* gdb.texinfo (Overlays): New chapter, documenting GDB's
[deliverable/binutils-gdb.git] / gdb / rs6000-nat.c
1 /* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "inferior.h"
25 #include "target.h"
26 #include "gdbcore.h"
27 #include "xcoffsolib.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "libbfd.h" /* For bfd_cache_lookup (FIXME) */
31 #include "bfd.h"
32 #include "gdb-stabs.h"
33 #include "regcache.h"
34
35 #include <sys/ptrace.h>
36 #include <sys/reg.h>
37
38 #include <sys/param.h>
39 #include <sys/dir.h>
40 #include <sys/user.h>
41 #include <signal.h>
42 #include <sys/ioctl.h>
43 #include <fcntl.h>
44 #include <errno.h>
45
46 #include <a.out.h>
47 #include <sys/file.h>
48 #include "gdb_stat.h"
49 #include <sys/core.h>
50 #define __LDINFO_PTRACE32__ /* for __ld_info32 */
51 #define __LDINFO_PTRACE64__ /* for __ld_info64 */
52 #include <sys/ldr.h>
53 #include <sys/systemcfg.h>
54
55 /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
56 debugging 32-bit and 64-bit processes. Define a typedef and macros for
57 accessing fields in the appropriate structures. */
58
59 /* In 32-bit compilation mode (which is the only mode from which ptrace()
60 works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
61
62 #ifdef __ld_info32
63 # define ARCH3264
64 #endif
65
66 /* Return whether the current architecture is 64-bit. */
67
68 #ifndef ARCH3264
69 # define ARCH64() 0
70 #else
71 # define ARCH64() (REGISTER_RAW_SIZE (0) == 8)
72 #endif
73
74 /* Union of 32-bit and 64-bit ".reg" core file sections. */
75
76 typedef union {
77 #ifdef ARCH3264
78 struct __context64 r64;
79 #else
80 struct mstsave r64;
81 #endif
82 struct mstsave r32;
83 } CoreRegs;
84
85 /* Union of 32-bit and 64-bit versions of ld_info. */
86
87 typedef union {
88 #ifndef ARCH3264
89 struct ld_info l32;
90 struct ld_info l64;
91 #else
92 struct __ld_info32 l32;
93 struct __ld_info64 l64;
94 #endif
95 } LdInfo;
96
97 /* If compiling with 32-bit and 64-bit debugging capability (e.g. AIX 4.x),
98 declare and initialize a variable named VAR suitable for use as the arch64
99 parameter to the various LDI_*() macros. */
100
101 #ifndef ARCH3264
102 # define ARCH64_DECL(var)
103 #else
104 # define ARCH64_DECL(var) int var = ARCH64 ()
105 #endif
106
107 /* Return LDI's FIELD for a 64-bit process if ARCH64 and for a 32-bit process
108 otherwise. This technique only works for FIELDs with the same data type in
109 32-bit and 64-bit versions of ld_info. */
110
111 #ifndef ARCH3264
112 # define LDI_FIELD(ldi, arch64, field) (ldi)->l32.ldinfo_##field
113 #else
114 # define LDI_FIELD(ldi, arch64, field) \
115 (arch64 ? (ldi)->l64.ldinfo_##field : (ldi)->l32.ldinfo_##field)
116 #endif
117
118 /* Return various LDI fields for a 64-bit process if ARCH64 and for a 32-bit
119 process otherwise. */
120
121 #define LDI_NEXT(ldi, arch64) LDI_FIELD(ldi, arch64, next)
122 #define LDI_FD(ldi, arch64) LDI_FIELD(ldi, arch64, fd)
123 #define LDI_FILENAME(ldi, arch64) LDI_FIELD(ldi, arch64, filename)
124
125 extern struct vmap *map_vmap (bfd * bf, bfd * arch);
126
127 extern struct target_ops exec_ops;
128
129 static void vmap_exec (void);
130
131 static void vmap_ldinfo (LdInfo *);
132
133 static struct vmap *add_vmap (LdInfo *);
134
135 static int objfile_symbol_add (void *);
136
137 static void vmap_symtab (struct vmap *);
138
139 static void fetch_core_registers (char *, unsigned int, int, CORE_ADDR);
140
141 static void exec_one_dummy_insn (void);
142
143 extern void
144 fixup_breakpoints (CORE_ADDR low, CORE_ADDR high, CORE_ADDR delta);
145
146 /* Conversion from gdb-to-system special purpose register numbers. */
147
148 static int special_regs[] =
149 {
150 IAR, /* PC_REGNUM */
151 MSR, /* PS_REGNUM */
152 CR, /* CR_REGNUM */
153 LR, /* LR_REGNUM */
154 CTR, /* CTR_REGNUM */
155 XER, /* XER_REGNUM */
156 MQ /* MQ_REGNUM */
157 };
158
159 /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
160
161 static int
162 ptrace32 (int req, int id, int *addr, int data, int *buf)
163 {
164 int ret = ptrace (req, id, (int *)addr, data, buf);
165 #if 0
166 printf ("ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
167 req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
168 #endif
169 return ret;
170 }
171
172 /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
173
174 static int
175 ptrace64 (int req, int id, long long addr, int data, int *buf)
176 {
177 #ifdef ARCH3264
178 int ret = ptracex (req, id, addr, data, buf);
179 #else
180 int ret = 0;
181 #endif
182 #if 0
183 printf ("ptrace64 (%d, %d, 0x%llx, %08x, 0x%x) = 0x%x\n",
184 req, id, addr, data, (unsigned int)buf, ret);
185 #endif
186 return ret;
187 }
188
189 /* Fetch register REGNO from the inferior. */
190
191 static void
192 fetch_register (int regno)
193 {
194 int *addr = (int *) &registers[REGISTER_BYTE (regno)];
195 int nr;
196
197 /* Retrieved values may be -1, so infer errors from errno. */
198 errno = 0;
199
200 /* Floating-point registers. */
201 if (regno >= FP0_REGNUM && regno <= FPLAST_REGNUM)
202 {
203 nr = regno - FP0_REGNUM + FPR0;
204 ptrace32 (PT_READ_FPR, PIDGET (inferior_ptid), addr, nr, 0);
205 }
206
207 /* Bogus register number. */
208 else if (regno > LAST_UISA_SP_REGNUM)
209 fprintf_unfiltered (gdb_stderr,
210 "gdb error: register no %d not implemented.\n",
211 regno);
212
213 /* Fixed-point registers. */
214 else
215 {
216 if (regno >= FIRST_UISA_SP_REGNUM)
217 nr = special_regs[regno - FIRST_UISA_SP_REGNUM];
218 else
219 nr = regno;
220
221 if (!ARCH64 ())
222 *addr = ptrace32 (PT_READ_GPR, PIDGET (inferior_ptid), (int *)nr, 0, 0);
223 else
224 {
225 /* PT_READ_GPR requires the buffer parameter to point to long long,
226 even if the register is really only 32 bits. */
227 long long buf;
228 ptrace64 (PT_READ_GPR, PIDGET (inferior_ptid), nr, 0, (int *)&buf);
229 if (REGISTER_RAW_SIZE (regno) == 8)
230 memcpy (addr, &buf, 8);
231 else
232 *addr = buf;
233 }
234 }
235
236 if (!errno)
237 register_valid[regno] = 1;
238 else
239 {
240 #if 0
241 /* FIXME: this happens 3 times at the start of each 64-bit program. */
242 perror ("ptrace read");
243 #endif
244 errno = 0;
245 }
246 }
247
248 /* Store register REGNO back into the inferior. */
249
250 static void
251 store_register (int regno)
252 {
253 int *addr = (int *) &registers[REGISTER_BYTE (regno)];
254 int nr;
255
256 /* -1 can be a successful return value, so infer errors from errno. */
257 errno = 0;
258
259 /* Floating-point registers. */
260 if (regno >= FP0_REGNUM && regno <= FPLAST_REGNUM)
261 {
262 nr = regno - FP0_REGNUM + FPR0;
263 ptrace32 (PT_WRITE_FPR, PIDGET (inferior_ptid), addr, nr, 0);
264 }
265
266 /* Bogus register number. */
267 else if (regno > LAST_UISA_SP_REGNUM)
268 {
269 if (regno >= NUM_REGS)
270 fprintf_unfiltered (gdb_stderr,
271 "gdb error: register no %d not implemented.\n",
272 regno);
273 }
274
275 /* Fixed-point registers. */
276 else
277 {
278 if (regno == SP_REGNUM)
279 /* Execute one dummy instruction (which is a breakpoint) in inferior
280 process to give kernel a chance to do internal housekeeping.
281 Otherwise the following ptrace(2) calls will mess up user stack
282 since kernel will get confused about the bottom of the stack
283 (%sp). */
284 exec_one_dummy_insn ();
285
286 if (regno >= FIRST_UISA_SP_REGNUM)
287 nr = special_regs[regno - FIRST_UISA_SP_REGNUM];
288 else
289 nr = regno;
290
291 if (!ARCH64 ())
292 ptrace32 (PT_WRITE_GPR, PIDGET (inferior_ptid), (int *)nr, *addr, 0);
293 else
294 {
295 /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
296 area, even if the register is really only 32 bits. */
297 long long buf;
298 if (REGISTER_RAW_SIZE (regno) == 8)
299 memcpy (&buf, addr, 8);
300 else
301 buf = *addr;
302 ptrace64 (PT_WRITE_GPR, PIDGET (inferior_ptid), nr, 0, (int *)&buf);
303 }
304 }
305
306 if (errno)
307 {
308 perror ("ptrace write");
309 errno = 0;
310 }
311 }
312
313 /* Read from the inferior all registers if REGNO == -1 and just register
314 REGNO otherwise. */
315
316 void
317 fetch_inferior_registers (int regno)
318 {
319 if (regno != -1)
320 fetch_register (regno);
321
322 else
323 {
324 /* read 32 general purpose registers. */
325 for (regno = 0; regno < 32; regno++)
326 fetch_register (regno);
327
328 /* read general purpose floating point registers. */
329 for (regno = FP0_REGNUM; regno <= FPLAST_REGNUM; regno++)
330 fetch_register (regno);
331
332 /* read special registers. */
333 for (regno = FIRST_UISA_SP_REGNUM; regno <= LAST_UISA_SP_REGNUM; regno++)
334 fetch_register (regno);
335 }
336 }
337
338 /* Store our register values back into the inferior.
339 If REGNO is -1, do this for all registers.
340 Otherwise, REGNO specifies which register (so we can save time). */
341
342 void
343 store_inferior_registers (int regno)
344 {
345 if (regno != -1)
346 store_register (regno);
347
348 else
349 {
350 /* write general purpose registers first! */
351 for (regno = GPR0; regno <= GPR31; regno++)
352 store_register (regno);
353
354 /* write floating point registers now. */
355 for (regno = FP0_REGNUM; regno <= FPLAST_REGNUM; regno++)
356 store_register (regno);
357
358 /* write special registers. */
359
360 for (regno = FIRST_UISA_SP_REGNUM; regno <= LAST_UISA_SP_REGNUM; regno++)
361 store_register (regno);
362 }
363 }
364
365 /* Store in *TO the 32-bit word at 32-bit-aligned ADDR in the child
366 process, which is 64-bit if ARCH64 and 32-bit otherwise. Return
367 success. */
368
369 static int
370 read_word (CORE_ADDR from, int *to, int arch64)
371 {
372 /* Retrieved values may be -1, so infer errors from errno. */
373 errno = 0;
374
375 if (arch64)
376 *to = ptrace64 (PT_READ_I, PIDGET (inferior_ptid), from, 0, NULL);
377 else
378 *to = ptrace32 (PT_READ_I, PIDGET (inferior_ptid), (int *)(long) from,
379 0, NULL);
380
381 return !errno;
382 }
383
384 /* Copy LEN bytes to or from inferior's memory starting at MEMADDR
385 to debugger memory starting at MYADDR. Copy to inferior if
386 WRITE is nonzero.
387
388 Returns the length copied, which is either the LEN argument or zero.
389 This xfer function does not do partial moves, since child_ops
390 doesn't allow memory operations to cross below us in the target stack
391 anyway. */
392
393 int
394 child_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len,
395 int write, struct mem_attrib *attrib,
396 struct target_ops *target)
397 {
398 /* Round starting address down to 32-bit word boundary. */
399 int mask = sizeof (int) - 1;
400 CORE_ADDR addr = memaddr & ~(CORE_ADDR)mask;
401
402 /* Round ending address up to 32-bit word boundary. */
403 int count = ((memaddr + len - addr + mask) & ~(CORE_ADDR)mask)
404 / sizeof (int);
405
406 /* Allocate word transfer buffer. */
407 int *buf = (int *) alloca (count * sizeof (int));
408
409 int arch64 = ARCH64 ();
410 int i;
411
412 if (!write)
413 {
414 /* Retrieve memory a word at a time. */
415 for (i = 0; i < count; i++, addr += sizeof (int))
416 {
417 if (!read_word (addr, buf + i, arch64))
418 return 0;
419 QUIT;
420 }
421
422 /* Copy memory to supplied buffer. */
423 addr -= count * sizeof (int);
424 memcpy (myaddr, (char *)buf + (memaddr - addr), len);
425 }
426 else
427 {
428 /* Fetch leading memory needed for alignment. */
429 if (addr < memaddr)
430 if (!read_word (addr, buf, arch64))
431 return 0;
432
433 /* Fetch trailing memory needed for alignment. */
434 if (addr + count * sizeof (int) > memaddr + len)
435 if (!read_word (addr, buf + count - 1, arch64))
436 return 0;
437
438 /* Copy supplied data into memory buffer. */
439 memcpy ((char *)buf + (memaddr - addr), myaddr, len);
440
441 /* Store memory one word at a time. */
442 for (i = 0, errno = 0; i < count; i++, addr += sizeof (int))
443 {
444 if (arch64)
445 ptrace64 (PT_WRITE_D, PIDGET (inferior_ptid), addr, buf[i], NULL);
446 else
447 ptrace32 (PT_WRITE_D, PIDGET (inferior_ptid), (int *)(long) addr,
448 buf[i], NULL);
449
450 if (errno)
451 return 0;
452 QUIT;
453 }
454 }
455
456 return len;
457 }
458
459 /* Execute one dummy breakpoint instruction. This way we give the kernel
460 a chance to do some housekeeping and update inferior's internal data,
461 including u_area. */
462
463 static void
464 exec_one_dummy_insn (void)
465 {
466 #define DUMMY_INSN_ADDR (TEXT_SEGMENT_BASE)+0x200
467
468 char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
469 int ret, status, pid;
470 CORE_ADDR prev_pc;
471
472 /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
473 assume that this address will never be executed again by the real
474 code. */
475
476 target_insert_breakpoint (DUMMY_INSN_ADDR, shadow_contents);
477
478 /* You might think this could be done with a single ptrace call, and
479 you'd be correct for just about every platform I've ever worked
480 on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
481 the inferior never hits the breakpoint (it's also worth noting
482 powerpc-ibm-aix4.1.3 works correctly). */
483 prev_pc = read_pc ();
484 write_pc (DUMMY_INSN_ADDR);
485 if (ARCH64 ())
486 ret = ptrace64 (PT_CONTINUE, PIDGET (inferior_ptid), 1, 0, NULL);
487 else
488 ret = ptrace32 (PT_CONTINUE, PIDGET (inferior_ptid), (int *)1, 0, NULL);
489
490 if (ret != 0)
491 perror ("pt_continue");
492
493 do
494 {
495 pid = wait (&status);
496 }
497 while (pid != PIDGET (inferior_ptid));
498
499 write_pc (prev_pc);
500 target_remove_breakpoint (DUMMY_INSN_ADDR, shadow_contents);
501 }
502
503 /* Fetch registers from the register section in core bfd. */
504
505 static void
506 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
507 int which, CORE_ADDR reg_addr)
508 {
509 CoreRegs *regs;
510 double *fprs;
511 int arch64, i, size;
512 void *gprs, *sprs[7];
513
514 if (which != 0)
515 {
516 fprintf_unfiltered
517 (gdb_stderr,
518 "Gdb error: unknown parameter to fetch_core_registers().\n");
519 return;
520 }
521
522 arch64 = ARCH64 ();
523 regs = (CoreRegs *) core_reg_sect;
524
525 /* Retrieve register pointers. */
526
527 if (arch64)
528 {
529 gprs = regs->r64.gpr;
530 fprs = regs->r64.fpr;
531 sprs[0] = &regs->r64.iar;
532 sprs[1] = &regs->r64.msr;
533 sprs[2] = &regs->r64.cr;
534 sprs[3] = &regs->r64.lr;
535 sprs[4] = &regs->r64.ctr;
536 sprs[5] = &regs->r64.xer;
537 }
538 else
539 {
540 gprs = regs->r32.gpr;
541 fprs = regs->r32.fpr;
542 sprs[0] = &regs->r32.iar;
543 sprs[1] = &regs->r32.msr;
544 sprs[2] = &regs->r32.cr;
545 sprs[3] = &regs->r32.lr;
546 sprs[4] = &regs->r32.ctr;
547 sprs[5] = &regs->r32.xer;
548 sprs[6] = &regs->r32.mq;
549 }
550
551 /* Copy from pointers to registers[]. */
552
553 memcpy (registers, gprs, 32 * (arch64 ? 8 : 4));
554 memcpy (registers + REGISTER_BYTE (FP0_REGNUM), fprs, 32 * 8);
555 for (i = FIRST_UISA_SP_REGNUM; i <= LAST_UISA_SP_REGNUM; i++)
556 {
557 size = REGISTER_RAW_SIZE (i);
558 if (size)
559 memcpy (registers + REGISTER_BYTE (i),
560 sprs[i - FIRST_UISA_SP_REGNUM], size);
561 }
562 }
563 \f
564
565 /* Copy information about text and data sections from LDI to VP for a 64-bit
566 process if ARCH64 and for a 32-bit process otherwise. */
567
568 static void
569 vmap_secs (struct vmap *vp, LdInfo *ldi, int arch64)
570 {
571 if (arch64)
572 {
573 vp->tstart = (CORE_ADDR) ldi->l64.ldinfo_textorg;
574 vp->tend = vp->tstart + ldi->l64.ldinfo_textsize;
575 vp->dstart = (CORE_ADDR) ldi->l64.ldinfo_dataorg;
576 vp->dend = vp->dstart + ldi->l64.ldinfo_datasize;
577 }
578 else
579 {
580 vp->tstart = (unsigned long) ldi->l32.ldinfo_textorg;
581 vp->tend = vp->tstart + ldi->l32.ldinfo_textsize;
582 vp->dstart = (unsigned long) ldi->l32.ldinfo_dataorg;
583 vp->dend = vp->dstart + ldi->l32.ldinfo_datasize;
584 }
585
586 /* The run time loader maps the file header in addition to the text
587 section and returns a pointer to the header in ldinfo_textorg.
588 Adjust the text start address to point to the real start address
589 of the text section. */
590 vp->tstart += vp->toffs;
591 }
592
593 /* handle symbol translation on vmapping */
594
595 static void
596 vmap_symtab (struct vmap *vp)
597 {
598 register struct objfile *objfile;
599 struct section_offsets *new_offsets;
600 int i;
601
602 objfile = vp->objfile;
603 if (objfile == NULL)
604 {
605 /* OK, it's not an objfile we opened ourselves.
606 Currently, that can only happen with the exec file, so
607 relocate the symbols for the symfile. */
608 if (symfile_objfile == NULL)
609 return;
610 objfile = symfile_objfile;
611 }
612 else if (!vp->loaded)
613 /* If symbols are not yet loaded, offsets are not yet valid. */
614 return;
615
616 new_offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
617
618 for (i = 0; i < objfile->num_sections; ++i)
619 new_offsets->offsets[i] = ANOFFSET (objfile->section_offsets, i);
620
621 /* The symbols in the object file are linked to the VMA of the section,
622 relocate them VMA relative. */
623 new_offsets->offsets[SECT_OFF_TEXT (objfile)] = vp->tstart - vp->tvma;
624 new_offsets->offsets[SECT_OFF_DATA (objfile)] = vp->dstart - vp->dvma;
625 new_offsets->offsets[SECT_OFF_BSS (objfile)] = vp->dstart - vp->dvma;
626
627 objfile_relocate (objfile, new_offsets);
628 }
629 \f
630 /* Add symbols for an objfile. */
631
632 static int
633 objfile_symbol_add (void *arg)
634 {
635 struct objfile *obj = (struct objfile *) arg;
636
637 syms_from_objfile (obj, NULL, 0, 0);
638 new_symfile_objfile (obj, 0, 0);
639 return 1;
640 }
641
642 /* Add symbols for a vmap. Return zero upon error. */
643
644 int
645 vmap_add_symbols (struct vmap *vp)
646 {
647 if (catch_errors (objfile_symbol_add, vp->objfile,
648 "Error while reading shared library symbols:\n",
649 RETURN_MASK_ALL))
650 {
651 /* Note this is only done if symbol reading was successful. */
652 vp->loaded = 1;
653 vmap_symtab (vp);
654 return 1;
655 }
656 return 0;
657 }
658
659 /* Add a new vmap entry based on ldinfo() information.
660
661 If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a
662 core file), the caller should set it to -1, and we will open the file.
663
664 Return the vmap new entry. */
665
666 static struct vmap *
667 add_vmap (LdInfo *ldi)
668 {
669 bfd *abfd, *last;
670 register char *mem, *objname, *filename;
671 struct objfile *obj;
672 struct vmap *vp;
673 int fd;
674 ARCH64_DECL (arch64);
675
676 /* This ldi structure was allocated using alloca() in
677 xcoff_relocate_symtab(). Now we need to have persistent object
678 and member names, so we should save them. */
679
680 filename = LDI_FILENAME (ldi, arch64);
681 mem = filename + strlen (filename) + 1;
682 mem = savestring (mem, strlen (mem));
683 objname = savestring (filename, strlen (filename));
684
685 fd = LDI_FD (ldi, arch64);
686 if (fd < 0)
687 /* Note that this opens it once for every member; a possible
688 enhancement would be to only open it once for every object. */
689 abfd = bfd_openr (objname, gnutarget);
690 else
691 abfd = bfd_fdopenr (objname, gnutarget, fd);
692 if (!abfd)
693 {
694 warning ("Could not open `%s' as an executable file: %s",
695 objname, bfd_errmsg (bfd_get_error ()));
696 return NULL;
697 }
698
699 /* make sure we have an object file */
700
701 if (bfd_check_format (abfd, bfd_object))
702 vp = map_vmap (abfd, 0);
703
704 else if (bfd_check_format (abfd, bfd_archive))
705 {
706 last = 0;
707 /* FIXME??? am I tossing BFDs? bfd? */
708 while ((last = bfd_openr_next_archived_file (abfd, last)))
709 if (STREQ (mem, last->filename))
710 break;
711
712 if (!last)
713 {
714 warning ("\"%s\": member \"%s\" missing.", objname, mem);
715 bfd_close (abfd);
716 return NULL;
717 }
718
719 if (!bfd_check_format (last, bfd_object))
720 {
721 warning ("\"%s\": member \"%s\" not in executable format: %s.",
722 objname, mem, bfd_errmsg (bfd_get_error ()));
723 bfd_close (last);
724 bfd_close (abfd);
725 return NULL;
726 }
727
728 vp = map_vmap (last, abfd);
729 }
730 else
731 {
732 warning ("\"%s\": not in executable format: %s.",
733 objname, bfd_errmsg (bfd_get_error ()));
734 bfd_close (abfd);
735 return NULL;
736 }
737 obj = allocate_objfile (vp->bfd, 0);
738 vp->objfile = obj;
739
740 /* Always add symbols for the main objfile. */
741 if (vp == vmap || auto_solib_add)
742 vmap_add_symbols (vp);
743 return vp;
744 }
745 \f
746 /* update VMAP info with ldinfo() information
747 Input is ptr to ldinfo() results. */
748
749 static void
750 vmap_ldinfo (LdInfo *ldi)
751 {
752 struct stat ii, vi;
753 register struct vmap *vp;
754 int got_one, retried;
755 int got_exec_file = 0;
756 uint next;
757 int arch64 = ARCH64 ();
758
759 /* For each *ldi, see if we have a corresponding *vp.
760 If so, update the mapping, and symbol table.
761 If not, add an entry and symbol table. */
762
763 do
764 {
765 char *name = LDI_FILENAME (ldi, arch64);
766 char *memb = name + strlen (name) + 1;
767 int fd = LDI_FD (ldi, arch64);
768
769 retried = 0;
770
771 if (fstat (fd, &ii) < 0)
772 {
773 /* The kernel sets ld_info to -1, if the process is still using the
774 object, and the object is removed. Keep the symbol info for the
775 removed object and issue a warning. */
776 warning ("%s (fd=%d) has disappeared, keeping its symbols",
777 name, fd);
778 continue;
779 }
780 retry:
781 for (got_one = 0, vp = vmap; vp; vp = vp->nxt)
782 {
783 struct objfile *objfile;
784
785 /* First try to find a `vp', which is the same as in ldinfo.
786 If not the same, just continue and grep the next `vp'. If same,
787 relocate its tstart, tend, dstart, dend values. If no such `vp'
788 found, get out of this for loop, add this ldi entry as a new vmap
789 (add_vmap) and come back, find its `vp' and so on... */
790
791 /* The filenames are not always sufficient to match on. */
792
793 if ((name[0] == '/' && !STREQ (name, vp->name))
794 || (memb[0] && !STREQ (memb, vp->member)))
795 continue;
796
797 /* See if we are referring to the same file.
798 We have to check objfile->obfd, symfile.c:reread_symbols might
799 have updated the obfd after a change. */
800 objfile = vp->objfile == NULL ? symfile_objfile : vp->objfile;
801 if (objfile == NULL
802 || objfile->obfd == NULL
803 || bfd_stat (objfile->obfd, &vi) < 0)
804 {
805 warning ("Unable to stat %s, keeping its symbols", name);
806 continue;
807 }
808
809 if (ii.st_dev != vi.st_dev || ii.st_ino != vi.st_ino)
810 continue;
811
812 if (!retried)
813 close (fd);
814
815 ++got_one;
816
817 /* Found a corresponding VMAP. Remap! */
818
819 vmap_secs (vp, ldi, arch64);
820
821 /* The objfile is only NULL for the exec file. */
822 if (vp->objfile == NULL)
823 got_exec_file = 1;
824
825 /* relocate symbol table(s). */
826 vmap_symtab (vp);
827
828 /* There may be more, so we don't break out of the loop. */
829 }
830
831 /* if there was no matching *vp, we must perforce create the sucker(s) */
832 if (!got_one && !retried)
833 {
834 add_vmap (ldi);
835 ++retried;
836 goto retry;
837 }
838 }
839 while ((next = LDI_NEXT (ldi, arch64))
840 && (ldi = (void *) (next + (char *) ldi)));
841
842 /* If we don't find the symfile_objfile anywhere in the ldinfo, it
843 is unlikely that the symbol file is relocated to the proper
844 address. And we might have attached to a process which is
845 running a different copy of the same executable. */
846 if (symfile_objfile != NULL && !got_exec_file)
847 {
848 warning_begin ();
849 fputs_unfiltered ("Symbol file ", gdb_stderr);
850 fputs_unfiltered (symfile_objfile->name, gdb_stderr);
851 fputs_unfiltered ("\nis not mapped; discarding it.\n\
852 If in fact that file has symbols which the mapped files listed by\n\
853 \"info files\" lack, you can load symbols with the \"symbol-file\" or\n\
854 \"add-symbol-file\" commands (note that you must take care of relocating\n\
855 symbols to the proper address).\n", gdb_stderr);
856 free_objfile (symfile_objfile);
857 symfile_objfile = NULL;
858 }
859 breakpoint_re_set ();
860 }
861 \f
862 /* As well as symbol tables, exec_sections need relocation. After
863 the inferior process' termination, there will be a relocated symbol
864 table exist with no corresponding inferior process. At that time, we
865 need to use `exec' bfd, rather than the inferior process's memory space
866 to look up symbols.
867
868 `exec_sections' need to be relocated only once, as long as the exec
869 file remains unchanged.
870 */
871
872 static void
873 vmap_exec (void)
874 {
875 static bfd *execbfd;
876 int i;
877
878 if (execbfd == exec_bfd)
879 return;
880
881 execbfd = exec_bfd;
882
883 if (!vmap || !exec_ops.to_sections)
884 error ("vmap_exec: vmap or exec_ops.to_sections == 0\n");
885
886 for (i = 0; &exec_ops.to_sections[i] < exec_ops.to_sections_end; i++)
887 {
888 if (STREQ (".text", exec_ops.to_sections[i].the_bfd_section->name))
889 {
890 exec_ops.to_sections[i].addr += vmap->tstart - vmap->tvma;
891 exec_ops.to_sections[i].endaddr += vmap->tstart - vmap->tvma;
892 }
893 else if (STREQ (".data", exec_ops.to_sections[i].the_bfd_section->name))
894 {
895 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
896 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
897 }
898 else if (STREQ (".bss", exec_ops.to_sections[i].the_bfd_section->name))
899 {
900 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
901 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
902 }
903 }
904 }
905
906 /* Set the current architecture from the host running GDB. Called when
907 starting a child process. */
908
909 static void
910 set_host_arch (int pid)
911 {
912 enum bfd_architecture arch;
913 unsigned long mach;
914 bfd abfd;
915 struct gdbarch_info info;
916
917 if (__power_rs ())
918 {
919 arch = bfd_arch_rs6000;
920 mach = bfd_mach_rs6k;
921 }
922 else
923 {
924 arch = bfd_arch_powerpc;
925 mach = bfd_mach_ppc;
926 }
927 bfd_default_set_arch_mach (&abfd, arch, mach);
928
929 memset (&info, 0, sizeof info);
930 info.bfd_arch_info = bfd_get_arch_info (&abfd);
931
932 if (!gdbarch_update_p (info))
933 {
934 internal_error (__FILE__, __LINE__,
935 "set_host_arch: failed to select architecture");
936 }
937 }
938
939 \f
940 /* xcoff_relocate_symtab - hook for symbol table relocation.
941 also reads shared libraries.. */
942
943 void
944 xcoff_relocate_symtab (unsigned int pid)
945 {
946 int load_segs = 64; /* number of load segments */
947 int rc;
948 LdInfo *ldi = NULL;
949 int arch64 = ARCH64 ();
950 int ldisize = arch64 ? sizeof (ldi->l64) : sizeof (ldi->l32);
951 int size;
952
953 do
954 {
955 size = load_segs * ldisize;
956 ldi = (void *) xrealloc (ldi, size);
957
958 #if 0
959 /* According to my humble theory, AIX has some timing problems and
960 when the user stack grows, kernel doesn't update stack info in time
961 and ptrace calls step on user stack. That is why we sleep here a
962 little, and give kernel to update its internals. */
963 usleep (36000);
964 #endif
965
966 if (arch64)
967 rc = ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, size, NULL);
968 else
969 rc = ptrace32 (PT_LDINFO, pid, (int *) ldi, size, NULL);
970
971 if (rc == -1)
972 {
973 if (errno == ENOMEM)
974 load_segs *= 2;
975 else
976 perror_with_name ("ptrace ldinfo");
977 }
978 else
979 {
980 vmap_ldinfo (ldi);
981 vmap_exec (); /* relocate the exec and core sections as well. */
982 }
983 } while (rc == -1);
984 if (ldi)
985 xfree (ldi);
986 }
987 \f
988 /* Core file stuff. */
989
990 /* Relocate symtabs and read in shared library info, based on symbols
991 from the core file. */
992
993 void
994 xcoff_relocate_core (struct target_ops *target)
995 {
996 sec_ptr ldinfo_sec;
997 int offset = 0;
998 LdInfo *ldi;
999 struct vmap *vp;
1000 int arch64 = ARCH64 ();
1001
1002 /* Size of a struct ld_info except for the variable-length filename. */
1003 int nonfilesz = (int)LDI_FILENAME ((LdInfo *)0, arch64);
1004
1005 /* Allocated size of buffer. */
1006 int buffer_size = nonfilesz;
1007 char *buffer = xmalloc (buffer_size);
1008 struct cleanup *old = make_cleanup (free_current_contents, &buffer);
1009
1010 ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
1011 if (ldinfo_sec == NULL)
1012 {
1013 bfd_err:
1014 fprintf_filtered (gdb_stderr, "Couldn't get ldinfo from core file: %s\n",
1015 bfd_errmsg (bfd_get_error ()));
1016 do_cleanups (old);
1017 return;
1018 }
1019 do
1020 {
1021 int i;
1022 int names_found = 0;
1023
1024 /* Read in everything but the name. */
1025 if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer,
1026 offset, nonfilesz) == 0)
1027 goto bfd_err;
1028
1029 /* Now the name. */
1030 i = nonfilesz;
1031 do
1032 {
1033 if (i == buffer_size)
1034 {
1035 buffer_size *= 2;
1036 buffer = xrealloc (buffer, buffer_size);
1037 }
1038 if (bfd_get_section_contents (core_bfd, ldinfo_sec, &buffer[i],
1039 offset + i, 1) == 0)
1040 goto bfd_err;
1041 if (buffer[i++] == '\0')
1042 ++names_found;
1043 }
1044 while (names_found < 2);
1045
1046 ldi = (LdInfo *) buffer;
1047
1048 /* Can't use a file descriptor from the core file; need to open it. */
1049 if (arch64)
1050 ldi->l64.ldinfo_fd = -1;
1051 else
1052 ldi->l32.ldinfo_fd = -1;
1053
1054 /* The first ldinfo is for the exec file, allocated elsewhere. */
1055 if (offset == 0 && vmap != NULL)
1056 vp = vmap;
1057 else
1058 vp = add_vmap (ldi);
1059
1060 /* Process next shared library upon error. */
1061 offset += LDI_NEXT (ldi, arch64);
1062 if (vp == NULL)
1063 continue;
1064
1065 vmap_secs (vp, ldi, arch64);
1066
1067 /* Unless this is the exec file,
1068 add our sections to the section table for the core target. */
1069 if (vp != vmap)
1070 {
1071 struct section_table *stp;
1072
1073 target_resize_to_sections (target, 2);
1074 stp = target->to_sections_end - 2;
1075
1076 stp->bfd = vp->bfd;
1077 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".text");
1078 stp->addr = vp->tstart;
1079 stp->endaddr = vp->tend;
1080 stp++;
1081
1082 stp->bfd = vp->bfd;
1083 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".data");
1084 stp->addr = vp->dstart;
1085 stp->endaddr = vp->dend;
1086 }
1087
1088 vmap_symtab (vp);
1089 }
1090 while (LDI_NEXT (ldi, arch64) != 0);
1091 vmap_exec ();
1092 breakpoint_re_set ();
1093 do_cleanups (old);
1094 }
1095
1096 int
1097 kernel_u_size (void)
1098 {
1099 return (sizeof (struct user));
1100 }
1101 \f
1102 /* Under AIX, we have to pass the correct TOC pointer to a function
1103 when calling functions in the inferior.
1104 We try to find the relative toc offset of the objfile containing PC
1105 and add the current load address of the data segment from the vmap. */
1106
1107 static CORE_ADDR
1108 find_toc_address (CORE_ADDR pc)
1109 {
1110 struct vmap *vp;
1111 extern CORE_ADDR get_toc_offset (struct objfile *); /* xcoffread.c */
1112
1113 for (vp = vmap; vp; vp = vp->nxt)
1114 {
1115 if (pc >= vp->tstart && pc < vp->tend)
1116 {
1117 /* vp->objfile is only NULL for the exec file. */
1118 return vp->dstart + get_toc_offset (vp->objfile == NULL
1119 ? symfile_objfile
1120 : vp->objfile);
1121 }
1122 }
1123 error ("Unable to find TOC entry for pc 0x%x\n", pc);
1124 }
1125 \f
1126 /* Register that we are able to handle rs6000 core file formats. */
1127
1128 static struct core_fns rs6000_core_fns =
1129 {
1130 bfd_target_xcoff_flavour, /* core_flavour */
1131 default_check_format, /* check_format */
1132 default_core_sniffer, /* core_sniffer */
1133 fetch_core_registers, /* core_read_registers */
1134 NULL /* next */
1135 };
1136
1137 void
1138 _initialize_core_rs6000 (void)
1139 {
1140 /* Initialize hook in rs6000-tdep.c for determining the TOC address when
1141 calling functions in the inferior. */
1142 rs6000_find_toc_address_hook = find_toc_address;
1143
1144 /* Initialize hook in rs6000-tdep.c to set the current architecture when
1145 starting a child process. */
1146 rs6000_set_host_arch_hook = set_host_arch;
1147
1148 add_core_fns (&rs6000_core_fns);
1149 }
This page took 0.098806 seconds and 4 git commands to generate.