* linker.c (link_action): Ignore duplicate warning syms.
[deliverable/binutils-gdb.git] / gdb / rs6000-nat.c
1 /* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "inferior.h"
25 #include "target.h"
26 #include "gdbcore.h"
27 #include "xcoffsolib.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "libbfd.h" /* For bfd_cache_lookup (FIXME) */
31 #include "bfd.h"
32 #include "gdb-stabs.h"
33 #include "regcache.h"
34 #include "arch-utils.h"
35
36 #include <sys/ptrace.h>
37 #include <sys/reg.h>
38
39 #include <sys/param.h>
40 #include <sys/dir.h>
41 #include <sys/user.h>
42 #include <signal.h>
43 #include <sys/ioctl.h>
44 #include <fcntl.h>
45 #include <errno.h>
46
47 #include <a.out.h>
48 #include <sys/file.h>
49 #include "gdb_stat.h"
50 #include <sys/core.h>
51 #define __LDINFO_PTRACE32__ /* for __ld_info32 */
52 #define __LDINFO_PTRACE64__ /* for __ld_info64 */
53 #include <sys/ldr.h>
54 #include <sys/systemcfg.h>
55
56 /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
57 debugging 32-bit and 64-bit processes. Define a typedef and macros for
58 accessing fields in the appropriate structures. */
59
60 /* In 32-bit compilation mode (which is the only mode from which ptrace()
61 works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
62
63 #ifdef __ld_info32
64 # define ARCH3264
65 #endif
66
67 /* Return whether the current architecture is 64-bit. */
68
69 #ifndef ARCH3264
70 # define ARCH64() 0
71 #else
72 # define ARCH64() (REGISTER_RAW_SIZE (0) == 8)
73 #endif
74
75 /* Union of 32-bit and 64-bit ".reg" core file sections. */
76
77 typedef union {
78 #ifdef ARCH3264
79 struct __context64 r64;
80 #else
81 struct mstsave r64;
82 #endif
83 struct mstsave r32;
84 } CoreRegs;
85
86 /* Union of 32-bit and 64-bit versions of ld_info. */
87
88 typedef union {
89 #ifndef ARCH3264
90 struct ld_info l32;
91 struct ld_info l64;
92 #else
93 struct __ld_info32 l32;
94 struct __ld_info64 l64;
95 #endif
96 } LdInfo;
97
98 /* If compiling with 32-bit and 64-bit debugging capability (e.g. AIX 4.x),
99 declare and initialize a variable named VAR suitable for use as the arch64
100 parameter to the various LDI_*() macros. */
101
102 #ifndef ARCH3264
103 # define ARCH64_DECL(var)
104 #else
105 # define ARCH64_DECL(var) int var = ARCH64 ()
106 #endif
107
108 /* Return LDI's FIELD for a 64-bit process if ARCH64 and for a 32-bit process
109 otherwise. This technique only works for FIELDs with the same data type in
110 32-bit and 64-bit versions of ld_info. */
111
112 #ifndef ARCH3264
113 # define LDI_FIELD(ldi, arch64, field) (ldi)->l32.ldinfo_##field
114 #else
115 # define LDI_FIELD(ldi, arch64, field) \
116 (arch64 ? (ldi)->l64.ldinfo_##field : (ldi)->l32.ldinfo_##field)
117 #endif
118
119 /* Return various LDI fields for a 64-bit process if ARCH64 and for a 32-bit
120 process otherwise. */
121
122 #define LDI_NEXT(ldi, arch64) LDI_FIELD(ldi, arch64, next)
123 #define LDI_FD(ldi, arch64) LDI_FIELD(ldi, arch64, fd)
124 #define LDI_FILENAME(ldi, arch64) LDI_FIELD(ldi, arch64, filename)
125
126 extern struct vmap *map_vmap (bfd * bf, bfd * arch);
127
128 extern struct target_ops exec_ops;
129
130 static void vmap_exec (void);
131
132 static void vmap_ldinfo (LdInfo *);
133
134 static struct vmap *add_vmap (LdInfo *);
135
136 static int objfile_symbol_add (void *);
137
138 static void vmap_symtab (struct vmap *);
139
140 static void fetch_core_registers (char *, unsigned int, int, CORE_ADDR);
141
142 static void exec_one_dummy_insn (void);
143
144 extern void
145 fixup_breakpoints (CORE_ADDR low, CORE_ADDR high, CORE_ADDR delta);
146
147 /* Conversion from gdb-to-system special purpose register numbers. */
148
149 static int special_regs[] =
150 {
151 IAR, /* PC_REGNUM */
152 MSR, /* PS_REGNUM */
153 CR, /* CR_REGNUM */
154 LR, /* LR_REGNUM */
155 CTR, /* CTR_REGNUM */
156 XER, /* XER_REGNUM */
157 MQ /* MQ_REGNUM */
158 };
159
160 /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
161
162 static int
163 rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
164 {
165 int ret = ptrace (req, id, (int *)addr, data, buf);
166 #if 0
167 printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
168 req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
169 #endif
170 return ret;
171 }
172
173 /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
174
175 static int
176 rs6000_ptrace64 (int req, int id, long long addr, int data, int *buf)
177 {
178 #ifdef ARCH3264
179 int ret = ptracex (req, id, addr, data, buf);
180 #else
181 int ret = 0;
182 #endif
183 #if 0
184 printf ("rs6000_ptrace64 (%d, %d, 0x%llx, %08x, 0x%x) = 0x%x\n",
185 req, id, addr, data, (unsigned int)buf, ret);
186 #endif
187 return ret;
188 }
189
190 /* Fetch register REGNO from the inferior. */
191
192 static void
193 fetch_register (int regno)
194 {
195 int *addr = (int *) &registers[REGISTER_BYTE (regno)];
196 int nr;
197
198 /* Retrieved values may be -1, so infer errors from errno. */
199 errno = 0;
200
201 /* Floating-point registers. */
202 if (regno >= FP0_REGNUM && regno <= FPLAST_REGNUM)
203 {
204 nr = regno - FP0_REGNUM + FPR0;
205 rs6000_ptrace32 (PT_READ_FPR, PIDGET (inferior_ptid), addr, nr, 0);
206 }
207
208 /* Bogus register number. */
209 else if (regno > LAST_UISA_SP_REGNUM)
210 {
211 if (regno >= NUM_REGS)
212 fprintf_unfiltered (gdb_stderr,
213 "gdb error: register no %d not implemented.\n",
214 regno);
215 }
216
217 /* Fixed-point registers. */
218 else
219 {
220 if (regno >= FIRST_UISA_SP_REGNUM)
221 nr = special_regs[regno - FIRST_UISA_SP_REGNUM];
222 else
223 nr = regno;
224
225 if (!ARCH64 ())
226 *addr = rs6000_ptrace32 (PT_READ_GPR, PIDGET (inferior_ptid), (int *)nr, 0, 0);
227 else
228 {
229 /* PT_READ_GPR requires the buffer parameter to point to long long,
230 even if the register is really only 32 bits. */
231 long long buf;
232 rs6000_ptrace64 (PT_READ_GPR, PIDGET (inferior_ptid), nr, 0, (int *)&buf);
233 if (REGISTER_RAW_SIZE (regno) == 8)
234 memcpy (addr, &buf, 8);
235 else
236 *addr = buf;
237 }
238 }
239
240 if (!errno)
241 register_valid[regno] = 1;
242 else
243 {
244 #if 0
245 /* FIXME: this happens 3 times at the start of each 64-bit program. */
246 perror ("ptrace read");
247 #endif
248 errno = 0;
249 }
250 }
251
252 /* Store register REGNO back into the inferior. */
253
254 static void
255 store_register (int regno)
256 {
257 int *addr = (int *) &registers[REGISTER_BYTE (regno)];
258 int nr;
259
260 /* -1 can be a successful return value, so infer errors from errno. */
261 errno = 0;
262
263 /* Floating-point registers. */
264 if (regno >= FP0_REGNUM && regno <= FPLAST_REGNUM)
265 {
266 nr = regno - FP0_REGNUM + FPR0;
267 rs6000_ptrace32 (PT_WRITE_FPR, PIDGET (inferior_ptid), addr, nr, 0);
268 }
269
270 /* Bogus register number. */
271 else if (regno > LAST_UISA_SP_REGNUM)
272 {
273 if (regno >= NUM_REGS)
274 fprintf_unfiltered (gdb_stderr,
275 "gdb error: register no %d not implemented.\n",
276 regno);
277 }
278
279 /* Fixed-point registers. */
280 else
281 {
282 if (regno == SP_REGNUM)
283 /* Execute one dummy instruction (which is a breakpoint) in inferior
284 process to give kernel a chance to do internal housekeeping.
285 Otherwise the following ptrace(2) calls will mess up user stack
286 since kernel will get confused about the bottom of the stack
287 (%sp). */
288 exec_one_dummy_insn ();
289
290 if (regno >= FIRST_UISA_SP_REGNUM)
291 nr = special_regs[regno - FIRST_UISA_SP_REGNUM];
292 else
293 nr = regno;
294
295 if (!ARCH64 ())
296 rs6000_ptrace32 (PT_WRITE_GPR, PIDGET (inferior_ptid), (int *)nr, *addr, 0);
297 else
298 {
299 /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
300 area, even if the register is really only 32 bits. */
301 long long buf;
302 if (REGISTER_RAW_SIZE (regno) == 8)
303 memcpy (&buf, addr, 8);
304 else
305 buf = *addr;
306 rs6000_ptrace64 (PT_WRITE_GPR, PIDGET (inferior_ptid), nr, 0, (int *)&buf);
307 }
308 }
309
310 if (errno)
311 {
312 perror ("ptrace write");
313 errno = 0;
314 }
315 }
316
317 /* Read from the inferior all registers if REGNO == -1 and just register
318 REGNO otherwise. */
319
320 void
321 fetch_inferior_registers (int regno)
322 {
323 if (regno != -1)
324 fetch_register (regno);
325
326 else
327 {
328 /* read 32 general purpose registers. */
329 for (regno = 0; regno < 32; regno++)
330 fetch_register (regno);
331
332 /* read general purpose floating point registers. */
333 for (regno = FP0_REGNUM; regno <= FPLAST_REGNUM; regno++)
334 fetch_register (regno);
335
336 /* read special registers. */
337 for (regno = FIRST_UISA_SP_REGNUM; regno <= LAST_UISA_SP_REGNUM; regno++)
338 fetch_register (regno);
339 }
340 }
341
342 /* Store our register values back into the inferior.
343 If REGNO is -1, do this for all registers.
344 Otherwise, REGNO specifies which register (so we can save time). */
345
346 void
347 store_inferior_registers (int regno)
348 {
349 if (regno != -1)
350 store_register (regno);
351
352 else
353 {
354 /* write general purpose registers first! */
355 for (regno = GPR0; regno <= GPR31; regno++)
356 store_register (regno);
357
358 /* write floating point registers now. */
359 for (regno = FP0_REGNUM; regno <= FPLAST_REGNUM; regno++)
360 store_register (regno);
361
362 /* write special registers. */
363
364 for (regno = FIRST_UISA_SP_REGNUM; regno <= LAST_UISA_SP_REGNUM; regno++)
365 store_register (regno);
366 }
367 }
368
369 /* Store in *TO the 32-bit word at 32-bit-aligned ADDR in the child
370 process, which is 64-bit if ARCH64 and 32-bit otherwise. Return
371 success. */
372
373 static int
374 read_word (CORE_ADDR from, int *to, int arch64)
375 {
376 /* Retrieved values may be -1, so infer errors from errno. */
377 errno = 0;
378
379 if (arch64)
380 *to = rs6000_ptrace64 (PT_READ_I, PIDGET (inferior_ptid), from, 0, NULL);
381 else
382 *to = rs6000_ptrace32 (PT_READ_I, PIDGET (inferior_ptid), (int *)(long) from,
383 0, NULL);
384
385 return !errno;
386 }
387
388 /* Copy LEN bytes to or from inferior's memory starting at MEMADDR
389 to debugger memory starting at MYADDR. Copy to inferior if
390 WRITE is nonzero.
391
392 Returns the length copied, which is either the LEN argument or zero.
393 This xfer function does not do partial moves, since child_ops
394 doesn't allow memory operations to cross below us in the target stack
395 anyway. */
396
397 int
398 child_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len,
399 int write, struct mem_attrib *attrib,
400 struct target_ops *target)
401 {
402 /* Round starting address down to 32-bit word boundary. */
403 int mask = sizeof (int) - 1;
404 CORE_ADDR addr = memaddr & ~(CORE_ADDR)mask;
405
406 /* Round ending address up to 32-bit word boundary. */
407 int count = ((memaddr + len - addr + mask) & ~(CORE_ADDR)mask)
408 / sizeof (int);
409
410 /* Allocate word transfer buffer. */
411 /* FIXME (alloca): This code, cloned from infptrace.c, is unsafe
412 because it uses alloca to allocate a buffer of arbitrary size.
413 For very large xfers, this could crash GDB's stack. */
414 int *buf = (int *) alloca (count * sizeof (int));
415
416 int arch64 = ARCH64 ();
417 int i;
418
419 if (!write)
420 {
421 /* Retrieve memory a word at a time. */
422 for (i = 0; i < count; i++, addr += sizeof (int))
423 {
424 if (!read_word (addr, buf + i, arch64))
425 return 0;
426 QUIT;
427 }
428
429 /* Copy memory to supplied buffer. */
430 addr -= count * sizeof (int);
431 memcpy (myaddr, (char *)buf + (memaddr - addr), len);
432 }
433 else
434 {
435 /* Fetch leading memory needed for alignment. */
436 if (addr < memaddr)
437 if (!read_word (addr, buf, arch64))
438 return 0;
439
440 /* Fetch trailing memory needed for alignment. */
441 if (addr + count * sizeof (int) > memaddr + len)
442 if (!read_word (addr, buf + count - 1, arch64))
443 return 0;
444
445 /* Copy supplied data into memory buffer. */
446 memcpy ((char *)buf + (memaddr - addr), myaddr, len);
447
448 /* Store memory one word at a time. */
449 for (i = 0, errno = 0; i < count; i++, addr += sizeof (int))
450 {
451 if (arch64)
452 rs6000_ptrace64 (PT_WRITE_D, PIDGET (inferior_ptid), addr, buf[i], NULL);
453 else
454 rs6000_ptrace32 (PT_WRITE_D, PIDGET (inferior_ptid), (int *)(long) addr,
455 buf[i], NULL);
456
457 if (errno)
458 return 0;
459 QUIT;
460 }
461 }
462
463 return len;
464 }
465
466 /* Execute one dummy breakpoint instruction. This way we give the kernel
467 a chance to do some housekeeping and update inferior's internal data,
468 including u_area. */
469
470 static void
471 exec_one_dummy_insn (void)
472 {
473 #define DUMMY_INSN_ADDR (TEXT_SEGMENT_BASE)+0x200
474
475 char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
476 int ret, status, pid;
477 CORE_ADDR prev_pc;
478
479 /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
480 assume that this address will never be executed again by the real
481 code. */
482
483 target_insert_breakpoint (DUMMY_INSN_ADDR, shadow_contents);
484
485 /* You might think this could be done with a single ptrace call, and
486 you'd be correct for just about every platform I've ever worked
487 on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
488 the inferior never hits the breakpoint (it's also worth noting
489 powerpc-ibm-aix4.1.3 works correctly). */
490 prev_pc = read_pc ();
491 write_pc (DUMMY_INSN_ADDR);
492 if (ARCH64 ())
493 ret = rs6000_ptrace64 (PT_CONTINUE, PIDGET (inferior_ptid), 1, 0, NULL);
494 else
495 ret = rs6000_ptrace32 (PT_CONTINUE, PIDGET (inferior_ptid), (int *)1, 0, NULL);
496
497 if (ret != 0)
498 perror ("pt_continue");
499
500 do
501 {
502 pid = wait (&status);
503 }
504 while (pid != PIDGET (inferior_ptid));
505
506 write_pc (prev_pc);
507 target_remove_breakpoint (DUMMY_INSN_ADDR, shadow_contents);
508 }
509
510 /* Fetch registers from the register section in core bfd. */
511
512 static void
513 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
514 int which, CORE_ADDR reg_addr)
515 {
516 CoreRegs *regs;
517 double *fprs;
518 int arch64, i, size;
519 void *gprs, *sprs[7];
520
521 if (which != 0)
522 {
523 fprintf_unfiltered
524 (gdb_stderr,
525 "Gdb error: unknown parameter to fetch_core_registers().\n");
526 return;
527 }
528
529 arch64 = ARCH64 ();
530 regs = (CoreRegs *) core_reg_sect;
531
532 /* Retrieve register pointers. */
533
534 if (arch64)
535 {
536 gprs = regs->r64.gpr;
537 fprs = regs->r64.fpr;
538 sprs[0] = &regs->r64.iar;
539 sprs[1] = &regs->r64.msr;
540 sprs[2] = &regs->r64.cr;
541 sprs[3] = &regs->r64.lr;
542 sprs[4] = &regs->r64.ctr;
543 sprs[5] = &regs->r64.xer;
544 }
545 else
546 {
547 gprs = regs->r32.gpr;
548 fprs = regs->r32.fpr;
549 sprs[0] = &regs->r32.iar;
550 sprs[1] = &regs->r32.msr;
551 sprs[2] = &regs->r32.cr;
552 sprs[3] = &regs->r32.lr;
553 sprs[4] = &regs->r32.ctr;
554 sprs[5] = &regs->r32.xer;
555 sprs[6] = &regs->r32.mq;
556 }
557
558 /* Copy from pointers to registers[]. */
559
560 memcpy (registers, gprs, 32 * (arch64 ? 8 : 4));
561 memcpy (registers + REGISTER_BYTE (FP0_REGNUM), fprs, 32 * 8);
562 for (i = FIRST_UISA_SP_REGNUM; i <= LAST_UISA_SP_REGNUM; i++)
563 {
564 size = REGISTER_RAW_SIZE (i);
565 if (size)
566 memcpy (registers + REGISTER_BYTE (i),
567 sprs[i - FIRST_UISA_SP_REGNUM], size);
568 }
569 }
570 \f
571
572 /* Copy information about text and data sections from LDI to VP for a 64-bit
573 process if ARCH64 and for a 32-bit process otherwise. */
574
575 static void
576 vmap_secs (struct vmap *vp, LdInfo *ldi, int arch64)
577 {
578 if (arch64)
579 {
580 vp->tstart = (CORE_ADDR) ldi->l64.ldinfo_textorg;
581 vp->tend = vp->tstart + ldi->l64.ldinfo_textsize;
582 vp->dstart = (CORE_ADDR) ldi->l64.ldinfo_dataorg;
583 vp->dend = vp->dstart + ldi->l64.ldinfo_datasize;
584 }
585 else
586 {
587 vp->tstart = (unsigned long) ldi->l32.ldinfo_textorg;
588 vp->tend = vp->tstart + ldi->l32.ldinfo_textsize;
589 vp->dstart = (unsigned long) ldi->l32.ldinfo_dataorg;
590 vp->dend = vp->dstart + ldi->l32.ldinfo_datasize;
591 }
592
593 /* The run time loader maps the file header in addition to the text
594 section and returns a pointer to the header in ldinfo_textorg.
595 Adjust the text start address to point to the real start address
596 of the text section. */
597 vp->tstart += vp->toffs;
598 }
599
600 /* handle symbol translation on vmapping */
601
602 static void
603 vmap_symtab (struct vmap *vp)
604 {
605 register struct objfile *objfile;
606 struct section_offsets *new_offsets;
607 int i;
608
609 objfile = vp->objfile;
610 if (objfile == NULL)
611 {
612 /* OK, it's not an objfile we opened ourselves.
613 Currently, that can only happen with the exec file, so
614 relocate the symbols for the symfile. */
615 if (symfile_objfile == NULL)
616 return;
617 objfile = symfile_objfile;
618 }
619 else if (!vp->loaded)
620 /* If symbols are not yet loaded, offsets are not yet valid. */
621 return;
622
623 new_offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
624
625 for (i = 0; i < objfile->num_sections; ++i)
626 new_offsets->offsets[i] = ANOFFSET (objfile->section_offsets, i);
627
628 /* The symbols in the object file are linked to the VMA of the section,
629 relocate them VMA relative. */
630 new_offsets->offsets[SECT_OFF_TEXT (objfile)] = vp->tstart - vp->tvma;
631 new_offsets->offsets[SECT_OFF_DATA (objfile)] = vp->dstart - vp->dvma;
632 new_offsets->offsets[SECT_OFF_BSS (objfile)] = vp->dstart - vp->dvma;
633
634 objfile_relocate (objfile, new_offsets);
635 }
636 \f
637 /* Add symbols for an objfile. */
638
639 static int
640 objfile_symbol_add (void *arg)
641 {
642 struct objfile *obj = (struct objfile *) arg;
643
644 syms_from_objfile (obj, NULL, 0, 0);
645 new_symfile_objfile (obj, 0, 0);
646 return 1;
647 }
648
649 /* Add symbols for a vmap. Return zero upon error. */
650
651 int
652 vmap_add_symbols (struct vmap *vp)
653 {
654 if (catch_errors (objfile_symbol_add, vp->objfile,
655 "Error while reading shared library symbols:\n",
656 RETURN_MASK_ALL))
657 {
658 /* Note this is only done if symbol reading was successful. */
659 vp->loaded = 1;
660 vmap_symtab (vp);
661 return 1;
662 }
663 return 0;
664 }
665
666 /* Add a new vmap entry based on ldinfo() information.
667
668 If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a
669 core file), the caller should set it to -1, and we will open the file.
670
671 Return the vmap new entry. */
672
673 static struct vmap *
674 add_vmap (LdInfo *ldi)
675 {
676 bfd *abfd, *last;
677 register char *mem, *objname, *filename;
678 struct objfile *obj;
679 struct vmap *vp;
680 int fd;
681 ARCH64_DECL (arch64);
682
683 /* This ldi structure was allocated using alloca() in
684 xcoff_relocate_symtab(). Now we need to have persistent object
685 and member names, so we should save them. */
686
687 filename = LDI_FILENAME (ldi, arch64);
688 mem = filename + strlen (filename) + 1;
689 mem = savestring (mem, strlen (mem));
690 objname = savestring (filename, strlen (filename));
691
692 fd = LDI_FD (ldi, arch64);
693 if (fd < 0)
694 /* Note that this opens it once for every member; a possible
695 enhancement would be to only open it once for every object. */
696 abfd = bfd_openr (objname, gnutarget);
697 else
698 abfd = bfd_fdopenr (objname, gnutarget, fd);
699 if (!abfd)
700 {
701 warning ("Could not open `%s' as an executable file: %s",
702 objname, bfd_errmsg (bfd_get_error ()));
703 return NULL;
704 }
705
706 /* make sure we have an object file */
707
708 if (bfd_check_format (abfd, bfd_object))
709 vp = map_vmap (abfd, 0);
710
711 else if (bfd_check_format (abfd, bfd_archive))
712 {
713 last = 0;
714 /* FIXME??? am I tossing BFDs? bfd? */
715 while ((last = bfd_openr_next_archived_file (abfd, last)))
716 if (STREQ (mem, last->filename))
717 break;
718
719 if (!last)
720 {
721 warning ("\"%s\": member \"%s\" missing.", objname, mem);
722 bfd_close (abfd);
723 return NULL;
724 }
725
726 if (!bfd_check_format (last, bfd_object))
727 {
728 warning ("\"%s\": member \"%s\" not in executable format: %s.",
729 objname, mem, bfd_errmsg (bfd_get_error ()));
730 bfd_close (last);
731 bfd_close (abfd);
732 return NULL;
733 }
734
735 vp = map_vmap (last, abfd);
736 }
737 else
738 {
739 warning ("\"%s\": not in executable format: %s.",
740 objname, bfd_errmsg (bfd_get_error ()));
741 bfd_close (abfd);
742 return NULL;
743 }
744 obj = allocate_objfile (vp->bfd, 0);
745 vp->objfile = obj;
746
747 /* Always add symbols for the main objfile. */
748 if (vp == vmap || auto_solib_add)
749 vmap_add_symbols (vp);
750 return vp;
751 }
752 \f
753 /* update VMAP info with ldinfo() information
754 Input is ptr to ldinfo() results. */
755
756 static void
757 vmap_ldinfo (LdInfo *ldi)
758 {
759 struct stat ii, vi;
760 register struct vmap *vp;
761 int got_one, retried;
762 int got_exec_file = 0;
763 uint next;
764 int arch64 = ARCH64 ();
765
766 /* For each *ldi, see if we have a corresponding *vp.
767 If so, update the mapping, and symbol table.
768 If not, add an entry and symbol table. */
769
770 do
771 {
772 char *name = LDI_FILENAME (ldi, arch64);
773 char *memb = name + strlen (name) + 1;
774 int fd = LDI_FD (ldi, arch64);
775
776 retried = 0;
777
778 if (fstat (fd, &ii) < 0)
779 {
780 /* The kernel sets ld_info to -1, if the process is still using the
781 object, and the object is removed. Keep the symbol info for the
782 removed object and issue a warning. */
783 warning ("%s (fd=%d) has disappeared, keeping its symbols",
784 name, fd);
785 continue;
786 }
787 retry:
788 for (got_one = 0, vp = vmap; vp; vp = vp->nxt)
789 {
790 struct objfile *objfile;
791
792 /* First try to find a `vp', which is the same as in ldinfo.
793 If not the same, just continue and grep the next `vp'. If same,
794 relocate its tstart, tend, dstart, dend values. If no such `vp'
795 found, get out of this for loop, add this ldi entry as a new vmap
796 (add_vmap) and come back, find its `vp' and so on... */
797
798 /* The filenames are not always sufficient to match on. */
799
800 if ((name[0] == '/' && !STREQ (name, vp->name))
801 || (memb[0] && !STREQ (memb, vp->member)))
802 continue;
803
804 /* See if we are referring to the same file.
805 We have to check objfile->obfd, symfile.c:reread_symbols might
806 have updated the obfd after a change. */
807 objfile = vp->objfile == NULL ? symfile_objfile : vp->objfile;
808 if (objfile == NULL
809 || objfile->obfd == NULL
810 || bfd_stat (objfile->obfd, &vi) < 0)
811 {
812 warning ("Unable to stat %s, keeping its symbols", name);
813 continue;
814 }
815
816 if (ii.st_dev != vi.st_dev || ii.st_ino != vi.st_ino)
817 continue;
818
819 if (!retried)
820 close (fd);
821
822 ++got_one;
823
824 /* Found a corresponding VMAP. Remap! */
825
826 vmap_secs (vp, ldi, arch64);
827
828 /* The objfile is only NULL for the exec file. */
829 if (vp->objfile == NULL)
830 got_exec_file = 1;
831
832 /* relocate symbol table(s). */
833 vmap_symtab (vp);
834
835 /* There may be more, so we don't break out of the loop. */
836 }
837
838 /* if there was no matching *vp, we must perforce create the sucker(s) */
839 if (!got_one && !retried)
840 {
841 add_vmap (ldi);
842 ++retried;
843 goto retry;
844 }
845 }
846 while ((next = LDI_NEXT (ldi, arch64))
847 && (ldi = (void *) (next + (char *) ldi)));
848
849 /* If we don't find the symfile_objfile anywhere in the ldinfo, it
850 is unlikely that the symbol file is relocated to the proper
851 address. And we might have attached to a process which is
852 running a different copy of the same executable. */
853 if (symfile_objfile != NULL && !got_exec_file)
854 {
855 warning ("Symbol file %s\nis not mapped; discarding it.\n\
856 If in fact that file has symbols which the mapped files listed by\n\
857 \"info files\" lack, you can load symbols with the \"symbol-file\" or\n\
858 \"add-symbol-file\" commands (note that you must take care of relocating\n\
859 symbols to the proper address).",
860 symfile_objfile->name);
861 free_objfile (symfile_objfile);
862 symfile_objfile = NULL;
863 }
864 breakpoint_re_set ();
865 }
866 \f
867 /* As well as symbol tables, exec_sections need relocation. After
868 the inferior process' termination, there will be a relocated symbol
869 table exist with no corresponding inferior process. At that time, we
870 need to use `exec' bfd, rather than the inferior process's memory space
871 to look up symbols.
872
873 `exec_sections' need to be relocated only once, as long as the exec
874 file remains unchanged.
875 */
876
877 static void
878 vmap_exec (void)
879 {
880 static bfd *execbfd;
881 int i;
882
883 if (execbfd == exec_bfd)
884 return;
885
886 execbfd = exec_bfd;
887
888 if (!vmap || !exec_ops.to_sections)
889 error ("vmap_exec: vmap or exec_ops.to_sections == 0\n");
890
891 for (i = 0; &exec_ops.to_sections[i] < exec_ops.to_sections_end; i++)
892 {
893 if (STREQ (".text", exec_ops.to_sections[i].the_bfd_section->name))
894 {
895 exec_ops.to_sections[i].addr += vmap->tstart - vmap->tvma;
896 exec_ops.to_sections[i].endaddr += vmap->tstart - vmap->tvma;
897 }
898 else if (STREQ (".data", exec_ops.to_sections[i].the_bfd_section->name))
899 {
900 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
901 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
902 }
903 else if (STREQ (".bss", exec_ops.to_sections[i].the_bfd_section->name))
904 {
905 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
906 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
907 }
908 }
909 }
910
911 /* Set the current architecture from the host running GDB. Called when
912 starting a child process. */
913
914 static void
915 set_host_arch (int pid)
916 {
917 enum bfd_architecture arch;
918 unsigned long mach;
919 bfd abfd;
920 struct gdbarch_info info;
921
922 if (__power_rs ())
923 {
924 arch = bfd_arch_rs6000;
925 mach = bfd_mach_rs6k;
926 }
927 else
928 {
929 arch = bfd_arch_powerpc;
930 mach = bfd_mach_ppc;
931 }
932
933 /* FIXME: schauer/2002-02-25:
934 We don't know if we are executing a 32 or 64 bit executable,
935 and have no way to pass the proper word size to rs6000_gdbarch_init.
936 So we have to avoid switching to a new architecture, if the architecture
937 matches already.
938 Blindly calling rs6000_gdbarch_init used to work in older versions of
939 GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
940 determine the wordsize. */
941 if (exec_bfd)
942 {
943 const struct bfd_arch_info *exec_bfd_arch_info;
944
945 exec_bfd_arch_info = bfd_get_arch_info (exec_bfd);
946 if (arch == exec_bfd_arch_info->arch)
947 return;
948 }
949
950 bfd_default_set_arch_mach (&abfd, arch, mach);
951
952 gdbarch_info_init (&info);
953 info.bfd_arch_info = bfd_get_arch_info (&abfd);
954
955 if (!gdbarch_update_p (info))
956 {
957 internal_error (__FILE__, __LINE__,
958 "set_host_arch: failed to select architecture");
959 }
960 }
961
962 \f
963 /* xcoff_relocate_symtab - hook for symbol table relocation.
964 also reads shared libraries.. */
965
966 void
967 xcoff_relocate_symtab (unsigned int pid)
968 {
969 int load_segs = 64; /* number of load segments */
970 int rc;
971 LdInfo *ldi = NULL;
972 int arch64 = ARCH64 ();
973 int ldisize = arch64 ? sizeof (ldi->l64) : sizeof (ldi->l32);
974 int size;
975
976 do
977 {
978 size = load_segs * ldisize;
979 ldi = (void *) xrealloc (ldi, size);
980
981 #if 0
982 /* According to my humble theory, AIX has some timing problems and
983 when the user stack grows, kernel doesn't update stack info in time
984 and ptrace calls step on user stack. That is why we sleep here a
985 little, and give kernel to update its internals. */
986 usleep (36000);
987 #endif
988
989 if (arch64)
990 rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, size, NULL);
991 else
992 rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi, size, NULL);
993
994 if (rc == -1)
995 {
996 if (errno == ENOMEM)
997 load_segs *= 2;
998 else
999 perror_with_name ("ptrace ldinfo");
1000 }
1001 else
1002 {
1003 vmap_ldinfo (ldi);
1004 vmap_exec (); /* relocate the exec and core sections as well. */
1005 }
1006 } while (rc == -1);
1007 if (ldi)
1008 xfree (ldi);
1009 }
1010 \f
1011 /* Core file stuff. */
1012
1013 /* Relocate symtabs and read in shared library info, based on symbols
1014 from the core file. */
1015
1016 void
1017 xcoff_relocate_core (struct target_ops *target)
1018 {
1019 sec_ptr ldinfo_sec;
1020 int offset = 0;
1021 LdInfo *ldi;
1022 struct vmap *vp;
1023 int arch64 = ARCH64 ();
1024
1025 /* Size of a struct ld_info except for the variable-length filename. */
1026 int nonfilesz = (int)LDI_FILENAME ((LdInfo *)0, arch64);
1027
1028 /* Allocated size of buffer. */
1029 int buffer_size = nonfilesz;
1030 char *buffer = xmalloc (buffer_size);
1031 struct cleanup *old = make_cleanup (free_current_contents, &buffer);
1032
1033 ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
1034 if (ldinfo_sec == NULL)
1035 {
1036 bfd_err:
1037 fprintf_filtered (gdb_stderr, "Couldn't get ldinfo from core file: %s\n",
1038 bfd_errmsg (bfd_get_error ()));
1039 do_cleanups (old);
1040 return;
1041 }
1042 do
1043 {
1044 int i;
1045 int names_found = 0;
1046
1047 /* Read in everything but the name. */
1048 if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer,
1049 offset, nonfilesz) == 0)
1050 goto bfd_err;
1051
1052 /* Now the name. */
1053 i = nonfilesz;
1054 do
1055 {
1056 if (i == buffer_size)
1057 {
1058 buffer_size *= 2;
1059 buffer = xrealloc (buffer, buffer_size);
1060 }
1061 if (bfd_get_section_contents (core_bfd, ldinfo_sec, &buffer[i],
1062 offset + i, 1) == 0)
1063 goto bfd_err;
1064 if (buffer[i++] == '\0')
1065 ++names_found;
1066 }
1067 while (names_found < 2);
1068
1069 ldi = (LdInfo *) buffer;
1070
1071 /* Can't use a file descriptor from the core file; need to open it. */
1072 if (arch64)
1073 ldi->l64.ldinfo_fd = -1;
1074 else
1075 ldi->l32.ldinfo_fd = -1;
1076
1077 /* The first ldinfo is for the exec file, allocated elsewhere. */
1078 if (offset == 0 && vmap != NULL)
1079 vp = vmap;
1080 else
1081 vp = add_vmap (ldi);
1082
1083 /* Process next shared library upon error. */
1084 offset += LDI_NEXT (ldi, arch64);
1085 if (vp == NULL)
1086 continue;
1087
1088 vmap_secs (vp, ldi, arch64);
1089
1090 /* Unless this is the exec file,
1091 add our sections to the section table for the core target. */
1092 if (vp != vmap)
1093 {
1094 struct section_table *stp;
1095
1096 target_resize_to_sections (target, 2);
1097 stp = target->to_sections_end - 2;
1098
1099 stp->bfd = vp->bfd;
1100 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".text");
1101 stp->addr = vp->tstart;
1102 stp->endaddr = vp->tend;
1103 stp++;
1104
1105 stp->bfd = vp->bfd;
1106 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".data");
1107 stp->addr = vp->dstart;
1108 stp->endaddr = vp->dend;
1109 }
1110
1111 vmap_symtab (vp);
1112 }
1113 while (LDI_NEXT (ldi, arch64) != 0);
1114 vmap_exec ();
1115 breakpoint_re_set ();
1116 do_cleanups (old);
1117 }
1118
1119 int
1120 kernel_u_size (void)
1121 {
1122 return (sizeof (struct user));
1123 }
1124 \f
1125 /* Under AIX, we have to pass the correct TOC pointer to a function
1126 when calling functions in the inferior.
1127 We try to find the relative toc offset of the objfile containing PC
1128 and add the current load address of the data segment from the vmap. */
1129
1130 static CORE_ADDR
1131 find_toc_address (CORE_ADDR pc)
1132 {
1133 struct vmap *vp;
1134 extern CORE_ADDR get_toc_offset (struct objfile *); /* xcoffread.c */
1135
1136 for (vp = vmap; vp; vp = vp->nxt)
1137 {
1138 if (pc >= vp->tstart && pc < vp->tend)
1139 {
1140 /* vp->objfile is only NULL for the exec file. */
1141 return vp->dstart + get_toc_offset (vp->objfile == NULL
1142 ? symfile_objfile
1143 : vp->objfile);
1144 }
1145 }
1146 error ("Unable to find TOC entry for pc 0x%x\n", pc);
1147 }
1148 \f
1149 /* Register that we are able to handle rs6000 core file formats. */
1150
1151 static struct core_fns rs6000_core_fns =
1152 {
1153 bfd_target_xcoff_flavour, /* core_flavour */
1154 default_check_format, /* check_format */
1155 default_core_sniffer, /* core_sniffer */
1156 fetch_core_registers, /* core_read_registers */
1157 NULL /* next */
1158 };
1159
1160 void
1161 _initialize_core_rs6000 (void)
1162 {
1163 /* Initialize hook in rs6000-tdep.c for determining the TOC address when
1164 calling functions in the inferior. */
1165 rs6000_find_toc_address_hook = find_toc_address;
1166
1167 /* Initialize hook in rs6000-tdep.c to set the current architecture when
1168 starting a child process. */
1169 rs6000_set_host_arch_hook = set_host_arch;
1170
1171 add_core_fns (&rs6000_core_fns);
1172 }
This page took 0.07121 seconds and 4 git commands to generate.