804b31680b1b703d8a1ee5c6cd18cf09ce02480e
[deliverable/binutils-gdb.git] / gdb / rs6000-nat.c
1 /* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "gdbcore.h"
24 #include "symfile.h"
25 #include "objfiles.h"
26 #include "libbfd.h" /* For bfd_default_set_arch_mach (FIXME) */
27 #include "bfd.h"
28 #include "exceptions.h"
29 #include "gdb-stabs.h"
30 #include "regcache.h"
31 #include "arch-utils.h"
32 #include "inf-child.h"
33 #include "inf-ptrace.h"
34 #include "ppc-tdep.h"
35 #include "rs6000-tdep.h"
36 #include "rs6000-aix-tdep.h"
37 #include "exec.h"
38 #include "observer.h"
39 #include "xcoffread.h"
40
41 #include <sys/ptrace.h>
42 #include <sys/reg.h>
43
44 #include <sys/dir.h>
45 #include <sys/user.h>
46 #include <signal.h>
47 #include <sys/ioctl.h>
48 #include <fcntl.h>
49 #include <errno.h>
50
51 #include <a.out.h>
52 #include <sys/file.h>
53 #include "gdb_stat.h"
54 #include "gdb_bfd.h"
55 #include <sys/core.h>
56 #define __LDINFO_PTRACE32__ /* for __ld_info32 */
57 #define __LDINFO_PTRACE64__ /* for __ld_info64 */
58 #include <sys/ldr.h>
59 #include <sys/systemcfg.h>
60
61 /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
62 debugging 32-bit and 64-bit processes. Define a typedef and macros for
63 accessing fields in the appropriate structures. */
64
65 /* In 32-bit compilation mode (which is the only mode from which ptrace()
66 works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
67
68 #if defined (__ld_info32) || defined (__ld_info64)
69 # define ARCH3264
70 #endif
71
72 /* Return whether the current architecture is 64-bit. */
73
74 #ifndef ARCH3264
75 # define ARCH64() 0
76 #else
77 # define ARCH64() (register_size (target_gdbarch (), 0) == 8)
78 #endif
79
80 static void exec_one_dummy_insn (struct regcache *);
81
82 static LONGEST rs6000_xfer_shared_libraries
83 (struct target_ops *ops, enum target_object object,
84 const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf,
85 ULONGEST offset, LONGEST len);
86
87 /* Given REGNO, a gdb register number, return the corresponding
88 number suitable for use as a ptrace() parameter. Return -1 if
89 there's no suitable mapping. Also, set the int pointed to by
90 ISFLOAT to indicate whether REGNO is a floating point register. */
91
92 static int
93 regmap (struct gdbarch *gdbarch, int regno, int *isfloat)
94 {
95 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
96
97 *isfloat = 0;
98 if (tdep->ppc_gp0_regnum <= regno
99 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
100 return regno;
101 else if (tdep->ppc_fp0_regnum >= 0
102 && tdep->ppc_fp0_regnum <= regno
103 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
104 {
105 *isfloat = 1;
106 return regno - tdep->ppc_fp0_regnum + FPR0;
107 }
108 else if (regno == gdbarch_pc_regnum (gdbarch))
109 return IAR;
110 else if (regno == tdep->ppc_ps_regnum)
111 return MSR;
112 else if (regno == tdep->ppc_cr_regnum)
113 return CR;
114 else if (regno == tdep->ppc_lr_regnum)
115 return LR;
116 else if (regno == tdep->ppc_ctr_regnum)
117 return CTR;
118 else if (regno == tdep->ppc_xer_regnum)
119 return XER;
120 else if (tdep->ppc_fpscr_regnum >= 0
121 && regno == tdep->ppc_fpscr_regnum)
122 return FPSCR;
123 else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum)
124 return MQ;
125 else
126 return -1;
127 }
128
129 /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
130
131 static int
132 rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
133 {
134 #ifdef HAVE_PTRACE64
135 int ret = ptrace64 (req, id, (long long) addr, data, buf);
136 #else
137 int ret = ptrace (req, id, (int *)addr, data, buf);
138 #endif
139 #if 0
140 printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
141 req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
142 #endif
143 return ret;
144 }
145
146 /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
147
148 static int
149 rs6000_ptrace64 (int req, int id, long long addr, int data, void *buf)
150 {
151 #ifdef ARCH3264
152 # ifdef HAVE_PTRACE64
153 int ret = ptrace64 (req, id, addr, data, buf);
154 # else
155 int ret = ptracex (req, id, addr, data, buf);
156 # endif
157 #else
158 int ret = 0;
159 #endif
160 #if 0
161 printf ("rs6000_ptrace64 (%d, %d, %s, %08x, 0x%x) = 0x%x\n",
162 req, id, hex_string (addr), data, (unsigned int)buf, ret);
163 #endif
164 return ret;
165 }
166
167 /* Fetch register REGNO from the inferior. */
168
169 static void
170 fetch_register (struct regcache *regcache, int regno)
171 {
172 struct gdbarch *gdbarch = get_regcache_arch (regcache);
173 int addr[MAX_REGISTER_SIZE];
174 int nr, isfloat;
175
176 /* Retrieved values may be -1, so infer errors from errno. */
177 errno = 0;
178
179 nr = regmap (gdbarch, regno, &isfloat);
180
181 /* Floating-point registers. */
182 if (isfloat)
183 rs6000_ptrace32 (PT_READ_FPR, PIDGET (inferior_ptid), addr, nr, 0);
184
185 /* Bogus register number. */
186 else if (nr < 0)
187 {
188 if (regno >= gdbarch_num_regs (gdbarch))
189 fprintf_unfiltered (gdb_stderr,
190 "gdb error: register no %d not implemented.\n",
191 regno);
192 return;
193 }
194
195 /* Fixed-point registers. */
196 else
197 {
198 if (!ARCH64 ())
199 *addr = rs6000_ptrace32 (PT_READ_GPR, PIDGET (inferior_ptid),
200 (int *) nr, 0, 0);
201 else
202 {
203 /* PT_READ_GPR requires the buffer parameter to point to long long,
204 even if the register is really only 32 bits. */
205 long long buf;
206 rs6000_ptrace64 (PT_READ_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
207 if (register_size (gdbarch, regno) == 8)
208 memcpy (addr, &buf, 8);
209 else
210 *addr = buf;
211 }
212 }
213
214 if (!errno)
215 regcache_raw_supply (regcache, regno, (char *) addr);
216 else
217 {
218 #if 0
219 /* FIXME: this happens 3 times at the start of each 64-bit program. */
220 perror (_("ptrace read"));
221 #endif
222 errno = 0;
223 }
224 }
225
226 /* Store register REGNO back into the inferior. */
227
228 static void
229 store_register (struct regcache *regcache, int regno)
230 {
231 struct gdbarch *gdbarch = get_regcache_arch (regcache);
232 int addr[MAX_REGISTER_SIZE];
233 int nr, isfloat;
234
235 /* Fetch the register's value from the register cache. */
236 regcache_raw_collect (regcache, regno, addr);
237
238 /* -1 can be a successful return value, so infer errors from errno. */
239 errno = 0;
240
241 nr = regmap (gdbarch, regno, &isfloat);
242
243 /* Floating-point registers. */
244 if (isfloat)
245 rs6000_ptrace32 (PT_WRITE_FPR, PIDGET (inferior_ptid), addr, nr, 0);
246
247 /* Bogus register number. */
248 else if (nr < 0)
249 {
250 if (regno >= gdbarch_num_regs (gdbarch))
251 fprintf_unfiltered (gdb_stderr,
252 "gdb error: register no %d not implemented.\n",
253 regno);
254 }
255
256 /* Fixed-point registers. */
257 else
258 {
259 if (regno == gdbarch_sp_regnum (gdbarch))
260 /* Execute one dummy instruction (which is a breakpoint) in inferior
261 process to give kernel a chance to do internal housekeeping.
262 Otherwise the following ptrace(2) calls will mess up user stack
263 since kernel will get confused about the bottom of the stack
264 (%sp). */
265 exec_one_dummy_insn (regcache);
266
267 /* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors,
268 the register's value is passed by value, but for 64-bit inferiors,
269 the address of a buffer containing the value is passed. */
270 if (!ARCH64 ())
271 rs6000_ptrace32 (PT_WRITE_GPR, PIDGET (inferior_ptid),
272 (int *) nr, *addr, 0);
273 else
274 {
275 /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
276 area, even if the register is really only 32 bits. */
277 long long buf;
278 if (register_size (gdbarch, regno) == 8)
279 memcpy (&buf, addr, 8);
280 else
281 buf = *addr;
282 rs6000_ptrace64 (PT_WRITE_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
283 }
284 }
285
286 if (errno)
287 {
288 perror (_("ptrace write"));
289 errno = 0;
290 }
291 }
292
293 /* Read from the inferior all registers if REGNO == -1 and just register
294 REGNO otherwise. */
295
296 static void
297 rs6000_fetch_inferior_registers (struct target_ops *ops,
298 struct regcache *regcache, int regno)
299 {
300 struct gdbarch *gdbarch = get_regcache_arch (regcache);
301 if (regno != -1)
302 fetch_register (regcache, regno);
303
304 else
305 {
306 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
307
308 /* Read 32 general purpose registers. */
309 for (regno = tdep->ppc_gp0_regnum;
310 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
311 regno++)
312 {
313 fetch_register (regcache, regno);
314 }
315
316 /* Read general purpose floating point registers. */
317 if (tdep->ppc_fp0_regnum >= 0)
318 for (regno = 0; regno < ppc_num_fprs; regno++)
319 fetch_register (regcache, tdep->ppc_fp0_regnum + regno);
320
321 /* Read special registers. */
322 fetch_register (regcache, gdbarch_pc_regnum (gdbarch));
323 fetch_register (regcache, tdep->ppc_ps_regnum);
324 fetch_register (regcache, tdep->ppc_cr_regnum);
325 fetch_register (regcache, tdep->ppc_lr_regnum);
326 fetch_register (regcache, tdep->ppc_ctr_regnum);
327 fetch_register (regcache, tdep->ppc_xer_regnum);
328 if (tdep->ppc_fpscr_regnum >= 0)
329 fetch_register (regcache, tdep->ppc_fpscr_regnum);
330 if (tdep->ppc_mq_regnum >= 0)
331 fetch_register (regcache, tdep->ppc_mq_regnum);
332 }
333 }
334
335 /* Store our register values back into the inferior.
336 If REGNO is -1, do this for all registers.
337 Otherwise, REGNO specifies which register (so we can save time). */
338
339 static void
340 rs6000_store_inferior_registers (struct target_ops *ops,
341 struct regcache *regcache, int regno)
342 {
343 struct gdbarch *gdbarch = get_regcache_arch (regcache);
344 if (regno != -1)
345 store_register (regcache, regno);
346
347 else
348 {
349 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
350
351 /* Write general purpose registers first. */
352 for (regno = tdep->ppc_gp0_regnum;
353 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
354 regno++)
355 {
356 store_register (regcache, regno);
357 }
358
359 /* Write floating point registers. */
360 if (tdep->ppc_fp0_regnum >= 0)
361 for (regno = 0; regno < ppc_num_fprs; regno++)
362 store_register (regcache, tdep->ppc_fp0_regnum + regno);
363
364 /* Write special registers. */
365 store_register (regcache, gdbarch_pc_regnum (gdbarch));
366 store_register (regcache, tdep->ppc_ps_regnum);
367 store_register (regcache, tdep->ppc_cr_regnum);
368 store_register (regcache, tdep->ppc_lr_regnum);
369 store_register (regcache, tdep->ppc_ctr_regnum);
370 store_register (regcache, tdep->ppc_xer_regnum);
371 if (tdep->ppc_fpscr_regnum >= 0)
372 store_register (regcache, tdep->ppc_fpscr_regnum);
373 if (tdep->ppc_mq_regnum >= 0)
374 store_register (regcache, tdep->ppc_mq_regnum);
375 }
376 }
377
378
379 /* Attempt a transfer all LEN bytes starting at OFFSET between the
380 inferior's OBJECT:ANNEX space and GDB's READBUF/WRITEBUF buffer.
381 Return the number of bytes actually transferred. */
382
383 static LONGEST
384 rs6000_xfer_partial (struct target_ops *ops, enum target_object object,
385 const char *annex, gdb_byte *readbuf,
386 const gdb_byte *writebuf,
387 ULONGEST offset, LONGEST len)
388 {
389 pid_t pid = ptid_get_pid (inferior_ptid);
390 int arch64 = ARCH64 ();
391
392 switch (object)
393 {
394 case TARGET_OBJECT_LIBRARIES_AIX:
395 return rs6000_xfer_shared_libraries (ops, object, annex,
396 readbuf, writebuf,
397 offset, len);
398 case TARGET_OBJECT_MEMORY:
399 {
400 union
401 {
402 PTRACE_TYPE_RET word;
403 gdb_byte byte[sizeof (PTRACE_TYPE_RET)];
404 } buffer;
405 ULONGEST rounded_offset;
406 LONGEST partial_len;
407
408 /* Round the start offset down to the next long word
409 boundary. */
410 rounded_offset = offset & -(ULONGEST) sizeof (PTRACE_TYPE_RET);
411
412 /* Since ptrace will transfer a single word starting at that
413 rounded_offset the partial_len needs to be adjusted down to
414 that (remember this function only does a single transfer).
415 Should the required length be even less, adjust it down
416 again. */
417 partial_len = (rounded_offset + sizeof (PTRACE_TYPE_RET)) - offset;
418 if (partial_len > len)
419 partial_len = len;
420
421 if (writebuf)
422 {
423 /* If OFFSET:PARTIAL_LEN is smaller than
424 ROUNDED_OFFSET:WORDSIZE then a read/modify write will
425 be needed. Read in the entire word. */
426 if (rounded_offset < offset
427 || (offset + partial_len
428 < rounded_offset + sizeof (PTRACE_TYPE_RET)))
429 {
430 /* Need part of initial word -- fetch it. */
431 if (arch64)
432 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
433 rounded_offset, 0, NULL);
434 else
435 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
436 (int *) (uintptr_t)
437 rounded_offset,
438 0, NULL);
439 }
440
441 /* Copy data to be written over corresponding part of
442 buffer. */
443 memcpy (buffer.byte + (offset - rounded_offset),
444 writebuf, partial_len);
445
446 errno = 0;
447 if (arch64)
448 rs6000_ptrace64 (PT_WRITE_D, pid,
449 rounded_offset, buffer.word, NULL);
450 else
451 rs6000_ptrace32 (PT_WRITE_D, pid,
452 (int *) (uintptr_t) rounded_offset,
453 buffer.word, NULL);
454 if (errno)
455 return 0;
456 }
457
458 if (readbuf)
459 {
460 errno = 0;
461 if (arch64)
462 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
463 rounded_offset, 0, NULL);
464 else
465 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
466 (int *)(uintptr_t)rounded_offset,
467 0, NULL);
468 if (errno)
469 return 0;
470
471 /* Copy appropriate bytes out of the buffer. */
472 memcpy (readbuf, buffer.byte + (offset - rounded_offset),
473 partial_len);
474 }
475
476 return partial_len;
477 }
478
479 default:
480 return -1;
481 }
482 }
483
484 /* Wait for the child specified by PTID to do something. Return the
485 process ID of the child, or MINUS_ONE_PTID in case of error; store
486 the status in *OURSTATUS. */
487
488 static ptid_t
489 rs6000_wait (struct target_ops *ops,
490 ptid_t ptid, struct target_waitstatus *ourstatus, int options)
491 {
492 pid_t pid;
493 int status, save_errno;
494
495 do
496 {
497 set_sigint_trap ();
498
499 do
500 {
501 pid = waitpid (ptid_get_pid (ptid), &status, 0);
502 save_errno = errno;
503 }
504 while (pid == -1 && errno == EINTR);
505
506 clear_sigint_trap ();
507
508 if (pid == -1)
509 {
510 fprintf_unfiltered (gdb_stderr,
511 _("Child process unexpectedly missing: %s.\n"),
512 safe_strerror (save_errno));
513
514 /* Claim it exited with unknown signal. */
515 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
516 ourstatus->value.sig = GDB_SIGNAL_UNKNOWN;
517 return inferior_ptid;
518 }
519
520 /* Ignore terminated detached child processes. */
521 if (!WIFSTOPPED (status) && pid != ptid_get_pid (inferior_ptid))
522 pid = -1;
523 }
524 while (pid == -1);
525
526 /* AIX has a couple of strange returns from wait(). */
527
528 /* stop after load" status. */
529 if (status == 0x57c)
530 ourstatus->kind = TARGET_WAITKIND_LOADED;
531 /* signal 0. I have no idea why wait(2) returns with this status word. */
532 else if (status == 0x7f)
533 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
534 /* A normal waitstatus. Let the usual macros deal with it. */
535 else
536 store_waitstatus (ourstatus, status);
537
538 return pid_to_ptid (pid);
539 }
540
541 /* Execute one dummy breakpoint instruction. This way we give the kernel
542 a chance to do some housekeeping and update inferior's internal data,
543 including u_area. */
544
545 static void
546 exec_one_dummy_insn (struct regcache *regcache)
547 {
548 #define DUMMY_INSN_ADDR AIX_TEXT_SEGMENT_BASE+0x200
549
550 struct gdbarch *gdbarch = get_regcache_arch (regcache);
551 int ret, status, pid;
552 CORE_ADDR prev_pc;
553 void *bp;
554
555 /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
556 assume that this address will never be executed again by the real
557 code. */
558
559 bp = deprecated_insert_raw_breakpoint (gdbarch, NULL, DUMMY_INSN_ADDR);
560
561 /* You might think this could be done with a single ptrace call, and
562 you'd be correct for just about every platform I've ever worked
563 on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
564 the inferior never hits the breakpoint (it's also worth noting
565 powerpc-ibm-aix4.1.3 works correctly). */
566 prev_pc = regcache_read_pc (regcache);
567 regcache_write_pc (regcache, DUMMY_INSN_ADDR);
568 if (ARCH64 ())
569 ret = rs6000_ptrace64 (PT_CONTINUE, PIDGET (inferior_ptid), 1, 0, NULL);
570 else
571 ret = rs6000_ptrace32 (PT_CONTINUE, PIDGET (inferior_ptid),
572 (int *) 1, 0, NULL);
573
574 if (ret != 0)
575 perror (_("pt_continue"));
576
577 do
578 {
579 pid = waitpid (PIDGET (inferior_ptid), &status, 0);
580 }
581 while (pid != PIDGET (inferior_ptid));
582
583 regcache_write_pc (regcache, prev_pc);
584 deprecated_remove_raw_breakpoint (gdbarch, bp);
585 }
586 \f
587
588 /* Set the current architecture from the host running GDB. Called when
589 starting a child process. */
590
591 static void (*super_create_inferior) (struct target_ops *,char *exec_file,
592 char *allargs, char **env, int from_tty);
593 static void
594 rs6000_create_inferior (struct target_ops * ops, char *exec_file,
595 char *allargs, char **env, int from_tty)
596 {
597 enum bfd_architecture arch;
598 unsigned long mach;
599 bfd abfd;
600 struct gdbarch_info info;
601
602 super_create_inferior (ops, exec_file, allargs, env, from_tty);
603
604 if (__power_rs ())
605 {
606 arch = bfd_arch_rs6000;
607 mach = bfd_mach_rs6k;
608 }
609 else
610 {
611 arch = bfd_arch_powerpc;
612 mach = bfd_mach_ppc;
613 }
614
615 /* FIXME: schauer/2002-02-25:
616 We don't know if we are executing a 32 or 64 bit executable,
617 and have no way to pass the proper word size to rs6000_gdbarch_init.
618 So we have to avoid switching to a new architecture, if the architecture
619 matches already.
620 Blindly calling rs6000_gdbarch_init used to work in older versions of
621 GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
622 determine the wordsize. */
623 if (exec_bfd)
624 {
625 const struct bfd_arch_info *exec_bfd_arch_info;
626
627 exec_bfd_arch_info = bfd_get_arch_info (exec_bfd);
628 if (arch == exec_bfd_arch_info->arch)
629 return;
630 }
631
632 bfd_default_set_arch_mach (&abfd, arch, mach);
633
634 gdbarch_info_init (&info);
635 info.bfd_arch_info = bfd_get_arch_info (&abfd);
636 info.abfd = exec_bfd;
637
638 if (!gdbarch_update_p (info))
639 internal_error (__FILE__, __LINE__,
640 _("rs6000_create_inferior: failed "
641 "to select architecture"));
642 }
643 \f
644
645 /* Shared Object support. */
646
647 /* Return the LdInfo data for the given process. Raises an error
648 if the data could not be obtained.
649
650 The returned value must be deallocated after use. */
651
652 static gdb_byte *
653 rs6000_ptrace_ldinfo (ptid_t ptid)
654 {
655 const int pid = ptid_get_pid (ptid);
656 int ldi_size = 1024;
657 gdb_byte *ldi = xmalloc (ldi_size);
658 int rc = -1;
659
660 while (1)
661 {
662 if (ARCH64 ())
663 rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, ldi_size,
664 NULL);
665 else
666 rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi, ldi_size, NULL);
667
668 if (rc != -1)
669 break; /* Success, we got the entire ld_info data. */
670
671 if (errno != ENOMEM)
672 perror_with_name (_("ptrace ldinfo"));
673
674 /* ldi is not big enough. Double it and try again. */
675 ldi_size *= 2;
676 ldi = xrealloc (ldi, ldi_size);
677 }
678
679 return ldi;
680 }
681
682 /* Implement the to_xfer_partial target_ops method for
683 TARGET_OBJECT_LIBRARIES_AIX objects. */
684
685 static LONGEST
686 rs6000_xfer_shared_libraries
687 (struct target_ops *ops, enum target_object object,
688 const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf,
689 ULONGEST offset, LONGEST len)
690 {
691 gdb_byte *ldi_buf;
692 ULONGEST result;
693 struct cleanup *cleanup;
694
695 /* This function assumes that it is being run with a live process.
696 Core files are handled via gdbarch. */
697 gdb_assert (target_has_execution);
698
699 if (writebuf)
700 return -1;
701
702 ldi_buf = rs6000_ptrace_ldinfo (inferior_ptid);
703 gdb_assert (ldi_buf != NULL);
704 cleanup = make_cleanup (xfree, ldi_buf);
705 result = rs6000_aix_ld_info_to_xml (target_gdbarch (), ldi_buf,
706 readbuf, offset, len, 1);
707 xfree (ldi_buf);
708
709 do_cleanups (cleanup);
710 return result;
711 }
712
713 void _initialize_rs6000_nat (void);
714
715 void
716 _initialize_rs6000_nat (void)
717 {
718 struct target_ops *t;
719
720 t = inf_ptrace_target ();
721 t->to_fetch_registers = rs6000_fetch_inferior_registers;
722 t->to_store_registers = rs6000_store_inferior_registers;
723 t->to_xfer_partial = rs6000_xfer_partial;
724
725 super_create_inferior = t->to_create_inferior;
726 t->to_create_inferior = rs6000_create_inferior;
727
728 t->to_wait = rs6000_wait;
729
730 add_target (t);
731 }
This page took 0.044447 seconds and 4 git commands to generate.