Normalize on PATH_MAX instead of MAXPATHLEN throughout.
[deliverable/binutils-gdb.git] / gdb / rs6000-nat.c
1 /* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "gdbcore.h"
24 #include "symfile.h"
25 #include "objfiles.h"
26 #include "libbfd.h" /* For bfd_default_set_arch_mach (FIXME) */
27 #include "bfd.h"
28 #include "exceptions.h"
29 #include "gdb-stabs.h"
30 #include "regcache.h"
31 #include "arch-utils.h"
32 #include "inf-child.h"
33 #include "inf-ptrace.h"
34 #include "ppc-tdep.h"
35 #include "rs6000-tdep.h"
36 #include "rs6000-aix-tdep.h"
37 #include "exec.h"
38 #include "observer.h"
39 #include "xcoffread.h"
40
41 #include <sys/ptrace.h>
42 #include <sys/reg.h>
43
44 #include <sys/dir.h>
45 #include <sys/user.h>
46 #include <signal.h>
47 #include <sys/ioctl.h>
48 #include <fcntl.h>
49 #include <errno.h>
50
51 #include <a.out.h>
52 #include <sys/file.h>
53 #include "gdb_stat.h"
54 #include "gdb_bfd.h"
55 #include <sys/core.h>
56 #define __LDINFO_PTRACE32__ /* for __ld_info32 */
57 #define __LDINFO_PTRACE64__ /* for __ld_info64 */
58 #include <sys/ldr.h>
59 #include <sys/systemcfg.h>
60
61 /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
62 debugging 32-bit and 64-bit processes. Define a typedef and macros for
63 accessing fields in the appropriate structures. */
64
65 /* In 32-bit compilation mode (which is the only mode from which ptrace()
66 works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
67
68 #ifdef __ld_info32
69 # define ARCH3264
70 #endif
71
72 /* Return whether the current architecture is 64-bit. */
73
74 #ifndef ARCH3264
75 # define ARCH64() 0
76 #else
77 # define ARCH64() (register_size (target_gdbarch (), 0) == 8)
78 #endif
79
80 static void exec_one_dummy_insn (struct regcache *);
81
82 static LONGEST rs6000_xfer_shared_libraries
83 (struct target_ops *ops, enum target_object object,
84 const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf,
85 ULONGEST offset, LONGEST len);
86
87 /* Given REGNO, a gdb register number, return the corresponding
88 number suitable for use as a ptrace() parameter. Return -1 if
89 there's no suitable mapping. Also, set the int pointed to by
90 ISFLOAT to indicate whether REGNO is a floating point register. */
91
92 static int
93 regmap (struct gdbarch *gdbarch, int regno, int *isfloat)
94 {
95 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
96
97 *isfloat = 0;
98 if (tdep->ppc_gp0_regnum <= regno
99 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
100 return regno;
101 else if (tdep->ppc_fp0_regnum >= 0
102 && tdep->ppc_fp0_regnum <= regno
103 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
104 {
105 *isfloat = 1;
106 return regno - tdep->ppc_fp0_regnum + FPR0;
107 }
108 else if (regno == gdbarch_pc_regnum (gdbarch))
109 return IAR;
110 else if (regno == tdep->ppc_ps_regnum)
111 return MSR;
112 else if (regno == tdep->ppc_cr_regnum)
113 return CR;
114 else if (regno == tdep->ppc_lr_regnum)
115 return LR;
116 else if (regno == tdep->ppc_ctr_regnum)
117 return CTR;
118 else if (regno == tdep->ppc_xer_regnum)
119 return XER;
120 else if (tdep->ppc_fpscr_regnum >= 0
121 && regno == tdep->ppc_fpscr_regnum)
122 return FPSCR;
123 else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum)
124 return MQ;
125 else
126 return -1;
127 }
128
129 /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
130
131 static int
132 rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
133 {
134 int ret = ptrace (req, id, (int *)addr, data, buf);
135 #if 0
136 printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
137 req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
138 #endif
139 return ret;
140 }
141
142 /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
143
144 static int
145 rs6000_ptrace64 (int req, int id, long long addr, int data, void *buf)
146 {
147 #ifdef ARCH3264
148 int ret = ptracex (req, id, addr, data, buf);
149 #else
150 int ret = 0;
151 #endif
152 #if 0
153 printf ("rs6000_ptrace64 (%d, %d, %s, %08x, 0x%x) = 0x%x\n",
154 req, id, hex_string (addr), data, (unsigned int)buf, ret);
155 #endif
156 return ret;
157 }
158
159 /* Fetch register REGNO from the inferior. */
160
161 static void
162 fetch_register (struct regcache *regcache, int regno)
163 {
164 struct gdbarch *gdbarch = get_regcache_arch (regcache);
165 int addr[MAX_REGISTER_SIZE];
166 int nr, isfloat;
167
168 /* Retrieved values may be -1, so infer errors from errno. */
169 errno = 0;
170
171 nr = regmap (gdbarch, regno, &isfloat);
172
173 /* Floating-point registers. */
174 if (isfloat)
175 rs6000_ptrace32 (PT_READ_FPR, PIDGET (inferior_ptid), addr, nr, 0);
176
177 /* Bogus register number. */
178 else if (nr < 0)
179 {
180 if (regno >= gdbarch_num_regs (gdbarch))
181 fprintf_unfiltered (gdb_stderr,
182 "gdb error: register no %d not implemented.\n",
183 regno);
184 return;
185 }
186
187 /* Fixed-point registers. */
188 else
189 {
190 if (!ARCH64 ())
191 *addr = rs6000_ptrace32 (PT_READ_GPR, PIDGET (inferior_ptid),
192 (int *) nr, 0, 0);
193 else
194 {
195 /* PT_READ_GPR requires the buffer parameter to point to long long,
196 even if the register is really only 32 bits. */
197 long long buf;
198 rs6000_ptrace64 (PT_READ_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
199 if (register_size (gdbarch, regno) == 8)
200 memcpy (addr, &buf, 8);
201 else
202 *addr = buf;
203 }
204 }
205
206 if (!errno)
207 regcache_raw_supply (regcache, regno, (char *) addr);
208 else
209 {
210 #if 0
211 /* FIXME: this happens 3 times at the start of each 64-bit program. */
212 perror (_("ptrace read"));
213 #endif
214 errno = 0;
215 }
216 }
217
218 /* Store register REGNO back into the inferior. */
219
220 static void
221 store_register (struct regcache *regcache, int regno)
222 {
223 struct gdbarch *gdbarch = get_regcache_arch (regcache);
224 int addr[MAX_REGISTER_SIZE];
225 int nr, isfloat;
226
227 /* Fetch the register's value from the register cache. */
228 regcache_raw_collect (regcache, regno, addr);
229
230 /* -1 can be a successful return value, so infer errors from errno. */
231 errno = 0;
232
233 nr = regmap (gdbarch, regno, &isfloat);
234
235 /* Floating-point registers. */
236 if (isfloat)
237 rs6000_ptrace32 (PT_WRITE_FPR, PIDGET (inferior_ptid), addr, nr, 0);
238
239 /* Bogus register number. */
240 else if (nr < 0)
241 {
242 if (regno >= gdbarch_num_regs (gdbarch))
243 fprintf_unfiltered (gdb_stderr,
244 "gdb error: register no %d not implemented.\n",
245 regno);
246 }
247
248 /* Fixed-point registers. */
249 else
250 {
251 if (regno == gdbarch_sp_regnum (gdbarch))
252 /* Execute one dummy instruction (which is a breakpoint) in inferior
253 process to give kernel a chance to do internal housekeeping.
254 Otherwise the following ptrace(2) calls will mess up user stack
255 since kernel will get confused about the bottom of the stack
256 (%sp). */
257 exec_one_dummy_insn (regcache);
258
259 /* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors,
260 the register's value is passed by value, but for 64-bit inferiors,
261 the address of a buffer containing the value is passed. */
262 if (!ARCH64 ())
263 rs6000_ptrace32 (PT_WRITE_GPR, PIDGET (inferior_ptid),
264 (int *) nr, *addr, 0);
265 else
266 {
267 /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
268 area, even if the register is really only 32 bits. */
269 long long buf;
270 if (register_size (gdbarch, regno) == 8)
271 memcpy (&buf, addr, 8);
272 else
273 buf = *addr;
274 rs6000_ptrace64 (PT_WRITE_GPR, PIDGET (inferior_ptid), nr, 0, &buf);
275 }
276 }
277
278 if (errno)
279 {
280 perror (_("ptrace write"));
281 errno = 0;
282 }
283 }
284
285 /* Read from the inferior all registers if REGNO == -1 and just register
286 REGNO otherwise. */
287
288 static void
289 rs6000_fetch_inferior_registers (struct target_ops *ops,
290 struct regcache *regcache, int regno)
291 {
292 struct gdbarch *gdbarch = get_regcache_arch (regcache);
293 if (regno != -1)
294 fetch_register (regcache, regno);
295
296 else
297 {
298 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
299
300 /* Read 32 general purpose registers. */
301 for (regno = tdep->ppc_gp0_regnum;
302 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
303 regno++)
304 {
305 fetch_register (regcache, regno);
306 }
307
308 /* Read general purpose floating point registers. */
309 if (tdep->ppc_fp0_regnum >= 0)
310 for (regno = 0; regno < ppc_num_fprs; regno++)
311 fetch_register (regcache, tdep->ppc_fp0_regnum + regno);
312
313 /* Read special registers. */
314 fetch_register (regcache, gdbarch_pc_regnum (gdbarch));
315 fetch_register (regcache, tdep->ppc_ps_regnum);
316 fetch_register (regcache, tdep->ppc_cr_regnum);
317 fetch_register (regcache, tdep->ppc_lr_regnum);
318 fetch_register (regcache, tdep->ppc_ctr_regnum);
319 fetch_register (regcache, tdep->ppc_xer_regnum);
320 if (tdep->ppc_fpscr_regnum >= 0)
321 fetch_register (regcache, tdep->ppc_fpscr_regnum);
322 if (tdep->ppc_mq_regnum >= 0)
323 fetch_register (regcache, tdep->ppc_mq_regnum);
324 }
325 }
326
327 /* Store our register values back into the inferior.
328 If REGNO is -1, do this for all registers.
329 Otherwise, REGNO specifies which register (so we can save time). */
330
331 static void
332 rs6000_store_inferior_registers (struct target_ops *ops,
333 struct regcache *regcache, int regno)
334 {
335 struct gdbarch *gdbarch = get_regcache_arch (regcache);
336 if (regno != -1)
337 store_register (regcache, regno);
338
339 else
340 {
341 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
342
343 /* Write general purpose registers first. */
344 for (regno = tdep->ppc_gp0_regnum;
345 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
346 regno++)
347 {
348 store_register (regcache, regno);
349 }
350
351 /* Write floating point registers. */
352 if (tdep->ppc_fp0_regnum >= 0)
353 for (regno = 0; regno < ppc_num_fprs; regno++)
354 store_register (regcache, tdep->ppc_fp0_regnum + regno);
355
356 /* Write special registers. */
357 store_register (regcache, gdbarch_pc_regnum (gdbarch));
358 store_register (regcache, tdep->ppc_ps_regnum);
359 store_register (regcache, tdep->ppc_cr_regnum);
360 store_register (regcache, tdep->ppc_lr_regnum);
361 store_register (regcache, tdep->ppc_ctr_regnum);
362 store_register (regcache, tdep->ppc_xer_regnum);
363 if (tdep->ppc_fpscr_regnum >= 0)
364 store_register (regcache, tdep->ppc_fpscr_regnum);
365 if (tdep->ppc_mq_regnum >= 0)
366 store_register (regcache, tdep->ppc_mq_regnum);
367 }
368 }
369
370
371 /* Attempt a transfer all LEN bytes starting at OFFSET between the
372 inferior's OBJECT:ANNEX space and GDB's READBUF/WRITEBUF buffer.
373 Return the number of bytes actually transferred. */
374
375 static LONGEST
376 rs6000_xfer_partial (struct target_ops *ops, enum target_object object,
377 const char *annex, gdb_byte *readbuf,
378 const gdb_byte *writebuf,
379 ULONGEST offset, LONGEST len)
380 {
381 pid_t pid = ptid_get_pid (inferior_ptid);
382 int arch64 = ARCH64 ();
383
384 switch (object)
385 {
386 case TARGET_OBJECT_LIBRARIES_AIX:
387 return rs6000_xfer_shared_libraries (ops, object, annex,
388 readbuf, writebuf,
389 offset, len);
390 case TARGET_OBJECT_MEMORY:
391 {
392 union
393 {
394 PTRACE_TYPE_RET word;
395 gdb_byte byte[sizeof (PTRACE_TYPE_RET)];
396 } buffer;
397 ULONGEST rounded_offset;
398 LONGEST partial_len;
399
400 /* Round the start offset down to the next long word
401 boundary. */
402 rounded_offset = offset & -(ULONGEST) sizeof (PTRACE_TYPE_RET);
403
404 /* Since ptrace will transfer a single word starting at that
405 rounded_offset the partial_len needs to be adjusted down to
406 that (remember this function only does a single transfer).
407 Should the required length be even less, adjust it down
408 again. */
409 partial_len = (rounded_offset + sizeof (PTRACE_TYPE_RET)) - offset;
410 if (partial_len > len)
411 partial_len = len;
412
413 if (writebuf)
414 {
415 /* If OFFSET:PARTIAL_LEN is smaller than
416 ROUNDED_OFFSET:WORDSIZE then a read/modify write will
417 be needed. Read in the entire word. */
418 if (rounded_offset < offset
419 || (offset + partial_len
420 < rounded_offset + sizeof (PTRACE_TYPE_RET)))
421 {
422 /* Need part of initial word -- fetch it. */
423 if (arch64)
424 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
425 rounded_offset, 0, NULL);
426 else
427 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
428 (int *) (uintptr_t)
429 rounded_offset,
430 0, NULL);
431 }
432
433 /* Copy data to be written over corresponding part of
434 buffer. */
435 memcpy (buffer.byte + (offset - rounded_offset),
436 writebuf, partial_len);
437
438 errno = 0;
439 if (arch64)
440 rs6000_ptrace64 (PT_WRITE_D, pid,
441 rounded_offset, buffer.word, NULL);
442 else
443 rs6000_ptrace32 (PT_WRITE_D, pid,
444 (int *) (uintptr_t) rounded_offset,
445 buffer.word, NULL);
446 if (errno)
447 return 0;
448 }
449
450 if (readbuf)
451 {
452 errno = 0;
453 if (arch64)
454 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
455 rounded_offset, 0, NULL);
456 else
457 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
458 (int *)(uintptr_t)rounded_offset,
459 0, NULL);
460 if (errno)
461 return 0;
462
463 /* Copy appropriate bytes out of the buffer. */
464 memcpy (readbuf, buffer.byte + (offset - rounded_offset),
465 partial_len);
466 }
467
468 return partial_len;
469 }
470
471 default:
472 return -1;
473 }
474 }
475
476 /* Wait for the child specified by PTID to do something. Return the
477 process ID of the child, or MINUS_ONE_PTID in case of error; store
478 the status in *OURSTATUS. */
479
480 static ptid_t
481 rs6000_wait (struct target_ops *ops,
482 ptid_t ptid, struct target_waitstatus *ourstatus, int options)
483 {
484 pid_t pid;
485 int status, save_errno;
486
487 do
488 {
489 set_sigint_trap ();
490
491 do
492 {
493 pid = waitpid (ptid_get_pid (ptid), &status, 0);
494 save_errno = errno;
495 }
496 while (pid == -1 && errno == EINTR);
497
498 clear_sigint_trap ();
499
500 if (pid == -1)
501 {
502 fprintf_unfiltered (gdb_stderr,
503 _("Child process unexpectedly missing: %s.\n"),
504 safe_strerror (save_errno));
505
506 /* Claim it exited with unknown signal. */
507 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
508 ourstatus->value.sig = GDB_SIGNAL_UNKNOWN;
509 return inferior_ptid;
510 }
511
512 /* Ignore terminated detached child processes. */
513 if (!WIFSTOPPED (status) && pid != ptid_get_pid (inferior_ptid))
514 pid = -1;
515 }
516 while (pid == -1);
517
518 /* AIX has a couple of strange returns from wait(). */
519
520 /* stop after load" status. */
521 if (status == 0x57c)
522 ourstatus->kind = TARGET_WAITKIND_LOADED;
523 /* signal 0. I have no idea why wait(2) returns with this status word. */
524 else if (status == 0x7f)
525 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
526 /* A normal waitstatus. Let the usual macros deal with it. */
527 else
528 store_waitstatus (ourstatus, status);
529
530 return pid_to_ptid (pid);
531 }
532
533 /* Execute one dummy breakpoint instruction. This way we give the kernel
534 a chance to do some housekeeping and update inferior's internal data,
535 including u_area. */
536
537 static void
538 exec_one_dummy_insn (struct regcache *regcache)
539 {
540 #define DUMMY_INSN_ADDR AIX_TEXT_SEGMENT_BASE+0x200
541
542 struct gdbarch *gdbarch = get_regcache_arch (regcache);
543 int ret, status, pid;
544 CORE_ADDR prev_pc;
545 void *bp;
546
547 /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
548 assume that this address will never be executed again by the real
549 code. */
550
551 bp = deprecated_insert_raw_breakpoint (gdbarch, NULL, DUMMY_INSN_ADDR);
552
553 /* You might think this could be done with a single ptrace call, and
554 you'd be correct for just about every platform I've ever worked
555 on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
556 the inferior never hits the breakpoint (it's also worth noting
557 powerpc-ibm-aix4.1.3 works correctly). */
558 prev_pc = regcache_read_pc (regcache);
559 regcache_write_pc (regcache, DUMMY_INSN_ADDR);
560 if (ARCH64 ())
561 ret = rs6000_ptrace64 (PT_CONTINUE, PIDGET (inferior_ptid), 1, 0, NULL);
562 else
563 ret = rs6000_ptrace32 (PT_CONTINUE, PIDGET (inferior_ptid),
564 (int *) 1, 0, NULL);
565
566 if (ret != 0)
567 perror (_("pt_continue"));
568
569 do
570 {
571 pid = waitpid (PIDGET (inferior_ptid), &status, 0);
572 }
573 while (pid != PIDGET (inferior_ptid));
574
575 regcache_write_pc (regcache, prev_pc);
576 deprecated_remove_raw_breakpoint (gdbarch, bp);
577 }
578 \f
579
580 /* Set the current architecture from the host running GDB. Called when
581 starting a child process. */
582
583 static void (*super_create_inferior) (struct target_ops *,char *exec_file,
584 char *allargs, char **env, int from_tty);
585 static void
586 rs6000_create_inferior (struct target_ops * ops, char *exec_file,
587 char *allargs, char **env, int from_tty)
588 {
589 enum bfd_architecture arch;
590 unsigned long mach;
591 bfd abfd;
592 struct gdbarch_info info;
593
594 super_create_inferior (ops, exec_file, allargs, env, from_tty);
595
596 if (__power_rs ())
597 {
598 arch = bfd_arch_rs6000;
599 mach = bfd_mach_rs6k;
600 }
601 else
602 {
603 arch = bfd_arch_powerpc;
604 mach = bfd_mach_ppc;
605 }
606
607 /* FIXME: schauer/2002-02-25:
608 We don't know if we are executing a 32 or 64 bit executable,
609 and have no way to pass the proper word size to rs6000_gdbarch_init.
610 So we have to avoid switching to a new architecture, if the architecture
611 matches already.
612 Blindly calling rs6000_gdbarch_init used to work in older versions of
613 GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
614 determine the wordsize. */
615 if (exec_bfd)
616 {
617 const struct bfd_arch_info *exec_bfd_arch_info;
618
619 exec_bfd_arch_info = bfd_get_arch_info (exec_bfd);
620 if (arch == exec_bfd_arch_info->arch)
621 return;
622 }
623
624 bfd_default_set_arch_mach (&abfd, arch, mach);
625
626 gdbarch_info_init (&info);
627 info.bfd_arch_info = bfd_get_arch_info (&abfd);
628 info.abfd = exec_bfd;
629
630 if (!gdbarch_update_p (info))
631 internal_error (__FILE__, __LINE__,
632 _("rs6000_create_inferior: failed "
633 "to select architecture"));
634 }
635 \f
636
637 /* Shared Object support. */
638
639 /* Return the LdInfo data for the given process. Raises an error
640 if the data could not be obtained.
641
642 The returned value must be deallocated after use. */
643
644 static gdb_byte *
645 rs6000_ptrace_ldinfo (ptid_t ptid)
646 {
647 const int pid = ptid_get_pid (ptid);
648 int ldi_size = 1024;
649 gdb_byte *ldi = xmalloc (ldi_size);
650 int rc = -1;
651
652 while (1)
653 {
654 if (ARCH64 ())
655 rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, ldi_size,
656 NULL);
657 else
658 rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi, ldi_size, NULL);
659
660 if (rc != -1)
661 break; /* Success, we got the entire ld_info data. */
662
663 if (errno != ENOMEM)
664 perror_with_name (_("ptrace ldinfo"));
665
666 /* ldi is not big enough. Double it and try again. */
667 ldi_size *= 2;
668 ldi = xrealloc (ldi, ldi_size);
669 }
670
671 return ldi;
672 }
673
674 /* Implement the to_xfer_partial target_ops method for
675 TARGET_OBJECT_LIBRARIES_AIX objects. */
676
677 static LONGEST
678 rs6000_xfer_shared_libraries
679 (struct target_ops *ops, enum target_object object,
680 const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf,
681 ULONGEST offset, LONGEST len)
682 {
683 gdb_byte *ldi_buf;
684 ULONGEST result;
685 struct cleanup *cleanup;
686
687 /* This function assumes that it is being run with a live process.
688 Core files are handled via gdbarch. */
689 gdb_assert (target_has_execution);
690
691 if (writebuf)
692 return -1;
693
694 ldi_buf = rs6000_ptrace_ldinfo (inferior_ptid);
695 gdb_assert (ldi_buf != NULL);
696 cleanup = make_cleanup (xfree, ldi_buf);
697 result = rs6000_aix_ld_info_to_xml (target_gdbarch (), ldi_buf,
698 readbuf, offset, len, 1);
699 xfree (ldi_buf);
700
701 do_cleanups (cleanup);
702 return result;
703 }
704
705 void _initialize_rs6000_nat (void);
706
707 void
708 _initialize_rs6000_nat (void)
709 {
710 struct target_ops *t;
711
712 t = inf_ptrace_target ();
713 t->to_fetch_registers = rs6000_fetch_inferior_registers;
714 t->to_store_registers = rs6000_store_inferior_registers;
715 t->to_xfer_partial = rs6000_xfer_partial;
716
717 super_create_inferior = t->to_create_inferior;
718 t->to_create_inferior = rs6000_create_inferior;
719
720 t->to_wait = rs6000_wait;
721
722 add_target (t);
723 }
This page took 0.045864 seconds and 5 git commands to generate.