* aarch64-linux-nat.c: Replace PIDGET with ptid_get_pid.
[deliverable/binutils-gdb.git] / gdb / rs6000-nat.c
1 /* IBM RS/6000 native-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "gdbcore.h"
24 #include "symfile.h"
25 #include "objfiles.h"
26 #include "libbfd.h" /* For bfd_default_set_arch_mach (FIXME) */
27 #include "bfd.h"
28 #include "exceptions.h"
29 #include "gdb-stabs.h"
30 #include "regcache.h"
31 #include "arch-utils.h"
32 #include "inf-child.h"
33 #include "inf-ptrace.h"
34 #include "ppc-tdep.h"
35 #include "rs6000-tdep.h"
36 #include "rs6000-aix-tdep.h"
37 #include "exec.h"
38 #include "observer.h"
39 #include "xcoffread.h"
40
41 #include <sys/ptrace.h>
42 #include <sys/reg.h>
43
44 #include <sys/dir.h>
45 #include <sys/user.h>
46 #include <signal.h>
47 #include <sys/ioctl.h>
48 #include <fcntl.h>
49 #include <errno.h>
50
51 #include <a.out.h>
52 #include <sys/file.h>
53 #include "gdb_stat.h"
54 #include "gdb_bfd.h"
55 #include <sys/core.h>
56 #define __LDINFO_PTRACE32__ /* for __ld_info32 */
57 #define __LDINFO_PTRACE64__ /* for __ld_info64 */
58 #include <sys/ldr.h>
59 #include <sys/systemcfg.h>
60
61 /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for
62 debugging 32-bit and 64-bit processes. Define a typedef and macros for
63 accessing fields in the appropriate structures. */
64
65 /* In 32-bit compilation mode (which is the only mode from which ptrace()
66 works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */
67
68 #if defined (__ld_info32) || defined (__ld_info64)
69 # define ARCH3264
70 #endif
71
72 /* Return whether the current architecture is 64-bit. */
73
74 #ifndef ARCH3264
75 # define ARCH64() 0
76 #else
77 # define ARCH64() (register_size (target_gdbarch (), 0) == 8)
78 #endif
79
80 static void exec_one_dummy_insn (struct regcache *);
81
82 static LONGEST rs6000_xfer_shared_libraries
83 (struct target_ops *ops, enum target_object object,
84 const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf,
85 ULONGEST offset, LONGEST len);
86
87 /* Given REGNO, a gdb register number, return the corresponding
88 number suitable for use as a ptrace() parameter. Return -1 if
89 there's no suitable mapping. Also, set the int pointed to by
90 ISFLOAT to indicate whether REGNO is a floating point register. */
91
92 static int
93 regmap (struct gdbarch *gdbarch, int regno, int *isfloat)
94 {
95 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
96
97 *isfloat = 0;
98 if (tdep->ppc_gp0_regnum <= regno
99 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
100 return regno;
101 else if (tdep->ppc_fp0_regnum >= 0
102 && tdep->ppc_fp0_regnum <= regno
103 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
104 {
105 *isfloat = 1;
106 return regno - tdep->ppc_fp0_regnum + FPR0;
107 }
108 else if (regno == gdbarch_pc_regnum (gdbarch))
109 return IAR;
110 else if (regno == tdep->ppc_ps_regnum)
111 return MSR;
112 else if (regno == tdep->ppc_cr_regnum)
113 return CR;
114 else if (regno == tdep->ppc_lr_regnum)
115 return LR;
116 else if (regno == tdep->ppc_ctr_regnum)
117 return CTR;
118 else if (regno == tdep->ppc_xer_regnum)
119 return XER;
120 else if (tdep->ppc_fpscr_regnum >= 0
121 && regno == tdep->ppc_fpscr_regnum)
122 return FPSCR;
123 else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum)
124 return MQ;
125 else
126 return -1;
127 }
128
129 /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */
130
131 static int
132 rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf)
133 {
134 #ifdef HAVE_PTRACE64
135 int ret = ptrace64 (req, id, (uintptr_t) addr, data, buf);
136 #else
137 int ret = ptrace (req, id, (int *)addr, data, buf);
138 #endif
139 #if 0
140 printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n",
141 req, id, (unsigned int)addr, data, (unsigned int)buf, ret);
142 #endif
143 return ret;
144 }
145
146 /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */
147
148 static int
149 rs6000_ptrace64 (int req, int id, long long addr, int data, void *buf)
150 {
151 #ifdef ARCH3264
152 # ifdef HAVE_PTRACE64
153 int ret = ptrace64 (req, id, addr, data, buf);
154 # else
155 int ret = ptracex (req, id, addr, data, buf);
156 # endif
157 #else
158 int ret = 0;
159 #endif
160 #if 0
161 printf ("rs6000_ptrace64 (%d, %d, %s, %08x, 0x%x) = 0x%x\n",
162 req, id, hex_string (addr), data, (unsigned int)buf, ret);
163 #endif
164 return ret;
165 }
166
167 /* Fetch register REGNO from the inferior. */
168
169 static void
170 fetch_register (struct regcache *regcache, int regno)
171 {
172 struct gdbarch *gdbarch = get_regcache_arch (regcache);
173 int addr[MAX_REGISTER_SIZE];
174 int nr, isfloat;
175
176 /* Retrieved values may be -1, so infer errors from errno. */
177 errno = 0;
178
179 nr = regmap (gdbarch, regno, &isfloat);
180
181 /* Floating-point registers. */
182 if (isfloat)
183 rs6000_ptrace32 (PT_READ_FPR, ptid_get_pid (inferior_ptid), addr, nr, 0);
184
185 /* Bogus register number. */
186 else if (nr < 0)
187 {
188 if (regno >= gdbarch_num_regs (gdbarch))
189 fprintf_unfiltered (gdb_stderr,
190 "gdb error: register no %d not implemented.\n",
191 regno);
192 return;
193 }
194
195 /* Fixed-point registers. */
196 else
197 {
198 if (!ARCH64 ())
199 *addr = rs6000_ptrace32 (PT_READ_GPR, ptid_get_pid (inferior_ptid),
200 (int *) nr, 0, 0);
201 else
202 {
203 /* PT_READ_GPR requires the buffer parameter to point to long long,
204 even if the register is really only 32 bits. */
205 long long buf;
206 rs6000_ptrace64 (PT_READ_GPR, ptid_get_pid (inferior_ptid),
207 nr, 0, &buf);
208 if (register_size (gdbarch, regno) == 8)
209 memcpy (addr, &buf, 8);
210 else
211 *addr = buf;
212 }
213 }
214
215 if (!errno)
216 regcache_raw_supply (regcache, regno, (char *) addr);
217 else
218 {
219 #if 0
220 /* FIXME: this happens 3 times at the start of each 64-bit program. */
221 perror (_("ptrace read"));
222 #endif
223 errno = 0;
224 }
225 }
226
227 /* Store register REGNO back into the inferior. */
228
229 static void
230 store_register (struct regcache *regcache, int regno)
231 {
232 struct gdbarch *gdbarch = get_regcache_arch (regcache);
233 int addr[MAX_REGISTER_SIZE];
234 int nr, isfloat;
235
236 /* Fetch the register's value from the register cache. */
237 regcache_raw_collect (regcache, regno, addr);
238
239 /* -1 can be a successful return value, so infer errors from errno. */
240 errno = 0;
241
242 nr = regmap (gdbarch, regno, &isfloat);
243
244 /* Floating-point registers. */
245 if (isfloat)
246 rs6000_ptrace32 (PT_WRITE_FPR, ptid_get_pid (inferior_ptid), addr, nr, 0);
247
248 /* Bogus register number. */
249 else if (nr < 0)
250 {
251 if (regno >= gdbarch_num_regs (gdbarch))
252 fprintf_unfiltered (gdb_stderr,
253 "gdb error: register no %d not implemented.\n",
254 regno);
255 }
256
257 /* Fixed-point registers. */
258 else
259 {
260 if (regno == gdbarch_sp_regnum (gdbarch))
261 /* Execute one dummy instruction (which is a breakpoint) in inferior
262 process to give kernel a chance to do internal housekeeping.
263 Otherwise the following ptrace(2) calls will mess up user stack
264 since kernel will get confused about the bottom of the stack
265 (%sp). */
266 exec_one_dummy_insn (regcache);
267
268 /* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors,
269 the register's value is passed by value, but for 64-bit inferiors,
270 the address of a buffer containing the value is passed. */
271 if (!ARCH64 ())
272 rs6000_ptrace32 (PT_WRITE_GPR, ptid_get_pid (inferior_ptid),
273 (int *) nr, *addr, 0);
274 else
275 {
276 /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte
277 area, even if the register is really only 32 bits. */
278 long long buf;
279 if (register_size (gdbarch, regno) == 8)
280 memcpy (&buf, addr, 8);
281 else
282 buf = *addr;
283 rs6000_ptrace64 (PT_WRITE_GPR, ptid_get_pid (inferior_ptid),
284 nr, 0, &buf);
285 }
286 }
287
288 if (errno)
289 {
290 perror (_("ptrace write"));
291 errno = 0;
292 }
293 }
294
295 /* Read from the inferior all registers if REGNO == -1 and just register
296 REGNO otherwise. */
297
298 static void
299 rs6000_fetch_inferior_registers (struct target_ops *ops,
300 struct regcache *regcache, int regno)
301 {
302 struct gdbarch *gdbarch = get_regcache_arch (regcache);
303 if (regno != -1)
304 fetch_register (regcache, regno);
305
306 else
307 {
308 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
309
310 /* Read 32 general purpose registers. */
311 for (regno = tdep->ppc_gp0_regnum;
312 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
313 regno++)
314 {
315 fetch_register (regcache, regno);
316 }
317
318 /* Read general purpose floating point registers. */
319 if (tdep->ppc_fp0_regnum >= 0)
320 for (regno = 0; regno < ppc_num_fprs; regno++)
321 fetch_register (regcache, tdep->ppc_fp0_regnum + regno);
322
323 /* Read special registers. */
324 fetch_register (regcache, gdbarch_pc_regnum (gdbarch));
325 fetch_register (regcache, tdep->ppc_ps_regnum);
326 fetch_register (regcache, tdep->ppc_cr_regnum);
327 fetch_register (regcache, tdep->ppc_lr_regnum);
328 fetch_register (regcache, tdep->ppc_ctr_regnum);
329 fetch_register (regcache, tdep->ppc_xer_regnum);
330 if (tdep->ppc_fpscr_regnum >= 0)
331 fetch_register (regcache, tdep->ppc_fpscr_regnum);
332 if (tdep->ppc_mq_regnum >= 0)
333 fetch_register (regcache, tdep->ppc_mq_regnum);
334 }
335 }
336
337 /* Store our register values back into the inferior.
338 If REGNO is -1, do this for all registers.
339 Otherwise, REGNO specifies which register (so we can save time). */
340
341 static void
342 rs6000_store_inferior_registers (struct target_ops *ops,
343 struct regcache *regcache, int regno)
344 {
345 struct gdbarch *gdbarch = get_regcache_arch (regcache);
346 if (regno != -1)
347 store_register (regcache, regno);
348
349 else
350 {
351 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
352
353 /* Write general purpose registers first. */
354 for (regno = tdep->ppc_gp0_regnum;
355 regno < tdep->ppc_gp0_regnum + ppc_num_gprs;
356 regno++)
357 {
358 store_register (regcache, regno);
359 }
360
361 /* Write floating point registers. */
362 if (tdep->ppc_fp0_regnum >= 0)
363 for (regno = 0; regno < ppc_num_fprs; regno++)
364 store_register (regcache, tdep->ppc_fp0_regnum + regno);
365
366 /* Write special registers. */
367 store_register (regcache, gdbarch_pc_regnum (gdbarch));
368 store_register (regcache, tdep->ppc_ps_regnum);
369 store_register (regcache, tdep->ppc_cr_regnum);
370 store_register (regcache, tdep->ppc_lr_regnum);
371 store_register (regcache, tdep->ppc_ctr_regnum);
372 store_register (regcache, tdep->ppc_xer_regnum);
373 if (tdep->ppc_fpscr_regnum >= 0)
374 store_register (regcache, tdep->ppc_fpscr_regnum);
375 if (tdep->ppc_mq_regnum >= 0)
376 store_register (regcache, tdep->ppc_mq_regnum);
377 }
378 }
379
380
381 /* Attempt a transfer all LEN bytes starting at OFFSET between the
382 inferior's OBJECT:ANNEX space and GDB's READBUF/WRITEBUF buffer.
383 Return the number of bytes actually transferred. */
384
385 static LONGEST
386 rs6000_xfer_partial (struct target_ops *ops, enum target_object object,
387 const char *annex, gdb_byte *readbuf,
388 const gdb_byte *writebuf,
389 ULONGEST offset, LONGEST len)
390 {
391 pid_t pid = ptid_get_pid (inferior_ptid);
392 int arch64 = ARCH64 ();
393
394 switch (object)
395 {
396 case TARGET_OBJECT_LIBRARIES_AIX:
397 return rs6000_xfer_shared_libraries (ops, object, annex,
398 readbuf, writebuf,
399 offset, len);
400 case TARGET_OBJECT_MEMORY:
401 {
402 union
403 {
404 PTRACE_TYPE_RET word;
405 gdb_byte byte[sizeof (PTRACE_TYPE_RET)];
406 } buffer;
407 ULONGEST rounded_offset;
408 LONGEST partial_len;
409
410 /* Round the start offset down to the next long word
411 boundary. */
412 rounded_offset = offset & -(ULONGEST) sizeof (PTRACE_TYPE_RET);
413
414 /* Since ptrace will transfer a single word starting at that
415 rounded_offset the partial_len needs to be adjusted down to
416 that (remember this function only does a single transfer).
417 Should the required length be even less, adjust it down
418 again. */
419 partial_len = (rounded_offset + sizeof (PTRACE_TYPE_RET)) - offset;
420 if (partial_len > len)
421 partial_len = len;
422
423 if (writebuf)
424 {
425 /* If OFFSET:PARTIAL_LEN is smaller than
426 ROUNDED_OFFSET:WORDSIZE then a read/modify write will
427 be needed. Read in the entire word. */
428 if (rounded_offset < offset
429 || (offset + partial_len
430 < rounded_offset + sizeof (PTRACE_TYPE_RET)))
431 {
432 /* Need part of initial word -- fetch it. */
433 if (arch64)
434 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
435 rounded_offset, 0, NULL);
436 else
437 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
438 (int *) (uintptr_t)
439 rounded_offset,
440 0, NULL);
441 }
442
443 /* Copy data to be written over corresponding part of
444 buffer. */
445 memcpy (buffer.byte + (offset - rounded_offset),
446 writebuf, partial_len);
447
448 errno = 0;
449 if (arch64)
450 rs6000_ptrace64 (PT_WRITE_D, pid,
451 rounded_offset, buffer.word, NULL);
452 else
453 rs6000_ptrace32 (PT_WRITE_D, pid,
454 (int *) (uintptr_t) rounded_offset,
455 buffer.word, NULL);
456 if (errno)
457 return 0;
458 }
459
460 if (readbuf)
461 {
462 errno = 0;
463 if (arch64)
464 buffer.word = rs6000_ptrace64 (PT_READ_I, pid,
465 rounded_offset, 0, NULL);
466 else
467 buffer.word = rs6000_ptrace32 (PT_READ_I, pid,
468 (int *)(uintptr_t)rounded_offset,
469 0, NULL);
470 if (errno)
471 return 0;
472
473 /* Copy appropriate bytes out of the buffer. */
474 memcpy (readbuf, buffer.byte + (offset - rounded_offset),
475 partial_len);
476 }
477
478 return partial_len;
479 }
480
481 default:
482 return -1;
483 }
484 }
485
486 /* Wait for the child specified by PTID to do something. Return the
487 process ID of the child, or MINUS_ONE_PTID in case of error; store
488 the status in *OURSTATUS. */
489
490 static ptid_t
491 rs6000_wait (struct target_ops *ops,
492 ptid_t ptid, struct target_waitstatus *ourstatus, int options)
493 {
494 pid_t pid;
495 int status, save_errno;
496
497 do
498 {
499 set_sigint_trap ();
500
501 do
502 {
503 pid = waitpid (ptid_get_pid (ptid), &status, 0);
504 save_errno = errno;
505 }
506 while (pid == -1 && errno == EINTR);
507
508 clear_sigint_trap ();
509
510 if (pid == -1)
511 {
512 fprintf_unfiltered (gdb_stderr,
513 _("Child process unexpectedly missing: %s.\n"),
514 safe_strerror (save_errno));
515
516 /* Claim it exited with unknown signal. */
517 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
518 ourstatus->value.sig = GDB_SIGNAL_UNKNOWN;
519 return inferior_ptid;
520 }
521
522 /* Ignore terminated detached child processes. */
523 if (!WIFSTOPPED (status) && pid != ptid_get_pid (inferior_ptid))
524 pid = -1;
525 }
526 while (pid == -1);
527
528 /* AIX has a couple of strange returns from wait(). */
529
530 /* stop after load" status. */
531 if (status == 0x57c)
532 ourstatus->kind = TARGET_WAITKIND_LOADED;
533 /* signal 0. I have no idea why wait(2) returns with this status word. */
534 else if (status == 0x7f)
535 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
536 /* A normal waitstatus. Let the usual macros deal with it. */
537 else
538 store_waitstatus (ourstatus, status);
539
540 return pid_to_ptid (pid);
541 }
542
543 /* Execute one dummy breakpoint instruction. This way we give the kernel
544 a chance to do some housekeeping and update inferior's internal data,
545 including u_area. */
546
547 static void
548 exec_one_dummy_insn (struct regcache *regcache)
549 {
550 #define DUMMY_INSN_ADDR AIX_TEXT_SEGMENT_BASE+0x200
551
552 struct gdbarch *gdbarch = get_regcache_arch (regcache);
553 int ret, status, pid;
554 CORE_ADDR prev_pc;
555 void *bp;
556
557 /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We
558 assume that this address will never be executed again by the real
559 code. */
560
561 bp = deprecated_insert_raw_breakpoint (gdbarch, NULL, DUMMY_INSN_ADDR);
562
563 /* You might think this could be done with a single ptrace call, and
564 you'd be correct for just about every platform I've ever worked
565 on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up --
566 the inferior never hits the breakpoint (it's also worth noting
567 powerpc-ibm-aix4.1.3 works correctly). */
568 prev_pc = regcache_read_pc (regcache);
569 regcache_write_pc (regcache, DUMMY_INSN_ADDR);
570 if (ARCH64 ())
571 ret = rs6000_ptrace64 (PT_CONTINUE, ptid_get_pid (inferior_ptid),
572 1, 0, NULL);
573 else
574 ret = rs6000_ptrace32 (PT_CONTINUE, ptid_get_pid (inferior_ptid),
575 (int *) 1, 0, NULL);
576
577 if (ret != 0)
578 perror (_("pt_continue"));
579
580 do
581 {
582 pid = waitpid (ptid_get_pid (inferior_ptid), &status, 0);
583 }
584 while (pid != ptid_get_pid (inferior_ptid));
585
586 regcache_write_pc (regcache, prev_pc);
587 deprecated_remove_raw_breakpoint (gdbarch, bp);
588 }
589 \f
590
591 /* Set the current architecture from the host running GDB. Called when
592 starting a child process. */
593
594 static void (*super_create_inferior) (struct target_ops *,char *exec_file,
595 char *allargs, char **env, int from_tty);
596 static void
597 rs6000_create_inferior (struct target_ops * ops, char *exec_file,
598 char *allargs, char **env, int from_tty)
599 {
600 enum bfd_architecture arch;
601 unsigned long mach;
602 bfd abfd;
603 struct gdbarch_info info;
604
605 super_create_inferior (ops, exec_file, allargs, env, from_tty);
606
607 if (__power_rs ())
608 {
609 arch = bfd_arch_rs6000;
610 mach = bfd_mach_rs6k;
611 }
612 else
613 {
614 arch = bfd_arch_powerpc;
615 mach = bfd_mach_ppc;
616 }
617
618 /* FIXME: schauer/2002-02-25:
619 We don't know if we are executing a 32 or 64 bit executable,
620 and have no way to pass the proper word size to rs6000_gdbarch_init.
621 So we have to avoid switching to a new architecture, if the architecture
622 matches already.
623 Blindly calling rs6000_gdbarch_init used to work in older versions of
624 GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to
625 determine the wordsize. */
626 if (exec_bfd)
627 {
628 const struct bfd_arch_info *exec_bfd_arch_info;
629
630 exec_bfd_arch_info = bfd_get_arch_info (exec_bfd);
631 if (arch == exec_bfd_arch_info->arch)
632 return;
633 }
634
635 bfd_default_set_arch_mach (&abfd, arch, mach);
636
637 gdbarch_info_init (&info);
638 info.bfd_arch_info = bfd_get_arch_info (&abfd);
639 info.abfd = exec_bfd;
640
641 if (!gdbarch_update_p (info))
642 internal_error (__FILE__, __LINE__,
643 _("rs6000_create_inferior: failed "
644 "to select architecture"));
645 }
646 \f
647
648 /* Shared Object support. */
649
650 /* Return the LdInfo data for the given process. Raises an error
651 if the data could not be obtained.
652
653 The returned value must be deallocated after use. */
654
655 static gdb_byte *
656 rs6000_ptrace_ldinfo (ptid_t ptid)
657 {
658 const int pid = ptid_get_pid (ptid);
659 int ldi_size = 1024;
660 gdb_byte *ldi = xmalloc (ldi_size);
661 int rc = -1;
662
663 while (1)
664 {
665 if (ARCH64 ())
666 rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi, ldi_size,
667 NULL);
668 else
669 rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi, ldi_size, NULL);
670
671 if (rc != -1)
672 break; /* Success, we got the entire ld_info data. */
673
674 if (errno != ENOMEM)
675 perror_with_name (_("ptrace ldinfo"));
676
677 /* ldi is not big enough. Double it and try again. */
678 ldi_size *= 2;
679 ldi = xrealloc (ldi, ldi_size);
680 }
681
682 return ldi;
683 }
684
685 /* Implement the to_xfer_partial target_ops method for
686 TARGET_OBJECT_LIBRARIES_AIX objects. */
687
688 static LONGEST
689 rs6000_xfer_shared_libraries
690 (struct target_ops *ops, enum target_object object,
691 const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf,
692 ULONGEST offset, LONGEST len)
693 {
694 gdb_byte *ldi_buf;
695 ULONGEST result;
696 struct cleanup *cleanup;
697
698 /* This function assumes that it is being run with a live process.
699 Core files are handled via gdbarch. */
700 gdb_assert (target_has_execution);
701
702 if (writebuf)
703 return -1;
704
705 ldi_buf = rs6000_ptrace_ldinfo (inferior_ptid);
706 gdb_assert (ldi_buf != NULL);
707 cleanup = make_cleanup (xfree, ldi_buf);
708 result = rs6000_aix_ld_info_to_xml (target_gdbarch (), ldi_buf,
709 readbuf, offset, len, 1);
710 xfree (ldi_buf);
711
712 do_cleanups (cleanup);
713 return result;
714 }
715
716 void _initialize_rs6000_nat (void);
717
718 void
719 _initialize_rs6000_nat (void)
720 {
721 struct target_ops *t;
722
723 t = inf_ptrace_target ();
724 t->to_fetch_registers = rs6000_fetch_inferior_registers;
725 t->to_store_registers = rs6000_store_inferior_registers;
726 t->to_xfer_partial = rs6000_xfer_partial;
727
728 super_create_inferior = t->to_create_inferior;
729 t->to_create_inferior = rs6000_create_inferior;
730
731 t->to_wait = rs6000_wait;
732
733 add_target (t);
734 }
This page took 0.045785 seconds and 5 git commands to generate.