daily update
[deliverable/binutils-gdb.git] / gdb / rs6000-nat.c
1 /* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-1987, 1989, 1991-2004, 2007-2012 Free Software
4 Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdbcore.h"
25 #include "xcoffsolib.h"
26 #include "symfile.h"
27 #include "objfiles.h"
28 #include "libbfd.h" /* For bfd_default_set_arch_mach (FIXME) */
29 #include "bfd.h"
30 #include "exceptions.h"
31 #include "gdb-stabs.h"
32 #include "regcache.h"
33 #include "arch-utils.h"
34 #include "inf-child.h"
35 #include "inf-ptrace.h"
36 #include "ppc-tdep.h"
37 #include "rs6000-tdep.h"
38 #include "exec.h"
39 #include "observer.h"
40 #include "xcoffread.h"
41
42 #include <sys/ptrace.h>
43 #include <sys/reg.h>
44
45 #include <sys/param.h>
46 #include <sys/dir.h>
47 #include <sys/user.h>
48 #include <signal.h>
49 #include <sys/ioctl.h>
50 #include <fcntl.h>
51 #include <errno.h>
52
53 #include <a.out.h>
54 #include <sys/file.h>
55 #include "gdb_stat.h"
56 #include "gdb_bfd.h"
57 #include <sys/core.h>
58 #define __LDINFO_PTRACE32__ /* for __ld_info32 */
59 #define __LDINFO_PTRACE64__ /* for __ld_info64 */
60 #include <sys/ldr.h>
61 #include <sys/systemcfg.h>
62
63 /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
64 debugging 32-bit and 64-bit processes. Define a typedef and macros for
65 accessing fields in the appropriate structures. */
66
67 /* In 32-bit compilation mode (which is the only mode from which ptrace()
68 works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
69
70 #ifdef __ld_info32
71 # define ARCH3264
72 #endif
73
74 /* Return whether the current architecture is 64-bit. */
75
76 #ifndef ARCH3264
77 # define ARCH64() 0
78 #else
79 # define ARCH64() (register_size (target_gdbarch, 0) == 8)
80 #endif
81
82 /* Union of 32-bit and 64-bit versions of ld_info. */
83
84 typedef union {
85 #ifndef ARCH3264
86 struct ld_info l32;
87 struct ld_info l64;
88 #else
89 struct __ld_info32 l32;
90 struct __ld_info64 l64;
91 #endif
92 } LdInfo;
93
94 /* If compiling with 32-bit and 64-bit debugging capability (e.g. AIX 4.x),
95 declare and initialize a variable named VAR suitable for use as the arch64
96 parameter to the various LDI_*() macros. */
97
98 #ifndef ARCH3264
99 # define ARCH64_DECL(var)
100 #else
101 # define ARCH64_DECL(var) int var = ARCH64 ()
102 #endif
103
104 /* Return LDI's FIELD for a 64-bit process if ARCH64 and for a 32-bit process
105 otherwise. This technique only works for FIELDs with the same data type in
106 32-bit and 64-bit versions of ld_info. */
107
108 #ifndef ARCH3264
109 # define LDI_FIELD(ldi, arch64, field) (ldi)->l32.ldinfo_##field
110 #else
111 # define LDI_FIELD(ldi, arch64, field) \
112 (arch64 ? (ldi)->l64.ldinfo_##field : (ldi)->l32.ldinfo_##field)
113 #endif
114
115 /* Return various LDI fields for a 64-bit process if ARCH64 and for a 32-bit
116 process otherwise. */
117
118 #define LDI_NEXT(ldi, arch64) LDI_FIELD(ldi, arch64, next)
119 #define LDI_FD(ldi, arch64) LDI_FIELD(ldi, arch64, fd)
120 #define LDI_FILENAME(ldi, arch64) LDI_FIELD(ldi, arch64, filename)
121
122 extern struct vmap *map_vmap (bfd * bf, bfd * arch);
123
124 static void vmap_exec (void);
125
126 static void vmap_ldinfo (LdInfo *);
127
128 static struct vmap *add_vmap (LdInfo *);
129
130 static int objfile_symbol_add (void *);
131
132 static void vmap_symtab (struct vmap *);
133
134 static void exec_one_dummy_insn (struct regcache *);
135
136 extern void fixup_breakpoints (CORE_ADDR low, CORE_ADDR high, CORE_ADDR delta);
137
138 /* Given REGNO, a gdb register number, return the corresponding
139 number suitable for use as a ptrace() parameter. Return -1 if
140 there's no suitable mapping. Also, set the int pointed to by
141 ISFLOAT to indicate whether REGNO is a floating point register. */
142
143 static int
144 regmap (struct gdbarch *gdbarch, int regno, int *isfloat)
145 {
146 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
147
148 *isfloat = 0;
149 if (tdep->ppc_gp0_regnum <= regno
150 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
151 return regno;
152 else if (tdep->ppc_fp0_regnum >= 0
153 && tdep->ppc_fp0_regnum <= regno
154 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
155 {
156 *isfloat = 1;
157 return regno - tdep->ppc_fp0_regnum + FPR0;
158 }
159 else if (regno == gdbarch_pc_regnum (gdbarch))
160 return IAR;
161 else if (regno == tdep->ppc_ps_regnum)
162 return MSR;
163 else if (regno == tdep->ppc_cr_regnum)
164 return CR;
165 else if (regno == tdep->ppc_lr_regnum)
166 return LR;
167 else if (regno == tdep->ppc_ctr_regnum)
168 return CTR;
169 else if (regno == tdep->ppc_xer_regnum)
170 return XER;
171 else if (tdep->ppc_fpscr_regnum >= 0
172 && regno == tdep->ppc_fpscr_regnum)
173 return FPSCR;
174 else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum)
175 return MQ;
176 else
177 return -1;
178 }
179
180 /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
181
182 static int
183 rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
184 {
185 int ret = ptrace (req, id, (int *)addr, data, buf);
186 #if 0
187 printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
188 req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
189 #endif
190 return ret;
191 }
192
193 /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
194
195 static int
196 rs6000_ptrace64 (int req, int id, long long addr, int data, void *buf)
197 {
198 #ifdef ARCH3264
199 int ret = ptracex (req, id, addr, data, buf);
200 #else
201 int ret = 0;
202 #endif
203 #if 0
204 printf ("rs6000_ptrace64 (%d, %d, %s, %08x, 0x%x) = 0x%x\n",
205 req, id, hex_string (addr), data, (unsigned int)buf, ret);
206 #endif
207 return ret;
208 }
209
210 /* Fetch register REGNO from the inferior. */
211
212 static void
213 fetch_register (struct regcache *regcache, int regno)
214 {
215 struct gdbarch *gdbarch = get_regcache_arch (regcache);
216 int addr[MAX_REGISTER_SIZE];
217 int nr, isfloat;
218
219 /* Retrieved values may be -1, so infer errors from errno. */
220 errno = 0;
221
222 nr = regmap (gdbarch, regno, &isfloat);
223
224 /* Floating-point registers. */
225 if (isfloat)
226 rs6000_ptrace32 (PT_READ_FPR, PIDGET (inferior_ptid), addr, nr, 0);
227
228 /* Bogus register number. */
229 else if (nr < 0)
230 {
231 if (regno >= gdbarch_num_regs (gdbarch))
232 fprintf_unfiltered (gdb_stderr,
233 "gdb error: register no %d not implemented.\n",
234 regno);
235 return;
236 }
237
238 /* Fixed-point registers. */
239 else
240 {
241 if (!ARCH64 ())
242 *addr = rs6000_ptrace32 (PT_READ_GPR, PIDGET (inferior_ptid),
243 (int *) nr, 0, 0);
244 else
245 {
246 /* PT_READ_GPR requires the buffer parameter to point to long long,
247 even if the register is really only 32 bits. */
248 long long buf;
249 rs6000_ptrace64 (PT_READ_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
250 if (register_size (gdbarch, regno) == 8)
251 memcpy (addr, &buf, 8);
252 else
253 *addr = buf;
254 }
255 }
256
257 if (!errno)
258 regcache_raw_supply (regcache, regno, (char *) addr);
259 else
260 {
261 #if 0
262 /* FIXME: this happens 3 times at the start of each 64-bit program. */
263 perror (_("ptrace read"));
264 #endif
265 errno = 0;
266 }
267 }
268
269 /* Store register REGNO back into the inferior. */
270
271 static void
272 store_register (struct regcache *regcache, int regno)
273 {
274 struct gdbarch *gdbarch = get_regcache_arch (regcache);
275 int addr[MAX_REGISTER_SIZE];
276 int nr, isfloat;
277
278 /* Fetch the register's value from the register cache. */
279 regcache_raw_collect (regcache, regno, addr);
280
281 /* -1 can be a successful return value, so infer errors from errno. */
282 errno = 0;
283
284 nr = regmap (gdbarch, regno, &isfloat);
285
286 /* Floating-point registers. */
287 if (isfloat)
288 rs6000_ptrace32 (PT_WRITE_FPR, PIDGET (inferior_ptid), addr, nr, 0);
289
290 /* Bogus register number. */
291 else if (nr < 0)
292 {
293 if (regno >= gdbarch_num_regs (gdbarch))
294 fprintf_unfiltered (gdb_stderr,
295 "gdb error: register no %d not implemented.\n",
296 regno);
297 }
298
299 /* Fixed-point registers. */
300 else
301 {
302 if (regno == gdbarch_sp_regnum (gdbarch))
303 /* Execute one dummy instruction (which is a breakpoint) in inferior
304 process to give kernel a chance to do internal housekeeping.
305 Otherwise the following ptrace(2) calls will mess up user stack
306 since kernel will get confused about the bottom of the stack
307 (%sp). */
308 exec_one_dummy_insn (regcache);
309
310 /* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors,
311 the register's value is passed by value, but for 64-bit inferiors,
312 the address of a buffer containing the value is passed. */
313 if (!ARCH64 ())
314 rs6000_ptrace32 (PT_WRITE_GPR, PIDGET (inferior_ptid),
315 (int *) nr, *addr, 0);
316 else
317 {
318 /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
319 area, even if the register is really only 32 bits. */
320 long long buf;
321 if (register_size (gdbarch, regno) == 8)
322 memcpy (&buf, addr, 8);
323 else
324 buf = *addr;
325 rs6000_ptrace64 (PT_WRITE_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
326 }
327 }
328
329 if (errno)
330 {
331 perror (_("ptrace write"));
332 errno = 0;
333 }
334 }
335
336 /* Read from the inferior all registers if REGNO == -1 and just register
337 REGNO otherwise. */
338
339 static void
340 rs6000_fetch_inferior_registers (struct target_ops *ops,
341 struct regcache *regcache, int regno)
342 {
343 struct gdbarch *gdbarch = get_regcache_arch (regcache);
344 if (regno != -1)
345 fetch_register (regcache, regno);
346
347 else
348 {
349 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
350
351 /* Read 32 general purpose registers. */
352 for (regno = tdep->ppc_gp0_regnum;
353 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
354 regno++)
355 {
356 fetch_register (regcache, regno);
357 }
358
359 /* Read general purpose floating point registers. */
360 if (tdep->ppc_fp0_regnum >= 0)
361 for (regno = 0; regno < ppc_num_fprs; regno++)
362 fetch_register (regcache, tdep->ppc_fp0_regnum + regno);
363
364 /* Read special registers. */
365 fetch_register (regcache, gdbarch_pc_regnum (gdbarch));
366 fetch_register (regcache, tdep->ppc_ps_regnum);
367 fetch_register (regcache, tdep->ppc_cr_regnum);
368 fetch_register (regcache, tdep->ppc_lr_regnum);
369 fetch_register (regcache, tdep->ppc_ctr_regnum);
370 fetch_register (regcache, tdep->ppc_xer_regnum);
371 if (tdep->ppc_fpscr_regnum >= 0)
372 fetch_register (regcache, tdep->ppc_fpscr_regnum);
373 if (tdep->ppc_mq_regnum >= 0)
374 fetch_register (regcache, tdep->ppc_mq_regnum);
375 }
376 }
377
378 /* Store our register values back into the inferior.
379 If REGNO is -1, do this for all registers.
380 Otherwise, REGNO specifies which register (so we can save time). */
381
382 static void
383 rs6000_store_inferior_registers (struct target_ops *ops,
384 struct regcache *regcache, int regno)
385 {
386 struct gdbarch *gdbarch = get_regcache_arch (regcache);
387 if (regno != -1)
388 store_register (regcache, regno);
389
390 else
391 {
392 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
393
394 /* Write general purpose registers first. */
395 for (regno = tdep->ppc_gp0_regnum;
396 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
397 regno++)
398 {
399 store_register (regcache, regno);
400 }
401
402 /* Write floating point registers. */
403 if (tdep->ppc_fp0_regnum >= 0)
404 for (regno = 0; regno < ppc_num_fprs; regno++)
405 store_register (regcache, tdep->ppc_fp0_regnum + regno);
406
407 /* Write special registers. */
408 store_register (regcache, gdbarch_pc_regnum (gdbarch));
409 store_register (regcache, tdep->ppc_ps_regnum);
410 store_register (regcache, tdep->ppc_cr_regnum);
411 store_register (regcache, tdep->ppc_lr_regnum);
412 store_register (regcache, tdep->ppc_ctr_regnum);
413 store_register (regcache, tdep->ppc_xer_regnum);
414 if (tdep->ppc_fpscr_regnum >= 0)
415 store_register (regcache, tdep->ppc_fpscr_regnum);
416 if (tdep->ppc_mq_regnum >= 0)
417 store_register (regcache, tdep->ppc_mq_regnum);
418 }
419 }
420
421
422 /* Attempt a transfer all LEN bytes starting at OFFSET between the
423 inferior's OBJECT:ANNEX space and GDB's READBUF/WRITEBUF buffer.
424 Return the number of bytes actually transferred. */
425
426 static LONGEST
427 rs6000_xfer_partial (struct target_ops *ops, enum target_object object,
428 const char *annex, gdb_byte *readbuf,
429 const gdb_byte *writebuf,
430 ULONGEST offset, LONGEST len)
431 {
432 pid_t pid = ptid_get_pid (inferior_ptid);
433 int arch64 = ARCH64 ();
434
435 switch (object)
436 {
437 case TARGET_OBJECT_MEMORY:
438 {
439 union
440 {
441 PTRACE_TYPE_RET word;
442 gdb_byte byte[sizeof (PTRACE_TYPE_RET)];
443 } buffer;
444 ULONGEST rounded_offset;
445 LONGEST partial_len;
446
447 /* Round the start offset down to the next long word
448 boundary. */
449 rounded_offset = offset & -(ULONGEST) sizeof (PTRACE_TYPE_RET);
450
451 /* Since ptrace will transfer a single word starting at that
452 rounded_offset the partial_len needs to be adjusted down to
453 that (remember this function only does a single transfer).
454 Should the required length be even less, adjust it down
455 again. */
456 partial_len = (rounded_offset + sizeof (PTRACE_TYPE_RET)) - offset;
457 if (partial_len > len)
458 partial_len = len;
459
460 if (writebuf)
461 {
462 /* If OFFSET:PARTIAL_LEN is smaller than
463 ROUNDED_OFFSET:WORDSIZE then a read/modify write will
464 be needed. Read in the entire word. */
465 if (rounded_offset < offset
466 || (offset + partial_len
467 < rounded_offset + sizeof (PTRACE_TYPE_RET)))
468 {
469 /* Need part of initial word -- fetch it. */
470 if (arch64)
471 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
472 rounded_offset, 0, NULL);
473 else
474 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
475 (int *) (uintptr_t)
476 rounded_offset,
477 0, NULL);
478 }
479
480 /* Copy data to be written over corresponding part of
481 buffer. */
482 memcpy (buffer.byte + (offset - rounded_offset),
483 writebuf, partial_len);
484
485 errno = 0;
486 if (arch64)
487 rs6000_ptrace64 (PT_WRITE_D, pid,
488 rounded_offset, buffer.word, NULL);
489 else
490 rs6000_ptrace32 (PT_WRITE_D, pid,
491 (int *) (uintptr_t) rounded_offset,
492 buffer.word, NULL);
493 if (errno)
494 return 0;
495 }
496
497 if (readbuf)
498 {
499 errno = 0;
500 if (arch64)
501 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
502 rounded_offset, 0, NULL);
503 else
504 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
505 (int *)(uintptr_t)rounded_offset,
506 0, NULL);
507 if (errno)
508 return 0;
509
510 /* Copy appropriate bytes out of the buffer. */
511 memcpy (readbuf, buffer.byte + (offset - rounded_offset),
512 partial_len);
513 }
514
515 return partial_len;
516 }
517
518 default:
519 return -1;
520 }
521 }
522
523 /* Wait for the child specified by PTID to do something. Return the
524 process ID of the child, or MINUS_ONE_PTID in case of error; store
525 the status in *OURSTATUS. */
526
527 static ptid_t
528 rs6000_wait (struct target_ops *ops,
529 ptid_t ptid, struct target_waitstatus *ourstatus, int options)
530 {
531 pid_t pid;
532 int status, save_errno;
533
534 do
535 {
536 set_sigint_trap ();
537
538 do
539 {
540 pid = waitpid (ptid_get_pid (ptid), &status, 0);
541 save_errno = errno;
542 }
543 while (pid == -1 && errno == EINTR);
544
545 clear_sigint_trap ();
546
547 if (pid == -1)
548 {
549 fprintf_unfiltered (gdb_stderr,
550 _("Child process unexpectedly missing: %s.\n"),
551 safe_strerror (save_errno));
552
553 /* Claim it exited with unknown signal. */
554 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
555 ourstatus->value.sig = GDB_SIGNAL_UNKNOWN;
556 return inferior_ptid;
557 }
558
559 /* Ignore terminated detached child processes. */
560 if (!WIFSTOPPED (status) && pid != ptid_get_pid (inferior_ptid))
561 pid = -1;
562 }
563 while (pid == -1);
564
565 /* AIX has a couple of strange returns from wait(). */
566
567 /* stop after load" status. */
568 if (status == 0x57c)
569 ourstatus->kind = TARGET_WAITKIND_LOADED;
570 /* signal 0. I have no idea why wait(2) returns with this status word. */
571 else if (status == 0x7f)
572 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
573 /* A normal waitstatus. Let the usual macros deal with it. */
574 else
575 store_waitstatus (ourstatus, status);
576
577 return pid_to_ptid (pid);
578 }
579
580 /* Execute one dummy breakpoint instruction. This way we give the kernel
581 a chance to do some housekeeping and update inferior's internal data,
582 including u_area. */
583
584 static void
585 exec_one_dummy_insn (struct regcache *regcache)
586 {
587 #define DUMMY_INSN_ADDR AIX_TEXT_SEGMENT_BASE+0x200
588
589 struct gdbarch *gdbarch = get_regcache_arch (regcache);
590 int ret, status, pid;
591 CORE_ADDR prev_pc;
592 void *bp;
593
594 /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
595 assume that this address will never be executed again by the real
596 code. */
597
598 bp = deprecated_insert_raw_breakpoint (gdbarch, NULL, DUMMY_INSN_ADDR);
599
600 /* You might think this could be done with a single ptrace call, and
601 you'd be correct for just about every platform I've ever worked
602 on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
603 the inferior never hits the breakpoint (it's also worth noting
604 powerpc-ibm-aix4.1.3 works correctly). */
605 prev_pc = regcache_read_pc (regcache);
606 regcache_write_pc (regcache, DUMMY_INSN_ADDR);
607 if (ARCH64 ())
608 ret = rs6000_ptrace64 (PT_CONTINUE, PIDGET (inferior_ptid), 1, 0, NULL);
609 else
610 ret = rs6000_ptrace32 (PT_CONTINUE, PIDGET (inferior_ptid),
611 (int *) 1, 0, NULL);
612
613 if (ret != 0)
614 perror (_("pt_continue"));
615
616 do
617 {
618 pid = waitpid (PIDGET (inferior_ptid), &status, 0);
619 }
620 while (pid != PIDGET (inferior_ptid));
621
622 regcache_write_pc (regcache, prev_pc);
623 deprecated_remove_raw_breakpoint (gdbarch, bp);
624 }
625 \f
626
627 /* Copy information about text and data sections from LDI to VP for a 64-bit
628 process if ARCH64 and for a 32-bit process otherwise. */
629
630 static void
631 vmap_secs (struct vmap *vp, LdInfo *ldi, int arch64)
632 {
633 if (arch64)
634 {
635 vp->tstart = (CORE_ADDR) ldi->l64.ldinfo_textorg;
636 vp->tend = vp->tstart + ldi->l64.ldinfo_textsize;
637 vp->dstart = (CORE_ADDR) ldi->l64.ldinfo_dataorg;
638 vp->dend = vp->dstart + ldi->l64.ldinfo_datasize;
639 }
640 else
641 {
642 vp->tstart = (unsigned long) ldi->l32.ldinfo_textorg;
643 vp->tend = vp->tstart + ldi->l32.ldinfo_textsize;
644 vp->dstart = (unsigned long) ldi->l32.ldinfo_dataorg;
645 vp->dend = vp->dstart + ldi->l32.ldinfo_datasize;
646 }
647
648 /* The run time loader maps the file header in addition to the text
649 section and returns a pointer to the header in ldinfo_textorg.
650 Adjust the text start address to point to the real start address
651 of the text section. */
652 vp->tstart += vp->toffs;
653 }
654
655 /* Handle symbol translation on vmapping. */
656
657 static void
658 vmap_symtab (struct vmap *vp)
659 {
660 struct objfile *objfile;
661 struct section_offsets *new_offsets;
662 int i;
663
664 objfile = vp->objfile;
665 if (objfile == NULL)
666 {
667 /* OK, it's not an objfile we opened ourselves.
668 Currently, that can only happen with the exec file, so
669 relocate the symbols for the symfile. */
670 if (symfile_objfile == NULL)
671 return;
672 objfile = symfile_objfile;
673 }
674 else if (!vp->loaded)
675 /* If symbols are not yet loaded, offsets are not yet valid. */
676 return;
677
678 new_offsets =
679 (struct section_offsets *)
680 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
681
682 for (i = 0; i < objfile->num_sections; ++i)
683 new_offsets->offsets[i] = ANOFFSET (objfile->section_offsets, i);
684
685 /* The symbols in the object file are linked to the VMA of the section,
686 relocate them VMA relative. */
687 new_offsets->offsets[SECT_OFF_TEXT (objfile)] = vp->tstart - vp->tvma;
688 new_offsets->offsets[SECT_OFF_DATA (objfile)] = vp->dstart - vp->dvma;
689 new_offsets->offsets[SECT_OFF_BSS (objfile)] = vp->dstart - vp->dvma;
690
691 objfile_relocate (objfile, new_offsets);
692 }
693 \f
694 /* Add symbols for an objfile. */
695
696 static int
697 objfile_symbol_add (void *arg)
698 {
699 struct objfile *obj = (struct objfile *) arg;
700
701 syms_from_objfile (obj, NULL, 0, 0, 0);
702 new_symfile_objfile (obj, 0);
703 return 1;
704 }
705
706 /* Add symbols for a vmap. Return zero upon error. */
707
708 int
709 vmap_add_symbols (struct vmap *vp)
710 {
711 if (catch_errors (objfile_symbol_add, vp->objfile,
712 "Error while reading shared library symbols:\n",
713 RETURN_MASK_ALL))
714 {
715 /* Note this is only done if symbol reading was successful. */
716 vp->loaded = 1;
717 vmap_symtab (vp);
718 return 1;
719 }
720 return 0;
721 }
722
723 /* Add a new vmap entry based on ldinfo() information.
724
725 If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a
726 core file), the caller should set it to -1, and we will open the file.
727
728 Return the vmap new entry. */
729
730 static struct vmap *
731 add_vmap (LdInfo *ldi)
732 {
733 bfd *abfd, *last;
734 char *mem, *filename;
735 struct objfile *obj;
736 struct vmap *vp;
737 int fd;
738 ARCH64_DECL (arch64);
739
740 /* This ldi structure was allocated using alloca() in
741 xcoff_relocate_symtab(). Now we need to have persistent object
742 and member names, so we should save them. */
743
744 filename = LDI_FILENAME (ldi, arch64);
745 mem = filename + strlen (filename) + 1;
746 mem = xstrdup (mem);
747
748 fd = LDI_FD (ldi, arch64);
749 abfd = gdb_bfd_open (filename, gnutarget, fd < 0 ? -1 : fd);
750 if (!abfd)
751 {
752 warning (_("Could not open `%s' as an executable file: %s"),
753 filename, bfd_errmsg (bfd_get_error ()));
754 return NULL;
755 }
756
757 /* Make sure we have an object file. */
758
759 if (bfd_check_format (abfd, bfd_object))
760 vp = map_vmap (abfd, 0);
761
762 else if (bfd_check_format (abfd, bfd_archive))
763 {
764 last = gdb_bfd_openr_next_archived_file (abfd, NULL);
765 while (last != NULL)
766 {
767 bfd *next;
768
769 if (strcmp (mem, last->filename) == 0)
770 break;
771
772 next = gdb_bfd_openr_next_archived_file (abfd, last);
773 gdb_bfd_unref (last);
774 }
775
776 if (!last)
777 {
778 warning (_("\"%s\": member \"%s\" missing."), filename, mem);
779 gdb_bfd_unref (abfd);
780 return NULL;
781 }
782
783 if (!bfd_check_format (last, bfd_object))
784 {
785 warning (_("\"%s\": member \"%s\" not in executable format: %s."),
786 filename, mem, bfd_errmsg (bfd_get_error ()));
787 gdb_bfd_unref (last);
788 gdb_bfd_unref (abfd);
789 return NULL;
790 }
791
792 vp = map_vmap (last, abfd);
793 /* map_vmap acquired a reference to LAST, so we can release
794 ours. */
795 gdb_bfd_unref (last);
796 }
797 else
798 {
799 warning (_("\"%s\": not in executable format: %s."),
800 filename, bfd_errmsg (bfd_get_error ()));
801 gdb_bfd_unref (abfd);
802 return NULL;
803 }
804 obj = allocate_objfile (vp->bfd, 0);
805 vp->objfile = obj;
806
807 /* Always add symbols for the main objfile. */
808 if (vp == vmap || auto_solib_add)
809 vmap_add_symbols (vp);
810
811 /* Anything needing a reference to ABFD has already acquired it, so
812 release our local reference. */
813 gdb_bfd_unref (abfd);
814
815 return vp;
816 }
817 \f
818 /* update VMAP info with ldinfo() information
819 Input is ptr to ldinfo() results. */
820
821 static void
822 vmap_ldinfo (LdInfo *ldi)
823 {
824 struct stat ii, vi;
825 struct vmap *vp;
826 int got_one, retried;
827 int got_exec_file = 0;
828 uint next;
829 int arch64 = ARCH64 ();
830
831 /* For each *ldi, see if we have a corresponding *vp.
832 If so, update the mapping, and symbol table.
833 If not, add an entry and symbol table. */
834
835 do
836 {
837 char *name = LDI_FILENAME (ldi, arch64);
838 char *memb = name + strlen (name) + 1;
839 int fd = LDI_FD (ldi, arch64);
840
841 retried = 0;
842
843 if (fstat (fd, &ii) < 0)
844 {
845 /* The kernel sets ld_info to -1, if the process is still using the
846 object, and the object is removed. Keep the symbol info for the
847 removed object and issue a warning. */
848 warning (_("%s (fd=%d) has disappeared, keeping its symbols"),
849 name, fd);
850 continue;
851 }
852 retry:
853 for (got_one = 0, vp = vmap; vp; vp = vp->nxt)
854 {
855 struct objfile *objfile;
856
857 /* First try to find a `vp', which is the same as in ldinfo.
858 If not the same, just continue and grep the next `vp'. If same,
859 relocate its tstart, tend, dstart, dend values. If no such `vp'
860 found, get out of this for loop, add this ldi entry as a new vmap
861 (add_vmap) and come back, find its `vp' and so on... */
862
863 /* The filenames are not always sufficient to match on. */
864
865 if ((name[0] == '/' && strcmp (name, vp->name) != 0)
866 || (memb[0] && strcmp (memb, vp->member) != 0))
867 continue;
868
869 /* See if we are referring to the same file.
870 We have to check objfile->obfd, symfile.c:reread_symbols might
871 have updated the obfd after a change. */
872 objfile = vp->objfile == NULL ? symfile_objfile : vp->objfile;
873 if (objfile == NULL
874 || objfile->obfd == NULL
875 || bfd_stat (objfile->obfd, &vi) < 0)
876 {
877 warning (_("Unable to stat %s, keeping its symbols"), name);
878 continue;
879 }
880
881 if (ii.st_dev != vi.st_dev || ii.st_ino != vi.st_ino)
882 continue;
883
884 if (!retried)
885 close (fd);
886
887 ++got_one;
888
889 /* Found a corresponding VMAP. Remap! */
890
891 vmap_secs (vp, ldi, arch64);
892
893 /* The objfile is only NULL for the exec file. */
894 if (vp->objfile == NULL)
895 got_exec_file = 1;
896
897 /* relocate symbol table(s). */
898 vmap_symtab (vp);
899
900 /* Announce new object files. Doing this after symbol relocation
901 makes aix-thread.c's job easier. */
902 if (vp->objfile)
903 observer_notify_new_objfile (vp->objfile);
904
905 /* There may be more, so we don't break out of the loop. */
906 }
907
908 /* If there was no matching *vp, we must perforce create the
909 sucker(s). */
910 if (!got_one && !retried)
911 {
912 add_vmap (ldi);
913 ++retried;
914 goto retry;
915 }
916 }
917 while ((next = LDI_NEXT (ldi, arch64))
918 && (ldi = (void *) (next + (char *) ldi)));
919
920 /* If we don't find the symfile_objfile anywhere in the ldinfo, it
921 is unlikely that the symbol file is relocated to the proper
922 address. And we might have attached to a process which is
923 running a different copy of the same executable. */
924 if (symfile_objfile != NULL && !got_exec_file)
925 {
926 warning (_("Symbol file %s\nis not mapped; discarding it.\n\
927 If in fact that file has symbols which the mapped files listed by\n\
928 \"info files\" lack, you can load symbols with the \"symbol-file\" or\n\
929 \"add-symbol-file\" commands (note that you must take care of relocating\n\
930 symbols to the proper address)."),
931 symfile_objfile->name);
932 free_objfile (symfile_objfile);
933 gdb_assert (symfile_objfile == NULL);
934 }
935 breakpoint_re_set ();
936 }
937 \f
938 /* As well as symbol tables, exec_sections need relocation. After
939 the inferior process' termination, there will be a relocated symbol
940 table exist with no corresponding inferior process. At that time, we
941 need to use `exec' bfd, rather than the inferior process's memory space
942 to look up symbols.
943
944 `exec_sections' need to be relocated only once, as long as the exec
945 file remains unchanged. */
946
947 static void
948 vmap_exec (void)
949 {
950 static bfd *execbfd;
951 int i;
952 struct target_section_table *table = target_get_section_table (&exec_ops);
953
954 if (execbfd == exec_bfd)
955 return;
956
957 execbfd = exec_bfd;
958
959 if (!vmap || !table->sections)
960 error (_("vmap_exec: vmap or table->sections == 0."));
961
962 for (i = 0; &table->sections[i] < table->sections_end; i++)
963 {
964 if (strcmp (".text", table->sections[i].the_bfd_section->name) == 0)
965 {
966 table->sections[i].addr += vmap->tstart - vmap->tvma;
967 table->sections[i].endaddr += vmap->tstart - vmap->tvma;
968 }
969 else if (strcmp (".data", table->sections[i].the_bfd_section->name) == 0)
970 {
971 table->sections[i].addr += vmap->dstart - vmap->dvma;
972 table->sections[i].endaddr += vmap->dstart - vmap->dvma;
973 }
974 else if (strcmp (".bss", table->sections[i].the_bfd_section->name) == 0)
975 {
976 table->sections[i].addr += vmap->dstart - vmap->dvma;
977 table->sections[i].endaddr += vmap->dstart - vmap->dvma;
978 }
979 }
980 }
981
982 /* Set the current architecture from the host running GDB. Called when
983 starting a child process. */
984
985 static void (*super_create_inferior) (struct target_ops *,char *exec_file,
986 char *allargs, char **env, int from_tty);
987 static void
988 rs6000_create_inferior (struct target_ops * ops, char *exec_file,
989 char *allargs, char **env, int from_tty)
990 {
991 enum bfd_architecture arch;
992 unsigned long mach;
993 bfd abfd;
994 struct gdbarch_info info;
995
996 super_create_inferior (ops, exec_file, allargs, env, from_tty);
997
998 if (__power_rs ())
999 {
1000 arch = bfd_arch_rs6000;
1001 mach = bfd_mach_rs6k;
1002 }
1003 else
1004 {
1005 arch = bfd_arch_powerpc;
1006 mach = bfd_mach_ppc;
1007 }
1008
1009 /* FIXME: schauer/2002-02-25:
1010 We don't know if we are executing a 32 or 64 bit executable,
1011 and have no way to pass the proper word size to rs6000_gdbarch_init.
1012 So we have to avoid switching to a new architecture, if the architecture
1013 matches already.
1014 Blindly calling rs6000_gdbarch_init used to work in older versions of
1015 GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
1016 determine the wordsize. */
1017 if (exec_bfd)
1018 {
1019 const struct bfd_arch_info *exec_bfd_arch_info;
1020
1021 exec_bfd_arch_info = bfd_get_arch_info (exec_bfd);
1022 if (arch == exec_bfd_arch_info->arch)
1023 return;
1024 }
1025
1026 bfd_default_set_arch_mach (&abfd, arch, mach);
1027
1028 gdbarch_info_init (&info);
1029 info.bfd_arch_info = bfd_get_arch_info (&abfd);
1030 info.abfd = exec_bfd;
1031
1032 if (!gdbarch_update_p (info))
1033 internal_error (__FILE__, __LINE__,
1034 _("rs6000_create_inferior: failed "
1035 "to select architecture"));
1036 }
1037
1038 \f
1039 /* xcoff_relocate_symtab - hook for symbol table relocation.
1040
1041 This is only applicable to live processes, and is a no-op when
1042 debugging a core file. */
1043
1044 void
1045 xcoff_relocate_symtab (unsigned int pid)
1046 {
1047 int load_segs = 64; /* number of load segments */
1048 int rc;
1049 LdInfo *ldi = NULL;
1050 int arch64 = ARCH64 ();
1051 int ldisize = arch64 ? sizeof (ldi->l64) : sizeof (ldi->l32);
1052 int size;
1053
1054 /* Nothing to do if we are debugging a core file. */
1055 if (!target_has_execution)
1056 return;
1057
1058 do
1059 {
1060 size = load_segs * ldisize;
1061 ldi = (void *) xrealloc (ldi, size);
1062
1063 #if 0
1064 /* According to my humble theory, AIX has some timing problems and
1065 when the user stack grows, kernel doesn't update stack info in time
1066 and ptrace calls step on user stack. That is why we sleep here a
1067 little, and give kernel to update its internals. */
1068 usleep (36000);
1069 #endif
1070
1071 if (arch64)
1072 rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, size, NULL);
1073 else
1074 rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi, size, NULL);
1075
1076 if (rc == -1)
1077 {
1078 if (errno == ENOMEM)
1079 load_segs *= 2;
1080 else
1081 perror_with_name (_("ptrace ldinfo"));
1082 }
1083 else
1084 {
1085 vmap_ldinfo (ldi);
1086 vmap_exec (); /* relocate the exec and core sections as well. */
1087 }
1088 } while (rc == -1);
1089 if (ldi)
1090 xfree (ldi);
1091 }
1092 \f
1093 /* Core file stuff. */
1094
1095 /* Relocate symtabs and read in shared library info, based on symbols
1096 from the core file. */
1097
1098 void
1099 xcoff_relocate_core (struct target_ops *target)
1100 {
1101 struct bfd_section *ldinfo_sec;
1102 int offset = 0;
1103 LdInfo *ldi;
1104 struct vmap *vp;
1105 int arch64 = ARCH64 ();
1106
1107 /* Size of a struct ld_info except for the variable-length filename. */
1108 int nonfilesz = (int)LDI_FILENAME ((LdInfo *)0, arch64);
1109
1110 /* Allocated size of buffer. */
1111 int buffer_size = nonfilesz;
1112 char *buffer = xmalloc (buffer_size);
1113 struct cleanup *old = make_cleanup (free_current_contents, &buffer);
1114
1115 ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
1116 if (ldinfo_sec == NULL)
1117 {
1118 bfd_err:
1119 fprintf_filtered (gdb_stderr, "Couldn't get ldinfo from core file: %s\n",
1120 bfd_errmsg (bfd_get_error ()));
1121 do_cleanups (old);
1122 return;
1123 }
1124 do
1125 {
1126 int i;
1127 int names_found = 0;
1128
1129 /* Read in everything but the name. */
1130 if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer,
1131 offset, nonfilesz) == 0)
1132 goto bfd_err;
1133
1134 /* Now the name. */
1135 i = nonfilesz;
1136 do
1137 {
1138 if (i == buffer_size)
1139 {
1140 buffer_size *= 2;
1141 buffer = xrealloc (buffer, buffer_size);
1142 }
1143 if (bfd_get_section_contents (core_bfd, ldinfo_sec, &buffer[i],
1144 offset + i, 1) == 0)
1145 goto bfd_err;
1146 if (buffer[i++] == '\0')
1147 ++names_found;
1148 }
1149 while (names_found < 2);
1150
1151 ldi = (LdInfo *) buffer;
1152
1153 /* Can't use a file descriptor from the core file; need to open it. */
1154 if (arch64)
1155 ldi->l64.ldinfo_fd = -1;
1156 else
1157 ldi->l32.ldinfo_fd = -1;
1158
1159 /* The first ldinfo is for the exec file, allocated elsewhere. */
1160 if (offset == 0 && vmap != NULL)
1161 vp = vmap;
1162 else
1163 vp = add_vmap (ldi);
1164
1165 /* Process next shared library upon error. */
1166 offset += LDI_NEXT (ldi, arch64);
1167 if (vp == NULL)
1168 continue;
1169
1170 vmap_secs (vp, ldi, arch64);
1171
1172 /* Unless this is the exec file,
1173 add our sections to the section table for the core target. */
1174 if (vp != vmap)
1175 {
1176 struct target_section *stp;
1177
1178 stp = deprecated_core_resize_section_table (2);
1179
1180 stp->bfd = vp->bfd;
1181 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".text");
1182 stp->addr = vp->tstart;
1183 stp->endaddr = vp->tend;
1184 stp++;
1185
1186 stp->bfd = vp->bfd;
1187 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".data");
1188 stp->addr = vp->dstart;
1189 stp->endaddr = vp->dend;
1190 }
1191
1192 vmap_symtab (vp);
1193
1194 if (vp != vmap && vp->objfile)
1195 observer_notify_new_objfile (vp->objfile);
1196 }
1197 while (LDI_NEXT (ldi, arch64) != 0);
1198 vmap_exec ();
1199 breakpoint_re_set ();
1200 do_cleanups (old);
1201 }
1202 \f
1203 /* Under AIX, we have to pass the correct TOC pointer to a function
1204 when calling functions in the inferior.
1205 We try to find the relative toc offset of the objfile containing PC
1206 and add the current load address of the data segment from the vmap. */
1207
1208 static CORE_ADDR
1209 find_toc_address (CORE_ADDR pc)
1210 {
1211 struct vmap *vp;
1212
1213 for (vp = vmap; vp; vp = vp->nxt)
1214 {
1215 if (pc >= vp->tstart && pc < vp->tend)
1216 {
1217 /* vp->objfile is only NULL for the exec file. */
1218 return vp->dstart + xcoff_get_toc_offset (vp->objfile == NULL
1219 ? symfile_objfile
1220 : vp->objfile);
1221 }
1222 }
1223 error (_("Unable to find TOC entry for pc %s."), hex_string (pc));
1224 }
1225 \f
1226
1227 void _initialize_rs6000_nat (void);
1228
1229 void
1230 _initialize_rs6000_nat (void)
1231 {
1232 struct target_ops *t;
1233
1234 t = inf_ptrace_target ();
1235 t->to_fetch_registers = rs6000_fetch_inferior_registers;
1236 t->to_store_registers = rs6000_store_inferior_registers;
1237 t->to_xfer_partial = rs6000_xfer_partial;
1238
1239 super_create_inferior = t->to_create_inferior;
1240 t->to_create_inferior = rs6000_create_inferior;
1241
1242 t->to_wait = rs6000_wait;
1243
1244 add_target (t);
1245
1246 /* Initialize hook in rs6000-tdep.c for determining the TOC address
1247 when calling functions in the inferior. */
1248 rs6000_find_toc_address_hook = find_toc_address;
1249 }
This page took 0.0553709999999999 seconds and 4 git commands to generate.