* s390-tdep.c (enum pv_boolean): Remove.
[deliverable/binutils-gdb.git] / gdb / rs6000-nat.c
1 /* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
2
3 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "inferior.h"
26 #include "target.h"
27 #include "gdbcore.h"
28 #include "xcoffsolib.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "libbfd.h" /* For bfd_default_set_arch_mach (FIXME) */
32 #include "bfd.h"
33 #include "gdb-stabs.h"
34 #include "regcache.h"
35 #include "arch-utils.h"
36 #include "ppc-tdep.h"
37 #include "exec.h"
38
39 #include <sys/ptrace.h>
40 #include <sys/reg.h>
41
42 #include <sys/param.h>
43 #include <sys/dir.h>
44 #include <sys/user.h>
45 #include <signal.h>
46 #include <sys/ioctl.h>
47 #include <fcntl.h>
48 #include <errno.h>
49
50 #include <a.out.h>
51 #include <sys/file.h>
52 #include "gdb_stat.h"
53 #include <sys/core.h>
54 #define __LDINFO_PTRACE32__ /* for __ld_info32 */
55 #define __LDINFO_PTRACE64__ /* for __ld_info64 */
56 #include <sys/ldr.h>
57 #include <sys/systemcfg.h>
58
59 /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
60 debugging 32-bit and 64-bit processes. Define a typedef and macros for
61 accessing fields in the appropriate structures. */
62
63 /* In 32-bit compilation mode (which is the only mode from which ptrace()
64 works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
65
66 #ifdef __ld_info32
67 # define ARCH3264
68 #endif
69
70 /* Return whether the current architecture is 64-bit. */
71
72 #ifndef ARCH3264
73 # define ARCH64() 0
74 #else
75 # define ARCH64() (register_size (current_gdbarch, 0) == 8)
76 #endif
77
78 /* Union of 32-bit and 64-bit ".reg" core file sections. */
79
80 typedef union {
81 #ifdef ARCH3264
82 struct __context64 r64;
83 #else
84 struct mstsave r64;
85 #endif
86 struct mstsave r32;
87 } CoreRegs;
88
89 /* Union of 32-bit and 64-bit versions of ld_info. */
90
91 typedef union {
92 #ifndef ARCH3264
93 struct ld_info l32;
94 struct ld_info l64;
95 #else
96 struct __ld_info32 l32;
97 struct __ld_info64 l64;
98 #endif
99 } LdInfo;
100
101 /* If compiling with 32-bit and 64-bit debugging capability (e.g. AIX 4.x),
102 declare and initialize a variable named VAR suitable for use as the arch64
103 parameter to the various LDI_*() macros. */
104
105 #ifndef ARCH3264
106 # define ARCH64_DECL(var)
107 #else
108 # define ARCH64_DECL(var) int var = ARCH64 ()
109 #endif
110
111 /* Return LDI's FIELD for a 64-bit process if ARCH64 and for a 32-bit process
112 otherwise. This technique only works for FIELDs with the same data type in
113 32-bit and 64-bit versions of ld_info. */
114
115 #ifndef ARCH3264
116 # define LDI_FIELD(ldi, arch64, field) (ldi)->l32.ldinfo_##field
117 #else
118 # define LDI_FIELD(ldi, arch64, field) \
119 (arch64 ? (ldi)->l64.ldinfo_##field : (ldi)->l32.ldinfo_##field)
120 #endif
121
122 /* Return various LDI fields for a 64-bit process if ARCH64 and for a 32-bit
123 process otherwise. */
124
125 #define LDI_NEXT(ldi, arch64) LDI_FIELD(ldi, arch64, next)
126 #define LDI_FD(ldi, arch64) LDI_FIELD(ldi, arch64, fd)
127 #define LDI_FILENAME(ldi, arch64) LDI_FIELD(ldi, arch64, filename)
128
129 extern struct vmap *map_vmap (bfd * bf, bfd * arch);
130
131 static void vmap_exec (void);
132
133 static void vmap_ldinfo (LdInfo *);
134
135 static struct vmap *add_vmap (LdInfo *);
136
137 static int objfile_symbol_add (void *);
138
139 static void vmap_symtab (struct vmap *);
140
141 static void fetch_core_registers (char *, unsigned int, int, CORE_ADDR);
142
143 static void exec_one_dummy_insn (void);
144
145 extern void fixup_breakpoints (CORE_ADDR low, CORE_ADDR high, CORE_ADDR delta);
146
147 /* Given REGNO, a gdb register number, return the corresponding
148 number suitable for use as a ptrace() parameter. Return -1 if
149 there's no suitable mapping. Also, set the int pointed to by
150 ISFLOAT to indicate whether REGNO is a floating point register. */
151
152 static int
153 regmap (int regno, int *isfloat)
154 {
155 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
156
157 *isfloat = 0;
158 if (tdep->ppc_gp0_regnum <= regno
159 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
160 return regno;
161 else if (tdep->ppc_fp0_regnum >= 0
162 && tdep->ppc_fp0_regnum <= regno
163 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
164 {
165 *isfloat = 1;
166 return regno - tdep->ppc_fp0_regnum + FPR0;
167 }
168 else if (regno == PC_REGNUM)
169 return IAR;
170 else if (regno == tdep->ppc_ps_regnum)
171 return MSR;
172 else if (regno == tdep->ppc_cr_regnum)
173 return CR;
174 else if (regno == tdep->ppc_lr_regnum)
175 return LR;
176 else if (regno == tdep->ppc_ctr_regnum)
177 return CTR;
178 else if (regno == tdep->ppc_xer_regnum)
179 return XER;
180 else if (tdep->ppc_fpscr_regnum >= 0
181 && regno == tdep->ppc_fpscr_regnum)
182 return FPSCR;
183 else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum)
184 return MQ;
185 else
186 return -1;
187 }
188
189 /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
190
191 static int
192 rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
193 {
194 int ret = ptrace (req, id, (int *)addr, data, buf);
195 #if 0
196 printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
197 req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
198 #endif
199 return ret;
200 }
201
202 /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
203
204 static int
205 rs6000_ptrace64 (int req, int id, long long addr, int data, int *buf)
206 {
207 #ifdef ARCH3264
208 int ret = ptracex (req, id, addr, data, buf);
209 #else
210 int ret = 0;
211 #endif
212 #if 0
213 printf ("rs6000_ptrace64 (%d, %d, 0x%llx, %08x, 0x%x) = 0x%x\n",
214 req, id, addr, data, (unsigned int)buf, ret);
215 #endif
216 return ret;
217 }
218
219 /* Fetch register REGNO from the inferior. */
220
221 static void
222 fetch_register (int regno)
223 {
224 int addr[MAX_REGISTER_SIZE];
225 int nr, isfloat;
226
227 /* Retrieved values may be -1, so infer errors from errno. */
228 errno = 0;
229
230 nr = regmap (regno, &isfloat);
231
232 /* Floating-point registers. */
233 if (isfloat)
234 rs6000_ptrace32 (PT_READ_FPR, PIDGET (inferior_ptid), addr, nr, 0);
235
236 /* Bogus register number. */
237 else if (nr < 0)
238 {
239 if (regno >= NUM_REGS)
240 fprintf_unfiltered (gdb_stderr,
241 "gdb error: register no %d not implemented.\n",
242 regno);
243 return;
244 }
245
246 /* Fixed-point registers. */
247 else
248 {
249 if (!ARCH64 ())
250 *addr = rs6000_ptrace32 (PT_READ_GPR, PIDGET (inferior_ptid), (int *)nr, 0, 0);
251 else
252 {
253 /* PT_READ_GPR requires the buffer parameter to point to long long,
254 even if the register is really only 32 bits. */
255 long long buf;
256 rs6000_ptrace64 (PT_READ_GPR, PIDGET (inferior_ptid), nr, 0, (int *)&buf);
257 if (register_size (current_gdbarch, regno) == 8)
258 memcpy (addr, &buf, 8);
259 else
260 *addr = buf;
261 }
262 }
263
264 if (!errno)
265 regcache_raw_supply (current_regcache, regno, (char *) addr);
266 else
267 {
268 #if 0
269 /* FIXME: this happens 3 times at the start of each 64-bit program. */
270 perror ("ptrace read");
271 #endif
272 errno = 0;
273 }
274 }
275
276 /* Store register REGNO back into the inferior. */
277
278 static void
279 store_register (int regno)
280 {
281 int addr[MAX_REGISTER_SIZE];
282 int nr, isfloat;
283
284 /* Fetch the register's value from the register cache. */
285 regcache_raw_collect (current_regcache, regno, addr);
286
287 /* -1 can be a successful return value, so infer errors from errno. */
288 errno = 0;
289
290 nr = regmap (regno, &isfloat);
291
292 /* Floating-point registers. */
293 if (isfloat)
294 rs6000_ptrace32 (PT_WRITE_FPR, PIDGET (inferior_ptid), addr, nr, 0);
295
296 /* Bogus register number. */
297 else if (nr < 0)
298 {
299 if (regno >= NUM_REGS)
300 fprintf_unfiltered (gdb_stderr,
301 "gdb error: register no %d not implemented.\n",
302 regno);
303 }
304
305 /* Fixed-point registers. */
306 else
307 {
308 if (regno == SP_REGNUM)
309 /* Execute one dummy instruction (which is a breakpoint) in inferior
310 process to give kernel a chance to do internal housekeeping.
311 Otherwise the following ptrace(2) calls will mess up user stack
312 since kernel will get confused about the bottom of the stack
313 (%sp). */
314 exec_one_dummy_insn ();
315
316 /* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors,
317 the register's value is passed by value, but for 64-bit inferiors,
318 the address of a buffer containing the value is passed. */
319 if (!ARCH64 ())
320 rs6000_ptrace32 (PT_WRITE_GPR, PIDGET (inferior_ptid), (int *)nr, *addr, 0);
321 else
322 {
323 /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
324 area, even if the register is really only 32 bits. */
325 long long buf;
326 if (register_size (current_gdbarch, regno) == 8)
327 memcpy (&buf, addr, 8);
328 else
329 buf = *addr;
330 rs6000_ptrace64 (PT_WRITE_GPR, PIDGET (inferior_ptid), nr, 0, (int *)&buf);
331 }
332 }
333
334 if (errno)
335 {
336 perror ("ptrace write");
337 errno = 0;
338 }
339 }
340
341 /* Read from the inferior all registers if REGNO == -1 and just register
342 REGNO otherwise. */
343
344 void
345 fetch_inferior_registers (int regno)
346 {
347 if (regno != -1)
348 fetch_register (regno);
349
350 else
351 {
352 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
353
354 /* Read 32 general purpose registers. */
355 for (regno = tdep->ppc_gp0_regnum;
356 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
357 regno++)
358 {
359 fetch_register (regno);
360 }
361
362 /* Read general purpose floating point registers. */
363 if (tdep->ppc_fp0_regnum >= 0)
364 for (regno = 0; regno < ppc_num_fprs; regno++)
365 fetch_register (tdep->ppc_fp0_regnum + regno);
366
367 /* Read special registers. */
368 fetch_register (PC_REGNUM);
369 fetch_register (tdep->ppc_ps_regnum);
370 fetch_register (tdep->ppc_cr_regnum);
371 fetch_register (tdep->ppc_lr_regnum);
372 fetch_register (tdep->ppc_ctr_regnum);
373 fetch_register (tdep->ppc_xer_regnum);
374 if (tdep->ppc_fpscr_regnum >= 0)
375 fetch_register (tdep->ppc_fpscr_regnum);
376 if (tdep->ppc_mq_regnum >= 0)
377 fetch_register (tdep->ppc_mq_regnum);
378 }
379 }
380
381 /* Store our register values back into the inferior.
382 If REGNO is -1, do this for all registers.
383 Otherwise, REGNO specifies which register (so we can save time). */
384
385 void
386 store_inferior_registers (int regno)
387 {
388 if (regno != -1)
389 store_register (regno);
390
391 else
392 {
393 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
394
395 /* Write general purpose registers first. */
396 for (regno = tdep->ppc_gp0_regnum;
397 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
398 regno++)
399 {
400 store_register (regno);
401 }
402
403 /* Write floating point registers. */
404 if (tdep->ppc_fp0_regnum >= 0)
405 for (regno = 0; regno < ppc_num_fprs; regno++)
406 store_register (tdep->ppc_fp0_regnum + regno);
407
408 /* Write special registers. */
409 store_register (PC_REGNUM);
410 store_register (tdep->ppc_ps_regnum);
411 store_register (tdep->ppc_cr_regnum);
412 store_register (tdep->ppc_lr_regnum);
413 store_register (tdep->ppc_ctr_regnum);
414 store_register (tdep->ppc_xer_regnum);
415 if (tdep->ppc_fpscr_regnum >= 0)
416 store_register (tdep->ppc_fpscr_regnum);
417 if (tdep->ppc_mq_regnum >= 0)
418 store_register (tdep->ppc_mq_regnum);
419 }
420 }
421
422 /* Store in *TO the 32-bit word at 32-bit-aligned ADDR in the child
423 process, which is 64-bit if ARCH64 and 32-bit otherwise. Return
424 success. */
425
426 static int
427 read_word (CORE_ADDR from, int *to, int arch64)
428 {
429 /* Retrieved values may be -1, so infer errors from errno. */
430 errno = 0;
431
432 if (arch64)
433 *to = rs6000_ptrace64 (PT_READ_I, PIDGET (inferior_ptid), from, 0, NULL);
434 else
435 *to = rs6000_ptrace32 (PT_READ_I, PIDGET (inferior_ptid), (int *)(long) from,
436 0, NULL);
437
438 return !errno;
439 }
440
441 /* Copy LEN bytes to or from inferior's memory starting at MEMADDR
442 to debugger memory starting at MYADDR. Copy to inferior if
443 WRITE is nonzero.
444
445 Returns the length copied, which is either the LEN argument or
446 zero. This xfer function does not do partial moves, since
447 deprecated_child_ops doesn't allow memory operations to cross below
448 us in the target stack anyway. */
449
450 int
451 child_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len,
452 int write, struct mem_attrib *attrib,
453 struct target_ops *target)
454 {
455 /* Round starting address down to 32-bit word boundary. */
456 int mask = sizeof (int) - 1;
457 CORE_ADDR addr = memaddr & ~(CORE_ADDR)mask;
458
459 /* Round ending address up to 32-bit word boundary. */
460 int count = ((memaddr + len - addr + mask) & ~(CORE_ADDR)mask)
461 / sizeof (int);
462
463 /* Allocate word transfer buffer. */
464 /* FIXME (alloca): This code, cloned from infptrace.c, is unsafe
465 because it uses alloca to allocate a buffer of arbitrary size.
466 For very large xfers, this could crash GDB's stack. */
467 int *buf = (int *) alloca (count * sizeof (int));
468
469 int arch64 = ARCH64 ();
470 int i;
471
472 if (!write)
473 {
474 /* Retrieve memory a word at a time. */
475 for (i = 0; i < count; i++, addr += sizeof (int))
476 {
477 if (!read_word (addr, buf + i, arch64))
478 return 0;
479 QUIT;
480 }
481
482 /* Copy memory to supplied buffer. */
483 addr -= count * sizeof (int);
484 memcpy (myaddr, (char *)buf + (memaddr - addr), len);
485 }
486 else
487 {
488 /* Fetch leading memory needed for alignment. */
489 if (addr < memaddr)
490 if (!read_word (addr, buf, arch64))
491 return 0;
492
493 /* Fetch trailing memory needed for alignment. */
494 if (addr + count * sizeof (int) > memaddr + len)
495 if (!read_word (addr + (count - 1) * sizeof (int),
496 buf + count - 1, arch64))
497 return 0;
498
499 /* Copy supplied data into memory buffer. */
500 memcpy ((char *)buf + (memaddr - addr), myaddr, len);
501
502 /* Store memory one word at a time. */
503 for (i = 0, errno = 0; i < count; i++, addr += sizeof (int))
504 {
505 if (arch64)
506 rs6000_ptrace64 (PT_WRITE_D, PIDGET (inferior_ptid), addr, buf[i], NULL);
507 else
508 rs6000_ptrace32 (PT_WRITE_D, PIDGET (inferior_ptid), (int *)(long) addr,
509 buf[i], NULL);
510
511 if (errno)
512 return 0;
513 QUIT;
514 }
515 }
516
517 return len;
518 }
519
520 /* Execute one dummy breakpoint instruction. This way we give the kernel
521 a chance to do some housekeeping and update inferior's internal data,
522 including u_area. */
523
524 static void
525 exec_one_dummy_insn (void)
526 {
527 #define DUMMY_INSN_ADDR (TEXT_SEGMENT_BASE)+0x200
528
529 char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
530 int ret, status, pid;
531 CORE_ADDR prev_pc;
532
533 /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
534 assume that this address will never be executed again by the real
535 code. */
536
537 target_insert_breakpoint (DUMMY_INSN_ADDR, shadow_contents);
538
539 /* You might think this could be done with a single ptrace call, and
540 you'd be correct for just about every platform I've ever worked
541 on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
542 the inferior never hits the breakpoint (it's also worth noting
543 powerpc-ibm-aix4.1.3 works correctly). */
544 prev_pc = read_pc ();
545 write_pc (DUMMY_INSN_ADDR);
546 if (ARCH64 ())
547 ret = rs6000_ptrace64 (PT_CONTINUE, PIDGET (inferior_ptid), 1, 0, NULL);
548 else
549 ret = rs6000_ptrace32 (PT_CONTINUE, PIDGET (inferior_ptid), (int *)1, 0, NULL);
550
551 if (ret != 0)
552 perror ("pt_continue");
553
554 do
555 {
556 pid = wait (&status);
557 }
558 while (pid != PIDGET (inferior_ptid));
559
560 write_pc (prev_pc);
561 target_remove_breakpoint (DUMMY_INSN_ADDR, shadow_contents);
562 }
563
564 /* Fetch registers from the register section in core bfd. */
565
566 static void
567 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
568 int which, CORE_ADDR reg_addr)
569 {
570 CoreRegs *regs;
571 int regi;
572 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
573
574 if (which != 0)
575 {
576 fprintf_unfiltered
577 (gdb_stderr,
578 "Gdb error: unknown parameter to fetch_core_registers().\n");
579 return;
580 }
581
582 regs = (CoreRegs *) core_reg_sect;
583
584 /* Put the register values from the core file section in the regcache. */
585
586 if (ARCH64 ())
587 {
588 for (regi = 0; regi < ppc_num_gprs; regi++)
589 regcache_raw_supply (current_regcache, tdep->ppc_gp0_regnum + regi,
590 (char *) &regs->r64.gpr[regi]);
591
592 if (tdep->ppc_fp0_regnum >= 0)
593 for (regi = 0; regi < ppc_num_fprs; regi++)
594 regcache_raw_supply (current_regcache, tdep->ppc_fp0_regnum + regi,
595 (char *) &regs->r64.fpr[regi]);
596
597 regcache_raw_supply (current_regcache, PC_REGNUM,
598 (char *) &regs->r64.iar);
599 regcache_raw_supply (current_regcache, tdep->ppc_ps_regnum,
600 (char *) &regs->r64.msr);
601 regcache_raw_supply (current_regcache, tdep->ppc_cr_regnum,
602 (char *) &regs->r64.cr);
603 regcache_raw_supply (current_regcache, tdep->ppc_lr_regnum,
604 (char *) &regs->r64.lr);
605 regcache_raw_supply (current_regcache, tdep->ppc_ctr_regnum,
606 (char *) &regs->r64.ctr);
607 regcache_raw_supply (current_regcache, tdep->ppc_xer_regnum,
608 (char *) &regs->r64.xer);
609 if (tdep->ppc_fpscr_regnum >= 0)
610 regcache_raw_supply (current_regcache, tdep->ppc_fpscr_regnum,
611 (char *) &regs->r64.fpscr);
612 }
613 else
614 {
615 for (regi = 0; regi < ppc_num_gprs; regi++)
616 regcache_raw_supply (current_regcache, tdep->ppc_gp0_regnum + regi,
617 (char *) &regs->r32.gpr[regi]);
618
619 if (tdep->ppc_fp0_regnum >= 0)
620 for (regi = 0; regi < ppc_num_fprs; regi++)
621 regcache_raw_supply (current_regcache, tdep->ppc_fp0_regnum + regi,
622 (char *) &regs->r32.fpr[regi]);
623
624 regcache_raw_supply (current_regcache, PC_REGNUM,
625 (char *) &regs->r32.iar);
626 regcache_raw_supply (current_regcache, tdep->ppc_ps_regnum,
627 (char *) &regs->r32.msr);
628 regcache_raw_supply (current_regcache, tdep->ppc_cr_regnum,
629 (char *) &regs->r32.cr);
630 regcache_raw_supply (current_regcache, tdep->ppc_lr_regnum,
631 (char *) &regs->r32.lr);
632 regcache_raw_supply (current_regcache, tdep->ppc_ctr_regnum,
633 (char *) &regs->r32.ctr);
634 regcache_raw_supply (current_regcache, tdep->ppc_xer_regnum,
635 (char *) &regs->r32.xer);
636 if (tdep->ppc_fpscr_regnum >= 0)
637 regcache_raw_supply (current_regcache, tdep->ppc_fpscr_regnum,
638 (char *) &regs->r32.fpscr);
639 if (tdep->ppc_mq_regnum >= 0)
640 regcache_raw_supply (current_regcache, tdep->ppc_mq_regnum,
641 (char *) &regs->r32.mq);
642 }
643 }
644 \f
645
646 /* Copy information about text and data sections from LDI to VP for a 64-bit
647 process if ARCH64 and for a 32-bit process otherwise. */
648
649 static void
650 vmap_secs (struct vmap *vp, LdInfo *ldi, int arch64)
651 {
652 if (arch64)
653 {
654 vp->tstart = (CORE_ADDR) ldi->l64.ldinfo_textorg;
655 vp->tend = vp->tstart + ldi->l64.ldinfo_textsize;
656 vp->dstart = (CORE_ADDR) ldi->l64.ldinfo_dataorg;
657 vp->dend = vp->dstart + ldi->l64.ldinfo_datasize;
658 }
659 else
660 {
661 vp->tstart = (unsigned long) ldi->l32.ldinfo_textorg;
662 vp->tend = vp->tstart + ldi->l32.ldinfo_textsize;
663 vp->dstart = (unsigned long) ldi->l32.ldinfo_dataorg;
664 vp->dend = vp->dstart + ldi->l32.ldinfo_datasize;
665 }
666
667 /* The run time loader maps the file header in addition to the text
668 section and returns a pointer to the header in ldinfo_textorg.
669 Adjust the text start address to point to the real start address
670 of the text section. */
671 vp->tstart += vp->toffs;
672 }
673
674 /* handle symbol translation on vmapping */
675
676 static void
677 vmap_symtab (struct vmap *vp)
678 {
679 struct objfile *objfile;
680 struct section_offsets *new_offsets;
681 int i;
682
683 objfile = vp->objfile;
684 if (objfile == NULL)
685 {
686 /* OK, it's not an objfile we opened ourselves.
687 Currently, that can only happen with the exec file, so
688 relocate the symbols for the symfile. */
689 if (symfile_objfile == NULL)
690 return;
691 objfile = symfile_objfile;
692 }
693 else if (!vp->loaded)
694 /* If symbols are not yet loaded, offsets are not yet valid. */
695 return;
696
697 new_offsets =
698 (struct section_offsets *)
699 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
700
701 for (i = 0; i < objfile->num_sections; ++i)
702 new_offsets->offsets[i] = ANOFFSET (objfile->section_offsets, i);
703
704 /* The symbols in the object file are linked to the VMA of the section,
705 relocate them VMA relative. */
706 new_offsets->offsets[SECT_OFF_TEXT (objfile)] = vp->tstart - vp->tvma;
707 new_offsets->offsets[SECT_OFF_DATA (objfile)] = vp->dstart - vp->dvma;
708 new_offsets->offsets[SECT_OFF_BSS (objfile)] = vp->dstart - vp->dvma;
709
710 objfile_relocate (objfile, new_offsets);
711 }
712 \f
713 /* Add symbols for an objfile. */
714
715 static int
716 objfile_symbol_add (void *arg)
717 {
718 struct objfile *obj = (struct objfile *) arg;
719
720 syms_from_objfile (obj, NULL, 0, 0, 0, 0);
721 new_symfile_objfile (obj, 0, 0);
722 return 1;
723 }
724
725 /* Add symbols for a vmap. Return zero upon error. */
726
727 int
728 vmap_add_symbols (struct vmap *vp)
729 {
730 if (catch_errors (objfile_symbol_add, vp->objfile,
731 "Error while reading shared library symbols:\n",
732 RETURN_MASK_ALL))
733 {
734 /* Note this is only done if symbol reading was successful. */
735 vp->loaded = 1;
736 vmap_symtab (vp);
737 return 1;
738 }
739 return 0;
740 }
741
742 /* Add a new vmap entry based on ldinfo() information.
743
744 If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a
745 core file), the caller should set it to -1, and we will open the file.
746
747 Return the vmap new entry. */
748
749 static struct vmap *
750 add_vmap (LdInfo *ldi)
751 {
752 bfd *abfd, *last;
753 char *mem, *objname, *filename;
754 struct objfile *obj;
755 struct vmap *vp;
756 int fd;
757 ARCH64_DECL (arch64);
758
759 /* This ldi structure was allocated using alloca() in
760 xcoff_relocate_symtab(). Now we need to have persistent object
761 and member names, so we should save them. */
762
763 filename = LDI_FILENAME (ldi, arch64);
764 mem = filename + strlen (filename) + 1;
765 mem = savestring (mem, strlen (mem));
766 objname = savestring (filename, strlen (filename));
767
768 fd = LDI_FD (ldi, arch64);
769 if (fd < 0)
770 /* Note that this opens it once for every member; a possible
771 enhancement would be to only open it once for every object. */
772 abfd = bfd_openr (objname, gnutarget);
773 else
774 abfd = bfd_fdopenr (objname, gnutarget, fd);
775 if (!abfd)
776 {
777 warning ("Could not open `%s' as an executable file: %s",
778 objname, bfd_errmsg (bfd_get_error ()));
779 return NULL;
780 }
781
782 /* make sure we have an object file */
783
784 if (bfd_check_format (abfd, bfd_object))
785 vp = map_vmap (abfd, 0);
786
787 else if (bfd_check_format (abfd, bfd_archive))
788 {
789 last = 0;
790 /* FIXME??? am I tossing BFDs? bfd? */
791 while ((last = bfd_openr_next_archived_file (abfd, last)))
792 if (DEPRECATED_STREQ (mem, last->filename))
793 break;
794
795 if (!last)
796 {
797 warning ("\"%s\": member \"%s\" missing.", objname, mem);
798 bfd_close (abfd);
799 return NULL;
800 }
801
802 if (!bfd_check_format (last, bfd_object))
803 {
804 warning ("\"%s\": member \"%s\" not in executable format: %s.",
805 objname, mem, bfd_errmsg (bfd_get_error ()));
806 bfd_close (last);
807 bfd_close (abfd);
808 return NULL;
809 }
810
811 vp = map_vmap (last, abfd);
812 }
813 else
814 {
815 warning ("\"%s\": not in executable format: %s.",
816 objname, bfd_errmsg (bfd_get_error ()));
817 bfd_close (abfd);
818 return NULL;
819 }
820 obj = allocate_objfile (vp->bfd, 0);
821 vp->objfile = obj;
822
823 /* Always add symbols for the main objfile. */
824 if (vp == vmap || auto_solib_add)
825 vmap_add_symbols (vp);
826 return vp;
827 }
828 \f
829 /* update VMAP info with ldinfo() information
830 Input is ptr to ldinfo() results. */
831
832 static void
833 vmap_ldinfo (LdInfo *ldi)
834 {
835 struct stat ii, vi;
836 struct vmap *vp;
837 int got_one, retried;
838 int got_exec_file = 0;
839 uint next;
840 int arch64 = ARCH64 ();
841
842 /* For each *ldi, see if we have a corresponding *vp.
843 If so, update the mapping, and symbol table.
844 If not, add an entry and symbol table. */
845
846 do
847 {
848 char *name = LDI_FILENAME (ldi, arch64);
849 char *memb = name + strlen (name) + 1;
850 int fd = LDI_FD (ldi, arch64);
851
852 retried = 0;
853
854 if (fstat (fd, &ii) < 0)
855 {
856 /* The kernel sets ld_info to -1, if the process is still using the
857 object, and the object is removed. Keep the symbol info for the
858 removed object and issue a warning. */
859 warning ("%s (fd=%d) has disappeared, keeping its symbols",
860 name, fd);
861 continue;
862 }
863 retry:
864 for (got_one = 0, vp = vmap; vp; vp = vp->nxt)
865 {
866 struct objfile *objfile;
867
868 /* First try to find a `vp', which is the same as in ldinfo.
869 If not the same, just continue and grep the next `vp'. If same,
870 relocate its tstart, tend, dstart, dend values. If no such `vp'
871 found, get out of this for loop, add this ldi entry as a new vmap
872 (add_vmap) and come back, find its `vp' and so on... */
873
874 /* The filenames are not always sufficient to match on. */
875
876 if ((name[0] == '/' && !DEPRECATED_STREQ (name, vp->name))
877 || (memb[0] && !DEPRECATED_STREQ (memb, vp->member)))
878 continue;
879
880 /* See if we are referring to the same file.
881 We have to check objfile->obfd, symfile.c:reread_symbols might
882 have updated the obfd after a change. */
883 objfile = vp->objfile == NULL ? symfile_objfile : vp->objfile;
884 if (objfile == NULL
885 || objfile->obfd == NULL
886 || bfd_stat (objfile->obfd, &vi) < 0)
887 {
888 warning ("Unable to stat %s, keeping its symbols", name);
889 continue;
890 }
891
892 if (ii.st_dev != vi.st_dev || ii.st_ino != vi.st_ino)
893 continue;
894
895 if (!retried)
896 close (fd);
897
898 ++got_one;
899
900 /* Found a corresponding VMAP. Remap! */
901
902 vmap_secs (vp, ldi, arch64);
903
904 /* The objfile is only NULL for the exec file. */
905 if (vp->objfile == NULL)
906 got_exec_file = 1;
907
908 /* relocate symbol table(s). */
909 vmap_symtab (vp);
910
911 /* Announce new object files. Doing this after symbol relocation
912 makes aix-thread.c's job easier. */
913 if (deprecated_target_new_objfile_hook && vp->objfile)
914 deprecated_target_new_objfile_hook (vp->objfile);
915
916 /* There may be more, so we don't break out of the loop. */
917 }
918
919 /* if there was no matching *vp, we must perforce create the sucker(s) */
920 if (!got_one && !retried)
921 {
922 add_vmap (ldi);
923 ++retried;
924 goto retry;
925 }
926 }
927 while ((next = LDI_NEXT (ldi, arch64))
928 && (ldi = (void *) (next + (char *) ldi)));
929
930 /* If we don't find the symfile_objfile anywhere in the ldinfo, it
931 is unlikely that the symbol file is relocated to the proper
932 address. And we might have attached to a process which is
933 running a different copy of the same executable. */
934 if (symfile_objfile != NULL && !got_exec_file)
935 {
936 warning ("Symbol file %s\nis not mapped; discarding it.\n\
937 If in fact that file has symbols which the mapped files listed by\n\
938 \"info files\" lack, you can load symbols with the \"symbol-file\" or\n\
939 \"add-symbol-file\" commands (note that you must take care of relocating\n\
940 symbols to the proper address).",
941 symfile_objfile->name);
942 free_objfile (symfile_objfile);
943 symfile_objfile = NULL;
944 }
945 breakpoint_re_set ();
946 }
947 \f
948 /* As well as symbol tables, exec_sections need relocation. After
949 the inferior process' termination, there will be a relocated symbol
950 table exist with no corresponding inferior process. At that time, we
951 need to use `exec' bfd, rather than the inferior process's memory space
952 to look up symbols.
953
954 `exec_sections' need to be relocated only once, as long as the exec
955 file remains unchanged.
956 */
957
958 static void
959 vmap_exec (void)
960 {
961 static bfd *execbfd;
962 int i;
963
964 if (execbfd == exec_bfd)
965 return;
966
967 execbfd = exec_bfd;
968
969 if (!vmap || !exec_ops.to_sections)
970 error ("vmap_exec: vmap or exec_ops.to_sections == 0\n");
971
972 for (i = 0; &exec_ops.to_sections[i] < exec_ops.to_sections_end; i++)
973 {
974 if (DEPRECATED_STREQ (".text", exec_ops.to_sections[i].the_bfd_section->name))
975 {
976 exec_ops.to_sections[i].addr += vmap->tstart - vmap->tvma;
977 exec_ops.to_sections[i].endaddr += vmap->tstart - vmap->tvma;
978 }
979 else if (DEPRECATED_STREQ (".data", exec_ops.to_sections[i].the_bfd_section->name))
980 {
981 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
982 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
983 }
984 else if (DEPRECATED_STREQ (".bss", exec_ops.to_sections[i].the_bfd_section->name))
985 {
986 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
987 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
988 }
989 }
990 }
991
992 /* Set the current architecture from the host running GDB. Called when
993 starting a child process. */
994
995 static void
996 set_host_arch (int pid)
997 {
998 enum bfd_architecture arch;
999 unsigned long mach;
1000 bfd abfd;
1001 struct gdbarch_info info;
1002
1003 if (__power_rs ())
1004 {
1005 arch = bfd_arch_rs6000;
1006 mach = bfd_mach_rs6k;
1007 }
1008 else
1009 {
1010 arch = bfd_arch_powerpc;
1011 mach = bfd_mach_ppc;
1012 }
1013
1014 /* FIXME: schauer/2002-02-25:
1015 We don't know if we are executing a 32 or 64 bit executable,
1016 and have no way to pass the proper word size to rs6000_gdbarch_init.
1017 So we have to avoid switching to a new architecture, if the architecture
1018 matches already.
1019 Blindly calling rs6000_gdbarch_init used to work in older versions of
1020 GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
1021 determine the wordsize. */
1022 if (exec_bfd)
1023 {
1024 const struct bfd_arch_info *exec_bfd_arch_info;
1025
1026 exec_bfd_arch_info = bfd_get_arch_info (exec_bfd);
1027 if (arch == exec_bfd_arch_info->arch)
1028 return;
1029 }
1030
1031 bfd_default_set_arch_mach (&abfd, arch, mach);
1032
1033 gdbarch_info_init (&info);
1034 info.bfd_arch_info = bfd_get_arch_info (&abfd);
1035 info.abfd = exec_bfd;
1036
1037 if (!gdbarch_update_p (info))
1038 {
1039 internal_error (__FILE__, __LINE__,
1040 "set_host_arch: failed to select architecture");
1041 }
1042 }
1043
1044 \f
1045 /* xcoff_relocate_symtab - hook for symbol table relocation.
1046 also reads shared libraries.. */
1047
1048 void
1049 xcoff_relocate_symtab (unsigned int pid)
1050 {
1051 int load_segs = 64; /* number of load segments */
1052 int rc;
1053 LdInfo *ldi = NULL;
1054 int arch64 = ARCH64 ();
1055 int ldisize = arch64 ? sizeof (ldi->l64) : sizeof (ldi->l32);
1056 int size;
1057
1058 do
1059 {
1060 size = load_segs * ldisize;
1061 ldi = (void *) xrealloc (ldi, size);
1062
1063 #if 0
1064 /* According to my humble theory, AIX has some timing problems and
1065 when the user stack grows, kernel doesn't update stack info in time
1066 and ptrace calls step on user stack. That is why we sleep here a
1067 little, and give kernel to update its internals. */
1068 usleep (36000);
1069 #endif
1070
1071 if (arch64)
1072 rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, size, NULL);
1073 else
1074 rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi, size, NULL);
1075
1076 if (rc == -1)
1077 {
1078 if (errno == ENOMEM)
1079 load_segs *= 2;
1080 else
1081 perror_with_name ("ptrace ldinfo");
1082 }
1083 else
1084 {
1085 vmap_ldinfo (ldi);
1086 vmap_exec (); /* relocate the exec and core sections as well. */
1087 }
1088 } while (rc == -1);
1089 if (ldi)
1090 xfree (ldi);
1091 }
1092 \f
1093 /* Core file stuff. */
1094
1095 /* Relocate symtabs and read in shared library info, based on symbols
1096 from the core file. */
1097
1098 void
1099 xcoff_relocate_core (struct target_ops *target)
1100 {
1101 struct bfd_section *ldinfo_sec;
1102 int offset = 0;
1103 LdInfo *ldi;
1104 struct vmap *vp;
1105 int arch64 = ARCH64 ();
1106
1107 /* Size of a struct ld_info except for the variable-length filename. */
1108 int nonfilesz = (int)LDI_FILENAME ((LdInfo *)0, arch64);
1109
1110 /* Allocated size of buffer. */
1111 int buffer_size = nonfilesz;
1112 char *buffer = xmalloc (buffer_size);
1113 struct cleanup *old = make_cleanup (free_current_contents, &buffer);
1114
1115 ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
1116 if (ldinfo_sec == NULL)
1117 {
1118 bfd_err:
1119 fprintf_filtered (gdb_stderr, "Couldn't get ldinfo from core file: %s\n",
1120 bfd_errmsg (bfd_get_error ()));
1121 do_cleanups (old);
1122 return;
1123 }
1124 do
1125 {
1126 int i;
1127 int names_found = 0;
1128
1129 /* Read in everything but the name. */
1130 if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer,
1131 offset, nonfilesz) == 0)
1132 goto bfd_err;
1133
1134 /* Now the name. */
1135 i = nonfilesz;
1136 do
1137 {
1138 if (i == buffer_size)
1139 {
1140 buffer_size *= 2;
1141 buffer = xrealloc (buffer, buffer_size);
1142 }
1143 if (bfd_get_section_contents (core_bfd, ldinfo_sec, &buffer[i],
1144 offset + i, 1) == 0)
1145 goto bfd_err;
1146 if (buffer[i++] == '\0')
1147 ++names_found;
1148 }
1149 while (names_found < 2);
1150
1151 ldi = (LdInfo *) buffer;
1152
1153 /* Can't use a file descriptor from the core file; need to open it. */
1154 if (arch64)
1155 ldi->l64.ldinfo_fd = -1;
1156 else
1157 ldi->l32.ldinfo_fd = -1;
1158
1159 /* The first ldinfo is for the exec file, allocated elsewhere. */
1160 if (offset == 0 && vmap != NULL)
1161 vp = vmap;
1162 else
1163 vp = add_vmap (ldi);
1164
1165 /* Process next shared library upon error. */
1166 offset += LDI_NEXT (ldi, arch64);
1167 if (vp == NULL)
1168 continue;
1169
1170 vmap_secs (vp, ldi, arch64);
1171
1172 /* Unless this is the exec file,
1173 add our sections to the section table for the core target. */
1174 if (vp != vmap)
1175 {
1176 struct section_table *stp;
1177
1178 target_resize_to_sections (target, 2);
1179 stp = target->to_sections_end - 2;
1180
1181 stp->bfd = vp->bfd;
1182 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".text");
1183 stp->addr = vp->tstart;
1184 stp->endaddr = vp->tend;
1185 stp++;
1186
1187 stp->bfd = vp->bfd;
1188 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".data");
1189 stp->addr = vp->dstart;
1190 stp->endaddr = vp->dend;
1191 }
1192
1193 vmap_symtab (vp);
1194
1195 if (deprecated_target_new_objfile_hook && vp != vmap && vp->objfile)
1196 deprecated_target_new_objfile_hook (vp->objfile);
1197 }
1198 while (LDI_NEXT (ldi, arch64) != 0);
1199 vmap_exec ();
1200 breakpoint_re_set ();
1201 do_cleanups (old);
1202 }
1203
1204 int
1205 kernel_u_size (void)
1206 {
1207 return (sizeof (struct user));
1208 }
1209 \f
1210 /* Under AIX, we have to pass the correct TOC pointer to a function
1211 when calling functions in the inferior.
1212 We try to find the relative toc offset of the objfile containing PC
1213 and add the current load address of the data segment from the vmap. */
1214
1215 static CORE_ADDR
1216 find_toc_address (CORE_ADDR pc)
1217 {
1218 struct vmap *vp;
1219 extern CORE_ADDR get_toc_offset (struct objfile *); /* xcoffread.c */
1220
1221 for (vp = vmap; vp; vp = vp->nxt)
1222 {
1223 if (pc >= vp->tstart && pc < vp->tend)
1224 {
1225 /* vp->objfile is only NULL for the exec file. */
1226 return vp->dstart + get_toc_offset (vp->objfile == NULL
1227 ? symfile_objfile
1228 : vp->objfile);
1229 }
1230 }
1231 error ("Unable to find TOC entry for pc %s\n", hex_string (pc));
1232 }
1233 \f
1234 /* Register that we are able to handle rs6000 core file formats. */
1235
1236 static struct core_fns rs6000_core_fns =
1237 {
1238 bfd_target_xcoff_flavour, /* core_flavour */
1239 default_check_format, /* check_format */
1240 default_core_sniffer, /* core_sniffer */
1241 fetch_core_registers, /* core_read_registers */
1242 NULL /* next */
1243 };
1244
1245 void
1246 _initialize_core_rs6000 (void)
1247 {
1248 /* Initialize hook in rs6000-tdep.c for determining the TOC address when
1249 calling functions in the inferior. */
1250 rs6000_find_toc_address_hook = find_toc_address;
1251
1252 /* Initialize hook in rs6000-tdep.c to set the current architecture when
1253 starting a child process. */
1254 rs6000_set_host_arch_hook = set_host_arch;
1255
1256 deprecated_add_core_fns (&rs6000_core_fns);
1257 }
This page took 0.054284 seconds and 4 git commands to generate.