* config/ppc-tdep.h (struct gdbarch_tdep): Delete
[deliverable/binutils-gdb.git] / gdb / rs6000-nat.c
1 /* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
2
3 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "inferior.h"
26 #include "target.h"
27 #include "gdbcore.h"
28 #include "xcoffsolib.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "libbfd.h" /* For bfd_cache_lookup (FIXME) */
32 #include "bfd.h"
33 #include "gdb-stabs.h"
34 #include "regcache.h"
35 #include "arch-utils.h"
36 #include "language.h" /* for local_hex_string(). */
37 #include "ppc-tdep.h"
38 #include "exec.h"
39
40 #include <sys/ptrace.h>
41 #include <sys/reg.h>
42
43 #include <sys/param.h>
44 #include <sys/dir.h>
45 #include <sys/user.h>
46 #include <signal.h>
47 #include <sys/ioctl.h>
48 #include <fcntl.h>
49 #include <errno.h>
50
51 #include <a.out.h>
52 #include <sys/file.h>
53 #include "gdb_stat.h"
54 #include <sys/core.h>
55 #define __LDINFO_PTRACE32__ /* for __ld_info32 */
56 #define __LDINFO_PTRACE64__ /* for __ld_info64 */
57 #include <sys/ldr.h>
58 #include <sys/systemcfg.h>
59
60 /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
61 debugging 32-bit and 64-bit processes. Define a typedef and macros for
62 accessing fields in the appropriate structures. */
63
64 /* In 32-bit compilation mode (which is the only mode from which ptrace()
65 works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
66
67 #ifdef __ld_info32
68 # define ARCH3264
69 #endif
70
71 /* Return whether the current architecture is 64-bit. */
72
73 #ifndef ARCH3264
74 # define ARCH64() 0
75 #else
76 # define ARCH64() (DEPRECATED_REGISTER_RAW_SIZE (0) == 8)
77 #endif
78
79 /* Union of 32-bit and 64-bit ".reg" core file sections. */
80
81 typedef union {
82 #ifdef ARCH3264
83 struct __context64 r64;
84 #else
85 struct mstsave r64;
86 #endif
87 struct mstsave r32;
88 } CoreRegs;
89
90 /* Union of 32-bit and 64-bit versions of ld_info. */
91
92 typedef union {
93 #ifndef ARCH3264
94 struct ld_info l32;
95 struct ld_info l64;
96 #else
97 struct __ld_info32 l32;
98 struct __ld_info64 l64;
99 #endif
100 } LdInfo;
101
102 /* If compiling with 32-bit and 64-bit debugging capability (e.g. AIX 4.x),
103 declare and initialize a variable named VAR suitable for use as the arch64
104 parameter to the various LDI_*() macros. */
105
106 #ifndef ARCH3264
107 # define ARCH64_DECL(var)
108 #else
109 # define ARCH64_DECL(var) int var = ARCH64 ()
110 #endif
111
112 /* Return LDI's FIELD for a 64-bit process if ARCH64 and for a 32-bit process
113 otherwise. This technique only works for FIELDs with the same data type in
114 32-bit and 64-bit versions of ld_info. */
115
116 #ifndef ARCH3264
117 # define LDI_FIELD(ldi, arch64, field) (ldi)->l32.ldinfo_##field
118 #else
119 # define LDI_FIELD(ldi, arch64, field) \
120 (arch64 ? (ldi)->l64.ldinfo_##field : (ldi)->l32.ldinfo_##field)
121 #endif
122
123 /* Return various LDI fields for a 64-bit process if ARCH64 and for a 32-bit
124 process otherwise. */
125
126 #define LDI_NEXT(ldi, arch64) LDI_FIELD(ldi, arch64, next)
127 #define LDI_FD(ldi, arch64) LDI_FIELD(ldi, arch64, fd)
128 #define LDI_FILENAME(ldi, arch64) LDI_FIELD(ldi, arch64, filename)
129
130 extern struct vmap *map_vmap (bfd * bf, bfd * arch);
131
132 static void vmap_exec (void);
133
134 static void vmap_ldinfo (LdInfo *);
135
136 static struct vmap *add_vmap (LdInfo *);
137
138 static int objfile_symbol_add (void *);
139
140 static void vmap_symtab (struct vmap *);
141
142 static void fetch_core_registers (char *, unsigned int, int, CORE_ADDR);
143
144 static void exec_one_dummy_insn (void);
145
146 extern void fixup_breakpoints (CORE_ADDR low, CORE_ADDR high, CORE_ADDR delta);
147
148 /* Given REGNO, a gdb register number, return the corresponding
149 number suitable for use as a ptrace() parameter. Return -1 if
150 there's no suitable mapping. Also, set the int pointed to by
151 ISFLOAT to indicate whether REGNO is a floating point register. */
152
153 static int
154 regmap (int regno, int *isfloat)
155 {
156 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
157
158 *isfloat = 0;
159 if (tdep->ppc_gp0_regnum <= regno
160 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
161 return regno;
162 else if (FP0_REGNUM <= regno && regno < FP0_REGNUM + ppc_num_fprs)
163 {
164 *isfloat = 1;
165 return regno - FP0_REGNUM + FPR0;
166 }
167 else if (regno == PC_REGNUM)
168 return IAR;
169 else if (regno == tdep->ppc_ps_regnum)
170 return MSR;
171 else if (regno == tdep->ppc_cr_regnum)
172 return CR;
173 else if (regno == tdep->ppc_lr_regnum)
174 return LR;
175 else if (regno == tdep->ppc_ctr_regnum)
176 return CTR;
177 else if (regno == tdep->ppc_xer_regnum)
178 return XER;
179 else if (regno == tdep->ppc_fpscr_regnum)
180 return FPSCR;
181 else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum)
182 return MQ;
183 else
184 return -1;
185 }
186
187 /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
188
189 static int
190 rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
191 {
192 int ret = ptrace (req, id, (int *)addr, data, buf);
193 #if 0
194 printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
195 req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
196 #endif
197 return ret;
198 }
199
200 /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
201
202 static int
203 rs6000_ptrace64 (int req, int id, long long addr, int data, int *buf)
204 {
205 #ifdef ARCH3264
206 int ret = ptracex (req, id, addr, data, buf);
207 #else
208 int ret = 0;
209 #endif
210 #if 0
211 printf ("rs6000_ptrace64 (%d, %d, 0x%llx, %08x, 0x%x) = 0x%x\n",
212 req, id, addr, data, (unsigned int)buf, ret);
213 #endif
214 return ret;
215 }
216
217 /* Fetch register REGNO from the inferior. */
218
219 static void
220 fetch_register (int regno)
221 {
222 int addr[MAX_REGISTER_SIZE];
223 int nr, isfloat;
224
225 /* Retrieved values may be -1, so infer errors from errno. */
226 errno = 0;
227
228 nr = regmap (regno, &isfloat);
229
230 /* Floating-point registers. */
231 if (isfloat)
232 rs6000_ptrace32 (PT_READ_FPR, PIDGET (inferior_ptid), addr, nr, 0);
233
234 /* Bogus register number. */
235 else if (nr < 0)
236 {
237 if (regno >= NUM_REGS)
238 fprintf_unfiltered (gdb_stderr,
239 "gdb error: register no %d not implemented.\n",
240 regno);
241 return;
242 }
243
244 /* Fixed-point registers. */
245 else
246 {
247 if (!ARCH64 ())
248 *addr = rs6000_ptrace32 (PT_READ_GPR, PIDGET (inferior_ptid), (int *)nr, 0, 0);
249 else
250 {
251 /* PT_READ_GPR requires the buffer parameter to point to long long,
252 even if the register is really only 32 bits. */
253 long long buf;
254 rs6000_ptrace64 (PT_READ_GPR, PIDGET (inferior_ptid), nr, 0, (int *)&buf);
255 if (DEPRECATED_REGISTER_RAW_SIZE (regno) == 8)
256 memcpy (addr, &buf, 8);
257 else
258 *addr = buf;
259 }
260 }
261
262 if (!errno)
263 supply_register (regno, (char *) addr);
264 else
265 {
266 #if 0
267 /* FIXME: this happens 3 times at the start of each 64-bit program. */
268 perror ("ptrace read");
269 #endif
270 errno = 0;
271 }
272 }
273
274 /* Store register REGNO back into the inferior. */
275
276 static void
277 store_register (int regno)
278 {
279 int addr[MAX_REGISTER_SIZE];
280 int nr, isfloat;
281
282 /* Fetch the register's value from the register cache. */
283 regcache_collect (regno, addr);
284
285 /* -1 can be a successful return value, so infer errors from errno. */
286 errno = 0;
287
288 nr = regmap (regno, &isfloat);
289
290 /* Floating-point registers. */
291 if (isfloat)
292 rs6000_ptrace32 (PT_WRITE_FPR, PIDGET (inferior_ptid), addr, nr, 0);
293
294 /* Bogus register number. */
295 else if (nr < 0)
296 {
297 if (regno >= NUM_REGS)
298 fprintf_unfiltered (gdb_stderr,
299 "gdb error: register no %d not implemented.\n",
300 regno);
301 }
302
303 /* Fixed-point registers. */
304 else
305 {
306 if (regno == SP_REGNUM)
307 /* Execute one dummy instruction (which is a breakpoint) in inferior
308 process to give kernel a chance to do internal housekeeping.
309 Otherwise the following ptrace(2) calls will mess up user stack
310 since kernel will get confused about the bottom of the stack
311 (%sp). */
312 exec_one_dummy_insn ();
313
314 /* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors,
315 the register's value is passed by value, but for 64-bit inferiors,
316 the address of a buffer containing the value is passed. */
317 if (!ARCH64 ())
318 rs6000_ptrace32 (PT_WRITE_GPR, PIDGET (inferior_ptid), (int *)nr, *addr, 0);
319 else
320 {
321 /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
322 area, even if the register is really only 32 bits. */
323 long long buf;
324 if (DEPRECATED_REGISTER_RAW_SIZE (regno) == 8)
325 memcpy (&buf, addr, 8);
326 else
327 buf = *addr;
328 rs6000_ptrace64 (PT_WRITE_GPR, PIDGET (inferior_ptid), nr, 0, (int *)&buf);
329 }
330 }
331
332 if (errno)
333 {
334 perror ("ptrace write");
335 errno = 0;
336 }
337 }
338
339 /* Read from the inferior all registers if REGNO == -1 and just register
340 REGNO otherwise. */
341
342 void
343 fetch_inferior_registers (int regno)
344 {
345 if (regno != -1)
346 fetch_register (regno);
347
348 else
349 {
350 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
351
352 /* Read 32 general purpose registers. */
353 for (regno = tdep->ppc_gp0_regnum;
354 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
355 regno++)
356 {
357 fetch_register (regno);
358 }
359
360 /* Read general purpose floating point registers. */
361 for (regno = FP0_REGNUM; regno < FP0_REGNUM + ppc_num_fprs; regno++)
362 fetch_register (regno);
363
364 /* Read special registers. */
365 fetch_register (PC_REGNUM);
366 fetch_register (tdep->ppc_ps_regnum);
367 fetch_register (tdep->ppc_cr_regnum);
368 fetch_register (tdep->ppc_lr_regnum);
369 fetch_register (tdep->ppc_ctr_regnum);
370 fetch_register (tdep->ppc_xer_regnum);
371 fetch_register (tdep->ppc_fpscr_regnum);
372 if (tdep->ppc_mq_regnum >= 0)
373 fetch_register (tdep->ppc_mq_regnum);
374 }
375 }
376
377 /* Store our register values back into the inferior.
378 If REGNO is -1, do this for all registers.
379 Otherwise, REGNO specifies which register (so we can save time). */
380
381 void
382 store_inferior_registers (int regno)
383 {
384 if (regno != -1)
385 store_register (regno);
386
387 else
388 {
389 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
390
391 /* Write general purpose registers first. */
392 for (regno = tdep->ppc_gp0_regnum;
393 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
394 regno++)
395 {
396 store_register (regno);
397 }
398
399 /* Write floating point registers. */
400 for (regno = FP0_REGNUM; regno < FP0_REGNUM + ppc_num_fprs; regno ++)
401 store_register (regno);
402
403 /* Write special registers. */
404 store_register (PC_REGNUM);
405 store_register (tdep->ppc_ps_regnum);
406 store_register (tdep->ppc_cr_regnum);
407 store_register (tdep->ppc_lr_regnum);
408 store_register (tdep->ppc_ctr_regnum);
409 store_register (tdep->ppc_xer_regnum);
410 store_register (tdep->ppc_fpscr_regnum);
411 if (tdep->ppc_mq_regnum >= 0)
412 store_register (tdep->ppc_mq_regnum);
413 }
414 }
415
416 /* Store in *TO the 32-bit word at 32-bit-aligned ADDR in the child
417 process, which is 64-bit if ARCH64 and 32-bit otherwise. Return
418 success. */
419
420 static int
421 read_word (CORE_ADDR from, int *to, int arch64)
422 {
423 /* Retrieved values may be -1, so infer errors from errno. */
424 errno = 0;
425
426 if (arch64)
427 *to = rs6000_ptrace64 (PT_READ_I, PIDGET (inferior_ptid), from, 0, NULL);
428 else
429 *to = rs6000_ptrace32 (PT_READ_I, PIDGET (inferior_ptid), (int *)(long) from,
430 0, NULL);
431
432 return !errno;
433 }
434
435 /* Copy LEN bytes to or from inferior's memory starting at MEMADDR
436 to debugger memory starting at MYADDR. Copy to inferior if
437 WRITE is nonzero.
438
439 Returns the length copied, which is either the LEN argument or zero.
440 This xfer function does not do partial moves, since child_ops
441 doesn't allow memory operations to cross below us in the target stack
442 anyway. */
443
444 int
445 child_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len,
446 int write, struct mem_attrib *attrib,
447 struct target_ops *target)
448 {
449 /* Round starting address down to 32-bit word boundary. */
450 int mask = sizeof (int) - 1;
451 CORE_ADDR addr = memaddr & ~(CORE_ADDR)mask;
452
453 /* Round ending address up to 32-bit word boundary. */
454 int count = ((memaddr + len - addr + mask) & ~(CORE_ADDR)mask)
455 / sizeof (int);
456
457 /* Allocate word transfer buffer. */
458 /* FIXME (alloca): This code, cloned from infptrace.c, is unsafe
459 because it uses alloca to allocate a buffer of arbitrary size.
460 For very large xfers, this could crash GDB's stack. */
461 int *buf = (int *) alloca (count * sizeof (int));
462
463 int arch64 = ARCH64 ();
464 int i;
465
466 if (!write)
467 {
468 /* Retrieve memory a word at a time. */
469 for (i = 0; i < count; i++, addr += sizeof (int))
470 {
471 if (!read_word (addr, buf + i, arch64))
472 return 0;
473 QUIT;
474 }
475
476 /* Copy memory to supplied buffer. */
477 addr -= count * sizeof (int);
478 memcpy (myaddr, (char *)buf + (memaddr - addr), len);
479 }
480 else
481 {
482 /* Fetch leading memory needed for alignment. */
483 if (addr < memaddr)
484 if (!read_word (addr, buf, arch64))
485 return 0;
486
487 /* Fetch trailing memory needed for alignment. */
488 if (addr + count * sizeof (int) > memaddr + len)
489 if (!read_word (addr + (count - 1) * sizeof (int),
490 buf + count - 1, arch64))
491 return 0;
492
493 /* Copy supplied data into memory buffer. */
494 memcpy ((char *)buf + (memaddr - addr), myaddr, len);
495
496 /* Store memory one word at a time. */
497 for (i = 0, errno = 0; i < count; i++, addr += sizeof (int))
498 {
499 if (arch64)
500 rs6000_ptrace64 (PT_WRITE_D, PIDGET (inferior_ptid), addr, buf[i], NULL);
501 else
502 rs6000_ptrace32 (PT_WRITE_D, PIDGET (inferior_ptid), (int *)(long) addr,
503 buf[i], NULL);
504
505 if (errno)
506 return 0;
507 QUIT;
508 }
509 }
510
511 return len;
512 }
513
514 /* Execute one dummy breakpoint instruction. This way we give the kernel
515 a chance to do some housekeeping and update inferior's internal data,
516 including u_area. */
517
518 static void
519 exec_one_dummy_insn (void)
520 {
521 #define DUMMY_INSN_ADDR (TEXT_SEGMENT_BASE)+0x200
522
523 char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
524 int ret, status, pid;
525 CORE_ADDR prev_pc;
526
527 /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
528 assume that this address will never be executed again by the real
529 code. */
530
531 target_insert_breakpoint (DUMMY_INSN_ADDR, shadow_contents);
532
533 /* You might think this could be done with a single ptrace call, and
534 you'd be correct for just about every platform I've ever worked
535 on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
536 the inferior never hits the breakpoint (it's also worth noting
537 powerpc-ibm-aix4.1.3 works correctly). */
538 prev_pc = read_pc ();
539 write_pc (DUMMY_INSN_ADDR);
540 if (ARCH64 ())
541 ret = rs6000_ptrace64 (PT_CONTINUE, PIDGET (inferior_ptid), 1, 0, NULL);
542 else
543 ret = rs6000_ptrace32 (PT_CONTINUE, PIDGET (inferior_ptid), (int *)1, 0, NULL);
544
545 if (ret != 0)
546 perror ("pt_continue");
547
548 do
549 {
550 pid = wait (&status);
551 }
552 while (pid != PIDGET (inferior_ptid));
553
554 write_pc (prev_pc);
555 target_remove_breakpoint (DUMMY_INSN_ADDR, shadow_contents);
556 }
557
558 /* Fetch registers from the register section in core bfd. */
559
560 static void
561 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
562 int which, CORE_ADDR reg_addr)
563 {
564 CoreRegs *regs;
565 int regi;
566 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
567
568 if (which != 0)
569 {
570 fprintf_unfiltered
571 (gdb_stderr,
572 "Gdb error: unknown parameter to fetch_core_registers().\n");
573 return;
574 }
575
576 regs = (CoreRegs *) core_reg_sect;
577
578 /* Put the register values from the core file section in the regcache. */
579
580 if (ARCH64 ())
581 {
582 for (regi = 0; regi < 32; regi++)
583 supply_register (regi, (char *) &regs->r64.gpr[regi]);
584
585 for (regi = 0; regi < 32; regi++)
586 supply_register (FP0_REGNUM + regi, (char *) &regs->r64.fpr[regi]);
587
588 supply_register (PC_REGNUM, (char *) &regs->r64.iar);
589 supply_register (tdep->ppc_ps_regnum, (char *) &regs->r64.msr);
590 supply_register (tdep->ppc_cr_regnum, (char *) &regs->r64.cr);
591 supply_register (tdep->ppc_lr_regnum, (char *) &regs->r64.lr);
592 supply_register (tdep->ppc_ctr_regnum, (char *) &regs->r64.ctr);
593 supply_register (tdep->ppc_xer_regnum, (char *) &regs->r64.xer);
594 supply_register (tdep->ppc_fpscr_regnum, (char *) &regs->r64.fpscr);
595 }
596 else
597 {
598 for (regi = 0; regi < 32; regi++)
599 supply_register (regi, (char *) &regs->r32.gpr[regi]);
600
601 for (regi = 0; regi < 32; regi++)
602 supply_register (FP0_REGNUM + regi, (char *) &regs->r32.fpr[regi]);
603
604 supply_register (PC_REGNUM, (char *) &regs->r32.iar);
605 supply_register (tdep->ppc_ps_regnum, (char *) &regs->r32.msr);
606 supply_register (tdep->ppc_cr_regnum, (char *) &regs->r32.cr);
607 supply_register (tdep->ppc_lr_regnum, (char *) &regs->r32.lr);
608 supply_register (tdep->ppc_ctr_regnum, (char *) &regs->r32.ctr);
609 supply_register (tdep->ppc_xer_regnum, (char *) &regs->r32.xer);
610 supply_register (tdep->ppc_fpscr_regnum, (char *) &regs->r32.fpscr);
611 if (tdep->ppc_mq_regnum >= 0)
612 supply_register (tdep->ppc_mq_regnum, (char *) &regs->r32.mq);
613 }
614 }
615 \f
616
617 /* Copy information about text and data sections from LDI to VP for a 64-bit
618 process if ARCH64 and for a 32-bit process otherwise. */
619
620 static void
621 vmap_secs (struct vmap *vp, LdInfo *ldi, int arch64)
622 {
623 if (arch64)
624 {
625 vp->tstart = (CORE_ADDR) ldi->l64.ldinfo_textorg;
626 vp->tend = vp->tstart + ldi->l64.ldinfo_textsize;
627 vp->dstart = (CORE_ADDR) ldi->l64.ldinfo_dataorg;
628 vp->dend = vp->dstart + ldi->l64.ldinfo_datasize;
629 }
630 else
631 {
632 vp->tstart = (unsigned long) ldi->l32.ldinfo_textorg;
633 vp->tend = vp->tstart + ldi->l32.ldinfo_textsize;
634 vp->dstart = (unsigned long) ldi->l32.ldinfo_dataorg;
635 vp->dend = vp->dstart + ldi->l32.ldinfo_datasize;
636 }
637
638 /* The run time loader maps the file header in addition to the text
639 section and returns a pointer to the header in ldinfo_textorg.
640 Adjust the text start address to point to the real start address
641 of the text section. */
642 vp->tstart += vp->toffs;
643 }
644
645 /* handle symbol translation on vmapping */
646
647 static void
648 vmap_symtab (struct vmap *vp)
649 {
650 struct objfile *objfile;
651 struct section_offsets *new_offsets;
652 int i;
653
654 objfile = vp->objfile;
655 if (objfile == NULL)
656 {
657 /* OK, it's not an objfile we opened ourselves.
658 Currently, that can only happen with the exec file, so
659 relocate the symbols for the symfile. */
660 if (symfile_objfile == NULL)
661 return;
662 objfile = symfile_objfile;
663 }
664 else if (!vp->loaded)
665 /* If symbols are not yet loaded, offsets are not yet valid. */
666 return;
667
668 new_offsets =
669 (struct section_offsets *)
670 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
671
672 for (i = 0; i < objfile->num_sections; ++i)
673 new_offsets->offsets[i] = ANOFFSET (objfile->section_offsets, i);
674
675 /* The symbols in the object file are linked to the VMA of the section,
676 relocate them VMA relative. */
677 new_offsets->offsets[SECT_OFF_TEXT (objfile)] = vp->tstart - vp->tvma;
678 new_offsets->offsets[SECT_OFF_DATA (objfile)] = vp->dstart - vp->dvma;
679 new_offsets->offsets[SECT_OFF_BSS (objfile)] = vp->dstart - vp->dvma;
680
681 objfile_relocate (objfile, new_offsets);
682 }
683 \f
684 /* Add symbols for an objfile. */
685
686 static int
687 objfile_symbol_add (void *arg)
688 {
689 struct objfile *obj = (struct objfile *) arg;
690
691 syms_from_objfile (obj, NULL, 0, 0, 0, 0);
692 new_symfile_objfile (obj, 0, 0);
693 return 1;
694 }
695
696 /* Add symbols for a vmap. Return zero upon error. */
697
698 int
699 vmap_add_symbols (struct vmap *vp)
700 {
701 if (catch_errors (objfile_symbol_add, vp->objfile,
702 "Error while reading shared library symbols:\n",
703 RETURN_MASK_ALL))
704 {
705 /* Note this is only done if symbol reading was successful. */
706 vp->loaded = 1;
707 vmap_symtab (vp);
708 return 1;
709 }
710 return 0;
711 }
712
713 /* Add a new vmap entry based on ldinfo() information.
714
715 If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a
716 core file), the caller should set it to -1, and we will open the file.
717
718 Return the vmap new entry. */
719
720 static struct vmap *
721 add_vmap (LdInfo *ldi)
722 {
723 bfd *abfd, *last;
724 char *mem, *objname, *filename;
725 struct objfile *obj;
726 struct vmap *vp;
727 int fd;
728 ARCH64_DECL (arch64);
729
730 /* This ldi structure was allocated using alloca() in
731 xcoff_relocate_symtab(). Now we need to have persistent object
732 and member names, so we should save them. */
733
734 filename = LDI_FILENAME (ldi, arch64);
735 mem = filename + strlen (filename) + 1;
736 mem = savestring (mem, strlen (mem));
737 objname = savestring (filename, strlen (filename));
738
739 fd = LDI_FD (ldi, arch64);
740 if (fd < 0)
741 /* Note that this opens it once for every member; a possible
742 enhancement would be to only open it once for every object. */
743 abfd = bfd_openr (objname, gnutarget);
744 else
745 abfd = bfd_fdopenr (objname, gnutarget, fd);
746 if (!abfd)
747 {
748 warning ("Could not open `%s' as an executable file: %s",
749 objname, bfd_errmsg (bfd_get_error ()));
750 return NULL;
751 }
752
753 /* make sure we have an object file */
754
755 if (bfd_check_format (abfd, bfd_object))
756 vp = map_vmap (abfd, 0);
757
758 else if (bfd_check_format (abfd, bfd_archive))
759 {
760 last = 0;
761 /* FIXME??? am I tossing BFDs? bfd? */
762 while ((last = bfd_openr_next_archived_file (abfd, last)))
763 if (DEPRECATED_STREQ (mem, last->filename))
764 break;
765
766 if (!last)
767 {
768 warning ("\"%s\": member \"%s\" missing.", objname, mem);
769 bfd_close (abfd);
770 return NULL;
771 }
772
773 if (!bfd_check_format (last, bfd_object))
774 {
775 warning ("\"%s\": member \"%s\" not in executable format: %s.",
776 objname, mem, bfd_errmsg (bfd_get_error ()));
777 bfd_close (last);
778 bfd_close (abfd);
779 return NULL;
780 }
781
782 vp = map_vmap (last, abfd);
783 }
784 else
785 {
786 warning ("\"%s\": not in executable format: %s.",
787 objname, bfd_errmsg (bfd_get_error ()));
788 bfd_close (abfd);
789 return NULL;
790 }
791 obj = allocate_objfile (vp->bfd, 0);
792 vp->objfile = obj;
793
794 /* Always add symbols for the main objfile. */
795 if (vp == vmap || auto_solib_add)
796 vmap_add_symbols (vp);
797 return vp;
798 }
799 \f
800 /* update VMAP info with ldinfo() information
801 Input is ptr to ldinfo() results. */
802
803 static void
804 vmap_ldinfo (LdInfo *ldi)
805 {
806 struct stat ii, vi;
807 struct vmap *vp;
808 int got_one, retried;
809 int got_exec_file = 0;
810 uint next;
811 int arch64 = ARCH64 ();
812
813 /* For each *ldi, see if we have a corresponding *vp.
814 If so, update the mapping, and symbol table.
815 If not, add an entry and symbol table. */
816
817 do
818 {
819 char *name = LDI_FILENAME (ldi, arch64);
820 char *memb = name + strlen (name) + 1;
821 int fd = LDI_FD (ldi, arch64);
822
823 retried = 0;
824
825 if (fstat (fd, &ii) < 0)
826 {
827 /* The kernel sets ld_info to -1, if the process is still using the
828 object, and the object is removed. Keep the symbol info for the
829 removed object and issue a warning. */
830 warning ("%s (fd=%d) has disappeared, keeping its symbols",
831 name, fd);
832 continue;
833 }
834 retry:
835 for (got_one = 0, vp = vmap; vp; vp = vp->nxt)
836 {
837 struct objfile *objfile;
838
839 /* First try to find a `vp', which is the same as in ldinfo.
840 If not the same, just continue and grep the next `vp'. If same,
841 relocate its tstart, tend, dstart, dend values. If no such `vp'
842 found, get out of this for loop, add this ldi entry as a new vmap
843 (add_vmap) and come back, find its `vp' and so on... */
844
845 /* The filenames are not always sufficient to match on. */
846
847 if ((name[0] == '/' && !DEPRECATED_STREQ (name, vp->name))
848 || (memb[0] && !DEPRECATED_STREQ (memb, vp->member)))
849 continue;
850
851 /* See if we are referring to the same file.
852 We have to check objfile->obfd, symfile.c:reread_symbols might
853 have updated the obfd after a change. */
854 objfile = vp->objfile == NULL ? symfile_objfile : vp->objfile;
855 if (objfile == NULL
856 || objfile->obfd == NULL
857 || bfd_stat (objfile->obfd, &vi) < 0)
858 {
859 warning ("Unable to stat %s, keeping its symbols", name);
860 continue;
861 }
862
863 if (ii.st_dev != vi.st_dev || ii.st_ino != vi.st_ino)
864 continue;
865
866 if (!retried)
867 close (fd);
868
869 ++got_one;
870
871 /* Found a corresponding VMAP. Remap! */
872
873 vmap_secs (vp, ldi, arch64);
874
875 /* The objfile is only NULL for the exec file. */
876 if (vp->objfile == NULL)
877 got_exec_file = 1;
878
879 /* relocate symbol table(s). */
880 vmap_symtab (vp);
881
882 /* Announce new object files. Doing this after symbol relocation
883 makes aix-thread.c's job easier. */
884 if (deprecated_target_new_objfile_hook && vp->objfile)
885 deprecated_target_new_objfile_hook (vp->objfile);
886
887 /* There may be more, so we don't break out of the loop. */
888 }
889
890 /* if there was no matching *vp, we must perforce create the sucker(s) */
891 if (!got_one && !retried)
892 {
893 add_vmap (ldi);
894 ++retried;
895 goto retry;
896 }
897 }
898 while ((next = LDI_NEXT (ldi, arch64))
899 && (ldi = (void *) (next + (char *) ldi)));
900
901 /* If we don't find the symfile_objfile anywhere in the ldinfo, it
902 is unlikely that the symbol file is relocated to the proper
903 address. And we might have attached to a process which is
904 running a different copy of the same executable. */
905 if (symfile_objfile != NULL && !got_exec_file)
906 {
907 warning ("Symbol file %s\nis not mapped; discarding it.\n\
908 If in fact that file has symbols which the mapped files listed by\n\
909 \"info files\" lack, you can load symbols with the \"symbol-file\" or\n\
910 \"add-symbol-file\" commands (note that you must take care of relocating\n\
911 symbols to the proper address).",
912 symfile_objfile->name);
913 free_objfile (symfile_objfile);
914 symfile_objfile = NULL;
915 }
916 breakpoint_re_set ();
917 }
918 \f
919 /* As well as symbol tables, exec_sections need relocation. After
920 the inferior process' termination, there will be a relocated symbol
921 table exist with no corresponding inferior process. At that time, we
922 need to use `exec' bfd, rather than the inferior process's memory space
923 to look up symbols.
924
925 `exec_sections' need to be relocated only once, as long as the exec
926 file remains unchanged.
927 */
928
929 static void
930 vmap_exec (void)
931 {
932 static bfd *execbfd;
933 int i;
934
935 if (execbfd == exec_bfd)
936 return;
937
938 execbfd = exec_bfd;
939
940 if (!vmap || !exec_ops.to_sections)
941 error ("vmap_exec: vmap or exec_ops.to_sections == 0\n");
942
943 for (i = 0; &exec_ops.to_sections[i] < exec_ops.to_sections_end; i++)
944 {
945 if (DEPRECATED_STREQ (".text", exec_ops.to_sections[i].the_bfd_section->name))
946 {
947 exec_ops.to_sections[i].addr += vmap->tstart - vmap->tvma;
948 exec_ops.to_sections[i].endaddr += vmap->tstart - vmap->tvma;
949 }
950 else if (DEPRECATED_STREQ (".data", exec_ops.to_sections[i].the_bfd_section->name))
951 {
952 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
953 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
954 }
955 else if (DEPRECATED_STREQ (".bss", exec_ops.to_sections[i].the_bfd_section->name))
956 {
957 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
958 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
959 }
960 }
961 }
962
963 /* Set the current architecture from the host running GDB. Called when
964 starting a child process. */
965
966 static void
967 set_host_arch (int pid)
968 {
969 enum bfd_architecture arch;
970 unsigned long mach;
971 bfd abfd;
972 struct gdbarch_info info;
973
974 if (__power_rs ())
975 {
976 arch = bfd_arch_rs6000;
977 mach = bfd_mach_rs6k;
978 }
979 else
980 {
981 arch = bfd_arch_powerpc;
982 mach = bfd_mach_ppc;
983 }
984
985 /* FIXME: schauer/2002-02-25:
986 We don't know if we are executing a 32 or 64 bit executable,
987 and have no way to pass the proper word size to rs6000_gdbarch_init.
988 So we have to avoid switching to a new architecture, if the architecture
989 matches already.
990 Blindly calling rs6000_gdbarch_init used to work in older versions of
991 GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
992 determine the wordsize. */
993 if (exec_bfd)
994 {
995 const struct bfd_arch_info *exec_bfd_arch_info;
996
997 exec_bfd_arch_info = bfd_get_arch_info (exec_bfd);
998 if (arch == exec_bfd_arch_info->arch)
999 return;
1000 }
1001
1002 bfd_default_set_arch_mach (&abfd, arch, mach);
1003
1004 gdbarch_info_init (&info);
1005 info.bfd_arch_info = bfd_get_arch_info (&abfd);
1006 info.abfd = exec_bfd;
1007
1008 if (!gdbarch_update_p (info))
1009 {
1010 internal_error (__FILE__, __LINE__,
1011 "set_host_arch: failed to select architecture");
1012 }
1013 }
1014
1015 \f
1016 /* xcoff_relocate_symtab - hook for symbol table relocation.
1017 also reads shared libraries.. */
1018
1019 void
1020 xcoff_relocate_symtab (unsigned int pid)
1021 {
1022 int load_segs = 64; /* number of load segments */
1023 int rc;
1024 LdInfo *ldi = NULL;
1025 int arch64 = ARCH64 ();
1026 int ldisize = arch64 ? sizeof (ldi->l64) : sizeof (ldi->l32);
1027 int size;
1028
1029 do
1030 {
1031 size = load_segs * ldisize;
1032 ldi = (void *) xrealloc (ldi, size);
1033
1034 #if 0
1035 /* According to my humble theory, AIX has some timing problems and
1036 when the user stack grows, kernel doesn't update stack info in time
1037 and ptrace calls step on user stack. That is why we sleep here a
1038 little, and give kernel to update its internals. */
1039 usleep (36000);
1040 #endif
1041
1042 if (arch64)
1043 rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, size, NULL);
1044 else
1045 rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi, size, NULL);
1046
1047 if (rc == -1)
1048 {
1049 if (errno == ENOMEM)
1050 load_segs *= 2;
1051 else
1052 perror_with_name ("ptrace ldinfo");
1053 }
1054 else
1055 {
1056 vmap_ldinfo (ldi);
1057 vmap_exec (); /* relocate the exec and core sections as well. */
1058 }
1059 } while (rc == -1);
1060 if (ldi)
1061 xfree (ldi);
1062 }
1063 \f
1064 /* Core file stuff. */
1065
1066 /* Relocate symtabs and read in shared library info, based on symbols
1067 from the core file. */
1068
1069 void
1070 xcoff_relocate_core (struct target_ops *target)
1071 {
1072 struct bfd_section *ldinfo_sec;
1073 int offset = 0;
1074 LdInfo *ldi;
1075 struct vmap *vp;
1076 int arch64 = ARCH64 ();
1077
1078 /* Size of a struct ld_info except for the variable-length filename. */
1079 int nonfilesz = (int)LDI_FILENAME ((LdInfo *)0, arch64);
1080
1081 /* Allocated size of buffer. */
1082 int buffer_size = nonfilesz;
1083 char *buffer = xmalloc (buffer_size);
1084 struct cleanup *old = make_cleanup (free_current_contents, &buffer);
1085
1086 ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
1087 if (ldinfo_sec == NULL)
1088 {
1089 bfd_err:
1090 fprintf_filtered (gdb_stderr, "Couldn't get ldinfo from core file: %s\n",
1091 bfd_errmsg (bfd_get_error ()));
1092 do_cleanups (old);
1093 return;
1094 }
1095 do
1096 {
1097 int i;
1098 int names_found = 0;
1099
1100 /* Read in everything but the name. */
1101 if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer,
1102 offset, nonfilesz) == 0)
1103 goto bfd_err;
1104
1105 /* Now the name. */
1106 i = nonfilesz;
1107 do
1108 {
1109 if (i == buffer_size)
1110 {
1111 buffer_size *= 2;
1112 buffer = xrealloc (buffer, buffer_size);
1113 }
1114 if (bfd_get_section_contents (core_bfd, ldinfo_sec, &buffer[i],
1115 offset + i, 1) == 0)
1116 goto bfd_err;
1117 if (buffer[i++] == '\0')
1118 ++names_found;
1119 }
1120 while (names_found < 2);
1121
1122 ldi = (LdInfo *) buffer;
1123
1124 /* Can't use a file descriptor from the core file; need to open it. */
1125 if (arch64)
1126 ldi->l64.ldinfo_fd = -1;
1127 else
1128 ldi->l32.ldinfo_fd = -1;
1129
1130 /* The first ldinfo is for the exec file, allocated elsewhere. */
1131 if (offset == 0 && vmap != NULL)
1132 vp = vmap;
1133 else
1134 vp = add_vmap (ldi);
1135
1136 /* Process next shared library upon error. */
1137 offset += LDI_NEXT (ldi, arch64);
1138 if (vp == NULL)
1139 continue;
1140
1141 vmap_secs (vp, ldi, arch64);
1142
1143 /* Unless this is the exec file,
1144 add our sections to the section table for the core target. */
1145 if (vp != vmap)
1146 {
1147 struct section_table *stp;
1148
1149 target_resize_to_sections (target, 2);
1150 stp = target->to_sections_end - 2;
1151
1152 stp->bfd = vp->bfd;
1153 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".text");
1154 stp->addr = vp->tstart;
1155 stp->endaddr = vp->tend;
1156 stp++;
1157
1158 stp->bfd = vp->bfd;
1159 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".data");
1160 stp->addr = vp->dstart;
1161 stp->endaddr = vp->dend;
1162 }
1163
1164 vmap_symtab (vp);
1165
1166 if (deprecated_target_new_objfile_hook && vp != vmap && vp->objfile)
1167 deprecated_target_new_objfile_hook (vp->objfile);
1168 }
1169 while (LDI_NEXT (ldi, arch64) != 0);
1170 vmap_exec ();
1171 breakpoint_re_set ();
1172 do_cleanups (old);
1173 }
1174
1175 int
1176 kernel_u_size (void)
1177 {
1178 return (sizeof (struct user));
1179 }
1180 \f
1181 /* Under AIX, we have to pass the correct TOC pointer to a function
1182 when calling functions in the inferior.
1183 We try to find the relative toc offset of the objfile containing PC
1184 and add the current load address of the data segment from the vmap. */
1185
1186 static CORE_ADDR
1187 find_toc_address (CORE_ADDR pc)
1188 {
1189 struct vmap *vp;
1190 extern CORE_ADDR get_toc_offset (struct objfile *); /* xcoffread.c */
1191
1192 for (vp = vmap; vp; vp = vp->nxt)
1193 {
1194 if (pc >= vp->tstart && pc < vp->tend)
1195 {
1196 /* vp->objfile is only NULL for the exec file. */
1197 return vp->dstart + get_toc_offset (vp->objfile == NULL
1198 ? symfile_objfile
1199 : vp->objfile);
1200 }
1201 }
1202 error ("Unable to find TOC entry for pc %s\n", local_hex_string (pc));
1203 }
1204 \f
1205 /* Register that we are able to handle rs6000 core file formats. */
1206
1207 static struct core_fns rs6000_core_fns =
1208 {
1209 bfd_target_xcoff_flavour, /* core_flavour */
1210 default_check_format, /* check_format */
1211 default_core_sniffer, /* core_sniffer */
1212 fetch_core_registers, /* core_read_registers */
1213 NULL /* next */
1214 };
1215
1216 void
1217 _initialize_core_rs6000 (void)
1218 {
1219 /* Initialize hook in rs6000-tdep.c for determining the TOC address when
1220 calling functions in the inferior. */
1221 rs6000_find_toc_address_hook = find_toc_address;
1222
1223 /* Initialize hook in rs6000-tdep.c to set the current architecture when
1224 starting a child process. */
1225 rs6000_set_host_arch_hook = set_host_arch;
1226
1227 deprecated_add_core_fns (&rs6000_core_fns);
1228 }
This page took 0.059965 seconds and 4 git commands to generate.