17bcb2439a252e0a432ae7c109b1c1da14c06739
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "target.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "doublest.h"
35 #include "value.h"
36 #include "parser-defs.h"
37 #include "osabi.h"
38
39 #include "libbfd.h" /* for bfd_default_set_arch_mach */
40 #include "coff/internal.h" /* for libcoff.h */
41 #include "libcoff.h" /* for xcoff_data */
42 #include "coff/xcoff.h"
43 #include "libxcoff.h"
44
45 #include "elf-bfd.h"
46
47 #include "solib-svr4.h"
48 #include "ppc-tdep.h"
49
50 #include "gdb_assert.h"
51 #include "dis-asm.h"
52
53 /* If the kernel has to deliver a signal, it pushes a sigcontext
54 structure on the stack and then calls the signal handler, passing
55 the address of the sigcontext in an argument register. Usually
56 the signal handler doesn't save this register, so we have to
57 access the sigcontext structure via an offset from the signal handler
58 frame.
59 The following constants were determined by experimentation on AIX 3.2. */
60 #define SIG_FRAME_PC_OFFSET 96
61 #define SIG_FRAME_LR_OFFSET 108
62 #define SIG_FRAME_FP_OFFSET 284
63
64 /* To be used by skip_prologue. */
65
66 struct rs6000_framedata
67 {
68 int offset; /* total size of frame --- the distance
69 by which we decrement sp to allocate
70 the frame */
71 int saved_gpr; /* smallest # of saved gpr */
72 int saved_fpr; /* smallest # of saved fpr */
73 int saved_vr; /* smallest # of saved vr */
74 int saved_ev; /* smallest # of saved ev */
75 int alloca_reg; /* alloca register number (frame ptr) */
76 char frameless; /* true if frameless functions. */
77 char nosavedpc; /* true if pc not saved. */
78 int gpr_offset; /* offset of saved gprs from prev sp */
79 int fpr_offset; /* offset of saved fprs from prev sp */
80 int vr_offset; /* offset of saved vrs from prev sp */
81 int ev_offset; /* offset of saved evs from prev sp */
82 int lr_offset; /* offset of saved lr */
83 int cr_offset; /* offset of saved cr */
84 int vrsave_offset; /* offset of saved vrsave register */
85 };
86
87 /* Description of a single register. */
88
89 struct reg
90 {
91 char *name; /* name of register */
92 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
93 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
94 unsigned char fpr; /* whether register is floating-point */
95 unsigned char pseudo; /* whether register is pseudo */
96 };
97
98 /* Breakpoint shadows for the single step instructions will be kept here. */
99
100 static struct sstep_breaks
101 {
102 /* Address, or 0 if this is not in use. */
103 CORE_ADDR address;
104 /* Shadow contents. */
105 char data[4];
106 }
107 stepBreaks[2];
108
109 /* Hook for determining the TOC address when calling functions in the
110 inferior under AIX. The initialization code in rs6000-nat.c sets
111 this hook to point to find_toc_address. */
112
113 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
114
115 /* Hook to set the current architecture when starting a child process.
116 rs6000-nat.c sets this. */
117
118 void (*rs6000_set_host_arch_hook) (int) = NULL;
119
120 /* Static function prototypes */
121
122 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
123 CORE_ADDR safety);
124 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
125 struct rs6000_framedata *);
126 static void frame_get_saved_regs (struct frame_info * fi,
127 struct rs6000_framedata * fdatap);
128 static CORE_ADDR frame_initial_stack_address (struct frame_info *);
129
130 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
131 int
132 altivec_register_p (int regno)
133 {
134 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
135 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
136 return 0;
137 else
138 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
139 }
140
141 /* Use the architectures FP registers? */
142 int
143 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
144 {
145 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
146 if (info->arch == bfd_arch_powerpc)
147 return (info->mach != bfd_mach_ppc_e500);
148 if (info->arch == bfd_arch_rs6000)
149 return 1;
150 return 0;
151 }
152
153 /* Read a LEN-byte address from debugged memory address MEMADDR. */
154
155 static CORE_ADDR
156 read_memory_addr (CORE_ADDR memaddr, int len)
157 {
158 return read_memory_unsigned_integer (memaddr, len);
159 }
160
161 static CORE_ADDR
162 rs6000_skip_prologue (CORE_ADDR pc)
163 {
164 struct rs6000_framedata frame;
165 pc = skip_prologue (pc, 0, &frame);
166 return pc;
167 }
168
169
170 /* Fill in fi->saved_regs */
171
172 struct frame_extra_info
173 {
174 /* Functions calling alloca() change the value of the stack
175 pointer. We need to use initial stack pointer (which is saved in
176 r31 by gcc) in such cases. If a compiler emits traceback table,
177 then we should use the alloca register specified in traceback
178 table. FIXME. */
179 CORE_ADDR initial_sp; /* initial stack pointer. */
180 };
181
182 void
183 rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
184 {
185 struct frame_extra_info *extra_info =
186 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
187 extra_info->initial_sp = 0;
188 if (get_next_frame (fi) != NULL
189 && get_frame_pc (fi) < TEXT_SEGMENT_BASE)
190 /* We're in get_prev_frame */
191 /* and this is a special signal frame. */
192 /* (fi->pc will be some low address in the kernel, */
193 /* to which the signal handler returns). */
194 deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
195 }
196
197 /* Put here the code to store, into a struct frame_saved_regs,
198 the addresses of the saved registers of frame described by FRAME_INFO.
199 This includes special registers such as pc and fp saved in special
200 ways in the stack frame. sp is even more special:
201 the address we return for it IS the sp for the next frame. */
202
203 /* In this implementation for RS/6000, we do *not* save sp. I am
204 not sure if it will be needed. The following function takes care of gpr's
205 and fpr's only. */
206
207 void
208 rs6000_frame_init_saved_regs (struct frame_info *fi)
209 {
210 frame_get_saved_regs (fi, NULL);
211 }
212
213 static CORE_ADDR
214 rs6000_frame_args_address (struct frame_info *fi)
215 {
216 struct frame_extra_info *extra_info = get_frame_extra_info (fi);
217 if (extra_info->initial_sp != 0)
218 return extra_info->initial_sp;
219 else
220 return frame_initial_stack_address (fi);
221 }
222
223 /* Immediately after a function call, return the saved pc.
224 Can't go through the frames for this because on some machines
225 the new frame is not set up until the new function executes
226 some instructions. */
227
228 static CORE_ADDR
229 rs6000_saved_pc_after_call (struct frame_info *fi)
230 {
231 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
232 }
233
234 /* Get the ith function argument for the current function. */
235 static CORE_ADDR
236 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
237 struct type *type)
238 {
239 CORE_ADDR addr;
240 frame_read_register (frame, 3 + argi, &addr);
241 return addr;
242 }
243
244 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
245
246 static CORE_ADDR
247 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
248 {
249 CORE_ADDR dest;
250 int immediate;
251 int absolute;
252 int ext_op;
253
254 absolute = (int) ((instr >> 1) & 1);
255
256 switch (opcode)
257 {
258 case 18:
259 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
260 if (absolute)
261 dest = immediate;
262 else
263 dest = pc + immediate;
264 break;
265
266 case 16:
267 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
268 if (absolute)
269 dest = immediate;
270 else
271 dest = pc + immediate;
272 break;
273
274 case 19:
275 ext_op = (instr >> 1) & 0x3ff;
276
277 if (ext_op == 16) /* br conditional register */
278 {
279 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
280
281 /* If we are about to return from a signal handler, dest is
282 something like 0x3c90. The current frame is a signal handler
283 caller frame, upon completion of the sigreturn system call
284 execution will return to the saved PC in the frame. */
285 if (dest < TEXT_SEGMENT_BASE)
286 {
287 struct frame_info *fi;
288
289 fi = get_current_frame ();
290 if (fi != NULL)
291 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
292 gdbarch_tdep (current_gdbarch)->wordsize);
293 }
294 }
295
296 else if (ext_op == 528) /* br cond to count reg */
297 {
298 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
299
300 /* If we are about to execute a system call, dest is something
301 like 0x22fc or 0x3b00. Upon completion the system call
302 will return to the address in the link register. */
303 if (dest < TEXT_SEGMENT_BASE)
304 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
305 }
306 else
307 return -1;
308 break;
309
310 default:
311 return -1;
312 }
313 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
314 }
315
316
317 /* Sequence of bytes for breakpoint instruction. */
318
319 const static unsigned char *
320 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
321 {
322 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
323 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
324 *bp_size = 4;
325 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
326 return big_breakpoint;
327 else
328 return little_breakpoint;
329 }
330
331
332 /* AIX does not support PT_STEP. Simulate it. */
333
334 void
335 rs6000_software_single_step (enum target_signal signal,
336 int insert_breakpoints_p)
337 {
338 CORE_ADDR dummy;
339 int breakp_sz;
340 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
341 int ii, insn;
342 CORE_ADDR loc;
343 CORE_ADDR breaks[2];
344 int opcode;
345
346 if (insert_breakpoints_p)
347 {
348
349 loc = read_pc ();
350
351 insn = read_memory_integer (loc, 4);
352
353 breaks[0] = loc + breakp_sz;
354 opcode = insn >> 26;
355 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
356
357 /* Don't put two breakpoints on the same address. */
358 if (breaks[1] == breaks[0])
359 breaks[1] = -1;
360
361 stepBreaks[1].address = 0;
362
363 for (ii = 0; ii < 2; ++ii)
364 {
365
366 /* ignore invalid breakpoint. */
367 if (breaks[ii] == -1)
368 continue;
369 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
370 stepBreaks[ii].address = breaks[ii];
371 }
372
373 }
374 else
375 {
376
377 /* remove step breakpoints. */
378 for (ii = 0; ii < 2; ++ii)
379 if (stepBreaks[ii].address != 0)
380 target_remove_breakpoint (stepBreaks[ii].address,
381 stepBreaks[ii].data);
382 }
383 errno = 0; /* FIXME, don't ignore errors! */
384 /* What errors? {read,write}_memory call error(). */
385 }
386
387
388 /* return pc value after skipping a function prologue and also return
389 information about a function frame.
390
391 in struct rs6000_framedata fdata:
392 - frameless is TRUE, if function does not have a frame.
393 - nosavedpc is TRUE, if function does not save %pc value in its frame.
394 - offset is the initial size of this stack frame --- the amount by
395 which we decrement the sp to allocate the frame.
396 - saved_gpr is the number of the first saved gpr.
397 - saved_fpr is the number of the first saved fpr.
398 - saved_vr is the number of the first saved vr.
399 - saved_ev is the number of the first saved ev.
400 - alloca_reg is the number of the register used for alloca() handling.
401 Otherwise -1.
402 - gpr_offset is the offset of the first saved gpr from the previous frame.
403 - fpr_offset is the offset of the first saved fpr from the previous frame.
404 - vr_offset is the offset of the first saved vr from the previous frame.
405 - ev_offset is the offset of the first saved ev from the previous frame.
406 - lr_offset is the offset of the saved lr
407 - cr_offset is the offset of the saved cr
408 - vrsave_offset is the offset of the saved vrsave register
409 */
410
411 #define SIGNED_SHORT(x) \
412 ((sizeof (short) == 2) \
413 ? ((int)(short)(x)) \
414 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
415
416 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
417
418 /* Limit the number of skipped non-prologue instructions, as the examining
419 of the prologue is expensive. */
420 static int max_skip_non_prologue_insns = 10;
421
422 /* Given PC representing the starting address of a function, and
423 LIM_PC which is the (sloppy) limit to which to scan when looking
424 for a prologue, attempt to further refine this limit by using
425 the line data in the symbol table. If successful, a better guess
426 on where the prologue ends is returned, otherwise the previous
427 value of lim_pc is returned. */
428 static CORE_ADDR
429 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
430 {
431 struct symtab_and_line prologue_sal;
432
433 prologue_sal = find_pc_line (pc, 0);
434 if (prologue_sal.line != 0)
435 {
436 int i;
437 CORE_ADDR addr = prologue_sal.end;
438
439 /* Handle the case in which compiler's optimizer/scheduler
440 has moved instructions into the prologue. We scan ahead
441 in the function looking for address ranges whose corresponding
442 line number is less than or equal to the first one that we
443 found for the function. (It can be less than when the
444 scheduler puts a body instruction before the first prologue
445 instruction.) */
446 for (i = 2 * max_skip_non_prologue_insns;
447 i > 0 && (lim_pc == 0 || addr < lim_pc);
448 i--)
449 {
450 struct symtab_and_line sal;
451
452 sal = find_pc_line (addr, 0);
453 if (sal.line == 0)
454 break;
455 if (sal.line <= prologue_sal.line
456 && sal.symtab == prologue_sal.symtab)
457 {
458 prologue_sal = sal;
459 }
460 addr = sal.end;
461 }
462
463 if (lim_pc == 0 || prologue_sal.end < lim_pc)
464 lim_pc = prologue_sal.end;
465 }
466 return lim_pc;
467 }
468
469
470 static CORE_ADDR
471 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
472 {
473 CORE_ADDR orig_pc = pc;
474 CORE_ADDR last_prologue_pc = pc;
475 CORE_ADDR li_found_pc = 0;
476 char buf[4];
477 unsigned long op;
478 long offset = 0;
479 long vr_saved_offset = 0;
480 int lr_reg = -1;
481 int cr_reg = -1;
482 int vr_reg = -1;
483 int ev_reg = -1;
484 long ev_offset = 0;
485 int vrsave_reg = -1;
486 int reg;
487 int framep = 0;
488 int minimal_toc_loaded = 0;
489 int prev_insn_was_prologue_insn = 1;
490 int num_skip_non_prologue_insns = 0;
491 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
492 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
493
494 /* Attempt to find the end of the prologue when no limit is specified.
495 Note that refine_prologue_limit() has been written so that it may
496 be used to "refine" the limits of non-zero PC values too, but this
497 is only safe if we 1) trust the line information provided by the
498 compiler and 2) iterate enough to actually find the end of the
499 prologue.
500
501 It may become a good idea at some point (for both performance and
502 accuracy) to unconditionally call refine_prologue_limit(). But,
503 until we can make a clear determination that this is beneficial,
504 we'll play it safe and only use it to obtain a limit when none
505 has been specified. */
506 if (lim_pc == 0)
507 lim_pc = refine_prologue_limit (pc, lim_pc);
508
509 memset (fdata, 0, sizeof (struct rs6000_framedata));
510 fdata->saved_gpr = -1;
511 fdata->saved_fpr = -1;
512 fdata->saved_vr = -1;
513 fdata->saved_ev = -1;
514 fdata->alloca_reg = -1;
515 fdata->frameless = 1;
516 fdata->nosavedpc = 1;
517
518 for (;; pc += 4)
519 {
520 /* Sometimes it isn't clear if an instruction is a prologue
521 instruction or not. When we encounter one of these ambiguous
522 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
523 Otherwise, we'll assume that it really is a prologue instruction. */
524 if (prev_insn_was_prologue_insn)
525 last_prologue_pc = pc;
526
527 /* Stop scanning if we've hit the limit. */
528 if (lim_pc != 0 && pc >= lim_pc)
529 break;
530
531 prev_insn_was_prologue_insn = 1;
532
533 /* Fetch the instruction and convert it to an integer. */
534 if (target_read_memory (pc, buf, 4))
535 break;
536 op = extract_signed_integer (buf, 4);
537
538 if ((op & 0xfc1fffff) == 0x7c0802a6)
539 { /* mflr Rx */
540 lr_reg = (op & 0x03e00000);
541 continue;
542
543 }
544 else if ((op & 0xfc1fffff) == 0x7c000026)
545 { /* mfcr Rx */
546 cr_reg = (op & 0x03e00000);
547 continue;
548
549 }
550 else if ((op & 0xfc1f0000) == 0xd8010000)
551 { /* stfd Rx,NUM(r1) */
552 reg = GET_SRC_REG (op);
553 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
554 {
555 fdata->saved_fpr = reg;
556 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
557 }
558 continue;
559
560 }
561 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
562 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
563 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
564 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
565 {
566
567 reg = GET_SRC_REG (op);
568 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
569 {
570 fdata->saved_gpr = reg;
571 if ((op & 0xfc1f0003) == 0xf8010000)
572 op &= ~3UL;
573 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
574 }
575 continue;
576
577 }
578 else if ((op & 0xffff0000) == 0x60000000)
579 {
580 /* nop */
581 /* Allow nops in the prologue, but do not consider them to
582 be part of the prologue unless followed by other prologue
583 instructions. */
584 prev_insn_was_prologue_insn = 0;
585 continue;
586
587 }
588 else if ((op & 0xffff0000) == 0x3c000000)
589 { /* addis 0,0,NUM, used
590 for >= 32k frames */
591 fdata->offset = (op & 0x0000ffff) << 16;
592 fdata->frameless = 0;
593 continue;
594
595 }
596 else if ((op & 0xffff0000) == 0x60000000)
597 { /* ori 0,0,NUM, 2nd ha
598 lf of >= 32k frames */
599 fdata->offset |= (op & 0x0000ffff);
600 fdata->frameless = 0;
601 continue;
602
603 }
604 else if (lr_reg != -1 &&
605 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
606 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
607 /* stw Rx, NUM(r1) */
608 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
609 /* stwu Rx, NUM(r1) */
610 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
611 { /* where Rx == lr */
612 fdata->lr_offset = offset;
613 fdata->nosavedpc = 0;
614 lr_reg = 0;
615 if ((op & 0xfc000003) == 0xf8000000 || /* std */
616 (op & 0xfc000000) == 0x90000000) /* stw */
617 {
618 /* Does not update r1, so add displacement to lr_offset. */
619 fdata->lr_offset += SIGNED_SHORT (op);
620 }
621 continue;
622
623 }
624 else if (cr_reg != -1 &&
625 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
626 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
627 /* stw Rx, NUM(r1) */
628 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
629 /* stwu Rx, NUM(r1) */
630 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
631 { /* where Rx == cr */
632 fdata->cr_offset = offset;
633 cr_reg = 0;
634 if ((op & 0xfc000003) == 0xf8000000 ||
635 (op & 0xfc000000) == 0x90000000)
636 {
637 /* Does not update r1, so add displacement to cr_offset. */
638 fdata->cr_offset += SIGNED_SHORT (op);
639 }
640 continue;
641
642 }
643 else if (op == 0x48000005)
644 { /* bl .+4 used in
645 -mrelocatable */
646 continue;
647
648 }
649 else if (op == 0x48000004)
650 { /* b .+4 (xlc) */
651 break;
652
653 }
654 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
655 in V.4 -mminimal-toc */
656 (op & 0xffff0000) == 0x3bde0000)
657 { /* addi 30,30,foo@l */
658 continue;
659
660 }
661 else if ((op & 0xfc000001) == 0x48000001)
662 { /* bl foo,
663 to save fprs??? */
664
665 fdata->frameless = 0;
666 /* Don't skip over the subroutine call if it is not within
667 the first three instructions of the prologue. */
668 if ((pc - orig_pc) > 8)
669 break;
670
671 op = read_memory_integer (pc + 4, 4);
672
673 /* At this point, make sure this is not a trampoline
674 function (a function that simply calls another functions,
675 and nothing else). If the next is not a nop, this branch
676 was part of the function prologue. */
677
678 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
679 break; /* don't skip over
680 this branch */
681 continue;
682
683 }
684 /* update stack pointer */
685 else if ((op & 0xfc1f0000) == 0x94010000)
686 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
687 fdata->frameless = 0;
688 fdata->offset = SIGNED_SHORT (op);
689 offset = fdata->offset;
690 continue;
691 }
692 else if ((op & 0xfc1f016a) == 0x7c01016e)
693 { /* stwux rX,r1,rY */
694 /* no way to figure out what r1 is going to be */
695 fdata->frameless = 0;
696 offset = fdata->offset;
697 continue;
698 }
699 else if ((op & 0xfc1f0003) == 0xf8010001)
700 { /* stdu rX,NUM(r1) */
701 fdata->frameless = 0;
702 fdata->offset = SIGNED_SHORT (op & ~3UL);
703 offset = fdata->offset;
704 continue;
705 }
706 else if ((op & 0xfc1f016a) == 0x7c01016a)
707 { /* stdux rX,r1,rY */
708 /* no way to figure out what r1 is going to be */
709 fdata->frameless = 0;
710 offset = fdata->offset;
711 continue;
712 }
713 /* Load up minimal toc pointer */
714 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
715 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
716 && !minimal_toc_loaded)
717 {
718 minimal_toc_loaded = 1;
719 continue;
720
721 /* move parameters from argument registers to local variable
722 registers */
723 }
724 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
725 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
726 (((op >> 21) & 31) <= 10) &&
727 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
728 {
729 continue;
730
731 /* store parameters in stack */
732 }
733 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
734 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
735 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
736 {
737 continue;
738
739 /* store parameters in stack via frame pointer */
740 }
741 else if (framep &&
742 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
743 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
744 (op & 0xfc1f0000) == 0xfc1f0000))
745 { /* frsp, fp?,NUM(r1) */
746 continue;
747
748 /* Set up frame pointer */
749 }
750 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
751 || op == 0x7c3f0b78)
752 { /* mr r31, r1 */
753 fdata->frameless = 0;
754 framep = 1;
755 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
756 continue;
757
758 /* Another way to set up the frame pointer. */
759 }
760 else if ((op & 0xfc1fffff) == 0x38010000)
761 { /* addi rX, r1, 0x0 */
762 fdata->frameless = 0;
763 framep = 1;
764 fdata->alloca_reg = (tdep->ppc_gp0_regnum
765 + ((op & ~0x38010000) >> 21));
766 continue;
767 }
768 /* AltiVec related instructions. */
769 /* Store the vrsave register (spr 256) in another register for
770 later manipulation, or load a register into the vrsave
771 register. 2 instructions are used: mfvrsave and
772 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
773 and mtspr SPR256, Rn. */
774 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
775 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
776 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
777 {
778 vrsave_reg = GET_SRC_REG (op);
779 continue;
780 }
781 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
782 {
783 continue;
784 }
785 /* Store the register where vrsave was saved to onto the stack:
786 rS is the register where vrsave was stored in a previous
787 instruction. */
788 /* 100100 sssss 00001 dddddddd dddddddd */
789 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
790 {
791 if (vrsave_reg == GET_SRC_REG (op))
792 {
793 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
794 vrsave_reg = -1;
795 }
796 continue;
797 }
798 /* Compute the new value of vrsave, by modifying the register
799 where vrsave was saved to. */
800 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
801 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
802 {
803 continue;
804 }
805 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
806 in a pair of insns to save the vector registers on the
807 stack. */
808 /* 001110 00000 00000 iiii iiii iiii iiii */
809 /* 001110 01110 00000 iiii iiii iiii iiii */
810 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
811 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
812 {
813 li_found_pc = pc;
814 vr_saved_offset = SIGNED_SHORT (op);
815 }
816 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
817 /* 011111 sssss 11111 00000 00111001110 */
818 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
819 {
820 if (pc == (li_found_pc + 4))
821 {
822 vr_reg = GET_SRC_REG (op);
823 /* If this is the first vector reg to be saved, or if
824 it has a lower number than others previously seen,
825 reupdate the frame info. */
826 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
827 {
828 fdata->saved_vr = vr_reg;
829 fdata->vr_offset = vr_saved_offset + offset;
830 }
831 vr_saved_offset = -1;
832 vr_reg = -1;
833 li_found_pc = 0;
834 }
835 }
836 /* End AltiVec related instructions. */
837
838 /* Start BookE related instructions. */
839 /* Store gen register S at (r31+uimm).
840 Any register less than r13 is volatile, so we don't care. */
841 /* 000100 sssss 11111 iiiii 01100100001 */
842 else if (arch_info->mach == bfd_mach_ppc_e500
843 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
844 {
845 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
846 {
847 unsigned int imm;
848 ev_reg = GET_SRC_REG (op);
849 imm = (op >> 11) & 0x1f;
850 ev_offset = imm * 8;
851 /* If this is the first vector reg to be saved, or if
852 it has a lower number than others previously seen,
853 reupdate the frame info. */
854 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
855 {
856 fdata->saved_ev = ev_reg;
857 fdata->ev_offset = ev_offset + offset;
858 }
859 }
860 continue;
861 }
862 /* Store gen register rS at (r1+rB). */
863 /* 000100 sssss 00001 bbbbb 01100100000 */
864 else if (arch_info->mach == bfd_mach_ppc_e500
865 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
866 {
867 if (pc == (li_found_pc + 4))
868 {
869 ev_reg = GET_SRC_REG (op);
870 /* If this is the first vector reg to be saved, or if
871 it has a lower number than others previously seen,
872 reupdate the frame info. */
873 /* We know the contents of rB from the previous instruction. */
874 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
875 {
876 fdata->saved_ev = ev_reg;
877 fdata->ev_offset = vr_saved_offset + offset;
878 }
879 vr_saved_offset = -1;
880 ev_reg = -1;
881 li_found_pc = 0;
882 }
883 continue;
884 }
885 /* Store gen register r31 at (rA+uimm). */
886 /* 000100 11111 aaaaa iiiii 01100100001 */
887 else if (arch_info->mach == bfd_mach_ppc_e500
888 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
889 {
890 /* Wwe know that the source register is 31 already, but
891 it can't hurt to compute it. */
892 ev_reg = GET_SRC_REG (op);
893 ev_offset = ((op >> 11) & 0x1f) * 8;
894 /* If this is the first vector reg to be saved, or if
895 it has a lower number than others previously seen,
896 reupdate the frame info. */
897 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
898 {
899 fdata->saved_ev = ev_reg;
900 fdata->ev_offset = ev_offset + offset;
901 }
902
903 continue;
904 }
905 /* Store gen register S at (r31+r0).
906 Store param on stack when offset from SP bigger than 4 bytes. */
907 /* 000100 sssss 11111 00000 01100100000 */
908 else if (arch_info->mach == bfd_mach_ppc_e500
909 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
910 {
911 if (pc == (li_found_pc + 4))
912 {
913 if ((op & 0x03e00000) >= 0x01a00000)
914 {
915 ev_reg = GET_SRC_REG (op);
916 /* If this is the first vector reg to be saved, or if
917 it has a lower number than others previously seen,
918 reupdate the frame info. */
919 /* We know the contents of r0 from the previous
920 instruction. */
921 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
922 {
923 fdata->saved_ev = ev_reg;
924 fdata->ev_offset = vr_saved_offset + offset;
925 }
926 ev_reg = -1;
927 }
928 vr_saved_offset = -1;
929 li_found_pc = 0;
930 continue;
931 }
932 }
933 /* End BookE related instructions. */
934
935 else
936 {
937 /* Not a recognized prologue instruction.
938 Handle optimizer code motions into the prologue by continuing
939 the search if we have no valid frame yet or if the return
940 address is not yet saved in the frame. */
941 if (fdata->frameless == 0
942 && (lr_reg == -1 || fdata->nosavedpc == 0))
943 break;
944
945 if (op == 0x4e800020 /* blr */
946 || op == 0x4e800420) /* bctr */
947 /* Do not scan past epilogue in frameless functions or
948 trampolines. */
949 break;
950 if ((op & 0xf4000000) == 0x40000000) /* bxx */
951 /* Never skip branches. */
952 break;
953
954 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
955 /* Do not scan too many insns, scanning insns is expensive with
956 remote targets. */
957 break;
958
959 /* Continue scanning. */
960 prev_insn_was_prologue_insn = 0;
961 continue;
962 }
963 }
964
965 #if 0
966 /* I have problems with skipping over __main() that I need to address
967 * sometime. Previously, I used to use misc_function_vector which
968 * didn't work as well as I wanted to be. -MGO */
969
970 /* If the first thing after skipping a prolog is a branch to a function,
971 this might be a call to an initializer in main(), introduced by gcc2.
972 We'd like to skip over it as well. Fortunately, xlc does some extra
973 work before calling a function right after a prologue, thus we can
974 single out such gcc2 behaviour. */
975
976
977 if ((op & 0xfc000001) == 0x48000001)
978 { /* bl foo, an initializer function? */
979 op = read_memory_integer (pc + 4, 4);
980
981 if (op == 0x4def7b82)
982 { /* cror 0xf, 0xf, 0xf (nop) */
983
984 /* Check and see if we are in main. If so, skip over this
985 initializer function as well. */
986
987 tmp = find_pc_misc_function (pc);
988 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
989 return pc + 8;
990 }
991 }
992 #endif /* 0 */
993
994 fdata->offset = -fdata->offset;
995 return last_prologue_pc;
996 }
997
998
999 /*************************************************************************
1000 Support for creating pushing a dummy frame into the stack, and popping
1001 frames, etc.
1002 *************************************************************************/
1003
1004
1005 /* Pop the innermost frame, go back to the caller. */
1006
1007 static void
1008 rs6000_pop_frame (void)
1009 {
1010 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
1011 struct rs6000_framedata fdata;
1012 struct frame_info *frame = get_current_frame ();
1013 int ii, wordsize;
1014
1015 pc = read_pc ();
1016 sp = get_frame_base (frame);
1017
1018 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
1019 get_frame_base (frame),
1020 get_frame_base (frame)))
1021 {
1022 generic_pop_dummy_frame ();
1023 flush_cached_frames ();
1024 return;
1025 }
1026
1027 /* Make sure that all registers are valid. */
1028 deprecated_read_register_bytes (0, NULL, DEPRECATED_REGISTER_BYTES);
1029
1030 /* Figure out previous %pc value. If the function is frameless, it is
1031 still in the link register, otherwise walk the frames and retrieve the
1032 saved %pc value in the previous frame. */
1033
1034 addr = get_frame_func (frame);
1035 (void) skip_prologue (addr, get_frame_pc (frame), &fdata);
1036
1037 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1038 if (fdata.frameless)
1039 prev_sp = sp;
1040 else
1041 prev_sp = read_memory_addr (sp, wordsize);
1042 if (fdata.lr_offset == 0)
1043 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1044 else
1045 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
1046
1047 /* reset %pc value. */
1048 write_register (PC_REGNUM, lr);
1049
1050 /* reset register values if any was saved earlier. */
1051
1052 if (fdata.saved_gpr != -1)
1053 {
1054 addr = prev_sp + fdata.gpr_offset;
1055 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
1056 {
1057 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii)],
1058 wordsize);
1059 addr += wordsize;
1060 }
1061 }
1062
1063 if (fdata.saved_fpr != -1)
1064 {
1065 addr = prev_sp + fdata.fpr_offset;
1066 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1067 {
1068 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
1069 addr += 8;
1070 }
1071 }
1072
1073 write_register (SP_REGNUM, prev_sp);
1074 target_store_registers (-1);
1075 flush_cached_frames ();
1076 }
1077
1078 /* Fixup the call sequence of a dummy function, with the real function
1079 address. Its arguments will be passed by gdb. */
1080
1081 static void
1082 rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
1083 int nargs, struct value **args, struct type *type,
1084 int gcc_p)
1085 {
1086 int ii;
1087 CORE_ADDR target_addr;
1088
1089 if (rs6000_find_toc_address_hook != NULL)
1090 {
1091 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
1092 write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
1093 tocvalue);
1094 }
1095 }
1096
1097 /* All the ABI's require 16 byte alignment. */
1098 static CORE_ADDR
1099 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1100 {
1101 return (addr & -16);
1102 }
1103
1104 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1105 the first eight words of the argument list (that might be less than
1106 eight parameters if some parameters occupy more than one word) are
1107 passed in r3..r10 registers. float and double parameters are
1108 passed in fpr's, in addition to that. Rest of the parameters if any
1109 are passed in user stack. There might be cases in which half of the
1110 parameter is copied into registers, the other half is pushed into
1111 stack.
1112
1113 Stack must be aligned on 64-bit boundaries when synthesizing
1114 function calls.
1115
1116 If the function is returning a structure, then the return address is passed
1117 in r3, then the first 7 words of the parameters can be passed in registers,
1118 starting from r4. */
1119
1120 static CORE_ADDR
1121 rs6000_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1122 struct regcache *regcache, CORE_ADDR bp_addr,
1123 int nargs, struct value **args, CORE_ADDR sp,
1124 int struct_return, CORE_ADDR struct_addr)
1125 {
1126 int ii;
1127 int len = 0;
1128 int argno; /* current argument number */
1129 int argbytes; /* current argument byte */
1130 char tmp_buffer[50];
1131 int f_argno = 0; /* current floating point argno */
1132 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1133
1134 struct value *arg = 0;
1135 struct type *type;
1136
1137 CORE_ADDR saved_sp;
1138
1139 /* The first eight words of ther arguments are passed in registers.
1140 Copy them appropriately.
1141
1142 If the function is returning a `struct', then the first word (which
1143 will be passed in r3) is used for struct return address. In that
1144 case we should advance one word and start from r4 register to copy
1145 parameters. */
1146
1147 ii = struct_return ? 1 : 0;
1148
1149 /*
1150 effectively indirect call... gcc does...
1151
1152 return_val example( float, int);
1153
1154 eabi:
1155 float in fp0, int in r3
1156 offset of stack on overflow 8/16
1157 for varargs, must go by type.
1158 power open:
1159 float in r3&r4, int in r5
1160 offset of stack on overflow different
1161 both:
1162 return in r3 or f0. If no float, must study how gcc emulates floats;
1163 pay attention to arg promotion.
1164 User may have to cast\args to handle promotion correctly
1165 since gdb won't know if prototype supplied or not.
1166 */
1167
1168 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1169 {
1170 int reg_size = REGISTER_RAW_SIZE (ii + 3);
1171
1172 arg = args[argno];
1173 type = check_typedef (VALUE_TYPE (arg));
1174 len = TYPE_LENGTH (type);
1175
1176 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1177 {
1178
1179 /* Floating point arguments are passed in fpr's, as well as gpr's.
1180 There are 13 fpr's reserved for passing parameters. At this point
1181 there is no way we would run out of them. */
1182
1183 if (len > 8)
1184 printf_unfiltered (
1185 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1186
1187 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1188 VALUE_CONTENTS (arg),
1189 len);
1190 ++f_argno;
1191 }
1192
1193 if (len > reg_size)
1194 {
1195
1196 /* Argument takes more than one register. */
1197 while (argbytes < len)
1198 {
1199 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0,
1200 reg_size);
1201 memcpy (&deprecated_registers[REGISTER_BYTE (ii + 3)],
1202 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1203 (len - argbytes) > reg_size
1204 ? reg_size : len - argbytes);
1205 ++ii, argbytes += reg_size;
1206
1207 if (ii >= 8)
1208 goto ran_out_of_registers_for_arguments;
1209 }
1210 argbytes = 0;
1211 --ii;
1212 }
1213 else
1214 {
1215 /* Argument can fit in one register. No problem. */
1216 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1217 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1218 memcpy ((char *)&deprecated_registers[REGISTER_BYTE (ii + 3)] + adj,
1219 VALUE_CONTENTS (arg), len);
1220 }
1221 ++argno;
1222 }
1223
1224 ran_out_of_registers_for_arguments:
1225
1226 saved_sp = read_sp ();
1227
1228 /* Location for 8 parameters are always reserved. */
1229 sp -= wordsize * 8;
1230
1231 /* Another six words for back chain, TOC register, link register, etc. */
1232 sp -= wordsize * 6;
1233
1234 /* Stack pointer must be quadword aligned. */
1235 sp &= -16;
1236
1237 /* If there are more arguments, allocate space for them in
1238 the stack, then push them starting from the ninth one. */
1239
1240 if ((argno < nargs) || argbytes)
1241 {
1242 int space = 0, jj;
1243
1244 if (argbytes)
1245 {
1246 space += ((len - argbytes + 3) & -4);
1247 jj = argno + 1;
1248 }
1249 else
1250 jj = argno;
1251
1252 for (; jj < nargs; ++jj)
1253 {
1254 struct value *val = args[jj];
1255 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1256 }
1257
1258 /* Add location required for the rest of the parameters. */
1259 space = (space + 15) & -16;
1260 sp -= space;
1261
1262 /* This is another instance we need to be concerned about
1263 securing our stack space. If we write anything underneath %sp
1264 (r1), we might conflict with the kernel who thinks he is free
1265 to use this area. So, update %sp first before doing anything
1266 else. */
1267
1268 write_register (SP_REGNUM, sp);
1269
1270 /* If the last argument copied into the registers didn't fit there
1271 completely, push the rest of it into stack. */
1272
1273 if (argbytes)
1274 {
1275 write_memory (sp + 24 + (ii * 4),
1276 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1277 len - argbytes);
1278 ++argno;
1279 ii += ((len - argbytes + 3) & -4) / 4;
1280 }
1281
1282 /* Push the rest of the arguments into stack. */
1283 for (; argno < nargs; ++argno)
1284 {
1285
1286 arg = args[argno];
1287 type = check_typedef (VALUE_TYPE (arg));
1288 len = TYPE_LENGTH (type);
1289
1290
1291 /* Float types should be passed in fpr's, as well as in the
1292 stack. */
1293 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1294 {
1295
1296 if (len > 8)
1297 printf_unfiltered (
1298 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1299
1300 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1301 VALUE_CONTENTS (arg),
1302 len);
1303 ++f_argno;
1304 }
1305
1306 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1307 ii += ((len + 3) & -4) / 4;
1308 }
1309 }
1310 else
1311 /* Secure stack areas first, before doing anything else. */
1312 write_register (SP_REGNUM, sp);
1313
1314 /* set back chain properly */
1315 store_unsigned_integer (tmp_buffer, 4, saved_sp);
1316 write_memory (sp, tmp_buffer, 4);
1317
1318 target_store_registers (-1);
1319 return sp;
1320 }
1321
1322 /* Function: ppc_push_return_address (pc, sp)
1323 Set up the return address for the inferior function call. */
1324
1325 static CORE_ADDR
1326 ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1327 {
1328 write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
1329 entry_point_address ());
1330 return sp;
1331 }
1332
1333 /* Extract a function return value of type TYPE from raw register array
1334 REGBUF, and copy that return value into VALBUF in virtual format. */
1335 static void
1336 e500_extract_return_value (struct type *valtype, struct regcache *regbuf, void *valbuf)
1337 {
1338 int offset = 0;
1339 int vallen = TYPE_LENGTH (valtype);
1340 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1341
1342 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1343 && vallen == 8
1344 && TYPE_VECTOR (valtype))
1345 {
1346 regcache_raw_read (regbuf, tdep->ppc_ev0_regnum + 3, valbuf);
1347 }
1348 else
1349 {
1350 /* Return value is copied starting from r3. Note that r3 for us
1351 is a pseudo register. */
1352 int offset = 0;
1353 int return_regnum = tdep->ppc_gp0_regnum + 3;
1354 int reg_size = REGISTER_RAW_SIZE (return_regnum);
1355 int reg_part_size;
1356 char *val_buffer;
1357 int copied = 0;
1358 int i = 0;
1359
1360 /* Compute where we will start storing the value from. */
1361 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1362 {
1363 if (vallen <= reg_size)
1364 offset = reg_size - vallen;
1365 else
1366 offset = reg_size + (reg_size - vallen);
1367 }
1368
1369 /* How big does the local buffer need to be? */
1370 if (vallen <= reg_size)
1371 val_buffer = alloca (reg_size);
1372 else
1373 val_buffer = alloca (vallen);
1374
1375 /* Read all we need into our private buffer. We copy it in
1376 chunks that are as long as one register, never shorter, even
1377 if the value is smaller than the register. */
1378 while (copied < vallen)
1379 {
1380 reg_part_size = REGISTER_RAW_SIZE (return_regnum + i);
1381 /* It is a pseudo/cooked register. */
1382 regcache_cooked_read (regbuf, return_regnum + i,
1383 val_buffer + copied);
1384 copied += reg_part_size;
1385 i++;
1386 }
1387 /* Put the stuff in the return buffer. */
1388 memcpy (valbuf, val_buffer + offset, vallen);
1389 }
1390 }
1391
1392 static void
1393 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1394 {
1395 int offset = 0;
1396 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1397
1398 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1399 {
1400
1401 double dd;
1402 float ff;
1403 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1404 We need to truncate the return value into float size (4 byte) if
1405 necessary. */
1406
1407 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1408 memcpy (valbuf,
1409 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1410 TYPE_LENGTH (valtype));
1411 else
1412 { /* float */
1413 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1414 ff = (float) dd;
1415 memcpy (valbuf, &ff, sizeof (float));
1416 }
1417 }
1418 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1419 && TYPE_LENGTH (valtype) == 16
1420 && TYPE_VECTOR (valtype))
1421 {
1422 memcpy (valbuf, regbuf + REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1423 TYPE_LENGTH (valtype));
1424 }
1425 else
1426 {
1427 /* return value is copied starting from r3. */
1428 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1429 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1430 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1431
1432 memcpy (valbuf,
1433 regbuf + REGISTER_BYTE (3) + offset,
1434 TYPE_LENGTH (valtype));
1435 }
1436 }
1437
1438 /* Return whether handle_inferior_event() should proceed through code
1439 starting at PC in function NAME when stepping.
1440
1441 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1442 handle memory references that are too distant to fit in instructions
1443 generated by the compiler. For example, if 'foo' in the following
1444 instruction:
1445
1446 lwz r9,foo(r2)
1447
1448 is greater than 32767, the linker might replace the lwz with a branch to
1449 somewhere in @FIX1 that does the load in 2 instructions and then branches
1450 back to where execution should continue.
1451
1452 GDB should silently step over @FIX code, just like AIX dbx does.
1453 Unfortunately, the linker uses the "b" instruction for the branches,
1454 meaning that the link register doesn't get set. Therefore, GDB's usual
1455 step_over_function() mechanism won't work.
1456
1457 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1458 in handle_inferior_event() to skip past @FIX code. */
1459
1460 int
1461 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1462 {
1463 return name && !strncmp (name, "@FIX", 4);
1464 }
1465
1466 /* Skip code that the user doesn't want to see when stepping:
1467
1468 1. Indirect function calls use a piece of trampoline code to do context
1469 switching, i.e. to set the new TOC table. Skip such code if we are on
1470 its first instruction (as when we have single-stepped to here).
1471
1472 2. Skip shared library trampoline code (which is different from
1473 indirect function call trampolines).
1474
1475 3. Skip bigtoc fixup code.
1476
1477 Result is desired PC to step until, or NULL if we are not in
1478 code that should be skipped. */
1479
1480 CORE_ADDR
1481 rs6000_skip_trampoline_code (CORE_ADDR pc)
1482 {
1483 register unsigned int ii, op;
1484 int rel;
1485 CORE_ADDR solib_target_pc;
1486 struct minimal_symbol *msymbol;
1487
1488 static unsigned trampoline_code[] =
1489 {
1490 0x800b0000, /* l r0,0x0(r11) */
1491 0x90410014, /* st r2,0x14(r1) */
1492 0x7c0903a6, /* mtctr r0 */
1493 0x804b0004, /* l r2,0x4(r11) */
1494 0x816b0008, /* l r11,0x8(r11) */
1495 0x4e800420, /* bctr */
1496 0x4e800020, /* br */
1497 0
1498 };
1499
1500 /* Check for bigtoc fixup code. */
1501 msymbol = lookup_minimal_symbol_by_pc (pc);
1502 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
1503 {
1504 /* Double-check that the third instruction from PC is relative "b". */
1505 op = read_memory_integer (pc + 8, 4);
1506 if ((op & 0xfc000003) == 0x48000000)
1507 {
1508 /* Extract bits 6-29 as a signed 24-bit relative word address and
1509 add it to the containing PC. */
1510 rel = ((int)(op << 6) >> 6);
1511 return pc + 8 + rel;
1512 }
1513 }
1514
1515 /* If pc is in a shared library trampoline, return its target. */
1516 solib_target_pc = find_solib_trampoline_target (pc);
1517 if (solib_target_pc)
1518 return solib_target_pc;
1519
1520 for (ii = 0; trampoline_code[ii]; ++ii)
1521 {
1522 op = read_memory_integer (pc + (ii * 4), 4);
1523 if (op != trampoline_code[ii])
1524 return 0;
1525 }
1526 ii = read_register (11); /* r11 holds destination addr */
1527 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1528 return pc;
1529 }
1530
1531 /* Determines whether the function FI has a frame on the stack or not. */
1532
1533 int
1534 rs6000_frameless_function_invocation (struct frame_info *fi)
1535 {
1536 CORE_ADDR func_start;
1537 struct rs6000_framedata fdata;
1538
1539 /* Don't even think about framelessness except on the innermost frame
1540 or if the function was interrupted by a signal. */
1541 if (get_next_frame (fi) != NULL
1542 && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
1543 return 0;
1544
1545 func_start = get_frame_func (fi);
1546
1547 /* If we failed to find the start of the function, it is a mistake
1548 to inspect the instructions. */
1549
1550 if (!func_start)
1551 {
1552 /* A frame with a zero PC is usually created by dereferencing a NULL
1553 function pointer, normally causing an immediate core dump of the
1554 inferior. Mark function as frameless, as the inferior has no chance
1555 of setting up a stack frame. */
1556 if (get_frame_pc (fi) == 0)
1557 return 1;
1558 else
1559 return 0;
1560 }
1561
1562 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
1563 return fdata.frameless;
1564 }
1565
1566 /* Return the PC saved in a frame. */
1567
1568 CORE_ADDR
1569 rs6000_frame_saved_pc (struct frame_info *fi)
1570 {
1571 CORE_ADDR func_start;
1572 struct rs6000_framedata fdata;
1573 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1574 int wordsize = tdep->wordsize;
1575
1576 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
1577 return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
1578 wordsize);
1579
1580 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1581 get_frame_base (fi),
1582 get_frame_base (fi)))
1583 return deprecated_read_register_dummy (get_frame_pc (fi),
1584 get_frame_base (fi), PC_REGNUM);
1585
1586 func_start = get_frame_func (fi);
1587
1588 /* If we failed to find the start of the function, it is a mistake
1589 to inspect the instructions. */
1590 if (!func_start)
1591 return 0;
1592
1593 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
1594
1595 if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
1596 {
1597 if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
1598 return read_memory_addr ((get_frame_base (get_next_frame (fi))
1599 + SIG_FRAME_LR_OFFSET),
1600 wordsize);
1601 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
1602 /* The link register wasn't saved by this frame and the next
1603 (inner, newer) frame is a dummy. Get the link register
1604 value by unwinding it from that [dummy] frame. */
1605 {
1606 ULONGEST lr;
1607 frame_unwind_unsigned_register (get_next_frame (fi),
1608 tdep->ppc_lr_regnum, &lr);
1609 return lr;
1610 }
1611 else
1612 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi)
1613 + tdep->lr_frame_offset,
1614 wordsize);
1615 }
1616
1617 if (fdata.lr_offset == 0)
1618 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1619
1620 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi) + fdata.lr_offset,
1621 wordsize);
1622 }
1623
1624 /* If saved registers of frame FI are not known yet, read and cache them.
1625 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1626 in which case the framedata are read. */
1627
1628 static void
1629 frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
1630 {
1631 CORE_ADDR frame_addr;
1632 struct rs6000_framedata work_fdata;
1633 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1634 int wordsize = tdep->wordsize;
1635
1636 if (get_frame_saved_regs (fi))
1637 return;
1638
1639 if (fdatap == NULL)
1640 {
1641 fdatap = &work_fdata;
1642 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), fdatap);
1643 }
1644
1645 frame_saved_regs_zalloc (fi);
1646
1647 /* If there were any saved registers, figure out parent's stack
1648 pointer. */
1649 /* The following is true only if the frame doesn't have a call to
1650 alloca(), FIXME. */
1651
1652 if (fdatap->saved_fpr == 0
1653 && fdatap->saved_gpr == 0
1654 && fdatap->saved_vr == 0
1655 && fdatap->saved_ev == 0
1656 && fdatap->lr_offset == 0
1657 && fdatap->cr_offset == 0
1658 && fdatap->vr_offset == 0
1659 && fdatap->ev_offset == 0)
1660 frame_addr = 0;
1661 else
1662 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1663 address of the current frame. Things might be easier if the
1664 ->frame pointed to the outer-most address of the frame. In the
1665 mean time, the address of the prev frame is used as the base
1666 address of this frame. */
1667 frame_addr = DEPRECATED_FRAME_CHAIN (fi);
1668
1669 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1670 All fpr's from saved_fpr to fp31 are saved. */
1671
1672 if (fdatap->saved_fpr >= 0)
1673 {
1674 int i;
1675 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
1676 for (i = fdatap->saved_fpr; i < 32; i++)
1677 {
1678 get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
1679 fpr_addr += 8;
1680 }
1681 }
1682
1683 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1684 All gpr's from saved_gpr to gpr31 are saved. */
1685
1686 if (fdatap->saved_gpr >= 0)
1687 {
1688 int i;
1689 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
1690 for (i = fdatap->saved_gpr; i < 32; i++)
1691 {
1692 get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = gpr_addr;
1693 gpr_addr += wordsize;
1694 }
1695 }
1696
1697 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1698 All vr's from saved_vr to vr31 are saved. */
1699 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1700 {
1701 if (fdatap->saved_vr >= 0)
1702 {
1703 int i;
1704 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1705 for (i = fdatap->saved_vr; i < 32; i++)
1706 {
1707 get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
1708 vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1709 }
1710 }
1711 }
1712
1713 /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1714 All vr's from saved_ev to ev31 are saved. ????? */
1715 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1716 {
1717 if (fdatap->saved_ev >= 0)
1718 {
1719 int i;
1720 CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1721 for (i = fdatap->saved_ev; i < 32; i++)
1722 {
1723 get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
1724 get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
1725 ev_addr += REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
1726 }
1727 }
1728 }
1729
1730 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1731 the CR. */
1732 if (fdatap->cr_offset != 0)
1733 get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
1734
1735 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1736 the LR. */
1737 if (fdatap->lr_offset != 0)
1738 get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
1739
1740 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1741 the VRSAVE. */
1742 if (fdatap->vrsave_offset != 0)
1743 get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
1744 }
1745
1746 /* Return the address of a frame. This is the inital %sp value when the frame
1747 was first allocated. For functions calling alloca(), it might be saved in
1748 an alloca register. */
1749
1750 static CORE_ADDR
1751 frame_initial_stack_address (struct frame_info *fi)
1752 {
1753 CORE_ADDR tmpaddr;
1754 struct rs6000_framedata fdata;
1755 struct frame_info *callee_fi;
1756
1757 /* If the initial stack pointer (frame address) of this frame is known,
1758 just return it. */
1759
1760 if (get_frame_extra_info (fi)->initial_sp)
1761 return get_frame_extra_info (fi)->initial_sp;
1762
1763 /* Find out if this function is using an alloca register. */
1764
1765 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), &fdata);
1766
1767 /* If saved registers of this frame are not known yet, read and
1768 cache them. */
1769
1770 if (!get_frame_saved_regs (fi))
1771 frame_get_saved_regs (fi, &fdata);
1772
1773 /* If no alloca register used, then fi->frame is the value of the %sp for
1774 this frame, and it is good enough. */
1775
1776 if (fdata.alloca_reg < 0)
1777 {
1778 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1779 return get_frame_extra_info (fi)->initial_sp;
1780 }
1781
1782 /* There is an alloca register, use its value, in the current frame,
1783 as the initial stack pointer. */
1784 {
1785 char tmpbuf[MAX_REGISTER_SIZE];
1786 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1787 {
1788 get_frame_extra_info (fi)->initial_sp
1789 = extract_unsigned_integer (tmpbuf,
1790 REGISTER_RAW_SIZE (fdata.alloca_reg));
1791 }
1792 else
1793 /* NOTE: cagney/2002-04-17: At present the only time
1794 frame_register_read will fail is when the register isn't
1795 available. If that does happen, use the frame. */
1796 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1797 }
1798 return get_frame_extra_info (fi)->initial_sp;
1799 }
1800
1801 /* Describe the pointer in each stack frame to the previous stack frame
1802 (its caller). */
1803
1804 /* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and produces
1805 the frame's chain-pointer. */
1806
1807 /* In the case of the RS/6000, the frame's nominal address
1808 is the address of a 4-byte word containing the calling frame's address. */
1809
1810 CORE_ADDR
1811 rs6000_frame_chain (struct frame_info *thisframe)
1812 {
1813 CORE_ADDR fp, fpp, lr;
1814 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1815
1816 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
1817 get_frame_base (thisframe),
1818 get_frame_base (thisframe)))
1819 /* A dummy frame always correctly chains back to the previous
1820 frame. */
1821 return read_memory_addr (get_frame_base (thisframe), wordsize);
1822
1823 if (inside_entry_file (get_frame_pc (thisframe))
1824 || get_frame_pc (thisframe) == entry_point_address ())
1825 return 0;
1826
1827 if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
1828 fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
1829 wordsize);
1830 else if (get_next_frame (thisframe) != NULL
1831 && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
1832 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
1833 /* A frameless function interrupted by a signal did not change the
1834 frame pointer. */
1835 fp = get_frame_base (thisframe);
1836 else
1837 fp = read_memory_addr (get_frame_base (thisframe), wordsize);
1838 return fp;
1839 }
1840
1841 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1842 isn't available with that word size, return 0. */
1843
1844 static int
1845 regsize (const struct reg *reg, int wordsize)
1846 {
1847 return wordsize == 8 ? reg->sz64 : reg->sz32;
1848 }
1849
1850 /* Return the name of register number N, or null if no such register exists
1851 in the current architecture. */
1852
1853 static const char *
1854 rs6000_register_name (int n)
1855 {
1856 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1857 const struct reg *reg = tdep->regs + n;
1858
1859 if (!regsize (reg, tdep->wordsize))
1860 return NULL;
1861 return reg->name;
1862 }
1863
1864 /* Index within `registers' of the first byte of the space for
1865 register N. */
1866
1867 static int
1868 rs6000_register_byte (int n)
1869 {
1870 return gdbarch_tdep (current_gdbarch)->regoff[n];
1871 }
1872
1873 /* Return the number of bytes of storage in the actual machine representation
1874 for register N if that register is available, else return 0. */
1875
1876 static int
1877 rs6000_register_raw_size (int n)
1878 {
1879 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1880 const struct reg *reg = tdep->regs + n;
1881 return regsize (reg, tdep->wordsize);
1882 }
1883
1884 /* Return the GDB type object for the "standard" data type
1885 of data in register N. */
1886
1887 static struct type *
1888 rs6000_register_virtual_type (int n)
1889 {
1890 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1891 const struct reg *reg = tdep->regs + n;
1892
1893 if (reg->fpr)
1894 return builtin_type_double;
1895 else
1896 {
1897 int size = regsize (reg, tdep->wordsize);
1898 switch (size)
1899 {
1900 case 0:
1901 return builtin_type_int0;
1902 case 4:
1903 return builtin_type_int32;
1904 case 8:
1905 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1906 return builtin_type_vec64;
1907 else
1908 return builtin_type_int64;
1909 break;
1910 case 16:
1911 return builtin_type_vec128;
1912 break;
1913 default:
1914 internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
1915 n, size);
1916 }
1917 }
1918 }
1919
1920 /* Return whether register N requires conversion when moving from raw format
1921 to virtual format.
1922
1923 The register format for RS/6000 floating point registers is always
1924 double, we need a conversion if the memory format is float. */
1925
1926 static int
1927 rs6000_register_convertible (int n)
1928 {
1929 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
1930 return reg->fpr;
1931 }
1932
1933 /* Convert data from raw format for register N in buffer FROM
1934 to virtual format with type TYPE in buffer TO. */
1935
1936 static void
1937 rs6000_register_convert_to_virtual (int n, struct type *type,
1938 char *from, char *to)
1939 {
1940 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1941 {
1942 double val = deprecated_extract_floating (from, REGISTER_RAW_SIZE (n));
1943 deprecated_store_floating (to, TYPE_LENGTH (type), val);
1944 }
1945 else
1946 memcpy (to, from, REGISTER_RAW_SIZE (n));
1947 }
1948
1949 /* Convert data from virtual format with type TYPE in buffer FROM
1950 to raw format for register N in buffer TO. */
1951
1952 static void
1953 rs6000_register_convert_to_raw (struct type *type, int n,
1954 const char *from, char *to)
1955 {
1956 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1957 {
1958 double val = deprecated_extract_floating (from, TYPE_LENGTH (type));
1959 deprecated_store_floating (to, REGISTER_RAW_SIZE (n), val);
1960 }
1961 else
1962 memcpy (to, from, REGISTER_RAW_SIZE (n));
1963 }
1964
1965 static void
1966 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1967 int reg_nr, void *buffer)
1968 {
1969 int base_regnum;
1970 int offset = 0;
1971 char temp_buffer[MAX_REGISTER_SIZE];
1972 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1973
1974 if (reg_nr >= tdep->ppc_gp0_regnum
1975 && reg_nr <= tdep->ppc_gplast_regnum)
1976 {
1977 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1978
1979 /* Build the value in the provided buffer. */
1980 /* Read the raw register of which this one is the lower portion. */
1981 regcache_raw_read (regcache, base_regnum, temp_buffer);
1982 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1983 offset = 4;
1984 memcpy ((char *) buffer, temp_buffer + offset, 4);
1985 }
1986 }
1987
1988 static void
1989 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1990 int reg_nr, const void *buffer)
1991 {
1992 int base_regnum;
1993 int offset = 0;
1994 char temp_buffer[MAX_REGISTER_SIZE];
1995 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1996
1997 if (reg_nr >= tdep->ppc_gp0_regnum
1998 && reg_nr <= tdep->ppc_gplast_regnum)
1999 {
2000 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
2001 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
2002 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2003 offset = 4;
2004
2005 /* Let's read the value of the base register into a temporary
2006 buffer, so that overwriting the last four bytes with the new
2007 value of the pseudo will leave the upper 4 bytes unchanged. */
2008 regcache_raw_read (regcache, base_regnum, temp_buffer);
2009
2010 /* Write as an 8 byte quantity. */
2011 memcpy (temp_buffer + offset, (char *) buffer, 4);
2012 regcache_raw_write (regcache, base_regnum, temp_buffer);
2013 }
2014 }
2015
2016 /* Convert a dwarf2 register number to a gdb REGNUM. */
2017 static int
2018 e500_dwarf2_reg_to_regnum (int num)
2019 {
2020 int regnum;
2021 if (0 <= num && num <= 31)
2022 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
2023 else
2024 return num;
2025 }
2026
2027 /* Convert a dbx stab register number (from `r' declaration) to a gdb
2028 REGNUM. */
2029 static int
2030 rs6000_stab_reg_to_regnum (int num)
2031 {
2032 int regnum;
2033 switch (num)
2034 {
2035 case 64:
2036 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
2037 break;
2038 case 65:
2039 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
2040 break;
2041 case 66:
2042 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
2043 break;
2044 case 76:
2045 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
2046 break;
2047 default:
2048 regnum = num;
2049 break;
2050 }
2051 return regnum;
2052 }
2053
2054 /* Store the address of the place in which to copy the structure the
2055 subroutine will return. */
2056
2057 static void
2058 rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
2059 {
2060 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2061 write_register (tdep->ppc_gp0_regnum + 3, addr);
2062 }
2063
2064 /* Write into appropriate registers a function return value
2065 of type TYPE, given in virtual format. */
2066 static void
2067 e500_store_return_value (struct type *type, char *valbuf)
2068 {
2069 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2070
2071 /* Everything is returned in GPR3 and up. */
2072 int copied = 0;
2073 int i = 0;
2074 int len = TYPE_LENGTH (type);
2075 while (copied < len)
2076 {
2077 int regnum = gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3 + i;
2078 int reg_size = REGISTER_RAW_SIZE (regnum);
2079 char *reg_val_buf = alloca (reg_size);
2080
2081 memcpy (reg_val_buf, valbuf + copied, reg_size);
2082 copied += reg_size;
2083 deprecated_write_register_gen (regnum, reg_val_buf);
2084 i++;
2085 }
2086 }
2087
2088 static void
2089 rs6000_store_return_value (struct type *type, char *valbuf)
2090 {
2091 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2092
2093 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2094
2095 /* Floating point values are returned starting from FPR1 and up.
2096 Say a double_double_double type could be returned in
2097 FPR1/FPR2/FPR3 triple. */
2098
2099 deprecated_write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
2100 TYPE_LENGTH (type));
2101 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2102 {
2103 if (TYPE_LENGTH (type) == 16
2104 && TYPE_VECTOR (type))
2105 deprecated_write_register_bytes (REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
2106 valbuf, TYPE_LENGTH (type));
2107 }
2108 else
2109 /* Everything else is returned in GPR3 and up. */
2110 deprecated_write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
2111 valbuf, TYPE_LENGTH (type));
2112 }
2113
2114 /* Extract from an array REGBUF containing the (raw) register state
2115 the address in which a function should return its structure value,
2116 as a CORE_ADDR (or an expression that can be used as one). */
2117
2118 static CORE_ADDR
2119 rs6000_extract_struct_value_address (struct regcache *regcache)
2120 {
2121 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2122 function call GDB knows the address of the struct return value
2123 and hence, should not need to call this function. Unfortunately,
2124 the current call_function_by_hand() code only saves the most
2125 recent struct address leading to occasional calls. The code
2126 should instead maintain a stack of such addresses (in the dummy
2127 frame object). */
2128 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2129 really got no idea where the return value is being stored. While
2130 r3, on function entry, contained the address it will have since
2131 been reused (scratch) and hence wouldn't be valid */
2132 return 0;
2133 }
2134
2135 /* Return whether PC is in a dummy function call.
2136
2137 FIXME: This just checks for the end of the stack, which is broken
2138 for things like stepping through gcc nested function stubs. */
2139
2140 static int
2141 rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
2142 {
2143 return sp < pc && pc < fp;
2144 }
2145
2146 /* Hook called when a new child process is started. */
2147
2148 void
2149 rs6000_create_inferior (int pid)
2150 {
2151 if (rs6000_set_host_arch_hook)
2152 rs6000_set_host_arch_hook (pid);
2153 }
2154 \f
2155 /* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
2156
2157 Usually a function pointer's representation is simply the address
2158 of the function. On the RS/6000 however, a function pointer is
2159 represented by a pointer to a TOC entry. This TOC entry contains
2160 three words, the first word is the address of the function, the
2161 second word is the TOC pointer (r2), and the third word is the
2162 static chain value. Throughout GDB it is currently assumed that a
2163 function pointer contains the address of the function, which is not
2164 easy to fix. In addition, the conversion of a function address to
2165 a function pointer would require allocation of a TOC entry in the
2166 inferior's memory space, with all its drawbacks. To be able to
2167 call C++ virtual methods in the inferior (which are called via
2168 function pointers), find_function_addr uses this function to get the
2169 function address from a function pointer. */
2170
2171 /* Return real function address if ADDR (a function pointer) is in the data
2172 space and is therefore a special function pointer. */
2173
2174 static CORE_ADDR
2175 rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
2176 {
2177 struct obj_section *s;
2178
2179 s = find_pc_section (addr);
2180 if (s && s->the_bfd_section->flags & SEC_CODE)
2181 return addr;
2182
2183 /* ADDR is in the data space, so it's a special function pointer. */
2184 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2185 }
2186 \f
2187
2188 /* Handling the various POWER/PowerPC variants. */
2189
2190
2191 /* The arrays here called registers_MUMBLE hold information about available
2192 registers.
2193
2194 For each family of PPC variants, I've tried to isolate out the
2195 common registers and put them up front, so that as long as you get
2196 the general family right, GDB will correctly identify the registers
2197 common to that family. The common register sets are:
2198
2199 For the 60x family: hid0 hid1 iabr dabr pir
2200
2201 For the 505 and 860 family: eie eid nri
2202
2203 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2204 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2205 pbu1 pbl2 pbu2
2206
2207 Most of these register groups aren't anything formal. I arrived at
2208 them by looking at the registers that occurred in more than one
2209 processor.
2210
2211 Note: kevinb/2002-04-30: Support for the fpscr register was added
2212 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2213 for Power. For PowerPC, slot 70 was unused and was already in the
2214 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2215 slot 70 was being used for "mq", so the next available slot (71)
2216 was chosen. It would have been nice to be able to make the
2217 register numbers the same across processor cores, but this wasn't
2218 possible without either 1) renumbering some registers for some
2219 processors or 2) assigning fpscr to a really high slot that's
2220 larger than any current register number. Doing (1) is bad because
2221 existing stubs would break. Doing (2) is undesirable because it
2222 would introduce a really large gap between fpscr and the rest of
2223 the registers for most processors. */
2224
2225 /* Convenience macros for populating register arrays. */
2226
2227 /* Within another macro, convert S to a string. */
2228
2229 #define STR(s) #s
2230
2231 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2232 and 64 bits on 64-bit systems. */
2233 #define R(name) { STR(name), 4, 8, 0, 0 }
2234
2235 /* Return a struct reg defining register NAME that's 32 bits on all
2236 systems. */
2237 #define R4(name) { STR(name), 4, 4, 0, 0 }
2238
2239 /* Return a struct reg defining register NAME that's 64 bits on all
2240 systems. */
2241 #define R8(name) { STR(name), 8, 8, 0, 0 }
2242
2243 /* Return a struct reg defining register NAME that's 128 bits on all
2244 systems. */
2245 #define R16(name) { STR(name), 16, 16, 0, 0 }
2246
2247 /* Return a struct reg defining floating-point register NAME. */
2248 #define F(name) { STR(name), 8, 8, 1, 0 }
2249
2250 /* Return a struct reg defining a pseudo register NAME. */
2251 #define P(name) { STR(name), 4, 8, 0, 1}
2252
2253 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2254 systems and that doesn't exist on 64-bit systems. */
2255 #define R32(name) { STR(name), 4, 0, 0, 0 }
2256
2257 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2258 systems and that doesn't exist on 32-bit systems. */
2259 #define R64(name) { STR(name), 0, 8, 0, 0 }
2260
2261 /* Return a struct reg placeholder for a register that doesn't exist. */
2262 #define R0 { 0, 0, 0, 0, 0 }
2263
2264 /* UISA registers common across all architectures, including POWER. */
2265
2266 #define COMMON_UISA_REGS \
2267 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2268 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2269 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2270 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2271 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2272 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2273 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2274 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2275 /* 64 */ R(pc), R(ps)
2276
2277 #define COMMON_UISA_NOFP_REGS \
2278 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2279 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2280 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2281 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2282 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2283 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2284 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2285 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2286 /* 64 */ R(pc), R(ps)
2287
2288 /* UISA-level SPRs for PowerPC. */
2289 #define PPC_UISA_SPRS \
2290 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
2291
2292 /* UISA-level SPRs for PowerPC without floating point support. */
2293 #define PPC_UISA_NOFP_SPRS \
2294 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2295
2296 /* Segment registers, for PowerPC. */
2297 #define PPC_SEGMENT_REGS \
2298 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2299 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2300 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2301 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2302
2303 /* OEA SPRs for PowerPC. */
2304 #define PPC_OEA_SPRS \
2305 /* 87 */ R4(pvr), \
2306 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2307 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2308 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2309 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2310 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2311 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2312 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2313 /* 116 */ R4(dec), R(dabr), R4(ear)
2314
2315 /* AltiVec registers. */
2316 #define PPC_ALTIVEC_REGS \
2317 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2318 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2319 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2320 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2321 /*151*/R4(vscr), R4(vrsave)
2322
2323 /* Vectors of hi-lo general purpose registers. */
2324 #define PPC_EV_REGS \
2325 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2326 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2327 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2328 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2329
2330 /* Lower half of the EV registers. */
2331 #define PPC_GPRS_PSEUDO_REGS \
2332 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2333 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2334 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
2335 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
2336
2337 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2338 user-level SPR's. */
2339 static const struct reg registers_power[] =
2340 {
2341 COMMON_UISA_REGS,
2342 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2343 /* 71 */ R4(fpscr)
2344 };
2345
2346 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2347 view of the PowerPC. */
2348 static const struct reg registers_powerpc[] =
2349 {
2350 COMMON_UISA_REGS,
2351 PPC_UISA_SPRS,
2352 PPC_ALTIVEC_REGS
2353 };
2354
2355 /* PowerPC UISA - a PPC processor as viewed by user-level
2356 code, but without floating point registers. */
2357 static const struct reg registers_powerpc_nofp[] =
2358 {
2359 COMMON_UISA_NOFP_REGS,
2360 PPC_UISA_SPRS
2361 };
2362
2363 /* IBM PowerPC 403. */
2364 static const struct reg registers_403[] =
2365 {
2366 COMMON_UISA_REGS,
2367 PPC_UISA_SPRS,
2368 PPC_SEGMENT_REGS,
2369 PPC_OEA_SPRS,
2370 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2371 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2372 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2373 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2374 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2375 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
2376 };
2377
2378 /* IBM PowerPC 403GC. */
2379 static const struct reg registers_403GC[] =
2380 {
2381 COMMON_UISA_REGS,
2382 PPC_UISA_SPRS,
2383 PPC_SEGMENT_REGS,
2384 PPC_OEA_SPRS,
2385 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2386 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2387 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2388 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2389 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2390 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2391 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2392 /* 147 */ R(tbhu), R(tblu)
2393 };
2394
2395 /* Motorola PowerPC 505. */
2396 static const struct reg registers_505[] =
2397 {
2398 COMMON_UISA_REGS,
2399 PPC_UISA_SPRS,
2400 PPC_SEGMENT_REGS,
2401 PPC_OEA_SPRS,
2402 /* 119 */ R(eie), R(eid), R(nri)
2403 };
2404
2405 /* Motorola PowerPC 860 or 850. */
2406 static const struct reg registers_860[] =
2407 {
2408 COMMON_UISA_REGS,
2409 PPC_UISA_SPRS,
2410 PPC_SEGMENT_REGS,
2411 PPC_OEA_SPRS,
2412 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2413 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2414 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2415 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2416 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2417 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2418 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2419 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2420 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2421 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2422 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2423 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
2424 };
2425
2426 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2427 for reading and writing RTCU and RTCL. However, how one reads and writes a
2428 register is the stub's problem. */
2429 static const struct reg registers_601[] =
2430 {
2431 COMMON_UISA_REGS,
2432 PPC_UISA_SPRS,
2433 PPC_SEGMENT_REGS,
2434 PPC_OEA_SPRS,
2435 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2436 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
2437 };
2438
2439 /* Motorola PowerPC 602. */
2440 static const struct reg registers_602[] =
2441 {
2442 COMMON_UISA_REGS,
2443 PPC_UISA_SPRS,
2444 PPC_SEGMENT_REGS,
2445 PPC_OEA_SPRS,
2446 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2447 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2448 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
2449 };
2450
2451 /* Motorola/IBM PowerPC 603 or 603e. */
2452 static const struct reg registers_603[] =
2453 {
2454 COMMON_UISA_REGS,
2455 PPC_UISA_SPRS,
2456 PPC_SEGMENT_REGS,
2457 PPC_OEA_SPRS,
2458 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2459 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2460 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
2461 };
2462
2463 /* Motorola PowerPC 604 or 604e. */
2464 static const struct reg registers_604[] =
2465 {
2466 COMMON_UISA_REGS,
2467 PPC_UISA_SPRS,
2468 PPC_SEGMENT_REGS,
2469 PPC_OEA_SPRS,
2470 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2471 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2472 /* 127 */ R(sia), R(sda)
2473 };
2474
2475 /* Motorola/IBM PowerPC 750 or 740. */
2476 static const struct reg registers_750[] =
2477 {
2478 COMMON_UISA_REGS,
2479 PPC_UISA_SPRS,
2480 PPC_SEGMENT_REGS,
2481 PPC_OEA_SPRS,
2482 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2483 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2484 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2485 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2486 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2487 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
2488 };
2489
2490
2491 /* Motorola PowerPC 7400. */
2492 static const struct reg registers_7400[] =
2493 {
2494 /* gpr0-gpr31, fpr0-fpr31 */
2495 COMMON_UISA_REGS,
2496 /* ctr, xre, lr, cr */
2497 PPC_UISA_SPRS,
2498 /* sr0-sr15 */
2499 PPC_SEGMENT_REGS,
2500 PPC_OEA_SPRS,
2501 /* vr0-vr31, vrsave, vscr */
2502 PPC_ALTIVEC_REGS
2503 /* FIXME? Add more registers? */
2504 };
2505
2506 /* Motorola e500. */
2507 static const struct reg registers_e500[] =
2508 {
2509 R(pc), R(ps),
2510 /* cr, lr, ctr, xer, "" */
2511 PPC_UISA_NOFP_SPRS,
2512 /* 7...38 */
2513 PPC_EV_REGS,
2514 R8(acc), R(spefscr),
2515 /* NOTE: Add new registers here the end of the raw register
2516 list and just before the first pseudo register. */
2517 /* 39...70 */
2518 PPC_GPRS_PSEUDO_REGS
2519 };
2520
2521 /* Information about a particular processor variant. */
2522
2523 struct variant
2524 {
2525 /* Name of this variant. */
2526 char *name;
2527
2528 /* English description of the variant. */
2529 char *description;
2530
2531 /* bfd_arch_info.arch corresponding to variant. */
2532 enum bfd_architecture arch;
2533
2534 /* bfd_arch_info.mach corresponding to variant. */
2535 unsigned long mach;
2536
2537 /* Number of real registers. */
2538 int nregs;
2539
2540 /* Number of pseudo registers. */
2541 int npregs;
2542
2543 /* Number of total registers (the sum of nregs and npregs). */
2544 int num_tot_regs;
2545
2546 /* Table of register names; registers[R] is the name of the register
2547 number R. */
2548 const struct reg *regs;
2549 };
2550
2551 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2552
2553 static int
2554 num_registers (const struct reg *reg_list, int num_tot_regs)
2555 {
2556 int i;
2557 int nregs = 0;
2558
2559 for (i = 0; i < num_tot_regs; i++)
2560 if (!reg_list[i].pseudo)
2561 nregs++;
2562
2563 return nregs;
2564 }
2565
2566 static int
2567 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2568 {
2569 int i;
2570 int npregs = 0;
2571
2572 for (i = 0; i < num_tot_regs; i++)
2573 if (reg_list[i].pseudo)
2574 npregs ++;
2575
2576 return npregs;
2577 }
2578
2579 /* Information in this table comes from the following web sites:
2580 IBM: http://www.chips.ibm.com:80/products/embedded/
2581 Motorola: http://www.mot.com/SPS/PowerPC/
2582
2583 I'm sure I've got some of the variant descriptions not quite right.
2584 Please report any inaccuracies you find to GDB's maintainer.
2585
2586 If you add entries to this table, please be sure to allow the new
2587 value as an argument to the --with-cpu flag, in configure.in. */
2588
2589 static struct variant variants[] =
2590 {
2591
2592 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2593 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2594 registers_powerpc},
2595 {"power", "POWER user-level", bfd_arch_rs6000,
2596 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2597 registers_power},
2598 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2599 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2600 registers_403},
2601 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2602 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2603 registers_601},
2604 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2605 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2606 registers_602},
2607 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2608 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2609 registers_603},
2610 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2611 604, -1, -1, tot_num_registers (registers_604),
2612 registers_604},
2613 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2614 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2615 registers_403GC},
2616 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2617 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2618 registers_505},
2619 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2620 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2621 registers_860},
2622 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2623 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2624 registers_750},
2625 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2626 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2627 registers_7400},
2628 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2629 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2630 registers_e500},
2631
2632 /* 64-bit */
2633 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2634 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2635 registers_powerpc},
2636 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2637 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2638 registers_powerpc},
2639 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2640 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2641 registers_powerpc},
2642 {"a35", "PowerPC A35", bfd_arch_powerpc,
2643 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2644 registers_powerpc},
2645 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2646 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2647 registers_powerpc},
2648 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2649 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2650 registers_powerpc},
2651
2652 /* FIXME: I haven't checked the register sets of the following. */
2653 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2654 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2655 registers_power},
2656 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2657 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2658 registers_power},
2659 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2660 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2661 registers_power},
2662
2663 {0, 0, 0, 0, 0, 0, 0, 0}
2664 };
2665
2666 /* Initialize the number of registers and pseudo registers in each variant. */
2667
2668 static void
2669 init_variants (void)
2670 {
2671 struct variant *v;
2672
2673 for (v = variants; v->name; v++)
2674 {
2675 if (v->nregs == -1)
2676 v->nregs = num_registers (v->regs, v->num_tot_regs);
2677 if (v->npregs == -1)
2678 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2679 }
2680 }
2681
2682 /* Return the variant corresponding to architecture ARCH and machine number
2683 MACH. If no such variant exists, return null. */
2684
2685 static const struct variant *
2686 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2687 {
2688 const struct variant *v;
2689
2690 for (v = variants; v->name; v++)
2691 if (arch == v->arch && mach == v->mach)
2692 return v;
2693
2694 return NULL;
2695 }
2696
2697 static int
2698 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2699 {
2700 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2701 return print_insn_big_powerpc (memaddr, info);
2702 else
2703 return print_insn_little_powerpc (memaddr, info);
2704 }
2705 \f
2706 /* Initialize the current architecture based on INFO. If possible, re-use an
2707 architecture from ARCHES, which is a list of architectures already created
2708 during this debugging session.
2709
2710 Called e.g. at program startup, when reading a core file, and when reading
2711 a binary file. */
2712
2713 static struct gdbarch *
2714 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2715 {
2716 struct gdbarch *gdbarch;
2717 struct gdbarch_tdep *tdep;
2718 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2719 struct reg *regs;
2720 const struct variant *v;
2721 enum bfd_architecture arch;
2722 unsigned long mach;
2723 bfd abfd;
2724 int sysv_abi;
2725 asection *sect;
2726
2727 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2728 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2729
2730 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2731 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2732
2733 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2734
2735 /* Check word size. If INFO is from a binary file, infer it from
2736 that, else choose a likely default. */
2737 if (from_xcoff_exec)
2738 {
2739 if (bfd_xcoff_is_xcoff64 (info.abfd))
2740 wordsize = 8;
2741 else
2742 wordsize = 4;
2743 }
2744 else if (from_elf_exec)
2745 {
2746 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2747 wordsize = 8;
2748 else
2749 wordsize = 4;
2750 }
2751 else
2752 {
2753 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2754 wordsize = info.bfd_arch_info->bits_per_word /
2755 info.bfd_arch_info->bits_per_byte;
2756 else
2757 wordsize = 4;
2758 }
2759
2760 /* Find a candidate among extant architectures. */
2761 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2762 arches != NULL;
2763 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2764 {
2765 /* Word size in the various PowerPC bfd_arch_info structs isn't
2766 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2767 separate word size check. */
2768 tdep = gdbarch_tdep (arches->gdbarch);
2769 if (tdep && tdep->wordsize == wordsize)
2770 return arches->gdbarch;
2771 }
2772
2773 /* None found, create a new architecture from INFO, whose bfd_arch_info
2774 validity depends on the source:
2775 - executable useless
2776 - rs6000_host_arch() good
2777 - core file good
2778 - "set arch" trust blindly
2779 - GDB startup useless but harmless */
2780
2781 if (!from_xcoff_exec)
2782 {
2783 arch = info.bfd_arch_info->arch;
2784 mach = info.bfd_arch_info->mach;
2785 }
2786 else
2787 {
2788 arch = bfd_arch_powerpc;
2789 bfd_default_set_arch_mach (&abfd, arch, 0);
2790 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2791 mach = info.bfd_arch_info->mach;
2792 }
2793 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2794 tdep->wordsize = wordsize;
2795
2796 /* For e500 executables, the apuinfo section is of help here. Such
2797 section contains the identifier and revision number of each
2798 Application-specific Processing Unit that is present on the
2799 chip. The content of the section is determined by the assembler
2800 which looks at each instruction and determines which unit (and
2801 which version of it) can execute it. In our case we just look for
2802 the existance of the section. */
2803
2804 if (info.abfd)
2805 {
2806 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2807 if (sect)
2808 {
2809 arch = info.bfd_arch_info->arch;
2810 mach = bfd_mach_ppc_e500;
2811 bfd_default_set_arch_mach (&abfd, arch, mach);
2812 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2813 }
2814 }
2815
2816 gdbarch = gdbarch_alloc (&info, tdep);
2817 power = arch == bfd_arch_rs6000;
2818
2819 /* Initialize the number of real and pseudo registers in each variant. */
2820 init_variants ();
2821
2822 /* Choose variant. */
2823 v = find_variant_by_arch (arch, mach);
2824 if (!v)
2825 return NULL;
2826
2827 tdep->regs = v->regs;
2828
2829 tdep->ppc_gp0_regnum = 0;
2830 tdep->ppc_gplast_regnum = 31;
2831 tdep->ppc_toc_regnum = 2;
2832 tdep->ppc_ps_regnum = 65;
2833 tdep->ppc_cr_regnum = 66;
2834 tdep->ppc_lr_regnum = 67;
2835 tdep->ppc_ctr_regnum = 68;
2836 tdep->ppc_xer_regnum = 69;
2837 if (v->mach == bfd_mach_ppc_601)
2838 tdep->ppc_mq_regnum = 124;
2839 else if (power)
2840 tdep->ppc_mq_regnum = 70;
2841 else
2842 tdep->ppc_mq_regnum = -1;
2843 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2844
2845 set_gdbarch_pc_regnum (gdbarch, 64);
2846 set_gdbarch_sp_regnum (gdbarch, 1);
2847 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
2848 set_gdbarch_deprecated_extract_return_value (gdbarch,
2849 rs6000_extract_return_value);
2850 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
2851
2852 if (v->arch == bfd_arch_powerpc)
2853 switch (v->mach)
2854 {
2855 case bfd_mach_ppc:
2856 tdep->ppc_vr0_regnum = 71;
2857 tdep->ppc_vrsave_regnum = 104;
2858 tdep->ppc_ev0_regnum = -1;
2859 tdep->ppc_ev31_regnum = -1;
2860 break;
2861 case bfd_mach_ppc_7400:
2862 tdep->ppc_vr0_regnum = 119;
2863 tdep->ppc_vrsave_regnum = 152;
2864 tdep->ppc_ev0_regnum = -1;
2865 tdep->ppc_ev31_regnum = -1;
2866 break;
2867 case bfd_mach_ppc_e500:
2868 tdep->ppc_gp0_regnum = 41;
2869 tdep->ppc_gplast_regnum = tdep->ppc_gp0_regnum + 32 - 1;
2870 tdep->ppc_toc_regnum = -1;
2871 tdep->ppc_ps_regnum = 1;
2872 tdep->ppc_cr_regnum = 2;
2873 tdep->ppc_lr_regnum = 3;
2874 tdep->ppc_ctr_regnum = 4;
2875 tdep->ppc_xer_regnum = 5;
2876 tdep->ppc_ev0_regnum = 7;
2877 tdep->ppc_ev31_regnum = 38;
2878 set_gdbarch_pc_regnum (gdbarch, 0);
2879 set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2880 set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2881 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2882 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2883 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
2884 set_gdbarch_extract_return_value (gdbarch, e500_extract_return_value);
2885 set_gdbarch_deprecated_store_return_value (gdbarch, e500_store_return_value);
2886 break;
2887 default:
2888 tdep->ppc_vr0_regnum = -1;
2889 tdep->ppc_vrsave_regnum = -1;
2890 tdep->ppc_ev0_regnum = -1;
2891 tdep->ppc_ev31_regnum = -1;
2892 break;
2893 }
2894
2895 /* Sanity check on registers. */
2896 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
2897
2898 /* Set lr_frame_offset. */
2899 if (wordsize == 8)
2900 tdep->lr_frame_offset = 16;
2901 else if (sysv_abi)
2902 tdep->lr_frame_offset = 4;
2903 else
2904 tdep->lr_frame_offset = 8;
2905
2906 /* Calculate byte offsets in raw register array. */
2907 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2908 for (i = off = 0; i < v->num_tot_regs; i++)
2909 {
2910 tdep->regoff[i] = off;
2911 off += regsize (v->regs + i, wordsize);
2912 }
2913
2914 /* Select instruction printer. */
2915 if (arch == power)
2916 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
2917 else
2918 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
2919
2920 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2921 set_gdbarch_deprecated_dummy_write_sp (gdbarch, deprecated_write_sp);
2922
2923 set_gdbarch_num_regs (gdbarch, v->nregs);
2924 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
2925 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2926 set_gdbarch_deprecated_register_size (gdbarch, wordsize);
2927 set_gdbarch_deprecated_register_bytes (gdbarch, off);
2928 set_gdbarch_deprecated_register_byte (gdbarch, rs6000_register_byte);
2929 set_gdbarch_deprecated_register_raw_size (gdbarch, rs6000_register_raw_size);
2930 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 16);
2931 set_gdbarch_deprecated_register_virtual_size (gdbarch, generic_register_size);
2932 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 16);
2933 set_gdbarch_deprecated_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2934
2935 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2936 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2937 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2938 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2939 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2940 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2941 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2942 if (sysv_abi)
2943 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
2944 else
2945 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2946 set_gdbarch_char_signed (gdbarch, 0);
2947
2948 set_gdbarch_deprecated_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
2949 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
2950 if (sysv_abi && wordsize == 8)
2951 /* PPC64 SYSV. */
2952 set_gdbarch_frame_red_zone_size (gdbarch, 288);
2953 else if (!sysv_abi && wordsize == 4)
2954 /* PowerOpen / AIX 32 bit. */
2955 set_gdbarch_frame_red_zone_size (gdbarch, 220);
2956 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
2957 set_gdbarch_deprecated_push_return_address (gdbarch, ppc_push_return_address);
2958 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2959
2960 set_gdbarch_deprecated_register_convertible (gdbarch, rs6000_register_convertible);
2961 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2962 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2963 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2964 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2965 is correct for the SysV ABI when the wordsize is 8, but I'm also
2966 fairly certain that ppc_sysv_abi_push_arguments() will give even
2967 worse results since it only works for 32-bit code. So, for the moment,
2968 we're better off calling rs6000_push_arguments() since it works for
2969 64-bit code. At some point in the future, this matter needs to be
2970 revisited. */
2971 if (sysv_abi && wordsize == 4)
2972 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
2973 else
2974 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
2975
2976 set_gdbarch_deprecated_store_struct_return (gdbarch, rs6000_store_struct_return);
2977 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2978 set_gdbarch_deprecated_pop_frame (gdbarch, rs6000_pop_frame);
2979
2980 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2981 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2982 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2983 set_gdbarch_function_start_offset (gdbarch, 0);
2984 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2985
2986 /* Not sure on this. FIXMEmgo */
2987 set_gdbarch_frame_args_skip (gdbarch, 8);
2988
2989 if (sysv_abi)
2990 set_gdbarch_use_struct_convention (gdbarch,
2991 ppc_sysv_abi_use_struct_convention);
2992 else
2993 set_gdbarch_use_struct_convention (gdbarch,
2994 generic_use_struct_convention);
2995
2996 set_gdbarch_frameless_function_invocation (gdbarch,
2997 rs6000_frameless_function_invocation);
2998 set_gdbarch_deprecated_frame_chain (gdbarch, rs6000_frame_chain);
2999 set_gdbarch_deprecated_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
3000
3001 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
3002 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
3003
3004 if (!sysv_abi)
3005 {
3006 /* Handle RS/6000 function pointers (which are really function
3007 descriptors). */
3008 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3009 rs6000_convert_from_func_ptr_addr);
3010 }
3011 set_gdbarch_deprecated_frame_args_address (gdbarch, rs6000_frame_args_address);
3012 set_gdbarch_deprecated_frame_locals_address (gdbarch, rs6000_frame_args_address);
3013 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
3014
3015 /* Helpers for function argument information. */
3016 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3017
3018 /* Hook in ABI-specific overrides, if they have been registered. */
3019 gdbarch_init_osabi (info, gdbarch);
3020
3021 return gdbarch;
3022 }
3023
3024 static void
3025 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3026 {
3027 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3028
3029 if (tdep == NULL)
3030 return;
3031
3032 /* FIXME: Dump gdbarch_tdep. */
3033 }
3034
3035 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
3036
3037 static void
3038 rs6000_info_powerpc_command (char *args, int from_tty)
3039 {
3040 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
3041 }
3042
3043 /* Initialization code. */
3044
3045 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
3046
3047 void
3048 _initialize_rs6000_tdep (void)
3049 {
3050 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3051 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
3052
3053 /* Add root prefix command for "info powerpc" commands */
3054 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
3055 "Various POWERPC info specific commands.",
3056 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
3057 }
This page took 0.094039 seconds and 4 git commands to generate.