12d336198547eaeeddf379b650dea290281018b1
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "symtab.h"
24 #include "target.h"
25 #include "gdbcore.h"
26
27 #include "xcoffsolib.h"
28
29 #include <sys/param.h>
30 #include <sys/dir.h>
31 #include <sys/user.h>
32 #include <signal.h>
33 #include <sys/ioctl.h>
34 #include <fcntl.h>
35
36 #include <a.out.h>
37 #include <sys/file.h>
38 #include <sys/stat.h>
39 #include <sys/core.h>
40 #include <sys/ldr.h>
41
42
43 extern struct obstack frame_cache_obstack;
44
45 extern int errno;
46
47 /* Nonzero if we just simulated a single step break. */
48 int one_stepped;
49
50 /* Breakpoint shadows for the single step instructions will be kept here. */
51
52 static struct sstep_breaks {
53 /* Address, or 0 if this is not in use. */
54 CORE_ADDR address;
55 /* Shadow contents. */
56 char data[4];
57 } stepBreaks[2];
58
59 /* Static function prototypes */
60
61 static CORE_ADDR
62 find_toc_address PARAMS ((CORE_ADDR pc));
63
64 static CORE_ADDR
65 branch_dest PARAMS ((int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety));
66
67 static void
68 frame_get_cache_fsr PARAMS ((struct frame_info *fi,
69 struct aix_framedata *fdatap));
70
71 /*
72 * Calculate the destination of a branch/jump. Return -1 if not a branch.
73 */
74 static CORE_ADDR
75 branch_dest (opcode, instr, pc, safety)
76 int opcode;
77 int instr;
78 CORE_ADDR pc;
79 CORE_ADDR safety;
80 {
81 register long offset;
82 CORE_ADDR dest;
83 int immediate;
84 int absolute;
85 int ext_op;
86
87 absolute = (int) ((instr >> 1) & 1);
88
89 switch (opcode) {
90 case 18 :
91 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
92
93 case 16 :
94 if (opcode != 18) /* br conditional */
95 immediate = ((instr & ~3) << 16) >> 16;
96 if (absolute)
97 dest = immediate;
98 else
99 dest = pc + immediate;
100 break;
101
102 case 19 :
103 ext_op = (instr>>1) & 0x3ff;
104
105 if (ext_op == 16) /* br conditional register */
106 dest = read_register (LR_REGNUM) & ~3;
107
108 else if (ext_op == 528) /* br cond to count reg */
109 dest = read_register (CTR_REGNUM) & ~3;
110
111 else return -1;
112 break;
113
114 default: return -1;
115 }
116 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
117 }
118
119
120
121 /* AIX does not support PT_STEP. Simulate it. */
122
123 void
124 single_step (signal)
125 int signal;
126 {
127 #define INSNLEN(OPCODE) 4
128
129 static char breakp[] = BREAKPOINT;
130 int ii, insn;
131 CORE_ADDR loc;
132 CORE_ADDR breaks[2];
133 int opcode;
134
135 if (!one_stepped) {
136 loc = read_pc ();
137
138 read_memory (loc, (char *) &insn, 4);
139
140 breaks[0] = loc + INSNLEN(insn);
141 opcode = insn >> 26;
142 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
143
144 /* Don't put two breakpoints on the same address. */
145 if (breaks[1] == breaks[0])
146 breaks[1] = -1;
147
148 stepBreaks[1].address = 0;
149
150 for (ii=0; ii < 2; ++ii) {
151
152 /* ignore invalid breakpoint. */
153 if ( breaks[ii] == -1)
154 continue;
155
156 read_memory (breaks[ii], stepBreaks[ii].data, 4);
157
158 write_memory (breaks[ii], breakp, 4);
159 stepBreaks[ii].address = breaks[ii];
160 }
161
162 one_stepped = 1;
163 } else {
164
165 /* remove step breakpoints. */
166 for (ii=0; ii < 2; ++ii)
167 if (stepBreaks[ii].address != 0)
168 write_memory
169 (stepBreaks[ii].address, stepBreaks[ii].data, 4);
170
171 one_stepped = 0;
172 }
173 errno = 0; /* FIXME, don't ignore errors! */
174 /* What errors? {read,write}_memory call error(). */
175 }
176
177
178 /* return pc value after skipping a function prologue. */
179
180 skip_prologue (pc)
181 CORE_ADDR pc;
182 {
183 unsigned int tmp;
184 unsigned int op; /* FIXME, assumes instruction size matches host int!!! */
185
186 if (target_read_memory (pc, (char *)&op, sizeof (op)))
187 return pc; /* Can't access it -- assume no prologue. */
188 SWAP_TARGET_AND_HOST (&op, sizeof (op));
189
190 /* Assume that subsequent fetches can fail with low probability. */
191
192 if (op == 0x7c0802a6) { /* mflr r0 */
193 pc += 4;
194 op = read_memory_integer (pc, 4);
195 }
196
197 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
198 pc += 4;
199 op = read_memory_integer (pc, 4);
200 }
201
202 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
203 pc += 4;
204 op = read_memory_integer (pc, 4);
205
206 /* At this point, make sure this is not a trampoline function
207 (a function that simply calls another functions, and nothing else).
208 If the next is not a nop, this branch was part of the function
209 prologue. */
210
211 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
212 op == 0x0)
213 return pc - 4; /* don't skip over this branch */
214 }
215
216 if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
217 pc += 4; /* store floating register double */
218 op = read_memory_integer (pc, 4);
219 }
220
221 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
222 pc += 4;
223 op = read_memory_integer (pc, 4);
224 }
225
226 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
227 (tmp == 0x9421) || /* stu r1, NUM(r1) */
228 (tmp == 0x93e1)) /* st r31,NUM(r1) */
229 {
230 pc += 4;
231 op = read_memory_integer (pc, 4);
232 }
233
234 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
235 pc += 4; /* l r30, ... */
236 op = read_memory_integer (pc, 4);
237 }
238
239 /* store parameters into stack */
240 while(
241 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
242 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
243 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
244 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
245 {
246 pc += 4; /* store fpr double */
247 op = read_memory_integer (pc, 4);
248 }
249
250 if (op == 0x603f0000) { /* oril r31, r1, 0x0 */
251 pc += 4; /* this happens if r31 is used as */
252 op = read_memory_integer (pc, 4); /* frame ptr. (gcc does that) */
253
254 tmp = 0;
255 while ((op >> 16) == (0x907f + tmp)) { /* st r3, NUM(r31) */
256 pc += 4; /* st r4, NUM(r31), ... */
257 op = read_memory_integer (pc, 4);
258 tmp += 0x20;
259 }
260 }
261 #if 0
262 /* I have problems with skipping over __main() that I need to address
263 * sometime. Previously, I used to use misc_function_vector which
264 * didn't work as well as I wanted to be. -MGO */
265
266 /* If the first thing after skipping a prolog is a branch to a function,
267 this might be a call to an initializer in main(), introduced by gcc2.
268 We'd like to skip over it as well. Fortunately, xlc does some extra
269 work before calling a function right after a prologue, thus we can
270 single out such gcc2 behaviour. */
271
272
273 if ((op & 0xfc000001) == 0x48000001) { /* bl foo, an initializer function? */
274 op = read_memory_integer (pc+4, 4);
275
276 if (op == 0x4def7b82) { /* cror 0xf, 0xf, 0xf (nop) */
277
278 /* check and see if we are in main. If so, skip over this initializer
279 function as well. */
280
281 tmp = find_pc_misc_function (pc);
282 if (tmp >= 0 && STREQ (misc_function_vector [tmp].name, "main"))
283 return pc + 8;
284 }
285 }
286 #endif /* 0 */
287
288 return pc;
289 }
290
291
292 /*************************************************************************
293 Support for creating pushind a dummy frame into the stack, and popping
294 frames, etc.
295 *************************************************************************/
296
297 /* The total size of dummy frame is 436, which is;
298
299 32 gpr's - 128 bytes
300 32 fpr's - 256 "
301 7 the rest - 28 "
302 and 24 extra bytes for the callee's link area. The last 24 bytes
303 for the link area might not be necessary, since it will be taken
304 care of by push_arguments(). */
305
306 #define DUMMY_FRAME_SIZE 436
307
308 #define DUMMY_FRAME_ADDR_SIZE 10
309
310 /* Make sure you initialize these in somewhere, in case gdb gives up what it
311 was debugging and starts debugging something else. FIXMEibm */
312
313 static int dummy_frame_count = 0;
314 static int dummy_frame_size = 0;
315 static CORE_ADDR *dummy_frame_addr = 0;
316
317 extern int stop_stack_dummy;
318
319 /* push a dummy frame into stack, save all register. Currently we are saving
320 only gpr's and fpr's, which is not good enough! FIXMEmgo */
321
322 void
323 push_dummy_frame ()
324 {
325 /* stack pointer. */
326 CORE_ADDR sp;
327
328 /* link register. */
329 CORE_ADDR pc;
330 /* Same thing, target byte order. */
331 char pc_targ[4];
332
333 int ii;
334
335 target_fetch_registers (-1);
336
337 if (dummy_frame_count >= dummy_frame_size) {
338 dummy_frame_size += DUMMY_FRAME_ADDR_SIZE;
339 if (dummy_frame_addr)
340 dummy_frame_addr = (CORE_ADDR*) xrealloc
341 (dummy_frame_addr, sizeof(CORE_ADDR) * (dummy_frame_size));
342 else
343 dummy_frame_addr = (CORE_ADDR*)
344 xmalloc (sizeof(CORE_ADDR) * (dummy_frame_size));
345 }
346
347 sp = read_register(SP_REGNUM);
348 pc = read_register(PC_REGNUM);
349 memcpy (pc_targ, (char *) &pc, 4);
350
351 dummy_frame_addr [dummy_frame_count++] = sp;
352
353 /* Be careful! If the stack pointer is not decremented first, then kernel
354 thinks he is free to use the space underneath it. And kernel actually
355 uses that area for IPC purposes when executing ptrace(2) calls. So
356 before writing register values into the new frame, decrement and update
357 %sp first in order to secure your frame. */
358
359 write_register (SP_REGNUM, sp-DUMMY_FRAME_SIZE);
360
361 /* gdb relies on the state of current_frame. We'd better update it,
362 otherwise things like do_registers_info() wouldn't work properly! */
363
364 flush_cached_frames ();
365 set_current_frame (create_new_frame (sp-DUMMY_FRAME_SIZE, pc));
366
367 /* save program counter in link register's space. */
368 write_memory (sp+8, pc_targ, 4);
369
370 /* save all floating point and general purpose registers here. */
371
372 /* fpr's, f0..f31 */
373 for (ii = 0; ii < 32; ++ii)
374 write_memory (sp-8-(ii*8), &registers[REGISTER_BYTE (31-ii+FP0_REGNUM)], 8);
375
376 /* gpr's r0..r31 */
377 for (ii=1; ii <=32; ++ii)
378 write_memory (sp-256-(ii*4), &registers[REGISTER_BYTE (32-ii)], 4);
379
380 /* so far, 32*2 + 32 words = 384 bytes have been written.
381 7 extra registers in our register set: pc, ps, cnd, lr, cnt, xer, mq */
382
383 for (ii=1; ii <= (LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii) {
384 write_memory (sp-384-(ii*4),
385 &registers[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
386 }
387
388 /* Save sp or so called back chain right here. */
389 write_memory (sp-DUMMY_FRAME_SIZE, &sp, 4);
390 sp -= DUMMY_FRAME_SIZE;
391
392 /* And finally, this is the back chain. */
393 write_memory (sp+8, pc_targ, 4);
394 }
395
396
397 /* Pop a dummy frame.
398
399 In rs6000 when we push a dummy frame, we save all of the registers. This
400 is usually done before user calls a function explicitly.
401
402 After a dummy frame is pushed, some instructions are copied into stack,
403 and stack pointer is decremented even more. Since we don't have a frame
404 pointer to get back to the parent frame of the dummy, we start having
405 trouble poping it. Therefore, we keep a dummy frame stack, keeping
406 addresses of dummy frames as such. When poping happens and when we
407 detect that was a dummy frame, we pop it back to its parent by using
408 dummy frame stack (`dummy_frame_addr' array).
409
410 FIXME: This whole concept is broken. You should be able to detect
411 a dummy stack frame *on the user's stack itself*. When you do,
412 then you know the format of that stack frame -- including its
413 saved SP register! There should *not* be a separate stack in the
414 GDB process that keeps track of these dummy frames! -- gnu@cygnus.com Aug92
415 */
416
417 pop_dummy_frame ()
418 {
419 CORE_ADDR sp, pc;
420 int ii;
421 sp = dummy_frame_addr [--dummy_frame_count];
422
423 /* restore all fpr's. */
424 for (ii = 1; ii <= 32; ++ii)
425 read_memory (sp-(ii*8), &registers[REGISTER_BYTE (32-ii+FP0_REGNUM)], 8);
426
427 /* restore all gpr's */
428 for (ii=1; ii <= 32; ++ii) {
429 read_memory (sp-256-(ii*4), &registers[REGISTER_BYTE (32-ii)], 4);
430 }
431
432 /* restore the rest of the registers. */
433 for (ii=1; ii <=(LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii)
434 read_memory (sp-384-(ii*4),
435 &registers[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
436
437 read_memory (sp-(DUMMY_FRAME_SIZE-8),
438 &registers [REGISTER_BYTE(PC_REGNUM)], 4);
439
440 /* when a dummy frame was being pushed, we had to decrement %sp first, in
441 order to secure astack space. Thus, saved %sp (or %r1) value, is not the
442 one we should restore. Change it with the one we need. */
443
444 *(int*)&registers [REGISTER_BYTE(FP_REGNUM)] = sp;
445
446 /* Now we can restore all registers. */
447
448 target_store_registers (-1);
449 pc = read_pc ();
450 flush_cached_frames ();
451 set_current_frame (create_new_frame (sp, pc));
452 }
453
454
455 /* pop the innermost frame, go back to the caller. */
456
457 void
458 pop_frame ()
459 {
460 CORE_ADDR pc, lr, sp, prev_sp; /* %pc, %lr, %sp */
461 struct aix_framedata fdata;
462 FRAME fr = get_current_frame ();
463 int addr, ii;
464
465 pc = read_pc ();
466 sp = FRAME_FP (fr);
467
468 if (stop_stack_dummy && dummy_frame_count) {
469 pop_dummy_frame ();
470 return;
471 }
472
473 /* figure out previous %pc value. If the function is frameless, it is
474 still in the link register, otherwise walk the frames and retrieve the
475 saved %pc value in the previous frame. */
476
477 addr = get_pc_function_start (fr->pc) + FUNCTION_START_OFFSET;
478 function_frame_info (addr, &fdata);
479
480 prev_sp = read_memory_integer (sp, 4);
481 if (fdata.frameless)
482 lr = read_register (LR_REGNUM);
483 else
484 lr = read_memory_integer (prev_sp+8, 4);
485
486 /* reset %pc value. */
487 write_register (PC_REGNUM, lr);
488
489 /* reset register values if any was saved earlier. */
490 addr = prev_sp - fdata.offset;
491
492 if (fdata.saved_gpr != -1)
493 for (ii=fdata.saved_gpr; ii <= 31; ++ii) {
494 read_memory (addr, &registers [REGISTER_BYTE (ii)], 4);
495 addr += 4;
496 }
497
498 if (fdata.saved_fpr != -1)
499 for (ii=fdata.saved_fpr; ii <= 31; ++ii) {
500 read_memory (addr, &registers [REGISTER_BYTE (ii+FP0_REGNUM)], 8);
501 addr += 8;
502 }
503
504 write_register (SP_REGNUM, prev_sp);
505 target_store_registers (-1);
506 flush_cached_frames ();
507 set_current_frame (create_new_frame (prev_sp, lr));
508 }
509
510
511 /* fixup the call sequence of a dummy function, with the real function address.
512 its argumets will be passed by gdb. */
513
514 void
515 fix_call_dummy(dummyname, pc, fun, nargs, type)
516 char *dummyname;
517 CORE_ADDR pc;
518 CORE_ADDR fun;
519 int nargs; /* not used */
520 int type; /* not used */
521 {
522 #define TOC_ADDR_OFFSET 20
523 #define TARGET_ADDR_OFFSET 28
524
525 int ii;
526 CORE_ADDR target_addr;
527 CORE_ADDR tocvalue;
528
529 target_addr = fun;
530 tocvalue = find_toc_address (target_addr);
531
532 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET);
533 ii = (ii & 0xffff0000) | (tocvalue >> 16);
534 *(int*)((char*)dummyname + TOC_ADDR_OFFSET) = ii;
535
536 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4);
537 ii = (ii & 0xffff0000) | (tocvalue & 0x0000ffff);
538 *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4) = ii;
539
540 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET);
541 ii = (ii & 0xffff0000) | (target_addr >> 16);
542 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET) = ii;
543
544 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4);
545 ii = (ii & 0xffff0000) | (target_addr & 0x0000ffff);
546 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4) = ii;
547 }
548
549
550 /* return information about a function frame.
551 in struct aix_frameinfo fdata:
552 - frameless is TRUE, if function does not have a frame.
553 - nosavedpc is TRUE, if function does not save %pc value in its frame.
554 - offset is the number of bytes used in the frame to save registers.
555 - saved_gpr is the number of the first saved gpr.
556 - saved_fpr is the number of the first saved fpr.
557 - alloca_reg is the number of the register used for alloca() handling.
558 Otherwise -1.
559 */
560 void
561 function_frame_info (pc, fdata)
562 CORE_ADDR pc;
563 struct aix_framedata *fdata;
564 {
565 unsigned int tmp;
566 register unsigned int op;
567
568 fdata->offset = 0;
569 fdata->saved_gpr = fdata->saved_fpr = fdata->alloca_reg = -1;
570 fdata->frameless = 1;
571
572 op = read_memory_integer (pc, 4);
573 if (op == 0x7c0802a6) { /* mflr r0 */
574 pc += 4;
575 op = read_memory_integer (pc, 4);
576 fdata->nosavedpc = 0;
577 fdata->frameless = 0;
578 }
579 else /* else, pc is not saved */
580 fdata->nosavedpc = 1;
581
582 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
583 pc += 4;
584 op = read_memory_integer (pc, 4);
585 fdata->frameless = 0;
586 }
587
588 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
589 pc += 4;
590 op = read_memory_integer (pc, 4);
591 /* At this point, make sure this is not a trampoline function
592 (a function that simply calls another functions, and nothing else).
593 If the next is not a nop, this branch was part of the function
594 prologue. */
595
596 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
597 op == 0x0)
598 return; /* prologue is over */
599 fdata->frameless = 0;
600 }
601
602 if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
603 pc += 4; /* store floating register double */
604 op = read_memory_integer (pc, 4);
605 fdata->frameless = 0;
606 }
607
608 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
609 int tmp2;
610 fdata->saved_gpr = (op >> 21) & 0x1f;
611 tmp2 = op & 0xffff;
612 if (tmp2 > 0x7fff)
613 tmp2 = (~0 &~ 0xffff) | tmp2;
614
615 if (tmp2 < 0) {
616 tmp2 = tmp2 * -1;
617 fdata->saved_fpr = (tmp2 - ((32 - fdata->saved_gpr) * 4)) / 8;
618 if ( fdata->saved_fpr > 0)
619 fdata->saved_fpr = 32 - fdata->saved_fpr;
620 else
621 fdata->saved_fpr = -1;
622 }
623 fdata->offset = tmp2;
624 pc += 4;
625 op = read_memory_integer (pc, 4);
626 fdata->frameless = 0;
627 }
628
629 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
630 (tmp == 0x9421) || /* stu r1, NUM(r1) */
631 (tmp == 0x93e1)) /* st r31, NUM(r1) */
632 {
633 int tmp2;
634
635 /* gcc takes a short cut and uses this instruction to save r31 only. */
636
637 if (tmp == 0x93e1) {
638 if (fdata->offset)
639 /* fatal ("Unrecognized prolog."); */
640 printf ("Unrecognized prolog!\n");
641
642 fdata->saved_gpr = 31;
643 tmp2 = op & 0xffff;
644 if (tmp2 > 0x7fff) {
645 tmp2 = - ((~0 &~ 0xffff) | tmp2);
646 fdata->saved_fpr = (tmp2 - ((32 - 31) * 4)) / 8;
647 if ( fdata->saved_fpr > 0)
648 fdata->saved_fpr = 32 - fdata->saved_fpr;
649 else
650 fdata->saved_fpr = -1;
651 }
652 fdata->offset = tmp2;
653 }
654 pc += 4;
655 op = read_memory_integer (pc, 4);
656 fdata->frameless = 0;
657 }
658
659 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
660 pc += 4; /* l r30, ... */
661 op = read_memory_integer (pc, 4);
662 fdata->frameless = 0;
663 }
664
665 /* store parameters into stack */
666 while(
667 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
668 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
669 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
670 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
671 {
672 pc += 4; /* store fpr double */
673 op = read_memory_integer (pc, 4);
674 fdata->frameless = 0;
675 }
676
677 if (op == 0x603f0000) { /* oril r31, r1, 0x0 */
678 fdata->alloca_reg = 31;
679 fdata->frameless = 0;
680 }
681 }
682
683
684 /* Pass the arguments in either registers, or in the stack. In RS6000, the first
685 eight words of the argument list (that might be less than eight parameters if
686 some parameters occupy more than one word) are passed in r3..r11 registers.
687 float and double parameters are passed in fpr's, in addition to that. Rest of
688 the parameters if any are passed in user stack. There might be cases in which
689 half of the parameter is copied into registers, the other half is pushed into
690 stack.
691
692 If the function is returning a structure, then the return address is passed
693 in r3, then the first 7 words of the parametes can be passed in registers,
694 starting from r4. */
695
696 CORE_ADDR
697 push_arguments (nargs, args, sp, struct_return, struct_addr)
698 int nargs;
699 value *args;
700 CORE_ADDR sp;
701 int struct_return;
702 CORE_ADDR struct_addr;
703 {
704 int ii, len;
705 int argno; /* current argument number */
706 int argbytes; /* current argument byte */
707 char tmp_buffer [50];
708 value arg;
709 int f_argno = 0; /* current floating point argno */
710
711 CORE_ADDR saved_sp, pc;
712
713 if ( dummy_frame_count <= 0)
714 printf ("FATAL ERROR -push_arguments()! frame not found!!\n");
715
716 /* The first eight words of ther arguments are passed in registers. Copy
717 them appropriately.
718
719 If the function is returning a `struct', then the first word (which
720 will be passed in r3) is used for struct return address. In that
721 case we should advance one word and start from r4 register to copy
722 parameters. */
723
724 ii = struct_return ? 1 : 0;
725
726 for (argno=0, argbytes=0; argno < nargs && ii<8; ++ii) {
727
728 arg = value_arg_coerce (args[argno]);
729 len = TYPE_LENGTH (VALUE_TYPE (arg));
730
731 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT) {
732
733 /* floating point arguments are passed in fpr's, as well as gpr's.
734 There are 13 fpr's reserved for passing parameters. At this point
735 there is no way we would run out of them. */
736
737 if (len > 8)
738 printf (
739 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
740
741 bcopy (VALUE_CONTENTS (arg),
742 &registers[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], len);
743 ++f_argno;
744 }
745
746 if (len > 4) {
747
748 /* Argument takes more than one register. */
749 while (argbytes < len) {
750
751 *(int*)&registers[REGISTER_BYTE(ii+3)] = 0;
752 bcopy ( ((char*)VALUE_CONTENTS (arg))+argbytes,
753 &registers[REGISTER_BYTE(ii+3)],
754 (len - argbytes) > 4 ? 4 : len - argbytes);
755 ++ii, argbytes += 4;
756
757 if (ii >= 8)
758 goto ran_out_of_registers_for_arguments;
759 }
760 argbytes = 0;
761 --ii;
762 }
763 else { /* Argument can fit in one register. No problem. */
764 *(int*)&registers[REGISTER_BYTE(ii+3)] = 0;
765 bcopy (VALUE_CONTENTS (arg), &registers[REGISTER_BYTE(ii+3)], len);
766 }
767 ++argno;
768 }
769
770 ran_out_of_registers_for_arguments:
771
772 /* location for 8 parameters are always reserved. */
773 sp -= 4 * 8;
774
775 /* another six words for back chain, TOC register, link register, etc. */
776 sp -= 24;
777
778 /* if there are more arguments, allocate space for them in
779 the stack, then push them starting from the ninth one. */
780
781 if ((argno < nargs) || argbytes) {
782 int space = 0, jj;
783 value val;
784
785 if (argbytes) {
786 space += ((len - argbytes + 3) & -4);
787 jj = argno + 1;
788 }
789 else
790 jj = argno;
791
792 for (; jj < nargs; ++jj) {
793 val = value_arg_coerce (args[jj]);
794 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
795 }
796
797 /* add location required for the rest of the parameters */
798 space = (space + 7) & -8;
799 sp -= space;
800
801 /* This is another instance we need to be concerned about securing our
802 stack space. If we write anything underneath %sp (r1), we might conflict
803 with the kernel who thinks he is free to use this area. So, update %sp
804 first before doing anything else. */
805
806 write_register (SP_REGNUM, sp);
807
808 /* if the last argument copied into the registers didn't fit there
809 completely, push the rest of it into stack. */
810
811 if (argbytes) {
812 write_memory (
813 sp+24+(ii*4), ((char*)VALUE_CONTENTS (arg))+argbytes, len - argbytes);
814 ++argno;
815 ii += ((len - argbytes + 3) & -4) / 4;
816 }
817
818 /* push the rest of the arguments into stack. */
819 for (; argno < nargs; ++argno) {
820
821 arg = value_arg_coerce (args[argno]);
822 len = TYPE_LENGTH (VALUE_TYPE (arg));
823
824
825 /* float types should be passed in fpr's, as well as in the stack. */
826 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT && f_argno < 13) {
827
828 if (len > 8)
829 printf (
830 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
831
832 bcopy (VALUE_CONTENTS (arg),
833 &registers[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], len);
834 ++f_argno;
835 }
836
837 write_memory (sp+24+(ii*4), (char *) VALUE_CONTENTS (arg), len);
838 ii += ((len + 3) & -4) / 4;
839 }
840 }
841 else
842 /* Secure stack areas first, before doing anything else. */
843 write_register (SP_REGNUM, sp);
844
845 saved_sp = dummy_frame_addr [dummy_frame_count - 1];
846 read_memory (saved_sp, tmp_buffer, 24);
847 write_memory (sp, tmp_buffer, 24);
848
849 write_memory (sp, &saved_sp, 4); /* set back chain properly */
850
851 target_store_registers (-1);
852 return sp;
853 }
854
855 /* a given return value in `regbuf' with a type `valtype', extract and copy its
856 value into `valbuf' */
857
858 void
859 extract_return_value (valtype, regbuf, valbuf)
860 struct type *valtype;
861 char regbuf[REGISTER_BYTES];
862 char *valbuf;
863 {
864
865 if (TYPE_CODE (valtype) == TYPE_CODE_FLT) {
866
867 double dd; float ff;
868 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
869 We need to truncate the return value into float size (4 byte) if
870 necessary. */
871
872 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
873 bcopy (&regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], valbuf,
874 TYPE_LENGTH (valtype));
875 else { /* float */
876 bcopy (&regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], &dd, 8);
877 ff = (float)dd;
878 bcopy (&ff, valbuf, sizeof(float));
879 }
880 }
881 else
882 /* return value is copied starting from r3. */
883 bcopy (&regbuf[REGISTER_BYTE (3)], valbuf, TYPE_LENGTH (valtype));
884 }
885
886
887 /* keep structure return address in this variable.
888 FIXME: This is a horrid kludge which should not be allowed to continue
889 living. This only allows a single nested call to a structure-returning
890 function. Come on, guys! -- gnu@cygnus.com, Aug 92 */
891
892 CORE_ADDR rs6000_struct_return_address;
893
894
895 /* Indirect function calls use a piece of trampoline code to do context
896 switching, i.e. to set the new TOC table. Skip such code if we are on
897 its first instruction (as when we have single-stepped to here).
898 Result is desired PC to step until, or NULL if we are not in
899 trampoline code. */
900
901 CORE_ADDR
902 skip_trampoline_code (pc)
903 CORE_ADDR pc;
904 {
905 register unsigned int ii, op;
906
907 static unsigned trampoline_code[] = {
908 0x800b0000, /* l r0,0x0(r11) */
909 0x90410014, /* st r2,0x14(r1) */
910 0x7c0903a6, /* mtctr r0 */
911 0x804b0004, /* l r2,0x4(r11) */
912 0x816b0008, /* l r11,0x8(r11) */
913 0x4e800420, /* bctr */
914 0x4e800020, /* br */
915 0
916 };
917
918 for (ii=0; trampoline_code[ii]; ++ii) {
919 op = read_memory_integer (pc + (ii*4), 4);
920 if (op != trampoline_code [ii])
921 return 0;
922 }
923 ii = read_register (11); /* r11 holds destination addr */
924 pc = read_memory_integer (ii, 4); /* (r11) value */
925 return pc;
926 }
927
928
929 /* Determines whether the function FI has a frame on the stack or not.
930 Called from the FRAMELESS_FUNCTION_INVOCATION macro in tm.h with a
931 second argument of 0, and from the FRAME_SAVED_PC macro with a
932 second argument of 1. */
933
934 int
935 frameless_function_invocation (fi, pcsaved)
936 struct frame_info *fi;
937 int pcsaved;
938 {
939 CORE_ADDR func_start;
940 struct aix_framedata fdata;
941
942 if (fi->next != NULL)
943 /* Don't even think about framelessness except on the innermost frame. */
944 return 0;
945
946 func_start = get_pc_function_start (fi->pc) + FUNCTION_START_OFFSET;
947
948 /* If we failed to find the start of the function, it is a mistake
949 to inspect the instructions. */
950
951 if (!func_start)
952 return 0;
953
954 function_frame_info (func_start, &fdata);
955 return pcsaved ? fdata.nosavedpc : fdata.frameless;
956 }
957
958
959 /* If saved registers of frame FI are not known yet, read and cache them.
960 &FDATAP contains aix_framedata; TDATAP can be NULL,
961 in which case the framedata are read. */
962
963 static void
964 frame_get_cache_fsr (fi, fdatap)
965 struct frame_info *fi;
966 struct aix_framedata *fdatap;
967 {
968 int ii;
969 CORE_ADDR frame_addr;
970 struct aix_framedata work_fdata;
971
972 if (fi->cache_fsr)
973 return;
974
975 if (fdatap == NULL) {
976 fdatap = &work_fdata;
977 function_frame_info (get_pc_function_start (fi->pc), fdatap);
978 }
979
980 fi->cache_fsr = (struct frame_saved_regs *)
981 obstack_alloc (&frame_cache_obstack, sizeof (struct frame_saved_regs));
982 bzero (fi->cache_fsr, sizeof (struct frame_saved_regs));
983
984 if (fi->prev && fi->prev->frame)
985 frame_addr = fi->prev->frame;
986 else
987 frame_addr = read_memory_integer (fi->frame, 4);
988
989 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
990 All fpr's from saved_fpr to fp31 are saved right underneath caller
991 stack pointer, starting from fp31 first. */
992
993 if (fdatap->saved_fpr >= 0) {
994 for (ii=31; ii >= fdatap->saved_fpr; --ii)
995 fi->cache_fsr->regs [FP0_REGNUM + ii] = frame_addr - ((32 - ii) * 8);
996 frame_addr -= (32 - fdatap->saved_fpr) * 8;
997 }
998
999 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1000 All gpr's from saved_gpr to gpr31 are saved right under saved fprs,
1001 starting from r31 first. */
1002
1003 if (fdatap->saved_gpr >= 0)
1004 for (ii=31; ii >= fdatap->saved_gpr; --ii)
1005 fi->cache_fsr->regs [ii] = frame_addr - ((32 - ii) * 4);
1006 }
1007
1008 /* Return the address of a frame. This is the inital %sp value when the frame
1009 was first allocated. For functions calling alloca(), it might be saved in
1010 an alloca register. */
1011
1012 CORE_ADDR
1013 frame_initial_stack_address (fi)
1014 struct frame_info *fi;
1015 {
1016 CORE_ADDR tmpaddr;
1017 struct aix_framedata fdata;
1018 struct frame_info *callee_fi;
1019
1020 /* if the initial stack pointer (frame address) of this frame is known,
1021 just return it. */
1022
1023 if (fi->initial_sp)
1024 return fi->initial_sp;
1025
1026 /* find out if this function is using an alloca register.. */
1027
1028 function_frame_info (get_pc_function_start (fi->pc), &fdata);
1029
1030 /* if saved registers of this frame are not known yet, read and cache them. */
1031
1032 if (!fi->cache_fsr)
1033 frame_get_cache_fsr (fi, &fdata);
1034
1035 /* If no alloca register used, then fi->frame is the value of the %sp for
1036 this frame, and it is good enough. */
1037
1038 if (fdata.alloca_reg < 0) {
1039 fi->initial_sp = fi->frame;
1040 return fi->initial_sp;
1041 }
1042
1043 /* This function has an alloca register. If this is the top-most frame
1044 (with the lowest address), the value in alloca register is good. */
1045
1046 if (!fi->next)
1047 return fi->initial_sp = read_register (fdata.alloca_reg);
1048
1049 /* Otherwise, this is a caller frame. Callee has usually already saved
1050 registers, but there are exceptions (such as when the callee
1051 has no parameters). Find the address in which caller's alloca
1052 register is saved. */
1053
1054 for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next) {
1055
1056 if (!callee_fi->cache_fsr)
1057 frame_get_cache_fsr (callee_fi, NULL);
1058
1059 /* this is the address in which alloca register is saved. */
1060
1061 tmpaddr = callee_fi->cache_fsr->regs [fdata.alloca_reg];
1062 if (tmpaddr) {
1063 fi->initial_sp = read_memory_integer (tmpaddr, 4);
1064 return fi->initial_sp;
1065 }
1066
1067 /* Go look into deeper levels of the frame chain to see if any one of
1068 the callees has saved alloca register. */
1069 }
1070
1071 /* If alloca register was not saved, by the callee (or any of its callees)
1072 then the value in the register is still good. */
1073
1074 return fi->initial_sp = read_register (fdata.alloca_reg);
1075 }
1076
1077 FRAME_ADDR
1078 rs6000_frame_chain (thisframe)
1079 struct frame_info *thisframe;
1080 {
1081 FRAME_ADDR fp;
1082 if (inside_entry_file ((thisframe)->pc))
1083 return 0;
1084 if (thisframe->signal_handler_caller)
1085 {
1086 /* This was determined by experimentation on AIX 3.2. Perhaps
1087 it corresponds to some offset in /usr/include/sys/user.h or
1088 something like that. Using some system include file would
1089 have the advantage of probably being more robust in the face
1090 of OS upgrades, but the disadvantage of being wrong for
1091 cross-debugging. */
1092
1093 #define SIG_FRAME_FP_OFFSET 284
1094 fp = read_memory_integer (thisframe->frame + SIG_FRAME_FP_OFFSET, 4);
1095 }
1096 else
1097 fp = read_memory_integer ((thisframe)->frame, 4);
1098
1099 return fp;
1100 }
1101
1102 \f
1103 /* xcoff_relocate_symtab - hook for symbol table relocation.
1104 also reads shared libraries.. */
1105
1106 xcoff_relocate_symtab (pid)
1107 unsigned int pid;
1108 {
1109 #define MAX_LOAD_SEGS 64 /* maximum number of load segments */
1110
1111 struct ld_info *ldi;
1112 int temp;
1113
1114 ldi = (void *) alloca(MAX_LOAD_SEGS * sizeof (*ldi));
1115
1116 /* According to my humble theory, AIX has some timing problems and
1117 when the user stack grows, kernel doesn't update stack info in time
1118 and ptrace calls step on user stack. That is why we sleep here a little,
1119 and give kernel to update its internals. */
1120
1121 usleep (36000);
1122
1123 errno = 0;
1124 ptrace(PT_LDINFO, pid, (PTRACE_ARG3_TYPE) ldi,
1125 MAX_LOAD_SEGS * sizeof(*ldi), ldi);
1126 if (errno) {
1127 perror_with_name ("ptrace ldinfo");
1128 return 0;
1129 }
1130
1131 vmap_ldinfo(ldi);
1132
1133 do {
1134 /* We are allowed to assume CORE_ADDR == pointer. This code is
1135 native only. */
1136 add_text_to_loadinfo ((CORE_ADDR) ldi->ldinfo_textorg,
1137 (CORE_ADDR) ldi->ldinfo_dataorg);
1138 } while (ldi->ldinfo_next
1139 && (ldi = (void *) (ldi->ldinfo_next + (char *) ldi)));
1140
1141 #if 0
1142 /* Now that we've jumbled things around, re-sort them. */
1143 sort_minimal_symbols ();
1144 #endif
1145
1146 /* relocate the exec and core sections as well. */
1147 vmap_exec ();
1148 }
1149 \f
1150 /* Keep an array of load segment information and their TOC table addresses.
1151 This info will be useful when calling a shared library function by hand. */
1152
1153 struct loadinfo {
1154 CORE_ADDR textorg, dataorg;
1155 unsigned long toc_offset;
1156 };
1157
1158 #define LOADINFOLEN 10
1159
1160 static struct loadinfo *loadinfo = NULL;
1161 static int loadinfolen = 0;
1162 static int loadinfotocindex = 0;
1163 static int loadinfotextindex = 0;
1164
1165
1166 void
1167 xcoff_init_loadinfo ()
1168 {
1169 loadinfotocindex = 0;
1170 loadinfotextindex = 0;
1171
1172 if (loadinfolen == 0) {
1173 loadinfo = (struct loadinfo *)
1174 xmalloc (sizeof (struct loadinfo) * LOADINFOLEN);
1175 loadinfolen = LOADINFOLEN;
1176 }
1177 }
1178
1179
1180 /* FIXME -- this is never called! */
1181 void
1182 free_loadinfo ()
1183 {
1184 if (loadinfo)
1185 free (loadinfo);
1186 loadinfo = NULL;
1187 loadinfolen = 0;
1188 loadinfotocindex = 0;
1189 loadinfotextindex = 0;
1190 }
1191
1192 /* this is called from xcoffread.c */
1193
1194 void
1195 xcoff_add_toc_to_loadinfo (unsigned long tocoff)
1196 {
1197 while (loadinfotocindex >= loadinfolen) {
1198 loadinfolen += LOADINFOLEN;
1199 loadinfo = (struct loadinfo *)
1200 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1201 }
1202 loadinfo [loadinfotocindex++].toc_offset = tocoff;
1203 }
1204
1205
1206 void
1207 add_text_to_loadinfo (textaddr, dataaddr)
1208 CORE_ADDR textaddr;
1209 CORE_ADDR dataaddr;
1210 {
1211 while (loadinfotextindex >= loadinfolen) {
1212 loadinfolen += LOADINFOLEN;
1213 loadinfo = (struct loadinfo *)
1214 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1215 }
1216 loadinfo [loadinfotextindex].textorg = textaddr;
1217 loadinfo [loadinfotextindex].dataorg = dataaddr;
1218 ++loadinfotextindex;
1219 }
1220
1221
1222 /* FIXME: This assumes that the "textorg" and "dataorg" elements
1223 of a member of this array are correlated with the "toc_offset"
1224 element of the same member. But they are sequentially assigned in wildly
1225 different places, and probably there is no correlation. FIXME! */
1226
1227 static CORE_ADDR
1228 find_toc_address (pc)
1229 CORE_ADDR pc;
1230 {
1231 int ii, toc_entry, tocbase = 0;
1232
1233 for (ii=0; ii < loadinfotextindex; ++ii)
1234 if (pc > loadinfo[ii].textorg && loadinfo[ii].textorg > tocbase) {
1235 toc_entry = ii;
1236 tocbase = loadinfo[ii].textorg;
1237 }
1238
1239 return loadinfo[toc_entry].dataorg + loadinfo[toc_entry].toc_offset;
1240 }
This page took 0.056344 seconds and 4 git commands to generate.