2003-04-28 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "target.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "doublest.h"
35 #include "value.h"
36 #include "parser-defs.h"
37 #include "osabi.h"
38
39 #include "libbfd.h" /* for bfd_default_set_arch_mach */
40 #include "coff/internal.h" /* for libcoff.h */
41 #include "libcoff.h" /* for xcoff_data */
42 #include "coff/xcoff.h"
43 #include "libxcoff.h"
44
45 #include "elf-bfd.h"
46
47 #include "solib-svr4.h"
48 #include "ppc-tdep.h"
49
50 #include "gdb_assert.h"
51
52 /* If the kernel has to deliver a signal, it pushes a sigcontext
53 structure on the stack and then calls the signal handler, passing
54 the address of the sigcontext in an argument register. Usually
55 the signal handler doesn't save this register, so we have to
56 access the sigcontext structure via an offset from the signal handler
57 frame.
58 The following constants were determined by experimentation on AIX 3.2. */
59 #define SIG_FRAME_PC_OFFSET 96
60 #define SIG_FRAME_LR_OFFSET 108
61 #define SIG_FRAME_FP_OFFSET 284
62
63 /* To be used by skip_prologue. */
64
65 struct rs6000_framedata
66 {
67 int offset; /* total size of frame --- the distance
68 by which we decrement sp to allocate
69 the frame */
70 int saved_gpr; /* smallest # of saved gpr */
71 int saved_fpr; /* smallest # of saved fpr */
72 int saved_vr; /* smallest # of saved vr */
73 int saved_ev; /* smallest # of saved ev */
74 int alloca_reg; /* alloca register number (frame ptr) */
75 char frameless; /* true if frameless functions. */
76 char nosavedpc; /* true if pc not saved. */
77 int gpr_offset; /* offset of saved gprs from prev sp */
78 int fpr_offset; /* offset of saved fprs from prev sp */
79 int vr_offset; /* offset of saved vrs from prev sp */
80 int ev_offset; /* offset of saved evs from prev sp */
81 int lr_offset; /* offset of saved lr */
82 int cr_offset; /* offset of saved cr */
83 int vrsave_offset; /* offset of saved vrsave register */
84 };
85
86 /* Description of a single register. */
87
88 struct reg
89 {
90 char *name; /* name of register */
91 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
92 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
93 unsigned char fpr; /* whether register is floating-point */
94 unsigned char pseudo; /* whether register is pseudo */
95 };
96
97 /* Breakpoint shadows for the single step instructions will be kept here. */
98
99 static struct sstep_breaks
100 {
101 /* Address, or 0 if this is not in use. */
102 CORE_ADDR address;
103 /* Shadow contents. */
104 char data[4];
105 }
106 stepBreaks[2];
107
108 /* Hook for determining the TOC address when calling functions in the
109 inferior under AIX. The initialization code in rs6000-nat.c sets
110 this hook to point to find_toc_address. */
111
112 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
113
114 /* Hook to set the current architecture when starting a child process.
115 rs6000-nat.c sets this. */
116
117 void (*rs6000_set_host_arch_hook) (int) = NULL;
118
119 /* Static function prototypes */
120
121 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
122 CORE_ADDR safety);
123 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
124 struct rs6000_framedata *);
125 static void frame_get_saved_regs (struct frame_info * fi,
126 struct rs6000_framedata * fdatap);
127 static CORE_ADDR frame_initial_stack_address (struct frame_info *);
128
129 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
130 int
131 altivec_register_p (int regno)
132 {
133 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
134 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
135 return 0;
136 else
137 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
138 }
139
140 /* Use the architectures FP registers? */
141 int
142 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
143 {
144 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
145 if (info->arch == bfd_arch_powerpc)
146 return (info->mach != bfd_mach_ppc_e500);
147 if (info->arch == bfd_arch_rs6000)
148 return 1;
149 return 0;
150 }
151
152 /* Read a LEN-byte address from debugged memory address MEMADDR. */
153
154 static CORE_ADDR
155 read_memory_addr (CORE_ADDR memaddr, int len)
156 {
157 return read_memory_unsigned_integer (memaddr, len);
158 }
159
160 static CORE_ADDR
161 rs6000_skip_prologue (CORE_ADDR pc)
162 {
163 struct rs6000_framedata frame;
164 pc = skip_prologue (pc, 0, &frame);
165 return pc;
166 }
167
168
169 /* Fill in fi->saved_regs */
170
171 struct frame_extra_info
172 {
173 /* Functions calling alloca() change the value of the stack
174 pointer. We need to use initial stack pointer (which is saved in
175 r31 by gcc) in such cases. If a compiler emits traceback table,
176 then we should use the alloca register specified in traceback
177 table. FIXME. */
178 CORE_ADDR initial_sp; /* initial stack pointer. */
179 };
180
181 void
182 rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
183 {
184 struct frame_extra_info *extra_info =
185 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
186 extra_info->initial_sp = 0;
187 if (get_next_frame (fi) != NULL
188 && get_frame_pc (fi) < TEXT_SEGMENT_BASE)
189 /* We're in get_prev_frame */
190 /* and this is a special signal frame. */
191 /* (fi->pc will be some low address in the kernel, */
192 /* to which the signal handler returns). */
193 deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
194 }
195
196 /* Put here the code to store, into a struct frame_saved_regs,
197 the addresses of the saved registers of frame described by FRAME_INFO.
198 This includes special registers such as pc and fp saved in special
199 ways in the stack frame. sp is even more special:
200 the address we return for it IS the sp for the next frame. */
201
202 /* In this implementation for RS/6000, we do *not* save sp. I am
203 not sure if it will be needed. The following function takes care of gpr's
204 and fpr's only. */
205
206 void
207 rs6000_frame_init_saved_regs (struct frame_info *fi)
208 {
209 frame_get_saved_regs (fi, NULL);
210 }
211
212 static CORE_ADDR
213 rs6000_frame_args_address (struct frame_info *fi)
214 {
215 struct frame_extra_info *extra_info = get_frame_extra_info (fi);
216 if (extra_info->initial_sp != 0)
217 return extra_info->initial_sp;
218 else
219 return frame_initial_stack_address (fi);
220 }
221
222 /* Immediately after a function call, return the saved pc.
223 Can't go through the frames for this because on some machines
224 the new frame is not set up until the new function executes
225 some instructions. */
226
227 static CORE_ADDR
228 rs6000_saved_pc_after_call (struct frame_info *fi)
229 {
230 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
231 }
232
233 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
234
235 static CORE_ADDR
236 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
237 {
238 CORE_ADDR dest;
239 int immediate;
240 int absolute;
241 int ext_op;
242
243 absolute = (int) ((instr >> 1) & 1);
244
245 switch (opcode)
246 {
247 case 18:
248 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
249 if (absolute)
250 dest = immediate;
251 else
252 dest = pc + immediate;
253 break;
254
255 case 16:
256 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
257 if (absolute)
258 dest = immediate;
259 else
260 dest = pc + immediate;
261 break;
262
263 case 19:
264 ext_op = (instr >> 1) & 0x3ff;
265
266 if (ext_op == 16) /* br conditional register */
267 {
268 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
269
270 /* If we are about to return from a signal handler, dest is
271 something like 0x3c90. The current frame is a signal handler
272 caller frame, upon completion of the sigreturn system call
273 execution will return to the saved PC in the frame. */
274 if (dest < TEXT_SEGMENT_BASE)
275 {
276 struct frame_info *fi;
277
278 fi = get_current_frame ();
279 if (fi != NULL)
280 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
281 gdbarch_tdep (current_gdbarch)->wordsize);
282 }
283 }
284
285 else if (ext_op == 528) /* br cond to count reg */
286 {
287 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
288
289 /* If we are about to execute a system call, dest is something
290 like 0x22fc or 0x3b00. Upon completion the system call
291 will return to the address in the link register. */
292 if (dest < TEXT_SEGMENT_BASE)
293 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
294 }
295 else
296 return -1;
297 break;
298
299 default:
300 return -1;
301 }
302 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
303 }
304
305
306 /* Sequence of bytes for breakpoint instruction. */
307
308 #define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
309 #define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
310
311 const static unsigned char *
312 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
313 {
314 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
315 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
316 *bp_size = 4;
317 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
318 return big_breakpoint;
319 else
320 return little_breakpoint;
321 }
322
323
324 /* AIX does not support PT_STEP. Simulate it. */
325
326 void
327 rs6000_software_single_step (enum target_signal signal,
328 int insert_breakpoints_p)
329 {
330 CORE_ADDR dummy;
331 int breakp_sz;
332 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
333 int ii, insn;
334 CORE_ADDR loc;
335 CORE_ADDR breaks[2];
336 int opcode;
337
338 if (insert_breakpoints_p)
339 {
340
341 loc = read_pc ();
342
343 insn = read_memory_integer (loc, 4);
344
345 breaks[0] = loc + breakp_sz;
346 opcode = insn >> 26;
347 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
348
349 /* Don't put two breakpoints on the same address. */
350 if (breaks[1] == breaks[0])
351 breaks[1] = -1;
352
353 stepBreaks[1].address = 0;
354
355 for (ii = 0; ii < 2; ++ii)
356 {
357
358 /* ignore invalid breakpoint. */
359 if (breaks[ii] == -1)
360 continue;
361 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
362 stepBreaks[ii].address = breaks[ii];
363 }
364
365 }
366 else
367 {
368
369 /* remove step breakpoints. */
370 for (ii = 0; ii < 2; ++ii)
371 if (stepBreaks[ii].address != 0)
372 target_remove_breakpoint (stepBreaks[ii].address,
373 stepBreaks[ii].data);
374 }
375 errno = 0; /* FIXME, don't ignore errors! */
376 /* What errors? {read,write}_memory call error(). */
377 }
378
379
380 /* return pc value after skipping a function prologue and also return
381 information about a function frame.
382
383 in struct rs6000_framedata fdata:
384 - frameless is TRUE, if function does not have a frame.
385 - nosavedpc is TRUE, if function does not save %pc value in its frame.
386 - offset is the initial size of this stack frame --- the amount by
387 which we decrement the sp to allocate the frame.
388 - saved_gpr is the number of the first saved gpr.
389 - saved_fpr is the number of the first saved fpr.
390 - saved_vr is the number of the first saved vr.
391 - saved_ev is the number of the first saved ev.
392 - alloca_reg is the number of the register used for alloca() handling.
393 Otherwise -1.
394 - gpr_offset is the offset of the first saved gpr from the previous frame.
395 - fpr_offset is the offset of the first saved fpr from the previous frame.
396 - vr_offset is the offset of the first saved vr from the previous frame.
397 - ev_offset is the offset of the first saved ev from the previous frame.
398 - lr_offset is the offset of the saved lr
399 - cr_offset is the offset of the saved cr
400 - vrsave_offset is the offset of the saved vrsave register
401 */
402
403 #define SIGNED_SHORT(x) \
404 ((sizeof (short) == 2) \
405 ? ((int)(short)(x)) \
406 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
407
408 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
409
410 /* Limit the number of skipped non-prologue instructions, as the examining
411 of the prologue is expensive. */
412 static int max_skip_non_prologue_insns = 10;
413
414 /* Given PC representing the starting address of a function, and
415 LIM_PC which is the (sloppy) limit to which to scan when looking
416 for a prologue, attempt to further refine this limit by using
417 the line data in the symbol table. If successful, a better guess
418 on where the prologue ends is returned, otherwise the previous
419 value of lim_pc is returned. */
420 static CORE_ADDR
421 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
422 {
423 struct symtab_and_line prologue_sal;
424
425 prologue_sal = find_pc_line (pc, 0);
426 if (prologue_sal.line != 0)
427 {
428 int i;
429 CORE_ADDR addr = prologue_sal.end;
430
431 /* Handle the case in which compiler's optimizer/scheduler
432 has moved instructions into the prologue. We scan ahead
433 in the function looking for address ranges whose corresponding
434 line number is less than or equal to the first one that we
435 found for the function. (It can be less than when the
436 scheduler puts a body instruction before the first prologue
437 instruction.) */
438 for (i = 2 * max_skip_non_prologue_insns;
439 i > 0 && (lim_pc == 0 || addr < lim_pc);
440 i--)
441 {
442 struct symtab_and_line sal;
443
444 sal = find_pc_line (addr, 0);
445 if (sal.line == 0)
446 break;
447 if (sal.line <= prologue_sal.line
448 && sal.symtab == prologue_sal.symtab)
449 {
450 prologue_sal = sal;
451 }
452 addr = sal.end;
453 }
454
455 if (lim_pc == 0 || prologue_sal.end < lim_pc)
456 lim_pc = prologue_sal.end;
457 }
458 return lim_pc;
459 }
460
461
462 static CORE_ADDR
463 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
464 {
465 CORE_ADDR orig_pc = pc;
466 CORE_ADDR last_prologue_pc = pc;
467 CORE_ADDR li_found_pc = 0;
468 char buf[4];
469 unsigned long op;
470 long offset = 0;
471 long vr_saved_offset = 0;
472 int lr_reg = -1;
473 int cr_reg = -1;
474 int vr_reg = -1;
475 int ev_reg = -1;
476 long ev_offset = 0;
477 int vrsave_reg = -1;
478 int reg;
479 int framep = 0;
480 int minimal_toc_loaded = 0;
481 int prev_insn_was_prologue_insn = 1;
482 int num_skip_non_prologue_insns = 0;
483 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
484 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
485
486 /* Attempt to find the end of the prologue when no limit is specified.
487 Note that refine_prologue_limit() has been written so that it may
488 be used to "refine" the limits of non-zero PC values too, but this
489 is only safe if we 1) trust the line information provided by the
490 compiler and 2) iterate enough to actually find the end of the
491 prologue.
492
493 It may become a good idea at some point (for both performance and
494 accuracy) to unconditionally call refine_prologue_limit(). But,
495 until we can make a clear determination that this is beneficial,
496 we'll play it safe and only use it to obtain a limit when none
497 has been specified. */
498 if (lim_pc == 0)
499 lim_pc = refine_prologue_limit (pc, lim_pc);
500
501 memset (fdata, 0, sizeof (struct rs6000_framedata));
502 fdata->saved_gpr = -1;
503 fdata->saved_fpr = -1;
504 fdata->saved_vr = -1;
505 fdata->saved_ev = -1;
506 fdata->alloca_reg = -1;
507 fdata->frameless = 1;
508 fdata->nosavedpc = 1;
509
510 for (;; pc += 4)
511 {
512 /* Sometimes it isn't clear if an instruction is a prologue
513 instruction or not. When we encounter one of these ambiguous
514 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
515 Otherwise, we'll assume that it really is a prologue instruction. */
516 if (prev_insn_was_prologue_insn)
517 last_prologue_pc = pc;
518
519 /* Stop scanning if we've hit the limit. */
520 if (lim_pc != 0 && pc >= lim_pc)
521 break;
522
523 prev_insn_was_prologue_insn = 1;
524
525 /* Fetch the instruction and convert it to an integer. */
526 if (target_read_memory (pc, buf, 4))
527 break;
528 op = extract_signed_integer (buf, 4);
529
530 if ((op & 0xfc1fffff) == 0x7c0802a6)
531 { /* mflr Rx */
532 lr_reg = (op & 0x03e00000) | 0x90010000;
533 continue;
534
535 }
536 else if ((op & 0xfc1fffff) == 0x7c000026)
537 { /* mfcr Rx */
538 cr_reg = (op & 0x03e00000) | 0x90010000;
539 continue;
540
541 }
542 else if ((op & 0xfc1f0000) == 0xd8010000)
543 { /* stfd Rx,NUM(r1) */
544 reg = GET_SRC_REG (op);
545 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
546 {
547 fdata->saved_fpr = reg;
548 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
549 }
550 continue;
551
552 }
553 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
554 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
555 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
556 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
557 {
558
559 reg = GET_SRC_REG (op);
560 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
561 {
562 fdata->saved_gpr = reg;
563 if ((op & 0xfc1f0003) == 0xf8010000)
564 op = (op >> 1) << 1;
565 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
566 }
567 continue;
568
569 }
570 else if ((op & 0xffff0000) == 0x60000000)
571 {
572 /* nop */
573 /* Allow nops in the prologue, but do not consider them to
574 be part of the prologue unless followed by other prologue
575 instructions. */
576 prev_insn_was_prologue_insn = 0;
577 continue;
578
579 }
580 else if ((op & 0xffff0000) == 0x3c000000)
581 { /* addis 0,0,NUM, used
582 for >= 32k frames */
583 fdata->offset = (op & 0x0000ffff) << 16;
584 fdata->frameless = 0;
585 continue;
586
587 }
588 else if ((op & 0xffff0000) == 0x60000000)
589 { /* ori 0,0,NUM, 2nd ha
590 lf of >= 32k frames */
591 fdata->offset |= (op & 0x0000ffff);
592 fdata->frameless = 0;
593 continue;
594
595 }
596 else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
597 { /* st Rx,NUM(r1)
598 where Rx == lr */
599 fdata->lr_offset = SIGNED_SHORT (op) + offset;
600 fdata->nosavedpc = 0;
601 lr_reg = 0;
602 continue;
603
604 }
605 else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
606 { /* st Rx,NUM(r1)
607 where Rx == cr */
608 fdata->cr_offset = SIGNED_SHORT (op) + offset;
609 cr_reg = 0;
610 continue;
611
612 }
613 else if (op == 0x48000005)
614 { /* bl .+4 used in
615 -mrelocatable */
616 continue;
617
618 }
619 else if (op == 0x48000004)
620 { /* b .+4 (xlc) */
621 break;
622
623 }
624 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
625 in V.4 -mminimal-toc */
626 (op & 0xffff0000) == 0x3bde0000)
627 { /* addi 30,30,foo@l */
628 continue;
629
630 }
631 else if ((op & 0xfc000001) == 0x48000001)
632 { /* bl foo,
633 to save fprs??? */
634
635 fdata->frameless = 0;
636 /* Don't skip over the subroutine call if it is not within
637 the first three instructions of the prologue. */
638 if ((pc - orig_pc) > 8)
639 break;
640
641 op = read_memory_integer (pc + 4, 4);
642
643 /* At this point, make sure this is not a trampoline
644 function (a function that simply calls another functions,
645 and nothing else). If the next is not a nop, this branch
646 was part of the function prologue. */
647
648 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
649 break; /* don't skip over
650 this branch */
651 continue;
652
653 /* update stack pointer */
654 }
655 else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */
656 (op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */
657 {
658 fdata->frameless = 0;
659 if ((op & 0xffff0003) == 0xf8210001)
660 op = (op >> 1) << 1;
661 fdata->offset = SIGNED_SHORT (op);
662 offset = fdata->offset;
663 continue;
664
665 }
666 else if (op == 0x7c21016e)
667 { /* stwux 1,1,0 */
668 fdata->frameless = 0;
669 offset = fdata->offset;
670 continue;
671
672 /* Load up minimal toc pointer */
673 }
674 else if ((op >> 22) == 0x20f
675 && !minimal_toc_loaded)
676 { /* l r31,... or l r30,... */
677 minimal_toc_loaded = 1;
678 continue;
679
680 /* move parameters from argument registers to local variable
681 registers */
682 }
683 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
684 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
685 (((op >> 21) & 31) <= 10) &&
686 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
687 {
688 continue;
689
690 /* store parameters in stack */
691 }
692 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
693 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
694 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
695 {
696 continue;
697
698 /* store parameters in stack via frame pointer */
699 }
700 else if (framep &&
701 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
702 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
703 (op & 0xfc1f0000) == 0xfc1f0000))
704 { /* frsp, fp?,NUM(r1) */
705 continue;
706
707 /* Set up frame pointer */
708 }
709 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
710 || op == 0x7c3f0b78)
711 { /* mr r31, r1 */
712 fdata->frameless = 0;
713 framep = 1;
714 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
715 continue;
716
717 /* Another way to set up the frame pointer. */
718 }
719 else if ((op & 0xfc1fffff) == 0x38010000)
720 { /* addi rX, r1, 0x0 */
721 fdata->frameless = 0;
722 framep = 1;
723 fdata->alloca_reg = (tdep->ppc_gp0_regnum
724 + ((op & ~0x38010000) >> 21));
725 continue;
726 }
727 /* AltiVec related instructions. */
728 /* Store the vrsave register (spr 256) in another register for
729 later manipulation, or load a register into the vrsave
730 register. 2 instructions are used: mfvrsave and
731 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
732 and mtspr SPR256, Rn. */
733 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
734 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
735 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
736 {
737 vrsave_reg = GET_SRC_REG (op);
738 continue;
739 }
740 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
741 {
742 continue;
743 }
744 /* Store the register where vrsave was saved to onto the stack:
745 rS is the register where vrsave was stored in a previous
746 instruction. */
747 /* 100100 sssss 00001 dddddddd dddddddd */
748 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
749 {
750 if (vrsave_reg == GET_SRC_REG (op))
751 {
752 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
753 vrsave_reg = -1;
754 }
755 continue;
756 }
757 /* Compute the new value of vrsave, by modifying the register
758 where vrsave was saved to. */
759 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
760 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
761 {
762 continue;
763 }
764 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
765 in a pair of insns to save the vector registers on the
766 stack. */
767 /* 001110 00000 00000 iiii iiii iiii iiii */
768 /* 001110 01110 00000 iiii iiii iiii iiii */
769 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
770 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
771 {
772 li_found_pc = pc;
773 vr_saved_offset = SIGNED_SHORT (op);
774 }
775 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
776 /* 011111 sssss 11111 00000 00111001110 */
777 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
778 {
779 if (pc == (li_found_pc + 4))
780 {
781 vr_reg = GET_SRC_REG (op);
782 /* If this is the first vector reg to be saved, or if
783 it has a lower number than others previously seen,
784 reupdate the frame info. */
785 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
786 {
787 fdata->saved_vr = vr_reg;
788 fdata->vr_offset = vr_saved_offset + offset;
789 }
790 vr_saved_offset = -1;
791 vr_reg = -1;
792 li_found_pc = 0;
793 }
794 }
795 /* End AltiVec related instructions. */
796
797 /* Start BookE related instructions. */
798 /* Store gen register S at (r31+uimm).
799 Any register less than r13 is volatile, so we don't care. */
800 /* 000100 sssss 11111 iiiii 01100100001 */
801 else if (arch_info->mach == bfd_mach_ppc_e500
802 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
803 {
804 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
805 {
806 unsigned int imm;
807 ev_reg = GET_SRC_REG (op);
808 imm = (op >> 11) & 0x1f;
809 ev_offset = imm * 8;
810 /* If this is the first vector reg to be saved, or if
811 it has a lower number than others previously seen,
812 reupdate the frame info. */
813 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
814 {
815 fdata->saved_ev = ev_reg;
816 fdata->ev_offset = ev_offset + offset;
817 }
818 }
819 continue;
820 }
821 /* Store gen register rS at (r1+rB). */
822 /* 000100 sssss 00001 bbbbb 01100100000 */
823 else if (arch_info->mach == bfd_mach_ppc_e500
824 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
825 {
826 if (pc == (li_found_pc + 4))
827 {
828 ev_reg = GET_SRC_REG (op);
829 /* If this is the first vector reg to be saved, or if
830 it has a lower number than others previously seen,
831 reupdate the frame info. */
832 /* We know the contents of rB from the previous instruction. */
833 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
834 {
835 fdata->saved_ev = ev_reg;
836 fdata->ev_offset = vr_saved_offset + offset;
837 }
838 vr_saved_offset = -1;
839 ev_reg = -1;
840 li_found_pc = 0;
841 }
842 continue;
843 }
844 /* Store gen register r31 at (rA+uimm). */
845 /* 000100 11111 aaaaa iiiii 01100100001 */
846 else if (arch_info->mach == bfd_mach_ppc_e500
847 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
848 {
849 /* Wwe know that the source register is 31 already, but
850 it can't hurt to compute it. */
851 ev_reg = GET_SRC_REG (op);
852 ev_offset = ((op >> 11) & 0x1f) * 8;
853 /* If this is the first vector reg to be saved, or if
854 it has a lower number than others previously seen,
855 reupdate the frame info. */
856 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
857 {
858 fdata->saved_ev = ev_reg;
859 fdata->ev_offset = ev_offset + offset;
860 }
861
862 continue;
863 }
864 /* Store gen register S at (r31+r0).
865 Store param on stack when offset from SP bigger than 4 bytes. */
866 /* 000100 sssss 11111 00000 01100100000 */
867 else if (arch_info->mach == bfd_mach_ppc_e500
868 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
869 {
870 if (pc == (li_found_pc + 4))
871 {
872 if ((op & 0x03e00000) >= 0x01a00000)
873 {
874 ev_reg = GET_SRC_REG (op);
875 /* If this is the first vector reg to be saved, or if
876 it has a lower number than others previously seen,
877 reupdate the frame info. */
878 /* We know the contents of r0 from the previous
879 instruction. */
880 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
881 {
882 fdata->saved_ev = ev_reg;
883 fdata->ev_offset = vr_saved_offset + offset;
884 }
885 ev_reg = -1;
886 }
887 vr_saved_offset = -1;
888 li_found_pc = 0;
889 continue;
890 }
891 }
892 /* End BookE related instructions. */
893
894 else
895 {
896 /* Not a recognized prologue instruction.
897 Handle optimizer code motions into the prologue by continuing
898 the search if we have no valid frame yet or if the return
899 address is not yet saved in the frame. */
900 if (fdata->frameless == 0
901 && (lr_reg == -1 || fdata->nosavedpc == 0))
902 break;
903
904 if (op == 0x4e800020 /* blr */
905 || op == 0x4e800420) /* bctr */
906 /* Do not scan past epilogue in frameless functions or
907 trampolines. */
908 break;
909 if ((op & 0xf4000000) == 0x40000000) /* bxx */
910 /* Never skip branches. */
911 break;
912
913 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
914 /* Do not scan too many insns, scanning insns is expensive with
915 remote targets. */
916 break;
917
918 /* Continue scanning. */
919 prev_insn_was_prologue_insn = 0;
920 continue;
921 }
922 }
923
924 #if 0
925 /* I have problems with skipping over __main() that I need to address
926 * sometime. Previously, I used to use misc_function_vector which
927 * didn't work as well as I wanted to be. -MGO */
928
929 /* If the first thing after skipping a prolog is a branch to a function,
930 this might be a call to an initializer in main(), introduced by gcc2.
931 We'd like to skip over it as well. Fortunately, xlc does some extra
932 work before calling a function right after a prologue, thus we can
933 single out such gcc2 behaviour. */
934
935
936 if ((op & 0xfc000001) == 0x48000001)
937 { /* bl foo, an initializer function? */
938 op = read_memory_integer (pc + 4, 4);
939
940 if (op == 0x4def7b82)
941 { /* cror 0xf, 0xf, 0xf (nop) */
942
943 /* Check and see if we are in main. If so, skip over this
944 initializer function as well. */
945
946 tmp = find_pc_misc_function (pc);
947 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
948 return pc + 8;
949 }
950 }
951 #endif /* 0 */
952
953 fdata->offset = -fdata->offset;
954 return last_prologue_pc;
955 }
956
957
958 /*************************************************************************
959 Support for creating pushing a dummy frame into the stack, and popping
960 frames, etc.
961 *************************************************************************/
962
963
964 /* Pop the innermost frame, go back to the caller. */
965
966 static void
967 rs6000_pop_frame (void)
968 {
969 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
970 struct rs6000_framedata fdata;
971 struct frame_info *frame = get_current_frame ();
972 int ii, wordsize;
973
974 pc = read_pc ();
975 sp = get_frame_base (frame);
976
977 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
978 get_frame_base (frame),
979 get_frame_base (frame)))
980 {
981 generic_pop_dummy_frame ();
982 flush_cached_frames ();
983 return;
984 }
985
986 /* Make sure that all registers are valid. */
987 deprecated_read_register_bytes (0, NULL, REGISTER_BYTES);
988
989 /* Figure out previous %pc value. If the function is frameless, it is
990 still in the link register, otherwise walk the frames and retrieve the
991 saved %pc value in the previous frame. */
992
993 addr = get_frame_func (frame);
994 (void) skip_prologue (addr, get_frame_pc (frame), &fdata);
995
996 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
997 if (fdata.frameless)
998 prev_sp = sp;
999 else
1000 prev_sp = read_memory_addr (sp, wordsize);
1001 if (fdata.lr_offset == 0)
1002 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1003 else
1004 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
1005
1006 /* reset %pc value. */
1007 write_register (PC_REGNUM, lr);
1008
1009 /* reset register values if any was saved earlier. */
1010
1011 if (fdata.saved_gpr != -1)
1012 {
1013 addr = prev_sp + fdata.gpr_offset;
1014 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
1015 {
1016 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii)],
1017 wordsize);
1018 addr += wordsize;
1019 }
1020 }
1021
1022 if (fdata.saved_fpr != -1)
1023 {
1024 addr = prev_sp + fdata.fpr_offset;
1025 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1026 {
1027 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
1028 addr += 8;
1029 }
1030 }
1031
1032 write_register (SP_REGNUM, prev_sp);
1033 target_store_registers (-1);
1034 flush_cached_frames ();
1035 }
1036
1037 /* Fixup the call sequence of a dummy function, with the real function
1038 address. Its arguments will be passed by gdb. */
1039
1040 static void
1041 rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
1042 int nargs, struct value **args, struct type *type,
1043 int gcc_p)
1044 {
1045 int ii;
1046 CORE_ADDR target_addr;
1047
1048 if (rs6000_find_toc_address_hook != NULL)
1049 {
1050 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
1051 write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
1052 tocvalue);
1053 }
1054 }
1055
1056 /* All the ABI's require 16 byte alignment. */
1057 static CORE_ADDR
1058 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1059 {
1060 return (addr & -16);
1061 }
1062
1063 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1064 the first eight words of the argument list (that might be less than
1065 eight parameters if some parameters occupy more than one word) are
1066 passed in r3..r10 registers. float and double parameters are
1067 passed in fpr's, in addition to that. Rest of the parameters if any
1068 are passed in user stack. There might be cases in which half of the
1069 parameter is copied into registers, the other half is pushed into
1070 stack.
1071
1072 Stack must be aligned on 64-bit boundaries when synthesizing
1073 function calls.
1074
1075 If the function is returning a structure, then the return address is passed
1076 in r3, then the first 7 words of the parameters can be passed in registers,
1077 starting from r4. */
1078
1079 static CORE_ADDR
1080 rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1081 int struct_return, CORE_ADDR struct_addr)
1082 {
1083 int ii;
1084 int len = 0;
1085 int argno; /* current argument number */
1086 int argbytes; /* current argument byte */
1087 char tmp_buffer[50];
1088 int f_argno = 0; /* current floating point argno */
1089 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1090
1091 struct value *arg = 0;
1092 struct type *type;
1093
1094 CORE_ADDR saved_sp;
1095
1096 /* The first eight words of ther arguments are passed in registers.
1097 Copy them appropriately.
1098
1099 If the function is returning a `struct', then the first word (which
1100 will be passed in r3) is used for struct return address. In that
1101 case we should advance one word and start from r4 register to copy
1102 parameters. */
1103
1104 ii = struct_return ? 1 : 0;
1105
1106 /*
1107 effectively indirect call... gcc does...
1108
1109 return_val example( float, int);
1110
1111 eabi:
1112 float in fp0, int in r3
1113 offset of stack on overflow 8/16
1114 for varargs, must go by type.
1115 power open:
1116 float in r3&r4, int in r5
1117 offset of stack on overflow different
1118 both:
1119 return in r3 or f0. If no float, must study how gcc emulates floats;
1120 pay attention to arg promotion.
1121 User may have to cast\args to handle promotion correctly
1122 since gdb won't know if prototype supplied or not.
1123 */
1124
1125 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1126 {
1127 int reg_size = REGISTER_RAW_SIZE (ii + 3);
1128
1129 arg = args[argno];
1130 type = check_typedef (VALUE_TYPE (arg));
1131 len = TYPE_LENGTH (type);
1132
1133 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1134 {
1135
1136 /* Floating point arguments are passed in fpr's, as well as gpr's.
1137 There are 13 fpr's reserved for passing parameters. At this point
1138 there is no way we would run out of them. */
1139
1140 if (len > 8)
1141 printf_unfiltered (
1142 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1143
1144 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1145 VALUE_CONTENTS (arg),
1146 len);
1147 ++f_argno;
1148 }
1149
1150 if (len > reg_size)
1151 {
1152
1153 /* Argument takes more than one register. */
1154 while (argbytes < len)
1155 {
1156 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0,
1157 reg_size);
1158 memcpy (&deprecated_registers[REGISTER_BYTE (ii + 3)],
1159 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1160 (len - argbytes) > reg_size
1161 ? reg_size : len - argbytes);
1162 ++ii, argbytes += reg_size;
1163
1164 if (ii >= 8)
1165 goto ran_out_of_registers_for_arguments;
1166 }
1167 argbytes = 0;
1168 --ii;
1169 }
1170 else
1171 {
1172 /* Argument can fit in one register. No problem. */
1173 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1174 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1175 memcpy ((char *)&deprecated_registers[REGISTER_BYTE (ii + 3)] + adj,
1176 VALUE_CONTENTS (arg), len);
1177 }
1178 ++argno;
1179 }
1180
1181 ran_out_of_registers_for_arguments:
1182
1183 saved_sp = read_sp ();
1184
1185 /* Location for 8 parameters are always reserved. */
1186 sp -= wordsize * 8;
1187
1188 /* Another six words for back chain, TOC register, link register, etc. */
1189 sp -= wordsize * 6;
1190
1191 /* Stack pointer must be quadword aligned. */
1192 sp &= -16;
1193
1194 /* If there are more arguments, allocate space for them in
1195 the stack, then push them starting from the ninth one. */
1196
1197 if ((argno < nargs) || argbytes)
1198 {
1199 int space = 0, jj;
1200
1201 if (argbytes)
1202 {
1203 space += ((len - argbytes + 3) & -4);
1204 jj = argno + 1;
1205 }
1206 else
1207 jj = argno;
1208
1209 for (; jj < nargs; ++jj)
1210 {
1211 struct value *val = args[jj];
1212 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1213 }
1214
1215 /* Add location required for the rest of the parameters. */
1216 space = (space + 15) & -16;
1217 sp -= space;
1218
1219 /* This is another instance we need to be concerned about
1220 securing our stack space. If we write anything underneath %sp
1221 (r1), we might conflict with the kernel who thinks he is free
1222 to use this area. So, update %sp first before doing anything
1223 else. */
1224
1225 write_register (SP_REGNUM, sp);
1226
1227 /* If the last argument copied into the registers didn't fit there
1228 completely, push the rest of it into stack. */
1229
1230 if (argbytes)
1231 {
1232 write_memory (sp + 24 + (ii * 4),
1233 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1234 len - argbytes);
1235 ++argno;
1236 ii += ((len - argbytes + 3) & -4) / 4;
1237 }
1238
1239 /* Push the rest of the arguments into stack. */
1240 for (; argno < nargs; ++argno)
1241 {
1242
1243 arg = args[argno];
1244 type = check_typedef (VALUE_TYPE (arg));
1245 len = TYPE_LENGTH (type);
1246
1247
1248 /* Float types should be passed in fpr's, as well as in the
1249 stack. */
1250 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1251 {
1252
1253 if (len > 8)
1254 printf_unfiltered (
1255 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1256
1257 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1258 VALUE_CONTENTS (arg),
1259 len);
1260 ++f_argno;
1261 }
1262
1263 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1264 ii += ((len + 3) & -4) / 4;
1265 }
1266 }
1267 else
1268 /* Secure stack areas first, before doing anything else. */
1269 write_register (SP_REGNUM, sp);
1270
1271 /* set back chain properly */
1272 store_address (tmp_buffer, 4, saved_sp);
1273 write_memory (sp, tmp_buffer, 4);
1274
1275 target_store_registers (-1);
1276 return sp;
1277 }
1278
1279 /* Function: ppc_push_return_address (pc, sp)
1280 Set up the return address for the inferior function call. */
1281
1282 static CORE_ADDR
1283 ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1284 {
1285 write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
1286 CALL_DUMMY_ADDRESS ());
1287 return sp;
1288 }
1289
1290 /* Extract a function return value of type TYPE from raw register array
1291 REGBUF, and copy that return value into VALBUF in virtual format. */
1292 static void
1293 e500_extract_return_value (struct type *valtype, struct regcache *regbuf, void *valbuf)
1294 {
1295 int offset = 0;
1296 int vallen = TYPE_LENGTH (valtype);
1297 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1298
1299 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1300 && vallen == 8
1301 && TYPE_VECTOR (valtype))
1302 {
1303 regcache_raw_read (regbuf, tdep->ppc_ev0_regnum + 3, valbuf);
1304 }
1305 else
1306 {
1307 /* Return value is copied starting from r3. Note that r3 for us
1308 is a pseudo register. */
1309 int offset = 0;
1310 int return_regnum = tdep->ppc_gp0_regnum + 3;
1311 int reg_size = REGISTER_RAW_SIZE (return_regnum);
1312 int reg_part_size;
1313 char *val_buffer;
1314 int copied = 0;
1315 int i = 0;
1316
1317 /* Compute where we will start storing the value from. */
1318 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1319 {
1320 if (vallen <= reg_size)
1321 offset = reg_size - vallen;
1322 else
1323 offset = reg_size + (reg_size - vallen);
1324 }
1325
1326 /* How big does the local buffer need to be? */
1327 if (vallen <= reg_size)
1328 val_buffer = alloca (reg_size);
1329 else
1330 val_buffer = alloca (vallen);
1331
1332 /* Read all we need into our private buffer. We copy it in
1333 chunks that are as long as one register, never shorter, even
1334 if the value is smaller than the register. */
1335 while (copied < vallen)
1336 {
1337 reg_part_size = REGISTER_RAW_SIZE (return_regnum + i);
1338 /* It is a pseudo/cooked register. */
1339 regcache_cooked_read (regbuf, return_regnum + i,
1340 val_buffer + copied);
1341 copied += reg_part_size;
1342 i++;
1343 }
1344 /* Put the stuff in the return buffer. */
1345 memcpy (valbuf, val_buffer + offset, vallen);
1346 }
1347 }
1348
1349 static void
1350 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1351 {
1352 int offset = 0;
1353 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1354
1355 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1356 {
1357
1358 double dd;
1359 float ff;
1360 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1361 We need to truncate the return value into float size (4 byte) if
1362 necessary. */
1363
1364 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1365 memcpy (valbuf,
1366 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1367 TYPE_LENGTH (valtype));
1368 else
1369 { /* float */
1370 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1371 ff = (float) dd;
1372 memcpy (valbuf, &ff, sizeof (float));
1373 }
1374 }
1375 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1376 && TYPE_LENGTH (valtype) == 16
1377 && TYPE_VECTOR (valtype))
1378 {
1379 memcpy (valbuf, regbuf + REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1380 TYPE_LENGTH (valtype));
1381 }
1382 else
1383 {
1384 /* return value is copied starting from r3. */
1385 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1386 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1387 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1388
1389 memcpy (valbuf,
1390 regbuf + REGISTER_BYTE (3) + offset,
1391 TYPE_LENGTH (valtype));
1392 }
1393 }
1394
1395 /* Return whether handle_inferior_event() should proceed through code
1396 starting at PC in function NAME when stepping.
1397
1398 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1399 handle memory references that are too distant to fit in instructions
1400 generated by the compiler. For example, if 'foo' in the following
1401 instruction:
1402
1403 lwz r9,foo(r2)
1404
1405 is greater than 32767, the linker might replace the lwz with a branch to
1406 somewhere in @FIX1 that does the load in 2 instructions and then branches
1407 back to where execution should continue.
1408
1409 GDB should silently step over @FIX code, just like AIX dbx does.
1410 Unfortunately, the linker uses the "b" instruction for the branches,
1411 meaning that the link register doesn't get set. Therefore, GDB's usual
1412 step_over_function() mechanism won't work.
1413
1414 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1415 in handle_inferior_event() to skip past @FIX code. */
1416
1417 int
1418 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1419 {
1420 return name && !strncmp (name, "@FIX", 4);
1421 }
1422
1423 /* Skip code that the user doesn't want to see when stepping:
1424
1425 1. Indirect function calls use a piece of trampoline code to do context
1426 switching, i.e. to set the new TOC table. Skip such code if we are on
1427 its first instruction (as when we have single-stepped to here).
1428
1429 2. Skip shared library trampoline code (which is different from
1430 indirect function call trampolines).
1431
1432 3. Skip bigtoc fixup code.
1433
1434 Result is desired PC to step until, or NULL if we are not in
1435 code that should be skipped. */
1436
1437 CORE_ADDR
1438 rs6000_skip_trampoline_code (CORE_ADDR pc)
1439 {
1440 register unsigned int ii, op;
1441 int rel;
1442 CORE_ADDR solib_target_pc;
1443 struct minimal_symbol *msymbol;
1444
1445 static unsigned trampoline_code[] =
1446 {
1447 0x800b0000, /* l r0,0x0(r11) */
1448 0x90410014, /* st r2,0x14(r1) */
1449 0x7c0903a6, /* mtctr r0 */
1450 0x804b0004, /* l r2,0x4(r11) */
1451 0x816b0008, /* l r11,0x8(r11) */
1452 0x4e800420, /* bctr */
1453 0x4e800020, /* br */
1454 0
1455 };
1456
1457 /* Check for bigtoc fixup code. */
1458 msymbol = lookup_minimal_symbol_by_pc (pc);
1459 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
1460 {
1461 /* Double-check that the third instruction from PC is relative "b". */
1462 op = read_memory_integer (pc + 8, 4);
1463 if ((op & 0xfc000003) == 0x48000000)
1464 {
1465 /* Extract bits 6-29 as a signed 24-bit relative word address and
1466 add it to the containing PC. */
1467 rel = ((int)(op << 6) >> 6);
1468 return pc + 8 + rel;
1469 }
1470 }
1471
1472 /* If pc is in a shared library trampoline, return its target. */
1473 solib_target_pc = find_solib_trampoline_target (pc);
1474 if (solib_target_pc)
1475 return solib_target_pc;
1476
1477 for (ii = 0; trampoline_code[ii]; ++ii)
1478 {
1479 op = read_memory_integer (pc + (ii * 4), 4);
1480 if (op != trampoline_code[ii])
1481 return 0;
1482 }
1483 ii = read_register (11); /* r11 holds destination addr */
1484 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1485 return pc;
1486 }
1487
1488 /* Determines whether the function FI has a frame on the stack or not. */
1489
1490 int
1491 rs6000_frameless_function_invocation (struct frame_info *fi)
1492 {
1493 CORE_ADDR func_start;
1494 struct rs6000_framedata fdata;
1495
1496 /* Don't even think about framelessness except on the innermost frame
1497 or if the function was interrupted by a signal. */
1498 if (get_next_frame (fi) != NULL
1499 && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
1500 return 0;
1501
1502 func_start = get_frame_func (fi);
1503
1504 /* If we failed to find the start of the function, it is a mistake
1505 to inspect the instructions. */
1506
1507 if (!func_start)
1508 {
1509 /* A frame with a zero PC is usually created by dereferencing a NULL
1510 function pointer, normally causing an immediate core dump of the
1511 inferior. Mark function as frameless, as the inferior has no chance
1512 of setting up a stack frame. */
1513 if (get_frame_pc (fi) == 0)
1514 return 1;
1515 else
1516 return 0;
1517 }
1518
1519 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
1520 return fdata.frameless;
1521 }
1522
1523 /* Return the PC saved in a frame. */
1524
1525 CORE_ADDR
1526 rs6000_frame_saved_pc (struct frame_info *fi)
1527 {
1528 CORE_ADDR func_start;
1529 struct rs6000_framedata fdata;
1530 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1531 int wordsize = tdep->wordsize;
1532
1533 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
1534 return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
1535 wordsize);
1536
1537 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1538 get_frame_base (fi),
1539 get_frame_base (fi)))
1540 return deprecated_read_register_dummy (get_frame_pc (fi),
1541 get_frame_base (fi), PC_REGNUM);
1542
1543 func_start = get_frame_func (fi);
1544
1545 /* If we failed to find the start of the function, it is a mistake
1546 to inspect the instructions. */
1547 if (!func_start)
1548 return 0;
1549
1550 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
1551
1552 if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
1553 {
1554 if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
1555 return read_memory_addr ((get_frame_base (get_next_frame (fi))
1556 + SIG_FRAME_LR_OFFSET),
1557 wordsize);
1558 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
1559 /* The link register wasn't saved by this frame and the next
1560 (inner, newer) frame is a dummy. Get the link register
1561 value by unwinding it from that [dummy] frame. */
1562 {
1563 ULONGEST lr;
1564 frame_unwind_unsigned_register (get_next_frame (fi),
1565 tdep->ppc_lr_regnum, &lr);
1566 return lr;
1567 }
1568 else
1569 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi)
1570 + tdep->lr_frame_offset,
1571 wordsize);
1572 }
1573
1574 if (fdata.lr_offset == 0)
1575 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1576
1577 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi) + fdata.lr_offset,
1578 wordsize);
1579 }
1580
1581 /* If saved registers of frame FI are not known yet, read and cache them.
1582 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1583 in which case the framedata are read. */
1584
1585 static void
1586 frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
1587 {
1588 CORE_ADDR frame_addr;
1589 struct rs6000_framedata work_fdata;
1590 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1591 int wordsize = tdep->wordsize;
1592
1593 if (get_frame_saved_regs (fi))
1594 return;
1595
1596 if (fdatap == NULL)
1597 {
1598 fdatap = &work_fdata;
1599 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), fdatap);
1600 }
1601
1602 frame_saved_regs_zalloc (fi);
1603
1604 /* If there were any saved registers, figure out parent's stack
1605 pointer. */
1606 /* The following is true only if the frame doesn't have a call to
1607 alloca(), FIXME. */
1608
1609 if (fdatap->saved_fpr == 0
1610 && fdatap->saved_gpr == 0
1611 && fdatap->saved_vr == 0
1612 && fdatap->saved_ev == 0
1613 && fdatap->lr_offset == 0
1614 && fdatap->cr_offset == 0
1615 && fdatap->vr_offset == 0
1616 && fdatap->ev_offset == 0)
1617 frame_addr = 0;
1618 else
1619 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1620 address of the current frame. Things might be easier if the
1621 ->frame pointed to the outer-most address of the frame. In the
1622 mean time, the address of the prev frame is used as the base
1623 address of this frame. */
1624 frame_addr = DEPRECATED_FRAME_CHAIN (fi);
1625
1626 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1627 All fpr's from saved_fpr to fp31 are saved. */
1628
1629 if (fdatap->saved_fpr >= 0)
1630 {
1631 int i;
1632 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
1633 for (i = fdatap->saved_fpr; i < 32; i++)
1634 {
1635 get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
1636 fpr_addr += 8;
1637 }
1638 }
1639
1640 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1641 All gpr's from saved_gpr to gpr31 are saved. */
1642
1643 if (fdatap->saved_gpr >= 0)
1644 {
1645 int i;
1646 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
1647 for (i = fdatap->saved_gpr; i < 32; i++)
1648 {
1649 get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = gpr_addr;
1650 gpr_addr += wordsize;
1651 }
1652 }
1653
1654 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1655 All vr's from saved_vr to vr31 are saved. */
1656 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1657 {
1658 if (fdatap->saved_vr >= 0)
1659 {
1660 int i;
1661 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1662 for (i = fdatap->saved_vr; i < 32; i++)
1663 {
1664 get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
1665 vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1666 }
1667 }
1668 }
1669
1670 /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1671 All vr's from saved_ev to ev31 are saved. ????? */
1672 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1673 {
1674 if (fdatap->saved_ev >= 0)
1675 {
1676 int i;
1677 CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1678 for (i = fdatap->saved_ev; i < 32; i++)
1679 {
1680 get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
1681 get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
1682 ev_addr += REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
1683 }
1684 }
1685 }
1686
1687 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1688 the CR. */
1689 if (fdatap->cr_offset != 0)
1690 get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
1691
1692 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1693 the LR. */
1694 if (fdatap->lr_offset != 0)
1695 get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
1696
1697 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1698 the VRSAVE. */
1699 if (fdatap->vrsave_offset != 0)
1700 get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
1701 }
1702
1703 /* Return the address of a frame. This is the inital %sp value when the frame
1704 was first allocated. For functions calling alloca(), it might be saved in
1705 an alloca register. */
1706
1707 static CORE_ADDR
1708 frame_initial_stack_address (struct frame_info *fi)
1709 {
1710 CORE_ADDR tmpaddr;
1711 struct rs6000_framedata fdata;
1712 struct frame_info *callee_fi;
1713
1714 /* If the initial stack pointer (frame address) of this frame is known,
1715 just return it. */
1716
1717 if (get_frame_extra_info (fi)->initial_sp)
1718 return get_frame_extra_info (fi)->initial_sp;
1719
1720 /* Find out if this function is using an alloca register. */
1721
1722 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), &fdata);
1723
1724 /* If saved registers of this frame are not known yet, read and
1725 cache them. */
1726
1727 if (!get_frame_saved_regs (fi))
1728 frame_get_saved_regs (fi, &fdata);
1729
1730 /* If no alloca register used, then fi->frame is the value of the %sp for
1731 this frame, and it is good enough. */
1732
1733 if (fdata.alloca_reg < 0)
1734 {
1735 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1736 return get_frame_extra_info (fi)->initial_sp;
1737 }
1738
1739 /* There is an alloca register, use its value, in the current frame,
1740 as the initial stack pointer. */
1741 {
1742 char *tmpbuf = alloca (MAX_REGISTER_RAW_SIZE);
1743 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1744 {
1745 get_frame_extra_info (fi)->initial_sp
1746 = extract_unsigned_integer (tmpbuf,
1747 REGISTER_RAW_SIZE (fdata.alloca_reg));
1748 }
1749 else
1750 /* NOTE: cagney/2002-04-17: At present the only time
1751 frame_register_read will fail is when the register isn't
1752 available. If that does happen, use the frame. */
1753 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1754 }
1755 return get_frame_extra_info (fi)->initial_sp;
1756 }
1757
1758 /* Describe the pointer in each stack frame to the previous stack frame
1759 (its caller). */
1760
1761 /* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and produces
1762 the frame's chain-pointer. */
1763
1764 /* In the case of the RS/6000, the frame's nominal address
1765 is the address of a 4-byte word containing the calling frame's address. */
1766
1767 CORE_ADDR
1768 rs6000_frame_chain (struct frame_info *thisframe)
1769 {
1770 CORE_ADDR fp, fpp, lr;
1771 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1772
1773 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
1774 get_frame_base (thisframe),
1775 get_frame_base (thisframe)))
1776 /* A dummy frame always correctly chains back to the previous
1777 frame. */
1778 return read_memory_addr (get_frame_base (thisframe), wordsize);
1779
1780 if (inside_entry_file (get_frame_pc (thisframe))
1781 || get_frame_pc (thisframe) == entry_point_address ())
1782 return 0;
1783
1784 if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
1785 fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
1786 wordsize);
1787 else if (get_next_frame (thisframe) != NULL
1788 && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
1789 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
1790 /* A frameless function interrupted by a signal did not change the
1791 frame pointer. */
1792 fp = get_frame_base (thisframe);
1793 else
1794 fp = read_memory_addr (get_frame_base (thisframe), wordsize);
1795 return fp;
1796 }
1797
1798 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1799 isn't available with that word size, return 0. */
1800
1801 static int
1802 regsize (const struct reg *reg, int wordsize)
1803 {
1804 return wordsize == 8 ? reg->sz64 : reg->sz32;
1805 }
1806
1807 /* Return the name of register number N, or null if no such register exists
1808 in the current architecture. */
1809
1810 static const char *
1811 rs6000_register_name (int n)
1812 {
1813 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1814 const struct reg *reg = tdep->regs + n;
1815
1816 if (!regsize (reg, tdep->wordsize))
1817 return NULL;
1818 return reg->name;
1819 }
1820
1821 /* Index within `registers' of the first byte of the space for
1822 register N. */
1823
1824 static int
1825 rs6000_register_byte (int n)
1826 {
1827 return gdbarch_tdep (current_gdbarch)->regoff[n];
1828 }
1829
1830 /* Return the number of bytes of storage in the actual machine representation
1831 for register N if that register is available, else return 0. */
1832
1833 static int
1834 rs6000_register_raw_size (int n)
1835 {
1836 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1837 const struct reg *reg = tdep->regs + n;
1838 return regsize (reg, tdep->wordsize);
1839 }
1840
1841 /* Return the GDB type object for the "standard" data type
1842 of data in register N. */
1843
1844 static struct type *
1845 rs6000_register_virtual_type (int n)
1846 {
1847 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1848 const struct reg *reg = tdep->regs + n;
1849
1850 if (reg->fpr)
1851 return builtin_type_double;
1852 else
1853 {
1854 int size = regsize (reg, tdep->wordsize);
1855 switch (size)
1856 {
1857 case 8:
1858 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1859 return builtin_type_vec64;
1860 else
1861 return builtin_type_int64;
1862 break;
1863 case 16:
1864 return builtin_type_vec128;
1865 break;
1866 default:
1867 return builtin_type_int32;
1868 break;
1869 }
1870 }
1871 }
1872
1873 /* Return whether register N requires conversion when moving from raw format
1874 to virtual format.
1875
1876 The register format for RS/6000 floating point registers is always
1877 double, we need a conversion if the memory format is float. */
1878
1879 static int
1880 rs6000_register_convertible (int n)
1881 {
1882 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
1883 return reg->fpr;
1884 }
1885
1886 /* Convert data from raw format for register N in buffer FROM
1887 to virtual format with type TYPE in buffer TO. */
1888
1889 static void
1890 rs6000_register_convert_to_virtual (int n, struct type *type,
1891 char *from, char *to)
1892 {
1893 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1894 {
1895 double val = deprecated_extract_floating (from, REGISTER_RAW_SIZE (n));
1896 deprecated_store_floating (to, TYPE_LENGTH (type), val);
1897 }
1898 else
1899 memcpy (to, from, REGISTER_RAW_SIZE (n));
1900 }
1901
1902 /* Convert data from virtual format with type TYPE in buffer FROM
1903 to raw format for register N in buffer TO. */
1904
1905 static void
1906 rs6000_register_convert_to_raw (struct type *type, int n,
1907 char *from, char *to)
1908 {
1909 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1910 {
1911 double val = deprecated_extract_floating (from, TYPE_LENGTH (type));
1912 deprecated_store_floating (to, REGISTER_RAW_SIZE (n), val);
1913 }
1914 else
1915 memcpy (to, from, REGISTER_RAW_SIZE (n));
1916 }
1917
1918 static void
1919 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1920 int reg_nr, void *buffer)
1921 {
1922 int base_regnum;
1923 int offset = 0;
1924 char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1925 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1926
1927 if (reg_nr >= tdep->ppc_gp0_regnum
1928 && reg_nr <= tdep->ppc_gplast_regnum)
1929 {
1930 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1931
1932 /* Build the value in the provided buffer. */
1933 /* Read the raw register of which this one is the lower portion. */
1934 regcache_raw_read (regcache, base_regnum, temp_buffer);
1935 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1936 offset = 4;
1937 memcpy ((char *) buffer, temp_buffer + offset, 4);
1938 }
1939 }
1940
1941 static void
1942 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1943 int reg_nr, const void *buffer)
1944 {
1945 int base_regnum;
1946 int offset = 0;
1947 char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1948 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1949
1950 if (reg_nr >= tdep->ppc_gp0_regnum
1951 && reg_nr <= tdep->ppc_gplast_regnum)
1952 {
1953 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1954 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1955 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1956 offset = 4;
1957
1958 /* Let's read the value of the base register into a temporary
1959 buffer, so that overwriting the last four bytes with the new
1960 value of the pseudo will leave the upper 4 bytes unchanged. */
1961 regcache_raw_read (regcache, base_regnum, temp_buffer);
1962
1963 /* Write as an 8 byte quantity. */
1964 memcpy (temp_buffer + offset, (char *) buffer, 4);
1965 regcache_raw_write (regcache, base_regnum, temp_buffer);
1966 }
1967 }
1968
1969 /* Convert a dwarf2 register number to a gdb REGNUM. */
1970 static int
1971 e500_dwarf2_reg_to_regnum (int num)
1972 {
1973 int regnum;
1974 if (0 <= num && num <= 31)
1975 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
1976 else
1977 return num;
1978 }
1979
1980 /* Convert a dbx stab register number (from `r' declaration) to a gdb
1981 REGNUM. */
1982 static int
1983 rs6000_stab_reg_to_regnum (int num)
1984 {
1985 int regnum;
1986 switch (num)
1987 {
1988 case 64:
1989 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1990 break;
1991 case 65:
1992 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1993 break;
1994 case 66:
1995 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1996 break;
1997 case 76:
1998 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1999 break;
2000 default:
2001 regnum = num;
2002 break;
2003 }
2004 return regnum;
2005 }
2006
2007 /* Store the address of the place in which to copy the structure the
2008 subroutine will return. */
2009
2010 static void
2011 rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
2012 {
2013 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2014 write_register (tdep->ppc_gp0_regnum + 3, addr);
2015 }
2016
2017 /* Write into appropriate registers a function return value
2018 of type TYPE, given in virtual format. */
2019 static void
2020 e500_store_return_value (struct type *type, char *valbuf)
2021 {
2022 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2023
2024 /* Everything is returned in GPR3 and up. */
2025 int copied = 0;
2026 int i = 0;
2027 int len = TYPE_LENGTH (type);
2028 while (copied < len)
2029 {
2030 int regnum = gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3 + i;
2031 int reg_size = REGISTER_RAW_SIZE (regnum);
2032 char *reg_val_buf = alloca (reg_size);
2033
2034 memcpy (reg_val_buf, valbuf + copied, reg_size);
2035 copied += reg_size;
2036 deprecated_write_register_gen (regnum, reg_val_buf);
2037 i++;
2038 }
2039 }
2040
2041 static void
2042 rs6000_store_return_value (struct type *type, char *valbuf)
2043 {
2044 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2045
2046 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2047
2048 /* Floating point values are returned starting from FPR1 and up.
2049 Say a double_double_double type could be returned in
2050 FPR1/FPR2/FPR3 triple. */
2051
2052 deprecated_write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
2053 TYPE_LENGTH (type));
2054 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2055 {
2056 if (TYPE_LENGTH (type) == 16
2057 && TYPE_VECTOR (type))
2058 deprecated_write_register_bytes (REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
2059 valbuf, TYPE_LENGTH (type));
2060 }
2061 else
2062 /* Everything else is returned in GPR3 and up. */
2063 deprecated_write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
2064 valbuf, TYPE_LENGTH (type));
2065 }
2066
2067 /* Extract from an array REGBUF containing the (raw) register state
2068 the address in which a function should return its structure value,
2069 as a CORE_ADDR (or an expression that can be used as one). */
2070
2071 static CORE_ADDR
2072 rs6000_extract_struct_value_address (struct regcache *regcache)
2073 {
2074 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2075 function call GDB knows the address of the struct return value
2076 and hence, should not need to call this function. Unfortunately,
2077 the current call_function_by_hand() code only saves the most
2078 recent struct address leading to occasional calls. The code
2079 should instead maintain a stack of such addresses (in the dummy
2080 frame object). */
2081 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2082 really got no idea where the return value is being stored. While
2083 r3, on function entry, contained the address it will have since
2084 been reused (scratch) and hence wouldn't be valid */
2085 return 0;
2086 }
2087
2088 /* Return whether PC is in a dummy function call.
2089
2090 FIXME: This just checks for the end of the stack, which is broken
2091 for things like stepping through gcc nested function stubs. */
2092
2093 static int
2094 rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
2095 {
2096 return sp < pc && pc < fp;
2097 }
2098
2099 /* Hook called when a new child process is started. */
2100
2101 void
2102 rs6000_create_inferior (int pid)
2103 {
2104 if (rs6000_set_host_arch_hook)
2105 rs6000_set_host_arch_hook (pid);
2106 }
2107 \f
2108 /* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
2109
2110 Usually a function pointer's representation is simply the address
2111 of the function. On the RS/6000 however, a function pointer is
2112 represented by a pointer to a TOC entry. This TOC entry contains
2113 three words, the first word is the address of the function, the
2114 second word is the TOC pointer (r2), and the third word is the
2115 static chain value. Throughout GDB it is currently assumed that a
2116 function pointer contains the address of the function, which is not
2117 easy to fix. In addition, the conversion of a function address to
2118 a function pointer would require allocation of a TOC entry in the
2119 inferior's memory space, with all its drawbacks. To be able to
2120 call C++ virtual methods in the inferior (which are called via
2121 function pointers), find_function_addr uses this function to get the
2122 function address from a function pointer. */
2123
2124 /* Return real function address if ADDR (a function pointer) is in the data
2125 space and is therefore a special function pointer. */
2126
2127 CORE_ADDR
2128 rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
2129 {
2130 struct obj_section *s;
2131
2132 s = find_pc_section (addr);
2133 if (s && s->the_bfd_section->flags & SEC_CODE)
2134 return addr;
2135
2136 /* ADDR is in the data space, so it's a special function pointer. */
2137 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2138 }
2139 \f
2140
2141 /* Handling the various POWER/PowerPC variants. */
2142
2143
2144 /* The arrays here called registers_MUMBLE hold information about available
2145 registers.
2146
2147 For each family of PPC variants, I've tried to isolate out the
2148 common registers and put them up front, so that as long as you get
2149 the general family right, GDB will correctly identify the registers
2150 common to that family. The common register sets are:
2151
2152 For the 60x family: hid0 hid1 iabr dabr pir
2153
2154 For the 505 and 860 family: eie eid nri
2155
2156 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2157 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2158 pbu1 pbl2 pbu2
2159
2160 Most of these register groups aren't anything formal. I arrived at
2161 them by looking at the registers that occurred in more than one
2162 processor.
2163
2164 Note: kevinb/2002-04-30: Support for the fpscr register was added
2165 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2166 for Power. For PowerPC, slot 70 was unused and was already in the
2167 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2168 slot 70 was being used for "mq", so the next available slot (71)
2169 was chosen. It would have been nice to be able to make the
2170 register numbers the same across processor cores, but this wasn't
2171 possible without either 1) renumbering some registers for some
2172 processors or 2) assigning fpscr to a really high slot that's
2173 larger than any current register number. Doing (1) is bad because
2174 existing stubs would break. Doing (2) is undesirable because it
2175 would introduce a really large gap between fpscr and the rest of
2176 the registers for most processors. */
2177
2178 /* Convenience macros for populating register arrays. */
2179
2180 /* Within another macro, convert S to a string. */
2181
2182 #define STR(s) #s
2183
2184 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2185 and 64 bits on 64-bit systems. */
2186 #define R(name) { STR(name), 4, 8, 0, 0 }
2187
2188 /* Return a struct reg defining register NAME that's 32 bits on all
2189 systems. */
2190 #define R4(name) { STR(name), 4, 4, 0, 0 }
2191
2192 /* Return a struct reg defining register NAME that's 64 bits on all
2193 systems. */
2194 #define R8(name) { STR(name), 8, 8, 0, 0 }
2195
2196 /* Return a struct reg defining register NAME that's 128 bits on all
2197 systems. */
2198 #define R16(name) { STR(name), 16, 16, 0, 0 }
2199
2200 /* Return a struct reg defining floating-point register NAME. */
2201 #define F(name) { STR(name), 8, 8, 1, 0 }
2202
2203 /* Return a struct reg defining a pseudo register NAME. */
2204 #define P(name) { STR(name), 4, 8, 0, 1}
2205
2206 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2207 systems and that doesn't exist on 64-bit systems. */
2208 #define R32(name) { STR(name), 4, 0, 0, 0 }
2209
2210 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2211 systems and that doesn't exist on 32-bit systems. */
2212 #define R64(name) { STR(name), 0, 8, 0, 0 }
2213
2214 /* Return a struct reg placeholder for a register that doesn't exist. */
2215 #define R0 { 0, 0, 0, 0, 0 }
2216
2217 /* UISA registers common across all architectures, including POWER. */
2218
2219 #define COMMON_UISA_REGS \
2220 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2221 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2222 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2223 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2224 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2225 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2226 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2227 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2228 /* 64 */ R(pc), R(ps)
2229
2230 #define COMMON_UISA_NOFP_REGS \
2231 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2232 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2233 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2234 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2235 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2236 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2237 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2238 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2239 /* 64 */ R(pc), R(ps)
2240
2241 /* UISA-level SPRs for PowerPC. */
2242 #define PPC_UISA_SPRS \
2243 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
2244
2245 /* UISA-level SPRs for PowerPC without floating point support. */
2246 #define PPC_UISA_NOFP_SPRS \
2247 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2248
2249 /* Segment registers, for PowerPC. */
2250 #define PPC_SEGMENT_REGS \
2251 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2252 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2253 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2254 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2255
2256 /* OEA SPRs for PowerPC. */
2257 #define PPC_OEA_SPRS \
2258 /* 87 */ R4(pvr), \
2259 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2260 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2261 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2262 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2263 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2264 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2265 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2266 /* 116 */ R4(dec), R(dabr), R4(ear)
2267
2268 /* AltiVec registers. */
2269 #define PPC_ALTIVEC_REGS \
2270 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2271 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2272 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2273 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2274 /*151*/R4(vscr), R4(vrsave)
2275
2276 /* Vectors of hi-lo general purpose registers. */
2277 #define PPC_EV_REGS \
2278 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2279 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2280 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2281 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2282
2283 /* Lower half of the EV registers. */
2284 #define PPC_GPRS_PSEUDO_REGS \
2285 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2286 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2287 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
2288 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
2289
2290 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2291 user-level SPR's. */
2292 static const struct reg registers_power[] =
2293 {
2294 COMMON_UISA_REGS,
2295 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2296 /* 71 */ R4(fpscr)
2297 };
2298
2299 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2300 view of the PowerPC. */
2301 static const struct reg registers_powerpc[] =
2302 {
2303 COMMON_UISA_REGS,
2304 PPC_UISA_SPRS,
2305 PPC_ALTIVEC_REGS
2306 };
2307
2308 /* PowerPC UISA - a PPC processor as viewed by user-level
2309 code, but without floating point registers. */
2310 static const struct reg registers_powerpc_nofp[] =
2311 {
2312 COMMON_UISA_NOFP_REGS,
2313 PPC_UISA_SPRS
2314 };
2315
2316 /* IBM PowerPC 403. */
2317 static const struct reg registers_403[] =
2318 {
2319 COMMON_UISA_REGS,
2320 PPC_UISA_SPRS,
2321 PPC_SEGMENT_REGS,
2322 PPC_OEA_SPRS,
2323 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2324 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2325 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2326 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2327 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2328 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
2329 };
2330
2331 /* IBM PowerPC 403GC. */
2332 static const struct reg registers_403GC[] =
2333 {
2334 COMMON_UISA_REGS,
2335 PPC_UISA_SPRS,
2336 PPC_SEGMENT_REGS,
2337 PPC_OEA_SPRS,
2338 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2339 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2340 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2341 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2342 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2343 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2344 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2345 /* 147 */ R(tbhu), R(tblu)
2346 };
2347
2348 /* Motorola PowerPC 505. */
2349 static const struct reg registers_505[] =
2350 {
2351 COMMON_UISA_REGS,
2352 PPC_UISA_SPRS,
2353 PPC_SEGMENT_REGS,
2354 PPC_OEA_SPRS,
2355 /* 119 */ R(eie), R(eid), R(nri)
2356 };
2357
2358 /* Motorola PowerPC 860 or 850. */
2359 static const struct reg registers_860[] =
2360 {
2361 COMMON_UISA_REGS,
2362 PPC_UISA_SPRS,
2363 PPC_SEGMENT_REGS,
2364 PPC_OEA_SPRS,
2365 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2366 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2367 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2368 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2369 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2370 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2371 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2372 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2373 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2374 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2375 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2376 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
2377 };
2378
2379 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2380 for reading and writing RTCU and RTCL. However, how one reads and writes a
2381 register is the stub's problem. */
2382 static const struct reg registers_601[] =
2383 {
2384 COMMON_UISA_REGS,
2385 PPC_UISA_SPRS,
2386 PPC_SEGMENT_REGS,
2387 PPC_OEA_SPRS,
2388 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2389 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
2390 };
2391
2392 /* Motorola PowerPC 602. */
2393 static const struct reg registers_602[] =
2394 {
2395 COMMON_UISA_REGS,
2396 PPC_UISA_SPRS,
2397 PPC_SEGMENT_REGS,
2398 PPC_OEA_SPRS,
2399 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2400 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2401 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
2402 };
2403
2404 /* Motorola/IBM PowerPC 603 or 603e. */
2405 static const struct reg registers_603[] =
2406 {
2407 COMMON_UISA_REGS,
2408 PPC_UISA_SPRS,
2409 PPC_SEGMENT_REGS,
2410 PPC_OEA_SPRS,
2411 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2412 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2413 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
2414 };
2415
2416 /* Motorola PowerPC 604 or 604e. */
2417 static const struct reg registers_604[] =
2418 {
2419 COMMON_UISA_REGS,
2420 PPC_UISA_SPRS,
2421 PPC_SEGMENT_REGS,
2422 PPC_OEA_SPRS,
2423 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2424 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2425 /* 127 */ R(sia), R(sda)
2426 };
2427
2428 /* Motorola/IBM PowerPC 750 or 740. */
2429 static const struct reg registers_750[] =
2430 {
2431 COMMON_UISA_REGS,
2432 PPC_UISA_SPRS,
2433 PPC_SEGMENT_REGS,
2434 PPC_OEA_SPRS,
2435 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2436 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2437 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2438 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2439 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2440 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
2441 };
2442
2443
2444 /* Motorola PowerPC 7400. */
2445 static const struct reg registers_7400[] =
2446 {
2447 /* gpr0-gpr31, fpr0-fpr31 */
2448 COMMON_UISA_REGS,
2449 /* ctr, xre, lr, cr */
2450 PPC_UISA_SPRS,
2451 /* sr0-sr15 */
2452 PPC_SEGMENT_REGS,
2453 PPC_OEA_SPRS,
2454 /* vr0-vr31, vrsave, vscr */
2455 PPC_ALTIVEC_REGS
2456 /* FIXME? Add more registers? */
2457 };
2458
2459 /* Motorola e500. */
2460 static const struct reg registers_e500[] =
2461 {
2462 R(pc), R(ps),
2463 /* cr, lr, ctr, xer, "" */
2464 PPC_UISA_NOFP_SPRS,
2465 /* 7...38 */
2466 PPC_EV_REGS,
2467 R8(acc), R(spefscr),
2468 /* NOTE: Add new registers here the end of the raw register
2469 list and just before the first pseudo register. */
2470 /* 39...70 */
2471 PPC_GPRS_PSEUDO_REGS
2472 };
2473
2474 /* Information about a particular processor variant. */
2475
2476 struct variant
2477 {
2478 /* Name of this variant. */
2479 char *name;
2480
2481 /* English description of the variant. */
2482 char *description;
2483
2484 /* bfd_arch_info.arch corresponding to variant. */
2485 enum bfd_architecture arch;
2486
2487 /* bfd_arch_info.mach corresponding to variant. */
2488 unsigned long mach;
2489
2490 /* Number of real registers. */
2491 int nregs;
2492
2493 /* Number of pseudo registers. */
2494 int npregs;
2495
2496 /* Number of total registers (the sum of nregs and npregs). */
2497 int num_tot_regs;
2498
2499 /* Table of register names; registers[R] is the name of the register
2500 number R. */
2501 const struct reg *regs;
2502 };
2503
2504 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2505
2506 static int
2507 num_registers (const struct reg *reg_list, int num_tot_regs)
2508 {
2509 int i;
2510 int nregs = 0;
2511
2512 for (i = 0; i < num_tot_regs; i++)
2513 if (!reg_list[i].pseudo)
2514 nregs++;
2515
2516 return nregs;
2517 }
2518
2519 static int
2520 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2521 {
2522 int i;
2523 int npregs = 0;
2524
2525 for (i = 0; i < num_tot_regs; i++)
2526 if (reg_list[i].pseudo)
2527 npregs ++;
2528
2529 return npregs;
2530 }
2531
2532 /* Information in this table comes from the following web sites:
2533 IBM: http://www.chips.ibm.com:80/products/embedded/
2534 Motorola: http://www.mot.com/SPS/PowerPC/
2535
2536 I'm sure I've got some of the variant descriptions not quite right.
2537 Please report any inaccuracies you find to GDB's maintainer.
2538
2539 If you add entries to this table, please be sure to allow the new
2540 value as an argument to the --with-cpu flag, in configure.in. */
2541
2542 static struct variant variants[] =
2543 {
2544
2545 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2546 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2547 registers_powerpc},
2548 {"power", "POWER user-level", bfd_arch_rs6000,
2549 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2550 registers_power},
2551 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2552 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2553 registers_403},
2554 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2555 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2556 registers_601},
2557 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2558 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2559 registers_602},
2560 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2561 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2562 registers_603},
2563 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2564 604, -1, -1, tot_num_registers (registers_604),
2565 registers_604},
2566 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2567 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2568 registers_403GC},
2569 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2570 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2571 registers_505},
2572 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2573 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2574 registers_860},
2575 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2576 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2577 registers_750},
2578 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2579 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2580 registers_7400},
2581 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2582 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2583 registers_e500},
2584
2585 /* 64-bit */
2586 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2587 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2588 registers_powerpc},
2589 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2590 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2591 registers_powerpc},
2592 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2593 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2594 registers_powerpc},
2595 {"a35", "PowerPC A35", bfd_arch_powerpc,
2596 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2597 registers_powerpc},
2598 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2599 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2600 registers_powerpc},
2601 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2602 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2603 registers_powerpc},
2604
2605 /* FIXME: I haven't checked the register sets of the following. */
2606 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2607 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2608 registers_power},
2609 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2610 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2611 registers_power},
2612 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2613 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2614 registers_power},
2615
2616 {0, 0, 0, 0, 0, 0, 0, 0}
2617 };
2618
2619 /* Initialize the number of registers and pseudo registers in each variant. */
2620
2621 static void
2622 init_variants (void)
2623 {
2624 struct variant *v;
2625
2626 for (v = variants; v->name; v++)
2627 {
2628 if (v->nregs == -1)
2629 v->nregs = num_registers (v->regs, v->num_tot_regs);
2630 if (v->npregs == -1)
2631 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2632 }
2633 }
2634
2635 /* Return the variant corresponding to architecture ARCH and machine number
2636 MACH. If no such variant exists, return null. */
2637
2638 static const struct variant *
2639 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2640 {
2641 const struct variant *v;
2642
2643 for (v = variants; v->name; v++)
2644 if (arch == v->arch && mach == v->mach)
2645 return v;
2646
2647 return NULL;
2648 }
2649
2650 static int
2651 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2652 {
2653 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2654 return print_insn_big_powerpc (memaddr, info);
2655 else
2656 return print_insn_little_powerpc (memaddr, info);
2657 }
2658 \f
2659 /* Initialize the current architecture based on INFO. If possible, re-use an
2660 architecture from ARCHES, which is a list of architectures already created
2661 during this debugging session.
2662
2663 Called e.g. at program startup, when reading a core file, and when reading
2664 a binary file. */
2665
2666 static struct gdbarch *
2667 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2668 {
2669 struct gdbarch *gdbarch;
2670 struct gdbarch_tdep *tdep;
2671 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2672 struct reg *regs;
2673 const struct variant *v;
2674 enum bfd_architecture arch;
2675 unsigned long mach;
2676 bfd abfd;
2677 int sysv_abi;
2678 asection *sect;
2679
2680 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2681 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2682
2683 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2684 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2685
2686 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2687
2688 /* Check word size. If INFO is from a binary file, infer it from
2689 that, else choose a likely default. */
2690 if (from_xcoff_exec)
2691 {
2692 if (bfd_xcoff_is_xcoff64 (info.abfd))
2693 wordsize = 8;
2694 else
2695 wordsize = 4;
2696 }
2697 else if (from_elf_exec)
2698 {
2699 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2700 wordsize = 8;
2701 else
2702 wordsize = 4;
2703 }
2704 else
2705 {
2706 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2707 wordsize = info.bfd_arch_info->bits_per_word /
2708 info.bfd_arch_info->bits_per_byte;
2709 else
2710 wordsize = 4;
2711 }
2712
2713 /* Find a candidate among extant architectures. */
2714 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2715 arches != NULL;
2716 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2717 {
2718 /* Word size in the various PowerPC bfd_arch_info structs isn't
2719 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2720 separate word size check. */
2721 tdep = gdbarch_tdep (arches->gdbarch);
2722 if (tdep && tdep->wordsize == wordsize)
2723 return arches->gdbarch;
2724 }
2725
2726 /* None found, create a new architecture from INFO, whose bfd_arch_info
2727 validity depends on the source:
2728 - executable useless
2729 - rs6000_host_arch() good
2730 - core file good
2731 - "set arch" trust blindly
2732 - GDB startup useless but harmless */
2733
2734 if (!from_xcoff_exec)
2735 {
2736 arch = info.bfd_arch_info->arch;
2737 mach = info.bfd_arch_info->mach;
2738 }
2739 else
2740 {
2741 arch = bfd_arch_powerpc;
2742 bfd_default_set_arch_mach (&abfd, arch, 0);
2743 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2744 mach = info.bfd_arch_info->mach;
2745 }
2746 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2747 tdep->wordsize = wordsize;
2748
2749 /* For e500 executables, the apuinfo section is of help here. Such
2750 section contains the identifier and revision number of each
2751 Application-specific Processing Unit that is present on the
2752 chip. The content of the section is determined by the assembler
2753 which looks at each instruction and determines which unit (and
2754 which version of it) can execute it. In our case we just look for
2755 the existance of the section. */
2756
2757 if (info.abfd)
2758 {
2759 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2760 if (sect)
2761 {
2762 arch = info.bfd_arch_info->arch;
2763 mach = bfd_mach_ppc_e500;
2764 bfd_default_set_arch_mach (&abfd, arch, mach);
2765 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2766 }
2767 }
2768
2769 gdbarch = gdbarch_alloc (&info, tdep);
2770 power = arch == bfd_arch_rs6000;
2771
2772 /* Initialize the number of real and pseudo registers in each variant. */
2773 init_variants ();
2774
2775 /* Choose variant. */
2776 v = find_variant_by_arch (arch, mach);
2777 if (!v)
2778 return NULL;
2779
2780 tdep->regs = v->regs;
2781
2782 tdep->ppc_gp0_regnum = 0;
2783 tdep->ppc_gplast_regnum = 31;
2784 tdep->ppc_toc_regnum = 2;
2785 tdep->ppc_ps_regnum = 65;
2786 tdep->ppc_cr_regnum = 66;
2787 tdep->ppc_lr_regnum = 67;
2788 tdep->ppc_ctr_regnum = 68;
2789 tdep->ppc_xer_regnum = 69;
2790 if (v->mach == bfd_mach_ppc_601)
2791 tdep->ppc_mq_regnum = 124;
2792 else if (power)
2793 tdep->ppc_mq_regnum = 70;
2794 else
2795 tdep->ppc_mq_regnum = -1;
2796 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2797
2798 set_gdbarch_pc_regnum (gdbarch, 64);
2799 set_gdbarch_sp_regnum (gdbarch, 1);
2800 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
2801 set_gdbarch_deprecated_extract_return_value (gdbarch,
2802 rs6000_extract_return_value);
2803 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
2804
2805 if (v->arch == bfd_arch_powerpc)
2806 switch (v->mach)
2807 {
2808 case bfd_mach_ppc:
2809 tdep->ppc_vr0_regnum = 71;
2810 tdep->ppc_vrsave_regnum = 104;
2811 tdep->ppc_ev0_regnum = -1;
2812 tdep->ppc_ev31_regnum = -1;
2813 break;
2814 case bfd_mach_ppc_7400:
2815 tdep->ppc_vr0_regnum = 119;
2816 tdep->ppc_vrsave_regnum = 152;
2817 tdep->ppc_ev0_regnum = -1;
2818 tdep->ppc_ev31_regnum = -1;
2819 break;
2820 case bfd_mach_ppc_e500:
2821 tdep->ppc_gp0_regnum = 41;
2822 tdep->ppc_gplast_regnum = tdep->ppc_gp0_regnum + 32 - 1;
2823 tdep->ppc_toc_regnum = -1;
2824 tdep->ppc_ps_regnum = 1;
2825 tdep->ppc_cr_regnum = 2;
2826 tdep->ppc_lr_regnum = 3;
2827 tdep->ppc_ctr_regnum = 4;
2828 tdep->ppc_xer_regnum = 5;
2829 tdep->ppc_ev0_regnum = 7;
2830 tdep->ppc_ev31_regnum = 38;
2831 set_gdbarch_pc_regnum (gdbarch, 0);
2832 set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2833 set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2834 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2835 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2836 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
2837 set_gdbarch_extract_return_value (gdbarch, e500_extract_return_value);
2838 set_gdbarch_deprecated_store_return_value (gdbarch, e500_store_return_value);
2839 break;
2840 default:
2841 tdep->ppc_vr0_regnum = -1;
2842 tdep->ppc_vrsave_regnum = -1;
2843 tdep->ppc_ev0_regnum = -1;
2844 tdep->ppc_ev31_regnum = -1;
2845 break;
2846 }
2847
2848 /* Sanity check on registers. */
2849 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
2850
2851 /* Set lr_frame_offset. */
2852 if (wordsize == 8)
2853 tdep->lr_frame_offset = 16;
2854 else if (sysv_abi)
2855 tdep->lr_frame_offset = 4;
2856 else
2857 tdep->lr_frame_offset = 8;
2858
2859 /* Calculate byte offsets in raw register array. */
2860 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2861 for (i = off = 0; i < v->num_tot_regs; i++)
2862 {
2863 tdep->regoff[i] = off;
2864 off += regsize (v->regs + i, wordsize);
2865 }
2866
2867 /* Select instruction printer. */
2868 if (arch == power)
2869 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
2870 else
2871 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
2872
2873 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
2874 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2875 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
2876 set_gdbarch_deprecated_dummy_write_sp (gdbarch, generic_target_write_sp);
2877
2878 set_gdbarch_num_regs (gdbarch, v->nregs);
2879 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
2880 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2881 set_gdbarch_register_size (gdbarch, wordsize);
2882 set_gdbarch_register_bytes (gdbarch, off);
2883 set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
2884 set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
2885 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 16);
2886 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
2887 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 16);
2888 set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2889
2890 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2891 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2892 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2893 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2894 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2895 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2896 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2897 if (sysv_abi)
2898 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
2899 else
2900 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2901 set_gdbarch_char_signed (gdbarch, 0);
2902
2903 set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
2904 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
2905 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
2906 set_gdbarch_deprecated_push_return_address (gdbarch, ppc_push_return_address);
2907 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2908
2909 set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
2910 set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2911 set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2912 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2913 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2914 is correct for the SysV ABI when the wordsize is 8, but I'm also
2915 fairly certain that ppc_sysv_abi_push_arguments() will give even
2916 worse results since it only works for 32-bit code. So, for the moment,
2917 we're better off calling rs6000_push_arguments() since it works for
2918 64-bit code. At some point in the future, this matter needs to be
2919 revisited. */
2920 if (sysv_abi && wordsize == 4)
2921 set_gdbarch_deprecated_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
2922 else
2923 set_gdbarch_deprecated_push_arguments (gdbarch, rs6000_push_arguments);
2924
2925 set_gdbarch_deprecated_store_struct_return (gdbarch, rs6000_store_struct_return);
2926 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2927 set_gdbarch_deprecated_pop_frame (gdbarch, rs6000_pop_frame);
2928
2929 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2930 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2931 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2932 set_gdbarch_function_start_offset (gdbarch, 0);
2933 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2934
2935 /* Not sure on this. FIXMEmgo */
2936 set_gdbarch_frame_args_skip (gdbarch, 8);
2937
2938 if (sysv_abi)
2939 set_gdbarch_use_struct_convention (gdbarch,
2940 ppc_sysv_abi_use_struct_convention);
2941 else
2942 set_gdbarch_use_struct_convention (gdbarch,
2943 generic_use_struct_convention);
2944
2945 set_gdbarch_frameless_function_invocation (gdbarch,
2946 rs6000_frameless_function_invocation);
2947 set_gdbarch_deprecated_frame_chain (gdbarch, rs6000_frame_chain);
2948 set_gdbarch_deprecated_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2949
2950 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2951 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
2952
2953 if (!sysv_abi)
2954 {
2955 /* Handle RS/6000 function pointers (which are really function
2956 descriptors). */
2957 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2958 rs6000_convert_from_func_ptr_addr);
2959 }
2960 set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
2961 set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
2962 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2963
2964 /* We can't tell how many args there are
2965 now that the C compiler delays popping them. */
2966 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2967
2968 /* Hook in ABI-specific overrides, if they have been registered. */
2969 gdbarch_init_osabi (info, gdbarch);
2970
2971 return gdbarch;
2972 }
2973
2974 static void
2975 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2976 {
2977 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2978
2979 if (tdep == NULL)
2980 return;
2981
2982 /* FIXME: Dump gdbarch_tdep. */
2983 }
2984
2985 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2986
2987 static void
2988 rs6000_info_powerpc_command (char *args, int from_tty)
2989 {
2990 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2991 }
2992
2993 /* Initialization code. */
2994
2995 void
2996 _initialize_rs6000_tdep (void)
2997 {
2998 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
2999 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
3000
3001 /* Add root prefix command for "info powerpc" commands */
3002 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
3003 "Various POWERPC info specific commands.",
3004 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
3005 }
This page took 0.160548 seconds and 4 git commands to generate.