp_regnum (gdbarch))
301 /* Execute one dummy instruction (which is a breakpoint) in inferior
302 process to give kernel a chance to do internal housekeeping.
303 Otherwise the following ptrace(2) calls will mess up user stack
304 since kernel will get confused about the bottom of the stack
305 (%sp). */
306 exec_one_dummy_insn (regcache);
307
308 /* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors,
309 the register's value is passed by value, but for 64-bit inferiors,
310 the address of a buffer containing the value is passed. */
311 if (!ARCH64 ())
312 rs6000_ptrace32 (PT_WRITE_GPR, PIDGET (inferior_ptid),
313 (int *) nr, *addr, 0);
314 else
315 {
316 /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
317 area, even if the register is really only 32 bits. */
318 long long buf;
319 if (register_size (gdbarch, regno) == 8)
320 memcpy (&buf, addr, 8);
321 else
322 buf = *addr;
323 rs6000_ptrace64 (PT_WRITE_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
324 }
325 }
326
327 if (errno)
328 {
329 perror (_("ptrace write"));
330 errno = 0;
331 }
332 }
333
334 /* Read from the inferior all registers if REGNO == -1 and just register
335 REGNO otherwise. */
336
337 static void
338 rs6000_fetch_inferior_registers (struct target_ops *ops,
339 struct regcache *regcache, int regno)
340 {
341 struct gdbarch *gdbarch = get_regcache_arch (regcache);
342 if (regno != -1)
343 fetch_register (regcache, regno);
344
345 else
346 {
347 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
348
349 /* Read 32 general purpose registers. */
350 for (regno = tdep->ppc_gp0_regnum;
351 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
352 regno++)
353 {
354 fetch_register (regcache, regno);
355 }
356
357 /* Read general purpose floating point registers. */
358 if (tdep->ppc_fp0_regnum >= 0)
359 for (regno = 0; regno < ppc_num_fprs; regno++)
360 fetch_register (regcache, tdep->ppc_fp0_regnum + regno);
361
362 /* Read special registers. */
363 fetch_register (regcache, gdbarch_pc_regnum (gdbarch));
364 fetch_register (regcache, tdep->ppc_ps_regnum);
365 fetch_register (regcache, tdep->ppc_cr_regnum);
366 fetch_register (regcache, tdep->ppc_lr_regnum);
367 fetch_register (regcache, tdep->ppc_ctr_regnum);
368 fetch_register (regcache, tdep->ppc_xer_regnum);
369 if (tdep->ppc_fpscr_regnum >= 0)
370 fetch_register (regcache, tdep->ppc_fpscr_regnum);
371 if (tdep->ppc_mq_regnum >= 0)
372 fetch_register (regcache, tdep->ppc_mq_regnum);
373 }
374 }
375
376 /* Store our register values back into the inferior.
377 If REGNO is -1, do this for all registers.
378 Otherwise, REGNO specifies which register (so we can save time). */
379
380 static void
381 rs6000_store_inferior_registers (struct target_ops *ops,
382 struct regcache *regcache, int regno)
383 {
384 struct gdbarch *gdbarch = get_regcache_arch (regcache);
385 if (regno != -1)
386 store_register (regcache, regno);
387
388 else
389 {
390 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
391
392 /* Write general purpose registers first. */
393 for (regno = tdep->ppc_gp0_regnum;
394 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
395 regno++)
396 {
397 store_register (regcache, regno);
398 }
399
400 /* Write floating point registers. */
401 if (tdep->ppc_fp0_regnum >= 0)
402 for (regno = 0; regno < ppc_num_fprs; regno++)
403 store_register (regcache, tdep->ppc_fp0_regnum + regno);
404
405 /* Write special registers. */
406 store_register (regcache, gdbarch_pc_regnum (gdbarch));
407 store_register (regcache, tdep->ppc_ps_regnum);
408 store_register (regcache, tdep->ppc_cr_regnum);
409 store_register (regcache, tdep->ppc_lr_regnum);
410 store_register (regcache, tdep->ppc_ctr_regnum);
411 store_register (regcache, tdep->ppc_xer_regnum);
412 if (tdep->ppc_fpscr_regnum >= 0)
413 store_register (regcache, tdep->ppc_fpscr_regnum);
414 if (tdep->ppc_mq_regnum >= 0)
415 store_register (regcache, tdep->ppc_mq_regnum);
416 }
417 }
418
419
420 /* Attempt a transfer all LEN bytes starting at OFFSET between the
421 inferior's OBJECT:ANNEX space and GDB's READBUF/WRITEBUF buffer.
422 Return the number of bytes actually transferred. */
423
424 static LONGEST
425 rs6000_xfer_partial (struct target_ops *ops, enum target_object object,
426 const char *annex, gdb_byte *readbuf,
427 const gdb_byte *writebuf,
428 ULONGEST offset, LONGEST len)
429 {
430 pid_t pid = ptid_get_pid (inferior_ptid);
431 int arch64 = ARCH64 ();
432
433 switch (object)
434 {
435 case TARGET_OBJECT_MEMORY:
436 {
437 union
438 {
439 PTRACE_TYPE_RET word;
440 gdb_byte byte[sizeof (PTRACE_TYPE_RET)];
441 } buffer;
442 ULONGEST rounded_offset;
443 LONGEST partial_len;
444
445 /* Round the start offset down to the next long word
446 boundary. */
447 rounded_offset = offset & -(ULONGEST) sizeof (PTRACE_TYPE_RET);
448
449 /* Since ptrace will transfer a single word starting at that
450 rounded_offset the partial_len needs to be adjusted down to
451 that (remember this function only does a single transfer).
452 Should the required length be even less, adjust it down
453 again. */
454 partial_len = (rounded_offset + sizeof (PTRACE_TYPE_RET)) - offset;
455 if (partial_len > len)
456 partial_len = len;
457
458 if (writebuf)
459 {
460 /* If OFFSET:PARTIAL_LEN is smaller than
461 ROUNDED_OFFSET:WORDSIZE then a read/modify write will
462 be needed. Read in the entire word. */
463 if (rounded_offset < offset
464 || (offset + partial_len
465 < rounded_offset + sizeof (PTRACE_TYPE_RET)))
466 {
467 /* Need part of initial word -- fetch it. */
468 if (arch64)
469 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
470 rounded_offset, 0, NULL);
471 else
472 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
473 (int *) (uintptr_t)
474 rounded_offset,
475 0, NULL);
476 }
477
478 /* Copy data to be written over corresponding part of
479 buffer. */
480 memcpy (buffer.byte + (offset - rounded_offset),
481 writebuf, partial_len);
482
483 errno = 0;
484 if (arch64)
485 rs6000_ptrace64 (PT_WRITE_D, pid,
486 rounded_offset, buffer.word, NULL);
487 else
488 rs6000_ptrace32 (PT_WRITE_D, pid,
489 (int *) (uintptr_t) rounded_offset,
490 buffer.word, NULL);
491 if (errno)
492 return 0;
493 }
494
495 if (readbuf)
496 {
497 errno = 0;
498 if (arch64)
499 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
500 rounded_offset, 0, NULL);
501 else
502 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
503 (int *)(uintptr_t)rounded_offset,
504 0, NULL);
505 if (errno)
506 return 0;
507
508 /* Copy appropriate bytes out of the buffer. */
509 memcpy (readbuf, buffer.byte + (offset - rounded_offset),
510 partial_len);
511 }
512
513 return partial_len;
514 }
515
516 default:
517 return -1;
518 }
519 }
520
521 /* Wait for the child specified by PTID to do something. Return the
522 process ID of the child, or MINUS_ONE_PTID in case of error; store
523 the status in *OURSTATUS. */
524
525 static ptid_t
526 rs6000_wait (struct target_ops *ops,
527 ptid_t ptid, struct target_waitstatus *ourstatus, int options)
528 {
529 pid_t pid;
530 int status, save_errno;
531
532 do
533 {
534 set_sigint_trap ();
535
536 do
537 {
538 pid = waitpid (ptid_get_pid (ptid), &status, 0);
539 save_errno = errno;
540 }
541 while (pid == -1 && errno == EINTR);
542
543 clear_sigint_trap ();
544
545 if (pid == -1)
546 {
547 fprintf_unfiltered (gdb_stderr,
548 _("Child process unexpectedly missing: %s.\n"),
549 safe_strerror (save_errno));
550
551 /* Claim it exited with unknown signal. */
552 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
553 ourstatus->value.sig = TARGET_SIGNAL_UNKNOWN;
554 return inferior_ptid;
555 }
556
557 /* Ignore terminated detached child processes. */
558 if (!WIFSTOPPED (status) && pid != ptid_get_pid (inferior_ptid))
559 pid = -1;
560 }
561 while (pid == -1);
562
563 /* AIX has a couple of strange returns from wait(). */
564
565 /* stop after load" status. */
566 if (status == 0x57c)
567 ourstatus->kind = TARGET_WAITKIND_LOADED;
568 /* signal 0. I have no idea why wait(2) returns with this status word. */
569 else if (status == 0x7f)
570 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
571 /* A normal waitstatus. Let the usual macros deal with it. */
572 else
573 store_waitstatus (ourstatus, status);
574
575 return pid_to_ptid (pid);
576 }
577
578 /* Execute one dummy breakpoint instruction. This way we give the kernel
579 a chance to do some housekeeping and update inferior's internal data,
580 including u_area. */
581
582 static void
583 exec_one_dummy_insn (struct regcache *regcache)
584 {
585 #define DUMMY_INSN_ADDR AIX_TEXT_SEGMENT_BASE+0x200
586
587 struct gdbarch *gdbarch = get_regcache_arch (regcache);
588 int ret, status, pid;
589 CORE_ADDR prev_pc;
590 void *bp;
591
592 /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
593 assume that this address will never be executed again by the real
594 code. */
595
596 bp = deprecated_insert_raw_breakpoint (gdbarch, NULL, DUMMY_INSN_ADDR);
597
598 /* You might think this could be done with a single ptrace call, and
599 you'd be correct for just about every platform I've ever worked
600 on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
601 the inferior never hits the breakpoint (it's also worth noting
602 powerpc-ibm-aix4.1.3 works correctly). */
603 prev_pc = regcache_read_pc (regcache);
604 regcache_write_pc (regcache, DUMMY_INSN_ADDR);
605 if (ARCH64 ())
606 ret = rs6000_ptrace64 (PT_CONTINUE, PIDGET (inferior_ptid), 1, 0, NULL);
607 else
608 ret = rs6000_ptrace32 (PT_CONTINUE, PIDGET (inferior_ptid),
609 (int *) 1, 0, NULL);
610
611 if (ret != 0)
612 perror (_("pt_continue"));
613
614 do
615 {
616 pid = waitpid (PIDGET (inferior_ptid), &status, 0);
617 }
618 while (pid != PIDGET (inferior_ptid));
619
620 regcache_write_pc (regcache, prev_pc);
621 deprecated_remove_raw_breakpoint (gdbarch, bp);
622 }
623 \f
624
625 /* Copy information about text and data sections from LDI to VP for a 64-bit
626 process if ARCH64 and for a 32-bit process otherwise. */
627
628 static void
629 vmap_secs (struct vmap *vp, LdInfo *ldi, int arch64)
630 {
631 if (arch64)
632 {
633 vp->tstart = (CORE_ADDR) ldi->l64.ldinfo_textorg;
634 vp->tend = vp->tstart + ldi->l64.ldinfo_textsize;
635 vp->dstart = (CORE_ADDR) ldi->l64.ldinfo_dataorg;
636 vp->dend = vp->dstart + ldi->l64.ldinfo_datasize;
637 }
638 else
639 {
640 vp->tstart = (unsigned long) ldi->l32.ldinfo_textorg;
641 vp->tend = vp->tstart + ldi->l32.ldinfo_textsize;
642 vp->dstart = (unsigned long) ldi->l32.ldinfo_dataorg;
643 vp->dend = vp->dstart + ldi->l32.ldinfo_datasize;
644 }
645
646 /* The run time loader maps the file header in addition to the text
647 section and returns a pointer to the header in ldinfo_textorg.
648 Adjust the text start address to point to the real start address
649 of the text section. */
650 vp->tstart += vp->toffs;
651 }
652
653 /* Handle symbol translation on vmapping. */
654
655 static void
656 vmap_symtab (struct vmap *vp)
657 {
658 struct objfile *objfile;
659 struct section_offsets *new_offsets;
660 int i;
661
662 objfile = vp->objfile;
663 if (objfile == NULL)
664 {
665 /* OK, it's not an objfile we opened ourselves.
666 Currently, that can only happen with the exec file, so
667 relocate the symbols for the symfile. */
668 if (symfile_objfile == NULL)
669 return;
670 objfile = symfile_objfile;
671 }
672 else if (!vp->loaded)
673 /* If symbols are not yet loaded, offsets are not yet valid. */
674 return;
675
676 new_offsets =
677 (struct section_offsets *)
678 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
679
680 for (i = 0; i < objfile->num_sections; ++i)
681 new_offsets->offsets[i] = ANOFFSET (objfile->section_offsets, i);
682
683 /* The symbols in the object file are linked to the VMA of the section,
684 relocate them VMA relative. */
685 new_offsets->offsets[SECT_OFF_TEXT (objfile)] = vp->tstart - vp->tvma;
686 new_offsets->offsets[SECT_OFF_DATA (objfile)] = vp->dstart - vp->dvma;
687 new_offsets->offsets[SECT_OFF_BSS (objfile)] = vp->dstart - vp->dvma;
688
689 objfile_relocate (objfile, new_offsets);
690 }
691 \f
692 /* Add symbols for an objfile. */
693
694 static int
695 objfile_symbol_add (void *arg)
696 {
697 struct objfile *obj = (struct objfile *) arg;
698
699 syms_from_objfile (obj, NULL, 0, 0, 0);
700 new_symfile_objfile (obj, 0);
701 return 1;
702 }
703
704 /* Add symbols for a vmap. Return zero upon error. */
705
706 int
707 vmap_add_symbols (struct vmap *vp)
708 {
709 if (catch_errors (objfile_symbol_add, vp->objfile,
710 "Error while reading shared library symbols:\n",
711 RETURN_MASK_ALL))
712 {
713 /* Note this is only done if symbol reading was successful. */
714 vp->loaded = 1;
715 vmap_symtab (vp);
716 return 1;
717 }
718 return 0;
719 }
720
721 /* Add a new vmap entry based on ldinfo() information.
722
723 If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a
724 core file), the caller should set it to -1, and we will open the file.
725
726 Return the vmap new entry. */
727
728 static struct vmap *
729 add_vmap (LdInfo *ldi)
730 {
731 bfd *abfd, *last;
732 char *mem, *objname, *filename;
733 struct objfile *obj;
734 struct vmap *vp;
735 int fd;
736 ARCH64_DECL (arch64);
737
738 /* This ldi structure was allocated using alloca() in
739 xcoff_relocate_symtab(). Now we need to have persistent object
740 and member names, so we should save them. */
741
742 filename = LDI_FILENAME (ldi, arch64);
743 mem = filename + strlen (filename) + 1;
744 mem = xstrdup (mem);
745 objname = xstrdup (filename);
746
747 fd = LDI_FD (ldi, arch64);
748 if (fd < 0)
749 /* Note that this opens it once for every member; a possible
750 enhancement would be to only open it once for every object. */
751 abfd = bfd_openr (objname, gnutarget);
752 else
753 abfd = bfd_fdopenr (objname, gnutarget, fd);
754 if (!abfd)
755 {
756 warning (_("Could not open `%s' as an executable file: %s"),
757 objname, bfd_errmsg (bfd_get_error ()));
758 return NULL;
759 }
760
761 /* Make sure we have an object file. */
762
763 if (bfd_check_format (abfd, bfd_object))
764 vp = map_vmap (abfd, 0);
765
766 else if (bfd_check_format (abfd, bfd_archive))
767 {
768 last = 0;
769 /* FIXME??? am I tossing BFDs? bfd? */
770 while ((last = bfd_openr_next_archived_file (abfd, last)))
771 if (strcmp (mem, last->filename) == 0)
772 break;
773
774 if (!last)
775 {
776 warning (_("\"%s\": member \"%s\" missing."), objname, mem);
777 bfd_close (abfd);
778 return NULL;
779 }
780
781 if (!bfd_check_format (last, bfd_object))
782 {
783 warning (_("\"%s\": member \"%s\" not in executable format: %s."),
784 objname, mem, bfd_errmsg (bfd_get_error ()));
785 bfd_close (last);
786 bfd_close (abfd);
787 return NULL;
788 }
789
790 vp = map_vmap (last, abfd);
791 }
792 else
793 {
794 warning (_("\"%s\": not in executable format: %s."),
795 objname, bfd_errmsg (bfd_get_error ()));
796 bfd_close (abfd);
797 return NULL;
798 }
799 obj = allocate_objfile (vp->bfd, 0);
800 vp->objfile = obj;
801
802 /* Always add symbols for the main objfile. */
803 if (vp == vmap || auto_solib_add)
804 vmap_add_symbols (vp);
805 return vp;
806 }
807 \f
808 /* update VMAP info with ldinfo() information
809 Input is ptr to ldinfo() results. */
810
811 static void
812 vmap_ldinfo (LdInfo *ldi)
813 {
814 struct stat ii, vi;
815 struct vmap *vp;
816 int got_one, retried;
817 int got_exec_file = 0;
818 uint next;
819 int arch64 = ARCH64 ();
820
821 /* For each *ldi, see if we have a corresponding *vp.
822 If so, update the mapping, and symbol table.
823 If not, add an entry and symbol table. */
824
825 do
826 {
827 char *name = LDI_FILENAME (ldi, arch64);
828 char *memb = name + strlen (name) + 1;
829 int fd = LDI_FD (ldi, arch64);
830
831 retried = 0;
832
833 if (fstat (fd, &ii) < 0)
834 {
835 /* The kernel sets ld_info to -1, if the process is still using the
836 object, and the object is removed. Keep the symbol info for the
837 removed object and issue a warning. */
838 warning (_("%s (fd=%d) has disappeared, keeping its symbols"),
839 name, fd);
840 continue;
841 }
842 retry:
843 for (got_one = 0, vp = vmap; vp; vp = vp->nxt)
844 {
845 struct objfile *objfile;
846
847 /* First try to find a `vp', which is the same as in ldinfo.
848 If not the same, just continue and grep the next `vp'. If same,
849 relocate its tstart, tend, dstart, dend values. If no such `vp'
850 found, get out of this for loop, add this ldi entry as a new vmap
851 (add_vmap) and come back, find its `vp' and so on... */
852
853 /* The filenames are not always sufficient to match on. */
854
855 if ((name[0] == '/' && strcmp (name, vp->name) != 0)
856 || (memb[0] && strcmp (memb, vp->member) != 0))
857 continue;
858
859 /* See if we are referring to the same file.
860 We have to check objfile->obfd, symfile.c:reread_symbols might
861 have updated the obfd after a change. */
862 objfile = vp->objfile == NULL ? symfile_objfile : vp->objfile;
863 if (objfile == NULL
864 || objfile->obfd == NULL
865 || bfd_stat (objfile->obfd, &vi) < 0)
866 {
867 warning (_("Unable to stat %s, keeping its symbols"), name);
868 continue;
869 }
870
871 if (ii.st_dev != vi.st_dev || ii.st_ino != vi.st_ino)
872 continue;
873
874 if (!retried)
875 close (fd);
876
877 ++got_one;
878
879 /* Found a corresponding VMAP. Remap! */
880
881 vmap_secs (vp, ldi, arch64);
882
883 /* The objfile is only NULL for the exec file. */
884 if (vp->objfile == NULL)
885 got_exec_file = 1;
886
887 /* relocate symbol table(s). */
888 vmap_symtab (vp);
889
890 /* Announce new object files. Doing this after symbol relocation
891 makes aix-thread.c's job easier. */
892 if (vp->objfile)
893 observer_notify_new_objfile (vp->objfile);
894
895 /* There may be more, so we don't break out of the loop. */
896 }
897
898 /* If there was no matching *vp, we must perforce create the
899 sucker(s). */
900 if (!got_one && !retried)
901 {
902 add_vmap (ldi);
903 ++retried;
904 goto retry;
905 }
906 }
907 while ((next = LDI_NEXT (ldi, arch64))
908 && (ldi = (void *) (next + (char *) ldi)));
909
910 /* If we don't find the symfile_objfile anywhere in the ldinfo, it
911 is unlikely that the symbol file is relocated to the proper
912 address. And we might have attached to a process which is
913 running a different copy of the same executable. */
914 if (symfile_objfile != NULL && !got_exec_file)
915 {
916 warning (_("Symbol file %s\nis not mapped; discarding it.\n\
917 If in fact that file has symbols which the mapped files listed by\n\
918 \"info files\" lack, you can load symbols with the \"symbol-file\" or\n\
919 \"add-symbol-file\" commands (note that you must take care of relocating\n\
920 symbols to the proper address)."),
921 symfile_objfile->name);
922 free_objfile (symfile_objfile);
923 gdb_assert (symfile_objfile == NULL);
924 }
925 breakpoint_re_set ();
926 }
927 \f
928 /* As well as symbol tables, exec_sections need relocation. After
929 the inferior process' termination, there will be a relocated symbol
930 table exist with no corresponding inferior process. At that time, we
931 need to use `exec' bfd, rather than the inferior process's memory space
932 to look up symbols.
933
934 `exec_sections' need to be relocated only once, as long as the exec
935 file remains unchanged. */
936
937 static void
938 vmap_exec (void)
939 {
940 static bfd *execbfd;
941 int i;
942 struct target_section_table *table = target_get_section_table (&exec_ops);
943
944 if (execbfd == exec_bfd)
945 return;
946
947 execbfd = exec_bfd;
948
949 if (!vmap || !table->sections)
950 error (_("vmap_exec: vmap or table->sections == 0."));
951
952 for (i = 0; &table->sections[i] < table->sections_end; i++)
953 {
954 if (strcmp (".text", table->sections[i].the_bfd_section->name) == 0)
955 {
956 table->sections[i].addr += vmap->tstart - vmap->tvma;
957 table->sections[i].endaddr += vmap->tstart - vmap->tvma;
958 }
959 else if (strcmp (".data", table->sections[i].the_bfd_section->name) == 0)
960 {
961 table->sections[i].addr += vmap->dstart - vmap->dvma;
962 table->sections[i].endaddr += vmap->dstart - vmap->dvma;
963 }
964 else if (strcmp (".bss", table->sections[i].the_bfd_section->name) == 0)
965 {
966 table->sections[i].addr += vmap->dstart - vmap->dvma;
967 table->sections[i].endaddr += vmap->dstart - vmap->dvma;
968 }
969 }
970 }
971
972 /* Set the current architecture from the host running GDB. Called when
973 starting a child process. */
974
975 static void (*super_create_inferior) (struct target_ops *,char *exec_file,
976 char *allargs, char **env, int from_tty);
977 static void
978 rs6000_create_inferior (struct target_ops * ops, char *exec_file,
979 char *allargs, char **env, int from_tty)
980 {
981 enum bfd_architecture arch;
982 unsigned long mach;
983 bfd abfd;
984 struct gdbarch_info info;
985
986 super_create_inferior (ops, exec_file, allargs, env, from_tty);
987
988 if (__power_rs ())
989 {
990 arch = bfd_arch_rs6000;
991 mach = bfd_mach_rs6k;
992 }
993 else
994 {
995 arch = bfd_arch_powerpc;
996 mach = bfd_mach_ppc;
997 }
998
999 /* FIXME: schauer/2002-02-25:
1000 We don't know if we are executing a 32 or 64 bit executable,
1001 and have no way to pass the proper word size to rs6000_gdbarch_init.
1002 So we have to avoid switching to a new architecture, if the architecture
1003 matches already.
1004 Blindly calling rs6000_gdbarch_init used to work in older versions of
1005 GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
1006 determine the wordsize. */
1007 if (exec_bfd)
1008 {
1009 const struct bfd_arch_info *exec_bfd_arch_info;
1010
1011 exec_bfd_arch_info = bfd_get_arch_info (exec_bfd);
1012 if (arch == exec_bfd_arch_info->arch)
1013 return;
1014 }
1015
1016 bfd_default_set_arch_mach (&abfd, arch, mach);
1017
1018 gdbarch_info_init (&info);
1019 info.bfd_arch_info = bfd_get_arch_info (&abfd);
1020 info.abfd = exec_bfd;
1021
1022 if (!gdbarch_update_p (info))
1023 internal_error (__FILE__, __LINE__,
1024 _("rs6000_create_inferior: failed "
1025 "to select architecture"));
1026 }
1027
1028 \f
1029 /* xcoff_relocate_symtab - hook for symbol table relocation.
1030
1031 This is only applicable to live processes, and is a no-op when
1032 debugging a core file. */
1033
1034 void
1035 xcoff_relocate_symtab (unsigned int pid)
1036 {
1037 int load_segs = 64; /* number of load segments */
1038 int rc;
1039 LdInfo *ldi = NULL;
1040 int arch64 = ARCH64 ();
1041 int ldisize = arch64 ? sizeof (ldi->l64) : sizeof (ldi->l32);
1042 int size;
1043
1044 /* Nothing to do if we are debugging a core file. */
1045 if (!target_has_execution)
1046 return;
1047
1048 do
1049 {
1050 size = load_segs * ldisize;
1051 ldi = (void *) xrealloc (ldi, size);
1052
1053 #if 0
1054 /* According to my humble theory, AIX has some timing problems and
1055 when the user stack grows, kernel doesn't update stack info in time
1056 and ptrace calls step on user stack. That is why we sleep here a
1057 little, and give kernel to update its internals. */
1058 usleep (36000);
1059 #endif
1060
1061 if (arch64)
1062 rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, size, NULL);
1063 else
1064 rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi, size, NULL);
1065
1066 if (rc == -1)
1067 {
1068 if (errno == ENOMEM)
1069 load_segs *= 2;
1070 else
1071 perror_with_name (_("ptrace ldinfo"));
1072 }
1073 else
1074 {
1075 vmap_ldinfo (ldi);
1076 vmap_exec (); /* relocate the exec and core sections as well. */
1077 }
1078 } while (rc == -1);
1079 if (ldi)
1080 xfree (ldi);
1081 }
1082 \f
1083 /* Core file stuff. */
1084
1085 /* Relocate symtabs and read in shared library info, based on symbols
1086 from the core file. */
1087
1088 void
1089 xcoff_relocate_core (struct target_ops *target)
1090 {
1091 struct bfd_section *ldinfo_sec;
1092 int offset = 0;
1093 LdInfo *ldi;
1094 struct vmap *vp;
1095 int arch64 = ARCH64 ();
1096
1097 /* Size of a struct ld_info except for the variable-length filename. */
1098 int nonfilesz = (int)LDI_FILENAME ((LdInfo *)0, arch64);
1099
1100 /* Allocated size of buffer. */
1101 int buffer_size = nonfilesz;
1102 char *buffer = xmalloc (buffer_size);
1103 struct cleanup *old = make_cleanup (free_current_contents, &buffer);
1104
1105 ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
1106 if (ldinfo_sec == NULL)
1107 {
1108 bfd_err:
1109 fprintf_filtered (gdb_stderr, "Couldn't get ldinfo from core file: %s\n",
1110 bfd_errmsg (bfd_get_error ()));
1111 do_cleanups (old);
1112 return;
1113 }
1114 do
1115 {
1116 int i;
1117 int names_found = 0;
1118
1119 /* Read in everything but the name. */
1120 if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer,
1121 offset, nonfilesz) == 0)
1122 goto bfd_err;
1123
1124 /* Now the name. */
1125 i = nonfilesz;
1126 do
1127 {
1128 if (i == buffer_size)
1129 {
1130 buffer_size *= 2;
1131 buffer = xrealloc (buffer, buffer_size);
1132 }
1133 if (bfd_get_section_contents (core_bfd, ldinfo_sec, &buffer[i],
1134 offset + i, 1) == 0)
1135 goto bfd_err;
1136 if (buffer[i++] == '\0')
1137 ++names_found;
1138 }
1139 while (names_found < 2);
1140
1141 ldi = (LdInfo *) buffer;
1142
1143 /* Can't use a file descriptor from the core file; need to open it. */
1144 if (arch64)
1145 ldi->l64.ldinfo_fd = -1;
1146 else
1147 ldi->l32.ldinfo_fd = -1;
1148
1149 /* The first ldinfo is for the exec file, allocated elsewhere. */
1150 if (offset == 0 && vmap != NULL)
1151 vp = vmap;
1152 else
1153 vp = add_vmap (ldi);
1154
1155 /* Process next shared library upon error. */
1156 offset += LDI_NEXT (ldi, arch64);
1157 if (vp == NULL)
1158 continue;
1159
1160 vmap_secs (vp, ldi, arch64);
1161
1162 /* Unless this is the exec file,
1163 add our sections to the section table for the core target. */
1164 if (vp != vmap)
1165 {
1166 struct target_section *stp;
1167
1168 stp = deprecated_core_resize_section_table (2);
1169
1170 stp->bfd = vp->bfd;
1171 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".text");
1172 stp->addr = vp->tstart;
1173 stp->endaddr = vp->tend;
1174 stp++;
1175
1176 stp->bfd = vp->bfd;
1177 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".data");
1178 stp->addr = vp->dstart;
1179 stp->endaddr = vp->dend;
1180 }
1181
1182 vmap_symtab (vp);
1183
1184 if (vp != vmap && vp->objfile)
1185 observer_notify_new_objfile (vp->objfile);
1186 }
1187 while (LDI_NEXT (ldi, arch64) != 0);
1188 vmap_exec ();
1189 breakpoint_re_set ();
1190 do_cleanups (old);
1191 }
1192 \f
1193 /* Under AIX, we have to pass the correct TOC pointer to a function
1194 when calling functions in the inferior.
1195 We try to find the relative toc offset of the objfile containing PC
1196 and add the current load address of the data segment from the vmap. */
1197
1198 static CORE_ADDR
1199 find_toc_address (CORE_ADDR pc)
1200 {
1201 struct vmap *vp;
1202
1203 for (vp = vmap; vp; vp = vp->nxt)
1204 {
1205 if (pc >= vp->tstart && pc < vp->tend)
1206 {
1207 /* vp->objfile is only NULL for the exec file. */
1208 return vp->dstart + xcoff_get_toc_offset (vp->objfile == NULL
1209 ? symfile_objfile
1210 : vp->objfile);
1211 }
1212 }
1213 error (_("Unable to find TOC entry for pc %s."), hex_string (pc));
1214 }
1215 \f
1216
1217 void _initialize_rs6000_nat (void);
1218
1219 void
1220 _initialize_rs6000_nat (void)
1221 {
1222 struct target_ops *t;
1223
1224 t = inf_ptrace_target ();
1225 t->to_fetch_registers = rs6000_fetch_inferior_registers;
1226 t->to_store_registers = rs6000_store_inferior_registers;
1227 t->to_xfer_partial = rs6000_xfer_partial;
1228
1229 super_create_inferior = t->to_create_inferior;
1230 t->to_create_inferior = rs6000_create_inferior;
1231
1232 t->to_wait = rs6000_wait;
1233
1234 add_target (t);
1235
1236 /* Initialize hook in rs6000-tdep.c for determining the TOC address
1237 when calling functions in the inferior. */
1238 rs6000_find_toc_address_hook = find_toc_address;
1239 }
This page took 0.057946 seconds and 4 git commands to generate.