ppc-aix core file relocation.
[deliverable/binutils-gdb.git] / gdb / rs6000-nat.c
1 /* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "gdbcore.h"
24 #include "symfile.h"
25 #include "objfiles.h"
26 #include "libbfd.h" /* For bfd_default_set_arch_mach (FIXME) */
27 #include "bfd.h"
28 #include "exceptions.h"
29 #include "gdb-stabs.h"
30 #include "regcache.h"
31 #include "arch-utils.h"
32 #include "inf-child.h"
33 #include "inf-ptrace.h"
34 #include "ppc-tdep.h"
35 #include "rs6000-tdep.h"
36 #include "rs6000-aix-tdep.h"
37 #include "exec.h"
38 #include "observer.h"
39 #include "xcoffread.h"
40
41 #include <sys/ptrace.h>
42 #include <sys/reg.h>
43
44 #include <sys/param.h>
45 #include <sys/dir.h>
46 #include <sys/user.h>
47 #include <signal.h>
48 #include <sys/ioctl.h>
49 #include <fcntl.h>
50 #include <errno.h>
51
52 #include <a.out.h>
53 #include <sys/file.h>
54 #include "gdb_stat.h"
55 #include "gdb_bfd.h"
56 #include <sys/core.h>
57 #define __LDINFO_PTRACE32__ /* for __ld_info32 */
58 #define __LDINFO_PTRACE64__ /* for __ld_info64 */
59 #include <sys/ldr.h>
60 #include <sys/systemcfg.h>
61
62 /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
63 debugging 32-bit and 64-bit processes. Define a typedef and macros for
64 accessing fields in the appropriate structures. */
65
66 /* In 32-bit compilation mode (which is the only mode from which ptrace()
67 works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
68
69 #ifdef __ld_info32
70 # define ARCH3264
71 #endif
72
73 /* Return whether the current architecture is 64-bit. */
74
75 #ifndef ARCH3264
76 # define ARCH64() 0
77 #else
78 # define ARCH64() (register_size (target_gdbarch (), 0) == 8)
79 #endif
80
81 static void exec_one_dummy_insn (struct regcache *);
82
83 static LONGEST rs6000_xfer_shared_libraries
84 (struct target_ops *ops, enum target_object object,
85 const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf,
86 ULONGEST offset, LONGEST len);
87
88 /* Given REGNO, a gdb register number, return the corresponding
89 number suitable for use as a ptrace() parameter. Return -1 if
90 there's no suitable mapping. Also, set the int pointed to by
91 ISFLOAT to indicate whether REGNO is a floating point register. */
92
93 static int
94 regmap (struct gdbarch *gdbarch, int regno, int *isfloat)
95 {
96 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
97
98 *isfloat = 0;
99 if (tdep->ppc_gp0_regnum <= regno
100 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
101 return regno;
102 else if (tdep->ppc_fp0_regnum >= 0
103 && tdep->ppc_fp0_regnum <= regno
104 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
105 {
106 *isfloat = 1;
107 return regno - tdep->ppc_fp0_regnum + FPR0;
108 }
109 else if (regno == gdbarch_pc_regnum (gdbarch))
110 return IAR;
111 else if (regno == tdep->ppc_ps_regnum)
112 return MSR;
113 else if (regno == tdep->ppc_cr_regnum)
114 return CR;
115 else if (regno == tdep->ppc_lr_regnum)
116 return LR;
117 else if (regno == tdep->ppc_ctr_regnum)
118 return CTR;
119 else if (regno == tdep->ppc_xer_regnum)
120 return XER;
121 else if (tdep->ppc_fpscr_regnum >= 0
122 && regno == tdep->ppc_fpscr_regnum)
123 return FPSCR;
124 else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum)
125 return MQ;
126 else
127 return -1;
128 }
129
130 /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
131
132 static int
133 rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
134 {
135 int ret = ptrace (req, id, (int *)addr, data, buf);
136 #if 0
137 printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
138 req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
139 #endif
140 return ret;
141 }
142
143 /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
144
145 static int
146 rs6000_ptrace64 (int req, int id, long long addr, int data, void *buf)
147 {
148 #ifdef ARCH3264
149 int ret = ptracex (req, id, addr, data, buf);
150 #else
151 int ret = 0;
152 #endif
153 #if 0
154 printf ("rs6000_ptrace64 (%d, %d, %s, %08x, 0x%x) = 0x%x\n",
155 req, id, hex_string (addr), data, (unsigned int)buf, ret);
156 #endif
157 return ret;
158 }
159
160 /* Fetch register REGNO from the inferior. */
161
162 static void
163 fetch_register (struct regcache *regcache, int regno)
164 {
165 struct gdbarch *gdbarch = get_regcache_arch (regcache);
166 int addr[MAX_REGISTER_SIZE];
167 int nr, isfloat;
168
169 /* Retrieved values may be -1, so infer errors from errno. */
170 errno = 0;
171
172 nr = regmap (gdbarch, regno, &isfloat);
173
174 /* Floating-point registers. */
175 if (isfloat)
176 rs6000_ptrace32 (PT_READ_FPR, PIDGET (inferior_ptid), addr, nr, 0);
177
178 /* Bogus register number. */
179 else if (nr < 0)
180 {
181 if (regno >= gdbarch_num_regs (gdbarch))
182 fprintf_unfiltered (gdb_stderr,
183 "gdb error: register no %d not implemented.\n",
184 regno);
185 return;
186 }
187
188 /* Fixed-point registers. */
189 else
190 {
191 if (!ARCH64 ())
192 *addr = rs6000_ptrace32 (PT_READ_GPR, PIDGET (inferior_ptid),
193 (int *) nr, 0, 0);
194 else
195 {
196 /* PT_READ_GPR requires the buffer parameter to point to long long,
197 even if the register is really only 32 bits. */
198 long long buf;
199 rs6000_ptrace64 (PT_READ_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
200 if (register_size (gdbarch, regno) == 8)
201 memcpy (addr, &buf, 8);
202 else
203 *addr = buf;
204 }
205 }
206
207 if (!errno)
208 regcache_raw_supply (regcache, regno, (char *) addr);
209 else
210 {
211 #if 0
212 /* FIXME: this happens 3 times at the start of each 64-bit program. */
213 perror (_("ptrace read"));
214 #endif
215 errno = 0;
216 }
217 }
218
219 /* Store register REGNO back into the inferior. */
220
221 static void
222 store_register (struct regcache *regcache, int regno)
223 {
224 struct gdbarch *gdbarch = get_regcache_arch (regcache);
225 int addr[MAX_REGISTER_SIZE];
226 int nr, isfloat;
227
228 /* Fetch the register's value from the register cache. */
229 regcache_raw_collect (regcache, regno, addr);
230
231 /* -1 can be a successful return value, so infer errors from errno. */
232 errno = 0;
233
234 nr = regmap (gdbarch, regno, &isfloat);
235
236 /* Floating-point registers. */
237 if (isfloat)
238 rs6000_ptrace32 (PT_WRITE_FPR, PIDGET (inferior_ptid), addr, nr, 0);
239
240 /* Bogus register number. */
241 else if (nr < 0)
242 {
243 if (regno >= gdbarch_num_regs (gdbarch))
244 fprintf_unfiltered (gdb_stderr,
245 "gdb error: register no %d not implemented.\n",
246 regno);
247 }
248
249 /* Fixed-point registers. */
250 else
251 {
252 if (regno == gdbarch_sp_regnum (gdbarch))
253 /* Execute one dummy instruction (which is a breakpoint) in inferior
254 process to give kernel a chance to do internal housekeeping.
255 Otherwise the following ptrace(2) calls will mess up user stack
256 since kernel will get confused about the bottom of the stack
257 (%sp). */
258 exec_one_dummy_insn (regcache);
259
260 /* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors,
261 the register's value is passed by value, but for 64-bit inferiors,
262 the address of a buffer containing the value is passed. */
263 if (!ARCH64 ())
264 rs6000_ptrace32 (PT_WRITE_GPR, PIDGET (inferior_ptid),
265 (int *) nr, *addr, 0);
266 else
267 {
268 /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
269 area, even if the register is really only 32 bits. */
270 long long buf;
271 if (register_size (gdbarch, regno) == 8)
272 memcpy (&buf, addr, 8);
273 else
274 buf = *addr;
275 rs6000_ptrace64 (PT_WRITE_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
276 }
277 }
278
279 if (errno)
280 {
281 perror (_("ptrace write"));
282 errno = 0;
283 }
284 }
285
286 /* Read from the inferior all registers if REGNO == -1 and just register
287 REGNO otherwise. */
288
289 static void
290 rs6000_fetch_inferior_registers (struct target_ops *ops,
291 struct regcache *regcache, int regno)
292 {
293 struct gdbarch *gdbarch = get_regcache_arch (regcache);
294 if (regno != -1)
295 fetch_register (regcache, regno);
296
297 else
298 {
299 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
300
301 /* Read 32 general purpose registers. */
302 for (regno = tdep->ppc_gp0_regnum;
303 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
304 regno++)
305 {
306 fetch_register (regcache, regno);
307 }
308
309 /* Read general purpose floating point registers. */
310 if (tdep->ppc_fp0_regnum >= 0)
311 for (regno = 0; regno < ppc_num_fprs; regno++)
312 fetch_register (regcache, tdep->ppc_fp0_regnum + regno);
313
314 /* Read special registers. */
315 fetch_register (regcache, gdbarch_pc_regnum (gdbarch));
316 fetch_register (regcache, tdep->ppc_ps_regnum);
317 fetch_register (regcache, tdep->ppc_cr_regnum);
318 fetch_register (regcache, tdep->ppc_lr_regnum);
319 fetch_register (regcache, tdep->ppc_ctr_regnum);
320 fetch_register (regcache, tdep->ppc_xer_regnum);
321 if (tdep->ppc_fpscr_regnum >= 0)
322 fetch_register (regcache, tdep->ppc_fpscr_regnum);
323 if (tdep->ppc_mq_regnum >= 0)
324 fetch_register (regcache, tdep->ppc_mq_regnum);
325 }
326 }
327
328 /* Store our register values back into the inferior.
329 If REGNO is -1, do this for all registers.
330 Otherwise, REGNO specifies which register (so we can save time). */
331
332 static void
333 rs6000_store_inferior_registers (struct target_ops *ops,
334 struct regcache *regcache, int regno)
335 {
336 struct gdbarch *gdbarch = get_regcache_arch (regcache);
337 if (regno != -1)
338 store_register (regcache, regno);
339
340 else
341 {
342 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
343
344 /* Write general purpose registers first. */
345 for (regno = tdep->ppc_gp0_regnum;
346 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
347 regno++)
348 {
349 store_register (regcache, regno);
350 }
351
352 /* Write floating point registers. */
353 if (tdep->ppc_fp0_regnum >= 0)
354 for (regno = 0; regno < ppc_num_fprs; regno++)
355 store_register (regcache, tdep->ppc_fp0_regnum + regno);
356
357 /* Write special registers. */
358 store_register (regcache, gdbarch_pc_regnum (gdbarch));
359 store_register (regcache, tdep->ppc_ps_regnum);
360 store_register (regcache, tdep->ppc_cr_regnum);
361 store_register (regcache, tdep->ppc_lr_regnum);
362 store_register (regcache, tdep->ppc_ctr_regnum);
363 store_register (regcache, tdep->ppc_xer_regnum);
364 if (tdep->ppc_fpscr_regnum >= 0)
365 store_register (regcache, tdep->ppc_fpscr_regnum);
366 if (tdep->ppc_mq_regnum >= 0)
367 store_register (regcache, tdep->ppc_mq_regnum);
368 }
369 }
370
371
372 /* Attempt a transfer all LEN bytes starting at OFFSET between the
373 inferior's OBJECT:ANNEX space and GDB's READBUF/WRITEBUF buffer.
374 Return the number of bytes actually transferred. */
375
376 static LONGEST
377 rs6000_xfer_partial (struct target_ops *ops, enum target_object object,
378 const char *annex, gdb_byte *readbuf,
379 const gdb_byte *writebuf,
380 ULONGEST offset, LONGEST len)
381 {
382 pid_t pid = ptid_get_pid (inferior_ptid);
383 int arch64 = ARCH64 ();
384
385 switch (object)
386 {
387 case TARGET_OBJECT_LIBRARIES_AIX:
388 return rs6000_xfer_shared_libraries (ops, object, annex,
389 readbuf, writebuf,
390 offset, len);
391 case TARGET_OBJECT_MEMORY:
392 {
393 union
394 {
395 PTRACE_TYPE_RET word;
396 gdb_byte byte[sizeof (PTRACE_TYPE_RET)];
397 } buffer;
398 ULONGEST rounded_offset;
399 LONGEST partial_len;
400
401 /* Round the start offset down to the next long word
402 boundary. */
403 rounded_offset = offset & -(ULONGEST) sizeof (PTRACE_TYPE_RET);
404
405 /* Since ptrace will transfer a single word starting at that
406 rounded_offset the partial_len needs to be adjusted down to
407 that (remember this function only does a single transfer).
408 Should the required length be even less, adjust it down
409 again. */
410 partial_len = (rounded_offset + sizeof (PTRACE_TYPE_RET)) - offset;
411 if (partial_len > len)
412 partial_len = len;
413
414 if (writebuf)
415 {
416 /* If OFFSET:PARTIAL_LEN is smaller than
417 ROUNDED_OFFSET:WORDSIZE then a read/modify write will
418 be needed. Read in the entire word. */
419 if (rounded_offset < offset
420 || (offset + partial_len
421 < rounded_offset + sizeof (PTRACE_TYPE_RET)))
422 {
423 /* Need part of initial word -- fetch it. */
424 if (arch64)
425 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
426 rounded_offset, 0, NULL);
427 else
428 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
429 (int *) (uintptr_t)
430 rounded_offset,
431 0, NULL);
432 }
433
434 /* Copy data to be written over corresponding part of
435 buffer. */
436 memcpy (buffer.byte + (offset - rounded_offset),
437 writebuf, partial_len);
438
439 errno = 0;
440 if (arch64)
441 rs6000_ptrace64 (PT_WRITE_D, pid,
442 rounded_offset, buffer.word, NULL);
443 else
444 rs6000_ptrace32 (PT_WRITE_D, pid,
445 (int *) (uintptr_t) rounded_offset,
446 buffer.word, NULL);
447 if (errno)
448 return 0;
449 }
450
451 if (readbuf)
452 {
453 errno = 0;
454 if (arch64)
455 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
456 rounded_offset, 0, NULL);
457 else
458 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
459 (int *)(uintptr_t)rounded_offset,
460 0, NULL);
461 if (errno)
462 return 0;
463
464 /* Copy appropriate bytes out of the buffer. */
465 memcpy (readbuf, buffer.byte + (offset - rounded_offset),
466 partial_len);
467 }
468
469 return partial_len;
470 }
471
472 default:
473 return -1;
474 }
475 }
476
477 /* Wait for the child specified by PTID to do something. Return the
478 process ID of the child, or MINUS_ONE_PTID in case of error; store
479 the status in *OURSTATUS. */
480
481 static ptid_t
482 rs6000_wait (struct target_ops *ops,
483 ptid_t ptid, struct target_waitstatus *ourstatus, int options)
484 {
485 pid_t pid;
486 int status, save_errno;
487
488 do
489 {
490 set_sigint_trap ();
491
492 do
493 {
494 pid = waitpid (ptid_get_pid (ptid), &status, 0);
495 save_errno = errno;
496 }
497 while (pid == -1 && errno == EINTR);
498
499 clear_sigint_trap ();
500
501 if (pid == -1)
502 {
503 fprintf_unfiltered (gdb_stderr,
504 _("Child process unexpectedly missing: %s.\n"),
505 safe_strerror (save_errno));
506
507 /* Claim it exited with unknown signal. */
508 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
509 ourstatus->value.sig = GDB_SIGNAL_UNKNOWN;
510 return inferior_ptid;
511 }
512
513 /* Ignore terminated detached child processes. */
514 if (!WIFSTOPPED (status) && pid != ptid_get_pid (inferior_ptid))
515 pid = -1;
516 }
517 while (pid == -1);
518
519 /* AIX has a couple of strange returns from wait(). */
520
521 /* stop after load" status. */
522 if (status == 0x57c)
523 ourstatus->kind = TARGET_WAITKIND_LOADED;
524 /* signal 0. I have no idea why wait(2) returns with this status word. */
525 else if (status == 0x7f)
526 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
527 /* A normal waitstatus. Let the usual macros deal with it. */
528 else
529 store_waitstatus (ourstatus, status);
530
531 return pid_to_ptid (pid);
532 }
533
534 /* Execute one dummy breakpoint instruction. This way we give the kernel
535 a chance to do some housekeeping and update inferior's internal data,
536 including u_area. */
537
538 static void
539 exec_one_dummy_insn (struct regcache *regcache)
540 {
541 #define DUMMY_INSN_ADDR AIX_TEXT_SEGMENT_BASE+0x200
542
543 struct gdbarch *gdbarch = get_regcache_arch (regcache);
544 int ret, status, pid;
545 CORE_ADDR prev_pc;
546 void *bp;
547
548 /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
549 assume that this address will never be executed again by the real
550 code. */
551
552 bp = deprecated_insert_raw_breakpoint (gdbarch, NULL, DUMMY_INSN_ADDR);
553
554 /* You might think this could be done with a single ptrace call, and
555 you'd be correct for just about every platform I've ever worked
556 on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
557 the inferior never hits the breakpoint (it's also worth noting
558 powerpc-ibm-aix4.1.3 works correctly). */
559 prev_pc = regcache_read_pc (regcache);
560 regcache_write_pc (regcache, DUMMY_INSN_ADDR);
561 if (ARCH64 ())
562 ret = rs6000_ptrace64 (PT_CONTINUE, PIDGET (inferior_ptid), 1, 0, NULL);
563 else
564 ret = rs6000_ptrace32 (PT_CONTINUE, PIDGET (inferior_ptid),
565 (int *) 1, 0, NULL);
566
567 if (ret != 0)
568 perror (_("pt_continue"));
569
570 do
571 {
572 pid = waitpid (PIDGET (inferior_ptid), &status, 0);
573 }
574 while (pid != PIDGET (inferior_ptid));
575
576 regcache_write_pc (regcache, prev_pc);
577 deprecated_remove_raw_breakpoint (gdbarch, bp);
578 }
579 \f
580
581 /* Set the current architecture from the host running GDB. Called when
582 starting a child process. */
583
584 static void (*super_create_inferior) (struct target_ops *,char *exec_file,
585 char *allargs, char **env, int from_tty);
586 static void
587 rs6000_create_inferior (struct target_ops * ops, char *exec_file,
588 char *allargs, char **env, int from_tty)
589 {
590 enum bfd_architecture arch;
591 unsigned long mach;
592 bfd abfd;
593 struct gdbarch_info info;
594
595 super_create_inferior (ops, exec_file, allargs, env, from_tty);
596
597 if (__power_rs ())
598 {
599 arch = bfd_arch_rs6000;
600 mach = bfd_mach_rs6k;
601 }
602 else
603 {
604 arch = bfd_arch_powerpc;
605 mach = bfd_mach_ppc;
606 }
607
608 /* FIXME: schauer/2002-02-25:
609 We don't know if we are executing a 32 or 64 bit executable,
610 and have no way to pass the proper word size to rs6000_gdbarch_init.
611 So we have to avoid switching to a new architecture, if the architecture
612 matches already.
613 Blindly calling rs6000_gdbarch_init used to work in older versions of
614 GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
615 determine the wordsize. */
616 if (exec_bfd)
617 {
618 const struct bfd_arch_info *exec_bfd_arch_info;
619
620 exec_bfd_arch_info = bfd_get_arch_info (exec_bfd);
621 if (arch == exec_bfd_arch_info->arch)
622 return;
623 }
624
625 bfd_default_set_arch_mach (&abfd, arch, mach);
626
627 gdbarch_info_init (&info);
628 info.bfd_arch_info = bfd_get_arch_info (&abfd);
629 info.abfd = exec_bfd;
630
631 if (!gdbarch_update_p (info))
632 internal_error (__FILE__, __LINE__,
633 _("rs6000_create_inferior: failed "
634 "to select architecture"));
635 }
636 \f
637
638 /* Shared Object support. */
639
640 /* Return the LdInfo data for the given process. Raises an error
641 if the data could not be obtained.
642
643 The returned value must be deallocated after use. */
644
645 static gdb_byte *
646 rs6000_ptrace_ldinfo (ptid_t ptid)
647 {
648 const int pid = ptid_get_pid (ptid);
649 int ldi_size = 1024;
650 gdb_byte *ldi = xmalloc (ldi_size);
651 int rc = -1;
652
653 while (1)
654 {
655 if (ARCH64 ())
656 rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, ldi_size,
657 NULL);
658 else
659 rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi, ldi_size, NULL);
660
661 if (rc != -1)
662 break; /* Success, we got the entire ld_info data. */
663
664 if (errno != ENOMEM)
665 perror_with_name (_("ptrace ldinfo"));
666
667 /* ldi is not big enough. Double it and try again. */
668 ldi_size *= 2;
669 ldi = xrealloc (ldi, ldi_size);
670 }
671
672 return ldi;
673 }
674
675 /* Implement the to_xfer_partial target_ops method for
676 TARGET_OBJECT_LIBRARIES_AIX objects. */
677
678 static LONGEST
679 rs6000_xfer_shared_libraries
680 (struct target_ops *ops, enum target_object object,
681 const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf,
682 ULONGEST offset, LONGEST len)
683 {
684 gdb_byte *ldi_buf;
685 ULONGEST result;
686 struct cleanup *cleanup;
687
688 /* This function assumes that it is being run with a live process.
689 Core files are handled via gdbarch. */
690 gdb_assert (target_has_execution);
691
692 if (writebuf)
693 return -1;
694
695 ldi_buf = rs6000_ptrace_ldinfo (inferior_ptid);
696 gdb_assert (ldi_buf != NULL);
697 cleanup = make_cleanup (xfree, ldi_buf);
698 result = rs6000_aix_ld_info_to_xml (target_gdbarch (), ldi_buf,
699 readbuf, offset, len, 1);
700 xfree (ldi_buf);
701
702 do_cleanups (cleanup);
703 return result;
704 }
705
706 void _initialize_rs6000_nat (void);
707
708 void
709 _initialize_rs6000_nat (void)
710 {
711 struct target_ops *t;
712
713 t = inf_ptrace_target ();
714 t->to_fetch_registers = rs6000_fetch_inferior_registers;
715 t->to_store_registers = rs6000_store_inferior_registers;
716 t->to_xfer_partial = rs6000_xfer_partial;
717
718 super_create_inferior = t->to_create_inferior;
719 t->to_create_inferior = rs6000_create_inferior;
720
721 t->to_wait = rs6000_wait;
722
723 add_target (t);
724 }
This page took 0.044348 seconds and 5 git commands to generate.