Fri Apr 7 13:44:38 2000 glen mccready <gkm@pobox.com>
[deliverable/binutils-gdb.git] / gdb / rs6000-nat.c
1 /* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1994, 1995, 1996, 1997, 1998
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "inferior.h"
24 #include "target.h"
25 #include "gdbcore.h"
26 #include "xcoffsolib.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "libbfd.h" /* For bfd_cache_lookup (FIXME) */
30 #include "bfd.h"
31 #include "gdb-stabs.h"
32
33 #include <sys/ptrace.h>
34 #include <sys/reg.h>
35
36 #include <sys/param.h>
37 #include <sys/dir.h>
38 #include <sys/user.h>
39 #include <signal.h>
40 #include <sys/ioctl.h>
41 #include <fcntl.h>
42
43 #include <a.out.h>
44 #include <sys/file.h>
45 #include "gdb_stat.h"
46 #include <sys/core.h>
47 #include <sys/ldr.h>
48
49 extern int errno;
50
51 extern struct vmap *map_vmap PARAMS ((bfd * bf, bfd * arch));
52
53 extern struct target_ops exec_ops;
54
55 static void
56 vmap_exec PARAMS ((void));
57
58 static void
59 vmap_ldinfo PARAMS ((struct ld_info *));
60
61 static struct vmap *
62 add_vmap PARAMS ((struct ld_info *));
63
64 static int
65 objfile_symbol_add PARAMS ((char *));
66
67 static void
68 vmap_symtab PARAMS ((struct vmap *));
69
70 static void
71 fetch_core_registers PARAMS ((char *, unsigned int, int, CORE_ADDR));
72
73 static void
74 exec_one_dummy_insn PARAMS ((void));
75
76 extern void
77 fixup_breakpoints PARAMS ((CORE_ADDR low, CORE_ADDR high, CORE_ADDR delta));
78
79 /* Conversion from gdb-to-system special purpose register numbers.. */
80
81 static int special_regs[] =
82 {
83 IAR, /* PC_REGNUM */
84 MSR, /* PS_REGNUM */
85 CR, /* CR_REGNUM */
86 LR, /* LR_REGNUM */
87 CTR, /* CTR_REGNUM */
88 XER, /* XER_REGNUM */
89 MQ /* MQ_REGNUM */
90 };
91
92 void
93 fetch_inferior_registers (regno)
94 int regno;
95 {
96 int ii;
97
98 if (regno < 0)
99 { /* for all registers */
100
101 /* read 32 general purpose registers. */
102
103 for (ii = 0; ii < 32; ++ii)
104 *(int *) &registers[REGISTER_BYTE (ii)] =
105 ptrace (PT_READ_GPR, inferior_pid, (PTRACE_ARG3_TYPE) ii, 0, 0);
106
107 /* read general purpose floating point registers. */
108
109 for (ii = 0; ii < 32; ++ii)
110 ptrace (PT_READ_FPR, inferior_pid,
111 (PTRACE_ARG3_TYPE) & registers[REGISTER_BYTE (FP0_REGNUM + ii)],
112 FPR0 + ii, 0);
113
114 /* read special registers. */
115 for (ii = 0; ii <= LAST_UISA_SP_REGNUM - FIRST_UISA_SP_REGNUM; ++ii)
116 *(int *) &registers[REGISTER_BYTE (FIRST_UISA_SP_REGNUM + ii)] =
117 ptrace (PT_READ_GPR, inferior_pid, (PTRACE_ARG3_TYPE) special_regs[ii],
118 0, 0);
119
120 registers_fetched ();
121 return;
122 }
123
124 /* else an individual register is addressed. */
125
126 else if (regno < FP0_REGNUM)
127 { /* a GPR */
128 *(int *) &registers[REGISTER_BYTE (regno)] =
129 ptrace (PT_READ_GPR, inferior_pid, (PTRACE_ARG3_TYPE) regno, 0, 0);
130 }
131 else if (regno <= FPLAST_REGNUM)
132 { /* a FPR */
133 ptrace (PT_READ_FPR, inferior_pid,
134 (PTRACE_ARG3_TYPE) & registers[REGISTER_BYTE (regno)],
135 (regno - FP0_REGNUM + FPR0), 0);
136 }
137 else if (regno <= LAST_UISA_SP_REGNUM)
138 { /* a special register */
139 *(int *) &registers[REGISTER_BYTE (regno)] =
140 ptrace (PT_READ_GPR, inferior_pid,
141 (PTRACE_ARG3_TYPE) special_regs[regno - FIRST_UISA_SP_REGNUM],
142 0, 0);
143 }
144 else
145 fprintf_unfiltered (gdb_stderr,
146 "gdb error: register no %d not implemented.\n",
147 regno);
148
149 register_valid[regno] = 1;
150 }
151
152 /* Store our register values back into the inferior.
153 If REGNO is -1, do this for all registers.
154 Otherwise, REGNO specifies which register (so we can save time). */
155
156 void
157 store_inferior_registers (regno)
158 int regno;
159 {
160
161 errno = 0;
162
163 if (regno == -1)
164 { /* for all registers.. */
165 int ii;
166
167 /* execute one dummy instruction (which is a breakpoint) in inferior
168 process. So give kernel a chance to do internal house keeping.
169 Otherwise the following ptrace(2) calls will mess up user stack
170 since kernel will get confused about the bottom of the stack (%sp) */
171
172 exec_one_dummy_insn ();
173
174 /* write general purpose registers first! */
175 for (ii = GPR0; ii <= GPR31; ++ii)
176 {
177 ptrace (PT_WRITE_GPR, inferior_pid, (PTRACE_ARG3_TYPE) ii,
178 *(int *) &registers[REGISTER_BYTE (ii)], 0);
179 if (errno)
180 {
181 perror ("ptrace write_gpr");
182 errno = 0;
183 }
184 }
185
186 /* write floating point registers now. */
187 for (ii = 0; ii < 32; ++ii)
188 {
189 ptrace (PT_WRITE_FPR, inferior_pid,
190 (PTRACE_ARG3_TYPE) & registers[REGISTER_BYTE (FP0_REGNUM + ii)],
191 FPR0 + ii, 0);
192 if (errno)
193 {
194 perror ("ptrace write_fpr");
195 errno = 0;
196 }
197 }
198
199 /* write special registers. */
200 for (ii = 0; ii <= LAST_UISA_SP_REGNUM - FIRST_UISA_SP_REGNUM; ++ii)
201 {
202 ptrace (PT_WRITE_GPR, inferior_pid,
203 (PTRACE_ARG3_TYPE) special_regs[ii],
204 *(int *) &registers[REGISTER_BYTE (FIRST_UISA_SP_REGNUM + ii)],
205 0);
206 if (errno)
207 {
208 perror ("ptrace write_gpr");
209 errno = 0;
210 }
211 }
212 }
213
214 /* else, a specific register number is given... */
215
216 else if (regno < FP0_REGNUM) /* a GPR */
217 {
218 if (regno == SP_REGNUM)
219 exec_one_dummy_insn ();
220 ptrace (PT_WRITE_GPR, inferior_pid, (PTRACE_ARG3_TYPE) regno,
221 *(int *) &registers[REGISTER_BYTE (regno)], 0);
222 }
223
224 else if (regno <= FPLAST_REGNUM) /* a FPR */
225 {
226 ptrace (PT_WRITE_FPR, inferior_pid,
227 (PTRACE_ARG3_TYPE) & registers[REGISTER_BYTE (regno)],
228 regno - FP0_REGNUM + FPR0, 0);
229 }
230
231 else if (regno <= LAST_UISA_SP_REGNUM) /* a special register */
232 {
233 ptrace (PT_WRITE_GPR, inferior_pid,
234 (PTRACE_ARG3_TYPE) special_regs[regno - FIRST_UISA_SP_REGNUM],
235 *(int *) &registers[REGISTER_BYTE (regno)], 0);
236 }
237
238 else if (regno < NUM_REGS)
239 {
240 /* Ignore it. */
241 }
242
243 else
244 fprintf_unfiltered (gdb_stderr,
245 "Gdb error: register no %d not implemented.\n",
246 regno);
247
248 if (errno)
249 {
250 perror ("ptrace write");
251 errno = 0;
252 }
253 }
254
255 /* Execute one dummy breakpoint instruction. This way we give the kernel
256 a chance to do some housekeeping and update inferior's internal data,
257 including u_area. */
258
259 static void
260 exec_one_dummy_insn ()
261 {
262 #define DUMMY_INSN_ADDR (TEXT_SEGMENT_BASE)+0x200
263
264 char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */
265 int status, pid;
266 CORE_ADDR prev_pc;
267
268 /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
269 assume that this address will never be executed again by the real
270 code. */
271
272 target_insert_breakpoint (DUMMY_INSN_ADDR, shadow_contents);
273
274 errno = 0;
275
276 /* You might think this could be done with a single ptrace call, and
277 you'd be correct for just about every platform I've ever worked
278 on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
279 the inferior never hits the breakpoint (it's also worth noting
280 powerpc-ibm-aix4.1.3 works correctly). */
281 prev_pc = read_pc ();
282 write_pc (DUMMY_INSN_ADDR);
283 ptrace (PT_CONTINUE, inferior_pid, (PTRACE_ARG3_TYPE) 1, 0, 0);
284
285 if (errno)
286 perror ("pt_continue");
287
288 do
289 {
290 pid = wait (&status);
291 }
292 while (pid != inferior_pid);
293
294 write_pc (prev_pc);
295 target_remove_breakpoint (DUMMY_INSN_ADDR, shadow_contents);
296 }
297
298 static void
299 fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
300 char *core_reg_sect;
301 unsigned core_reg_size;
302 int which;
303 CORE_ADDR reg_addr; /* Unused in this version */
304 {
305 /* fetch GPRs and special registers from the first register section
306 in core bfd. */
307 if (which == 0)
308 {
309 /* copy GPRs first. */
310 memcpy (registers, core_reg_sect, 32 * 4);
311
312 /* gdb's internal register template and bfd's register section layout
313 should share a common include file. FIXMEmgo */
314 /* then comes special registes. They are supposed to be in the same
315 order in gdb template and bfd `.reg' section. */
316 core_reg_sect += (32 * 4);
317 memcpy (&registers[REGISTER_BYTE (FIRST_UISA_SP_REGNUM)],
318 core_reg_sect,
319 (LAST_UISA_SP_REGNUM - FIRST_UISA_SP_REGNUM + 1) * 4);
320 }
321
322 /* fetch floating point registers from register section 2 in core bfd. */
323 else if (which == 2)
324 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], core_reg_sect, 32 * 8);
325
326 else
327 fprintf_unfiltered
328 (gdb_stderr,
329 "Gdb error: unknown parameter to fetch_core_registers().\n");
330 }
331 \f
332 /* handle symbol translation on vmapping */
333
334 static void
335 vmap_symtab (vp)
336 register struct vmap *vp;
337 {
338 register struct objfile *objfile;
339 struct section_offsets *new_offsets;
340 int i;
341
342 objfile = vp->objfile;
343 if (objfile == NULL)
344 {
345 /* OK, it's not an objfile we opened ourselves.
346 Currently, that can only happen with the exec file, so
347 relocate the symbols for the symfile. */
348 if (symfile_objfile == NULL)
349 return;
350 objfile = symfile_objfile;
351 }
352
353 new_offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
354
355 for (i = 0; i < objfile->num_sections; ++i)
356 ANOFFSET (new_offsets, i) = ANOFFSET (objfile->section_offsets, i);
357
358 /* The symbols in the object file are linked to the VMA of the section,
359 relocate them VMA relative. */
360 ANOFFSET (new_offsets, SECT_OFF_TEXT) = vp->tstart - vp->tvma;
361 ANOFFSET (new_offsets, SECT_OFF_DATA) = vp->dstart - vp->dvma;
362 ANOFFSET (new_offsets, SECT_OFF_BSS) = vp->dstart - vp->dvma;
363
364 objfile_relocate (objfile, new_offsets);
365 }
366 \f
367 /* Add symbols for an objfile. */
368
369 static int
370 objfile_symbol_add (arg)
371 char *arg;
372 {
373 struct objfile *obj = (struct objfile *) arg;
374
375 syms_from_objfile (obj, NULL, 0, 0);
376 new_symfile_objfile (obj, 0, 0);
377 return 1;
378 }
379
380 /* Add a new vmap entry based on ldinfo() information.
381
382 If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a
383 core file), the caller should set it to -1, and we will open the file.
384
385 Return the vmap new entry. */
386
387 static struct vmap *
388 add_vmap (ldi)
389 register struct ld_info *ldi;
390 {
391 bfd *abfd, *last;
392 register char *mem, *objname;
393 struct objfile *obj;
394 struct vmap *vp;
395
396 /* This ldi structure was allocated using alloca() in
397 xcoff_relocate_symtab(). Now we need to have persistent object
398 and member names, so we should save them. */
399
400 mem = ldi->ldinfo_filename + strlen (ldi->ldinfo_filename) + 1;
401 mem = savestring (mem, strlen (mem));
402 objname = savestring (ldi->ldinfo_filename, strlen (ldi->ldinfo_filename));
403
404 if (ldi->ldinfo_fd < 0)
405 /* Note that this opens it once for every member; a possible
406 enhancement would be to only open it once for every object. */
407 abfd = bfd_openr (objname, gnutarget);
408 else
409 abfd = bfd_fdopenr (objname, gnutarget, ldi->ldinfo_fd);
410 if (!abfd)
411 error ("Could not open `%s' as an executable file: %s",
412 objname, bfd_errmsg (bfd_get_error ()));
413
414 /* make sure we have an object file */
415
416 if (bfd_check_format (abfd, bfd_object))
417 vp = map_vmap (abfd, 0);
418
419 else if (bfd_check_format (abfd, bfd_archive))
420 {
421 last = 0;
422 /* FIXME??? am I tossing BFDs? bfd? */
423 while ((last = bfd_openr_next_archived_file (abfd, last)))
424 if (STREQ (mem, last->filename))
425 break;
426
427 if (!last)
428 {
429 bfd_close (abfd);
430 /* FIXME -- should be error */
431 warning ("\"%s\": member \"%s\" missing.", abfd->filename, mem);
432 return 0;
433 }
434
435 if (!bfd_check_format (last, bfd_object))
436 {
437 bfd_close (last); /* XXX??? */
438 goto obj_err;
439 }
440
441 vp = map_vmap (last, abfd);
442 }
443 else
444 {
445 obj_err:
446 bfd_close (abfd);
447 error ("\"%s\": not in executable format: %s.",
448 objname, bfd_errmsg (bfd_get_error ()));
449 /*NOTREACHED */
450 }
451 obj = allocate_objfile (vp->bfd, 0);
452 vp->objfile = obj;
453
454 #ifndef SOLIB_SYMBOLS_MANUAL
455 if (catch_errors (objfile_symbol_add, (char *) obj,
456 "Error while reading shared library symbols:\n",
457 RETURN_MASK_ALL))
458 {
459 /* Note this is only done if symbol reading was successful. */
460 vmap_symtab (vp);
461 vp->loaded = 1;
462 }
463 #endif
464 return vp;
465 }
466 \f
467 /* update VMAP info with ldinfo() information
468 Input is ptr to ldinfo() results. */
469
470 static void
471 vmap_ldinfo (ldi)
472 register struct ld_info *ldi;
473 {
474 struct stat ii, vi;
475 register struct vmap *vp;
476 int got_one, retried;
477 int got_exec_file = 0;
478
479 /* For each *ldi, see if we have a corresponding *vp.
480 If so, update the mapping, and symbol table.
481 If not, add an entry and symbol table. */
482
483 do
484 {
485 char *name = ldi->ldinfo_filename;
486 char *memb = name + strlen (name) + 1;
487
488 retried = 0;
489
490 if (fstat (ldi->ldinfo_fd, &ii) < 0)
491 {
492 /* The kernel sets ld_info to -1, if the process is still using the
493 object, and the object is removed. Keep the symbol info for the
494 removed object and issue a warning. */
495 warning ("%s (fd=%d) has disappeared, keeping its symbols",
496 name, ldi->ldinfo_fd);
497 continue;
498 }
499 retry:
500 for (got_one = 0, vp = vmap; vp; vp = vp->nxt)
501 {
502 struct objfile *objfile;
503
504 /* First try to find a `vp', which is the same as in ldinfo.
505 If not the same, just continue and grep the next `vp'. If same,
506 relocate its tstart, tend, dstart, dend values. If no such `vp'
507 found, get out of this for loop, add this ldi entry as a new vmap
508 (add_vmap) and come back, find its `vp' and so on... */
509
510 /* The filenames are not always sufficient to match on. */
511
512 if ((name[0] == '/' && !STREQ (name, vp->name))
513 || (memb[0] && !STREQ (memb, vp->member)))
514 continue;
515
516 /* See if we are referring to the same file.
517 We have to check objfile->obfd, symfile.c:reread_symbols might
518 have updated the obfd after a change. */
519 objfile = vp->objfile == NULL ? symfile_objfile : vp->objfile;
520 if (objfile == NULL
521 || objfile->obfd == NULL
522 || bfd_stat (objfile->obfd, &vi) < 0)
523 {
524 warning ("Unable to stat %s, keeping its symbols", name);
525 continue;
526 }
527
528 if (ii.st_dev != vi.st_dev || ii.st_ino != vi.st_ino)
529 continue;
530
531 if (!retried)
532 close (ldi->ldinfo_fd);
533
534 ++got_one;
535
536 /* Found a corresponding VMAP. Remap! */
537
538 /* We can assume pointer == CORE_ADDR, this code is native only. */
539 vp->tstart = (CORE_ADDR) ldi->ldinfo_textorg;
540 vp->tend = vp->tstart + ldi->ldinfo_textsize;
541 vp->dstart = (CORE_ADDR) ldi->ldinfo_dataorg;
542 vp->dend = vp->dstart + ldi->ldinfo_datasize;
543
544 /* The run time loader maps the file header in addition to the text
545 section and returns a pointer to the header in ldinfo_textorg.
546 Adjust the text start address to point to the real start address
547 of the text section. */
548 vp->tstart += vp->toffs;
549
550 /* The objfile is only NULL for the exec file. */
551 if (vp->objfile == NULL)
552 got_exec_file = 1;
553
554 /* relocate symbol table(s). */
555 vmap_symtab (vp);
556
557 /* There may be more, so we don't break out of the loop. */
558 }
559
560 /* if there was no matching *vp, we must perforce create the sucker(s) */
561 if (!got_one && !retried)
562 {
563 add_vmap (ldi);
564 ++retried;
565 goto retry;
566 }
567 }
568 while (ldi->ldinfo_next
569 && (ldi = (void *) (ldi->ldinfo_next + (char *) ldi)));
570
571 /* If we don't find the symfile_objfile anywhere in the ldinfo, it
572 is unlikely that the symbol file is relocated to the proper
573 address. And we might have attached to a process which is
574 running a different copy of the same executable. */
575 if (symfile_objfile != NULL && !got_exec_file)
576 {
577 warning_begin ();
578 fputs_unfiltered ("Symbol file ", gdb_stderr);
579 fputs_unfiltered (symfile_objfile->name, gdb_stderr);
580 fputs_unfiltered ("\nis not mapped; discarding it.\n\
581 If in fact that file has symbols which the mapped files listed by\n\
582 \"info files\" lack, you can load symbols with the \"symbol-file\" or\n\
583 \"add-symbol-file\" commands (note that you must take care of relocating\n\
584 symbols to the proper address).\n", gdb_stderr);
585 free_objfile (symfile_objfile);
586 symfile_objfile = NULL;
587 }
588 breakpoint_re_set ();
589 }
590 \f
591 /* As well as symbol tables, exec_sections need relocation. After
592 the inferior process' termination, there will be a relocated symbol
593 table exist with no corresponding inferior process. At that time, we
594 need to use `exec' bfd, rather than the inferior process's memory space
595 to look up symbols.
596
597 `exec_sections' need to be relocated only once, as long as the exec
598 file remains unchanged.
599 */
600
601 static void
602 vmap_exec ()
603 {
604 static bfd *execbfd;
605 int i;
606
607 if (execbfd == exec_bfd)
608 return;
609
610 execbfd = exec_bfd;
611
612 if (!vmap || !exec_ops.to_sections)
613 error ("vmap_exec: vmap or exec_ops.to_sections == 0\n");
614
615 for (i = 0; &exec_ops.to_sections[i] < exec_ops.to_sections_end; i++)
616 {
617 if (STREQ (".text", exec_ops.to_sections[i].the_bfd_section->name))
618 {
619 exec_ops.to_sections[i].addr += vmap->tstart - vmap->tvma;
620 exec_ops.to_sections[i].endaddr += vmap->tstart - vmap->tvma;
621 }
622 else if (STREQ (".data", exec_ops.to_sections[i].the_bfd_section->name))
623 {
624 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
625 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
626 }
627 else if (STREQ (".bss", exec_ops.to_sections[i].the_bfd_section->name))
628 {
629 exec_ops.to_sections[i].addr += vmap->dstart - vmap->dvma;
630 exec_ops.to_sections[i].endaddr += vmap->dstart - vmap->dvma;
631 }
632 }
633 }
634 \f
635 /* xcoff_relocate_symtab - hook for symbol table relocation.
636 also reads shared libraries.. */
637
638 void
639 xcoff_relocate_symtab (pid)
640 unsigned int pid;
641 {
642 int load_segs = 64; /* number of load segments */
643
644 do
645 {
646 struct ld_info *ldi;
647 int rc;
648
649 ldi = (void *) alloca (load_segs * sizeof (*ldi));
650 if (ldi == 0)
651 perror_with_name ("xcoff_relocate_symtab");
652
653 /* According to my humble theory, AIX has some timing problems and
654 when the user stack grows, kernel doesn't update stack info in time
655 and ptrace calls step on user stack. That is why we sleep here a little,
656 and give kernel to update its internals. */
657
658 usleep (36000);
659
660 errno = 0;
661 rc = ptrace (PT_LDINFO, pid, (PTRACE_ARG3_TYPE) ldi,
662 load_segs * sizeof (*ldi), (int *) ldi);
663 if (rc == -1)
664 {
665 if (errno == ENOMEM)
666 load_segs *= 2;
667 else
668 perror_with_name ("ptrace ldinfo");
669 }
670 else
671 {
672 vmap_ldinfo (ldi);
673 vmap_exec (); /* relocate the exec and core sections as well. */
674 }
675 } while (rc == -1);
676 }
677 \f
678 /* Core file stuff. */
679
680 /* Relocate symtabs and read in shared library info, based on symbols
681 from the core file. */
682
683 void
684 xcoff_relocate_core (target)
685 struct target_ops *target;
686 {
687 /* Offset of member MEMBER in a struct of type TYPE. */
688 #ifndef offsetof
689 #define offsetof(TYPE, MEMBER) ((int) &((TYPE *)0)->MEMBER)
690 #endif
691
692 /* Size of a struct ld_info except for the variable-length filename. */
693 #define LDINFO_SIZE (offsetof (struct ld_info, ldinfo_filename))
694
695 sec_ptr ldinfo_sec;
696 int offset = 0;
697 struct ld_info *ldip;
698 struct vmap *vp;
699
700 /* Allocated size of buffer. */
701 int buffer_size = LDINFO_SIZE;
702 char *buffer = xmalloc (buffer_size);
703 struct cleanup *old = make_cleanup (free_current_contents, &buffer);
704
705 /* FIXME, this restriction should not exist. For now, though I'll
706 avoid coredumps with error() pending a real fix. */
707 if (vmap == NULL)
708 error
709 ("Can't debug a core file without an executable file (on the RS/6000)");
710
711 ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
712 if (ldinfo_sec == NULL)
713 {
714 bfd_err:
715 fprintf_filtered (gdb_stderr, "Couldn't get ldinfo from core file: %s\n",
716 bfd_errmsg (bfd_get_error ()));
717 do_cleanups (old);
718 return;
719 }
720 do
721 {
722 int i;
723 int names_found = 0;
724
725 /* Read in everything but the name. */
726 if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer,
727 offset, LDINFO_SIZE) == 0)
728 goto bfd_err;
729
730 /* Now the name. */
731 i = LDINFO_SIZE;
732 do
733 {
734 if (i == buffer_size)
735 {
736 buffer_size *= 2;
737 buffer = xrealloc (buffer, buffer_size);
738 }
739 if (bfd_get_section_contents (core_bfd, ldinfo_sec, &buffer[i],
740 offset + i, 1) == 0)
741 goto bfd_err;
742 if (buffer[i++] == '\0')
743 ++names_found;
744 }
745 while (names_found < 2);
746
747 ldip = (struct ld_info *) buffer;
748
749 /* Can't use a file descriptor from the core file; need to open it. */
750 ldip->ldinfo_fd = -1;
751
752 /* The first ldinfo is for the exec file, allocated elsewhere. */
753 if (offset == 0)
754 vp = vmap;
755 else
756 vp = add_vmap (ldip);
757
758 offset += ldip->ldinfo_next;
759
760 /* We can assume pointer == CORE_ADDR, this code is native only. */
761 vp->tstart = (CORE_ADDR) ldip->ldinfo_textorg;
762 vp->tend = vp->tstart + ldip->ldinfo_textsize;
763 vp->dstart = (CORE_ADDR) ldip->ldinfo_dataorg;
764 vp->dend = vp->dstart + ldip->ldinfo_datasize;
765
766 /* The run time loader maps the file header in addition to the text
767 section and returns a pointer to the header in ldinfo_textorg.
768 Adjust the text start address to point to the real start address
769 of the text section. */
770 vp->tstart += vp->toffs;
771
772 /* Unless this is the exec file,
773 add our sections to the section table for the core target. */
774 if (vp != vmap)
775 {
776 struct section_table *stp;
777
778 target_resize_to_sections (target, 2);
779 stp = target->to_sections_end - 2;
780
781 stp->bfd = vp->bfd;
782 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".text");
783 stp->addr = vp->tstart;
784 stp->endaddr = vp->tend;
785 stp++;
786
787 stp->bfd = vp->bfd;
788 stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".data");
789 stp->addr = vp->dstart;
790 stp->endaddr = vp->dend;
791 }
792
793 vmap_symtab (vp);
794 }
795 while (ldip->ldinfo_next != 0);
796 vmap_exec ();
797 breakpoint_re_set ();
798 do_cleanups (old);
799 }
800
801 int
802 kernel_u_size ()
803 {
804 return (sizeof (struct user));
805 }
806 \f
807 /* Under AIX, we have to pass the correct TOC pointer to a function
808 when calling functions in the inferior.
809 We try to find the relative toc offset of the objfile containing PC
810 and add the current load address of the data segment from the vmap. */
811
812 static CORE_ADDR
813 find_toc_address (pc)
814 CORE_ADDR pc;
815 {
816 struct vmap *vp;
817
818 for (vp = vmap; vp; vp = vp->nxt)
819 {
820 if (pc >= vp->tstart && pc < vp->tend)
821 {
822 /* vp->objfile is only NULL for the exec file. */
823 return vp->dstart + get_toc_offset (vp->objfile == NULL
824 ? symfile_objfile
825 : vp->objfile);
826 }
827 }
828 error ("Unable to find TOC entry for pc 0x%x\n", pc);
829 }
830 \f
831 /* Register that we are able to handle rs6000 core file formats. */
832
833 static struct core_fns rs6000_core_fns =
834 {
835 bfd_target_coff_flavour, /* core_flavour */
836 default_check_format, /* check_format */
837 default_core_sniffer, /* core_sniffer */
838 fetch_core_registers, /* core_read_registers */
839 NULL /* next */
840 };
841
842 void
843 _initialize_core_rs6000 ()
844 {
845 /* Initialize hook in rs6000-tdep.c for determining the TOC address when
846 calling functions in the inferior. */
847 find_toc_address_hook = &find_toc_address;
848
849 /* For native configurations, where this module is included, inform
850 the xcoffsolib module where it can find the function for symbol table
851 relocation at runtime. */
852 xcoff_relocate_symtab_hook = &xcoff_relocate_symtab;
853 add_core_fns (&rs6000_core_fns);
854 }
This page took 0.086414 seconds and 4 git commands to generate.