Silence a few -Wmissing-prototypes warnings.
[deliverable/binutils-gdb.git] / gdb / rs6000-nat.c
1 /* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "inferior.h"
24 #include "target.h"
25 #include "gdbcore.h"
26 #include "xcoffsolib.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "libbfd.h" /* For bfd_default_set_arch_mach (FIXME) */
30 #include "bfd.h"
31 #include "exceptions.h"
32 #include "gdb-stabs.h"
33 #include "regcache.h"
34 #include "arch-utils.h"
35 #include "inf-ptrace.h"
36 #include "ppc-tdep.h"
37 #include "rs6000-tdep.h"
38 #include "exec.h"
39 #include "observer.h"
40 #include "xcoffread.h"
41
42 #include <sys/ptrace.h>
43 #include <sys/reg.h>
44
45 #include <sys/param.h>
46 #include <sys/dir.h>
47 #include <sys/user.h>
48 #include <signal.h>
49 #include <sys/ioctl.h>
50 #include <fcntl.h>
51 #include <errno.h>
52
53 #include <a.out.h>
54 #include <sys/file.h>
55 #include "gdb_stat.h"
56 #include <sys/core.h>
57 #define __LDINFO_PTRACE32__ /* for __ld_info32 */
58 #define __LDINFO_PTRACE64__ /* for __ld_info64 */
59 #include <sys/ldr.h>
60 #include <sys/systemcfg.h>
61
62 /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
63 debugging 32-bit and 64-bit processes. Define a typedef and macros for
64 accessing fields in the appropriate structures. */
65
66 /* In 32-bit compilation mode (which is the only mode from which ptrace()
67 works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
68
69 #ifdef __ld_info32
70 # define ARCH3264
71 #endif
72
73 /* Return whether the current architecture is 64-bit. */
74
75 #ifndef ARCH3264
76 # define ARCH64() 0
77 #else
78 # define ARCH64() (register_size (current_gdbarch, 0) == 8)
79 #endif
80
81 /* Union of 32-bit and 64-bit versions of ld_info. */
82
83 typedef union {
84 #ifndef ARCH3264
85 struct ld_info l32;
86 struct ld_info l64;
87 #else
88 struct __ld_info32 l32;
89 struct __ld_info64 l64;
90 #endif
91 } LdInfo;
92
93 /* If compiling with 32-bit and 64-bit debugging capability (e.g. AIX 4.x),
94 declare and initialize a variable named VAR suitable for use as the arch64
95 parameter to the various LDI_*() macros. */
96
97 #ifndef ARCH3264
98 # define ARCH64_DECL(var)
99 #else
100 # define ARCH64_DECL(var) int var = ARCH64 ()
101 #endif
102
103 /* Return LDI's FIELD for a 64-bit process if ARCH64 and for a 32-bit process
104 otherwise. This technique only works for FIELDs with the same data type in
105 32-bit and 64-bit versions of ld_info. */
106
107 #ifndef ARCH3264
108 # define LDI_FIELD(ldi, arch64, field) (ldi)->l32.ldinfo_##field
109 #else
110 # define LDI_FIELD(ldi, arch64, field) \
111 (arch64 ? (ldi)->l64.ldinfo_##field : (ldi)->l32.ldinfo_##field)
112 #endif
113
114 /* Return various LDI fields for a 64-bit process if ARCH64 and for a 32-bit
115 process otherwise. */
116
117 #define LDI_NEXT(ldi, arch64) LDI_FIELD(ldi, arch64, next)
118 #define LDI_FD(ldi, arch64) LDI_FIELD(ldi, arch64, fd)
119 #define LDI_FILENAME(ldi, arch64) LDI_FIELD(ldi, arch64, filename)
120
121 extern struct vmap *map_vmap (bfd * bf, bfd * arch);
122
123 static void vmap_exec (void);
124
125 static void vmap_ldinfo (LdInfo *);
126
127 static struct vmap *add_vmap (LdInfo *);
128
129 static int objfile_symbol_add (void *);
130
131 static void vmap_symtab (struct vmap *);
132
133 static void exec_one_dummy_insn (struct gdbarch *);
134
135 extern void fixup_breakpoints (CORE_ADDR low, CORE_ADDR high, CORE_ADDR delta);
136
137 /* Given REGNO, a gdb register number, return the corresponding
138 number suitable for use as a ptrace() parameter. Return -1 if
139 there's no suitable mapping. Also, set the int pointed to by
140 ISFLOAT to indicate whether REGNO is a floating point register. */
141
142 static int
143 regmap (struct gdbarch *gdbarch, int regno, int *isfloat)
144 {
145 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
146
147 *isfloat = 0;
148 if (tdep->ppc_gp0_regnum <= regno
149 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
150 return regno;
151 else if (tdep->ppc_fp0_regnum >= 0
152 && tdep->ppc_fp0_regnum <= regno
153 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
154 {
155 *isfloat = 1;
156 return regno - tdep->ppc_fp0_regnum + FPR0;
157 }
158 else if (regno == gdbarch_pc_regnum (gdbarch))
159 return IAR;
160 else if (regno == tdep->ppc_ps_regnum)
161 return MSR;
162 else if (regno == tdep->ppc_cr_regnum)
163 return CR;
164 else if (regno == tdep->ppc_lr_regnum)
165 return LR;
166 else if (regno == tdep->ppc_ctr_regnum)
167 return CTR;
168 else if (regno == tdep->ppc_xer_regnum)
169 return XER;
170 else if (tdep->ppc_fpscr_regnum >= 0
171 && regno == tdep->ppc_fpscr_regnum)
172 return FPSCR;
173 else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum)
174 return MQ;
175 else
176 return -1;
177 }
178
179 /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
180
181 static int
182 rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
183 {
184 int ret = ptrace (req, id, (int *)addr, data, buf);
185 #if 0
186 printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
187 req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
188 #endif
189 return ret;
190 }
191
192 /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
193
194 static int
195 rs6000_ptrace64 (int req, int id, long long addr, int data, void *buf)
196 {
197 #ifdef ARCH3264
198 int ret = ptracex (req, id, addr, data, buf);
199 #else
200 int ret = 0;
201 #endif
202 #if 0
203 printf ("rs6000_ptrace64 (%d, %d, 0x%llx, %08x, 0x%x) = 0x%x\n",
204 req, id, addr, data, (unsigned int)buf, ret);
205 #endif
206 return ret;
207 }
208
209 /* Fetch register REGNO from the inferior. */
210
211 static void
212 fetch_register (struct regcache *regcache, int regno)
213 {
214 struct gdbarch *gdbarch = get_regcache_arch (regcache);
215 int addr[MAX_REGISTER_SIZE];
216 int nr, isfloat;
217
218 /* Retrieved values may be -1, so infer errors from errno. */
219 errno = 0;
220
221 nr = regmap (gdbarch, regno, &isfloat);
222
223 /* Floating-point registers. */
224 if (isfloat)
225 rs6000_ptrace32 (PT_READ_FPR, PIDGET (inferior_ptid), addr, nr, 0);
226
227 /* Bogus register number. */
228 else if (nr < 0)
229 {
230 if (regno >= gdbarch_num_regs (gdbarch))
231 fprintf_unfiltered (gdb_stderr,
232 "gdb error: register no %d not implemented.\n",
233 regno);
234 return;
235 }
236
237 /* Fixed-point registers. */
238 else
239 {
240 if (!ARCH64 ())
241 *addr = rs6000_ptrace32 (PT_READ_GPR, PIDGET (inferior_ptid), (int *)nr, 0, 0);
242 else
243 {
244 /* PT_READ_GPR requires the buffer parameter to point to long long,
245 even if the register is really only 32 bits. */
246 long long buf;
247 rs6000_ptrace64 (PT_READ_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
248 if (register_size (gdbarch, regno) == 8)
249 memcpy (addr, &buf, 8);
250 else
251 *addr = buf;
252 }
253 }
254
255 if (!errno)
256 regcache_raw_supply (regcache, regno, (char *) addr);
257 else
258 {
259 #if 0
260 /* FIXME: this happens 3 times at the start of each 64-bit program. */
261 perror ("ptrace read");
262 #endif
263 errno = 0;
264 }
265 }
266
267 /* Store register REGNO back into the inferior. */
268
269 static void
270 store_register (const struct regcache *regcache, int regno)
271 {
272 struct gdbarch *gdbarch = get_regcache_arch (regcache);
273 int addr[MAX_REGISTER_SIZE];
274 int nr, isfloat;
275
276 /* Fetch the register's value from the register cache. */
277 regcache_raw_collect (regcache, regno, addr);
278
279 /* -1 can be a successful return value, so infer errors from errno. */
280 errno = 0;
281
282 nr = regmap (gdbarch, regno, &isfloat);
283
284 /* Floating-point registers. */
285 if (isfloat)
286 rs6000_ptrace32 (PT_WRITE_FPR, PIDGET (inferior_ptid), addr, nr, 0);
287
288 /* Bogus register number. */
289 else if (nr < 0)
290 {
291 if (regno >= gdbarch_num_regs (gdbarch))
292 fprintf_unfiltered (gdb_stderr,
293 "gdb error: register no %d not implemented.\n",
294 regno);
295 }
296
297 /* Fixed-point registers. */
298 else
299 {
300 if (regno == gdbarch_sp_regnum (gdbarch))
301 /* Execute one dummy instruction (which is a breakpoint) in inferior
302 process to give kernel a chance to do internal housekeeping.
303 Otherwise the following ptrace(2) calls will mess up user stack
304 since kernel will get confused about the bottom of the stack
305 (%sp). */
306 exec_one_dummy_insn (gdbarch);
307
308 /* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors,
309 the register's value is passed by value, but for 64-bit inferiors,
310 the address of a buffer containing the value is passed. */
311 if (!ARCH64 ())
312 rs6000_ptrace32 (PT_WRITE_GPR, PIDGET (inferior_ptid), (int *)nr, *addr, 0);
313 else
314 {
315 /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
316 area, even if the register is really only 32 bits. */
317 long long buf;
318 if (register_size (gdbarch, regno) == 8)
319 memcpy (&buf, addr, 8);
320 else
321 buf = *addr;
322 rs6000_ptrace64 (PT_WRITE_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
323 }
324 }
325
326 if (errno)
327 {
328 perror ("ptrace write");
329 errno = 0;
330 }
331 }
332
333 /* Read from the inferior all registers if REGNO == -1 and just register
334 REGNO otherwise. */
335
336 static void
337 rs6000_fetch_inferior_registers (struct regcache *regcache, int regno)
338 {
339 struct gdbarch *gdbarch = get_regcache_arch (regcache);
340 if (regno != -1)
341 fetch_register (regcache, regno);
342
343 else
344 {
345 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
346
347 /* Read 32 general purpose registers. */
348 for (regno = tdep->ppc_gp0_regnum;
349 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
350 regno++)
351 {
352 fetch_register (regcache, regno);
353 }
354
355 /* Read general purpose floating point registers. */
356 if (tdep->ppc_fp0_regnum >= 0)
357 for (regno = 0; regno < ppc_num_fprs; regno++)
358 fetch_register (regcache, tdep->ppc_fp0_regnum + regno);
359
360 /* Read special registers. */
361 fetch_register (regcache, gdbarch_pc_regnum (gdbarch));
362 fetch_register (regcache, tdep->ppc_ps_regnum);
363 fetch_register (regcache, tdep->ppc_cr_regnum);
364 fetch_register (regcache, tdep->ppc_lr_regnum);
365 fetch_register (regcache, tdep->ppc_ctr_regnum);
366 fetch_register (regcache, tdep->ppc_xer_regnum);
367 if (tdep->ppc_fpscr_regnum >= 0)
368 fetch_register (regcache, tdep->ppc_fpscr_regnum);
369 if (tdep->ppc_mq_regnum >= 0)
370 fetch_register (regcache, tdep->ppc_mq_regnum);
371 }
372 }
373
374 /* Store our register values back into the inferior.
375 If REGNO is -1, do this for all registers.
376 Otherwise, REGNO specifies which register (so we can save time). */
377
378 static void
379 rs6000_store_inferior_registers (struct regcache *regcache, int regno)
380 {
381 struct gdbarch *gdbarch = get_regcache_arch (regcache);
382 if (regno != -1)
383 store_register (regcache, regno);
384
385 else
386 {
387 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
388
389 /* Write general purpose registers first. */
390 for (regno = tdep->ppc_gp0_regnum;
391 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
392 regno++)
393 {
394 store_register (regcache, regno);
395 }
396
397 /* Write floating point registers. */
398 if (tdep->ppc_fp0_regnum >= 0)
399 for (regno = 0; regno < ppc_num_fprs; regno++)
400 store_register (regcache, tdep->ppc_fp0_regnum + regno);
401
402 /* Write special registers. */
403 store_register (regcache, gdbarch_pc_regnum (gdbarch));
404 store_register (regcache, tdep->ppc_ps_regnum);
405 store_register (regcache, tdep->ppc_cr_regnum);
406 store_register (regcache, tdep->ppc_lr_regnum);
407 store_register (regcache, tdep->ppc_ctr_regnum);
408 store_register (regcache, tdep->ppc_xer_regnum);
409 if (tdep->ppc_fpscr_regnum >= 0)
410 store_register (regcache, tdep->ppc_fpscr_regnum);
411 if (tdep->ppc_mq_regnum >= 0)
412 store_register (regcache, tdep->ppc_mq_regnum);
413 }
414 }
415
416
417 /* Attempt a transfer all LEN bytes starting at OFFSET between the
418 inferior's OBJECT:ANNEX space and GDB's READBUF/WRITEBUF buffer.
419 Return the number of bytes actually transferred. */
420
421 static LONGEST
422 rs6000_xfer_partial (struct target_ops *ops, enum target_object object,
423 const char *annex, gdb_byte *readbuf,
424 const gdb_byte *writebuf,
425 ULONGEST offset, LONGEST len)
426 {
427 pid_t pid = ptid_get_pid (inferior_ptid);
428 int arch64 = ARCH64 ();
429
430 switch (object)
431 {
432 case TARGET_OBJECT_MEMORY:
433 {
434 union
435 {
436 PTRACE_TYPE_RET word;
437 gdb_byte byte[sizeof (PTRACE_TYPE_RET)];
438 } buffer;
439 ULONGEST rounded_offset;
440 LONGEST partial_len;
441
442 /* Round the start offset down to the next long word
443 boundary. */
444 rounded_offset = offset & -(ULONGEST) sizeof (PTRACE_TYPE_RET);
445
446 /* Since ptrace will transfer a single word starting at that
447 rounded_offset the partial_len needs to be adjusted down to
448 that (remember this function only does a single transfer).
449 Should the required length be even less, adjust it down
450 again. */
451 partial_len = (rounded_offset + sizeof (PTRACE_TYPE_RET)) - offset;
452 if (partial_len > len)
453 partial_len = len;
454
455 if (writebuf)
456 {
457 /* If OFFSET:PARTIAL_LEN is smaller than
458 ROUNDED_OFFSET:WORDSIZE then a read/modify write will
459 be needed. Read in the entire word. */
460 if (rounded_offset < offset
461 || (offset + partial_len
462 < rounded_offset + sizeof (PTRACE_TYPE_RET)))
463 {
464 /* Need part of initial word -- fetch it. */
465 if (arch64)
466 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
467 rounded_offset, 0, NULL);
468 else
469 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
470 (int *)(uintptr_t)rounded_offset,
471 0, NULL);
472 }
473
474 /* Copy data to be written over corresponding part of
475 buffer. */
476 memcpy (buffer.byte + (offset - rounded_offset),
477 writebuf, partial_len);
478
479 errno = 0;
480 if (arch64)
481 rs6000_ptrace64 (PT_WRITE_D, pid,
482 rounded_offset, buffer.word, NULL);
483 else
484 rs6000_ptrace32 (PT_WRITE_D, pid,
485 (int *)(uintptr_t)rounded_offset, buffer.word, NULL);
486 if (errno)
487 return 0;
488 }
489
490 if (readbuf)
491 {
492 errno = 0;
493 if (arch64)
494 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
495 rounded_offset, 0, NULL);
496 else
497 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
498 (int *)(uintptr_t)rounded_offset,
499 0, NULL);
500 if (errno)
501 return 0;
502
503 /* Copy appropriate bytes out of the buffer. */
504 memcpy (readbuf, buffer.byte + (offset - rounded_offset),
505 partial_len);
506 }
507
508 return partial_len;
509 }
510
511 default:
512 return -1;
513 }
514 }
515
516 /* Wait for the child specified by PTID to do something. Return the
517 process ID of the child, or MINUS_ONE_PTID in case of error; store
518 the status in *OURSTATUS. */
519
520 static ptid_t
521 rs6000_wait (struct target_ops *ops,
522 ptid_t ptid, struct target_waitstatus *ourstatus)
523 {
524 pid_t pid;
525 int status, save_errno;
526
527 do
528 {
529 set_sigint_trap ();
530
531 do
532 {
533 pid = waitpid (ptid_get_pid (ptid), &status, 0);
534 save_errno = errno;
535 }
536 while (pid == -1 && errno == EINTR);
537
538 clear_sigint_trap ();
539
540 if (pid == -1)
541 {
542 fprintf_unfiltered (gdb_stderr,
543 _("Child process unexpectedly missing: %s.\n"),
544 safe_strerror (save_errno));
545
546 /* Claim it exited with unknown signal. */
547 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
548 ourstatus->value.sig = TARGET_SIGNAL_UNKNOWN;
549 return inferior_ptid;
550 }
551
552 /* Ignore terminated detached child processes. */
553 if (!WIFSTOPPED (status) && pid != ptid_get_pid (inferior_ptid))
554 pid = -1;
555 }
556 while (pid == -1);
557
558 /* AIX has a couple of strange returns from wait(). */
559
560 /* stop after load" status. */
561 if (status == 0x57c)
562 ourstatus->kind = TARGET_WAITKIND_LOADED;
563 /* signal 0. I have no idea why wait(2) returns with this status word. */
564 else if (status == 0x7f)
565 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
566 /* A normal waitstatus. Let the usual macros deal with it. */
567 else
568 store_waitstatus (ourstatus, status);
569
570 return pid_to_ptid (pid);
571 }
572
573 /* Execute one dummy breakpoint instruction. This way we give the kernel
574 a chance to do some housekeeping and update inferior's internal data,
575 including u_area. */
576
577 static void
578 exec_one_dummy_insn (struct gdbarch *gdbarch)
579 {
580 #define DUMMY_INSN_ADDR AIX_TEXT_SEGMENT_BASE+0x200
581
582 int ret, status, pid;
583 CORE_ADDR prev_pc;
584 void *bp;
585
586 /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
587 assume that this address will never be executed again by the real
588 code. */
589
590 bp = deprecated_insert_raw_breakpoint (DUMMY_INSN_ADDR);
591
592 /* You might think this could be done with a single ptrace call, and
593 you'd be correct for just about every platform I've ever worked
594 on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
595 the inferior never hits the breakpoint (it's also worth noting
596 powerpc-ibm-aix4.1.3 works correctly). */
597 prev_pc = read_pc ();
598 write_pc (DUMMY_INSN_ADDR);
599 if (ARCH64 ())
600 ret = rs6000_ptrace64 (PT_CONTINUE, PIDGET (inferior_ptid), 1, 0, NULL);
601 else
602 ret = rs6000_ptrace32 (PT_CONTINUE, PIDGET (inferior_ptid), (int *)1, 0, NULL);
603
604 if (ret != 0)
605 perror ("pt_continue");
606
607 do
608 {
609 pid = wait (&status);
610 }
611 while (pid != PIDGET (inferior_ptid));
612
613 write_pc (prev_pc);
614 deprecated_remove_raw_breakpoint (bp);
615 }
616 \f
617
618 /* Copy information about text and data sections from LDI to VP for a 64-bit
619 process if ARCH64 and for a 32-bit process otherwise. */
620
621 static void
622 vmap_secs (struct vmap *vp, LdInfo *ldi, int arch64)
623 {
624 if (arch64)
625 {
626 vp->tstart = (CORE_ADDR) ldi->l64.ldinfo_textorg;
627 vp->tend = vp->tstart + ldi->l64.ldinfo_textsize;
628 vp->dstart = (CORE_ADDR) ldi->l64.ldinfo_dataorg;
629 vp->dend = vp->dstart + ldi->l64.ldinfo_datasize;
630 }
631 else
632 {
633 vp->tstart = (unsigned long) ldi->l32.ldinfo_textorg;
634 vp->tend = vp->tstart + ldi->l32.ldinfo_textsize;
635 vp->dstart = (unsigned long) ldi->l32.ldinfo_dataorg;
636 vp->dend = vp->dstart + ldi->l32.ldinfo_datasize;
637 }
638
639 /* The run time loader maps the file header in addition to the text
640 section and returns a pointer to the header in ldinfo_textorg.
641 Adjust the text start address to point to the real start address
642 of the text section. */
643 vp->tstart += vp->toffs;
644 }
645
646 /* handle symbol translation on vmapping */
647
648 static void
649 vmap_symtab (struct vmap *vp)
650 {
651 struct objfile *objfile;
652 struct section_offsets *new_offsets;
653 int i;
654
655 objfile = vp->objfile;
656 if (objfile == NULL)
657 {
658 /* OK, it's not an objfile we opened ourselves.
659 Currently, that can only happen with the exec file, so
660 relocate the symbols for the symfile. */
661 if (symfile_objfile == NULL)
662 return;
663 objfile = symfile_objfile;
664 }
665 else if (!vp->loaded)
666 /* If symbols are not yet loaded, offsets are not yet valid. */
667 return;
668
669 new_offsets =
670 (struct section_offsets *)
671 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
672
673 for (i = 0; i < objfile->num_sections; ++i)
674 new_offsets->offsets[i] = ANOFFSET (objfile->section_offsets, i);
675
676 /* The symbols in the object file are linked to the VMA of the section,
677 relocate them VMA relative. */
678 new_offsets->offsets[SECT_OFF_TEXT (objfile)] = vp->tstart - vp->tvma;
679 new_offsets->offsets[SECT_OFF_DATA (objfile)] = vp->dstart - vp->dvma;
680 new_offsets->offsets[SECT_OFF_BSS (objfile)] = vp->dstart - vp->dvma;
681
682 objfile_relocate (objfile, new_offsets);
683 }
684 \f
685 /* Add symbols for an objfile. */
686
687 static int
688 objfile_symbol_add (void *arg)
689 {
690 struct objfile *obj = (struct objfile *) arg;
691
692 syms_from_objfile (obj, NULL, 0, 0, 0, 0);
693 new_symfile_objfile (obj, 0, 0);
694 return 1;
695 }
696
697 /* Add symbols for a vmap. Return zero upon error. */
698
699 int
700 vmap_add_symbols (struct vmap *vp)
701 {
702 if (catch_errors (objfile_symbol_add, vp->objfile,
703 "Error while reading shared library symbols:\n",
704 RETURN_MASK_ALL))
705 {
706 /* Note this is only done if symbol reading was successful. */
707 vp->loaded = 1;
708 vmap_symtab (vp);
709 return 1;
710 }
711 return 0;
712 }
713
714 /* Add a new vmap entry based on ldinfo() information.
715
716 If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a
717 core file), the caller should set it to -1, and we will open the file.
718
719 Return the vmap new entry. */
720
721 static struct vmap *
722 add_vmap (LdInfo *ldi)
723 {
724 bfd *abfd, *last;
725 char *mem, *objname, *filename;
726 struct objfile *obj;
727 struct vmap *vp;
728 int fd;
729 ARCH64_DECL (arch64);
730
731 /* This ldi structure was allocated using alloca() in
732 xcoff_relocate_symtab(). Now we need to have persistent object
733 and member names, so we should save them. */
734
735 filename = LDI_FILENAME (ldi, arch64);
736 mem = filename + strlen (filename) + 1;
737 mem = savestring (mem, strlen (mem));
738 objname = savestring (filename, strlen (filename));
739
740 fd = LDI_FD (ldi, arch64);
741 if (fd < 0)
742 /* Note that this opens it once for every member; a possible
743 enhancement would be to only open it once for every object. */
744 abfd = bfd_openr (objname, gnutarget);
745 else
746 abfd = bfd_fdopenr (objname, gnutarget, fd);
747 if (!abfd)
748 {
749 warning (_("Could not open `%s' as an executable file: %s"),
750 objname, bfd_errmsg (bfd_get_error ()));
751 return NULL;
752 }
753
754 /* make sure we have an object file */
755
756 if (bfd_check_format (abfd, bfd_object))
757 vp = map_vmap (abfd, 0);
758
759 else if (bfd_check_format (abfd, bfd_archive))
760 {
761 last = 0;
762 /* FIXME??? am I tossing BFDs? bfd? */
763 while ((last = bfd_openr_next_archived_file (abfd, last)))
764 if (strcmp (mem, last->filename) == 0)
765 break;
766
767 if (!last)
768 {
769 warning (_("\"%s\": member \"%s\" missing."), objname, mem);
770 bfd_close (abfd);
771 return NULL;
772 }
773
774 if (!bfd_check_format (last, bfd_object))
775 {
776 warning (_("\"%s\": member \"%s\" not in executable format: %s."),
777 objname, mem, bfd_errmsg (bfd_get_error ()));
778 bfd_close (last);
779 bfd_close (abfd);
780 return NULL;
781 }
782
783 vp = map_vmap (last, abfd);
784 }
785 else
786 {
787 warning (_("\"%s\": not in executable format: %s."),
788 objname, bfd_errmsg (bfd_get_error ()));
789 bfd_close (abfd);
790 return NULL;
791 }
792 obj = allocate_objfile (vp->bfd, 0);
793 vp->objfile = obj;
794
795 /* Always add symbols for the main objfile. */
796 if (vp == vmap || auto_solib_add)
797 vmap_add_symbols (vp);
798 return vp;
799 }
800 \f
801 /* update VMAP info with ldinfo() information
802 Input is ptr to ldinfo() results. */
803
804 static void
805 vmap_ldinfo (LdInfo *ldi)
806 {
807 struct stat ii, vi;
808 struct vmap *vp;
809 int got_one, retried;
810 int got_exec_file = 0;
811 uint next;
812 int arch64 = ARCH64 ();
813
814 /* For each *ldi, see if we have a corresponding *vp.
815 If so, update the mapping, and symbol table.
816 If not, add an entry and symbol table. */
817
818 do
819 {
820 char *name = LDI_FILENAME (ldi, arch64);
821 char *memb = name + strlen (name) + 1;
822 int fd = LDI_FD (ldi, arch64);
823
824 retried = 0;
825
826 if (fstat (fd, &ii) < 0)
827 {
828 /* The kernel sets ld_info to -1, if the process is still using the
829 object, and the object is removed. Keep the symbol info for the
830 removed object and issue a warning. */
831 warning (_("%s (fd=%d) has disappeared, keeping its symbols"),
832 name, fd);
833 continue;
834 }
835 retry:
836 for (got_one = 0, vp = vmap; vp; vp = vp->nxt)
837 {
838 struct objfile *objfile;
839
840 /* First try to find a `vp', which is the same as in ldinfo.
841 If not the same, just continue and grep the next `vp'. If same,
842 relocate its tstart, tend, dstart, dend values. If no such `vp'
843 found, get out of this for loop, add this ldi entry as a new vmap
844 (add_vmap) and come back, find its `vp' and so on... */
845
846 /* The filenames are not always sufficient to match on. */
847
848 if ((name[0] == '/' && strcmp (name, vp->name) != 0)
849 || (memb[0] && strcmp (memb, vp->member) != 0))
850 continue;
851
852 /* See if we are referring to the same file.
853 We have to check objfile->obfd, symfile.c:reread_symbols might
854 have updated the obfd after a change. */
855 objfile = vp->objfile == NULL ? symfile_objfile : vp->objfile;
856 if (objfile == NULL
857 || objfile->obfd == NULL
858 || bfd_stat (objfile->obfd, &vi) < 0)
859 {
860 warning (_("Unable to stat %s, keeping its symbols"), name);
861 continue;
862 }
863
864 if (ii.st_dev != vi.st_dev || ii.st_ino != vi.st_ino)
865 continue;
866
867 if (!retried)
868 close (fd);
869
870 ++got_one;
871
872 /* Found a corresponding VMAP. Remap! */
873
874 vmap_secs (vp, ldi, arch64);
875
876 /* The objfile is only NULL for the exec file. */
877 if (vp->objfile == NULL)
878 got_exec_file = 1;
879
880 /* relocate symbol table(s). */
881 vmap_symtab (vp);
882
883 /* Announce new object files. Doing this after symbol relocation
884 makes aix-thread.c's job easier. */
885 if (vp->objfile)
886 observer_notify_new_objfile (vp->objfile);
887
888 /* There may be more, so we don't break out of the loop. */
889 }
890
891 /* if there was no matching *vp, we must perforce create the sucker(s) */
892 if (!got_one && !retried)
893 {
894 add_vmap (ldi);
895 ++retried;
896 goto retry;
897 }
898 }
899 while ((next = LDI_NEXT (ldi, arch64))
900 && (ldi = (void *) (next + (char *) ldi)));
901
902 /* If we don't find the symfile_objfile anywhere in the ldinfo, it
903 is unlikely that the symbol file is relocated to the proper
904 address. And we might have attached to a process which is
905 running a different copy of the same executable. */
906 if (symfile_objfile != NULL && !got_exec_file)
907 {
908 warning (_("Symbol file %s\nis not mapped; discarding it.\n\
909 If in fact that file has symbols which the mapped files listed by\n\
910 \"info files\" lack, you can load symbols with the \"symbol-file\" or\n\
911 \"add-symbol-file\" commands (note that you must take care of relocating\n\
912 symbols to the proper address)."),
913 symfile_objfile->name);
914 free_objfile (symfile_objfile);
915 symfile_objfile = NULL;
916 }
917 breakpoint_re_set ();
918 }
919 \f
920 /* As well as symbol tables, exec_sections need relocation. After
921 the inferior process' termination, there will be a relocated symbol
922 table exist with no corresponding inferior process. At that time, we
923 need to use `exec' bfd, rather than the inferior process's memory space
924 to look up symbols.
925
926 `exec_sections' need to be relocated only once, as long as the exec
927 file remains unchanged.
928 */
929
930 static void
931 vmap_exec (void)
932 {
933 static bfd *execbfd;
934 int i;
935
936 if (execbfd == exec_bfd)
937 return;
938
939 execbfd = exec_bfd;
940
941 if (!vmap || !exec_ops.to_sections)
942 error (_("vmap_exec: vmap or exec_ops.to_sections == 0."));
943
944 for (i = 0; &exec_ops.to_sections[i] < exec_ops.to_sections_end; i++)
945 {
946 if (strcmp (".text", exec_ops.to_sections[i].the_bfd_section->name) == 0)
947 {
948 exec_ops.to_sections[i].addr += vmap->tstart - vmap->tvma;
949 exec_ops.to_sections[i].endaddr += vmap->tstart - vmap->tvma;
950 }
951 else if (strcmp (".data",
952 exec_ops.to_sections[i].the_bfd_section->name) == 0)
953 {
954 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
955 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
956 }
957 else if (strcmp (".bss",
958 exec_ops.to_sections[i].the_bfd_section->name) == 0)
959 {
960 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
961 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
962 }
963 }
964 }
965
966 /* Set the current architecture from the host running GDB. Called when
967 starting a child process. */
968
969 static void (*super_create_inferior) (struct target_ops *,char *exec_file,
970 char *allargs, char **env, int from_tty);
971 static void
972 rs6000_create_inferior (struct target_ops * ops, char *exec_file,
973 char *allargs, char **env, int from_tty)
974 {
975 enum bfd_architecture arch;
976 unsigned long mach;
977 bfd abfd;
978 struct gdbarch_info info;
979
980 super_create_inferior (ops, exec_file, allargs, env, from_tty);
981
982 if (__power_rs ())
983 {
984 arch = bfd_arch_rs6000;
985 mach = bfd_mach_rs6k;
986 }
987 else
988 {
989 arch = bfd_arch_powerpc;
990 mach = bfd_mach_ppc;
991 }
992
993 /* FIXME: schauer/2002-02-25:
994 We don't know if we are executing a 32 or 64 bit executable,
995 and have no way to pass the proper word size to rs6000_gdbarch_init.
996 So we have to avoid switching to a new architecture, if the architecture
997 matches already.
998 Blindly calling rs6000_gdbarch_init used to work in older versions of
999 GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
1000 determine the wordsize. */
1001 if (exec_bfd)
1002 {
1003 const struct bfd_arch_info *exec_bfd_arch_info;
1004
1005 exec_bfd_arch_info = bfd_get_arch_info (exec_bfd);
1006 if (arch == exec_bfd_arch_info->arch)
1007 return;
1008 }
1009
1010 bfd_default_set_arch_mach (&abfd, arch, mach);
1011
1012 gdbarch_info_init (&info);
1013 info.bfd_arch_info = bfd_get_arch_info (&abfd);
1014 info.abfd = exec_bfd;
1015
1016 if (!gdbarch_update_p (info))
1017 internal_error (__FILE__, __LINE__,
1018 _("rs6000_create_inferior: failed to select architecture"));
1019 }
1020
1021 \f
1022 /* xcoff_relocate_symtab - hook for symbol table relocation.
1023
1024 This is only applicable to live processes, and is a no-op when
1025 debugging a core file. */
1026
1027 void
1028 xcoff_relocate_symtab (unsigned int pid)
1029 {
1030 int load_segs = 64; /* number of load segments */
1031 int rc;
1032 LdInfo *ldi = NULL;
1033 int arch64 = ARCH64 ();
1034 int ldisize = arch64 ? sizeof (ldi->l64) : sizeof (ldi->l32);
1035 int size;
1036
1037 if (ptid_equal (inferior_ptid, null_ptid))
1038 return;
1039
1040 do
1041 {
1042 size = load_segs * ldisize;
1043 ldi = (void *) xrealloc (ldi, size);
1044
1045 #if 0
1046 /* According to my humble theory, AIX has some timing problems and
1047 when the user stack grows, kernel doesn't update stack info in time
1048 and ptrace calls step on user stack. That is why we sleep here a
1049 little, and give kernel to update its internals. */
1050 usleep (36000);
1051 #endif
1052
1053 if (arch64)
1054 rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, size, NULL);
1055 else
1056 rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi, size, NULL);
1057
1058 if (rc == -1)
1059 {
1060 if (errno == ENOMEM)
1061 load_segs *= 2;
1062 else
1063 perror_with_name (_("ptrace ldinfo"));
1064 }
1065 else
1066 {
1067 vmap_ldinfo (ldi);
1068 vmap_exec (); /* relocate the exec and core sections as well. */
1069 }
1070 } while (rc == -1);
1071 if (ldi)
1072 xfree (ldi);
1073 }
1074 \f
1075 /* Core file stuff. */
1076
1077 /* Relocate symtabs and read in shared library info, based on symbols
1078 from the core file. */
1079
1080 void
1081 xcoff_relocate_core (struct target_ops *target)
1082 {
1083 struct bfd_section *ldinfo_sec;
1084 int offset = 0;
1085 LdInfo *ldi;
1086 struct vmap *vp;
1087 int arch64 = ARCH64 ();
1088
1089 /* Size of a struct ld_info except for the variable-length filename. */
1090 int nonfilesz = (int)LDI_FILENAME ((LdInfo *)0, arch64);
1091
1092 /* Allocated size of buffer. */
1093 int buffer_size = nonfilesz;
1094 char *buffer = xmalloc (buffer_size);
1095 struct cleanup *old = make_cleanup (free_current_contents, &buffer);
1096
1097 ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
1098 if (ldinfo_sec == NULL)
1099 {
1100 bfd_err:
1101 fprintf_filtered (gdb_stderr, "Couldn't get ldinfo from core file: %s\n",
1102 bfd_errmsg (bfd_get_error ()));
1103 do_cleanups (old);
1104 return;
1105 }
1106 do
1107 {
1108 int i;
1109 int names_found = 0;
1110
1111 /* Read in everything but the name. */
1112 if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer,
1113 offset, nonfilesz) == 0)
1114 goto bfd_err;
1115
1116 /* Now the name. */
1117 i = nonfilesz;
1118 do
1119 {
1120 if (i == buffer_size)
1121 {
1122 buffer_size *= 2;
1123 buffer = xrealloc (buffer, buffer_size);
1124 }
1125 if (bfd_get_section_contents (core_bfd, ldinfo_sec, &buffer[i],
1126 offset + i, 1) == 0)
1127 goto bfd_err;
1128 if (buffer[i++] == '\0')
1129 ++names_found;
1130 }
1131 while (names_found < 2);
1132
1133 ldi = (LdInfo *) buffer;
1134
1135 /* Can't use a file descriptor from the core file; need to open it. */
1136 if (arch64)
1137 ldi->l64.ldinfo_fd = -1;
1138 else
1139 ldi->l32.ldinfo_fd = -1;
1140
1141 /* The first ldinfo is for the exec file, allocated elsewhere. */
1142 if (offset == 0 && vmap != NULL)
1143 vp = vmap;
1144 else
1145 vp = add_vmap (ldi);
1146
1147 /* Process next shared library upon error. */
1148 offset += LDI_NEXT (ldi, arch64);
1149 if (vp == NULL)
1150 continue;
1151
1152 vmap_secs (vp, ldi, arch64);
1153
1154 /* Unless this is the exec file,
1155 add our sections to the section table for the core target. */
1156 if (vp != vmap)
1157 {
1158 struct section_table *stp;
1159
1160 target_resize_to_sections (target, 2);
1161 stp = target->to_sections_end - 2;
1162
1163 stp->bfd = vp->bfd;
1164 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".text");
1165 stp->addr = vp->tstart;
1166 stp->endaddr = vp->tend;
1167 stp++;
1168
1169 stp->bfd = vp->bfd;
1170 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".data");
1171 stp->addr = vp->dstart;
1172 stp->endaddr = vp->dend;
1173 }
1174
1175 vmap_symtab (vp);
1176
1177 if (vp != vmap && vp->objfile)
1178 observer_notify_new_objfile (vp->objfile);
1179 }
1180 while (LDI_NEXT (ldi, arch64) != 0);
1181 vmap_exec ();
1182 breakpoint_re_set ();
1183 do_cleanups (old);
1184 }
1185 \f
1186 /* Under AIX, we have to pass the correct TOC pointer to a function
1187 when calling functions in the inferior.
1188 We try to find the relative toc offset of the objfile containing PC
1189 and add the current load address of the data segment from the vmap. */
1190
1191 static CORE_ADDR
1192 find_toc_address (CORE_ADDR pc)
1193 {
1194 struct vmap *vp;
1195
1196 for (vp = vmap; vp; vp = vp->nxt)
1197 {
1198 if (pc >= vp->tstart && pc < vp->tend)
1199 {
1200 /* vp->objfile is only NULL for the exec file. */
1201 return vp->dstart + xcoff_get_toc_offset (vp->objfile == NULL
1202 ? symfile_objfile
1203 : vp->objfile);
1204 }
1205 }
1206 error (_("Unable to find TOC entry for pc %s."), hex_string (pc));
1207 }
1208 \f
1209
1210 void
1211 _initialize_rs6000_nat (void)
1212 {
1213 struct target_ops *t;
1214
1215 t = inf_ptrace_target ();
1216 t->to_fetch_registers = rs6000_fetch_inferior_registers;
1217 t->to_store_registers = rs6000_store_inferior_registers;
1218 t->to_xfer_partial = rs6000_xfer_partial;
1219
1220 super_create_inferior = t->to_create_inferior;
1221 t->to_create_inferior = rs6000_create_inferior;
1222
1223 t->to_wait = rs6000_wait;
1224
1225 add_target (t);
1226
1227 /* Initialize hook in rs6000-tdep.c for determining the TOC address
1228 when calling functions in the inferior. */
1229 rs6000_find_toc_address_hook = find_toc_address;
1230 }
This page took 0.057882 seconds and 4 git commands to generate.