2006-07-29 Vladimir Prus <vladimir@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / rs6000-nat.c
1 /* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "inferior.h"
26 #include "target.h"
27 #include "gdbcore.h"
28 #include "xcoffsolib.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "libbfd.h" /* For bfd_default_set_arch_mach (FIXME) */
32 #include "bfd.h"
33 #include "exceptions.h"
34 #include "gdb-stabs.h"
35 #include "regcache.h"
36 #include "arch-utils.h"
37 #include "ppc-tdep.h"
38 #include "exec.h"
39
40 #include <sys/ptrace.h>
41 #include <sys/reg.h>
42
43 #include <sys/param.h>
44 #include <sys/dir.h>
45 #include <sys/user.h>
46 #include <signal.h>
47 #include <sys/ioctl.h>
48 #include <fcntl.h>
49 #include <errno.h>
50
51 #include <a.out.h>
52 #include <sys/file.h>
53 #include "gdb_stat.h"
54 #include <sys/core.h>
55 #define __LDINFO_PTRACE32__ /* for __ld_info32 */
56 #define __LDINFO_PTRACE64__ /* for __ld_info64 */
57 #include <sys/ldr.h>
58 #include <sys/systemcfg.h>
59
60 /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
61 debugging 32-bit and 64-bit processes. Define a typedef and macros for
62 accessing fields in the appropriate structures. */
63
64 /* In 32-bit compilation mode (which is the only mode from which ptrace()
65 works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
66
67 #ifdef __ld_info32
68 # define ARCH3264
69 #endif
70
71 /* Return whether the current architecture is 64-bit. */
72
73 #ifndef ARCH3264
74 # define ARCH64() 0
75 #else
76 # define ARCH64() (register_size (current_gdbarch, 0) == 8)
77 #endif
78
79 /* Union of 32-bit and 64-bit ".reg" core file sections. */
80
81 typedef union {
82 #ifdef ARCH3264
83 struct __context64 r64;
84 #else
85 struct mstsave r64;
86 #endif
87 struct mstsave r32;
88 } CoreRegs;
89
90 /* Union of 32-bit and 64-bit versions of ld_info. */
91
92 typedef union {
93 #ifndef ARCH3264
94 struct ld_info l32;
95 struct ld_info l64;
96 #else
97 struct __ld_info32 l32;
98 struct __ld_info64 l64;
99 #endif
100 } LdInfo;
101
102 /* If compiling with 32-bit and 64-bit debugging capability (e.g. AIX 4.x),
103 declare and initialize a variable named VAR suitable for use as the arch64
104 parameter to the various LDI_*() macros. */
105
106 #ifndef ARCH3264
107 # define ARCH64_DECL(var)
108 #else
109 # define ARCH64_DECL(var) int var = ARCH64 ()
110 #endif
111
112 /* Return LDI's FIELD for a 64-bit process if ARCH64 and for a 32-bit process
113 otherwise. This technique only works for FIELDs with the same data type in
114 32-bit and 64-bit versions of ld_info. */
115
116 #ifndef ARCH3264
117 # define LDI_FIELD(ldi, arch64, field) (ldi)->l32.ldinfo_##field
118 #else
119 # define LDI_FIELD(ldi, arch64, field) \
120 (arch64 ? (ldi)->l64.ldinfo_##field : (ldi)->l32.ldinfo_##field)
121 #endif
122
123 /* Return various LDI fields for a 64-bit process if ARCH64 and for a 32-bit
124 process otherwise. */
125
126 #define LDI_NEXT(ldi, arch64) LDI_FIELD(ldi, arch64, next)
127 #define LDI_FD(ldi, arch64) LDI_FIELD(ldi, arch64, fd)
128 #define LDI_FILENAME(ldi, arch64) LDI_FIELD(ldi, arch64, filename)
129
130 extern struct vmap *map_vmap (bfd * bf, bfd * arch);
131
132 static void vmap_exec (void);
133
134 static void vmap_ldinfo (LdInfo *);
135
136 static struct vmap *add_vmap (LdInfo *);
137
138 static int objfile_symbol_add (void *);
139
140 static void vmap_symtab (struct vmap *);
141
142 static void fetch_core_registers (char *, unsigned int, int, CORE_ADDR);
143
144 static void exec_one_dummy_insn (void);
145
146 extern void fixup_breakpoints (CORE_ADDR low, CORE_ADDR high, CORE_ADDR delta);
147
148 /* Given REGNO, a gdb register number, return the corresponding
149 number suitable for use as a ptrace() parameter. Return -1 if
150 there's no suitable mapping. Also, set the int pointed to by
151 ISFLOAT to indicate whether REGNO is a floating point register. */
152
153 static int
154 regmap (int regno, int *isfloat)
155 {
156 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
157
158 *isfloat = 0;
159 if (tdep->ppc_gp0_regnum <= regno
160 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
161 return regno;
162 else if (tdep->ppc_fp0_regnum >= 0
163 && tdep->ppc_fp0_regnum <= regno
164 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
165 {
166 *isfloat = 1;
167 return regno - tdep->ppc_fp0_regnum + FPR0;
168 }
169 else if (regno == PC_REGNUM)
170 return IAR;
171 else if (regno == tdep->ppc_ps_regnum)
172 return MSR;
173 else if (regno == tdep->ppc_cr_regnum)
174 return CR;
175 else if (regno == tdep->ppc_lr_regnum)
176 return LR;
177 else if (regno == tdep->ppc_ctr_regnum)
178 return CTR;
179 else if (regno == tdep->ppc_xer_regnum)
180 return XER;
181 else if (tdep->ppc_fpscr_regnum >= 0
182 && regno == tdep->ppc_fpscr_regnum)
183 return FPSCR;
184 else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum)
185 return MQ;
186 else
187 return -1;
188 }
189
190 /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
191
192 static int
193 rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
194 {
195 int ret = ptrace (req, id, (int *)addr, data, buf);
196 #if 0
197 printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
198 req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
199 #endif
200 return ret;
201 }
202
203 /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
204
205 static int
206 rs6000_ptrace64 (int req, int id, long long addr, int data, int *buf)
207 {
208 #ifdef ARCH3264
209 int ret = ptracex (req, id, addr, data, buf);
210 #else
211 int ret = 0;
212 #endif
213 #if 0
214 printf ("rs6000_ptrace64 (%d, %d, 0x%llx, %08x, 0x%x) = 0x%x\n",
215 req, id, addr, data, (unsigned int)buf, ret);
216 #endif
217 return ret;
218 }
219
220 /* Fetch register REGNO from the inferior. */
221
222 static void
223 fetch_register (int regno)
224 {
225 int addr[MAX_REGISTER_SIZE];
226 int nr, isfloat;
227
228 /* Retrieved values may be -1, so infer errors from errno. */
229 errno = 0;
230
231 nr = regmap (regno, &isfloat);
232
233 /* Floating-point registers. */
234 if (isfloat)
235 rs6000_ptrace32 (PT_READ_FPR, PIDGET (inferior_ptid), addr, nr, 0);
236
237 /* Bogus register number. */
238 else if (nr < 0)
239 {
240 if (regno >= NUM_REGS)
241 fprintf_unfiltered (gdb_stderr,
242 "gdb error: register no %d not implemented.\n",
243 regno);
244 return;
245 }
246
247 /* Fixed-point registers. */
248 else
249 {
250 if (!ARCH64 ())
251 *addr = rs6000_ptrace32 (PT_READ_GPR, PIDGET (inferior_ptid), (int *)nr, 0, 0);
252 else
253 {
254 /* PT_READ_GPR requires the buffer parameter to point to long long,
255 even if the register is really only 32 bits. */
256 long long buf;
257 rs6000_ptrace64 (PT_READ_GPR, PIDGET (inferior_ptid), nr, 0, (int *)&buf);
258 if (register_size (current_gdbarch, regno) == 8)
259 memcpy (addr, &buf, 8);
260 else
261 *addr = buf;
262 }
263 }
264
265 if (!errno)
266 regcache_raw_supply (current_regcache, regno, (char *) addr);
267 else
268 {
269 #if 0
270 /* FIXME: this happens 3 times at the start of each 64-bit program. */
271 perror ("ptrace read");
272 #endif
273 errno = 0;
274 }
275 }
276
277 /* Store register REGNO back into the inferior. */
278
279 static void
280 store_register (int regno)
281 {
282 int addr[MAX_REGISTER_SIZE];
283 int nr, isfloat;
284
285 /* Fetch the register's value from the register cache. */
286 regcache_raw_collect (current_regcache, regno, addr);
287
288 /* -1 can be a successful return value, so infer errors from errno. */
289 errno = 0;
290
291 nr = regmap (regno, &isfloat);
292
293 /* Floating-point registers. */
294 if (isfloat)
295 rs6000_ptrace32 (PT_WRITE_FPR, PIDGET (inferior_ptid), addr, nr, 0);
296
297 /* Bogus register number. */
298 else if (nr < 0)
299 {
300 if (regno >= NUM_REGS)
301 fprintf_unfiltered (gdb_stderr,
302 "gdb error: register no %d not implemented.\n",
303 regno);
304 }
305
306 /* Fixed-point registers. */
307 else
308 {
309 if (regno == SP_REGNUM)
310 /* Execute one dummy instruction (which is a breakpoint) in inferior
311 process to give kernel a chance to do internal housekeeping.
312 Otherwise the following ptrace(2) calls will mess up user stack
313 since kernel will get confused about the bottom of the stack
314 (%sp). */
315 exec_one_dummy_insn ();
316
317 /* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors,
318 the register's value is passed by value, but for 64-bit inferiors,
319 the address of a buffer containing the value is passed. */
320 if (!ARCH64 ())
321 rs6000_ptrace32 (PT_WRITE_GPR, PIDGET (inferior_ptid), (int *)nr, *addr, 0);
322 else
323 {
324 /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
325 area, even if the register is really only 32 bits. */
326 long long buf;
327 if (register_size (current_gdbarch, regno) == 8)
328 memcpy (&buf, addr, 8);
329 else
330 buf = *addr;
331 rs6000_ptrace64 (PT_WRITE_GPR, PIDGET (inferior_ptid), nr, 0, (int *)&buf);
332 }
333 }
334
335 if (errno)
336 {
337 perror ("ptrace write");
338 errno = 0;
339 }
340 }
341
342 /* Read from the inferior all registers if REGNO == -1 and just register
343 REGNO otherwise. */
344
345 void
346 fetch_inferior_registers (int regno)
347 {
348 if (regno != -1)
349 fetch_register (regno);
350
351 else
352 {
353 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
354
355 /* Read 32 general purpose registers. */
356 for (regno = tdep->ppc_gp0_regnum;
357 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
358 regno++)
359 {
360 fetch_register (regno);
361 }
362
363 /* Read general purpose floating point registers. */
364 if (tdep->ppc_fp0_regnum >= 0)
365 for (regno = 0; regno < ppc_num_fprs; regno++)
366 fetch_register (tdep->ppc_fp0_regnum + regno);
367
368 /* Read special registers. */
369 fetch_register (PC_REGNUM);
370 fetch_register (tdep->ppc_ps_regnum);
371 fetch_register (tdep->ppc_cr_regnum);
372 fetch_register (tdep->ppc_lr_regnum);
373 fetch_register (tdep->ppc_ctr_regnum);
374 fetch_register (tdep->ppc_xer_regnum);
375 if (tdep->ppc_fpscr_regnum >= 0)
376 fetch_register (tdep->ppc_fpscr_regnum);
377 if (tdep->ppc_mq_regnum >= 0)
378 fetch_register (tdep->ppc_mq_regnum);
379 }
380 }
381
382 /* Store our register values back into the inferior.
383 If REGNO is -1, do this for all registers.
384 Otherwise, REGNO specifies which register (so we can save time). */
385
386 void
387 store_inferior_registers (int regno)
388 {
389 if (regno != -1)
390 store_register (regno);
391
392 else
393 {
394 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
395
396 /* Write general purpose registers first. */
397 for (regno = tdep->ppc_gp0_regnum;
398 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
399 regno++)
400 {
401 store_register (regno);
402 }
403
404 /* Write floating point registers. */
405 if (tdep->ppc_fp0_regnum >= 0)
406 for (regno = 0; regno < ppc_num_fprs; regno++)
407 store_register (tdep->ppc_fp0_regnum + regno);
408
409 /* Write special registers. */
410 store_register (PC_REGNUM);
411 store_register (tdep->ppc_ps_regnum);
412 store_register (tdep->ppc_cr_regnum);
413 store_register (tdep->ppc_lr_regnum);
414 store_register (tdep->ppc_ctr_regnum);
415 store_register (tdep->ppc_xer_regnum);
416 if (tdep->ppc_fpscr_regnum >= 0)
417 store_register (tdep->ppc_fpscr_regnum);
418 if (tdep->ppc_mq_regnum >= 0)
419 store_register (tdep->ppc_mq_regnum);
420 }
421 }
422
423 /* Store in *TO the 32-bit word at 32-bit-aligned ADDR in the child
424 process, which is 64-bit if ARCH64 and 32-bit otherwise. Return
425 success. */
426
427 static int
428 read_word (CORE_ADDR from, int *to, int arch64)
429 {
430 /* Retrieved values may be -1, so infer errors from errno. */
431 errno = 0;
432
433 if (arch64)
434 *to = rs6000_ptrace64 (PT_READ_I, PIDGET (inferior_ptid), from, 0, NULL);
435 else
436 *to = rs6000_ptrace32 (PT_READ_I, PIDGET (inferior_ptid), (int *)(long) from,
437 0, NULL);
438
439 return !errno;
440 }
441
442 /* Copy LEN bytes to or from inferior's memory starting at MEMADDR
443 to debugger memory starting at MYADDR. Copy to inferior if
444 WRITE is nonzero.
445
446 Returns the length copied, which is either the LEN argument or
447 zero. This xfer function does not do partial moves, since
448 deprecated_child_ops doesn't allow memory operations to cross below
449 us in the target stack anyway. */
450
451 int
452 child_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len,
453 int write, struct mem_attrib *attrib,
454 struct target_ops *target)
455 {
456 /* Round starting address down to 32-bit word boundary. */
457 int mask = sizeof (int) - 1;
458 CORE_ADDR addr = memaddr & ~(CORE_ADDR)mask;
459
460 /* Round ending address up to 32-bit word boundary. */
461 int count = ((memaddr + len - addr + mask) & ~(CORE_ADDR)mask)
462 / sizeof (int);
463
464 /* Allocate word transfer buffer. */
465 /* FIXME (alloca): This code, cloned from infptrace.c, is unsafe
466 because it uses alloca to allocate a buffer of arbitrary size.
467 For very large xfers, this could crash GDB's stack. */
468 int *buf = (int *) alloca (count * sizeof (int));
469
470 int arch64 = ARCH64 ();
471 int i;
472
473 if (!write)
474 {
475 /* Retrieve memory a word at a time. */
476 for (i = 0; i < count; i++, addr += sizeof (int))
477 {
478 if (!read_word (addr, buf + i, arch64))
479 return 0;
480 QUIT;
481 }
482
483 /* Copy memory to supplied buffer. */
484 addr -= count * sizeof (int);
485 memcpy (myaddr, (char *)buf + (memaddr - addr), len);
486 }
487 else
488 {
489 /* Fetch leading memory needed for alignment. */
490 if (addr < memaddr)
491 if (!read_word (addr, buf, arch64))
492 return 0;
493
494 /* Fetch trailing memory needed for alignment. */
495 if (addr + count * sizeof (int) > memaddr + len)
496 if (!read_word (addr + (count - 1) * sizeof (int),
497 buf + count - 1, arch64))
498 return 0;
499
500 /* Copy supplied data into memory buffer. */
501 memcpy ((char *)buf + (memaddr - addr), myaddr, len);
502
503 /* Store memory one word at a time. */
504 for (i = 0, errno = 0; i < count; i++, addr += sizeof (int))
505 {
506 if (arch64)
507 rs6000_ptrace64 (PT_WRITE_D, PIDGET (inferior_ptid), addr, buf[i], NULL);
508 else
509 rs6000_ptrace32 (PT_WRITE_D, PIDGET (inferior_ptid), (int *)(long) addr,
510 buf[i], NULL);
511
512 if (errno)
513 return 0;
514 QUIT;
515 }
516 }
517
518 return len;
519 }
520
521 /* Execute one dummy breakpoint instruction. This way we give the kernel
522 a chance to do some housekeeping and update inferior's internal data,
523 including u_area. */
524
525 static void
526 exec_one_dummy_insn (void)
527 {
528 #define DUMMY_INSN_ADDR (TEXT_SEGMENT_BASE)+0x200
529
530 int ret, status, pid;
531 CORE_ADDR prev_pc;
532 void *bp;
533
534 /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
535 assume that this address will never be executed again by the real
536 code. */
537
538 bp = deprecated_insert_raw_breakpoint (DUMMY_INSN_ADDR);
539
540 /* You might think this could be done with a single ptrace call, and
541 you'd be correct for just about every platform I've ever worked
542 on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
543 the inferior never hits the breakpoint (it's also worth noting
544 powerpc-ibm-aix4.1.3 works correctly). */
545 prev_pc = read_pc ();
546 write_pc (DUMMY_INSN_ADDR);
547 if (ARCH64 ())
548 ret = rs6000_ptrace64 (PT_CONTINUE, PIDGET (inferior_ptid), 1, 0, NULL);
549 else
550 ret = rs6000_ptrace32 (PT_CONTINUE, PIDGET (inferior_ptid), (int *)1, 0, NULL);
551
552 if (ret != 0)
553 perror ("pt_continue");
554
555 do
556 {
557 pid = wait (&status);
558 }
559 while (pid != PIDGET (inferior_ptid));
560
561 write_pc (prev_pc);
562 deprecated_remove_raw_breakpoint (bp);
563 }
564
565 /* Fetch registers from the register section in core bfd. */
566
567 static void
568 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
569 int which, CORE_ADDR reg_addr)
570 {
571 CoreRegs *regs;
572 int regi;
573 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
574
575 if (which != 0)
576 {
577 fprintf_unfiltered
578 (gdb_stderr,
579 "Gdb error: unknown parameter to fetch_core_registers().\n");
580 return;
581 }
582
583 regs = (CoreRegs *) core_reg_sect;
584
585 /* Put the register values from the core file section in the regcache. */
586
587 if (ARCH64 ())
588 {
589 for (regi = 0; regi < ppc_num_gprs; regi++)
590 regcache_raw_supply (current_regcache, tdep->ppc_gp0_regnum + regi,
591 (char *) &regs->r64.gpr[regi]);
592
593 if (tdep->ppc_fp0_regnum >= 0)
594 for (regi = 0; regi < ppc_num_fprs; regi++)
595 regcache_raw_supply (current_regcache, tdep->ppc_fp0_regnum + regi,
596 (char *) &regs->r64.fpr[regi]);
597
598 regcache_raw_supply (current_regcache, PC_REGNUM,
599 (char *) &regs->r64.iar);
600 regcache_raw_supply (current_regcache, tdep->ppc_ps_regnum,
601 (char *) &regs->r64.msr);
602 regcache_raw_supply (current_regcache, tdep->ppc_cr_regnum,
603 (char *) &regs->r64.cr);
604 regcache_raw_supply (current_regcache, tdep->ppc_lr_regnum,
605 (char *) &regs->r64.lr);
606 regcache_raw_supply (current_regcache, tdep->ppc_ctr_regnum,
607 (char *) &regs->r64.ctr);
608 regcache_raw_supply (current_regcache, tdep->ppc_xer_regnum,
609 (char *) &regs->r64.xer);
610 if (tdep->ppc_fpscr_regnum >= 0)
611 regcache_raw_supply (current_regcache, tdep->ppc_fpscr_regnum,
612 (char *) &regs->r64.fpscr);
613 }
614 else
615 {
616 for (regi = 0; regi < ppc_num_gprs; regi++)
617 regcache_raw_supply (current_regcache, tdep->ppc_gp0_regnum + regi,
618 (char *) &regs->r32.gpr[regi]);
619
620 if (tdep->ppc_fp0_regnum >= 0)
621 for (regi = 0; regi < ppc_num_fprs; regi++)
622 regcache_raw_supply (current_regcache, tdep->ppc_fp0_regnum + regi,
623 (char *) &regs->r32.fpr[regi]);
624
625 regcache_raw_supply (current_regcache, PC_REGNUM,
626 (char *) &regs->r32.iar);
627 regcache_raw_supply (current_regcache, tdep->ppc_ps_regnum,
628 (char *) &regs->r32.msr);
629 regcache_raw_supply (current_regcache, tdep->ppc_cr_regnum,
630 (char *) &regs->r32.cr);
631 regcache_raw_supply (current_regcache, tdep->ppc_lr_regnum,
632 (char *) &regs->r32.lr);
633 regcache_raw_supply (current_regcache, tdep->ppc_ctr_regnum,
634 (char *) &regs->r32.ctr);
635 regcache_raw_supply (current_regcache, tdep->ppc_xer_regnum,
636 (char *) &regs->r32.xer);
637 if (tdep->ppc_fpscr_regnum >= 0)
638 regcache_raw_supply (current_regcache, tdep->ppc_fpscr_regnum,
639 (char *) &regs->r32.fpscr);
640 if (tdep->ppc_mq_regnum >= 0)
641 regcache_raw_supply (current_regcache, tdep->ppc_mq_regnum,
642 (char *) &regs->r32.mq);
643 }
644 }
645 \f
646
647 /* Copy information about text and data sections from LDI to VP for a 64-bit
648 process if ARCH64 and for a 32-bit process otherwise. */
649
650 static void
651 vmap_secs (struct vmap *vp, LdInfo *ldi, int arch64)
652 {
653 if (arch64)
654 {
655 vp->tstart = (CORE_ADDR) ldi->l64.ldinfo_textorg;
656 vp->tend = vp->tstart + ldi->l64.ldinfo_textsize;
657 vp->dstart = (CORE_ADDR) ldi->l64.ldinfo_dataorg;
658 vp->dend = vp->dstart + ldi->l64.ldinfo_datasize;
659 }
660 else
661 {
662 vp->tstart = (unsigned long) ldi->l32.ldinfo_textorg;
663 vp->tend = vp->tstart + ldi->l32.ldinfo_textsize;
664 vp->dstart = (unsigned long) ldi->l32.ldinfo_dataorg;
665 vp->dend = vp->dstart + ldi->l32.ldinfo_datasize;
666 }
667
668 /* The run time loader maps the file header in addition to the text
669 section and returns a pointer to the header in ldinfo_textorg.
670 Adjust the text start address to point to the real start address
671 of the text section. */
672 vp->tstart += vp->toffs;
673 }
674
675 /* handle symbol translation on vmapping */
676
677 static void
678 vmap_symtab (struct vmap *vp)
679 {
680 struct objfile *objfile;
681 struct section_offsets *new_offsets;
682 int i;
683
684 objfile = vp->objfile;
685 if (objfile == NULL)
686 {
687 /* OK, it's not an objfile we opened ourselves.
688 Currently, that can only happen with the exec file, so
689 relocate the symbols for the symfile. */
690 if (symfile_objfile == NULL)
691 return;
692 objfile = symfile_objfile;
693 }
694 else if (!vp->loaded)
695 /* If symbols are not yet loaded, offsets are not yet valid. */
696 return;
697
698 new_offsets =
699 (struct section_offsets *)
700 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
701
702 for (i = 0; i < objfile->num_sections; ++i)
703 new_offsets->offsets[i] = ANOFFSET (objfile->section_offsets, i);
704
705 /* The symbols in the object file are linked to the VMA of the section,
706 relocate them VMA relative. */
707 new_offsets->offsets[SECT_OFF_TEXT (objfile)] = vp->tstart - vp->tvma;
708 new_offsets->offsets[SECT_OFF_DATA (objfile)] = vp->dstart - vp->dvma;
709 new_offsets->offsets[SECT_OFF_BSS (objfile)] = vp->dstart - vp->dvma;
710
711 objfile_relocate (objfile, new_offsets);
712 }
713 \f
714 /* Add symbols for an objfile. */
715
716 static int
717 objfile_symbol_add (void *arg)
718 {
719 struct objfile *obj = (struct objfile *) arg;
720
721 syms_from_objfile (obj, NULL, 0, 0, 0, 0);
722 new_symfile_objfile (obj, 0, 0);
723 return 1;
724 }
725
726 /* Add symbols for a vmap. Return zero upon error. */
727
728 int
729 vmap_add_symbols (struct vmap *vp)
730 {
731 if (catch_errors (objfile_symbol_add, vp->objfile,
732 "Error while reading shared library symbols:\n",
733 RETURN_MASK_ALL))
734 {
735 /* Note this is only done if symbol reading was successful. */
736 vp->loaded = 1;
737 vmap_symtab (vp);
738 return 1;
739 }
740 return 0;
741 }
742
743 /* Add a new vmap entry based on ldinfo() information.
744
745 If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a
746 core file), the caller should set it to -1, and we will open the file.
747
748 Return the vmap new entry. */
749
750 static struct vmap *
751 add_vmap (LdInfo *ldi)
752 {
753 bfd *abfd, *last;
754 char *mem, *objname, *filename;
755 struct objfile *obj;
756 struct vmap *vp;
757 int fd;
758 ARCH64_DECL (arch64);
759
760 /* This ldi structure was allocated using alloca() in
761 xcoff_relocate_symtab(). Now we need to have persistent object
762 and member names, so we should save them. */
763
764 filename = LDI_FILENAME (ldi, arch64);
765 mem = filename + strlen (filename) + 1;
766 mem = savestring (mem, strlen (mem));
767 objname = savestring (filename, strlen (filename));
768
769 fd = LDI_FD (ldi, arch64);
770 if (fd < 0)
771 /* Note that this opens it once for every member; a possible
772 enhancement would be to only open it once for every object. */
773 abfd = bfd_openr (objname, gnutarget);
774 else
775 abfd = bfd_fdopenr (objname, gnutarget, fd);
776 if (!abfd)
777 {
778 warning (_("Could not open `%s' as an executable file: %s"),
779 objname, bfd_errmsg (bfd_get_error ()));
780 return NULL;
781 }
782
783 /* make sure we have an object file */
784
785 if (bfd_check_format (abfd, bfd_object))
786 vp = map_vmap (abfd, 0);
787
788 else if (bfd_check_format (abfd, bfd_archive))
789 {
790 last = 0;
791 /* FIXME??? am I tossing BFDs? bfd? */
792 while ((last = bfd_openr_next_archived_file (abfd, last)))
793 if (DEPRECATED_STREQ (mem, last->filename))
794 break;
795
796 if (!last)
797 {
798 warning (_("\"%s\": member \"%s\" missing."), objname, mem);
799 bfd_close (abfd);
800 return NULL;
801 }
802
803 if (!bfd_check_format (last, bfd_object))
804 {
805 warning (_("\"%s\": member \"%s\" not in executable format: %s."),
806 objname, mem, bfd_errmsg (bfd_get_error ()));
807 bfd_close (last);
808 bfd_close (abfd);
809 return NULL;
810 }
811
812 vp = map_vmap (last, abfd);
813 }
814 else
815 {
816 warning (_("\"%s\": not in executable format: %s."),
817 objname, bfd_errmsg (bfd_get_error ()));
818 bfd_close (abfd);
819 return NULL;
820 }
821 obj = allocate_objfile (vp->bfd, 0);
822 vp->objfile = obj;
823
824 /* Always add symbols for the main objfile. */
825 if (vp == vmap || auto_solib_add)
826 vmap_add_symbols (vp);
827 return vp;
828 }
829 \f
830 /* update VMAP info with ldinfo() information
831 Input is ptr to ldinfo() results. */
832
833 static void
834 vmap_ldinfo (LdInfo *ldi)
835 {
836 struct stat ii, vi;
837 struct vmap *vp;
838 int got_one, retried;
839 int got_exec_file = 0;
840 uint next;
841 int arch64 = ARCH64 ();
842
843 /* For each *ldi, see if we have a corresponding *vp.
844 If so, update the mapping, and symbol table.
845 If not, add an entry and symbol table. */
846
847 do
848 {
849 char *name = LDI_FILENAME (ldi, arch64);
850 char *memb = name + strlen (name) + 1;
851 int fd = LDI_FD (ldi, arch64);
852
853 retried = 0;
854
855 if (fstat (fd, &ii) < 0)
856 {
857 /* The kernel sets ld_info to -1, if the process is still using the
858 object, and the object is removed. Keep the symbol info for the
859 removed object and issue a warning. */
860 warning (_("%s (fd=%d) has disappeared, keeping its symbols"),
861 name, fd);
862 continue;
863 }
864 retry:
865 for (got_one = 0, vp = vmap; vp; vp = vp->nxt)
866 {
867 struct objfile *objfile;
868
869 /* First try to find a `vp', which is the same as in ldinfo.
870 If not the same, just continue and grep the next `vp'. If same,
871 relocate its tstart, tend, dstart, dend values. If no such `vp'
872 found, get out of this for loop, add this ldi entry as a new vmap
873 (add_vmap) and come back, find its `vp' and so on... */
874
875 /* The filenames are not always sufficient to match on. */
876
877 if ((name[0] == '/' && !DEPRECATED_STREQ (name, vp->name))
878 || (memb[0] && !DEPRECATED_STREQ (memb, vp->member)))
879 continue;
880
881 /* See if we are referring to the same file.
882 We have to check objfile->obfd, symfile.c:reread_symbols might
883 have updated the obfd after a change. */
884 objfile = vp->objfile == NULL ? symfile_objfile : vp->objfile;
885 if (objfile == NULL
886 || objfile->obfd == NULL
887 || bfd_stat (objfile->obfd, &vi) < 0)
888 {
889 warning (_("Unable to stat %s, keeping its symbols"), name);
890 continue;
891 }
892
893 if (ii.st_dev != vi.st_dev || ii.st_ino != vi.st_ino)
894 continue;
895
896 if (!retried)
897 close (fd);
898
899 ++got_one;
900
901 /* Found a corresponding VMAP. Remap! */
902
903 vmap_secs (vp, ldi, arch64);
904
905 /* The objfile is only NULL for the exec file. */
906 if (vp->objfile == NULL)
907 got_exec_file = 1;
908
909 /* relocate symbol table(s). */
910 vmap_symtab (vp);
911
912 /* Announce new object files. Doing this after symbol relocation
913 makes aix-thread.c's job easier. */
914 if (deprecated_target_new_objfile_hook && vp->objfile)
915 deprecated_target_new_objfile_hook (vp->objfile);
916
917 /* There may be more, so we don't break out of the loop. */
918 }
919
920 /* if there was no matching *vp, we must perforce create the sucker(s) */
921 if (!got_one && !retried)
922 {
923 add_vmap (ldi);
924 ++retried;
925 goto retry;
926 }
927 }
928 while ((next = LDI_NEXT (ldi, arch64))
929 && (ldi = (void *) (next + (char *) ldi)));
930
931 /* If we don't find the symfile_objfile anywhere in the ldinfo, it
932 is unlikely that the symbol file is relocated to the proper
933 address. And we might have attached to a process which is
934 running a different copy of the same executable. */
935 if (symfile_objfile != NULL && !got_exec_file)
936 {
937 warning (_("Symbol file %s\nis not mapped; discarding it.\n\
938 If in fact that file has symbols which the mapped files listed by\n\
939 \"info files\" lack, you can load symbols with the \"symbol-file\" or\n\
940 \"add-symbol-file\" commands (note that you must take care of relocating\n\
941 symbols to the proper address)."),
942 symfile_objfile->name);
943 free_objfile (symfile_objfile);
944 symfile_objfile = NULL;
945 }
946 breakpoint_re_set ();
947 }
948 \f
949 /* As well as symbol tables, exec_sections need relocation. After
950 the inferior process' termination, there will be a relocated symbol
951 table exist with no corresponding inferior process. At that time, we
952 need to use `exec' bfd, rather than the inferior process's memory space
953 to look up symbols.
954
955 `exec_sections' need to be relocated only once, as long as the exec
956 file remains unchanged.
957 */
958
959 static void
960 vmap_exec (void)
961 {
962 static bfd *execbfd;
963 int i;
964
965 if (execbfd == exec_bfd)
966 return;
967
968 execbfd = exec_bfd;
969
970 if (!vmap || !exec_ops.to_sections)
971 error (_("vmap_exec: vmap or exec_ops.to_sections == 0."));
972
973 for (i = 0; &exec_ops.to_sections[i] < exec_ops.to_sections_end; i++)
974 {
975 if (DEPRECATED_STREQ (".text", exec_ops.to_sections[i].the_bfd_section->name))
976 {
977 exec_ops.to_sections[i].addr += vmap->tstart - vmap->tvma;
978 exec_ops.to_sections[i].endaddr += vmap->tstart - vmap->tvma;
979 }
980 else if (DEPRECATED_STREQ (".data", exec_ops.to_sections[i].the_bfd_section->name))
981 {
982 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
983 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
984 }
985 else if (DEPRECATED_STREQ (".bss", exec_ops.to_sections[i].the_bfd_section->name))
986 {
987 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
988 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
989 }
990 }
991 }
992
993 /* Set the current architecture from the host running GDB. Called when
994 starting a child process. */
995
996 static void
997 set_host_arch (int pid)
998 {
999 enum bfd_architecture arch;
1000 unsigned long mach;
1001 bfd abfd;
1002 struct gdbarch_info info;
1003
1004 if (__power_rs ())
1005 {
1006 arch = bfd_arch_rs6000;
1007 mach = bfd_mach_rs6k;
1008 }
1009 else
1010 {
1011 arch = bfd_arch_powerpc;
1012 mach = bfd_mach_ppc;
1013 }
1014
1015 /* FIXME: schauer/2002-02-25:
1016 We don't know if we are executing a 32 or 64 bit executable,
1017 and have no way to pass the proper word size to rs6000_gdbarch_init.
1018 So we have to avoid switching to a new architecture, if the architecture
1019 matches already.
1020 Blindly calling rs6000_gdbarch_init used to work in older versions of
1021 GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
1022 determine the wordsize. */
1023 if (exec_bfd)
1024 {
1025 const struct bfd_arch_info *exec_bfd_arch_info;
1026
1027 exec_bfd_arch_info = bfd_get_arch_info (exec_bfd);
1028 if (arch == exec_bfd_arch_info->arch)
1029 return;
1030 }
1031
1032 bfd_default_set_arch_mach (&abfd, arch, mach);
1033
1034 gdbarch_info_init (&info);
1035 info.bfd_arch_info = bfd_get_arch_info (&abfd);
1036 info.abfd = exec_bfd;
1037
1038 if (!gdbarch_update_p (info))
1039 internal_error (__FILE__, __LINE__,
1040 _("set_host_arch: failed to select architecture"));
1041 }
1042
1043 \f
1044 /* xcoff_relocate_symtab - hook for symbol table relocation.
1045 also reads shared libraries. */
1046
1047 void
1048 xcoff_relocate_symtab (unsigned int pid)
1049 {
1050 int load_segs = 64; /* number of load segments */
1051 int rc;
1052 LdInfo *ldi = NULL;
1053 int arch64 = ARCH64 ();
1054 int ldisize = arch64 ? sizeof (ldi->l64) : sizeof (ldi->l32);
1055 int size;
1056
1057 do
1058 {
1059 size = load_segs * ldisize;
1060 ldi = (void *) xrealloc (ldi, size);
1061
1062 #if 0
1063 /* According to my humble theory, AIX has some timing problems and
1064 when the user stack grows, kernel doesn't update stack info in time
1065 and ptrace calls step on user stack. That is why we sleep here a
1066 little, and give kernel to update its internals. */
1067 usleep (36000);
1068 #endif
1069
1070 if (arch64)
1071 rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, size, NULL);
1072 else
1073 rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi, size, NULL);
1074
1075 if (rc == -1)
1076 {
1077 if (errno == ENOMEM)
1078 load_segs *= 2;
1079 else
1080 perror_with_name (_("ptrace ldinfo"));
1081 }
1082 else
1083 {
1084 vmap_ldinfo (ldi);
1085 vmap_exec (); /* relocate the exec and core sections as well. */
1086 }
1087 } while (rc == -1);
1088 if (ldi)
1089 xfree (ldi);
1090 }
1091 \f
1092 /* Core file stuff. */
1093
1094 /* Relocate symtabs and read in shared library info, based on symbols
1095 from the core file. */
1096
1097 void
1098 xcoff_relocate_core (struct target_ops *target)
1099 {
1100 struct bfd_section *ldinfo_sec;
1101 int offset = 0;
1102 LdInfo *ldi;
1103 struct vmap *vp;
1104 int arch64 = ARCH64 ();
1105
1106 /* Size of a struct ld_info except for the variable-length filename. */
1107 int nonfilesz = (int)LDI_FILENAME ((LdInfo *)0, arch64);
1108
1109 /* Allocated size of buffer. */
1110 int buffer_size = nonfilesz;
1111 char *buffer = xmalloc (buffer_size);
1112 struct cleanup *old = make_cleanup (free_current_contents, &buffer);
1113
1114 ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
1115 if (ldinfo_sec == NULL)
1116 {
1117 bfd_err:
1118 fprintf_filtered (gdb_stderr, "Couldn't get ldinfo from core file: %s\n",
1119 bfd_errmsg (bfd_get_error ()));
1120 do_cleanups (old);
1121 return;
1122 }
1123 do
1124 {
1125 int i;
1126 int names_found = 0;
1127
1128 /* Read in everything but the name. */
1129 if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer,
1130 offset, nonfilesz) == 0)
1131 goto bfd_err;
1132
1133 /* Now the name. */
1134 i = nonfilesz;
1135 do
1136 {
1137 if (i == buffer_size)
1138 {
1139 buffer_size *= 2;
1140 buffer = xrealloc (buffer, buffer_size);
1141 }
1142 if (bfd_get_section_contents (core_bfd, ldinfo_sec, &buffer[i],
1143 offset + i, 1) == 0)
1144 goto bfd_err;
1145 if (buffer[i++] == '\0')
1146 ++names_found;
1147 }
1148 while (names_found < 2);
1149
1150 ldi = (LdInfo *) buffer;
1151
1152 /* Can't use a file descriptor from the core file; need to open it. */
1153 if (arch64)
1154 ldi->l64.ldinfo_fd = -1;
1155 else
1156 ldi->l32.ldinfo_fd = -1;
1157
1158 /* The first ldinfo is for the exec file, allocated elsewhere. */
1159 if (offset == 0 && vmap != NULL)
1160 vp = vmap;
1161 else
1162 vp = add_vmap (ldi);
1163
1164 /* Process next shared library upon error. */
1165 offset += LDI_NEXT (ldi, arch64);
1166 if (vp == NULL)
1167 continue;
1168
1169 vmap_secs (vp, ldi, arch64);
1170
1171 /* Unless this is the exec file,
1172 add our sections to the section table for the core target. */
1173 if (vp != vmap)
1174 {
1175 struct section_table *stp;
1176
1177 target_resize_to_sections (target, 2);
1178 stp = target->to_sections_end - 2;
1179
1180 stp->bfd = vp->bfd;
1181 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".text");
1182 stp->addr = vp->tstart;
1183 stp->endaddr = vp->tend;
1184 stp++;
1185
1186 stp->bfd = vp->bfd;
1187 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".data");
1188 stp->addr = vp->dstart;
1189 stp->endaddr = vp->dend;
1190 }
1191
1192 vmap_symtab (vp);
1193
1194 if (deprecated_target_new_objfile_hook && vp != vmap && vp->objfile)
1195 deprecated_target_new_objfile_hook (vp->objfile);
1196 }
1197 while (LDI_NEXT (ldi, arch64) != 0);
1198 vmap_exec ();
1199 breakpoint_re_set ();
1200 do_cleanups (old);
1201 }
1202
1203 int
1204 kernel_u_size (void)
1205 {
1206 return (sizeof (struct user));
1207 }
1208 \f
1209 /* Under AIX, we have to pass the correct TOC pointer to a function
1210 when calling functions in the inferior.
1211 We try to find the relative toc offset of the objfile containing PC
1212 and add the current load address of the data segment from the vmap. */
1213
1214 static CORE_ADDR
1215 find_toc_address (CORE_ADDR pc)
1216 {
1217 struct vmap *vp;
1218 extern CORE_ADDR get_toc_offset (struct objfile *); /* xcoffread.c */
1219
1220 for (vp = vmap; vp; vp = vp->nxt)
1221 {
1222 if (pc >= vp->tstart && pc < vp->tend)
1223 {
1224 /* vp->objfile is only NULL for the exec file. */
1225 return vp->dstart + get_toc_offset (vp->objfile == NULL
1226 ? symfile_objfile
1227 : vp->objfile);
1228 }
1229 }
1230 error (_("Unable to find TOC entry for pc %s."), hex_string (pc));
1231 }
1232 \f
1233 /* Register that we are able to handle rs6000 core file formats. */
1234
1235 static struct core_fns rs6000_core_fns =
1236 {
1237 bfd_target_xcoff_flavour, /* core_flavour */
1238 default_check_format, /* check_format */
1239 default_core_sniffer, /* core_sniffer */
1240 fetch_core_registers, /* core_read_registers */
1241 NULL /* next */
1242 };
1243
1244 void
1245 _initialize_core_rs6000 (void)
1246 {
1247 /* Initialize hook in rs6000-tdep.c for determining the TOC address
1248 when calling functions in the inferior. */
1249 rs6000_find_toc_address_hook = find_toc_address;
1250
1251 /* Initialize hook in rs6000-tdep.c to set the current architecture
1252 when starting a child process. */
1253 rs6000_set_host_arch_hook = set_host_arch;
1254
1255 deprecated_add_core_fns (&rs6000_core_fns);
1256 }
This page took 0.0561199999999999 seconds and 4 git commands to generate.