1 /* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27 #include "gdb-stabs.h"
29 #include "arch-utils.h"
30 #include "inf-child.h"
31 #include "inf-ptrace.h"
33 #include "rs6000-tdep.h"
34 #include "rs6000-aix-tdep.h"
37 #include "xcoffread.h"
39 #include <sys/ptrace.h>
45 #include <sys/ioctl.h>
53 #define __LDINFO_PTRACE32__ /* for __ld_info32 */
54 #define __LDINFO_PTRACE64__ /* for __ld_info64 */
56 #include <sys/systemcfg.h>
58 /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
59 debugging 32-bit and 64-bit processes. Define a typedef and macros for
60 accessing fields in the appropriate structures. */
62 /* In 32-bit compilation mode (which is the only mode from which ptrace()
63 works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
65 #if defined (__ld_info32) || defined (__ld_info64)
69 /* Return whether the current architecture is 64-bit. */
74 # define ARCH64() (register_size (target_gdbarch (), 0) == 8)
77 static target_xfer_partial_ftype rs6000_xfer_shared_libraries
;
79 /* Given REGNO, a gdb register number, return the corresponding
80 number suitable for use as a ptrace() parameter. Return -1 if
81 there's no suitable mapping. Also, set the int pointed to by
82 ISFLOAT to indicate whether REGNO is a floating point register. */
85 regmap (struct gdbarch
*gdbarch
, int regno
, int *isfloat
)
87 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
90 if (tdep
->ppc_gp0_regnum
<= regno
91 && regno
< tdep
->ppc_gp0_regnum
+ ppc_num_gprs
)
93 else if (tdep
->ppc_fp0_regnum
>= 0
94 && tdep
->ppc_fp0_regnum
<= regno
95 && regno
< tdep
->ppc_fp0_regnum
+ ppc_num_fprs
)
98 return regno
- tdep
->ppc_fp0_regnum
+ FPR0
;
100 else if (regno
== gdbarch_pc_regnum (gdbarch
))
102 else if (regno
== tdep
->ppc_ps_regnum
)
104 else if (regno
== tdep
->ppc_cr_regnum
)
106 else if (regno
== tdep
->ppc_lr_regnum
)
108 else if (regno
== tdep
->ppc_ctr_regnum
)
110 else if (regno
== tdep
->ppc_xer_regnum
)
112 else if (tdep
->ppc_fpscr_regnum
>= 0
113 && regno
== tdep
->ppc_fpscr_regnum
)
115 else if (tdep
->ppc_mq_regnum
>= 0 && regno
== tdep
->ppc_mq_regnum
)
121 /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
124 rs6000_ptrace32 (int req
, int id
, int *addr
, int data
, int *buf
)
127 int ret
= ptrace64 (req
, id
, (uintptr_t) addr
, data
, buf
);
129 int ret
= ptrace (req
, id
, (int *)addr
, data
, buf
);
132 printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
133 req
, id
, (unsigned int)addr
, data
, (unsigned int)buf
, ret
);
138 /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
141 rs6000_ptrace64 (int req
, int id
, long long addr
, int data
, void *buf
)
144 # ifdef HAVE_PTRACE64
145 int ret
= ptrace64 (req
, id
, addr
, data
, (PTRACE_TYPE_ARG5
) buf
);
147 int ret
= ptracex (req
, id
, addr
, data
, (PTRACE_TYPE_ARG5
) buf
);
153 printf ("rs6000_ptrace64 (%d, %d, %s, %08x, 0x%x) = 0x%x\n",
154 req
, id
, hex_string (addr
), data
, (unsigned int)buf
, ret
);
159 /* Fetch register REGNO from the inferior. */
162 fetch_register (struct regcache
*regcache
, int regno
)
164 struct gdbarch
*gdbarch
= regcache
->arch ();
165 int addr
[PPC_MAX_REGISTER_SIZE
];
167 pid_t pid
= ptid_get_pid (regcache_get_ptid (regcache
));
169 /* Retrieved values may be -1, so infer errors from errno. */
172 nr
= regmap (gdbarch
, regno
, &isfloat
);
174 /* Floating-point registers. */
176 rs6000_ptrace32 (PT_READ_FPR
, pid
, addr
, nr
, 0);
178 /* Bogus register number. */
181 if (regno
>= gdbarch_num_regs (gdbarch
))
182 fprintf_unfiltered (gdb_stderr
,
183 "gdb error: register no %d not implemented.\n",
188 /* Fixed-point registers. */
192 *addr
= rs6000_ptrace32 (PT_READ_GPR
, pid
, (int *) nr
, 0, 0);
195 /* PT_READ_GPR requires the buffer parameter to point to long long,
196 even if the register is really only 32 bits. */
198 rs6000_ptrace64 (PT_READ_GPR
, pid
, nr
, 0, &buf
);
199 if (register_size (gdbarch
, regno
) == 8)
200 memcpy (addr
, &buf
, 8);
207 regcache_raw_supply (regcache
, regno
, (char *) addr
);
211 /* FIXME: this happens 3 times at the start of each 64-bit program. */
212 perror (_("ptrace read"));
218 /* Store register REGNO back into the inferior. */
221 store_register (struct regcache
*regcache
, int regno
)
223 struct gdbarch
*gdbarch
= regcache
->arch ();
224 int addr
[PPC_MAX_REGISTER_SIZE
];
226 pid_t pid
= ptid_get_pid (regcache_get_ptid (regcache
));
228 /* Fetch the register's value from the register cache. */
229 regcache_raw_collect (regcache
, regno
, addr
);
231 /* -1 can be a successful return value, so infer errors from errno. */
234 nr
= regmap (gdbarch
, regno
, &isfloat
);
236 /* Floating-point registers. */
238 rs6000_ptrace32 (PT_WRITE_FPR
, pid
, addr
, nr
, 0);
240 /* Bogus register number. */
243 if (regno
>= gdbarch_num_regs (gdbarch
))
244 fprintf_unfiltered (gdb_stderr
,
245 "gdb error: register no %d not implemented.\n",
249 /* Fixed-point registers. */
252 /* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors,
253 the register's value is passed by value, but for 64-bit inferiors,
254 the address of a buffer containing the value is passed. */
256 rs6000_ptrace32 (PT_WRITE_GPR
, pid
, (int *) nr
, *addr
, 0);
259 /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
260 area, even if the register is really only 32 bits. */
262 if (register_size (gdbarch
, regno
) == 8)
263 memcpy (&buf
, addr
, 8);
266 rs6000_ptrace64 (PT_WRITE_GPR
, pid
, nr
, 0, &buf
);
272 perror (_("ptrace write"));
277 /* Read from the inferior all registers if REGNO == -1 and just register
281 rs6000_fetch_inferior_registers (struct target_ops
*ops
,
282 struct regcache
*regcache
, int regno
)
284 struct gdbarch
*gdbarch
= regcache
->arch ();
286 fetch_register (regcache
, regno
);
290 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
292 /* Read 32 general purpose registers. */
293 for (regno
= tdep
->ppc_gp0_regnum
;
294 regno
< tdep
->ppc_gp0_regnum
+ ppc_num_gprs
;
297 fetch_register (regcache
, regno
);
300 /* Read general purpose floating point registers. */
301 if (tdep
->ppc_fp0_regnum
>= 0)
302 for (regno
= 0; regno
< ppc_num_fprs
; regno
++)
303 fetch_register (regcache
, tdep
->ppc_fp0_regnum
+ regno
);
305 /* Read special registers. */
306 fetch_register (regcache
, gdbarch_pc_regnum (gdbarch
));
307 fetch_register (regcache
, tdep
->ppc_ps_regnum
);
308 fetch_register (regcache
, tdep
->ppc_cr_regnum
);
309 fetch_register (regcache
, tdep
->ppc_lr_regnum
);
310 fetch_register (regcache
, tdep
->ppc_ctr_regnum
);
311 fetch_register (regcache
, tdep
->ppc_xer_regnum
);
312 if (tdep
->ppc_fpscr_regnum
>= 0)
313 fetch_register (regcache
, tdep
->ppc_fpscr_regnum
);
314 if (tdep
->ppc_mq_regnum
>= 0)
315 fetch_register (regcache
, tdep
->ppc_mq_regnum
);
319 /* Store our register values back into the inferior.
320 If REGNO is -1, do this for all registers.
321 Otherwise, REGNO specifies which register (so we can save time). */
324 rs6000_store_inferior_registers (struct target_ops
*ops
,
325 struct regcache
*regcache
, int regno
)
327 struct gdbarch
*gdbarch
= regcache
->arch ();
329 store_register (regcache
, regno
);
333 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
335 /* Write general purpose registers first. */
336 for (regno
= tdep
->ppc_gp0_regnum
;
337 regno
< tdep
->ppc_gp0_regnum
+ ppc_num_gprs
;
340 store_register (regcache
, regno
);
343 /* Write floating point registers. */
344 if (tdep
->ppc_fp0_regnum
>= 0)
345 for (regno
= 0; regno
< ppc_num_fprs
; regno
++)
346 store_register (regcache
, tdep
->ppc_fp0_regnum
+ regno
);
348 /* Write special registers. */
349 store_register (regcache
, gdbarch_pc_regnum (gdbarch
));
350 store_register (regcache
, tdep
->ppc_ps_regnum
);
351 store_register (regcache
, tdep
->ppc_cr_regnum
);
352 store_register (regcache
, tdep
->ppc_lr_regnum
);
353 store_register (regcache
, tdep
->ppc_ctr_regnum
);
354 store_register (regcache
, tdep
->ppc_xer_regnum
);
355 if (tdep
->ppc_fpscr_regnum
>= 0)
356 store_register (regcache
, tdep
->ppc_fpscr_regnum
);
357 if (tdep
->ppc_mq_regnum
>= 0)
358 store_register (regcache
, tdep
->ppc_mq_regnum
);
362 /* Implement the to_xfer_partial target_ops method. */
364 static enum target_xfer_status
365 rs6000_xfer_partial (struct target_ops
*ops
, enum target_object object
,
366 const char *annex
, gdb_byte
*readbuf
,
367 const gdb_byte
*writebuf
,
368 ULONGEST offset
, ULONGEST len
, ULONGEST
*xfered_len
)
370 pid_t pid
= ptid_get_pid (inferior_ptid
);
371 int arch64
= ARCH64 ();
375 case TARGET_OBJECT_LIBRARIES_AIX
:
376 return rs6000_xfer_shared_libraries (ops
, object
, annex
,
378 offset
, len
, xfered_len
);
379 case TARGET_OBJECT_MEMORY
:
383 PTRACE_TYPE_RET word
;
384 gdb_byte byte
[sizeof (PTRACE_TYPE_RET
)];
386 ULONGEST rounded_offset
;
389 /* Round the start offset down to the next long word
391 rounded_offset
= offset
& -(ULONGEST
) sizeof (PTRACE_TYPE_RET
);
393 /* Since ptrace will transfer a single word starting at that
394 rounded_offset the partial_len needs to be adjusted down to
395 that (remember this function only does a single transfer).
396 Should the required length be even less, adjust it down
398 partial_len
= (rounded_offset
+ sizeof (PTRACE_TYPE_RET
)) - offset
;
399 if (partial_len
> len
)
404 /* If OFFSET:PARTIAL_LEN is smaller than
405 ROUNDED_OFFSET:WORDSIZE then a read/modify write will
406 be needed. Read in the entire word. */
407 if (rounded_offset
< offset
408 || (offset
+ partial_len
409 < rounded_offset
+ sizeof (PTRACE_TYPE_RET
)))
411 /* Need part of initial word -- fetch it. */
413 buffer
.word
= rs6000_ptrace64 (PT_READ_I
, pid
,
414 rounded_offset
, 0, NULL
);
416 buffer
.word
= rs6000_ptrace32 (PT_READ_I
, pid
,
422 /* Copy data to be written over corresponding part of
424 memcpy (buffer
.byte
+ (offset
- rounded_offset
),
425 writebuf
, partial_len
);
429 rs6000_ptrace64 (PT_WRITE_D
, pid
,
430 rounded_offset
, buffer
.word
, NULL
);
432 rs6000_ptrace32 (PT_WRITE_D
, pid
,
433 (int *) (uintptr_t) rounded_offset
,
436 return TARGET_XFER_EOF
;
443 buffer
.word
= rs6000_ptrace64 (PT_READ_I
, pid
,
444 rounded_offset
, 0, NULL
);
446 buffer
.word
= rs6000_ptrace32 (PT_READ_I
, pid
,
447 (int *)(uintptr_t)rounded_offset
,
450 return TARGET_XFER_EOF
;
452 /* Copy appropriate bytes out of the buffer. */
453 memcpy (readbuf
, buffer
.byte
+ (offset
- rounded_offset
),
457 *xfered_len
= (ULONGEST
) partial_len
;
458 return TARGET_XFER_OK
;
462 return TARGET_XFER_E_IO
;
466 /* Wait for the child specified by PTID to do something. Return the
467 process ID of the child, or MINUS_ONE_PTID in case of error; store
468 the status in *OURSTATUS. */
471 rs6000_wait (struct target_ops
*ops
,
472 ptid_t ptid
, struct target_waitstatus
*ourstatus
, int options
)
475 int status
, save_errno
;
483 pid
= waitpid (ptid_get_pid (ptid
), &status
, 0);
486 while (pid
== -1 && errno
== EINTR
);
488 clear_sigint_trap ();
492 fprintf_unfiltered (gdb_stderr
,
493 _("Child process unexpectedly missing: %s.\n"),
494 safe_strerror (save_errno
));
496 /* Claim it exited with unknown signal. */
497 ourstatus
->kind
= TARGET_WAITKIND_SIGNALLED
;
498 ourstatus
->value
.sig
= GDB_SIGNAL_UNKNOWN
;
499 return inferior_ptid
;
502 /* Ignore terminated detached child processes. */
503 if (!WIFSTOPPED (status
) && pid
!= ptid_get_pid (inferior_ptid
))
508 /* AIX has a couple of strange returns from wait(). */
510 /* stop after load" status. */
512 ourstatus
->kind
= TARGET_WAITKIND_LOADED
;
513 /* signal 0. I have no idea why wait(2) returns with this status word. */
514 else if (status
== 0x7f)
515 ourstatus
->kind
= TARGET_WAITKIND_SPURIOUS
;
516 /* A normal waitstatus. Let the usual macros deal with it. */
518 store_waitstatus (ourstatus
, status
);
520 return pid_to_ptid (pid
);
524 /* Set the current architecture from the host running GDB. Called when
525 starting a child process. */
527 static void (*super_create_inferior
) (struct target_ops
*,
528 const char *exec_file
,
529 const std::string
&allargs
,
530 char **env
, int from_tty
);
532 rs6000_create_inferior (struct target_ops
* ops
, const char *exec_file
,
533 const std::string
&allargs
, char **env
, int from_tty
)
535 enum bfd_architecture arch
;
538 struct gdbarch_info info
;
540 super_create_inferior (ops
, exec_file
, allargs
, env
, from_tty
);
544 arch
= bfd_arch_rs6000
;
545 mach
= bfd_mach_rs6k
;
549 arch
= bfd_arch_powerpc
;
553 /* FIXME: schauer/2002-02-25:
554 We don't know if we are executing a 32 or 64 bit executable,
555 and have no way to pass the proper word size to rs6000_gdbarch_init.
556 So we have to avoid switching to a new architecture, if the architecture
558 Blindly calling rs6000_gdbarch_init used to work in older versions of
559 GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
560 determine the wordsize. */
563 const struct bfd_arch_info
*exec_bfd_arch_info
;
565 exec_bfd_arch_info
= bfd_get_arch_info (exec_bfd
);
566 if (arch
== exec_bfd_arch_info
->arch
)
570 bfd_default_set_arch_mach (&abfd
, arch
, mach
);
572 gdbarch_info_init (&info
);
573 info
.bfd_arch_info
= bfd_get_arch_info (&abfd
);
574 info
.abfd
= exec_bfd
;
576 if (!gdbarch_update_p (info
))
577 internal_error (__FILE__
, __LINE__
,
578 _("rs6000_create_inferior: failed "
579 "to select architecture"));
583 /* Shared Object support. */
585 /* Return the LdInfo data for the given process. Raises an error
586 if the data could not be obtained.
588 The returned value must be deallocated after use. */
591 rs6000_ptrace_ldinfo (ptid_t ptid
)
593 const int pid
= ptid_get_pid (ptid
);
595 void *ldi
= xmalloc (ldi_size
);
601 rc
= rs6000_ptrace64 (PT_LDINFO
, pid
, (unsigned long) ldi
, ldi_size
,
604 rc
= rs6000_ptrace32 (PT_LDINFO
, pid
, (int *) ldi
, ldi_size
, NULL
);
607 break; /* Success, we got the entire ld_info data. */
610 perror_with_name (_("ptrace ldinfo"));
612 /* ldi is not big enough. Double it and try again. */
614 ldi
= xrealloc (ldi
, ldi_size
);
617 return (gdb_byte
*) ldi
;
620 /* Implement the to_xfer_partial target_ops method for
621 TARGET_OBJECT_LIBRARIES_AIX objects. */
623 static enum target_xfer_status
624 rs6000_xfer_shared_libraries
625 (struct target_ops
*ops
, enum target_object object
,
626 const char *annex
, gdb_byte
*readbuf
, const gdb_byte
*writebuf
,
627 ULONGEST offset
, ULONGEST len
, ULONGEST
*xfered_len
)
631 struct cleanup
*cleanup
;
633 /* This function assumes that it is being run with a live process.
634 Core files are handled via gdbarch. */
635 gdb_assert (target_has_execution
);
638 return TARGET_XFER_E_IO
;
640 ldi_buf
= rs6000_ptrace_ldinfo (inferior_ptid
);
641 gdb_assert (ldi_buf
!= NULL
);
642 cleanup
= make_cleanup (xfree
, ldi_buf
);
643 result
= rs6000_aix_ld_info_to_xml (target_gdbarch (), ldi_buf
,
644 readbuf
, offset
, len
, 1);
647 do_cleanups (cleanup
);
650 return TARGET_XFER_EOF
;
653 *xfered_len
= result
;
654 return TARGET_XFER_OK
;
659 _initialize_rs6000_nat (void)
661 struct target_ops
*t
;
663 t
= inf_ptrace_target ();
664 t
->to_fetch_registers
= rs6000_fetch_inferior_registers
;
665 t
->to_store_registers
= rs6000_store_inferior_registers
;
666 t
->to_xfer_partial
= rs6000_xfer_partial
;
668 super_create_inferior
= t
->to_create_inferior
;
669 t
->to_create_inferior
= rs6000_create_inferior
;
671 t
->to_wait
= rs6000_wait
;