Merge {i386,amd64}_linux_read_description
[deliverable/binutils-gdb.git] / gdb / rs6000-nat.c
1 /* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "gdbcore.h"
24 #include "symfile.h"
25 #include "objfiles.h"
26 #include "libbfd.h" /* For bfd_default_set_arch_mach (FIXME) */
27 #include "bfd.h"
28 #include "exceptions.h"
29 #include "gdb-stabs.h"
30 #include "regcache.h"
31 #include "arch-utils.h"
32 #include "inf-child.h"
33 #include "inf-ptrace.h"
34 #include "ppc-tdep.h"
35 #include "rs6000-tdep.h"
36 #include "rs6000-aix-tdep.h"
37 #include "exec.h"
38 #include "observer.h"
39 #include "xcoffread.h"
40
41 #include <sys/ptrace.h>
42 #include <sys/reg.h>
43
44 #include <sys/dir.h>
45 #include <sys/user.h>
46 #include <signal.h>
47 #include <sys/ioctl.h>
48 #include <fcntl.h>
49 #include <errno.h>
50
51 #include <a.out.h>
52 #include <sys/file.h>
53 #include <sys/stat.h>
54 #include "gdb_bfd.h"
55 #include <sys/core.h>
56 #define __LDINFO_PTRACE32__ /* for __ld_info32 */
57 #define __LDINFO_PTRACE64__ /* for __ld_info64 */
58 #include <sys/ldr.h>
59 #include <sys/systemcfg.h>
60
61 /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
62 debugging 32-bit and 64-bit processes. Define a typedef and macros for
63 accessing fields in the appropriate structures. */
64
65 /* In 32-bit compilation mode (which is the only mode from which ptrace()
66 works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
67
68 #if defined (__ld_info32) || defined (__ld_info64)
69 # define ARCH3264
70 #endif
71
72 /* Return whether the current architecture is 64-bit. */
73
74 #ifndef ARCH3264
75 # define ARCH64() 0
76 #else
77 # define ARCH64() (register_size (target_gdbarch (), 0) == 8)
78 #endif
79
80 static void exec_one_dummy_insn (struct regcache *);
81
82 static target_xfer_partial_ftype rs6000_xfer_shared_libraries;
83
84 /* Given REGNO, a gdb register number, return the corresponding
85 number suitable for use as a ptrace() parameter. Return -1 if
86 there's no suitable mapping. Also, set the int pointed to by
87 ISFLOAT to indicate whether REGNO is a floating point register. */
88
89 static int
90 regmap (struct gdbarch *gdbarch, int regno, int *isfloat)
91 {
92 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
93
94 *isfloat = 0;
95 if (tdep->ppc_gp0_regnum <= regno
96 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
97 return regno;
98 else if (tdep->ppc_fp0_regnum >= 0
99 && tdep->ppc_fp0_regnum <= regno
100 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
101 {
102 *isfloat = 1;
103 return regno - tdep->ppc_fp0_regnum + FPR0;
104 }
105 else if (regno == gdbarch_pc_regnum (gdbarch))
106 return IAR;
107 else if (regno == tdep->ppc_ps_regnum)
108 return MSR;
109 else if (regno == tdep->ppc_cr_regnum)
110 return CR;
111 else if (regno == tdep->ppc_lr_regnum)
112 return LR;
113 else if (regno == tdep->ppc_ctr_regnum)
114 return CTR;
115 else if (regno == tdep->ppc_xer_regnum)
116 return XER;
117 else if (tdep->ppc_fpscr_regnum >= 0
118 && regno == tdep->ppc_fpscr_regnum)
119 return FPSCR;
120 else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum)
121 return MQ;
122 else
123 return -1;
124 }
125
126 /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
127
128 static int
129 rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
130 {
131 #ifdef HAVE_PTRACE64
132 int ret = ptrace64 (req, id, (uintptr_t) addr, data, buf);
133 #else
134 int ret = ptrace (req, id, (int *)addr, data, buf);
135 #endif
136 #if 0
137 printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
138 req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
139 #endif
140 return ret;
141 }
142
143 /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
144
145 static int
146 rs6000_ptrace64 (int req, int id, long long addr, int data, void *buf)
147 {
148 #ifdef ARCH3264
149 # ifdef HAVE_PTRACE64
150 int ret = ptrace64 (req, id, addr, data, buf);
151 # else
152 int ret = ptracex (req, id, addr, data, buf);
153 # endif
154 #else
155 int ret = 0;
156 #endif
157 #if 0
158 printf ("rs6000_ptrace64 (%d, %d, %s, %08x, 0x%x) = 0x%x\n",
159 req, id, hex_string (addr), data, (unsigned int)buf, ret);
160 #endif
161 return ret;
162 }
163
164 /* Fetch register REGNO from the inferior. */
165
166 static void
167 fetch_register (struct regcache *regcache, int regno)
168 {
169 struct gdbarch *gdbarch = get_regcache_arch (regcache);
170 int addr[MAX_REGISTER_SIZE];
171 int nr, isfloat;
172
173 /* Retrieved values may be -1, so infer errors from errno. */
174 errno = 0;
175
176 nr = regmap (gdbarch, regno, &isfloat);
177
178 /* Floating-point registers. */
179 if (isfloat)
180 rs6000_ptrace32 (PT_READ_FPR, ptid_get_pid (inferior_ptid), addr, nr, 0);
181
182 /* Bogus register number. */
183 else if (nr < 0)
184 {
185 if (regno >= gdbarch_num_regs (gdbarch))
186 fprintf_unfiltered (gdb_stderr,
187 "gdb error: register no %d not implemented.\n",
188 regno);
189 return;
190 }
191
192 /* Fixed-point registers. */
193 else
194 {
195 if (!ARCH64 ())
196 *addr = rs6000_ptrace32 (PT_READ_GPR, ptid_get_pid (inferior_ptid),
197 (int *) nr, 0, 0);
198 else
199 {
200 /* PT_READ_GPR requires the buffer parameter to point to long long,
201 even if the register is really only 32 bits. */
202 long long buf;
203 rs6000_ptrace64 (PT_READ_GPR, ptid_get_pid (inferior_ptid),
204 nr, 0, &buf);
205 if (register_size (gdbarch, regno) == 8)
206 memcpy (addr, &buf, 8);
207 else
208 *addr = buf;
209 }
210 }
211
212 if (!errno)
213 regcache_raw_supply (regcache, regno, (char *) addr);
214 else
215 {
216 #if 0
217 /* FIXME: this happens 3 times at the start of each 64-bit program. */
218 perror (_("ptrace read"));
219 #endif
220 errno = 0;
221 }
222 }
223
224 /* Store register REGNO back into the inferior. */
225
226 static void
227 store_register (struct regcache *regcache, int regno)
228 {
229 struct gdbarch *gdbarch = get_regcache_arch (regcache);
230 int addr[MAX_REGISTER_SIZE];
231 int nr, isfloat;
232
233 /* Fetch the register's value from the register cache. */
234 regcache_raw_collect (regcache, regno, addr);
235
236 /* -1 can be a successful return value, so infer errors from errno. */
237 errno = 0;
238
239 nr = regmap (gdbarch, regno, &isfloat);
240
241 /* Floating-point registers. */
242 if (isfloat)
243 rs6000_ptrace32 (PT_WRITE_FPR, ptid_get_pid (inferior_ptid), addr, nr, 0);
244
245 /* Bogus register number. */
246 else if (nr < 0)
247 {
248 if (regno >= gdbarch_num_regs (gdbarch))
249 fprintf_unfiltered (gdb_stderr,
250 "gdb error: register no %d not implemented.\n",
251 regno);
252 }
253
254 /* Fixed-point registers. */
255 else
256 {
257 if (regno == gdbarch_sp_regnum (gdbarch))
258 /* Execute one dummy instruction (which is a breakpoint) in inferior
259 process to give kernel a chance to do internal housekeeping.
260 Otherwise the following ptrace(2) calls will mess up user stack
261 since kernel will get confused about the bottom of the stack
262 (%sp). */
263 exec_one_dummy_insn (regcache);
264
265 /* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors,
266 the register's value is passed by value, but for 64-bit inferiors,
267 the address of a buffer containing the value is passed. */
268 if (!ARCH64 ())
269 rs6000_ptrace32 (PT_WRITE_GPR, ptid_get_pid (inferior_ptid),
270 (int *) nr, *addr, 0);
271 else
272 {
273 /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
274 area, even if the register is really only 32 bits. */
275 long long buf;
276 if (register_size (gdbarch, regno) == 8)
277 memcpy (&buf, addr, 8);
278 else
279 buf = *addr;
280 rs6000_ptrace64 (PT_WRITE_GPR, ptid_get_pid (inferior_ptid),
281 nr, 0, &buf);
282 }
283 }
284
285 if (errno)
286 {
287 perror (_("ptrace write"));
288 errno = 0;
289 }
290 }
291
292 /* Read from the inferior all registers if REGNO == -1 and just register
293 REGNO otherwise. */
294
295 static void
296 rs6000_fetch_inferior_registers (struct target_ops *ops,
297 struct regcache *regcache, int regno)
298 {
299 struct gdbarch *gdbarch = get_regcache_arch (regcache);
300 if (regno != -1)
301 fetch_register (regcache, regno);
302
303 else
304 {
305 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
306
307 /* Read 32 general purpose registers. */
308 for (regno = tdep->ppc_gp0_regnum;
309 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
310 regno++)
311 {
312 fetch_register (regcache, regno);
313 }
314
315 /* Read general purpose floating point registers. */
316 if (tdep->ppc_fp0_regnum >= 0)
317 for (regno = 0; regno < ppc_num_fprs; regno++)
318 fetch_register (regcache, tdep->ppc_fp0_regnum + regno);
319
320 /* Read special registers. */
321 fetch_register (regcache, gdbarch_pc_regnum (gdbarch));
322 fetch_register (regcache, tdep->ppc_ps_regnum);
323 fetch_register (regcache, tdep->ppc_cr_regnum);
324 fetch_register (regcache, tdep->ppc_lr_regnum);
325 fetch_register (regcache, tdep->ppc_ctr_regnum);
326 fetch_register (regcache, tdep->ppc_xer_regnum);
327 if (tdep->ppc_fpscr_regnum >= 0)
328 fetch_register (regcache, tdep->ppc_fpscr_regnum);
329 if (tdep->ppc_mq_regnum >= 0)
330 fetch_register (regcache, tdep->ppc_mq_regnum);
331 }
332 }
333
334 /* Store our register values back into the inferior.
335 If REGNO is -1, do this for all registers.
336 Otherwise, REGNO specifies which register (so we can save time). */
337
338 static void
339 rs6000_store_inferior_registers (struct target_ops *ops,
340 struct regcache *regcache, int regno)
341 {
342 struct gdbarch *gdbarch = get_regcache_arch (regcache);
343 if (regno != -1)
344 store_register (regcache, regno);
345
346 else
347 {
348 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
349
350 /* Write general purpose registers first. */
351 for (regno = tdep->ppc_gp0_regnum;
352 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
353 regno++)
354 {
355 store_register (regcache, regno);
356 }
357
358 /* Write floating point registers. */
359 if (tdep->ppc_fp0_regnum >= 0)
360 for (regno = 0; regno < ppc_num_fprs; regno++)
361 store_register (regcache, tdep->ppc_fp0_regnum + regno);
362
363 /* Write special registers. */
364 store_register (regcache, gdbarch_pc_regnum (gdbarch));
365 store_register (regcache, tdep->ppc_ps_regnum);
366 store_register (regcache, tdep->ppc_cr_regnum);
367 store_register (regcache, tdep->ppc_lr_regnum);
368 store_register (regcache, tdep->ppc_ctr_regnum);
369 store_register (regcache, tdep->ppc_xer_regnum);
370 if (tdep->ppc_fpscr_regnum >= 0)
371 store_register (regcache, tdep->ppc_fpscr_regnum);
372 if (tdep->ppc_mq_regnum >= 0)
373 store_register (regcache, tdep->ppc_mq_regnum);
374 }
375 }
376
377 /* Implement the to_xfer_partial target_ops method. */
378
379 static enum target_xfer_status
380 rs6000_xfer_partial (struct target_ops *ops, enum target_object object,
381 const char *annex, gdb_byte *readbuf,
382 const gdb_byte *writebuf,
383 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
384 {
385 pid_t pid = ptid_get_pid (inferior_ptid);
386 int arch64 = ARCH64 ();
387
388 switch (object)
389 {
390 case TARGET_OBJECT_LIBRARIES_AIX:
391 return rs6000_xfer_shared_libraries (ops, object, annex,
392 readbuf, writebuf,
393 offset, len, xfered_len);
394 case TARGET_OBJECT_MEMORY:
395 {
396 union
397 {
398 PTRACE_TYPE_RET word;
399 gdb_byte byte[sizeof (PTRACE_TYPE_RET)];
400 } buffer;
401 ULONGEST rounded_offset;
402 LONGEST partial_len;
403
404 /* Round the start offset down to the next long word
405 boundary. */
406 rounded_offset = offset & -(ULONGEST) sizeof (PTRACE_TYPE_RET);
407
408 /* Since ptrace will transfer a single word starting at that
409 rounded_offset the partial_len needs to be adjusted down to
410 that (remember this function only does a single transfer).
411 Should the required length be even less, adjust it down
412 again. */
413 partial_len = (rounded_offset + sizeof (PTRACE_TYPE_RET)) - offset;
414 if (partial_len > len)
415 partial_len = len;
416
417 if (writebuf)
418 {
419 /* If OFFSET:PARTIAL_LEN is smaller than
420 ROUNDED_OFFSET:WORDSIZE then a read/modify write will
421 be needed. Read in the entire word. */
422 if (rounded_offset < offset
423 || (offset + partial_len
424 < rounded_offset + sizeof (PTRACE_TYPE_RET)))
425 {
426 /* Need part of initial word -- fetch it. */
427 if (arch64)
428 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
429 rounded_offset, 0, NULL);
430 else
431 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
432 (int *) (uintptr_t)
433 rounded_offset,
434 0, NULL);
435 }
436
437 /* Copy data to be written over corresponding part of
438 buffer. */
439 memcpy (buffer.byte + (offset - rounded_offset),
440 writebuf, partial_len);
441
442 errno = 0;
443 if (arch64)
444 rs6000_ptrace64 (PT_WRITE_D, pid,
445 rounded_offset, buffer.word, NULL);
446 else
447 rs6000_ptrace32 (PT_WRITE_D, pid,
448 (int *) (uintptr_t) rounded_offset,
449 buffer.word, NULL);
450 if (errno)
451 return TARGET_XFER_EOF;
452 }
453
454 if (readbuf)
455 {
456 errno = 0;
457 if (arch64)
458 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
459 rounded_offset, 0, NULL);
460 else
461 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
462 (int *)(uintptr_t)rounded_offset,
463 0, NULL);
464 if (errno)
465 return TARGET_XFER_EOF;
466
467 /* Copy appropriate bytes out of the buffer. */
468 memcpy (readbuf, buffer.byte + (offset - rounded_offset),
469 partial_len);
470 }
471
472 *xfered_len = (ULONGEST) partial_len;
473 return TARGET_XFER_OK;
474 }
475
476 default:
477 return TARGET_XFER_E_IO;
478 }
479 }
480
481 /* Wait for the child specified by PTID to do something. Return the
482 process ID of the child, or MINUS_ONE_PTID in case of error; store
483 the status in *OURSTATUS. */
484
485 static ptid_t
486 rs6000_wait (struct target_ops *ops,
487 ptid_t ptid, struct target_waitstatus *ourstatus, int options)
488 {
489 pid_t pid;
490 int status, save_errno;
491
492 do
493 {
494 set_sigint_trap ();
495
496 do
497 {
498 pid = waitpid (ptid_get_pid (ptid), &status, 0);
499 save_errno = errno;
500 }
501 while (pid == -1 && errno == EINTR);
502
503 clear_sigint_trap ();
504
505 if (pid == -1)
506 {
507 fprintf_unfiltered (gdb_stderr,
508 _("Child process unexpectedly missing: %s.\n"),
509 safe_strerror (save_errno));
510
511 /* Claim it exited with unknown signal. */
512 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
513 ourstatus->value.sig = GDB_SIGNAL_UNKNOWN;
514 return inferior_ptid;
515 }
516
517 /* Ignore terminated detached child processes. */
518 if (!WIFSTOPPED (status) && pid != ptid_get_pid (inferior_ptid))
519 pid = -1;
520 }
521 while (pid == -1);
522
523 /* AIX has a couple of strange returns from wait(). */
524
525 /* stop after load" status. */
526 if (status == 0x57c)
527 ourstatus->kind = TARGET_WAITKIND_LOADED;
528 /* signal 0. I have no idea why wait(2) returns with this status word. */
529 else if (status == 0x7f)
530 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
531 /* A normal waitstatus. Let the usual macros deal with it. */
532 else
533 store_waitstatus (ourstatus, status);
534
535 return pid_to_ptid (pid);
536 }
537
538 /* Execute one dummy breakpoint instruction. This way we give the kernel
539 a chance to do some housekeeping and update inferior's internal data,
540 including u_area. */
541
542 static void
543 exec_one_dummy_insn (struct regcache *regcache)
544 {
545 #define DUMMY_INSN_ADDR AIX_TEXT_SEGMENT_BASE+0x200
546
547 struct gdbarch *gdbarch = get_regcache_arch (regcache);
548 int ret, status, pid;
549 CORE_ADDR prev_pc;
550 void *bp;
551
552 /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
553 assume that this address will never be executed again by the real
554 code. */
555
556 bp = deprecated_insert_raw_breakpoint (gdbarch, NULL, DUMMY_INSN_ADDR);
557
558 /* You might think this could be done with a single ptrace call, and
559 you'd be correct for just about every platform I've ever worked
560 on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
561 the inferior never hits the breakpoint (it's also worth noting
562 powerpc-ibm-aix4.1.3 works correctly). */
563 prev_pc = regcache_read_pc (regcache);
564 regcache_write_pc (regcache, DUMMY_INSN_ADDR);
565 if (ARCH64 ())
566 ret = rs6000_ptrace64 (PT_CONTINUE, ptid_get_pid (inferior_ptid),
567 1, 0, NULL);
568 else
569 ret = rs6000_ptrace32 (PT_CONTINUE, ptid_get_pid (inferior_ptid),
570 (int *) 1, 0, NULL);
571
572 if (ret != 0)
573 perror (_("pt_continue"));
574
575 do
576 {
577 pid = waitpid (ptid_get_pid (inferior_ptid), &status, 0);
578 }
579 while (pid != ptid_get_pid (inferior_ptid));
580
581 regcache_write_pc (regcache, prev_pc);
582 deprecated_remove_raw_breakpoint (gdbarch, bp);
583 }
584 \f
585
586 /* Set the current architecture from the host running GDB. Called when
587 starting a child process. */
588
589 static void (*super_create_inferior) (struct target_ops *,char *exec_file,
590 char *allargs, char **env, int from_tty);
591 static void
592 rs6000_create_inferior (struct target_ops * ops, char *exec_file,
593 char *allargs, char **env, int from_tty)
594 {
595 enum bfd_architecture arch;
596 unsigned long mach;
597 bfd abfd;
598 struct gdbarch_info info;
599
600 super_create_inferior (ops, exec_file, allargs, env, from_tty);
601
602 if (__power_rs ())
603 {
604 arch = bfd_arch_rs6000;
605 mach = bfd_mach_rs6k;
606 }
607 else
608 {
609 arch = bfd_arch_powerpc;
610 mach = bfd_mach_ppc;
611 }
612
613 /* FIXME: schauer/2002-02-25:
614 We don't know if we are executing a 32 or 64 bit executable,
615 and have no way to pass the proper word size to rs6000_gdbarch_init.
616 So we have to avoid switching to a new architecture, if the architecture
617 matches already.
618 Blindly calling rs6000_gdbarch_init used to work in older versions of
619 GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
620 determine the wordsize. */
621 if (exec_bfd)
622 {
623 const struct bfd_arch_info *exec_bfd_arch_info;
624
625 exec_bfd_arch_info = bfd_get_arch_info (exec_bfd);
626 if (arch == exec_bfd_arch_info->arch)
627 return;
628 }
629
630 bfd_default_set_arch_mach (&abfd, arch, mach);
631
632 gdbarch_info_init (&info);
633 info.bfd_arch_info = bfd_get_arch_info (&abfd);
634 info.abfd = exec_bfd;
635
636 if (!gdbarch_update_p (info))
637 internal_error (__FILE__, __LINE__,
638 _("rs6000_create_inferior: failed "
639 "to select architecture"));
640 }
641 \f
642
643 /* Shared Object support. */
644
645 /* Return the LdInfo data for the given process. Raises an error
646 if the data could not be obtained.
647
648 The returned value must be deallocated after use. */
649
650 static gdb_byte *
651 rs6000_ptrace_ldinfo (ptid_t ptid)
652 {
653 const int pid = ptid_get_pid (ptid);
654 int ldi_size = 1024;
655 gdb_byte *ldi = xmalloc (ldi_size);
656 int rc = -1;
657
658 while (1)
659 {
660 if (ARCH64 ())
661 rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, ldi_size,
662 NULL);
663 else
664 rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi, ldi_size, NULL);
665
666 if (rc != -1)
667 break; /* Success, we got the entire ld_info data. */
668
669 if (errno != ENOMEM)
670 perror_with_name (_("ptrace ldinfo"));
671
672 /* ldi is not big enough. Double it and try again. */
673 ldi_size *= 2;
674 ldi = xrealloc (ldi, ldi_size);
675 }
676
677 return ldi;
678 }
679
680 /* Implement the to_xfer_partial target_ops method for
681 TARGET_OBJECT_LIBRARIES_AIX objects. */
682
683 static enum target_xfer_status
684 rs6000_xfer_shared_libraries
685 (struct target_ops *ops, enum target_object object,
686 const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf,
687 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
688 {
689 gdb_byte *ldi_buf;
690 ULONGEST result;
691 struct cleanup *cleanup;
692
693 /* This function assumes that it is being run with a live process.
694 Core files are handled via gdbarch. */
695 gdb_assert (target_has_execution);
696
697 if (writebuf)
698 return TARGET_XFER_E_IO;
699
700 ldi_buf = rs6000_ptrace_ldinfo (inferior_ptid);
701 gdb_assert (ldi_buf != NULL);
702 cleanup = make_cleanup (xfree, ldi_buf);
703 result = rs6000_aix_ld_info_to_xml (target_gdbarch (), ldi_buf,
704 readbuf, offset, len, 1);
705 xfree (ldi_buf);
706
707 do_cleanups (cleanup);
708
709 if (result == 0)
710 return TARGET_XFER_EOF;
711 else
712 {
713 *xfered_len = result;
714 return TARGET_XFER_OK;
715 }
716 }
717
718 void _initialize_rs6000_nat (void);
719
720 void
721 _initialize_rs6000_nat (void)
722 {
723 struct target_ops *t;
724
725 t = inf_ptrace_target ();
726 t->to_fetch_registers = rs6000_fetch_inferior_registers;
727 t->to_store_registers = rs6000_store_inferior_registers;
728 t->to_xfer_partial = rs6000_xfer_partial;
729
730 super_create_inferior = t->to_create_inferior;
731 t->to_create_inferior = rs6000_create_inferior;
732
733 t->to_wait = rs6000_wait;
734
735 add_target (t);
736 }
This page took 0.045668 seconds and 4 git commands to generate.