gdb/testsuite/
[deliverable/binutils-gdb.git] / gdb / rs6000-nat.c
1 /* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "gdbcore.h"
24 #include "xcoffsolib.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "libbfd.h" /* For bfd_default_set_arch_mach (FIXME) */
28 #include "bfd.h"
29 #include "exceptions.h"
30 #include "gdb-stabs.h"
31 #include "regcache.h"
32 #include "arch-utils.h"
33 #include "inf-child.h"
34 #include "inf-ptrace.h"
35 #include "ppc-tdep.h"
36 #include "rs6000-tdep.h"
37 #include "exec.h"
38 #include "observer.h"
39 #include "xcoffread.h"
40
41 #include <sys/ptrace.h>
42 #include <sys/reg.h>
43
44 #include <sys/param.h>
45 #include <sys/dir.h>
46 #include <sys/user.h>
47 #include <signal.h>
48 #include <sys/ioctl.h>
49 #include <fcntl.h>
50 #include <errno.h>
51
52 #include <a.out.h>
53 #include <sys/file.h>
54 #include "gdb_stat.h"
55 #include "gdb_bfd.h"
56 #include <sys/core.h>
57 #define __LDINFO_PTRACE32__ /* for __ld_info32 */
58 #define __LDINFO_PTRACE64__ /* for __ld_info64 */
59 #include <sys/ldr.h>
60 #include <sys/systemcfg.h>
61
62 /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
63 debugging 32-bit and 64-bit processes. Define a typedef and macros for
64 accessing fields in the appropriate structures. */
65
66 /* In 32-bit compilation mode (which is the only mode from which ptrace()
67 works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
68
69 #ifdef __ld_info32
70 # define ARCH3264
71 #endif
72
73 /* Return whether the current architecture is 64-bit. */
74
75 #ifndef ARCH3264
76 # define ARCH64() 0
77 #else
78 # define ARCH64() (register_size (target_gdbarch (), 0) == 8)
79 #endif
80
81 /* Union of 32-bit and 64-bit versions of ld_info. */
82
83 typedef union {
84 #ifndef ARCH3264
85 struct ld_info l32;
86 struct ld_info l64;
87 #else
88 struct __ld_info32 l32;
89 struct __ld_info64 l64;
90 #endif
91 } LdInfo;
92
93 /* If compiling with 32-bit and 64-bit debugging capability (e.g. AIX 4.x),
94 declare and initialize a variable named VAR suitable for use as the arch64
95 parameter to the various LDI_*() macros. */
96
97 #ifndef ARCH3264
98 # define ARCH64_DECL(var)
99 #else
100 # define ARCH64_DECL(var) int var = ARCH64 ()
101 #endif
102
103 /* Return LDI's FIELD for a 64-bit process if ARCH64 and for a 32-bit process
104 otherwise. This technique only works for FIELDs with the same data type in
105 32-bit and 64-bit versions of ld_info. */
106
107 #ifndef ARCH3264
108 # define LDI_FIELD(ldi, arch64, field) (ldi)->l32.ldinfo_##field
109 #else
110 # define LDI_FIELD(ldi, arch64, field) \
111 (arch64 ? (ldi)->l64.ldinfo_##field : (ldi)->l32.ldinfo_##field)
112 #endif
113
114 /* Return various LDI fields for a 64-bit process if ARCH64 and for a 32-bit
115 process otherwise. */
116
117 #define LDI_NEXT(ldi, arch64) LDI_FIELD(ldi, arch64, next)
118 #define LDI_FD(ldi, arch64) LDI_FIELD(ldi, arch64, fd)
119 #define LDI_FILENAME(ldi, arch64) LDI_FIELD(ldi, arch64, filename)
120
121 extern struct vmap *map_vmap (bfd * bf, bfd * arch);
122
123 static void vmap_exec (void);
124
125 static void vmap_ldinfo (LdInfo *);
126
127 static struct vmap *add_vmap (LdInfo *);
128
129 static int objfile_symbol_add (void *);
130
131 static void vmap_symtab (struct vmap *);
132
133 static void exec_one_dummy_insn (struct regcache *);
134
135 extern void fixup_breakpoints (CORE_ADDR low, CORE_ADDR high, CORE_ADDR delta);
136
137 /* Given REGNO, a gdb register number, return the corresponding
138 number suitable for use as a ptrace() parameter. Return -1 if
139 there's no suitable mapping. Also, set the int pointed to by
140 ISFLOAT to indicate whether REGNO is a floating point register. */
141
142 static int
143 regmap (struct gdbarch *gdbarch, int regno, int *isfloat)
144 {
145 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
146
147 *isfloat = 0;
148 if (tdep->ppc_gp0_regnum <= regno
149 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
150 return regno;
151 else if (tdep->ppc_fp0_regnum >= 0
152 && tdep->ppc_fp0_regnum <= regno
153 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
154 {
155 *isfloat = 1;
156 return regno - tdep->ppc_fp0_regnum + FPR0;
157 }
158 else if (regno == gdbarch_pc_regnum (gdbarch))
159 return IAR;
160 else if (regno == tdep->ppc_ps_regnum)
161 return MSR;
162 else if (regno == tdep->ppc_cr_regnum)
163 return CR;
164 else if (regno == tdep->ppc_lr_regnum)
165 return LR;
166 else if (regno == tdep->ppc_ctr_regnum)
167 return CTR;
168 else if (regno == tdep->ppc_xer_regnum)
169 return XER;
170 else if (tdep->ppc_fpscr_regnum >= 0
171 && regno == tdep->ppc_fpscr_regnum)
172 return FPSCR;
173 else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum)
174 return MQ;
175 else
176 return -1;
177 }
178
179 /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
180
181 static int
182 rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
183 {
184 int ret = ptrace (req, id, (int *)addr, data, buf);
185 #if 0
186 printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
187 req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
188 #endif
189 return ret;
190 }
191
192 /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
193
194 static int
195 rs6000_ptrace64 (int req, int id, long long addr, int data, void *buf)
196 {
197 #ifdef ARCH3264
198 int ret = ptracex (req, id, addr, data, buf);
199 #else
200 int ret = 0;
201 #endif
202 #if 0
203 printf ("rs6000_ptrace64 (%d, %d, %s, %08x, 0x%x) = 0x%x\n",
204 req, id, hex_string (addr), data, (unsigned int)buf, ret);
205 #endif
206 return ret;
207 }
208
209 /* Fetch register REGNO from the inferior. */
210
211 static void
212 fetch_register (struct regcache *regcache, int regno)
213 {
214 struct gdbarch *gdbarch = get_regcache_arch (regcache);
215 int addr[MAX_REGISTER_SIZE];
216 int nr, isfloat;
217
218 /* Retrieved values may be -1, so infer errors from errno. */
219 errno = 0;
220
221 nr = regmap (gdbarch, regno, &isfloat);
222
223 /* Floating-point registers. */
224 if (isfloat)
225 rs6000_ptrace32 (PT_READ_FPR, PIDGET (inferior_ptid), addr, nr, 0);
226
227 /* Bogus register number. */
228 else if (nr < 0)
229 {
230 if (regno >= gdbarch_num_regs (gdbarch))
231 fprintf_unfiltered (gdb_stderr,
232 "gdb error: register no %d not implemented.\n",
233 regno);
234 return;
235 }
236
237 /* Fixed-point registers. */
238 else
239 {
240 if (!ARCH64 ())
241 *addr = rs6000_ptrace32 (PT_READ_GPR, PIDGET (inferior_ptid),
242 (int *) nr, 0, 0);
243 else
244 {
245 /* PT_READ_GPR requires the buffer parameter to point to long long,
246 even if the register is really only 32 bits. */
247 long long buf;
248 rs6000_ptrace64 (PT_READ_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
249 if (register_size (gdbarch, regno) == 8)
250 memcpy (addr, &buf, 8);
251 else
252 *addr = buf;
253 }
254 }
255
256 if (!errno)
257 regcache_raw_supply (regcache, regno, (char *) addr);
258 else
259 {
260 #if 0
261 /* FIXME: this happens 3 times at the start of each 64-bit program. */
262 perror (_("ptrace read"));
263 #endif
264 errno = 0;
265 }
266 }
267
268 /* Store register REGNO back into the inferior. */
269
270 static void
271 store_register (struct regcache *regcache, int regno)
272 {
273 struct gdbarch *gdbarch = get_regcache_arch (regcache);
274 int addr[MAX_REGISTER_SIZE];
275 int nr, isfloat;
276
277 /* Fetch the register's value from the register cache. */
278 regcache_raw_collect (regcache, regno, addr);
279
280 /* -1 can be a successful return value, so infer errors from errno. */
281 errno = 0;
282
283 nr = regmap (gdbarch, regno, &isfloat);
284
285 /* Floating-point registers. */
286 if (isfloat)
287 rs6000_ptrace32 (PT_WRITE_FPR, PIDGET (inferior_ptid), addr, nr, 0);
288
289 /* Bogus register number. */
290 else if (nr < 0)
291 {
292 if (regno >= gdbarch_num_regs (gdbarch))
293 fprintf_unfiltered (gdb_stderr,
294 "gdb error: register no %d not implemented.\n",
295 regno);
296 }
297
298 /* Fixed-point registers. */
299 else
300 {
301 if (regno == gdbarch_sp_regnum (gdbarch))
302 /* Execute one dummy instruction (which is a breakpoint) in inferior
303 process to give kernel a chance to do internal housekeeping.
304 Otherwise the following ptrace(2) calls will mess up user stack
305 since kernel will get confused about the bottom of the stack
306 (%sp). */
307 exec_one_dummy_insn (regcache);
308
309 /* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors,
310 the register's value is passed by value, but for 64-bit inferiors,
311 the address of a buffer containing the value is passed. */
312 if (!ARCH64 ())
313 rs6000_ptrace32 (PT_WRITE_GPR, PIDGET (inferior_ptid),
314 (int *) nr, *addr, 0);
315 else
316 {
317 /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
318 area, even if the register is really only 32 bits. */
319 long long buf;
320 if (register_size (gdbarch, regno) == 8)
321 memcpy (&buf, addr, 8);
322 else
323 buf = *addr;
324 rs6000_ptrace64 (PT_WRITE_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
325 }
326 }
327
328 if (errno)
329 {
330 perror (_("ptrace write"));
331 errno = 0;
332 }
333 }
334
335 /* Read from the inferior all registers if REGNO == -1 and just register
336 REGNO otherwise. */
337
338 static void
339 rs6000_fetch_inferior_registers (struct target_ops *ops,
340 struct regcache *regcache, int regno)
341 {
342 struct gdbarch *gdbarch = get_regcache_arch (regcache);
343 if (regno != -1)
344 fetch_register (regcache, regno);
345
346 else
347 {
348 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
349
350 /* Read 32 general purpose registers. */
351 for (regno = tdep->ppc_gp0_regnum;
352 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
353 regno++)
354 {
355 fetch_register (regcache, regno);
356 }
357
358 /* Read general purpose floating point registers. */
359 if (tdep->ppc_fp0_regnum >= 0)
360 for (regno = 0; regno < ppc_num_fprs; regno++)
361 fetch_register (regcache, tdep->ppc_fp0_regnum + regno);
362
363 /* Read special registers. */
364 fetch_register (regcache, gdbarch_pc_regnum (gdbarch));
365 fetch_register (regcache, tdep->ppc_ps_regnum);
366 fetch_register (regcache, tdep->ppc_cr_regnum);
367 fetch_register (regcache, tdep->ppc_lr_regnum);
368 fetch_register (regcache, tdep->ppc_ctr_regnum);
369 fetch_register (regcache, tdep->ppc_xer_regnum);
370 if (tdep->ppc_fpscr_regnum >= 0)
371 fetch_register (regcache, tdep->ppc_fpscr_regnum);
372 if (tdep->ppc_mq_regnum >= 0)
373 fetch_register (regcache, tdep->ppc_mq_regnum);
374 }
375 }
376
377 /* Store our register values back into the inferior.
378 If REGNO is -1, do this for all registers.
379 Otherwise, REGNO specifies which register (so we can save time). */
380
381 static void
382 rs6000_store_inferior_registers (struct target_ops *ops,
383 struct regcache *regcache, int regno)
384 {
385 struct gdbarch *gdbarch = get_regcache_arch (regcache);
386 if (regno != -1)
387 store_register (regcache, regno);
388
389 else
390 {
391 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
392
393 /* Write general purpose registers first. */
394 for (regno = tdep->ppc_gp0_regnum;
395 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
396 regno++)
397 {
398 store_register (regcache, regno);
399 }
400
401 /* Write floating point registers. */
402 if (tdep->ppc_fp0_regnum >= 0)
403 for (regno = 0; regno < ppc_num_fprs; regno++)
404 store_register (regcache, tdep->ppc_fp0_regnum + regno);
405
406 /* Write special registers. */
407 store_register (regcache, gdbarch_pc_regnum (gdbarch));
408 store_register (regcache, tdep->ppc_ps_regnum);
409 store_register (regcache, tdep->ppc_cr_regnum);
410 store_register (regcache, tdep->ppc_lr_regnum);
411 store_register (regcache, tdep->ppc_ctr_regnum);
412 store_register (regcache, tdep->ppc_xer_regnum);
413 if (tdep->ppc_fpscr_regnum >= 0)
414 store_register (regcache, tdep->ppc_fpscr_regnum);
415 if (tdep->ppc_mq_regnum >= 0)
416 store_register (regcache, tdep->ppc_mq_regnum);
417 }
418 }
419
420
421 /* Attempt a transfer all LEN bytes starting at OFFSET between the
422 inferior's OBJECT:ANNEX space and GDB's READBUF/WRITEBUF buffer.
423 Return the number of bytes actually transferred. */
424
425 static LONGEST
426 rs6000_xfer_partial (struct target_ops *ops, enum target_object object,
427 const char *annex, gdb_byte *readbuf,
428 const gdb_byte *writebuf,
429 ULONGEST offset, LONGEST len)
430 {
431 pid_t pid = ptid_get_pid (inferior_ptid);
432 int arch64 = ARCH64 ();
433
434 switch (object)
435 {
436 case TARGET_OBJECT_MEMORY:
437 {
438 union
439 {
440 PTRACE_TYPE_RET word;
441 gdb_byte byte[sizeof (PTRACE_TYPE_RET)];
442 } buffer;
443 ULONGEST rounded_offset;
444 LONGEST partial_len;
445
446 /* Round the start offset down to the next long word
447 boundary. */
448 rounded_offset = offset & -(ULONGEST) sizeof (PTRACE_TYPE_RET);
449
450 /* Since ptrace will transfer a single word starting at that
451 rounded_offset the partial_len needs to be adjusted down to
452 that (remember this function only does a single transfer).
453 Should the required length be even less, adjust it down
454 again. */
455 partial_len = (rounded_offset + sizeof (PTRACE_TYPE_RET)) - offset;
456 if (partial_len > len)
457 partial_len = len;
458
459 if (writebuf)
460 {
461 /* If OFFSET:PARTIAL_LEN is smaller than
462 ROUNDED_OFFSET:WORDSIZE then a read/modify write will
463 be needed. Read in the entire word. */
464 if (rounded_offset < offset
465 || (offset + partial_len
466 < rounded_offset + sizeof (PTRACE_TYPE_RET)))
467 {
468 /* Need part of initial word -- fetch it. */
469 if (arch64)
470 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
471 rounded_offset, 0, NULL);
472 else
473 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
474 (int *) (uintptr_t)
475 rounded_offset,
476 0, NULL);
477 }
478
479 /* Copy data to be written over corresponding part of
480 buffer. */
481 memcpy (buffer.byte + (offset - rounded_offset),
482 writebuf, partial_len);
483
484 errno = 0;
485 if (arch64)
486 rs6000_ptrace64 (PT_WRITE_D, pid,
487 rounded_offset, buffer.word, NULL);
488 else
489 rs6000_ptrace32 (PT_WRITE_D, pid,
490 (int *) (uintptr_t) rounded_offset,
491 buffer.word, NULL);
492 if (errno)
493 return 0;
494 }
495
496 if (readbuf)
497 {
498 errno = 0;
499 if (arch64)
500 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
501 rounded_offset, 0, NULL);
502 else
503 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
504 (int *)(uintptr_t)rounded_offset,
505 0, NULL);
506 if (errno)
507 return 0;
508
509 /* Copy appropriate bytes out of the buffer. */
510 memcpy (readbuf, buffer.byte + (offset - rounded_offset),
511 partial_len);
512 }
513
514 return partial_len;
515 }
516
517 default:
518 return -1;
519 }
520 }
521
522 /* Wait for the child specified by PTID to do something. Return the
523 process ID of the child, or MINUS_ONE_PTID in case of error; store
524 the status in *OURSTATUS. */
525
526 static ptid_t
527 rs6000_wait (struct target_ops *ops,
528 ptid_t ptid, struct target_waitstatus *ourstatus, int options)
529 {
530 pid_t pid;
531 int status, save_errno;
532
533 do
534 {
535 set_sigint_trap ();
536
537 do
538 {
539 pid = waitpid (ptid_get_pid (ptid), &status, 0);
540 save_errno = errno;
541 }
542 while (pid == -1 && errno == EINTR);
543
544 clear_sigint_trap ();
545
546 if (pid == -1)
547 {
548 fprintf_unfiltered (gdb_stderr,
549 _("Child process unexpectedly missing: %s.\n"),
550 safe_strerror (save_errno));
551
552 /* Claim it exited with unknown signal. */
553 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
554 ourstatus->value.sig = GDB_SIGNAL_UNKNOWN;
555 return inferior_ptid;
556 }
557
558 /* Ignore terminated detached child processes. */
559 if (!WIFSTOPPED (status) && pid != ptid_get_pid (inferior_ptid))
560 pid = -1;
561 }
562 while (pid == -1);
563
564 /* AIX has a couple of strange returns from wait(). */
565
566 /* stop after load" status. */
567 if (status == 0x57c)
568 ourstatus->kind = TARGET_WAITKIND_LOADED;
569 /* signal 0. I have no idea why wait(2) returns with this status word. */
570 else if (status == 0x7f)
571 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
572 /* A normal waitstatus. Let the usual macros deal with it. */
573 else
574 store_waitstatus (ourstatus, status);
575
576 return pid_to_ptid (pid);
577 }
578
579 /* Execute one dummy breakpoint instruction. This way we give the kernel
580 a chance to do some housekeeping and update inferior's internal data,
581 including u_area. */
582
583 static void
584 exec_one_dummy_insn (struct regcache *regcache)
585 {
586 #define DUMMY_INSN_ADDR AIX_TEXT_SEGMENT_BASE+0x200
587
588 struct gdbarch *gdbarch = get_regcache_arch (regcache);
589 int ret, status, pid;
590 CORE_ADDR prev_pc;
591 void *bp;
592
593 /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
594 assume that this address will never be executed again by the real
595 code. */
596
597 bp = deprecated_insert_raw_breakpoint (gdbarch, NULL, DUMMY_INSN_ADDR);
598
599 /* You might think this could be done with a single ptrace call, and
600 you'd be correct for just about every platform I've ever worked
601 on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
602 the inferior never hits the breakpoint (it's also worth noting
603 powerpc-ibm-aix4.1.3 works correctly). */
604 prev_pc = regcache_read_pc (regcache);
605 regcache_write_pc (regcache, DUMMY_INSN_ADDR);
606 if (ARCH64 ())
607 ret = rs6000_ptrace64 (PT_CONTINUE, PIDGET (inferior_ptid), 1, 0, NULL);
608 else
609 ret = rs6000_ptrace32 (PT_CONTINUE, PIDGET (inferior_ptid),
610 (int *) 1, 0, NULL);
611
612 if (ret != 0)
613 perror (_("pt_continue"));
614
615 do
616 {
617 pid = waitpid (PIDGET (inferior_ptid), &status, 0);
618 }
619 while (pid != PIDGET (inferior_ptid));
620
621 regcache_write_pc (regcache, prev_pc);
622 deprecated_remove_raw_breakpoint (gdbarch, bp);
623 }
624 \f
625
626 /* Copy information about text and data sections from LDI to VP for a 64-bit
627 process if ARCH64 and for a 32-bit process otherwise. */
628
629 static void
630 vmap_secs (struct vmap *vp, LdInfo *ldi, int arch64)
631 {
632 if (arch64)
633 {
634 vp->tstart = (CORE_ADDR) ldi->l64.ldinfo_textorg;
635 vp->tend = vp->tstart + ldi->l64.ldinfo_textsize;
636 vp->dstart = (CORE_ADDR) ldi->l64.ldinfo_dataorg;
637 vp->dend = vp->dstart + ldi->l64.ldinfo_datasize;
638 }
639 else
640 {
641 vp->tstart = (unsigned long) ldi->l32.ldinfo_textorg;
642 vp->tend = vp->tstart + ldi->l32.ldinfo_textsize;
643 vp->dstart = (unsigned long) ldi->l32.ldinfo_dataorg;
644 vp->dend = vp->dstart + ldi->l32.ldinfo_datasize;
645 }
646
647 /* The run time loader maps the file header in addition to the text
648 section and returns a pointer to the header in ldinfo_textorg.
649 Adjust the text start address to point to the real start address
650 of the text section. */
651 vp->tstart += vp->toffs;
652 }
653
654 /* If the .bss section's VMA is set to an address located before
655 the end of the .data section, causing the two sections to overlap,
656 return the overlap in bytes. Otherwise, return zero.
657
658 Motivation:
659
660 The GNU linker sometimes sets the start address of the .bss session
661 before the end of the .data section, making the 2 sections overlap.
662 The loader appears to handle this situation gracefully, by simply
663 loading the bss section right after the end of the .data section.
664
665 This means that the .data and the .bss sections are sometimes
666 no longer relocated by the same amount. The problem is that
667 the ldinfo data does not contain any information regarding
668 the relocation of the .bss section, assuming that it would be
669 identical to the information provided for the .data section
670 (this is what would normally happen if the program was linked
671 correctly).
672
673 GDB therefore needs to detect those cases, and make the corresponding
674 adjustment to the .bss section offset computed from the ldinfo data
675 when necessary. This function returns the adjustment amount (or
676 zero when no adjustment is needed). */
677
678 static CORE_ADDR
679 bss_data_overlap (struct objfile *objfile)
680 {
681 struct obj_section *osect;
682 struct bfd_section *data = NULL;
683 struct bfd_section *bss = NULL;
684
685 /* First, find the .data and .bss sections. */
686 ALL_OBJFILE_OSECTIONS (objfile, osect)
687 {
688 if (strcmp (bfd_section_name (objfile->obfd,
689 osect->the_bfd_section),
690 ".data") == 0)
691 data = osect->the_bfd_section;
692 else if (strcmp (bfd_section_name (objfile->obfd,
693 osect->the_bfd_section),
694 ".bss") == 0)
695 bss = osect->the_bfd_section;
696 }
697
698 /* If either section is not defined, there can be no overlap. */
699 if (data == NULL || bss == NULL)
700 return 0;
701
702 /* Assume the problem only occurs with linkers that place the .bss
703 section after the .data section (the problem has only been
704 observed when using the GNU linker, and the default linker
705 script always places the .data and .bss sections in that order). */
706 if (bfd_section_vma (objfile->obfd, bss)
707 < bfd_section_vma (objfile->obfd, data))
708 return 0;
709
710 if (bfd_section_vma (objfile->obfd, bss)
711 < bfd_section_vma (objfile->obfd, data) + bfd_get_section_size (data))
712 return ((bfd_section_vma (objfile->obfd, data)
713 + bfd_get_section_size (data))
714 - bfd_section_vma (objfile->obfd, bss));
715
716 return 0;
717 }
718
719 /* Handle symbol translation on vmapping. */
720
721 static void
722 vmap_symtab (struct vmap *vp)
723 {
724 struct objfile *objfile;
725 struct section_offsets *new_offsets;
726 int i;
727
728 objfile = vp->objfile;
729 if (objfile == NULL)
730 {
731 /* OK, it's not an objfile we opened ourselves.
732 Currently, that can only happen with the exec file, so
733 relocate the symbols for the symfile. */
734 if (symfile_objfile == NULL)
735 return;
736 objfile = symfile_objfile;
737 }
738 else if (!vp->loaded)
739 /* If symbols are not yet loaded, offsets are not yet valid. */
740 return;
741
742 new_offsets =
743 (struct section_offsets *)
744 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
745
746 for (i = 0; i < objfile->num_sections; ++i)
747 new_offsets->offsets[i] = ANOFFSET (objfile->section_offsets, i);
748
749 /* The symbols in the object file are linked to the VMA of the section,
750 relocate them VMA relative. */
751 new_offsets->offsets[SECT_OFF_TEXT (objfile)] = vp->tstart - vp->tvma;
752 new_offsets->offsets[SECT_OFF_DATA (objfile)] = vp->dstart - vp->dvma;
753 new_offsets->offsets[SECT_OFF_BSS (objfile)] = vp->dstart - vp->dvma;
754
755 /* Perform the same adjustment as the loader if the .data and
756 .bss sections overlap. */
757 new_offsets->offsets[SECT_OFF_BSS (objfile)] += bss_data_overlap (objfile);
758
759 objfile_relocate (objfile, new_offsets);
760 }
761 \f
762 /* Add symbols for an objfile. */
763
764 static int
765 objfile_symbol_add (void *arg)
766 {
767 struct objfile *obj = (struct objfile *) arg;
768
769 syms_from_objfile (obj, NULL, 0, 0, 0);
770 new_symfile_objfile (obj, 0);
771 return 1;
772 }
773
774 /* Add symbols for a vmap. Return zero upon error. */
775
776 int
777 vmap_add_symbols (struct vmap *vp)
778 {
779 if (catch_errors (objfile_symbol_add, vp->objfile,
780 "Error while reading shared library symbols:\n",
781 RETURN_MASK_ALL))
782 {
783 /* Note this is only done if symbol reading was successful. */
784 vp->loaded = 1;
785 vmap_symtab (vp);
786 return 1;
787 }
788 return 0;
789 }
790
791 /* Add a new vmap entry based on ldinfo() information.
792
793 If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a
794 core file), the caller should set it to -1, and we will open the file.
795
796 Return the vmap new entry. */
797
798 static struct vmap *
799 add_vmap (LdInfo *ldi)
800 {
801 bfd *abfd, *last;
802 char *mem, *filename;
803 struct objfile *obj;
804 struct vmap *vp;
805 int fd;
806 ARCH64_DECL (arch64);
807
808 /* This ldi structure was allocated using alloca() in
809 xcoff_relocate_symtab(). Now we need to have persistent object
810 and member names, so we should save them. */
811
812 filename = LDI_FILENAME (ldi, arch64);
813 mem = filename + strlen (filename) + 1;
814 mem = xstrdup (mem);
815
816 fd = LDI_FD (ldi, arch64);
817 abfd = gdb_bfd_open (filename, gnutarget, fd < 0 ? -1 : fd);
818 if (!abfd)
819 {
820 warning (_("Could not open `%s' as an executable file: %s"),
821 filename, bfd_errmsg (bfd_get_error ()));
822 return NULL;
823 }
824
825 /* Make sure we have an object file. */
826
827 if (bfd_check_format (abfd, bfd_object))
828 vp = map_vmap (abfd, 0);
829
830 else if (bfd_check_format (abfd, bfd_archive))
831 {
832 last = gdb_bfd_openr_next_archived_file (abfd, NULL);
833 while (last != NULL)
834 {
835 bfd *next;
836
837 if (strcmp (mem, last->filename) == 0)
838 break;
839
840 next = gdb_bfd_openr_next_archived_file (abfd, last);
841 gdb_bfd_unref (last);
842 last = next;
843 }
844
845 if (!last)
846 {
847 warning (_("\"%s\": member \"%s\" missing."), filename, mem);
848 gdb_bfd_unref (abfd);
849 return NULL;
850 }
851
852 if (!bfd_check_format (last, bfd_object))
853 {
854 warning (_("\"%s\": member \"%s\" not in executable format: %s."),
855 filename, mem, bfd_errmsg (bfd_get_error ()));
856 gdb_bfd_unref (last);
857 gdb_bfd_unref (abfd);
858 return NULL;
859 }
860
861 vp = map_vmap (last, abfd);
862 /* map_vmap acquired a reference to LAST, so we can release
863 ours. */
864 gdb_bfd_unref (last);
865 }
866 else
867 {
868 warning (_("\"%s\": not in executable format: %s."),
869 filename, bfd_errmsg (bfd_get_error ()));
870 gdb_bfd_unref (abfd);
871 return NULL;
872 }
873 obj = allocate_objfile (vp->bfd, 0);
874 vp->objfile = obj;
875
876 /* Always add symbols for the main objfile. */
877 if (vp == vmap || auto_solib_add)
878 vmap_add_symbols (vp);
879
880 /* Anything needing a reference to ABFD has already acquired it, so
881 release our local reference. */
882 gdb_bfd_unref (abfd);
883
884 return vp;
885 }
886 \f
887 /* update VMAP info with ldinfo() information
888 Input is ptr to ldinfo() results. */
889
890 static void
891 vmap_ldinfo (LdInfo *ldi)
892 {
893 struct stat ii, vi;
894 struct vmap *vp;
895 int got_one, retried;
896 int got_exec_file = 0;
897 uint next;
898 int arch64 = ARCH64 ();
899
900 /* For each *ldi, see if we have a corresponding *vp.
901 If so, update the mapping, and symbol table.
902 If not, add an entry and symbol table. */
903
904 do
905 {
906 char *name = LDI_FILENAME (ldi, arch64);
907 char *memb = name + strlen (name) + 1;
908 int fd = LDI_FD (ldi, arch64);
909
910 retried = 0;
911
912 if (fstat (fd, &ii) < 0)
913 {
914 /* The kernel sets ld_info to -1, if the process is still using the
915 object, and the object is removed. Keep the symbol info for the
916 removed object and issue a warning. */
917 warning (_("%s (fd=%d) has disappeared, keeping its symbols"),
918 name, fd);
919 continue;
920 }
921 retry:
922 for (got_one = 0, vp = vmap; vp; vp = vp->nxt)
923 {
924 struct objfile *objfile;
925
926 /* First try to find a `vp', which is the same as in ldinfo.
927 If not the same, just continue and grep the next `vp'. If same,
928 relocate its tstart, tend, dstart, dend values. If no such `vp'
929 found, get out of this for loop, add this ldi entry as a new vmap
930 (add_vmap) and come back, find its `vp' and so on... */
931
932 /* The filenames are not always sufficient to match on. */
933
934 if ((name[0] == '/' && strcmp (name, vp->name) != 0)
935 || (memb[0] && strcmp (memb, vp->member) != 0))
936 continue;
937
938 /* See if we are referring to the same file.
939 We have to check objfile->obfd, symfile.c:reread_symbols might
940 have updated the obfd after a change. */
941 objfile = vp->objfile == NULL ? symfile_objfile : vp->objfile;
942 if (objfile == NULL
943 || objfile->obfd == NULL
944 || bfd_stat (objfile->obfd, &vi) < 0)
945 {
946 warning (_("Unable to stat %s, keeping its symbols"), name);
947 continue;
948 }
949
950 if (ii.st_dev != vi.st_dev || ii.st_ino != vi.st_ino)
951 continue;
952
953 if (!retried)
954 close (fd);
955
956 ++got_one;
957
958 /* Found a corresponding VMAP. Remap! */
959
960 vmap_secs (vp, ldi, arch64);
961
962 /* The objfile is only NULL for the exec file. */
963 if (vp->objfile == NULL)
964 got_exec_file = 1;
965
966 /* relocate symbol table(s). */
967 vmap_symtab (vp);
968
969 /* Announce new object files. Doing this after symbol relocation
970 makes aix-thread.c's job easier. */
971 if (vp->objfile)
972 observer_notify_new_objfile (vp->objfile);
973
974 /* There may be more, so we don't break out of the loop. */
975 }
976
977 /* If there was no matching *vp, we must perforce create the
978 sucker(s). */
979 if (!got_one && !retried)
980 {
981 add_vmap (ldi);
982 ++retried;
983 goto retry;
984 }
985 }
986 while ((next = LDI_NEXT (ldi, arch64))
987 && (ldi = (void *) (next + (char *) ldi)));
988
989 /* If we don't find the symfile_objfile anywhere in the ldinfo, it
990 is unlikely that the symbol file is relocated to the proper
991 address. And we might have attached to a process which is
992 running a different copy of the same executable. */
993 if (symfile_objfile != NULL && !got_exec_file)
994 {
995 warning (_("Symbol file %s\nis not mapped; discarding it.\n\
996 If in fact that file has symbols which the mapped files listed by\n\
997 \"info files\" lack, you can load symbols with the \"symbol-file\" or\n\
998 \"add-symbol-file\" commands (note that you must take care of relocating\n\
999 symbols to the proper address)."),
1000 symfile_objfile->name);
1001 free_objfile (symfile_objfile);
1002 gdb_assert (symfile_objfile == NULL);
1003 }
1004 breakpoint_re_set ();
1005 }
1006 \f
1007 /* As well as symbol tables, exec_sections need relocation. After
1008 the inferior process' termination, there will be a relocated symbol
1009 table exist with no corresponding inferior process. At that time, we
1010 need to use `exec' bfd, rather than the inferior process's memory space
1011 to look up symbols.
1012
1013 `exec_sections' need to be relocated only once, as long as the exec
1014 file remains unchanged. */
1015
1016 static void
1017 vmap_exec (void)
1018 {
1019 static bfd *execbfd;
1020 int i;
1021 struct target_section_table *table = target_get_section_table (&exec_ops);
1022
1023 if (execbfd == exec_bfd)
1024 return;
1025
1026 execbfd = exec_bfd;
1027
1028 if (!vmap || !table->sections)
1029 error (_("vmap_exec: vmap or table->sections == 0."));
1030
1031 for (i = 0; &table->sections[i] < table->sections_end; i++)
1032 {
1033 if (strcmp (".text", table->sections[i].the_bfd_section->name) == 0)
1034 {
1035 table->sections[i].addr += vmap->tstart - vmap->tvma;
1036 table->sections[i].endaddr += vmap->tstart - vmap->tvma;
1037 }
1038 else if (strcmp (".data", table->sections[i].the_bfd_section->name) == 0)
1039 {
1040 table->sections[i].addr += vmap->dstart - vmap->dvma;
1041 table->sections[i].endaddr += vmap->dstart - vmap->dvma;
1042 }
1043 else if (strcmp (".bss", table->sections[i].the_bfd_section->name) == 0)
1044 {
1045 table->sections[i].addr += vmap->dstart - vmap->dvma;
1046 table->sections[i].endaddr += vmap->dstart - vmap->dvma;
1047 }
1048 }
1049 }
1050
1051 /* Set the current architecture from the host running GDB. Called when
1052 starting a child process. */
1053
1054 static void (*super_create_inferior) (struct target_ops *,char *exec_file,
1055 char *allargs, char **env, int from_tty);
1056 static void
1057 rs6000_create_inferior (struct target_ops * ops, char *exec_file,
1058 char *allargs, char **env, int from_tty)
1059 {
1060 enum bfd_architecture arch;
1061 unsigned long mach;
1062 bfd abfd;
1063 struct gdbarch_info info;
1064
1065 super_create_inferior (ops, exec_file, allargs, env, from_tty);
1066
1067 if (__power_rs ())
1068 {
1069 arch = bfd_arch_rs6000;
1070 mach = bfd_mach_rs6k;
1071 }
1072 else
1073 {
1074 arch = bfd_arch_powerpc;
1075 mach = bfd_mach_ppc;
1076 }
1077
1078 /* FIXME: schauer/2002-02-25:
1079 We don't know if we are executing a 32 or 64 bit executable,
1080 and have no way to pass the proper word size to rs6000_gdbarch_init.
1081 So we have to avoid switching to a new architecture, if the architecture
1082 matches already.
1083 Blindly calling rs6000_gdbarch_init used to work in older versions of
1084 GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
1085 determine the wordsize. */
1086 if (exec_bfd)
1087 {
1088 const struct bfd_arch_info *exec_bfd_arch_info;
1089
1090 exec_bfd_arch_info = bfd_get_arch_info (exec_bfd);
1091 if (arch == exec_bfd_arch_info->arch)
1092 return;
1093 }
1094
1095 bfd_default_set_arch_mach (&abfd, arch, mach);
1096
1097 gdbarch_info_init (&info);
1098 info.bfd_arch_info = bfd_get_arch_info (&abfd);
1099 info.abfd = exec_bfd;
1100
1101 if (!gdbarch_update_p (info))
1102 internal_error (__FILE__, __LINE__,
1103 _("rs6000_create_inferior: failed "
1104 "to select architecture"));
1105 }
1106
1107 \f
1108 /* xcoff_relocate_symtab - hook for symbol table relocation.
1109
1110 This is only applicable to live processes, and is a no-op when
1111 debugging a core file. */
1112
1113 void
1114 xcoff_relocate_symtab (unsigned int pid)
1115 {
1116 int load_segs = 64; /* number of load segments */
1117 int rc;
1118 LdInfo *ldi = NULL;
1119 int arch64 = ARCH64 ();
1120 int ldisize = arch64 ? sizeof (ldi->l64) : sizeof (ldi->l32);
1121 int size;
1122
1123 /* Nothing to do if we are debugging a core file. */
1124 if (!target_has_execution)
1125 return;
1126
1127 do
1128 {
1129 size = load_segs * ldisize;
1130 ldi = (void *) xrealloc (ldi, size);
1131
1132 #if 0
1133 /* According to my humble theory, AIX has some timing problems and
1134 when the user stack grows, kernel doesn't update stack info in time
1135 and ptrace calls step on user stack. That is why we sleep here a
1136 little, and give kernel to update its internals. */
1137 usleep (36000);
1138 #endif
1139
1140 if (arch64)
1141 rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, size, NULL);
1142 else
1143 rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi, size, NULL);
1144
1145 if (rc == -1)
1146 {
1147 if (errno == ENOMEM)
1148 load_segs *= 2;
1149 else
1150 perror_with_name (_("ptrace ldinfo"));
1151 }
1152 else
1153 {
1154 vmap_ldinfo (ldi);
1155 vmap_exec (); /* relocate the exec and core sections as well. */
1156 }
1157 } while (rc == -1);
1158 if (ldi)
1159 xfree (ldi);
1160 }
1161 \f
1162 /* Core file stuff. */
1163
1164 /* Relocate symtabs and read in shared library info, based on symbols
1165 from the core file. */
1166
1167 void
1168 xcoff_relocate_core (struct target_ops *target)
1169 {
1170 struct bfd_section *ldinfo_sec;
1171 int offset = 0;
1172 LdInfo *ldi;
1173 struct vmap *vp;
1174 int arch64 = ARCH64 ();
1175
1176 /* Size of a struct ld_info except for the variable-length filename. */
1177 int nonfilesz = (int)LDI_FILENAME ((LdInfo *)0, arch64);
1178
1179 /* Allocated size of buffer. */
1180 int buffer_size = nonfilesz;
1181 char *buffer = xmalloc (buffer_size);
1182 struct cleanup *old = make_cleanup (free_current_contents, &buffer);
1183
1184 ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
1185 if (ldinfo_sec == NULL)
1186 {
1187 bfd_err:
1188 fprintf_filtered (gdb_stderr, "Couldn't get ldinfo from core file: %s\n",
1189 bfd_errmsg (bfd_get_error ()));
1190 do_cleanups (old);
1191 return;
1192 }
1193 do
1194 {
1195 int i;
1196 int names_found = 0;
1197
1198 /* Read in everything but the name. */
1199 if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer,
1200 offset, nonfilesz) == 0)
1201 goto bfd_err;
1202
1203 /* Now the name. */
1204 i = nonfilesz;
1205 do
1206 {
1207 if (i == buffer_size)
1208 {
1209 buffer_size *= 2;
1210 buffer = xrealloc (buffer, buffer_size);
1211 }
1212 if (bfd_get_section_contents (core_bfd, ldinfo_sec, &buffer[i],
1213 offset + i, 1) == 0)
1214 goto bfd_err;
1215 if (buffer[i++] == '\0')
1216 ++names_found;
1217 }
1218 while (names_found < 2);
1219
1220 ldi = (LdInfo *) buffer;
1221
1222 /* Can't use a file descriptor from the core file; need to open it. */
1223 if (arch64)
1224 ldi->l64.ldinfo_fd = -1;
1225 else
1226 ldi->l32.ldinfo_fd = -1;
1227
1228 /* The first ldinfo is for the exec file, allocated elsewhere. */
1229 if (offset == 0 && vmap != NULL)
1230 vp = vmap;
1231 else
1232 vp = add_vmap (ldi);
1233
1234 /* Process next shared library upon error. */
1235 offset += LDI_NEXT (ldi, arch64);
1236 if (vp == NULL)
1237 continue;
1238
1239 vmap_secs (vp, ldi, arch64);
1240
1241 /* Unless this is the exec file,
1242 add our sections to the section table for the core target. */
1243 if (vp != vmap)
1244 {
1245 struct target_section *stp;
1246
1247 stp = deprecated_core_resize_section_table (2);
1248
1249 stp->bfd = vp->bfd;
1250 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".text");
1251 stp->addr = vp->tstart;
1252 stp->endaddr = vp->tend;
1253 stp++;
1254
1255 stp->bfd = vp->bfd;
1256 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".data");
1257 stp->addr = vp->dstart;
1258 stp->endaddr = vp->dend;
1259 }
1260
1261 vmap_symtab (vp);
1262
1263 if (vp != vmap && vp->objfile)
1264 observer_notify_new_objfile (vp->objfile);
1265 }
1266 while (LDI_NEXT (ldi, arch64) != 0);
1267 vmap_exec ();
1268 breakpoint_re_set ();
1269 do_cleanups (old);
1270 }
1271 \f
1272 /* Under AIX, we have to pass the correct TOC pointer to a function
1273 when calling functions in the inferior.
1274 We try to find the relative toc offset of the objfile containing PC
1275 and add the current load address of the data segment from the vmap. */
1276
1277 static CORE_ADDR
1278 find_toc_address (CORE_ADDR pc)
1279 {
1280 struct vmap *vp;
1281
1282 for (vp = vmap; vp; vp = vp->nxt)
1283 {
1284 if (pc >= vp->tstart && pc < vp->tend)
1285 {
1286 /* vp->objfile is only NULL for the exec file. */
1287 return vp->dstart + xcoff_get_toc_offset (vp->objfile == NULL
1288 ? symfile_objfile
1289 : vp->objfile);
1290 }
1291 }
1292 error (_("Unable to find TOC entry for pc %s."), hex_string (pc));
1293 }
1294 \f
1295
1296 void _initialize_rs6000_nat (void);
1297
1298 void
1299 _initialize_rs6000_nat (void)
1300 {
1301 struct target_ops *t;
1302
1303 t = inf_ptrace_target ();
1304 t->to_fetch_registers = rs6000_fetch_inferior_registers;
1305 t->to_store_registers = rs6000_store_inferior_registers;
1306 t->to_xfer_partial = rs6000_xfer_partial;
1307
1308 super_create_inferior = t->to_create_inferior;
1309 t->to_create_inferior = rs6000_create_inferior;
1310
1311 t->to_wait = rs6000_wait;
1312
1313 add_target (t);
1314
1315 /* Initialize hook in rs6000-tdep.c for determining the TOC address
1316 when calling functions in the inferior. */
1317 rs6000_find_toc_address_hook = find_toc_address;
1318 }
This page took 0.056194 seconds and 4 git commands to generate.