* gdb/fileio.h: New file.
[deliverable/binutils-gdb.git] / gdb / rs6000-nat.c
1 /* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "inferior.h"
25 #include "target.h"
26 #include "gdbcore.h"
27 #include "xcoffsolib.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "libbfd.h" /* For bfd_cache_lookup (FIXME) */
31 #include "bfd.h"
32 #include "gdb-stabs.h"
33 #include "regcache.h"
34 #include "arch-utils.h"
35 #include "language.h" /* for local_hex_string(). */
36 #include "ppc-tdep.h"
37
38 #include <sys/ptrace.h>
39 #include <sys/reg.h>
40
41 #include <sys/param.h>
42 #include <sys/dir.h>
43 #include <sys/user.h>
44 #include <signal.h>
45 #include <sys/ioctl.h>
46 #include <fcntl.h>
47 #include <errno.h>
48
49 #include <a.out.h>
50 #include <sys/file.h>
51 #include "gdb_stat.h"
52 #include <sys/core.h>
53 #define __LDINFO_PTRACE32__ /* for __ld_info32 */
54 #define __LDINFO_PTRACE64__ /* for __ld_info64 */
55 #include <sys/ldr.h>
56 #include <sys/systemcfg.h>
57
58 /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
59 debugging 32-bit and 64-bit processes. Define a typedef and macros for
60 accessing fields in the appropriate structures. */
61
62 /* In 32-bit compilation mode (which is the only mode from which ptrace()
63 works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
64
65 #ifdef __ld_info32
66 # define ARCH3264
67 #endif
68
69 /* Return whether the current architecture is 64-bit. */
70
71 #ifndef ARCH3264
72 # define ARCH64() 0
73 #else
74 # define ARCH64() (REGISTER_RAW_SIZE (0) == 8)
75 #endif
76
77 /* Union of 32-bit and 64-bit ".reg" core file sections. */
78
79 typedef union {
80 #ifdef ARCH3264
81 struct __context64 r64;
82 #else
83 struct mstsave r64;
84 #endif
85 struct mstsave r32;
86 } CoreRegs;
87
88 /* Union of 32-bit and 64-bit versions of ld_info. */
89
90 typedef union {
91 #ifndef ARCH3264
92 struct ld_info l32;
93 struct ld_info l64;
94 #else
95 struct __ld_info32 l32;
96 struct __ld_info64 l64;
97 #endif
98 } LdInfo;
99
100 /* If compiling with 32-bit and 64-bit debugging capability (e.g. AIX 4.x),
101 declare and initialize a variable named VAR suitable for use as the arch64
102 parameter to the various LDI_*() macros. */
103
104 #ifndef ARCH3264
105 # define ARCH64_DECL(var)
106 #else
107 # define ARCH64_DECL(var) int var = ARCH64 ()
108 #endif
109
110 /* Return LDI's FIELD for a 64-bit process if ARCH64 and for a 32-bit process
111 otherwise. This technique only works for FIELDs with the same data type in
112 32-bit and 64-bit versions of ld_info. */
113
114 #ifndef ARCH3264
115 # define LDI_FIELD(ldi, arch64, field) (ldi)->l32.ldinfo_##field
116 #else
117 # define LDI_FIELD(ldi, arch64, field) \
118 (arch64 ? (ldi)->l64.ldinfo_##field : (ldi)->l32.ldinfo_##field)
119 #endif
120
121 /* Return various LDI fields for a 64-bit process if ARCH64 and for a 32-bit
122 process otherwise. */
123
124 #define LDI_NEXT(ldi, arch64) LDI_FIELD(ldi, arch64, next)
125 #define LDI_FD(ldi, arch64) LDI_FIELD(ldi, arch64, fd)
126 #define LDI_FILENAME(ldi, arch64) LDI_FIELD(ldi, arch64, filename)
127
128 extern struct vmap *map_vmap (bfd * bf, bfd * arch);
129
130 extern struct target_ops exec_ops;
131
132 static void vmap_exec (void);
133
134 static void vmap_ldinfo (LdInfo *);
135
136 static struct vmap *add_vmap (LdInfo *);
137
138 static int objfile_symbol_add (void *);
139
140 static void vmap_symtab (struct vmap *);
141
142 static void fetch_core_registers (char *, unsigned int, int, CORE_ADDR);
143
144 static void exec_one_dummy_insn (void);
145
146 extern void fixup_breakpoints (CORE_ADDR low, CORE_ADDR high, CORE_ADDR delta);
147
148 /* Given REGNO, a gdb register number, return the corresponding
149 number suitable for use as a ptrace() parameter. Return -1 if
150 there's no suitable mapping. Also, set the int pointed to by
151 ISFLOAT to indicate whether REGNO is a floating point register. */
152
153 static int
154 regmap (int regno, int *isfloat)
155 {
156 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
157
158 *isfloat = 0;
159 if (tdep->ppc_gp0_regnum <= regno && regno <= tdep->ppc_gplast_regnum)
160 return regno;
161 else if (FP0_REGNUM <= regno && regno <= FPLAST_REGNUM)
162 {
163 *isfloat = 1;
164 return regno - FP0_REGNUM + FPR0;
165 }
166 else if (regno == PC_REGNUM)
167 return IAR;
168 else if (regno == tdep->ppc_ps_regnum)
169 return MSR;
170 else if (regno == tdep->ppc_cr_regnum)
171 return CR;
172 else if (regno == tdep->ppc_lr_regnum)
173 return LR;
174 else if (regno == tdep->ppc_ctr_regnum)
175 return CTR;
176 else if (regno == tdep->ppc_xer_regnum)
177 return XER;
178 else if (regno == tdep->ppc_fpscr_regnum)
179 return FPSCR;
180 else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum)
181 return MQ;
182 else
183 return -1;
184 }
185
186 /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
187
188 static int
189 rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
190 {
191 int ret = ptrace (req, id, (int *)addr, data, buf);
192 #if 0
193 printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
194 req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
195 #endif
196 return ret;
197 }
198
199 /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
200
201 static int
202 rs6000_ptrace64 (int req, int id, long long addr, int data, int *buf)
203 {
204 #ifdef ARCH3264
205 int ret = ptracex (req, id, addr, data, buf);
206 #else
207 int ret = 0;
208 #endif
209 #if 0
210 printf ("rs6000_ptrace64 (%d, %d, 0x%llx, %08x, 0x%x) = 0x%x\n",
211 req, id, addr, data, (unsigned int)buf, ret);
212 #endif
213 return ret;
214 }
215
216 /* Fetch register REGNO from the inferior. */
217
218 static void
219 fetch_register (int regno)
220 {
221 int addr[MAX_REGISTER_SIZE];
222 int nr, isfloat;
223
224 /* Retrieved values may be -1, so infer errors from errno. */
225 errno = 0;
226
227 nr = regmap (regno, &isfloat);
228
229 /* Floating-point registers. */
230 if (isfloat)
231 rs6000_ptrace32 (PT_READ_FPR, PIDGET (inferior_ptid), addr, nr, 0);
232
233 /* Bogus register number. */
234 else if (nr < 0)
235 {
236 if (regno >= NUM_REGS)
237 fprintf_unfiltered (gdb_stderr,
238 "gdb error: register no %d not implemented.\n",
239 regno);
240 return;
241 }
242
243 /* Fixed-point registers. */
244 else
245 {
246 if (!ARCH64 ())
247 *addr = rs6000_ptrace32 (PT_READ_GPR, PIDGET (inferior_ptid), (int *)nr, 0, 0);
248 else
249 {
250 /* PT_READ_GPR requires the buffer parameter to point to long long,
251 even if the register is really only 32 bits. */
252 long long buf;
253 rs6000_ptrace64 (PT_READ_GPR, PIDGET (inferior_ptid), nr, 0, (int *)&buf);
254 if (REGISTER_RAW_SIZE (regno) == 8)
255 memcpy (addr, &buf, 8);
256 else
257 *addr = buf;
258 }
259 }
260
261 if (!errno)
262 supply_register (regno, (char *) addr);
263 else
264 {
265 #if 0
266 /* FIXME: this happens 3 times at the start of each 64-bit program. */
267 perror ("ptrace read");
268 #endif
269 errno = 0;
270 }
271 }
272
273 /* Store register REGNO back into the inferior. */
274
275 static void
276 store_register (int regno)
277 {
278 int addr[MAX_REGISTER_SIZE];
279 int nr, isfloat;
280
281 /* Fetch the register's value from the register cache. */
282 regcache_collect (regno, addr);
283
284 /* -1 can be a successful return value, so infer errors from errno. */
285 errno = 0;
286
287 nr = regmap (regno, &isfloat);
288
289 /* Floating-point registers. */
290 if (isfloat)
291 rs6000_ptrace32 (PT_WRITE_FPR, PIDGET (inferior_ptid), addr, nr, 0);
292
293 /* Bogus register number. */
294 else if (nr < 0)
295 {
296 if (regno >= NUM_REGS)
297 fprintf_unfiltered (gdb_stderr,
298 "gdb error: register no %d not implemented.\n",
299 regno);
300 }
301
302 /* Fixed-point registers. */
303 else
304 {
305 if (regno == SP_REGNUM)
306 /* Execute one dummy instruction (which is a breakpoint) in inferior
307 process to give kernel a chance to do internal housekeeping.
308 Otherwise the following ptrace(2) calls will mess up user stack
309 since kernel will get confused about the bottom of the stack
310 (%sp). */
311 exec_one_dummy_insn ();
312
313 /* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors,
314 the register's value is passed by value, but for 64-bit inferiors,
315 the address of a buffer containing the value is passed. */
316 if (!ARCH64 ())
317 rs6000_ptrace32 (PT_WRITE_GPR, PIDGET (inferior_ptid), (int *)nr, *addr, 0);
318 else
319 {
320 /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
321 area, even if the register is really only 32 bits. */
322 long long buf;
323 if (REGISTER_RAW_SIZE (regno) == 8)
324 memcpy (&buf, addr, 8);
325 else
326 buf = *addr;
327 rs6000_ptrace64 (PT_WRITE_GPR, PIDGET (inferior_ptid), nr, 0, (int *)&buf);
328 }
329 }
330
331 if (errno)
332 {
333 perror ("ptrace write");
334 errno = 0;
335 }
336 }
337
338 /* Read from the inferior all registers if REGNO == -1 and just register
339 REGNO otherwise. */
340
341 void
342 fetch_inferior_registers (int regno)
343 {
344 if (regno != -1)
345 fetch_register (regno);
346
347 else
348 {
349 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
350
351 /* Read 32 general purpose registers. */
352 for (regno = tdep->ppc_gp0_regnum;
353 regno <= tdep->ppc_gplast_regnum;
354 regno++)
355 {
356 fetch_register (regno);
357 }
358
359 /* Read general purpose floating point registers. */
360 for (regno = FP0_REGNUM; regno <= FPLAST_REGNUM; regno++)
361 fetch_register (regno);
362
363 /* Read special registers. */
364 fetch_register (PC_REGNUM);
365 fetch_register (tdep->ppc_ps_regnum);
366 fetch_register (tdep->ppc_cr_regnum);
367 fetch_register (tdep->ppc_lr_regnum);
368 fetch_register (tdep->ppc_ctr_regnum);
369 fetch_register (tdep->ppc_xer_regnum);
370 fetch_register (tdep->ppc_fpscr_regnum);
371 if (tdep->ppc_mq_regnum >= 0)
372 fetch_register (tdep->ppc_mq_regnum);
373 }
374 }
375
376 /* Store our register values back into the inferior.
377 If REGNO is -1, do this for all registers.
378 Otherwise, REGNO specifies which register (so we can save time). */
379
380 void
381 store_inferior_registers (int regno)
382 {
383 if (regno != -1)
384 store_register (regno);
385
386 else
387 {
388 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
389
390 /* Write general purpose registers first. */
391 for (regno = tdep->ppc_gp0_regnum;
392 regno <= tdep->ppc_gplast_regnum;
393 regno++)
394 {
395 store_register (regno);
396 }
397
398 /* Write floating point registers. */
399 for (regno = FP0_REGNUM; regno <= FPLAST_REGNUM; regno++)
400 store_register (regno);
401
402 /* Write special registers. */
403 store_register (PC_REGNUM);
404 store_register (tdep->ppc_ps_regnum);
405 store_register (tdep->ppc_cr_regnum);
406 store_register (tdep->ppc_lr_regnum);
407 store_register (tdep->ppc_ctr_regnum);
408 store_register (tdep->ppc_xer_regnum);
409 store_register (tdep->ppc_fpscr_regnum);
410 if (tdep->ppc_mq_regnum >= 0)
411 store_register (tdep->ppc_mq_regnum);
412 }
413 }
414
415 /* Store in *TO the 32-bit word at 32-bit-aligned ADDR in the child
416 process, which is 64-bit if ARCH64 and 32-bit otherwise. Return
417 success. */
418
419 static int
420 read_word (CORE_ADDR from, int *to, int arch64)
421 {
422 /* Retrieved values may be -1, so infer errors from errno. */
423 errno = 0;
424
425 if (arch64)
426 *to = rs6000_ptrace64 (PT_READ_I, PIDGET (inferior_ptid), from, 0, NULL);
427 else
428 *to = rs6000_ptrace32 (PT_READ_I, PIDGET (inferior_ptid), (int *)(long) from,
429 0, NULL);
430
431 return !errno;
432 }
433
434 /* Copy LEN bytes to or from inferior's memory starting at MEMADDR
435 to debugger memory starting at MYADDR. Copy to inferior if
436 WRITE is nonzero.
437
438 Returns the length copied, which is either the LEN argument or zero.
439 This xfer function does not do partial moves, since child_ops
440 doesn't allow memory operations to cross below us in the target stack
441 anyway. */
442
443 int
444 child_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len,
445 int write, struct mem_attrib *attrib,
446 struct target_ops *target)
447 {
448 /* Round starting address down to 32-bit word boundary. */
449 int mask = sizeof (int) - 1;
450 CORE_ADDR addr = memaddr & ~(CORE_ADDR)mask;
451
452 /* Round ending address up to 32-bit word boundary. */
453 int count = ((memaddr + len - addr + mask) & ~(CORE_ADDR)mask)
454 / sizeof (int);
455
456 /* Allocate word transfer buffer. */
457 /* FIXME (alloca): This code, cloned from infptrace.c, is unsafe
458 because it uses alloca to allocate a buffer of arbitrary size.
459 For very large xfers, this could crash GDB's stack. */
460 int *buf = (int *) alloca (count * sizeof (int));
461
462 int arch64 = ARCH64 ();
463 int i;
464
465 if (!write)
466 {
467 /* Retrieve memory a word at a time. */
468 for (i = 0; i < count; i++, addr += sizeof (int))
469 {
470 if (!read_word (addr, buf + i, arch64))
471 return 0;
472 QUIT;
473 }
474
475 /* Copy memory to supplied buffer. */
476 addr -= count * sizeof (int);
477 memcpy (myaddr, (char *)buf + (memaddr - addr), len);
478 }
479 else
480 {
481 /* Fetch leading memory needed for alignment. */
482 if (addr < memaddr)
483 if (!read_word (addr, buf, arch64))
484 return 0;
485
486 /* Fetch trailing memory needed for alignment. */
487 if (addr + count * sizeof (int) > memaddr + len)
488 if (!read_word (addr, buf + count - 1, arch64))
489 return 0;
490
491 /* Copy supplied data into memory buffer. */
492 memcpy ((char *)buf + (memaddr - addr), myaddr, len);
493
494 /* Store memory one word at a time. */
495 for (i = 0, errno = 0; i < count; i++, addr += sizeof (int))
496 {
497 if (arch64)
498 rs6000_ptrace64 (PT_WRITE_D, PIDGET (inferior_ptid), addr, buf[i], NULL);
499 else
500 rs6000_ptrace32 (PT_WRITE_D, PIDGET (inferior_ptid), (int *)(long) addr,
501 buf[i], NULL);
502
503 if (errno)
504 return 0;
505 QUIT;
506 }
507 }
508
509 return len;
510 }
511
512 /* Execute one dummy breakpoint instruction. This way we give the kernel
513 a chance to do some housekeeping and update inferior's internal data,
514 including u_area. */
515
516 static void
517 exec_one_dummy_insn (void)
518 {
519 #define DUMMY_INSN_ADDR (TEXT_SEGMENT_BASE)+0x200
520
521 char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
522 int ret, status, pid;
523 CORE_ADDR prev_pc;
524
525 /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
526 assume that this address will never be executed again by the real
527 code. */
528
529 target_insert_breakpoint (DUMMY_INSN_ADDR, shadow_contents);
530
531 /* You might think this could be done with a single ptrace call, and
532 you'd be correct for just about every platform I've ever worked
533 on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
534 the inferior never hits the breakpoint (it's also worth noting
535 powerpc-ibm-aix4.1.3 works correctly). */
536 prev_pc = read_pc ();
537 write_pc (DUMMY_INSN_ADDR);
538 if (ARCH64 ())
539 ret = rs6000_ptrace64 (PT_CONTINUE, PIDGET (inferior_ptid), 1, 0, NULL);
540 else
541 ret = rs6000_ptrace32 (PT_CONTINUE, PIDGET (inferior_ptid), (int *)1, 0, NULL);
542
543 if (ret != 0)
544 perror ("pt_continue");
545
546 do
547 {
548 pid = wait (&status);
549 }
550 while (pid != PIDGET (inferior_ptid));
551
552 write_pc (prev_pc);
553 target_remove_breakpoint (DUMMY_INSN_ADDR, shadow_contents);
554 }
555
556 /* Fetch registers from the register section in core bfd. */
557
558 static void
559 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
560 int which, CORE_ADDR reg_addr)
561 {
562 CoreRegs *regs;
563 int regi;
564 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
565
566 if (which != 0)
567 {
568 fprintf_unfiltered
569 (gdb_stderr,
570 "Gdb error: unknown parameter to fetch_core_registers().\n");
571 return;
572 }
573
574 regs = (CoreRegs *) core_reg_sect;
575
576 /* Put the register values from the core file section in the regcache. */
577
578 if (ARCH64 ())
579 {
580 for (regi = 0; regi < 32; regi++)
581 supply_register (regi, (char *) &regs->r64.gpr[regi]);
582
583 for (regi = 0; regi < 32; regi++)
584 supply_register (FP0_REGNUM + regi, (char *) &regs->r64.fpr[regi]);
585
586 supply_register (PC_REGNUM, (char *) &regs->r64.iar);
587 supply_register (tdep->ppc_ps_regnum, (char *) &regs->r64.msr);
588 supply_register (tdep->ppc_cr_regnum, (char *) &regs->r64.cr);
589 supply_register (tdep->ppc_lr_regnum, (char *) &regs->r64.lr);
590 supply_register (tdep->ppc_ctr_regnum, (char *) &regs->r64.ctr);
591 supply_register (tdep->ppc_xer_regnum, (char *) &regs->r64.xer);
592 supply_register (tdep->ppc_fpscr_regnum, (char *) &regs->r64.fpscr);
593 }
594 else
595 {
596 for (regi = 0; regi < 32; regi++)
597 supply_register (regi, (char *) &regs->r32.gpr[regi]);
598
599 for (regi = 0; regi < 32; regi++)
600 supply_register (FP0_REGNUM + regi, (char *) &regs->r32.fpr[regi]);
601
602 supply_register (PC_REGNUM, (char *) &regs->r32.iar);
603 supply_register (tdep->ppc_ps_regnum, (char *) &regs->r32.msr);
604 supply_register (tdep->ppc_cr_regnum, (char *) &regs->r32.cr);
605 supply_register (tdep->ppc_lr_regnum, (char *) &regs->r32.lr);
606 supply_register (tdep->ppc_ctr_regnum, (char *) &regs->r32.ctr);
607 supply_register (tdep->ppc_xer_regnum, (char *) &regs->r32.xer);
608 supply_register (tdep->ppc_fpscr_regnum, (char *) &regs->r32.fpscr);
609 if (tdep->ppc_mq_regnum >= 0)
610 supply_register (tdep->ppc_mq_regnum, (char *) &regs->r32.mq);
611 }
612 }
613 \f
614
615 /* Copy information about text and data sections from LDI to VP for a 64-bit
616 process if ARCH64 and for a 32-bit process otherwise. */
617
618 static void
619 vmap_secs (struct vmap *vp, LdInfo *ldi, int arch64)
620 {
621 if (arch64)
622 {
623 vp->tstart = (CORE_ADDR) ldi->l64.ldinfo_textorg;
624 vp->tend = vp->tstart + ldi->l64.ldinfo_textsize;
625 vp->dstart = (CORE_ADDR) ldi->l64.ldinfo_dataorg;
626 vp->dend = vp->dstart + ldi->l64.ldinfo_datasize;
627 }
628 else
629 {
630 vp->tstart = (unsigned long) ldi->l32.ldinfo_textorg;
631 vp->tend = vp->tstart + ldi->l32.ldinfo_textsize;
632 vp->dstart = (unsigned long) ldi->l32.ldinfo_dataorg;
633 vp->dend = vp->dstart + ldi->l32.ldinfo_datasize;
634 }
635
636 /* The run time loader maps the file header in addition to the text
637 section and returns a pointer to the header in ldinfo_textorg.
638 Adjust the text start address to point to the real start address
639 of the text section. */
640 vp->tstart += vp->toffs;
641 }
642
643 /* handle symbol translation on vmapping */
644
645 static void
646 vmap_symtab (struct vmap *vp)
647 {
648 register struct objfile *objfile;
649 struct section_offsets *new_offsets;
650 int i;
651
652 objfile = vp->objfile;
653 if (objfile == NULL)
654 {
655 /* OK, it's not an objfile we opened ourselves.
656 Currently, that can only happen with the exec file, so
657 relocate the symbols for the symfile. */
658 if (symfile_objfile == NULL)
659 return;
660 objfile = symfile_objfile;
661 }
662 else if (!vp->loaded)
663 /* If symbols are not yet loaded, offsets are not yet valid. */
664 return;
665
666 new_offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
667
668 for (i = 0; i < objfile->num_sections; ++i)
669 new_offsets->offsets[i] = ANOFFSET (objfile->section_offsets, i);
670
671 /* The symbols in the object file are linked to the VMA of the section,
672 relocate them VMA relative. */
673 new_offsets->offsets[SECT_OFF_TEXT (objfile)] = vp->tstart - vp->tvma;
674 new_offsets->offsets[SECT_OFF_DATA (objfile)] = vp->dstart - vp->dvma;
675 new_offsets->offsets[SECT_OFF_BSS (objfile)] = vp->dstart - vp->dvma;
676
677 objfile_relocate (objfile, new_offsets);
678 }
679 \f
680 /* Add symbols for an objfile. */
681
682 static int
683 objfile_symbol_add (void *arg)
684 {
685 struct objfile *obj = (struct objfile *) arg;
686
687 syms_from_objfile (obj, NULL, 0, 0, 0, 0);
688 new_symfile_objfile (obj, 0, 0);
689 return 1;
690 }
691
692 /* Add symbols for a vmap. Return zero upon error. */
693
694 int
695 vmap_add_symbols (struct vmap *vp)
696 {
697 if (catch_errors (objfile_symbol_add, vp->objfile,
698 "Error while reading shared library symbols:\n",
699 RETURN_MASK_ALL))
700 {
701 /* Note this is only done if symbol reading was successful. */
702 vp->loaded = 1;
703 vmap_symtab (vp);
704 return 1;
705 }
706 return 0;
707 }
708
709 /* Add a new vmap entry based on ldinfo() information.
710
711 If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a
712 core file), the caller should set it to -1, and we will open the file.
713
714 Return the vmap new entry. */
715
716 static struct vmap *
717 add_vmap (LdInfo *ldi)
718 {
719 bfd *abfd, *last;
720 register char *mem, *objname, *filename;
721 struct objfile *obj;
722 struct vmap *vp;
723 int fd;
724 ARCH64_DECL (arch64);
725
726 /* This ldi structure was allocated using alloca() in
727 xcoff_relocate_symtab(). Now we need to have persistent object
728 and member names, so we should save them. */
729
730 filename = LDI_FILENAME (ldi, arch64);
731 mem = filename + strlen (filename) + 1;
732 mem = savestring (mem, strlen (mem));
733 objname = savestring (filename, strlen (filename));
734
735 fd = LDI_FD (ldi, arch64);
736 if (fd < 0)
737 /* Note that this opens it once for every member; a possible
738 enhancement would be to only open it once for every object. */
739 abfd = bfd_openr (objname, gnutarget);
740 else
741 abfd = bfd_fdopenr (objname, gnutarget, fd);
742 if (!abfd)
743 {
744 warning ("Could not open `%s' as an executable file: %s",
745 objname, bfd_errmsg (bfd_get_error ()));
746 return NULL;
747 }
748
749 /* make sure we have an object file */
750
751 if (bfd_check_format (abfd, bfd_object))
752 vp = map_vmap (abfd, 0);
753
754 else if (bfd_check_format (abfd, bfd_archive))
755 {
756 last = 0;
757 /* FIXME??? am I tossing BFDs? bfd? */
758 while ((last = bfd_openr_next_archived_file (abfd, last)))
759 if (STREQ (mem, last->filename))
760 break;
761
762 if (!last)
763 {
764 warning ("\"%s\": member \"%s\" missing.", objname, mem);
765 bfd_close (abfd);
766 return NULL;
767 }
768
769 if (!bfd_check_format (last, bfd_object))
770 {
771 warning ("\"%s\": member \"%s\" not in executable format: %s.",
772 objname, mem, bfd_errmsg (bfd_get_error ()));
773 bfd_close (last);
774 bfd_close (abfd);
775 return NULL;
776 }
777
778 vp = map_vmap (last, abfd);
779 }
780 else
781 {
782 warning ("\"%s\": not in executable format: %s.",
783 objname, bfd_errmsg (bfd_get_error ()));
784 bfd_close (abfd);
785 return NULL;
786 }
787 obj = allocate_objfile (vp->bfd, 0);
788 vp->objfile = obj;
789
790 /* Always add symbols for the main objfile. */
791 if (vp == vmap || auto_solib_add)
792 vmap_add_symbols (vp);
793 return vp;
794 }
795 \f
796 /* update VMAP info with ldinfo() information
797 Input is ptr to ldinfo() results. */
798
799 static void
800 vmap_ldinfo (LdInfo *ldi)
801 {
802 struct stat ii, vi;
803 register struct vmap *vp;
804 int got_one, retried;
805 int got_exec_file = 0;
806 uint next;
807 int arch64 = ARCH64 ();
808
809 /* For each *ldi, see if we have a corresponding *vp.
810 If so, update the mapping, and symbol table.
811 If not, add an entry and symbol table. */
812
813 do
814 {
815 char *name = LDI_FILENAME (ldi, arch64);
816 char *memb = name + strlen (name) + 1;
817 int fd = LDI_FD (ldi, arch64);
818
819 retried = 0;
820
821 if (fstat (fd, &ii) < 0)
822 {
823 /* The kernel sets ld_info to -1, if the process is still using the
824 object, and the object is removed. Keep the symbol info for the
825 removed object and issue a warning. */
826 warning ("%s (fd=%d) has disappeared, keeping its symbols",
827 name, fd);
828 continue;
829 }
830 retry:
831 for (got_one = 0, vp = vmap; vp; vp = vp->nxt)
832 {
833 struct objfile *objfile;
834
835 /* First try to find a `vp', which is the same as in ldinfo.
836 If not the same, just continue and grep the next `vp'. If same,
837 relocate its tstart, tend, dstart, dend values. If no such `vp'
838 found, get out of this for loop, add this ldi entry as a new vmap
839 (add_vmap) and come back, find its `vp' and so on... */
840
841 /* The filenames are not always sufficient to match on. */
842
843 if ((name[0] == '/' && !STREQ (name, vp->name))
844 || (memb[0] && !STREQ (memb, vp->member)))
845 continue;
846
847 /* See if we are referring to the same file.
848 We have to check objfile->obfd, symfile.c:reread_symbols might
849 have updated the obfd after a change. */
850 objfile = vp->objfile == NULL ? symfile_objfile : vp->objfile;
851 if (objfile == NULL
852 || objfile->obfd == NULL
853 || bfd_stat (objfile->obfd, &vi) < 0)
854 {
855 warning ("Unable to stat %s, keeping its symbols", name);
856 continue;
857 }
858
859 if (ii.st_dev != vi.st_dev || ii.st_ino != vi.st_ino)
860 continue;
861
862 if (!retried)
863 close (fd);
864
865 ++got_one;
866
867 /* Found a corresponding VMAP. Remap! */
868
869 vmap_secs (vp, ldi, arch64);
870
871 /* The objfile is only NULL for the exec file. */
872 if (vp->objfile == NULL)
873 got_exec_file = 1;
874
875 /* relocate symbol table(s). */
876 vmap_symtab (vp);
877
878 /* Announce new object files. Doing this after symbol relocation
879 makes aix-thread.c's job easier. */
880 if (target_new_objfile_hook && vp->objfile)
881 target_new_objfile_hook (vp->objfile);
882
883 /* There may be more, so we don't break out of the loop. */
884 }
885
886 /* if there was no matching *vp, we must perforce create the sucker(s) */
887 if (!got_one && !retried)
888 {
889 add_vmap (ldi);
890 ++retried;
891 goto retry;
892 }
893 }
894 while ((next = LDI_NEXT (ldi, arch64))
895 && (ldi = (void *) (next + (char *) ldi)));
896
897 /* If we don't find the symfile_objfile anywhere in the ldinfo, it
898 is unlikely that the symbol file is relocated to the proper
899 address. And we might have attached to a process which is
900 running a different copy of the same executable. */
901 if (symfile_objfile != NULL && !got_exec_file)
902 {
903 warning ("Symbol file %s\nis not mapped; discarding it.\n\
904 If in fact that file has symbols which the mapped files listed by\n\
905 \"info files\" lack, you can load symbols with the \"symbol-file\" or\n\
906 \"add-symbol-file\" commands (note that you must take care of relocating\n\
907 symbols to the proper address).",
908 symfile_objfile->name);
909 free_objfile (symfile_objfile);
910 symfile_objfile = NULL;
911 }
912 breakpoint_re_set ();
913 }
914 \f
915 /* As well as symbol tables, exec_sections need relocation. After
916 the inferior process' termination, there will be a relocated symbol
917 table exist with no corresponding inferior process. At that time, we
918 need to use `exec' bfd, rather than the inferior process's memory space
919 to look up symbols.
920
921 `exec_sections' need to be relocated only once, as long as the exec
922 file remains unchanged.
923 */
924
925 static void
926 vmap_exec (void)
927 {
928 static bfd *execbfd;
929 int i;
930
931 if (execbfd == exec_bfd)
932 return;
933
934 execbfd = exec_bfd;
935
936 if (!vmap || !exec_ops.to_sections)
937 error ("vmap_exec: vmap or exec_ops.to_sections == 0\n");
938
939 for (i = 0; &exec_ops.to_sections[i] < exec_ops.to_sections_end; i++)
940 {
941 if (STREQ (".text", exec_ops.to_sections[i].the_bfd_section->name))
942 {
943 exec_ops.to_sections[i].addr += vmap->tstart - vmap->tvma;
944 exec_ops.to_sections[i].endaddr += vmap->tstart - vmap->tvma;
945 }
946 else if (STREQ (".data", exec_ops.to_sections[i].the_bfd_section->name))
947 {
948 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
949 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
950 }
951 else if (STREQ (".bss", exec_ops.to_sections[i].the_bfd_section->name))
952 {
953 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
954 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
955 }
956 }
957 }
958
959 /* Set the current architecture from the host running GDB. Called when
960 starting a child process. */
961
962 static void
963 set_host_arch (int pid)
964 {
965 enum bfd_architecture arch;
966 unsigned long mach;
967 bfd abfd;
968 struct gdbarch_info info;
969
970 if (__power_rs ())
971 {
972 arch = bfd_arch_rs6000;
973 mach = bfd_mach_rs6k;
974 }
975 else
976 {
977 arch = bfd_arch_powerpc;
978 mach = bfd_mach_ppc;
979 }
980
981 /* FIXME: schauer/2002-02-25:
982 We don't know if we are executing a 32 or 64 bit executable,
983 and have no way to pass the proper word size to rs6000_gdbarch_init.
984 So we have to avoid switching to a new architecture, if the architecture
985 matches already.
986 Blindly calling rs6000_gdbarch_init used to work in older versions of
987 GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
988 determine the wordsize. */
989 if (exec_bfd)
990 {
991 const struct bfd_arch_info *exec_bfd_arch_info;
992
993 exec_bfd_arch_info = bfd_get_arch_info (exec_bfd);
994 if (arch == exec_bfd_arch_info->arch)
995 return;
996 }
997
998 bfd_default_set_arch_mach (&abfd, arch, mach);
999
1000 gdbarch_info_init (&info);
1001 info.bfd_arch_info = bfd_get_arch_info (&abfd);
1002
1003 if (!gdbarch_update_p (info))
1004 {
1005 internal_error (__FILE__, __LINE__,
1006 "set_host_arch: failed to select architecture");
1007 }
1008 }
1009
1010 \f
1011 /* xcoff_relocate_symtab - hook for symbol table relocation.
1012 also reads shared libraries.. */
1013
1014 void
1015 xcoff_relocate_symtab (unsigned int pid)
1016 {
1017 int load_segs = 64; /* number of load segments */
1018 int rc;
1019 LdInfo *ldi = NULL;
1020 int arch64 = ARCH64 ();
1021 int ldisize = arch64 ? sizeof (ldi->l64) : sizeof (ldi->l32);
1022 int size;
1023
1024 do
1025 {
1026 size = load_segs * ldisize;
1027 ldi = (void *) xrealloc (ldi, size);
1028
1029 #if 0
1030 /* According to my humble theory, AIX has some timing problems and
1031 when the user stack grows, kernel doesn't update stack info in time
1032 and ptrace calls step on user stack. That is why we sleep here a
1033 little, and give kernel to update its internals. */
1034 usleep (36000);
1035 #endif
1036
1037 if (arch64)
1038 rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, size, NULL);
1039 else
1040 rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi, size, NULL);
1041
1042 if (rc == -1)
1043 {
1044 if (errno == ENOMEM)
1045 load_segs *= 2;
1046 else
1047 perror_with_name ("ptrace ldinfo");
1048 }
1049 else
1050 {
1051 vmap_ldinfo (ldi);
1052 vmap_exec (); /* relocate the exec and core sections as well. */
1053 }
1054 } while (rc == -1);
1055 if (ldi)
1056 xfree (ldi);
1057 }
1058 \f
1059 /* Core file stuff. */
1060
1061 /* Relocate symtabs and read in shared library info, based on symbols
1062 from the core file. */
1063
1064 void
1065 xcoff_relocate_core (struct target_ops *target)
1066 {
1067 sec_ptr ldinfo_sec;
1068 int offset = 0;
1069 LdInfo *ldi;
1070 struct vmap *vp;
1071 int arch64 = ARCH64 ();
1072
1073 /* Size of a struct ld_info except for the variable-length filename. */
1074 int nonfilesz = (int)LDI_FILENAME ((LdInfo *)0, arch64);
1075
1076 /* Allocated size of buffer. */
1077 int buffer_size = nonfilesz;
1078 char *buffer = xmalloc (buffer_size);
1079 struct cleanup *old = make_cleanup (free_current_contents, &buffer);
1080
1081 ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
1082 if (ldinfo_sec == NULL)
1083 {
1084 bfd_err:
1085 fprintf_filtered (gdb_stderr, "Couldn't get ldinfo from core file: %s\n",
1086 bfd_errmsg (bfd_get_error ()));
1087 do_cleanups (old);
1088 return;
1089 }
1090 do
1091 {
1092 int i;
1093 int names_found = 0;
1094
1095 /* Read in everything but the name. */
1096 if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer,
1097 offset, nonfilesz) == 0)
1098 goto bfd_err;
1099
1100 /* Now the name. */
1101 i = nonfilesz;
1102 do
1103 {
1104 if (i == buffer_size)
1105 {
1106 buffer_size *= 2;
1107 buffer = xrealloc (buffer, buffer_size);
1108 }
1109 if (bfd_get_section_contents (core_bfd, ldinfo_sec, &buffer[i],
1110 offset + i, 1) == 0)
1111 goto bfd_err;
1112 if (buffer[i++] == '\0')
1113 ++names_found;
1114 }
1115 while (names_found < 2);
1116
1117 ldi = (LdInfo *) buffer;
1118
1119 /* Can't use a file descriptor from the core file; need to open it. */
1120 if (arch64)
1121 ldi->l64.ldinfo_fd = -1;
1122 else
1123 ldi->l32.ldinfo_fd = -1;
1124
1125 /* The first ldinfo is for the exec file, allocated elsewhere. */
1126 if (offset == 0 && vmap != NULL)
1127 vp = vmap;
1128 else
1129 vp = add_vmap (ldi);
1130
1131 /* Process next shared library upon error. */
1132 offset += LDI_NEXT (ldi, arch64);
1133 if (vp == NULL)
1134 continue;
1135
1136 vmap_secs (vp, ldi, arch64);
1137
1138 /* Unless this is the exec file,
1139 add our sections to the section table for the core target. */
1140 if (vp != vmap)
1141 {
1142 struct section_table *stp;
1143
1144 target_resize_to_sections (target, 2);
1145 stp = target->to_sections_end - 2;
1146
1147 stp->bfd = vp->bfd;
1148 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".text");
1149 stp->addr = vp->tstart;
1150 stp->endaddr = vp->tend;
1151 stp++;
1152
1153 stp->bfd = vp->bfd;
1154 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".data");
1155 stp->addr = vp->dstart;
1156 stp->endaddr = vp->dend;
1157 }
1158
1159 vmap_symtab (vp);
1160
1161 if (target_new_objfile_hook && vp != vmap && vp->objfile)
1162 target_new_objfile_hook (vp->objfile);
1163 }
1164 while (LDI_NEXT (ldi, arch64) != 0);
1165 vmap_exec ();
1166 breakpoint_re_set ();
1167 do_cleanups (old);
1168 }
1169
1170 int
1171 kernel_u_size (void)
1172 {
1173 return (sizeof (struct user));
1174 }
1175 \f
1176 /* Under AIX, we have to pass the correct TOC pointer to a function
1177 when calling functions in the inferior.
1178 We try to find the relative toc offset of the objfile containing PC
1179 and add the current load address of the data segment from the vmap. */
1180
1181 static CORE_ADDR
1182 find_toc_address (CORE_ADDR pc)
1183 {
1184 struct vmap *vp;
1185 extern CORE_ADDR get_toc_offset (struct objfile *); /* xcoffread.c */
1186
1187 for (vp = vmap; vp; vp = vp->nxt)
1188 {
1189 if (pc >= vp->tstart && pc < vp->tend)
1190 {
1191 /* vp->objfile is only NULL for the exec file. */
1192 return vp->dstart + get_toc_offset (vp->objfile == NULL
1193 ? symfile_objfile
1194 : vp->objfile);
1195 }
1196 }
1197 error ("Unable to find TOC entry for pc %s\n", local_hex_string (pc));
1198 }
1199 \f
1200 /* Register that we are able to handle rs6000 core file formats. */
1201
1202 static struct core_fns rs6000_core_fns =
1203 {
1204 bfd_target_xcoff_flavour, /* core_flavour */
1205 default_check_format, /* check_format */
1206 default_core_sniffer, /* core_sniffer */
1207 fetch_core_registers, /* core_read_registers */
1208 NULL /* next */
1209 };
1210
1211 void
1212 _initialize_core_rs6000 (void)
1213 {
1214 /* Initialize hook in rs6000-tdep.c for determining the TOC address when
1215 calling functions in the inferior. */
1216 rs6000_find_toc_address_hook = find_toc_address;
1217
1218 /* Initialize hook in rs6000-tdep.c to set the current architecture when
1219 starting a child process. */
1220 rs6000_set_host_arch_hook = set_host_arch;
1221
1222 add_core_fns (&rs6000_core_fns);
1223 }
This page took 0.054143 seconds and 4 git commands to generate.