* ppc-linux-nat.c (PTRACE_GET_DEBUGREG, PTRACE_SET_DEBUGREG,
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "target.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "regset.h"
35 #include "doublest.h"
36 #include "value.h"
37 #include "parser-defs.h"
38 #include "osabi.h"
39 #include "infcall.h"
40 #include "sim-regno.h"
41 #include "gdb/sim-ppc.h"
42 #include "reggroups.h"
43
44 #include "libbfd.h" /* for bfd_default_set_arch_mach */
45 #include "coff/internal.h" /* for libcoff.h */
46 #include "libcoff.h" /* for xcoff_data */
47 #include "coff/xcoff.h"
48 #include "libxcoff.h"
49
50 #include "elf-bfd.h"
51
52 #include "solib-svr4.h"
53 #include "ppc-tdep.h"
54
55 #include "gdb_assert.h"
56 #include "dis-asm.h"
57
58 #include "trad-frame.h"
59 #include "frame-unwind.h"
60 #include "frame-base.h"
61
62 #include "reggroups.h"
63
64 /* If the kernel has to deliver a signal, it pushes a sigcontext
65 structure on the stack and then calls the signal handler, passing
66 the address of the sigcontext in an argument register. Usually
67 the signal handler doesn't save this register, so we have to
68 access the sigcontext structure via an offset from the signal handler
69 frame.
70 The following constants were determined by experimentation on AIX 3.2. */
71 #define SIG_FRAME_PC_OFFSET 96
72 #define SIG_FRAME_LR_OFFSET 108
73 #define SIG_FRAME_FP_OFFSET 284
74
75 /* To be used by skip_prologue. */
76
77 struct rs6000_framedata
78 {
79 int offset; /* total size of frame --- the distance
80 by which we decrement sp to allocate
81 the frame */
82 int saved_gpr; /* smallest # of saved gpr */
83 int saved_fpr; /* smallest # of saved fpr */
84 int saved_vr; /* smallest # of saved vr */
85 int saved_ev; /* smallest # of saved ev */
86 int alloca_reg; /* alloca register number (frame ptr) */
87 char frameless; /* true if frameless functions. */
88 char nosavedpc; /* true if pc not saved. */
89 int gpr_offset; /* offset of saved gprs from prev sp */
90 int fpr_offset; /* offset of saved fprs from prev sp */
91 int vr_offset; /* offset of saved vrs from prev sp */
92 int ev_offset; /* offset of saved evs from prev sp */
93 int lr_offset; /* offset of saved lr */
94 int cr_offset; /* offset of saved cr */
95 int vrsave_offset; /* offset of saved vrsave register */
96 };
97
98 /* Description of a single register. */
99
100 struct reg
101 {
102 char *name; /* name of register */
103 unsigned char sz32; /* size on 32-bit arch, 0 if nonexistent */
104 unsigned char sz64; /* size on 64-bit arch, 0 if nonexistent */
105 unsigned char fpr; /* whether register is floating-point */
106 unsigned char pseudo; /* whether register is pseudo */
107 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
108 This is an ISA SPR number, not a GDB
109 register number. */
110 };
111
112 /* Breakpoint shadows for the single step instructions will be kept here. */
113
114 static struct sstep_breaks
115 {
116 /* Address, or 0 if this is not in use. */
117 CORE_ADDR address;
118 /* Shadow contents. */
119 gdb_byte data[4];
120 }
121 stepBreaks[2];
122
123 /* Hook for determining the TOC address when calling functions in the
124 inferior under AIX. The initialization code in rs6000-nat.c sets
125 this hook to point to find_toc_address. */
126
127 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
128
129 /* Hook to set the current architecture when starting a child process.
130 rs6000-nat.c sets this. */
131
132 void (*rs6000_set_host_arch_hook) (int) = NULL;
133
134 /* Static function prototypes */
135
136 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
137 CORE_ADDR safety);
138 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
139 struct rs6000_framedata *);
140
141 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
142 int
143 altivec_register_p (int regno)
144 {
145 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
146 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
147 return 0;
148 else
149 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
150 }
151
152
153 /* Return true if REGNO is an SPE register, false otherwise. */
154 int
155 spe_register_p (int regno)
156 {
157 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
158
159 /* Is it a reference to EV0 -- EV31, and do we have those? */
160 if (tdep->ppc_ev0_regnum >= 0
161 && tdep->ppc_ev31_regnum >= 0
162 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
163 return 1;
164
165 /* Is it a reference to one of the raw upper GPR halves? */
166 if (tdep->ppc_ev0_upper_regnum >= 0
167 && tdep->ppc_ev0_upper_regnum <= regno
168 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
169 return 1;
170
171 /* Is it a reference to the 64-bit accumulator, and do we have that? */
172 if (tdep->ppc_acc_regnum >= 0
173 && tdep->ppc_acc_regnum == regno)
174 return 1;
175
176 /* Is it a reference to the SPE floating-point status and control register,
177 and do we have that? */
178 if (tdep->ppc_spefscr_regnum >= 0
179 && tdep->ppc_spefscr_regnum == regno)
180 return 1;
181
182 return 0;
183 }
184
185
186 /* Return non-zero if the architecture described by GDBARCH has
187 floating-point registers (f0 --- f31 and fpscr). */
188 int
189 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
190 {
191 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
192
193 return (tdep->ppc_fp0_regnum >= 0
194 && tdep->ppc_fpscr_regnum >= 0);
195 }
196
197
198 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
199 set it to SIM_REGNO.
200
201 This is a helper function for init_sim_regno_table, constructing
202 the table mapping GDB register numbers to sim register numbers; we
203 initialize every element in that table to -1 before we start
204 filling it in. */
205 static void
206 set_sim_regno (int *table, int gdb_regno, int sim_regno)
207 {
208 /* Make sure we don't try to assign any given GDB register a sim
209 register number more than once. */
210 gdb_assert (table[gdb_regno] == -1);
211 table[gdb_regno] = sim_regno;
212 }
213
214
215 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
216 numbers to simulator register numbers, based on the values placed
217 in the ARCH->tdep->ppc_foo_regnum members. */
218 static void
219 init_sim_regno_table (struct gdbarch *arch)
220 {
221 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
222 int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
223 const struct reg *regs = tdep->regs;
224 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
225 int i;
226
227 /* Presume that all registers not explicitly mentioned below are
228 unavailable from the sim. */
229 for (i = 0; i < total_regs; i++)
230 sim_regno[i] = -1;
231
232 /* General-purpose registers. */
233 for (i = 0; i < ppc_num_gprs; i++)
234 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
235
236 /* Floating-point registers. */
237 if (tdep->ppc_fp0_regnum >= 0)
238 for (i = 0; i < ppc_num_fprs; i++)
239 set_sim_regno (sim_regno,
240 tdep->ppc_fp0_regnum + i,
241 sim_ppc_f0_regnum + i);
242 if (tdep->ppc_fpscr_regnum >= 0)
243 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
244
245 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
246 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
247 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
248
249 /* Segment registers. */
250 if (tdep->ppc_sr0_regnum >= 0)
251 for (i = 0; i < ppc_num_srs; i++)
252 set_sim_regno (sim_regno,
253 tdep->ppc_sr0_regnum + i,
254 sim_ppc_sr0_regnum + i);
255
256 /* Altivec registers. */
257 if (tdep->ppc_vr0_regnum >= 0)
258 {
259 for (i = 0; i < ppc_num_vrs; i++)
260 set_sim_regno (sim_regno,
261 tdep->ppc_vr0_regnum + i,
262 sim_ppc_vr0_regnum + i);
263
264 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
265 we can treat this more like the other cases. */
266 set_sim_regno (sim_regno,
267 tdep->ppc_vr0_regnum + ppc_num_vrs,
268 sim_ppc_vscr_regnum);
269 }
270 /* vsave is a special-purpose register, so the code below handles it. */
271
272 /* SPE APU (E500) registers. */
273 if (tdep->ppc_ev0_regnum >= 0)
274 for (i = 0; i < ppc_num_gprs; i++)
275 set_sim_regno (sim_regno,
276 tdep->ppc_ev0_regnum + i,
277 sim_ppc_ev0_regnum + i);
278 if (tdep->ppc_ev0_upper_regnum >= 0)
279 for (i = 0; i < ppc_num_gprs; i++)
280 set_sim_regno (sim_regno,
281 tdep->ppc_ev0_upper_regnum + i,
282 sim_ppc_rh0_regnum + i);
283 if (tdep->ppc_acc_regnum >= 0)
284 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
285 /* spefscr is a special-purpose register, so the code below handles it. */
286
287 /* Now handle all special-purpose registers. Verify that they
288 haven't mistakenly been assigned numbers by any of the above
289 code). */
290 for (i = 0; i < total_regs; i++)
291 if (regs[i].spr_num >= 0)
292 set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
293
294 /* Drop the initialized array into place. */
295 tdep->sim_regno = sim_regno;
296 }
297
298
299 /* Given a GDB register number REG, return the corresponding SIM
300 register number. */
301 static int
302 rs6000_register_sim_regno (int reg)
303 {
304 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
305 int sim_regno;
306
307 gdb_assert (0 <= reg && reg <= NUM_REGS + NUM_PSEUDO_REGS);
308 sim_regno = tdep->sim_regno[reg];
309
310 if (sim_regno >= 0)
311 return sim_regno;
312 else
313 return LEGACY_SIM_REGNO_IGNORE;
314 }
315
316 \f
317
318 /* Register set support functions. */
319
320 static void
321 ppc_supply_reg (struct regcache *regcache, int regnum,
322 const gdb_byte *regs, size_t offset)
323 {
324 if (regnum != -1 && offset != -1)
325 regcache_raw_supply (regcache, regnum, regs + offset);
326 }
327
328 static void
329 ppc_collect_reg (const struct regcache *regcache, int regnum,
330 gdb_byte *regs, size_t offset)
331 {
332 if (regnum != -1 && offset != -1)
333 regcache_raw_collect (regcache, regnum, regs + offset);
334 }
335
336 /* Supply register REGNUM in the general-purpose register set REGSET
337 from the buffer specified by GREGS and LEN to register cache
338 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
339
340 void
341 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
342 int regnum, const void *gregs, size_t len)
343 {
344 struct gdbarch *gdbarch = get_regcache_arch (regcache);
345 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
346 const struct ppc_reg_offsets *offsets = regset->descr;
347 size_t offset;
348 int i;
349
350 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
351 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
352 i++, offset += 4)
353 {
354 if (regnum == -1 || regnum == i)
355 ppc_supply_reg (regcache, i, gregs, offset);
356 }
357
358 if (regnum == -1 || regnum == PC_REGNUM)
359 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
360 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
361 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
362 gregs, offsets->ps_offset);
363 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
364 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
365 gregs, offsets->cr_offset);
366 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
367 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
368 gregs, offsets->lr_offset);
369 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
370 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
371 gregs, offsets->ctr_offset);
372 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
373 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
374 gregs, offsets->cr_offset);
375 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
376 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
377 }
378
379 /* Supply register REGNUM in the floating-point register set REGSET
380 from the buffer specified by FPREGS and LEN to register cache
381 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
382
383 void
384 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
385 int regnum, const void *fpregs, size_t len)
386 {
387 struct gdbarch *gdbarch = get_regcache_arch (regcache);
388 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
389 const struct ppc_reg_offsets *offsets = regset->descr;
390 size_t offset;
391 int i;
392
393 gdb_assert (ppc_floating_point_unit_p (gdbarch));
394
395 offset = offsets->f0_offset;
396 for (i = tdep->ppc_fp0_regnum;
397 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
398 i++, offset += 8)
399 {
400 if (regnum == -1 || regnum == i)
401 ppc_supply_reg (regcache, i, fpregs, offset);
402 }
403
404 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
405 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
406 fpregs, offsets->fpscr_offset);
407 }
408
409 /* Collect register REGNUM in the general-purpose register set
410 REGSET. from register cache REGCACHE into the buffer specified by
411 GREGS and LEN. If REGNUM is -1, do this for all registers in
412 REGSET. */
413
414 void
415 ppc_collect_gregset (const struct regset *regset,
416 const struct regcache *regcache,
417 int regnum, void *gregs, size_t len)
418 {
419 struct gdbarch *gdbarch = get_regcache_arch (regcache);
420 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
421 const struct ppc_reg_offsets *offsets = regset->descr;
422 size_t offset;
423 int i;
424
425 offset = offsets->r0_offset;
426 for (i = tdep->ppc_gp0_regnum;
427 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
428 i++, offset += 4)
429 {
430 if (regnum == -1 || regnum == i)
431 ppc_collect_reg (regcache, i, gregs, offset);
432 }
433
434 if (regnum == -1 || regnum == PC_REGNUM)
435 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
436 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
437 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
438 gregs, offsets->ps_offset);
439 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
440 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
441 gregs, offsets->cr_offset);
442 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
443 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
444 gregs, offsets->lr_offset);
445 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
446 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
447 gregs, offsets->ctr_offset);
448 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
449 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
450 gregs, offsets->xer_offset);
451 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
452 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
453 gregs, offsets->mq_offset);
454 }
455
456 /* Collect register REGNUM in the floating-point register set
457 REGSET. from register cache REGCACHE into the buffer specified by
458 FPREGS and LEN. If REGNUM is -1, do this for all registers in
459 REGSET. */
460
461 void
462 ppc_collect_fpregset (const struct regset *regset,
463 const struct regcache *regcache,
464 int regnum, void *fpregs, size_t len)
465 {
466 struct gdbarch *gdbarch = get_regcache_arch (regcache);
467 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
468 const struct ppc_reg_offsets *offsets = regset->descr;
469 size_t offset;
470 int i;
471
472 gdb_assert (ppc_floating_point_unit_p (gdbarch));
473
474 offset = offsets->f0_offset;
475 for (i = tdep->ppc_fp0_regnum;
476 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
477 i++, offset += 8)
478 {
479 if (regnum == -1 || regnum == i)
480 ppc_collect_reg (regcache, i, fpregs, offset);
481 }
482
483 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
484 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
485 fpregs, offsets->fpscr_offset);
486 }
487 \f
488
489 /* Read a LEN-byte address from debugged memory address MEMADDR. */
490
491 static CORE_ADDR
492 read_memory_addr (CORE_ADDR memaddr, int len)
493 {
494 return read_memory_unsigned_integer (memaddr, len);
495 }
496
497 static CORE_ADDR
498 rs6000_skip_prologue (CORE_ADDR pc)
499 {
500 struct rs6000_framedata frame;
501 pc = skip_prologue (pc, 0, &frame);
502 return pc;
503 }
504
505 static int
506 insn_changes_sp_or_jumps (unsigned long insn)
507 {
508 int opcode = (insn >> 26) & 0x03f;
509 int sd = (insn >> 21) & 0x01f;
510 int a = (insn >> 16) & 0x01f;
511 int subcode = (insn >> 1) & 0x3ff;
512
513 /* Changes the stack pointer. */
514
515 /* NOTE: There are many ways to change the value of a given register.
516 The ways below are those used when the register is R1, the SP,
517 in a funtion's epilogue. */
518
519 if (opcode == 31 && subcode == 444 && a == 1)
520 return 1; /* mr R1,Rn */
521 if (opcode == 14 && sd == 1)
522 return 1; /* addi R1,Rn,simm */
523 if (opcode == 58 && sd == 1)
524 return 1; /* ld R1,ds(Rn) */
525
526 /* Transfers control. */
527
528 if (opcode == 18)
529 return 1; /* b */
530 if (opcode == 16)
531 return 1; /* bc */
532 if (opcode == 19 && subcode == 16)
533 return 1; /* bclr */
534 if (opcode == 19 && subcode == 528)
535 return 1; /* bcctr */
536
537 return 0;
538 }
539
540 /* Return true if we are in the function's epilogue, i.e. after the
541 instruction that destroyed the function's stack frame.
542
543 1) scan forward from the point of execution:
544 a) If you find an instruction that modifies the stack pointer
545 or transfers control (except a return), execution is not in
546 an epilogue, return.
547 b) Stop scanning if you find a return instruction or reach the
548 end of the function or reach the hard limit for the size of
549 an epilogue.
550 2) scan backward from the point of execution:
551 a) If you find an instruction that modifies the stack pointer,
552 execution *is* in an epilogue, return.
553 b) Stop scanning if you reach an instruction that transfers
554 control or the beginning of the function or reach the hard
555 limit for the size of an epilogue. */
556
557 static int
558 rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
559 {
560 bfd_byte insn_buf[PPC_INSN_SIZE];
561 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
562 unsigned long insn;
563 struct frame_info *curfrm;
564
565 /* Find the search limits based on function boundaries and hard limit. */
566
567 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
568 return 0;
569
570 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
571 if (epilogue_start < func_start) epilogue_start = func_start;
572
573 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
574 if (epilogue_end > func_end) epilogue_end = func_end;
575
576 curfrm = get_current_frame ();
577
578 /* Scan forward until next 'blr'. */
579
580 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
581 {
582 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
583 return 0;
584 insn = extract_signed_integer (insn_buf, PPC_INSN_SIZE);
585 if (insn == 0x4e800020)
586 break;
587 if (insn_changes_sp_or_jumps (insn))
588 return 0;
589 }
590
591 /* Scan backward until adjustment to stack pointer (R1). */
592
593 for (scan_pc = pc - PPC_INSN_SIZE;
594 scan_pc >= epilogue_start;
595 scan_pc -= PPC_INSN_SIZE)
596 {
597 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
598 return 0;
599 insn = extract_signed_integer (insn_buf, PPC_INSN_SIZE);
600 if (insn_changes_sp_or_jumps (insn))
601 return 1;
602 }
603
604 return 0;
605 }
606
607
608 /* Fill in fi->saved_regs */
609
610 struct frame_extra_info
611 {
612 /* Functions calling alloca() change the value of the stack
613 pointer. We need to use initial stack pointer (which is saved in
614 r31 by gcc) in such cases. If a compiler emits traceback table,
615 then we should use the alloca register specified in traceback
616 table. FIXME. */
617 CORE_ADDR initial_sp; /* initial stack pointer. */
618 };
619
620 /* Get the ith function argument for the current function. */
621 static CORE_ADDR
622 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
623 struct type *type)
624 {
625 return get_frame_register_unsigned (frame, 3 + argi);
626 }
627
628 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
629
630 static CORE_ADDR
631 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
632 {
633 CORE_ADDR dest;
634 int immediate;
635 int absolute;
636 int ext_op;
637
638 absolute = (int) ((instr >> 1) & 1);
639
640 switch (opcode)
641 {
642 case 18:
643 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
644 if (absolute)
645 dest = immediate;
646 else
647 dest = pc + immediate;
648 break;
649
650 case 16:
651 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
652 if (absolute)
653 dest = immediate;
654 else
655 dest = pc + immediate;
656 break;
657
658 case 19:
659 ext_op = (instr >> 1) & 0x3ff;
660
661 if (ext_op == 16) /* br conditional register */
662 {
663 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
664
665 /* If we are about to return from a signal handler, dest is
666 something like 0x3c90. The current frame is a signal handler
667 caller frame, upon completion of the sigreturn system call
668 execution will return to the saved PC in the frame. */
669 if (dest < TEXT_SEGMENT_BASE)
670 {
671 struct frame_info *fi;
672
673 fi = get_current_frame ();
674 if (fi != NULL)
675 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
676 gdbarch_tdep (current_gdbarch)->wordsize);
677 }
678 }
679
680 else if (ext_op == 528) /* br cond to count reg */
681 {
682 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
683
684 /* If we are about to execute a system call, dest is something
685 like 0x22fc or 0x3b00. Upon completion the system call
686 will return to the address in the link register. */
687 if (dest < TEXT_SEGMENT_BASE)
688 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
689 }
690 else
691 return -1;
692 break;
693
694 default:
695 return -1;
696 }
697 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
698 }
699
700
701 /* Sequence of bytes for breakpoint instruction. */
702
703 const static unsigned char *
704 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
705 {
706 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
707 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
708 *bp_size = 4;
709 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
710 return big_breakpoint;
711 else
712 return little_breakpoint;
713 }
714
715
716 /* AIX does not support PT_STEP. Simulate it. */
717
718 void
719 rs6000_software_single_step (enum target_signal signal,
720 int insert_breakpoints_p)
721 {
722 CORE_ADDR dummy;
723 int breakp_sz;
724 const gdb_byte *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
725 int ii, insn;
726 CORE_ADDR loc;
727 CORE_ADDR breaks[2];
728 int opcode;
729
730 if (insert_breakpoints_p)
731 {
732
733 loc = read_pc ();
734
735 insn = read_memory_integer (loc, 4);
736
737 breaks[0] = loc + breakp_sz;
738 opcode = insn >> 26;
739 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
740
741 /* Don't put two breakpoints on the same address. */
742 if (breaks[1] == breaks[0])
743 breaks[1] = -1;
744
745 stepBreaks[1].address = 0;
746
747 for (ii = 0; ii < 2; ++ii)
748 {
749
750 /* ignore invalid breakpoint. */
751 if (breaks[ii] == -1)
752 continue;
753 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
754 stepBreaks[ii].address = breaks[ii];
755 }
756
757 }
758 else
759 {
760
761 /* remove step breakpoints. */
762 for (ii = 0; ii < 2; ++ii)
763 if (stepBreaks[ii].address != 0)
764 target_remove_breakpoint (stepBreaks[ii].address,
765 stepBreaks[ii].data);
766 }
767 errno = 0; /* FIXME, don't ignore errors! */
768 /* What errors? {read,write}_memory call error(). */
769 }
770
771
772 /* return pc value after skipping a function prologue and also return
773 information about a function frame.
774
775 in struct rs6000_framedata fdata:
776 - frameless is TRUE, if function does not have a frame.
777 - nosavedpc is TRUE, if function does not save %pc value in its frame.
778 - offset is the initial size of this stack frame --- the amount by
779 which we decrement the sp to allocate the frame.
780 - saved_gpr is the number of the first saved gpr.
781 - saved_fpr is the number of the first saved fpr.
782 - saved_vr is the number of the first saved vr.
783 - saved_ev is the number of the first saved ev.
784 - alloca_reg is the number of the register used for alloca() handling.
785 Otherwise -1.
786 - gpr_offset is the offset of the first saved gpr from the previous frame.
787 - fpr_offset is the offset of the first saved fpr from the previous frame.
788 - vr_offset is the offset of the first saved vr from the previous frame.
789 - ev_offset is the offset of the first saved ev from the previous frame.
790 - lr_offset is the offset of the saved lr
791 - cr_offset is the offset of the saved cr
792 - vrsave_offset is the offset of the saved vrsave register
793 */
794
795 #define SIGNED_SHORT(x) \
796 ((sizeof (short) == 2) \
797 ? ((int)(short)(x)) \
798 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
799
800 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
801
802 /* Limit the number of skipped non-prologue instructions, as the examining
803 of the prologue is expensive. */
804 static int max_skip_non_prologue_insns = 10;
805
806 /* Given PC representing the starting address of a function, and
807 LIM_PC which is the (sloppy) limit to which to scan when looking
808 for a prologue, attempt to further refine this limit by using
809 the line data in the symbol table. If successful, a better guess
810 on where the prologue ends is returned, otherwise the previous
811 value of lim_pc is returned. */
812
813 /* FIXME: cagney/2004-02-14: This function and logic have largely been
814 superseded by skip_prologue_using_sal. */
815
816 static CORE_ADDR
817 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
818 {
819 struct symtab_and_line prologue_sal;
820
821 prologue_sal = find_pc_line (pc, 0);
822 if (prologue_sal.line != 0)
823 {
824 int i;
825 CORE_ADDR addr = prologue_sal.end;
826
827 /* Handle the case in which compiler's optimizer/scheduler
828 has moved instructions into the prologue. We scan ahead
829 in the function looking for address ranges whose corresponding
830 line number is less than or equal to the first one that we
831 found for the function. (It can be less than when the
832 scheduler puts a body instruction before the first prologue
833 instruction.) */
834 for (i = 2 * max_skip_non_prologue_insns;
835 i > 0 && (lim_pc == 0 || addr < lim_pc);
836 i--)
837 {
838 struct symtab_and_line sal;
839
840 sal = find_pc_line (addr, 0);
841 if (sal.line == 0)
842 break;
843 if (sal.line <= prologue_sal.line
844 && sal.symtab == prologue_sal.symtab)
845 {
846 prologue_sal = sal;
847 }
848 addr = sal.end;
849 }
850
851 if (lim_pc == 0 || prologue_sal.end < lim_pc)
852 lim_pc = prologue_sal.end;
853 }
854 return lim_pc;
855 }
856
857 /* Return nonzero if the given instruction OP can be part of the prologue
858 of a function and saves a parameter on the stack. FRAMEP should be
859 set if one of the previous instructions in the function has set the
860 Frame Pointer. */
861
862 static int
863 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
864 {
865 /* Move parameters from argument registers to temporary register. */
866 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
867 {
868 /* Rx must be scratch register r0. */
869 const int rx_regno = (op >> 16) & 31;
870 /* Ry: Only r3 - r10 are used for parameter passing. */
871 const int ry_regno = GET_SRC_REG (op);
872
873 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
874 {
875 *r0_contains_arg = 1;
876 return 1;
877 }
878 else
879 return 0;
880 }
881
882 /* Save a General Purpose Register on stack. */
883
884 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
885 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
886 {
887 /* Rx: Only r3 - r10 are used for parameter passing. */
888 const int rx_regno = GET_SRC_REG (op);
889
890 return (rx_regno >= 3 && rx_regno <= 10);
891 }
892
893 /* Save a General Purpose Register on stack via the Frame Pointer. */
894
895 if (framep &&
896 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
897 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
898 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
899 {
900 /* Rx: Usually, only r3 - r10 are used for parameter passing.
901 However, the compiler sometimes uses r0 to hold an argument. */
902 const int rx_regno = GET_SRC_REG (op);
903
904 return ((rx_regno >= 3 && rx_regno <= 10)
905 || (rx_regno == 0 && *r0_contains_arg));
906 }
907
908 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
909 {
910 /* Only f2 - f8 are used for parameter passing. */
911 const int src_regno = GET_SRC_REG (op);
912
913 return (src_regno >= 2 && src_regno <= 8);
914 }
915
916 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
917 {
918 /* Only f2 - f8 are used for parameter passing. */
919 const int src_regno = GET_SRC_REG (op);
920
921 return (src_regno >= 2 && src_regno <= 8);
922 }
923
924 /* Not an insn that saves a parameter on stack. */
925 return 0;
926 }
927
928 static CORE_ADDR
929 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
930 {
931 CORE_ADDR orig_pc = pc;
932 CORE_ADDR last_prologue_pc = pc;
933 CORE_ADDR li_found_pc = 0;
934 gdb_byte buf[4];
935 unsigned long op;
936 long offset = 0;
937 long vr_saved_offset = 0;
938 int lr_reg = -1;
939 int cr_reg = -1;
940 int vr_reg = -1;
941 int ev_reg = -1;
942 long ev_offset = 0;
943 int vrsave_reg = -1;
944 int reg;
945 int framep = 0;
946 int minimal_toc_loaded = 0;
947 int prev_insn_was_prologue_insn = 1;
948 int num_skip_non_prologue_insns = 0;
949 int r0_contains_arg = 0;
950 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
951 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
952
953 /* Attempt to find the end of the prologue when no limit is specified.
954 Note that refine_prologue_limit() has been written so that it may
955 be used to "refine" the limits of non-zero PC values too, but this
956 is only safe if we 1) trust the line information provided by the
957 compiler and 2) iterate enough to actually find the end of the
958 prologue.
959
960 It may become a good idea at some point (for both performance and
961 accuracy) to unconditionally call refine_prologue_limit(). But,
962 until we can make a clear determination that this is beneficial,
963 we'll play it safe and only use it to obtain a limit when none
964 has been specified. */
965 if (lim_pc == 0)
966 lim_pc = refine_prologue_limit (pc, lim_pc);
967
968 memset (fdata, 0, sizeof (struct rs6000_framedata));
969 fdata->saved_gpr = -1;
970 fdata->saved_fpr = -1;
971 fdata->saved_vr = -1;
972 fdata->saved_ev = -1;
973 fdata->alloca_reg = -1;
974 fdata->frameless = 1;
975 fdata->nosavedpc = 1;
976
977 for (;; pc += 4)
978 {
979 /* Sometimes it isn't clear if an instruction is a prologue
980 instruction or not. When we encounter one of these ambiguous
981 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
982 Otherwise, we'll assume that it really is a prologue instruction. */
983 if (prev_insn_was_prologue_insn)
984 last_prologue_pc = pc;
985
986 /* Stop scanning if we've hit the limit. */
987 if (lim_pc != 0 && pc >= lim_pc)
988 break;
989
990 prev_insn_was_prologue_insn = 1;
991
992 /* Fetch the instruction and convert it to an integer. */
993 if (target_read_memory (pc, buf, 4))
994 break;
995 op = extract_signed_integer (buf, 4);
996
997 if ((op & 0xfc1fffff) == 0x7c0802a6)
998 { /* mflr Rx */
999 /* Since shared library / PIC code, which needs to get its
1000 address at runtime, can appear to save more than one link
1001 register vis:
1002
1003 *INDENT-OFF*
1004 stwu r1,-304(r1)
1005 mflr r3
1006 bl 0xff570d0 (blrl)
1007 stw r30,296(r1)
1008 mflr r30
1009 stw r31,300(r1)
1010 stw r3,308(r1);
1011 ...
1012 *INDENT-ON*
1013
1014 remember just the first one, but skip over additional
1015 ones. */
1016 if (lr_reg == -1)
1017 lr_reg = (op & 0x03e00000);
1018 if (lr_reg == 0)
1019 r0_contains_arg = 0;
1020 continue;
1021 }
1022 else if ((op & 0xfc1fffff) == 0x7c000026)
1023 { /* mfcr Rx */
1024 cr_reg = (op & 0x03e00000);
1025 if (cr_reg == 0)
1026 r0_contains_arg = 0;
1027 continue;
1028
1029 }
1030 else if ((op & 0xfc1f0000) == 0xd8010000)
1031 { /* stfd Rx,NUM(r1) */
1032 reg = GET_SRC_REG (op);
1033 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1034 {
1035 fdata->saved_fpr = reg;
1036 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1037 }
1038 continue;
1039
1040 }
1041 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1042 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1043 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1044 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1045 {
1046
1047 reg = GET_SRC_REG (op);
1048 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1049 {
1050 fdata->saved_gpr = reg;
1051 if ((op & 0xfc1f0003) == 0xf8010000)
1052 op &= ~3UL;
1053 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1054 }
1055 continue;
1056
1057 }
1058 else if ((op & 0xffff0000) == 0x60000000)
1059 {
1060 /* nop */
1061 /* Allow nops in the prologue, but do not consider them to
1062 be part of the prologue unless followed by other prologue
1063 instructions. */
1064 prev_insn_was_prologue_insn = 0;
1065 continue;
1066
1067 }
1068 else if ((op & 0xffff0000) == 0x3c000000)
1069 { /* addis 0,0,NUM, used
1070 for >= 32k frames */
1071 fdata->offset = (op & 0x0000ffff) << 16;
1072 fdata->frameless = 0;
1073 r0_contains_arg = 0;
1074 continue;
1075
1076 }
1077 else if ((op & 0xffff0000) == 0x60000000)
1078 { /* ori 0,0,NUM, 2nd ha
1079 lf of >= 32k frames */
1080 fdata->offset |= (op & 0x0000ffff);
1081 fdata->frameless = 0;
1082 r0_contains_arg = 0;
1083 continue;
1084
1085 }
1086 else if (lr_reg >= 0 &&
1087 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1088 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1089 /* stw Rx, NUM(r1) */
1090 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1091 /* stwu Rx, NUM(r1) */
1092 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1093 { /* where Rx == lr */
1094 fdata->lr_offset = offset;
1095 fdata->nosavedpc = 0;
1096 /* Invalidate lr_reg, but don't set it to -1.
1097 That would mean that it had never been set. */
1098 lr_reg = -2;
1099 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1100 (op & 0xfc000000) == 0x90000000) /* stw */
1101 {
1102 /* Does not update r1, so add displacement to lr_offset. */
1103 fdata->lr_offset += SIGNED_SHORT (op);
1104 }
1105 continue;
1106
1107 }
1108 else if (cr_reg >= 0 &&
1109 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1110 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1111 /* stw Rx, NUM(r1) */
1112 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1113 /* stwu Rx, NUM(r1) */
1114 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1115 { /* where Rx == cr */
1116 fdata->cr_offset = offset;
1117 /* Invalidate cr_reg, but don't set it to -1.
1118 That would mean that it had never been set. */
1119 cr_reg = -2;
1120 if ((op & 0xfc000003) == 0xf8000000 ||
1121 (op & 0xfc000000) == 0x90000000)
1122 {
1123 /* Does not update r1, so add displacement to cr_offset. */
1124 fdata->cr_offset += SIGNED_SHORT (op);
1125 }
1126 continue;
1127
1128 }
1129 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1130 {
1131 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1132 prediction bits. If the LR has already been saved, we can
1133 skip it. */
1134 continue;
1135 }
1136 else if (op == 0x48000005)
1137 { /* bl .+4 used in
1138 -mrelocatable */
1139 continue;
1140
1141 }
1142 else if (op == 0x48000004)
1143 { /* b .+4 (xlc) */
1144 break;
1145
1146 }
1147 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1148 in V.4 -mminimal-toc */
1149 (op & 0xffff0000) == 0x3bde0000)
1150 { /* addi 30,30,foo@l */
1151 continue;
1152
1153 }
1154 else if ((op & 0xfc000001) == 0x48000001)
1155 { /* bl foo,
1156 to save fprs??? */
1157
1158 fdata->frameless = 0;
1159 /* Don't skip over the subroutine call if it is not within
1160 the first three instructions of the prologue and either
1161 we have no line table information or the line info tells
1162 us that the subroutine call is not part of the line
1163 associated with the prologue. */
1164 if ((pc - orig_pc) > 8)
1165 {
1166 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1167 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1168
1169 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1170 break;
1171 }
1172
1173 op = read_memory_integer (pc + 4, 4);
1174
1175 /* At this point, make sure this is not a trampoline
1176 function (a function that simply calls another functions,
1177 and nothing else). If the next is not a nop, this branch
1178 was part of the function prologue. */
1179
1180 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1181 break; /* don't skip over
1182 this branch */
1183 continue;
1184
1185 }
1186 /* update stack pointer */
1187 else if ((op & 0xfc1f0000) == 0x94010000)
1188 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1189 fdata->frameless = 0;
1190 fdata->offset = SIGNED_SHORT (op);
1191 offset = fdata->offset;
1192 continue;
1193 }
1194 else if ((op & 0xfc1f016a) == 0x7c01016e)
1195 { /* stwux rX,r1,rY */
1196 /* no way to figure out what r1 is going to be */
1197 fdata->frameless = 0;
1198 offset = fdata->offset;
1199 continue;
1200 }
1201 else if ((op & 0xfc1f0003) == 0xf8010001)
1202 { /* stdu rX,NUM(r1) */
1203 fdata->frameless = 0;
1204 fdata->offset = SIGNED_SHORT (op & ~3UL);
1205 offset = fdata->offset;
1206 continue;
1207 }
1208 else if ((op & 0xfc1f016a) == 0x7c01016a)
1209 { /* stdux rX,r1,rY */
1210 /* no way to figure out what r1 is going to be */
1211 fdata->frameless = 0;
1212 offset = fdata->offset;
1213 continue;
1214 }
1215 /* Load up minimal toc pointer */
1216 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1217 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1218 && !minimal_toc_loaded)
1219 {
1220 minimal_toc_loaded = 1;
1221 continue;
1222
1223 /* move parameters from argument registers to local variable
1224 registers */
1225 }
1226 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1227 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1228 (((op >> 21) & 31) <= 10) &&
1229 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
1230 {
1231 continue;
1232
1233 /* store parameters in stack */
1234 }
1235 /* Move parameters from argument registers to temporary register. */
1236 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1237 {
1238 continue;
1239
1240 /* Set up frame pointer */
1241 }
1242 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1243 || op == 0x7c3f0b78)
1244 { /* mr r31, r1 */
1245 fdata->frameless = 0;
1246 framep = 1;
1247 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1248 continue;
1249
1250 /* Another way to set up the frame pointer. */
1251 }
1252 else if ((op & 0xfc1fffff) == 0x38010000)
1253 { /* addi rX, r1, 0x0 */
1254 fdata->frameless = 0;
1255 framep = 1;
1256 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1257 + ((op & ~0x38010000) >> 21));
1258 continue;
1259 }
1260 /* AltiVec related instructions. */
1261 /* Store the vrsave register (spr 256) in another register for
1262 later manipulation, or load a register into the vrsave
1263 register. 2 instructions are used: mfvrsave and
1264 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1265 and mtspr SPR256, Rn. */
1266 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1267 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1268 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1269 {
1270 vrsave_reg = GET_SRC_REG (op);
1271 continue;
1272 }
1273 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1274 {
1275 continue;
1276 }
1277 /* Store the register where vrsave was saved to onto the stack:
1278 rS is the register where vrsave was stored in a previous
1279 instruction. */
1280 /* 100100 sssss 00001 dddddddd dddddddd */
1281 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1282 {
1283 if (vrsave_reg == GET_SRC_REG (op))
1284 {
1285 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1286 vrsave_reg = -1;
1287 }
1288 continue;
1289 }
1290 /* Compute the new value of vrsave, by modifying the register
1291 where vrsave was saved to. */
1292 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1293 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1294 {
1295 continue;
1296 }
1297 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1298 in a pair of insns to save the vector registers on the
1299 stack. */
1300 /* 001110 00000 00000 iiii iiii iiii iiii */
1301 /* 001110 01110 00000 iiii iiii iiii iiii */
1302 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1303 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1304 {
1305 if ((op & 0xffff0000) == 0x38000000)
1306 r0_contains_arg = 0;
1307 li_found_pc = pc;
1308 vr_saved_offset = SIGNED_SHORT (op);
1309
1310 /* This insn by itself is not part of the prologue, unless
1311 if part of the pair of insns mentioned above. So do not
1312 record this insn as part of the prologue yet. */
1313 prev_insn_was_prologue_insn = 0;
1314 }
1315 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1316 /* 011111 sssss 11111 00000 00111001110 */
1317 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1318 {
1319 if (pc == (li_found_pc + 4))
1320 {
1321 vr_reg = GET_SRC_REG (op);
1322 /* If this is the first vector reg to be saved, or if
1323 it has a lower number than others previously seen,
1324 reupdate the frame info. */
1325 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1326 {
1327 fdata->saved_vr = vr_reg;
1328 fdata->vr_offset = vr_saved_offset + offset;
1329 }
1330 vr_saved_offset = -1;
1331 vr_reg = -1;
1332 li_found_pc = 0;
1333 }
1334 }
1335 /* End AltiVec related instructions. */
1336
1337 /* Start BookE related instructions. */
1338 /* Store gen register S at (r31+uimm).
1339 Any register less than r13 is volatile, so we don't care. */
1340 /* 000100 sssss 11111 iiiii 01100100001 */
1341 else if (arch_info->mach == bfd_mach_ppc_e500
1342 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1343 {
1344 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1345 {
1346 unsigned int imm;
1347 ev_reg = GET_SRC_REG (op);
1348 imm = (op >> 11) & 0x1f;
1349 ev_offset = imm * 8;
1350 /* If this is the first vector reg to be saved, or if
1351 it has a lower number than others previously seen,
1352 reupdate the frame info. */
1353 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1354 {
1355 fdata->saved_ev = ev_reg;
1356 fdata->ev_offset = ev_offset + offset;
1357 }
1358 }
1359 continue;
1360 }
1361 /* Store gen register rS at (r1+rB). */
1362 /* 000100 sssss 00001 bbbbb 01100100000 */
1363 else if (arch_info->mach == bfd_mach_ppc_e500
1364 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1365 {
1366 if (pc == (li_found_pc + 4))
1367 {
1368 ev_reg = GET_SRC_REG (op);
1369 /* If this is the first vector reg to be saved, or if
1370 it has a lower number than others previously seen,
1371 reupdate the frame info. */
1372 /* We know the contents of rB from the previous instruction. */
1373 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1374 {
1375 fdata->saved_ev = ev_reg;
1376 fdata->ev_offset = vr_saved_offset + offset;
1377 }
1378 vr_saved_offset = -1;
1379 ev_reg = -1;
1380 li_found_pc = 0;
1381 }
1382 continue;
1383 }
1384 /* Store gen register r31 at (rA+uimm). */
1385 /* 000100 11111 aaaaa iiiii 01100100001 */
1386 else if (arch_info->mach == bfd_mach_ppc_e500
1387 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1388 {
1389 /* Wwe know that the source register is 31 already, but
1390 it can't hurt to compute it. */
1391 ev_reg = GET_SRC_REG (op);
1392 ev_offset = ((op >> 11) & 0x1f) * 8;
1393 /* If this is the first vector reg to be saved, or if
1394 it has a lower number than others previously seen,
1395 reupdate the frame info. */
1396 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1397 {
1398 fdata->saved_ev = ev_reg;
1399 fdata->ev_offset = ev_offset + offset;
1400 }
1401
1402 continue;
1403 }
1404 /* Store gen register S at (r31+r0).
1405 Store param on stack when offset from SP bigger than 4 bytes. */
1406 /* 000100 sssss 11111 00000 01100100000 */
1407 else if (arch_info->mach == bfd_mach_ppc_e500
1408 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1409 {
1410 if (pc == (li_found_pc + 4))
1411 {
1412 if ((op & 0x03e00000) >= 0x01a00000)
1413 {
1414 ev_reg = GET_SRC_REG (op);
1415 /* If this is the first vector reg to be saved, or if
1416 it has a lower number than others previously seen,
1417 reupdate the frame info. */
1418 /* We know the contents of r0 from the previous
1419 instruction. */
1420 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1421 {
1422 fdata->saved_ev = ev_reg;
1423 fdata->ev_offset = vr_saved_offset + offset;
1424 }
1425 ev_reg = -1;
1426 }
1427 vr_saved_offset = -1;
1428 li_found_pc = 0;
1429 continue;
1430 }
1431 }
1432 /* End BookE related instructions. */
1433
1434 else
1435 {
1436 /* Not a recognized prologue instruction.
1437 Handle optimizer code motions into the prologue by continuing
1438 the search if we have no valid frame yet or if the return
1439 address is not yet saved in the frame. */
1440 if (fdata->frameless == 0
1441 && (lr_reg == -1 || fdata->nosavedpc == 0))
1442 break;
1443
1444 if (op == 0x4e800020 /* blr */
1445 || op == 0x4e800420) /* bctr */
1446 /* Do not scan past epilogue in frameless functions or
1447 trampolines. */
1448 break;
1449 if ((op & 0xf4000000) == 0x40000000) /* bxx */
1450 /* Never skip branches. */
1451 break;
1452
1453 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1454 /* Do not scan too many insns, scanning insns is expensive with
1455 remote targets. */
1456 break;
1457
1458 /* Continue scanning. */
1459 prev_insn_was_prologue_insn = 0;
1460 continue;
1461 }
1462 }
1463
1464 #if 0
1465 /* I have problems with skipping over __main() that I need to address
1466 * sometime. Previously, I used to use misc_function_vector which
1467 * didn't work as well as I wanted to be. -MGO */
1468
1469 /* If the first thing after skipping a prolog is a branch to a function,
1470 this might be a call to an initializer in main(), introduced by gcc2.
1471 We'd like to skip over it as well. Fortunately, xlc does some extra
1472 work before calling a function right after a prologue, thus we can
1473 single out such gcc2 behaviour. */
1474
1475
1476 if ((op & 0xfc000001) == 0x48000001)
1477 { /* bl foo, an initializer function? */
1478 op = read_memory_integer (pc + 4, 4);
1479
1480 if (op == 0x4def7b82)
1481 { /* cror 0xf, 0xf, 0xf (nop) */
1482
1483 /* Check and see if we are in main. If so, skip over this
1484 initializer function as well. */
1485
1486 tmp = find_pc_misc_function (pc);
1487 if (tmp >= 0
1488 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
1489 return pc + 8;
1490 }
1491 }
1492 #endif /* 0 */
1493
1494 fdata->offset = -fdata->offset;
1495 return last_prologue_pc;
1496 }
1497
1498
1499 /*************************************************************************
1500 Support for creating pushing a dummy frame into the stack, and popping
1501 frames, etc.
1502 *************************************************************************/
1503
1504
1505 /* All the ABI's require 16 byte alignment. */
1506 static CORE_ADDR
1507 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1508 {
1509 return (addr & -16);
1510 }
1511
1512 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1513 the first eight words of the argument list (that might be less than
1514 eight parameters if some parameters occupy more than one word) are
1515 passed in r3..r10 registers. float and double parameters are
1516 passed in fpr's, in addition to that. Rest of the parameters if any
1517 are passed in user stack. There might be cases in which half of the
1518 parameter is copied into registers, the other half is pushed into
1519 stack.
1520
1521 Stack must be aligned on 64-bit boundaries when synthesizing
1522 function calls.
1523
1524 If the function is returning a structure, then the return address is passed
1525 in r3, then the first 7 words of the parameters can be passed in registers,
1526 starting from r4. */
1527
1528 static CORE_ADDR
1529 rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1530 struct regcache *regcache, CORE_ADDR bp_addr,
1531 int nargs, struct value **args, CORE_ADDR sp,
1532 int struct_return, CORE_ADDR struct_addr)
1533 {
1534 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1535 int ii;
1536 int len = 0;
1537 int argno; /* current argument number */
1538 int argbytes; /* current argument byte */
1539 gdb_byte tmp_buffer[50];
1540 int f_argno = 0; /* current floating point argno */
1541 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1542 CORE_ADDR func_addr = find_function_addr (function, NULL);
1543
1544 struct value *arg = 0;
1545 struct type *type;
1546
1547 CORE_ADDR saved_sp;
1548
1549 /* The calling convention this function implements assumes the
1550 processor has floating-point registers. We shouldn't be using it
1551 on PPC variants that lack them. */
1552 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1553
1554 /* The first eight words of ther arguments are passed in registers.
1555 Copy them appropriately. */
1556 ii = 0;
1557
1558 /* If the function is returning a `struct', then the first word
1559 (which will be passed in r3) is used for struct return address.
1560 In that case we should advance one word and start from r4
1561 register to copy parameters. */
1562 if (struct_return)
1563 {
1564 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1565 struct_addr);
1566 ii++;
1567 }
1568
1569 /*
1570 effectively indirect call... gcc does...
1571
1572 return_val example( float, int);
1573
1574 eabi:
1575 float in fp0, int in r3
1576 offset of stack on overflow 8/16
1577 for varargs, must go by type.
1578 power open:
1579 float in r3&r4, int in r5
1580 offset of stack on overflow different
1581 both:
1582 return in r3 or f0. If no float, must study how gcc emulates floats;
1583 pay attention to arg promotion.
1584 User may have to cast\args to handle promotion correctly
1585 since gdb won't know if prototype supplied or not.
1586 */
1587
1588 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1589 {
1590 int reg_size = register_size (current_gdbarch, ii + 3);
1591
1592 arg = args[argno];
1593 type = check_typedef (value_type (arg));
1594 len = TYPE_LENGTH (type);
1595
1596 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1597 {
1598
1599 /* Floating point arguments are passed in fpr's, as well as gpr's.
1600 There are 13 fpr's reserved for passing parameters. At this point
1601 there is no way we would run out of them. */
1602
1603 gdb_assert (len <= 8);
1604
1605 regcache_cooked_write (regcache,
1606 tdep->ppc_fp0_regnum + 1 + f_argno,
1607 value_contents (arg));
1608 ++f_argno;
1609 }
1610
1611 if (len > reg_size)
1612 {
1613
1614 /* Argument takes more than one register. */
1615 while (argbytes < len)
1616 {
1617 gdb_byte word[MAX_REGISTER_SIZE];
1618 memset (word, 0, reg_size);
1619 memcpy (word,
1620 ((char *) value_contents (arg)) + argbytes,
1621 (len - argbytes) > reg_size
1622 ? reg_size : len - argbytes);
1623 regcache_cooked_write (regcache,
1624 tdep->ppc_gp0_regnum + 3 + ii,
1625 word);
1626 ++ii, argbytes += reg_size;
1627
1628 if (ii >= 8)
1629 goto ran_out_of_registers_for_arguments;
1630 }
1631 argbytes = 0;
1632 --ii;
1633 }
1634 else
1635 {
1636 /* Argument can fit in one register. No problem. */
1637 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1638 gdb_byte word[MAX_REGISTER_SIZE];
1639
1640 memset (word, 0, reg_size);
1641 memcpy (word, value_contents (arg), len);
1642 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
1643 }
1644 ++argno;
1645 }
1646
1647 ran_out_of_registers_for_arguments:
1648
1649 saved_sp = read_sp ();
1650
1651 /* Location for 8 parameters are always reserved. */
1652 sp -= wordsize * 8;
1653
1654 /* Another six words for back chain, TOC register, link register, etc. */
1655 sp -= wordsize * 6;
1656
1657 /* Stack pointer must be quadword aligned. */
1658 sp &= -16;
1659
1660 /* If there are more arguments, allocate space for them in
1661 the stack, then push them starting from the ninth one. */
1662
1663 if ((argno < nargs) || argbytes)
1664 {
1665 int space = 0, jj;
1666
1667 if (argbytes)
1668 {
1669 space += ((len - argbytes + 3) & -4);
1670 jj = argno + 1;
1671 }
1672 else
1673 jj = argno;
1674
1675 for (; jj < nargs; ++jj)
1676 {
1677 struct value *val = args[jj];
1678 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
1679 }
1680
1681 /* Add location required for the rest of the parameters. */
1682 space = (space + 15) & -16;
1683 sp -= space;
1684
1685 /* This is another instance we need to be concerned about
1686 securing our stack space. If we write anything underneath %sp
1687 (r1), we might conflict with the kernel who thinks he is free
1688 to use this area. So, update %sp first before doing anything
1689 else. */
1690
1691 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1692
1693 /* If the last argument copied into the registers didn't fit there
1694 completely, push the rest of it into stack. */
1695
1696 if (argbytes)
1697 {
1698 write_memory (sp + 24 + (ii * 4),
1699 value_contents (arg) + argbytes,
1700 len - argbytes);
1701 ++argno;
1702 ii += ((len - argbytes + 3) & -4) / 4;
1703 }
1704
1705 /* Push the rest of the arguments into stack. */
1706 for (; argno < nargs; ++argno)
1707 {
1708
1709 arg = args[argno];
1710 type = check_typedef (value_type (arg));
1711 len = TYPE_LENGTH (type);
1712
1713
1714 /* Float types should be passed in fpr's, as well as in the
1715 stack. */
1716 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1717 {
1718
1719 gdb_assert (len <= 8);
1720
1721 regcache_cooked_write (regcache,
1722 tdep->ppc_fp0_regnum + 1 + f_argno,
1723 value_contents (arg));
1724 ++f_argno;
1725 }
1726
1727 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
1728 ii += ((len + 3) & -4) / 4;
1729 }
1730 }
1731
1732 /* Set the stack pointer. According to the ABI, the SP is meant to
1733 be set _before_ the corresponding stack space is used. On AIX,
1734 this even applies when the target has been completely stopped!
1735 Not doing this can lead to conflicts with the kernel which thinks
1736 that it still has control over this not-yet-allocated stack
1737 region. */
1738 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1739
1740 /* Set back chain properly. */
1741 store_unsigned_integer (tmp_buffer, wordsize, saved_sp);
1742 write_memory (sp, tmp_buffer, wordsize);
1743
1744 /* Point the inferior function call's return address at the dummy's
1745 breakpoint. */
1746 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1747
1748 /* Set the TOC register, get the value from the objfile reader
1749 which, in turn, gets it from the VMAP table. */
1750 if (rs6000_find_toc_address_hook != NULL)
1751 {
1752 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1753 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1754 }
1755
1756 target_store_registers (-1);
1757 return sp;
1758 }
1759
1760 /* PowerOpen always puts structures in memory. Vectors, which were
1761 added later, do get returned in a register though. */
1762
1763 static int
1764 rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1765 {
1766 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1767 && TYPE_VECTOR (value_type))
1768 return 0;
1769 return 1;
1770 }
1771
1772 static void
1773 rs6000_extract_return_value (struct type *valtype, gdb_byte *regbuf,
1774 gdb_byte *valbuf)
1775 {
1776 int offset = 0;
1777 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1778
1779 /* The calling convention this function implements assumes the
1780 processor has floating-point registers. We shouldn't be using it
1781 on PPC variants that lack them. */
1782 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1783
1784 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1785 {
1786
1787 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1788 We need to truncate the return value into float size (4 byte) if
1789 necessary. */
1790
1791 convert_typed_floating (&regbuf[DEPRECATED_REGISTER_BYTE
1792 (tdep->ppc_fp0_regnum + 1)],
1793 builtin_type_double,
1794 valbuf,
1795 valtype);
1796 }
1797 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1798 && TYPE_LENGTH (valtype) == 16
1799 && TYPE_VECTOR (valtype))
1800 {
1801 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1802 TYPE_LENGTH (valtype));
1803 }
1804 else
1805 {
1806 /* return value is copied starting from r3. */
1807 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1808 && TYPE_LENGTH (valtype) < register_size (current_gdbarch, 3))
1809 offset = register_size (current_gdbarch, 3) - TYPE_LENGTH (valtype);
1810
1811 memcpy (valbuf,
1812 regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
1813 TYPE_LENGTH (valtype));
1814 }
1815 }
1816
1817 /* Return whether handle_inferior_event() should proceed through code
1818 starting at PC in function NAME when stepping.
1819
1820 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1821 handle memory references that are too distant to fit in instructions
1822 generated by the compiler. For example, if 'foo' in the following
1823 instruction:
1824
1825 lwz r9,foo(r2)
1826
1827 is greater than 32767, the linker might replace the lwz with a branch to
1828 somewhere in @FIX1 that does the load in 2 instructions and then branches
1829 back to where execution should continue.
1830
1831 GDB should silently step over @FIX code, just like AIX dbx does.
1832 Unfortunately, the linker uses the "b" instruction for the
1833 branches, meaning that the link register doesn't get set.
1834 Therefore, GDB's usual step_over_function () mechanism won't work.
1835
1836 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and
1837 SKIP_TRAMPOLINE_CODE hooks in handle_inferior_event() to skip past
1838 @FIX code. */
1839
1840 int
1841 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1842 {
1843 return name && !strncmp (name, "@FIX", 4);
1844 }
1845
1846 /* Skip code that the user doesn't want to see when stepping:
1847
1848 1. Indirect function calls use a piece of trampoline code to do context
1849 switching, i.e. to set the new TOC table. Skip such code if we are on
1850 its first instruction (as when we have single-stepped to here).
1851
1852 2. Skip shared library trampoline code (which is different from
1853 indirect function call trampolines).
1854
1855 3. Skip bigtoc fixup code.
1856
1857 Result is desired PC to step until, or NULL if we are not in
1858 code that should be skipped. */
1859
1860 CORE_ADDR
1861 rs6000_skip_trampoline_code (CORE_ADDR pc)
1862 {
1863 unsigned int ii, op;
1864 int rel;
1865 CORE_ADDR solib_target_pc;
1866 struct minimal_symbol *msymbol;
1867
1868 static unsigned trampoline_code[] =
1869 {
1870 0x800b0000, /* l r0,0x0(r11) */
1871 0x90410014, /* st r2,0x14(r1) */
1872 0x7c0903a6, /* mtctr r0 */
1873 0x804b0004, /* l r2,0x4(r11) */
1874 0x816b0008, /* l r11,0x8(r11) */
1875 0x4e800420, /* bctr */
1876 0x4e800020, /* br */
1877 0
1878 };
1879
1880 /* Check for bigtoc fixup code. */
1881 msymbol = lookup_minimal_symbol_by_pc (pc);
1882 if (msymbol
1883 && rs6000_in_solib_return_trampoline (pc,
1884 DEPRECATED_SYMBOL_NAME (msymbol)))
1885 {
1886 /* Double-check that the third instruction from PC is relative "b". */
1887 op = read_memory_integer (pc + 8, 4);
1888 if ((op & 0xfc000003) == 0x48000000)
1889 {
1890 /* Extract bits 6-29 as a signed 24-bit relative word address and
1891 add it to the containing PC. */
1892 rel = ((int)(op << 6) >> 6);
1893 return pc + 8 + rel;
1894 }
1895 }
1896
1897 /* If pc is in a shared library trampoline, return its target. */
1898 solib_target_pc = find_solib_trampoline_target (pc);
1899 if (solib_target_pc)
1900 return solib_target_pc;
1901
1902 for (ii = 0; trampoline_code[ii]; ++ii)
1903 {
1904 op = read_memory_integer (pc + (ii * 4), 4);
1905 if (op != trampoline_code[ii])
1906 return 0;
1907 }
1908 ii = read_register (11); /* r11 holds destination addr */
1909 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1910 return pc;
1911 }
1912
1913 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1914 isn't available with that word size, return 0. */
1915
1916 static int
1917 regsize (const struct reg *reg, int wordsize)
1918 {
1919 return wordsize == 8 ? reg->sz64 : reg->sz32;
1920 }
1921
1922 /* Return the name of register number N, or null if no such register exists
1923 in the current architecture. */
1924
1925 static const char *
1926 rs6000_register_name (int n)
1927 {
1928 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1929 const struct reg *reg = tdep->regs + n;
1930
1931 if (!regsize (reg, tdep->wordsize))
1932 return NULL;
1933 return reg->name;
1934 }
1935
1936 /* Return the GDB type object for the "standard" data type
1937 of data in register N. */
1938
1939 static struct type *
1940 rs6000_register_type (struct gdbarch *gdbarch, int n)
1941 {
1942 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1943 const struct reg *reg = tdep->regs + n;
1944
1945 if (reg->fpr)
1946 return builtin_type_double;
1947 else
1948 {
1949 int size = regsize (reg, tdep->wordsize);
1950 switch (size)
1951 {
1952 case 0:
1953 return builtin_type_int0;
1954 case 4:
1955 return builtin_type_uint32;
1956 case 8:
1957 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1958 return builtin_type_vec64;
1959 else
1960 return builtin_type_uint64;
1961 break;
1962 case 16:
1963 return builtin_type_vec128;
1964 break;
1965 default:
1966 internal_error (__FILE__, __LINE__, _("Register %d size %d unknown"),
1967 n, size);
1968 }
1969 }
1970 }
1971
1972 /* Is REGNUM a member of REGGROUP? */
1973 static int
1974 rs6000_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1975 struct reggroup *group)
1976 {
1977 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1978 int float_p;
1979 int vector_p;
1980 int general_p;
1981
1982 if (REGISTER_NAME (regnum) == NULL
1983 || *REGISTER_NAME (regnum) == '\0')
1984 return 0;
1985 if (group == all_reggroup)
1986 return 1;
1987
1988 float_p = (regnum == tdep->ppc_fpscr_regnum
1989 || (regnum >= tdep->ppc_fp0_regnum
1990 && regnum < tdep->ppc_fp0_regnum + 32));
1991 if (group == float_reggroup)
1992 return float_p;
1993
1994 vector_p = ((tdep->ppc_vr0_regnum >= 0
1995 && regnum >= tdep->ppc_vr0_regnum
1996 && regnum < tdep->ppc_vr0_regnum + 32)
1997 || (tdep->ppc_ev0_regnum >= 0
1998 && regnum >= tdep->ppc_ev0_regnum
1999 && regnum < tdep->ppc_ev0_regnum + 32)
2000 || regnum == tdep->ppc_vrsave_regnum - 1 /* vscr */
2001 || regnum == tdep->ppc_vrsave_regnum
2002 || regnum == tdep->ppc_acc_regnum
2003 || regnum == tdep->ppc_spefscr_regnum);
2004 if (group == vector_reggroup)
2005 return vector_p;
2006
2007 /* Note that PS aka MSR isn't included - it's a system register (and
2008 besides, due to GCC's CFI foobar you do not want to restore
2009 it). */
2010 general_p = ((regnum >= tdep->ppc_gp0_regnum
2011 && regnum < tdep->ppc_gp0_regnum + 32)
2012 || regnum == tdep->ppc_toc_regnum
2013 || regnum == tdep->ppc_cr_regnum
2014 || regnum == tdep->ppc_lr_regnum
2015 || regnum == tdep->ppc_ctr_regnum
2016 || regnum == tdep->ppc_xer_regnum
2017 || regnum == PC_REGNUM);
2018 if (group == general_reggroup)
2019 return general_p;
2020
2021 if (group == save_reggroup || group == restore_reggroup)
2022 return general_p || vector_p || float_p;
2023
2024 return 0;
2025 }
2026
2027 /* The register format for RS/6000 floating point registers is always
2028 double, we need a conversion if the memory format is float. */
2029
2030 static int
2031 rs6000_convert_register_p (int regnum, struct type *type)
2032 {
2033 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2034
2035 return (reg->fpr
2036 && TYPE_CODE (type) == TYPE_CODE_FLT
2037 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
2038 }
2039
2040 static void
2041 rs6000_register_to_value (struct frame_info *frame,
2042 int regnum,
2043 struct type *type,
2044 gdb_byte *to)
2045 {
2046 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2047 gdb_byte from[MAX_REGISTER_SIZE];
2048
2049 gdb_assert (reg->fpr);
2050 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2051
2052 get_frame_register (frame, regnum, from);
2053 convert_typed_floating (from, builtin_type_double, to, type);
2054 }
2055
2056 static void
2057 rs6000_value_to_register (struct frame_info *frame,
2058 int regnum,
2059 struct type *type,
2060 const gdb_byte *from)
2061 {
2062 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2063 gdb_byte to[MAX_REGISTER_SIZE];
2064
2065 gdb_assert (reg->fpr);
2066 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2067
2068 convert_typed_floating (from, type, to, builtin_type_double);
2069 put_frame_register (frame, regnum, to);
2070 }
2071
2072 /* Move SPE vector register values between a 64-bit buffer and the two
2073 32-bit raw register halves in a regcache. This function handles
2074 both splitting a 64-bit value into two 32-bit halves, and joining
2075 two halves into a whole 64-bit value, depending on the function
2076 passed as the MOVE argument.
2077
2078 EV_REG must be the number of an SPE evN vector register --- a
2079 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2080 64-bit buffer.
2081
2082 Call MOVE once for each 32-bit half of that register, passing
2083 REGCACHE, the number of the raw register corresponding to that
2084 half, and the address of the appropriate half of BUFFER.
2085
2086 For example, passing 'regcache_raw_read' as the MOVE function will
2087 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2088 'regcache_raw_supply' will supply the contents of BUFFER to the
2089 appropriate pair of raw registers in REGCACHE.
2090
2091 You may need to cast away some 'const' qualifiers when passing
2092 MOVE, since this function can't tell at compile-time which of
2093 REGCACHE or BUFFER is acting as the source of the data. If C had
2094 co-variant type qualifiers, ... */
2095 static void
2096 e500_move_ev_register (void (*move) (struct regcache *regcache,
2097 int regnum, gdb_byte *buf),
2098 struct regcache *regcache, int ev_reg,
2099 gdb_byte *buffer)
2100 {
2101 struct gdbarch *arch = get_regcache_arch (regcache);
2102 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2103 int reg_index;
2104 gdb_byte *byte_buffer = buffer;
2105
2106 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
2107 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
2108
2109 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2110
2111 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2112 {
2113 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2114 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2115 }
2116 else
2117 {
2118 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2119 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2120 }
2121 }
2122
2123 static void
2124 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2125 int reg_nr, gdb_byte *buffer)
2126 {
2127 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2128 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2129
2130 gdb_assert (regcache_arch == gdbarch);
2131
2132 if (tdep->ppc_ev0_regnum <= reg_nr
2133 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2134 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2135 else
2136 internal_error (__FILE__, __LINE__,
2137 _("e500_pseudo_register_read: "
2138 "called on unexpected register '%s' (%d)"),
2139 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2140 }
2141
2142 static void
2143 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2144 int reg_nr, const gdb_byte *buffer)
2145 {
2146 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2147 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2148
2149 gdb_assert (regcache_arch == gdbarch);
2150
2151 if (tdep->ppc_ev0_regnum <= reg_nr
2152 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2153 e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
2154 regcache_raw_write,
2155 regcache, reg_nr, (gdb_byte *) buffer);
2156 else
2157 internal_error (__FILE__, __LINE__,
2158 _("e500_pseudo_register_read: "
2159 "called on unexpected register '%s' (%d)"),
2160 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2161 }
2162
2163 /* The E500 needs a custom reggroup function: it has anonymous raw
2164 registers, and default_register_reggroup_p assumes that anonymous
2165 registers are not members of any reggroup. */
2166 static int
2167 e500_register_reggroup_p (struct gdbarch *gdbarch,
2168 int regnum,
2169 struct reggroup *group)
2170 {
2171 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2172
2173 /* The save and restore register groups need to include the
2174 upper-half registers, even though they're anonymous. */
2175 if ((group == save_reggroup
2176 || group == restore_reggroup)
2177 && (tdep->ppc_ev0_upper_regnum <= regnum
2178 && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
2179 return 1;
2180
2181 /* In all other regards, the default reggroup definition is fine. */
2182 return default_register_reggroup_p (gdbarch, regnum, group);
2183 }
2184
2185 /* Convert a DBX STABS register number to a GDB register number. */
2186 static int
2187 rs6000_stab_reg_to_regnum (int num)
2188 {
2189 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2190
2191 if (0 <= num && num <= 31)
2192 return tdep->ppc_gp0_regnum + num;
2193 else if (32 <= num && num <= 63)
2194 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2195 specifies registers the architecture doesn't have? Our
2196 callers don't check the value we return. */
2197 return tdep->ppc_fp0_regnum + (num - 32);
2198 else if (77 <= num && num <= 108)
2199 return tdep->ppc_vr0_regnum + (num - 77);
2200 else if (1200 <= num && num < 1200 + 32)
2201 return tdep->ppc_ev0_regnum + (num - 1200);
2202 else
2203 switch (num)
2204 {
2205 case 64:
2206 return tdep->ppc_mq_regnum;
2207 case 65:
2208 return tdep->ppc_lr_regnum;
2209 case 66:
2210 return tdep->ppc_ctr_regnum;
2211 case 76:
2212 return tdep->ppc_xer_regnum;
2213 case 109:
2214 return tdep->ppc_vrsave_regnum;
2215 case 110:
2216 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2217 case 111:
2218 return tdep->ppc_acc_regnum;
2219 case 112:
2220 return tdep->ppc_spefscr_regnum;
2221 default:
2222 return num;
2223 }
2224 }
2225
2226
2227 /* Convert a Dwarf 2 register number to a GDB register number. */
2228 static int
2229 rs6000_dwarf2_reg_to_regnum (int num)
2230 {
2231 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2232
2233 if (0 <= num && num <= 31)
2234 return tdep->ppc_gp0_regnum + num;
2235 else if (32 <= num && num <= 63)
2236 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2237 specifies registers the architecture doesn't have? Our
2238 callers don't check the value we return. */
2239 return tdep->ppc_fp0_regnum + (num - 32);
2240 else if (1124 <= num && num < 1124 + 32)
2241 return tdep->ppc_vr0_regnum + (num - 1124);
2242 else if (1200 <= num && num < 1200 + 32)
2243 return tdep->ppc_ev0_regnum + (num - 1200);
2244 else
2245 switch (num)
2246 {
2247 case 67:
2248 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2249 case 99:
2250 return tdep->ppc_acc_regnum;
2251 case 100:
2252 return tdep->ppc_mq_regnum;
2253 case 101:
2254 return tdep->ppc_xer_regnum;
2255 case 108:
2256 return tdep->ppc_lr_regnum;
2257 case 109:
2258 return tdep->ppc_ctr_regnum;
2259 case 356:
2260 return tdep->ppc_vrsave_regnum;
2261 case 612:
2262 return tdep->ppc_spefscr_regnum;
2263 default:
2264 return num;
2265 }
2266 }
2267
2268
2269 static void
2270 rs6000_store_return_value (struct type *type,
2271 struct regcache *regcache,
2272 const gdb_byte *valbuf)
2273 {
2274 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2275 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2276 int regnum = -1;
2277
2278 /* The calling convention this function implements assumes the
2279 processor has floating-point registers. We shouldn't be using it
2280 on PPC variants that lack them. */
2281 gdb_assert (ppc_floating_point_unit_p (gdbarch));
2282
2283 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2284 /* Floating point values are returned starting from FPR1 and up.
2285 Say a double_double_double type could be returned in
2286 FPR1/FPR2/FPR3 triple. */
2287 regnum = tdep->ppc_fp0_regnum + 1;
2288 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2289 {
2290 if (TYPE_LENGTH (type) == 16
2291 && TYPE_VECTOR (type))
2292 regnum = tdep->ppc_vr0_regnum + 2;
2293 else
2294 internal_error (__FILE__, __LINE__,
2295 _("rs6000_store_return_value: "
2296 "unexpected array return type"));
2297 }
2298 else
2299 /* Everything else is returned in GPR3 and up. */
2300 regnum = tdep->ppc_gp0_regnum + 3;
2301
2302 {
2303 size_t bytes_written = 0;
2304
2305 while (bytes_written < TYPE_LENGTH (type))
2306 {
2307 /* How much of this value can we write to this register? */
2308 size_t bytes_to_write = min (TYPE_LENGTH (type) - bytes_written,
2309 register_size (gdbarch, regnum));
2310 regcache_cooked_write_part (regcache, regnum,
2311 0, bytes_to_write,
2312 valbuf + bytes_written);
2313 regnum++;
2314 bytes_written += bytes_to_write;
2315 }
2316 }
2317 }
2318
2319
2320 /* Extract from an array REGBUF containing the (raw) register state
2321 the address in which a function should return its structure value,
2322 as a CORE_ADDR (or an expression that can be used as one). */
2323
2324 static CORE_ADDR
2325 rs6000_extract_struct_value_address (struct regcache *regcache)
2326 {
2327 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2328 function call GDB knows the address of the struct return value
2329 and hence, should not need to call this function. Unfortunately,
2330 the current call_function_by_hand() code only saves the most
2331 recent struct address leading to occasional calls. The code
2332 should instead maintain a stack of such addresses (in the dummy
2333 frame object). */
2334 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2335 really got no idea where the return value is being stored. While
2336 r3, on function entry, contained the address it will have since
2337 been reused (scratch) and hence wouldn't be valid */
2338 return 0;
2339 }
2340
2341 /* Hook called when a new child process is started. */
2342
2343 void
2344 rs6000_create_inferior (int pid)
2345 {
2346 if (rs6000_set_host_arch_hook)
2347 rs6000_set_host_arch_hook (pid);
2348 }
2349 \f
2350 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
2351
2352 Usually a function pointer's representation is simply the address
2353 of the function. On the RS/6000 however, a function pointer is
2354 represented by a pointer to an OPD entry. This OPD entry contains
2355 three words, the first word is the address of the function, the
2356 second word is the TOC pointer (r2), and the third word is the
2357 static chain value. Throughout GDB it is currently assumed that a
2358 function pointer contains the address of the function, which is not
2359 easy to fix. In addition, the conversion of a function address to
2360 a function pointer would require allocation of an OPD entry in the
2361 inferior's memory space, with all its drawbacks. To be able to
2362 call C++ virtual methods in the inferior (which are called via
2363 function pointers), find_function_addr uses this function to get the
2364 function address from a function pointer. */
2365
2366 /* Return real function address if ADDR (a function pointer) is in the data
2367 space and is therefore a special function pointer. */
2368
2369 static CORE_ADDR
2370 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2371 CORE_ADDR addr,
2372 struct target_ops *targ)
2373 {
2374 struct obj_section *s;
2375
2376 s = find_pc_section (addr);
2377 if (s && s->the_bfd_section->flags & SEC_CODE)
2378 return addr;
2379
2380 /* ADDR is in the data space, so it's a special function pointer. */
2381 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2382 }
2383 \f
2384
2385 /* Handling the various POWER/PowerPC variants. */
2386
2387
2388 /* The arrays here called registers_MUMBLE hold information about available
2389 registers.
2390
2391 For each family of PPC variants, I've tried to isolate out the
2392 common registers and put them up front, so that as long as you get
2393 the general family right, GDB will correctly identify the registers
2394 common to that family. The common register sets are:
2395
2396 For the 60x family: hid0 hid1 iabr dabr pir
2397
2398 For the 505 and 860 family: eie eid nri
2399
2400 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2401 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2402 pbu1 pbl2 pbu2
2403
2404 Most of these register groups aren't anything formal. I arrived at
2405 them by looking at the registers that occurred in more than one
2406 processor.
2407
2408 Note: kevinb/2002-04-30: Support for the fpscr register was added
2409 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2410 for Power. For PowerPC, slot 70 was unused and was already in the
2411 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2412 slot 70 was being used for "mq", so the next available slot (71)
2413 was chosen. It would have been nice to be able to make the
2414 register numbers the same across processor cores, but this wasn't
2415 possible without either 1) renumbering some registers for some
2416 processors or 2) assigning fpscr to a really high slot that's
2417 larger than any current register number. Doing (1) is bad because
2418 existing stubs would break. Doing (2) is undesirable because it
2419 would introduce a really large gap between fpscr and the rest of
2420 the registers for most processors. */
2421
2422 /* Convenience macros for populating register arrays. */
2423
2424 /* Within another macro, convert S to a string. */
2425
2426 #define STR(s) #s
2427
2428 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2429 and 64 bits on 64-bit systems. */
2430 #define R(name) { STR(name), 4, 8, 0, 0, -1 }
2431
2432 /* Return a struct reg defining register NAME that's 32 bits on all
2433 systems. */
2434 #define R4(name) { STR(name), 4, 4, 0, 0, -1 }
2435
2436 /* Return a struct reg defining register NAME that's 64 bits on all
2437 systems. */
2438 #define R8(name) { STR(name), 8, 8, 0, 0, -1 }
2439
2440 /* Return a struct reg defining register NAME that's 128 bits on all
2441 systems. */
2442 #define R16(name) { STR(name), 16, 16, 0, 0, -1 }
2443
2444 /* Return a struct reg defining floating-point register NAME. */
2445 #define F(name) { STR(name), 8, 8, 1, 0, -1 }
2446
2447 /* Return a struct reg defining a pseudo register NAME that is 64 bits
2448 long on all systems. */
2449 #define P8(name) { STR(name), 8, 8, 0, 1, -1 }
2450
2451 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2452 systems and that doesn't exist on 64-bit systems. */
2453 #define R32(name) { STR(name), 4, 0, 0, 0, -1 }
2454
2455 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2456 systems and that doesn't exist on 32-bit systems. */
2457 #define R64(name) { STR(name), 0, 8, 0, 0, -1 }
2458
2459 /* Return a struct reg placeholder for a register that doesn't exist. */
2460 #define R0 { 0, 0, 0, 0, 0, -1 }
2461
2462 /* Return a struct reg defining an anonymous raw register that's 32
2463 bits on all systems. */
2464 #define A4 { 0, 4, 4, 0, 0, -1 }
2465
2466 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2467 32-bit systems and 64 bits on 64-bit systems. */
2468 #define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2469
2470 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2471 all systems. */
2472 #define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2473
2474 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2475 all systems, and whose SPR number is NUMBER. */
2476 #define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2477
2478 /* Return a struct reg defining an SPR named NAME that's 64 bits on
2479 64-bit systems and that doesn't exist on 32-bit systems. */
2480 #define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2481
2482 /* UISA registers common across all architectures, including POWER. */
2483
2484 #define COMMON_UISA_REGS \
2485 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2486 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2487 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2488 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2489 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2490 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2491 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2492 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2493 /* 64 */ R(pc), R(ps)
2494
2495 /* UISA-level SPRs for PowerPC. */
2496 #define PPC_UISA_SPRS \
2497 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
2498
2499 /* UISA-level SPRs for PowerPC without floating point support. */
2500 #define PPC_UISA_NOFP_SPRS \
2501 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
2502
2503 /* Segment registers, for PowerPC. */
2504 #define PPC_SEGMENT_REGS \
2505 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2506 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2507 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2508 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2509
2510 /* OEA SPRs for PowerPC. */
2511 #define PPC_OEA_SPRS \
2512 /* 87 */ S4(pvr), \
2513 /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2514 /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2515 /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2516 /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2517 /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
2518 /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
2519 /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
2520 /* 116 */ S4(dec), S(dabr), S4(ear)
2521
2522 /* AltiVec registers. */
2523 #define PPC_ALTIVEC_REGS \
2524 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2525 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2526 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2527 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2528 /*151*/R4(vscr), R4(vrsave)
2529
2530
2531 /* On machines supporting the SPE APU, the general-purpose registers
2532 are 64 bits long. There are SIMD vector instructions to treat them
2533 as pairs of floats, but the rest of the instruction set treats them
2534 as 32-bit registers, and only operates on their lower halves.
2535
2536 In the GDB regcache, we treat their high and low halves as separate
2537 registers. The low halves we present as the general-purpose
2538 registers, and then we have pseudo-registers that stitch together
2539 the upper and lower halves and present them as pseudo-registers. */
2540
2541 /* SPE GPR lower halves --- raw registers. */
2542 #define PPC_SPE_GP_REGS \
2543 /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
2544 /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2545 /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2546 /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2547
2548 /* SPE GPR upper halves --- anonymous raw registers. */
2549 #define PPC_SPE_UPPER_GP_REGS \
2550 /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2551 /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2552 /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2553 /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2554
2555 /* SPE GPR vector registers --- pseudo registers based on underlying
2556 gprs and the anonymous upper half raw registers. */
2557 #define PPC_EV_PSEUDO_REGS \
2558 /* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2559 /* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2560 /*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2561 /*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
2562
2563 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2564 user-level SPR's. */
2565 static const struct reg registers_power[] =
2566 {
2567 COMMON_UISA_REGS,
2568 /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
2569 /* 71 */ R4(fpscr)
2570 };
2571
2572 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2573 view of the PowerPC. */
2574 static const struct reg registers_powerpc[] =
2575 {
2576 COMMON_UISA_REGS,
2577 PPC_UISA_SPRS,
2578 PPC_ALTIVEC_REGS
2579 };
2580
2581 /* IBM PowerPC 403.
2582
2583 Some notes about the "tcr" special-purpose register:
2584 - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2585 403's programmable interval timer, fixed interval timer, and
2586 watchdog timer.
2587 - On the 602, SPR 984 is named "tcr", and it controls the 602's
2588 watchdog timer, and nothing else.
2589
2590 Some of the fields are similar between the two, but they're not
2591 compatible with each other. Since the two variants have different
2592 registers, with different numbers, but the same name, we can't
2593 splice the register name to get the SPR number. */
2594 static const struct reg registers_403[] =
2595 {
2596 COMMON_UISA_REGS,
2597 PPC_UISA_SPRS,
2598 PPC_SEGMENT_REGS,
2599 PPC_OEA_SPRS,
2600 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2601 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2602 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2603 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2604 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2605 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
2606 };
2607
2608 /* IBM PowerPC 403GC.
2609 See the comments about 'tcr' for the 403, above. */
2610 static const struct reg registers_403GC[] =
2611 {
2612 COMMON_UISA_REGS,
2613 PPC_UISA_SPRS,
2614 PPC_SEGMENT_REGS,
2615 PPC_OEA_SPRS,
2616 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2617 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2618 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2619 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2620 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2621 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
2622 /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
2623 /* 147 */ S(tbhu), S(tblu)
2624 };
2625
2626 /* Motorola PowerPC 505. */
2627 static const struct reg registers_505[] =
2628 {
2629 COMMON_UISA_REGS,
2630 PPC_UISA_SPRS,
2631 PPC_SEGMENT_REGS,
2632 PPC_OEA_SPRS,
2633 /* 119 */ S(eie), S(eid), S(nri)
2634 };
2635
2636 /* Motorola PowerPC 860 or 850. */
2637 static const struct reg registers_860[] =
2638 {
2639 COMMON_UISA_REGS,
2640 PPC_UISA_SPRS,
2641 PPC_SEGMENT_REGS,
2642 PPC_OEA_SPRS,
2643 /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2644 /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2645 /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2646 /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2647 /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2648 /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2649 /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2650 /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2651 /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2652 /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2653 /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2654 /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
2655 };
2656
2657 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2658 for reading and writing RTCU and RTCL. However, how one reads and writes a
2659 register is the stub's problem. */
2660 static const struct reg registers_601[] =
2661 {
2662 COMMON_UISA_REGS,
2663 PPC_UISA_SPRS,
2664 PPC_SEGMENT_REGS,
2665 PPC_OEA_SPRS,
2666 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2667 /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
2668 };
2669
2670 /* Motorola PowerPC 602.
2671 See the notes under the 403 about 'tcr'. */
2672 static const struct reg registers_602[] =
2673 {
2674 COMMON_UISA_REGS,
2675 PPC_UISA_SPRS,
2676 PPC_SEGMENT_REGS,
2677 PPC_OEA_SPRS,
2678 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2679 /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2680 /* 127 */ S(sebr), S(ser), S(sp), S(lt)
2681 };
2682
2683 /* Motorola/IBM PowerPC 603 or 603e. */
2684 static const struct reg registers_603[] =
2685 {
2686 COMMON_UISA_REGS,
2687 PPC_UISA_SPRS,
2688 PPC_SEGMENT_REGS,
2689 PPC_OEA_SPRS,
2690 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2691 /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2692 /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
2693 };
2694
2695 /* Motorola PowerPC 604 or 604e. */
2696 static const struct reg registers_604[] =
2697 {
2698 COMMON_UISA_REGS,
2699 PPC_UISA_SPRS,
2700 PPC_SEGMENT_REGS,
2701 PPC_OEA_SPRS,
2702 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2703 /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2704 /* 127 */ S(sia), S(sda)
2705 };
2706
2707 /* Motorola/IBM PowerPC 750 or 740. */
2708 static const struct reg registers_750[] =
2709 {
2710 COMMON_UISA_REGS,
2711 PPC_UISA_SPRS,
2712 PPC_SEGMENT_REGS,
2713 PPC_OEA_SPRS,
2714 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2715 /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
2716 /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
2717 /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
2718 /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
2719 /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
2720 };
2721
2722
2723 /* Motorola PowerPC 7400. */
2724 static const struct reg registers_7400[] =
2725 {
2726 /* gpr0-gpr31, fpr0-fpr31 */
2727 COMMON_UISA_REGS,
2728 /* cr, lr, ctr, xer, fpscr */
2729 PPC_UISA_SPRS,
2730 /* sr0-sr15 */
2731 PPC_SEGMENT_REGS,
2732 PPC_OEA_SPRS,
2733 /* vr0-vr31, vrsave, vscr */
2734 PPC_ALTIVEC_REGS
2735 /* FIXME? Add more registers? */
2736 };
2737
2738 /* Motorola e500. */
2739 static const struct reg registers_e500[] =
2740 {
2741 /* 0 .. 31 */ PPC_SPE_GP_REGS,
2742 /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
2743 /* 64 .. 65 */ R(pc), R(ps),
2744 /* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
2745 /* 71 .. 72 */ R8(acc), S4(spefscr),
2746 /* NOTE: Add new registers here the end of the raw register
2747 list and just before the first pseudo register. */
2748 /* 73 .. 104 */ PPC_EV_PSEUDO_REGS
2749 };
2750
2751 /* Information about a particular processor variant. */
2752
2753 struct variant
2754 {
2755 /* Name of this variant. */
2756 char *name;
2757
2758 /* English description of the variant. */
2759 char *description;
2760
2761 /* bfd_arch_info.arch corresponding to variant. */
2762 enum bfd_architecture arch;
2763
2764 /* bfd_arch_info.mach corresponding to variant. */
2765 unsigned long mach;
2766
2767 /* Number of real registers. */
2768 int nregs;
2769
2770 /* Number of pseudo registers. */
2771 int npregs;
2772
2773 /* Number of total registers (the sum of nregs and npregs). */
2774 int num_tot_regs;
2775
2776 /* Table of register names; registers[R] is the name of the register
2777 number R. */
2778 const struct reg *regs;
2779 };
2780
2781 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2782
2783 static int
2784 num_registers (const struct reg *reg_list, int num_tot_regs)
2785 {
2786 int i;
2787 int nregs = 0;
2788
2789 for (i = 0; i < num_tot_regs; i++)
2790 if (!reg_list[i].pseudo)
2791 nregs++;
2792
2793 return nregs;
2794 }
2795
2796 static int
2797 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2798 {
2799 int i;
2800 int npregs = 0;
2801
2802 for (i = 0; i < num_tot_regs; i++)
2803 if (reg_list[i].pseudo)
2804 npregs ++;
2805
2806 return npregs;
2807 }
2808
2809 /* Information in this table comes from the following web sites:
2810 IBM: http://www.chips.ibm.com:80/products/embedded/
2811 Motorola: http://www.mot.com/SPS/PowerPC/
2812
2813 I'm sure I've got some of the variant descriptions not quite right.
2814 Please report any inaccuracies you find to GDB's maintainer.
2815
2816 If you add entries to this table, please be sure to allow the new
2817 value as an argument to the --with-cpu flag, in configure.in. */
2818
2819 static struct variant variants[] =
2820 {
2821
2822 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2823 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2824 registers_powerpc},
2825 {"power", "POWER user-level", bfd_arch_rs6000,
2826 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2827 registers_power},
2828 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2829 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2830 registers_403},
2831 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2832 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2833 registers_601},
2834 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2835 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2836 registers_602},
2837 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2838 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2839 registers_603},
2840 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2841 604, -1, -1, tot_num_registers (registers_604),
2842 registers_604},
2843 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2844 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2845 registers_403GC},
2846 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2847 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2848 registers_505},
2849 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2850 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2851 registers_860},
2852 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2853 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2854 registers_750},
2855 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2856 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2857 registers_7400},
2858 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2859 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2860 registers_e500},
2861
2862 /* 64-bit */
2863 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2864 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2865 registers_powerpc},
2866 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2867 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2868 registers_powerpc},
2869 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2870 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2871 registers_powerpc},
2872 {"a35", "PowerPC A35", bfd_arch_powerpc,
2873 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2874 registers_powerpc},
2875 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2876 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2877 registers_powerpc},
2878 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2879 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2880 registers_powerpc},
2881
2882 /* FIXME: I haven't checked the register sets of the following. */
2883 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2884 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2885 registers_power},
2886 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2887 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2888 registers_power},
2889 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2890 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2891 registers_power},
2892
2893 {0, 0, 0, 0, 0, 0, 0, 0}
2894 };
2895
2896 /* Initialize the number of registers and pseudo registers in each variant. */
2897
2898 static void
2899 init_variants (void)
2900 {
2901 struct variant *v;
2902
2903 for (v = variants; v->name; v++)
2904 {
2905 if (v->nregs == -1)
2906 v->nregs = num_registers (v->regs, v->num_tot_regs);
2907 if (v->npregs == -1)
2908 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2909 }
2910 }
2911
2912 /* Return the variant corresponding to architecture ARCH and machine number
2913 MACH. If no such variant exists, return null. */
2914
2915 static const struct variant *
2916 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2917 {
2918 const struct variant *v;
2919
2920 for (v = variants; v->name; v++)
2921 if (arch == v->arch && mach == v->mach)
2922 return v;
2923
2924 return NULL;
2925 }
2926
2927 static int
2928 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2929 {
2930 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2931 return print_insn_big_powerpc (memaddr, info);
2932 else
2933 return print_insn_little_powerpc (memaddr, info);
2934 }
2935 \f
2936 static CORE_ADDR
2937 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2938 {
2939 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2940 }
2941
2942 static struct frame_id
2943 rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2944 {
2945 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2946 SP_REGNUM),
2947 frame_pc_unwind (next_frame));
2948 }
2949
2950 struct rs6000_frame_cache
2951 {
2952 CORE_ADDR base;
2953 CORE_ADDR initial_sp;
2954 struct trad_frame_saved_reg *saved_regs;
2955 };
2956
2957 static struct rs6000_frame_cache *
2958 rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2959 {
2960 struct rs6000_frame_cache *cache;
2961 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2962 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2963 struct rs6000_framedata fdata;
2964 int wordsize = tdep->wordsize;
2965 CORE_ADDR func, pc;
2966
2967 if ((*this_cache) != NULL)
2968 return (*this_cache);
2969 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2970 (*this_cache) = cache;
2971 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2972
2973 func = frame_func_unwind (next_frame);
2974 pc = frame_pc_unwind (next_frame);
2975 skip_prologue (func, pc, &fdata);
2976
2977 /* Figure out the parent's stack pointer. */
2978
2979 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2980 address of the current frame. Things might be easier if the
2981 ->frame pointed to the outer-most address of the frame. In
2982 the mean time, the address of the prev frame is used as the
2983 base address of this frame. */
2984 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2985
2986 /* If the function appears to be frameless, check a couple of likely
2987 indicators that we have simply failed to find the frame setup.
2988 Two common cases of this are missing symbols (i.e.
2989 frame_func_unwind returns the wrong address or 0), and assembly
2990 stubs which have a fast exit path but set up a frame on the slow
2991 path.
2992
2993 If the LR appears to return to this function, then presume that
2994 we have an ABI compliant frame that we failed to find. */
2995 if (fdata.frameless && fdata.lr_offset == 0)
2996 {
2997 CORE_ADDR saved_lr;
2998 int make_frame = 0;
2999
3000 saved_lr = frame_unwind_register_unsigned (next_frame,
3001 tdep->ppc_lr_regnum);
3002 if (func == 0 && saved_lr == pc)
3003 make_frame = 1;
3004 else if (func != 0)
3005 {
3006 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3007 if (func == saved_func)
3008 make_frame = 1;
3009 }
3010
3011 if (make_frame)
3012 {
3013 fdata.frameless = 0;
3014 fdata.lr_offset = wordsize;
3015 }
3016 }
3017
3018 if (!fdata.frameless)
3019 /* Frameless really means stackless. */
3020 cache->base = read_memory_addr (cache->base, wordsize);
3021
3022 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
3023
3024 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3025 All fpr's from saved_fpr to fp31 are saved. */
3026
3027 if (fdata.saved_fpr >= 0)
3028 {
3029 int i;
3030 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3031
3032 /* If skip_prologue says floating-point registers were saved,
3033 but the current architecture has no floating-point registers,
3034 then that's strange. But we have no indices to even record
3035 the addresses under, so we just ignore it. */
3036 if (ppc_floating_point_unit_p (gdbarch))
3037 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3038 {
3039 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3040 fpr_addr += 8;
3041 }
3042 }
3043
3044 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3045 All gpr's from saved_gpr to gpr31 are saved. */
3046
3047 if (fdata.saved_gpr >= 0)
3048 {
3049 int i;
3050 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3051 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3052 {
3053 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3054 gpr_addr += wordsize;
3055 }
3056 }
3057
3058 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3059 All vr's from saved_vr to vr31 are saved. */
3060 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3061 {
3062 if (fdata.saved_vr >= 0)
3063 {
3064 int i;
3065 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3066 for (i = fdata.saved_vr; i < 32; i++)
3067 {
3068 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3069 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3070 }
3071 }
3072 }
3073
3074 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3075 All vr's from saved_ev to ev31 are saved. ????? */
3076 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
3077 {
3078 if (fdata.saved_ev >= 0)
3079 {
3080 int i;
3081 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3082 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3083 {
3084 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3085 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
3086 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3087 }
3088 }
3089 }
3090
3091 /* If != 0, fdata.cr_offset is the offset from the frame that
3092 holds the CR. */
3093 if (fdata.cr_offset != 0)
3094 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
3095
3096 /* If != 0, fdata.lr_offset is the offset from the frame that
3097 holds the LR. */
3098 if (fdata.lr_offset != 0)
3099 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
3100 /* The PC is found in the link register. */
3101 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
3102
3103 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3104 holds the VRSAVE. */
3105 if (fdata.vrsave_offset != 0)
3106 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
3107
3108 if (fdata.alloca_reg < 0)
3109 /* If no alloca register used, then fi->frame is the value of the
3110 %sp for this frame, and it is good enough. */
3111 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
3112 else
3113 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
3114 fdata.alloca_reg);
3115
3116 return cache;
3117 }
3118
3119 static void
3120 rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
3121 struct frame_id *this_id)
3122 {
3123 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3124 this_cache);
3125 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
3126 }
3127
3128 static void
3129 rs6000_frame_prev_register (struct frame_info *next_frame,
3130 void **this_cache,
3131 int regnum, int *optimizedp,
3132 enum lval_type *lvalp, CORE_ADDR *addrp,
3133 int *realnump, gdb_byte *valuep)
3134 {
3135 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3136 this_cache);
3137 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
3138 optimizedp, lvalp, addrp, realnump, valuep);
3139 }
3140
3141 static const struct frame_unwind rs6000_frame_unwind =
3142 {
3143 NORMAL_FRAME,
3144 rs6000_frame_this_id,
3145 rs6000_frame_prev_register
3146 };
3147
3148 static const struct frame_unwind *
3149 rs6000_frame_sniffer (struct frame_info *next_frame)
3150 {
3151 return &rs6000_frame_unwind;
3152 }
3153
3154 \f
3155
3156 static CORE_ADDR
3157 rs6000_frame_base_address (struct frame_info *next_frame,
3158 void **this_cache)
3159 {
3160 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3161 this_cache);
3162 return info->initial_sp;
3163 }
3164
3165 static const struct frame_base rs6000_frame_base = {
3166 &rs6000_frame_unwind,
3167 rs6000_frame_base_address,
3168 rs6000_frame_base_address,
3169 rs6000_frame_base_address
3170 };
3171
3172 static const struct frame_base *
3173 rs6000_frame_base_sniffer (struct frame_info *next_frame)
3174 {
3175 return &rs6000_frame_base;
3176 }
3177
3178 /* Initialize the current architecture based on INFO. If possible, re-use an
3179 architecture from ARCHES, which is a list of architectures already created
3180 during this debugging session.
3181
3182 Called e.g. at program startup, when reading a core file, and when reading
3183 a binary file. */
3184
3185 static struct gdbarch *
3186 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3187 {
3188 struct gdbarch *gdbarch;
3189 struct gdbarch_tdep *tdep;
3190 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
3191 struct reg *regs;
3192 const struct variant *v;
3193 enum bfd_architecture arch;
3194 unsigned long mach;
3195 bfd abfd;
3196 int sysv_abi;
3197 asection *sect;
3198
3199 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
3200 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3201
3202 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3203 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3204
3205 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3206
3207 /* Check word size. If INFO is from a binary file, infer it from
3208 that, else choose a likely default. */
3209 if (from_xcoff_exec)
3210 {
3211 if (bfd_xcoff_is_xcoff64 (info.abfd))
3212 wordsize = 8;
3213 else
3214 wordsize = 4;
3215 }
3216 else if (from_elf_exec)
3217 {
3218 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3219 wordsize = 8;
3220 else
3221 wordsize = 4;
3222 }
3223 else
3224 {
3225 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3226 wordsize = info.bfd_arch_info->bits_per_word /
3227 info.bfd_arch_info->bits_per_byte;
3228 else
3229 wordsize = 4;
3230 }
3231
3232 /* Find a candidate among extant architectures. */
3233 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3234 arches != NULL;
3235 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3236 {
3237 /* Word size in the various PowerPC bfd_arch_info structs isn't
3238 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
3239 separate word size check. */
3240 tdep = gdbarch_tdep (arches->gdbarch);
3241 if (tdep && tdep->wordsize == wordsize)
3242 return arches->gdbarch;
3243 }
3244
3245 /* None found, create a new architecture from INFO, whose bfd_arch_info
3246 validity depends on the source:
3247 - executable useless
3248 - rs6000_host_arch() good
3249 - core file good
3250 - "set arch" trust blindly
3251 - GDB startup useless but harmless */
3252
3253 if (!from_xcoff_exec)
3254 {
3255 arch = info.bfd_arch_info->arch;
3256 mach = info.bfd_arch_info->mach;
3257 }
3258 else
3259 {
3260 arch = bfd_arch_powerpc;
3261 bfd_default_set_arch_mach (&abfd, arch, 0);
3262 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3263 mach = info.bfd_arch_info->mach;
3264 }
3265 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3266 tdep->wordsize = wordsize;
3267
3268 /* For e500 executables, the apuinfo section is of help here. Such
3269 section contains the identifier and revision number of each
3270 Application-specific Processing Unit that is present on the
3271 chip. The content of the section is determined by the assembler
3272 which looks at each instruction and determines which unit (and
3273 which version of it) can execute it. In our case we just look for
3274 the existance of the section. */
3275
3276 if (info.abfd)
3277 {
3278 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3279 if (sect)
3280 {
3281 arch = info.bfd_arch_info->arch;
3282 mach = bfd_mach_ppc_e500;
3283 bfd_default_set_arch_mach (&abfd, arch, mach);
3284 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3285 }
3286 }
3287
3288 gdbarch = gdbarch_alloc (&info, tdep);
3289
3290 /* Initialize the number of real and pseudo registers in each variant. */
3291 init_variants ();
3292
3293 /* Choose variant. */
3294 v = find_variant_by_arch (arch, mach);
3295 if (!v)
3296 return NULL;
3297
3298 tdep->regs = v->regs;
3299
3300 tdep->ppc_gp0_regnum = 0;
3301 tdep->ppc_toc_regnum = 2;
3302 tdep->ppc_ps_regnum = 65;
3303 tdep->ppc_cr_regnum = 66;
3304 tdep->ppc_lr_regnum = 67;
3305 tdep->ppc_ctr_regnum = 68;
3306 tdep->ppc_xer_regnum = 69;
3307 if (v->mach == bfd_mach_ppc_601)
3308 tdep->ppc_mq_regnum = 124;
3309 else if (arch == bfd_arch_rs6000)
3310 tdep->ppc_mq_regnum = 70;
3311 else
3312 tdep->ppc_mq_regnum = -1;
3313 tdep->ppc_fp0_regnum = 32;
3314 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
3315 tdep->ppc_sr0_regnum = 71;
3316 tdep->ppc_vr0_regnum = -1;
3317 tdep->ppc_vrsave_regnum = -1;
3318 tdep->ppc_ev0_upper_regnum = -1;
3319 tdep->ppc_ev0_regnum = -1;
3320 tdep->ppc_ev31_regnum = -1;
3321 tdep->ppc_acc_regnum = -1;
3322 tdep->ppc_spefscr_regnum = -1;
3323
3324 set_gdbarch_pc_regnum (gdbarch, 64);
3325 set_gdbarch_sp_regnum (gdbarch, 1);
3326 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
3327 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
3328 if (sysv_abi && wordsize == 8)
3329 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
3330 else if (sysv_abi && wordsize == 4)
3331 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
3332 else
3333 {
3334 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
3335 set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
3336 }
3337
3338 /* Set lr_frame_offset. */
3339 if (wordsize == 8)
3340 tdep->lr_frame_offset = 16;
3341 else if (sysv_abi)
3342 tdep->lr_frame_offset = 4;
3343 else
3344 tdep->lr_frame_offset = 8;
3345
3346 if (v->arch == bfd_arch_rs6000)
3347 tdep->ppc_sr0_regnum = -1;
3348 else if (v->arch == bfd_arch_powerpc)
3349 switch (v->mach)
3350 {
3351 case bfd_mach_ppc:
3352 tdep->ppc_sr0_regnum = -1;
3353 tdep->ppc_vr0_regnum = 71;
3354 tdep->ppc_vrsave_regnum = 104;
3355 break;
3356 case bfd_mach_ppc_7400:
3357 tdep->ppc_vr0_regnum = 119;
3358 tdep->ppc_vrsave_regnum = 152;
3359 break;
3360 case bfd_mach_ppc_e500:
3361 tdep->ppc_toc_regnum = -1;
3362 tdep->ppc_ev0_upper_regnum = 32;
3363 tdep->ppc_ev0_regnum = 73;
3364 tdep->ppc_ev31_regnum = 104;
3365 tdep->ppc_acc_regnum = 71;
3366 tdep->ppc_spefscr_regnum = 72;
3367 tdep->ppc_fp0_regnum = -1;
3368 tdep->ppc_fpscr_regnum = -1;
3369 tdep->ppc_sr0_regnum = -1;
3370 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3371 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
3372 set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
3373 break;
3374
3375 case bfd_mach_ppc64:
3376 case bfd_mach_ppc_620:
3377 case bfd_mach_ppc_630:
3378 case bfd_mach_ppc_a35:
3379 case bfd_mach_ppc_rs64ii:
3380 case bfd_mach_ppc_rs64iii:
3381 /* These processor's register sets don't have segment registers. */
3382 tdep->ppc_sr0_regnum = -1;
3383 break;
3384 }
3385 else
3386 internal_error (__FILE__, __LINE__,
3387 _("rs6000_gdbarch_init: "
3388 "received unexpected BFD 'arch' value"));
3389
3390 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3391
3392 /* Sanity check on registers. */
3393 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3394
3395 /* Select instruction printer. */
3396 if (arch == bfd_arch_rs6000)
3397 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
3398 else
3399 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
3400
3401 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
3402
3403 set_gdbarch_num_regs (gdbarch, v->nregs);
3404 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
3405 set_gdbarch_register_name (gdbarch, rs6000_register_name);
3406 set_gdbarch_register_type (gdbarch, rs6000_register_type);
3407 set_gdbarch_register_reggroup_p (gdbarch, rs6000_register_reggroup_p);
3408
3409 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3410 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3411 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3412 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3413 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3414 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3415 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3416 if (sysv_abi)
3417 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3418 else
3419 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3420 set_gdbarch_char_signed (gdbarch, 0);
3421
3422 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
3423 if (sysv_abi && wordsize == 8)
3424 /* PPC64 SYSV. */
3425 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3426 else if (!sysv_abi && wordsize == 4)
3427 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3428 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3429 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3430 224. */
3431 set_gdbarch_frame_red_zone_size (gdbarch, 224);
3432
3433 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3434 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3435 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3436
3437 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3438 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
3439 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
3440 is correct for the SysV ABI when the wordsize is 8, but I'm also
3441 fairly certain that ppc_sysv_abi_push_arguments() will give even
3442 worse results since it only works for 32-bit code. So, for the moment,
3443 we're better off calling rs6000_push_arguments() since it works for
3444 64-bit code. At some point in the future, this matter needs to be
3445 revisited. */
3446 if (sysv_abi && wordsize == 4)
3447 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
3448 else if (sysv_abi && wordsize == 8)
3449 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
3450 else
3451 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
3452
3453 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
3454
3455 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
3456 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
3457
3458 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3459 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3460
3461 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3462 for the descriptor and ".FN" for the entry-point -- a user
3463 specifying "break FN" will unexpectedly end up with a breakpoint
3464 on the descriptor and not the function. This architecture method
3465 transforms any breakpoints on descriptors into breakpoints on the
3466 corresponding entry point. */
3467 if (sysv_abi && wordsize == 8)
3468 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3469
3470 /* Not sure on this. FIXMEmgo */
3471 set_gdbarch_frame_args_skip (gdbarch, 8);
3472
3473 if (!sysv_abi)
3474 set_gdbarch_deprecated_use_struct_convention (gdbarch, rs6000_use_struct_convention);
3475
3476 if (!sysv_abi)
3477 {
3478 /* Handle RS/6000 function pointers (which are really function
3479 descriptors). */
3480 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3481 rs6000_convert_from_func_ptr_addr);
3482 }
3483
3484 /* Helpers for function argument information. */
3485 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3486
3487 /* Hook in ABI-specific overrides, if they have been registered. */
3488 gdbarch_init_osabi (info, gdbarch);
3489
3490 switch (info.osabi)
3491 {
3492 case GDB_OSABI_LINUX:
3493 /* FIXME: pgilliam/2005-10-21: Assume all PowerPC 64-bit linux systems
3494 have altivec registers. If not, ptrace will fail the first time it's
3495 called to access one and will not be called again. This wart will
3496 be removed when Daniel Jacobowitz's proposal for autodetecting target
3497 registers is implemented. */
3498 if ((v->arch == bfd_arch_powerpc) && ((v->mach)== bfd_mach_ppc64))
3499 {
3500 tdep->ppc_vr0_regnum = 71;
3501 tdep->ppc_vrsave_regnum = 104;
3502 }
3503 /* Fall Thru */
3504 case GDB_OSABI_NETBSD_AOUT:
3505 case GDB_OSABI_NETBSD_ELF:
3506 case GDB_OSABI_UNKNOWN:
3507 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3508 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3509 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3510 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3511 break;
3512 default:
3513 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3514
3515 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3516 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3517 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3518 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3519 }
3520
3521 if (from_xcoff_exec)
3522 {
3523 /* NOTE: jimix/2003-06-09: This test should really check for
3524 GDB_OSABI_AIX when that is defined and becomes
3525 available. (Actually, once things are properly split apart,
3526 the test goes away.) */
3527 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
3528 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
3529 }
3530
3531 init_sim_regno_table (gdbarch);
3532
3533 return gdbarch;
3534 }
3535
3536 static void
3537 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3538 {
3539 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3540
3541 if (tdep == NULL)
3542 return;
3543
3544 /* FIXME: Dump gdbarch_tdep. */
3545 }
3546
3547 /* Initialization code. */
3548
3549 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
3550
3551 void
3552 _initialize_rs6000_tdep (void)
3553 {
3554 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3555 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
3556 }
This page took 0.110641 seconds and 4 git commands to generate.