2003-05-30 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "target.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "doublest.h"
35 #include "value.h"
36 #include "parser-defs.h"
37 #include "osabi.h"
38
39 #include "libbfd.h" /* for bfd_default_set_arch_mach */
40 #include "coff/internal.h" /* for libcoff.h */
41 #include "libcoff.h" /* for xcoff_data */
42 #include "coff/xcoff.h"
43 #include "libxcoff.h"
44
45 #include "elf-bfd.h"
46
47 #include "solib-svr4.h"
48 #include "ppc-tdep.h"
49
50 #include "gdb_assert.h"
51
52 /* If the kernel has to deliver a signal, it pushes a sigcontext
53 structure on the stack and then calls the signal handler, passing
54 the address of the sigcontext in an argument register. Usually
55 the signal handler doesn't save this register, so we have to
56 access the sigcontext structure via an offset from the signal handler
57 frame.
58 The following constants were determined by experimentation on AIX 3.2. */
59 #define SIG_FRAME_PC_OFFSET 96
60 #define SIG_FRAME_LR_OFFSET 108
61 #define SIG_FRAME_FP_OFFSET 284
62
63 /* To be used by skip_prologue. */
64
65 struct rs6000_framedata
66 {
67 int offset; /* total size of frame --- the distance
68 by which we decrement sp to allocate
69 the frame */
70 int saved_gpr; /* smallest # of saved gpr */
71 int saved_fpr; /* smallest # of saved fpr */
72 int saved_vr; /* smallest # of saved vr */
73 int saved_ev; /* smallest # of saved ev */
74 int alloca_reg; /* alloca register number (frame ptr) */
75 char frameless; /* true if frameless functions. */
76 char nosavedpc; /* true if pc not saved. */
77 int gpr_offset; /* offset of saved gprs from prev sp */
78 int fpr_offset; /* offset of saved fprs from prev sp */
79 int vr_offset; /* offset of saved vrs from prev sp */
80 int ev_offset; /* offset of saved evs from prev sp */
81 int lr_offset; /* offset of saved lr */
82 int cr_offset; /* offset of saved cr */
83 int vrsave_offset; /* offset of saved vrsave register */
84 };
85
86 /* Description of a single register. */
87
88 struct reg
89 {
90 char *name; /* name of register */
91 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
92 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
93 unsigned char fpr; /* whether register is floating-point */
94 unsigned char pseudo; /* whether register is pseudo */
95 };
96
97 /* Breakpoint shadows for the single step instructions will be kept here. */
98
99 static struct sstep_breaks
100 {
101 /* Address, or 0 if this is not in use. */
102 CORE_ADDR address;
103 /* Shadow contents. */
104 char data[4];
105 }
106 stepBreaks[2];
107
108 /* Hook for determining the TOC address when calling functions in the
109 inferior under AIX. The initialization code in rs6000-nat.c sets
110 this hook to point to find_toc_address. */
111
112 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
113
114 /* Hook to set the current architecture when starting a child process.
115 rs6000-nat.c sets this. */
116
117 void (*rs6000_set_host_arch_hook) (int) = NULL;
118
119 /* Static function prototypes */
120
121 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
122 CORE_ADDR safety);
123 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
124 struct rs6000_framedata *);
125 static void frame_get_saved_regs (struct frame_info * fi,
126 struct rs6000_framedata * fdatap);
127 static CORE_ADDR frame_initial_stack_address (struct frame_info *);
128
129 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
130 int
131 altivec_register_p (int regno)
132 {
133 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
134 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
135 return 0;
136 else
137 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
138 }
139
140 /* Use the architectures FP registers? */
141 int
142 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
143 {
144 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
145 if (info->arch == bfd_arch_powerpc)
146 return (info->mach != bfd_mach_ppc_e500);
147 if (info->arch == bfd_arch_rs6000)
148 return 1;
149 return 0;
150 }
151
152 /* Read a LEN-byte address from debugged memory address MEMADDR. */
153
154 static CORE_ADDR
155 read_memory_addr (CORE_ADDR memaddr, int len)
156 {
157 return read_memory_unsigned_integer (memaddr, len);
158 }
159
160 static CORE_ADDR
161 rs6000_skip_prologue (CORE_ADDR pc)
162 {
163 struct rs6000_framedata frame;
164 pc = skip_prologue (pc, 0, &frame);
165 return pc;
166 }
167
168
169 /* Fill in fi->saved_regs */
170
171 struct frame_extra_info
172 {
173 /* Functions calling alloca() change the value of the stack
174 pointer. We need to use initial stack pointer (which is saved in
175 r31 by gcc) in such cases. If a compiler emits traceback table,
176 then we should use the alloca register specified in traceback
177 table. FIXME. */
178 CORE_ADDR initial_sp; /* initial stack pointer. */
179 };
180
181 void
182 rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
183 {
184 struct frame_extra_info *extra_info =
185 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
186 extra_info->initial_sp = 0;
187 if (get_next_frame (fi) != NULL
188 && get_frame_pc (fi) < TEXT_SEGMENT_BASE)
189 /* We're in get_prev_frame */
190 /* and this is a special signal frame. */
191 /* (fi->pc will be some low address in the kernel, */
192 /* to which the signal handler returns). */
193 deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
194 }
195
196 /* Put here the code to store, into a struct frame_saved_regs,
197 the addresses of the saved registers of frame described by FRAME_INFO.
198 This includes special registers such as pc and fp saved in special
199 ways in the stack frame. sp is even more special:
200 the address we return for it IS the sp for the next frame. */
201
202 /* In this implementation for RS/6000, we do *not* save sp. I am
203 not sure if it will be needed. The following function takes care of gpr's
204 and fpr's only. */
205
206 void
207 rs6000_frame_init_saved_regs (struct frame_info *fi)
208 {
209 frame_get_saved_regs (fi, NULL);
210 }
211
212 static CORE_ADDR
213 rs6000_frame_args_address (struct frame_info *fi)
214 {
215 struct frame_extra_info *extra_info = get_frame_extra_info (fi);
216 if (extra_info->initial_sp != 0)
217 return extra_info->initial_sp;
218 else
219 return frame_initial_stack_address (fi);
220 }
221
222 /* Immediately after a function call, return the saved pc.
223 Can't go through the frames for this because on some machines
224 the new frame is not set up until the new function executes
225 some instructions. */
226
227 static CORE_ADDR
228 rs6000_saved_pc_after_call (struct frame_info *fi)
229 {
230 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
231 }
232
233 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
234
235 static CORE_ADDR
236 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
237 {
238 CORE_ADDR dest;
239 int immediate;
240 int absolute;
241 int ext_op;
242
243 absolute = (int) ((instr >> 1) & 1);
244
245 switch (opcode)
246 {
247 case 18:
248 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
249 if (absolute)
250 dest = immediate;
251 else
252 dest = pc + immediate;
253 break;
254
255 case 16:
256 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
257 if (absolute)
258 dest = immediate;
259 else
260 dest = pc + immediate;
261 break;
262
263 case 19:
264 ext_op = (instr >> 1) & 0x3ff;
265
266 if (ext_op == 16) /* br conditional register */
267 {
268 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
269
270 /* If we are about to return from a signal handler, dest is
271 something like 0x3c90. The current frame is a signal handler
272 caller frame, upon completion of the sigreturn system call
273 execution will return to the saved PC in the frame. */
274 if (dest < TEXT_SEGMENT_BASE)
275 {
276 struct frame_info *fi;
277
278 fi = get_current_frame ();
279 if (fi != NULL)
280 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
281 gdbarch_tdep (current_gdbarch)->wordsize);
282 }
283 }
284
285 else if (ext_op == 528) /* br cond to count reg */
286 {
287 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
288
289 /* If we are about to execute a system call, dest is something
290 like 0x22fc or 0x3b00. Upon completion the system call
291 will return to the address in the link register. */
292 if (dest < TEXT_SEGMENT_BASE)
293 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
294 }
295 else
296 return -1;
297 break;
298
299 default:
300 return -1;
301 }
302 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
303 }
304
305
306 /* Sequence of bytes for breakpoint instruction. */
307
308 const static unsigned char *
309 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
310 {
311 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
312 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
313 *bp_size = 4;
314 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
315 return big_breakpoint;
316 else
317 return little_breakpoint;
318 }
319
320
321 /* AIX does not support PT_STEP. Simulate it. */
322
323 void
324 rs6000_software_single_step (enum target_signal signal,
325 int insert_breakpoints_p)
326 {
327 CORE_ADDR dummy;
328 int breakp_sz;
329 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
330 int ii, insn;
331 CORE_ADDR loc;
332 CORE_ADDR breaks[2];
333 int opcode;
334
335 if (insert_breakpoints_p)
336 {
337
338 loc = read_pc ();
339
340 insn = read_memory_integer (loc, 4);
341
342 breaks[0] = loc + breakp_sz;
343 opcode = insn >> 26;
344 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
345
346 /* Don't put two breakpoints on the same address. */
347 if (breaks[1] == breaks[0])
348 breaks[1] = -1;
349
350 stepBreaks[1].address = 0;
351
352 for (ii = 0; ii < 2; ++ii)
353 {
354
355 /* ignore invalid breakpoint. */
356 if (breaks[ii] == -1)
357 continue;
358 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
359 stepBreaks[ii].address = breaks[ii];
360 }
361
362 }
363 else
364 {
365
366 /* remove step breakpoints. */
367 for (ii = 0; ii < 2; ++ii)
368 if (stepBreaks[ii].address != 0)
369 target_remove_breakpoint (stepBreaks[ii].address,
370 stepBreaks[ii].data);
371 }
372 errno = 0; /* FIXME, don't ignore errors! */
373 /* What errors? {read,write}_memory call error(). */
374 }
375
376
377 /* return pc value after skipping a function prologue and also return
378 information about a function frame.
379
380 in struct rs6000_framedata fdata:
381 - frameless is TRUE, if function does not have a frame.
382 - nosavedpc is TRUE, if function does not save %pc value in its frame.
383 - offset is the initial size of this stack frame --- the amount by
384 which we decrement the sp to allocate the frame.
385 - saved_gpr is the number of the first saved gpr.
386 - saved_fpr is the number of the first saved fpr.
387 - saved_vr is the number of the first saved vr.
388 - saved_ev is the number of the first saved ev.
389 - alloca_reg is the number of the register used for alloca() handling.
390 Otherwise -1.
391 - gpr_offset is the offset of the first saved gpr from the previous frame.
392 - fpr_offset is the offset of the first saved fpr from the previous frame.
393 - vr_offset is the offset of the first saved vr from the previous frame.
394 - ev_offset is the offset of the first saved ev from the previous frame.
395 - lr_offset is the offset of the saved lr
396 - cr_offset is the offset of the saved cr
397 - vrsave_offset is the offset of the saved vrsave register
398 */
399
400 #define SIGNED_SHORT(x) \
401 ((sizeof (short) == 2) \
402 ? ((int)(short)(x)) \
403 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
404
405 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
406
407 /* Limit the number of skipped non-prologue instructions, as the examining
408 of the prologue is expensive. */
409 static int max_skip_non_prologue_insns = 10;
410
411 /* Given PC representing the starting address of a function, and
412 LIM_PC which is the (sloppy) limit to which to scan when looking
413 for a prologue, attempt to further refine this limit by using
414 the line data in the symbol table. If successful, a better guess
415 on where the prologue ends is returned, otherwise the previous
416 value of lim_pc is returned. */
417 static CORE_ADDR
418 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
419 {
420 struct symtab_and_line prologue_sal;
421
422 prologue_sal = find_pc_line (pc, 0);
423 if (prologue_sal.line != 0)
424 {
425 int i;
426 CORE_ADDR addr = prologue_sal.end;
427
428 /* Handle the case in which compiler's optimizer/scheduler
429 has moved instructions into the prologue. We scan ahead
430 in the function looking for address ranges whose corresponding
431 line number is less than or equal to the first one that we
432 found for the function. (It can be less than when the
433 scheduler puts a body instruction before the first prologue
434 instruction.) */
435 for (i = 2 * max_skip_non_prologue_insns;
436 i > 0 && (lim_pc == 0 || addr < lim_pc);
437 i--)
438 {
439 struct symtab_and_line sal;
440
441 sal = find_pc_line (addr, 0);
442 if (sal.line == 0)
443 break;
444 if (sal.line <= prologue_sal.line
445 && sal.symtab == prologue_sal.symtab)
446 {
447 prologue_sal = sal;
448 }
449 addr = sal.end;
450 }
451
452 if (lim_pc == 0 || prologue_sal.end < lim_pc)
453 lim_pc = prologue_sal.end;
454 }
455 return lim_pc;
456 }
457
458
459 static CORE_ADDR
460 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
461 {
462 CORE_ADDR orig_pc = pc;
463 CORE_ADDR last_prologue_pc = pc;
464 CORE_ADDR li_found_pc = 0;
465 char buf[4];
466 unsigned long op;
467 long offset = 0;
468 long vr_saved_offset = 0;
469 int lr_reg = -1;
470 int cr_reg = -1;
471 int vr_reg = -1;
472 int ev_reg = -1;
473 long ev_offset = 0;
474 int vrsave_reg = -1;
475 int reg;
476 int framep = 0;
477 int minimal_toc_loaded = 0;
478 int prev_insn_was_prologue_insn = 1;
479 int num_skip_non_prologue_insns = 0;
480 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
481 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
482
483 /* Attempt to find the end of the prologue when no limit is specified.
484 Note that refine_prologue_limit() has been written so that it may
485 be used to "refine" the limits of non-zero PC values too, but this
486 is only safe if we 1) trust the line information provided by the
487 compiler and 2) iterate enough to actually find the end of the
488 prologue.
489
490 It may become a good idea at some point (for both performance and
491 accuracy) to unconditionally call refine_prologue_limit(). But,
492 until we can make a clear determination that this is beneficial,
493 we'll play it safe and only use it to obtain a limit when none
494 has been specified. */
495 if (lim_pc == 0)
496 lim_pc = refine_prologue_limit (pc, lim_pc);
497
498 memset (fdata, 0, sizeof (struct rs6000_framedata));
499 fdata->saved_gpr = -1;
500 fdata->saved_fpr = -1;
501 fdata->saved_vr = -1;
502 fdata->saved_ev = -1;
503 fdata->alloca_reg = -1;
504 fdata->frameless = 1;
505 fdata->nosavedpc = 1;
506
507 for (;; pc += 4)
508 {
509 /* Sometimes it isn't clear if an instruction is a prologue
510 instruction or not. When we encounter one of these ambiguous
511 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
512 Otherwise, we'll assume that it really is a prologue instruction. */
513 if (prev_insn_was_prologue_insn)
514 last_prologue_pc = pc;
515
516 /* Stop scanning if we've hit the limit. */
517 if (lim_pc != 0 && pc >= lim_pc)
518 break;
519
520 prev_insn_was_prologue_insn = 1;
521
522 /* Fetch the instruction and convert it to an integer. */
523 if (target_read_memory (pc, buf, 4))
524 break;
525 op = extract_signed_integer (buf, 4);
526
527 if ((op & 0xfc1fffff) == 0x7c0802a6)
528 { /* mflr Rx */
529 lr_reg = (op & 0x03e00000);
530 continue;
531
532 }
533 else if ((op & 0xfc1fffff) == 0x7c000026)
534 { /* mfcr Rx */
535 cr_reg = (op & 0x03e00000);
536 continue;
537
538 }
539 else if ((op & 0xfc1f0000) == 0xd8010000)
540 { /* stfd Rx,NUM(r1) */
541 reg = GET_SRC_REG (op);
542 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
543 {
544 fdata->saved_fpr = reg;
545 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
546 }
547 continue;
548
549 }
550 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
551 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
552 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
553 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
554 {
555
556 reg = GET_SRC_REG (op);
557 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
558 {
559 fdata->saved_gpr = reg;
560 if ((op & 0xfc1f0003) == 0xf8010000)
561 op &= ~3UL;
562 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
563 }
564 continue;
565
566 }
567 else if ((op & 0xffff0000) == 0x60000000)
568 {
569 /* nop */
570 /* Allow nops in the prologue, but do not consider them to
571 be part of the prologue unless followed by other prologue
572 instructions. */
573 prev_insn_was_prologue_insn = 0;
574 continue;
575
576 }
577 else if ((op & 0xffff0000) == 0x3c000000)
578 { /* addis 0,0,NUM, used
579 for >= 32k frames */
580 fdata->offset = (op & 0x0000ffff) << 16;
581 fdata->frameless = 0;
582 continue;
583
584 }
585 else if ((op & 0xffff0000) == 0x60000000)
586 { /* ori 0,0,NUM, 2nd ha
587 lf of >= 32k frames */
588 fdata->offset |= (op & 0x0000ffff);
589 fdata->frameless = 0;
590 continue;
591
592 }
593 else if (lr_reg != -1 &&
594 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
595 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
596 /* stw Rx, NUM(r1) */
597 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
598 /* stwu Rx, NUM(r1) */
599 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
600 { /* where Rx == lr */
601 fdata->lr_offset = offset;
602 fdata->nosavedpc = 0;
603 lr_reg = 0;
604 if ((op & 0xfc000003) == 0xf8000000 || /* std */
605 (op & 0xfc000000) == 0x90000000) /* stw */
606 {
607 /* Does not update r1, so add displacement to lr_offset. */
608 fdata->lr_offset += SIGNED_SHORT (op);
609 }
610 continue;
611
612 }
613 else if (cr_reg != -1 &&
614 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
615 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
616 /* stw Rx, NUM(r1) */
617 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
618 /* stwu Rx, NUM(r1) */
619 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
620 { /* where Rx == cr */
621 fdata->cr_offset = offset;
622 cr_reg = 0;
623 if ((op & 0xfc000003) == 0xf8000000 ||
624 (op & 0xfc000000) == 0x90000000)
625 {
626 /* Does not update r1, so add displacement to cr_offset. */
627 fdata->cr_offset += SIGNED_SHORT (op);
628 }
629 continue;
630
631 }
632 else if (op == 0x48000005)
633 { /* bl .+4 used in
634 -mrelocatable */
635 continue;
636
637 }
638 else if (op == 0x48000004)
639 { /* b .+4 (xlc) */
640 break;
641
642 }
643 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
644 in V.4 -mminimal-toc */
645 (op & 0xffff0000) == 0x3bde0000)
646 { /* addi 30,30,foo@l */
647 continue;
648
649 }
650 else if ((op & 0xfc000001) == 0x48000001)
651 { /* bl foo,
652 to save fprs??? */
653
654 fdata->frameless = 0;
655 /* Don't skip over the subroutine call if it is not within
656 the first three instructions of the prologue. */
657 if ((pc - orig_pc) > 8)
658 break;
659
660 op = read_memory_integer (pc + 4, 4);
661
662 /* At this point, make sure this is not a trampoline
663 function (a function that simply calls another functions,
664 and nothing else). If the next is not a nop, this branch
665 was part of the function prologue. */
666
667 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
668 break; /* don't skip over
669 this branch */
670 continue;
671
672 }
673 /* update stack pointer */
674 else if ((op & 0xfc1f0000) == 0x94010000)
675 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
676 fdata->frameless = 0;
677 fdata->offset = SIGNED_SHORT (op);
678 offset = fdata->offset;
679 continue;
680 }
681 else if ((op & 0xfc1f016a) == 0x7c01016e)
682 { /* stwux rX,r1,rY */
683 /* no way to figure out what r1 is going to be */
684 fdata->frameless = 0;
685 offset = fdata->offset;
686 continue;
687 }
688 else if ((op & 0xfc1f0003) == 0xf8010001)
689 { /* stdu rX,NUM(r1) */
690 fdata->frameless = 0;
691 fdata->offset = SIGNED_SHORT (op & ~3UL);
692 offset = fdata->offset;
693 continue;
694 }
695 else if ((op & 0xfc1f016a) == 0x7c01016a)
696 { /* stdux rX,r1,rY */
697 /* no way to figure out what r1 is going to be */
698 fdata->frameless = 0;
699 offset = fdata->offset;
700 continue;
701 }
702 /* Load up minimal toc pointer */
703 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
704 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
705 && !minimal_toc_loaded)
706 {
707 minimal_toc_loaded = 1;
708 continue;
709
710 /* move parameters from argument registers to local variable
711 registers */
712 }
713 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
714 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
715 (((op >> 21) & 31) <= 10) &&
716 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
717 {
718 continue;
719
720 /* store parameters in stack */
721 }
722 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
723 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
724 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
725 {
726 continue;
727
728 /* store parameters in stack via frame pointer */
729 }
730 else if (framep &&
731 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
732 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
733 (op & 0xfc1f0000) == 0xfc1f0000))
734 { /* frsp, fp?,NUM(r1) */
735 continue;
736
737 /* Set up frame pointer */
738 }
739 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
740 || op == 0x7c3f0b78)
741 { /* mr r31, r1 */
742 fdata->frameless = 0;
743 framep = 1;
744 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
745 continue;
746
747 /* Another way to set up the frame pointer. */
748 }
749 else if ((op & 0xfc1fffff) == 0x38010000)
750 { /* addi rX, r1, 0x0 */
751 fdata->frameless = 0;
752 framep = 1;
753 fdata->alloca_reg = (tdep->ppc_gp0_regnum
754 + ((op & ~0x38010000) >> 21));
755 continue;
756 }
757 /* AltiVec related instructions. */
758 /* Store the vrsave register (spr 256) in another register for
759 later manipulation, or load a register into the vrsave
760 register. 2 instructions are used: mfvrsave and
761 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
762 and mtspr SPR256, Rn. */
763 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
764 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
765 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
766 {
767 vrsave_reg = GET_SRC_REG (op);
768 continue;
769 }
770 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
771 {
772 continue;
773 }
774 /* Store the register where vrsave was saved to onto the stack:
775 rS is the register where vrsave was stored in a previous
776 instruction. */
777 /* 100100 sssss 00001 dddddddd dddddddd */
778 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
779 {
780 if (vrsave_reg == GET_SRC_REG (op))
781 {
782 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
783 vrsave_reg = -1;
784 }
785 continue;
786 }
787 /* Compute the new value of vrsave, by modifying the register
788 where vrsave was saved to. */
789 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
790 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
791 {
792 continue;
793 }
794 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
795 in a pair of insns to save the vector registers on the
796 stack. */
797 /* 001110 00000 00000 iiii iiii iiii iiii */
798 /* 001110 01110 00000 iiii iiii iiii iiii */
799 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
800 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
801 {
802 li_found_pc = pc;
803 vr_saved_offset = SIGNED_SHORT (op);
804 }
805 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
806 /* 011111 sssss 11111 00000 00111001110 */
807 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
808 {
809 if (pc == (li_found_pc + 4))
810 {
811 vr_reg = GET_SRC_REG (op);
812 /* If this is the first vector reg to be saved, or if
813 it has a lower number than others previously seen,
814 reupdate the frame info. */
815 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
816 {
817 fdata->saved_vr = vr_reg;
818 fdata->vr_offset = vr_saved_offset + offset;
819 }
820 vr_saved_offset = -1;
821 vr_reg = -1;
822 li_found_pc = 0;
823 }
824 }
825 /* End AltiVec related instructions. */
826
827 /* Start BookE related instructions. */
828 /* Store gen register S at (r31+uimm).
829 Any register less than r13 is volatile, so we don't care. */
830 /* 000100 sssss 11111 iiiii 01100100001 */
831 else if (arch_info->mach == bfd_mach_ppc_e500
832 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
833 {
834 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
835 {
836 unsigned int imm;
837 ev_reg = GET_SRC_REG (op);
838 imm = (op >> 11) & 0x1f;
839 ev_offset = imm * 8;
840 /* If this is the first vector reg to be saved, or if
841 it has a lower number than others previously seen,
842 reupdate the frame info. */
843 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
844 {
845 fdata->saved_ev = ev_reg;
846 fdata->ev_offset = ev_offset + offset;
847 }
848 }
849 continue;
850 }
851 /* Store gen register rS at (r1+rB). */
852 /* 000100 sssss 00001 bbbbb 01100100000 */
853 else if (arch_info->mach == bfd_mach_ppc_e500
854 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
855 {
856 if (pc == (li_found_pc + 4))
857 {
858 ev_reg = GET_SRC_REG (op);
859 /* If this is the first vector reg to be saved, or if
860 it has a lower number than others previously seen,
861 reupdate the frame info. */
862 /* We know the contents of rB from the previous instruction. */
863 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
864 {
865 fdata->saved_ev = ev_reg;
866 fdata->ev_offset = vr_saved_offset + offset;
867 }
868 vr_saved_offset = -1;
869 ev_reg = -1;
870 li_found_pc = 0;
871 }
872 continue;
873 }
874 /* Store gen register r31 at (rA+uimm). */
875 /* 000100 11111 aaaaa iiiii 01100100001 */
876 else if (arch_info->mach == bfd_mach_ppc_e500
877 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
878 {
879 /* Wwe know that the source register is 31 already, but
880 it can't hurt to compute it. */
881 ev_reg = GET_SRC_REG (op);
882 ev_offset = ((op >> 11) & 0x1f) * 8;
883 /* If this is the first vector reg to be saved, or if
884 it has a lower number than others previously seen,
885 reupdate the frame info. */
886 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
887 {
888 fdata->saved_ev = ev_reg;
889 fdata->ev_offset = ev_offset + offset;
890 }
891
892 continue;
893 }
894 /* Store gen register S at (r31+r0).
895 Store param on stack when offset from SP bigger than 4 bytes. */
896 /* 000100 sssss 11111 00000 01100100000 */
897 else if (arch_info->mach == bfd_mach_ppc_e500
898 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
899 {
900 if (pc == (li_found_pc + 4))
901 {
902 if ((op & 0x03e00000) >= 0x01a00000)
903 {
904 ev_reg = GET_SRC_REG (op);
905 /* If this is the first vector reg to be saved, or if
906 it has a lower number than others previously seen,
907 reupdate the frame info. */
908 /* We know the contents of r0 from the previous
909 instruction. */
910 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
911 {
912 fdata->saved_ev = ev_reg;
913 fdata->ev_offset = vr_saved_offset + offset;
914 }
915 ev_reg = -1;
916 }
917 vr_saved_offset = -1;
918 li_found_pc = 0;
919 continue;
920 }
921 }
922 /* End BookE related instructions. */
923
924 else
925 {
926 /* Not a recognized prologue instruction.
927 Handle optimizer code motions into the prologue by continuing
928 the search if we have no valid frame yet or if the return
929 address is not yet saved in the frame. */
930 if (fdata->frameless == 0
931 && (lr_reg == -1 || fdata->nosavedpc == 0))
932 break;
933
934 if (op == 0x4e800020 /* blr */
935 || op == 0x4e800420) /* bctr */
936 /* Do not scan past epilogue in frameless functions or
937 trampolines. */
938 break;
939 if ((op & 0xf4000000) == 0x40000000) /* bxx */
940 /* Never skip branches. */
941 break;
942
943 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
944 /* Do not scan too many insns, scanning insns is expensive with
945 remote targets. */
946 break;
947
948 /* Continue scanning. */
949 prev_insn_was_prologue_insn = 0;
950 continue;
951 }
952 }
953
954 #if 0
955 /* I have problems with skipping over __main() that I need to address
956 * sometime. Previously, I used to use misc_function_vector which
957 * didn't work as well as I wanted to be. -MGO */
958
959 /* If the first thing after skipping a prolog is a branch to a function,
960 this might be a call to an initializer in main(), introduced by gcc2.
961 We'd like to skip over it as well. Fortunately, xlc does some extra
962 work before calling a function right after a prologue, thus we can
963 single out such gcc2 behaviour. */
964
965
966 if ((op & 0xfc000001) == 0x48000001)
967 { /* bl foo, an initializer function? */
968 op = read_memory_integer (pc + 4, 4);
969
970 if (op == 0x4def7b82)
971 { /* cror 0xf, 0xf, 0xf (nop) */
972
973 /* Check and see if we are in main. If so, skip over this
974 initializer function as well. */
975
976 tmp = find_pc_misc_function (pc);
977 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
978 return pc + 8;
979 }
980 }
981 #endif /* 0 */
982
983 fdata->offset = -fdata->offset;
984 return last_prologue_pc;
985 }
986
987
988 /*************************************************************************
989 Support for creating pushing a dummy frame into the stack, and popping
990 frames, etc.
991 *************************************************************************/
992
993
994 /* Pop the innermost frame, go back to the caller. */
995
996 static void
997 rs6000_pop_frame (void)
998 {
999 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
1000 struct rs6000_framedata fdata;
1001 struct frame_info *frame = get_current_frame ();
1002 int ii, wordsize;
1003
1004 pc = read_pc ();
1005 sp = get_frame_base (frame);
1006
1007 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
1008 get_frame_base (frame),
1009 get_frame_base (frame)))
1010 {
1011 generic_pop_dummy_frame ();
1012 flush_cached_frames ();
1013 return;
1014 }
1015
1016 /* Make sure that all registers are valid. */
1017 deprecated_read_register_bytes (0, NULL, DEPRECATED_REGISTER_BYTES);
1018
1019 /* Figure out previous %pc value. If the function is frameless, it is
1020 still in the link register, otherwise walk the frames and retrieve the
1021 saved %pc value in the previous frame. */
1022
1023 addr = get_frame_func (frame);
1024 (void) skip_prologue (addr, get_frame_pc (frame), &fdata);
1025
1026 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1027 if (fdata.frameless)
1028 prev_sp = sp;
1029 else
1030 prev_sp = read_memory_addr (sp, wordsize);
1031 if (fdata.lr_offset == 0)
1032 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1033 else
1034 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
1035
1036 /* reset %pc value. */
1037 write_register (PC_REGNUM, lr);
1038
1039 /* reset register values if any was saved earlier. */
1040
1041 if (fdata.saved_gpr != -1)
1042 {
1043 addr = prev_sp + fdata.gpr_offset;
1044 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
1045 {
1046 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii)],
1047 wordsize);
1048 addr += wordsize;
1049 }
1050 }
1051
1052 if (fdata.saved_fpr != -1)
1053 {
1054 addr = prev_sp + fdata.fpr_offset;
1055 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1056 {
1057 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
1058 addr += 8;
1059 }
1060 }
1061
1062 write_register (SP_REGNUM, prev_sp);
1063 target_store_registers (-1);
1064 flush_cached_frames ();
1065 }
1066
1067 /* Fixup the call sequence of a dummy function, with the real function
1068 address. Its arguments will be passed by gdb. */
1069
1070 static void
1071 rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
1072 int nargs, struct value **args, struct type *type,
1073 int gcc_p)
1074 {
1075 int ii;
1076 CORE_ADDR target_addr;
1077
1078 if (rs6000_find_toc_address_hook != NULL)
1079 {
1080 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
1081 write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
1082 tocvalue);
1083 }
1084 }
1085
1086 /* All the ABI's require 16 byte alignment. */
1087 static CORE_ADDR
1088 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1089 {
1090 return (addr & -16);
1091 }
1092
1093 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1094 the first eight words of the argument list (that might be less than
1095 eight parameters if some parameters occupy more than one word) are
1096 passed in r3..r10 registers. float and double parameters are
1097 passed in fpr's, in addition to that. Rest of the parameters if any
1098 are passed in user stack. There might be cases in which half of the
1099 parameter is copied into registers, the other half is pushed into
1100 stack.
1101
1102 Stack must be aligned on 64-bit boundaries when synthesizing
1103 function calls.
1104
1105 If the function is returning a structure, then the return address is passed
1106 in r3, then the first 7 words of the parameters can be passed in registers,
1107 starting from r4. */
1108
1109 static CORE_ADDR
1110 rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1111 int struct_return, CORE_ADDR struct_addr)
1112 {
1113 int ii;
1114 int len = 0;
1115 int argno; /* current argument number */
1116 int argbytes; /* current argument byte */
1117 char tmp_buffer[50];
1118 int f_argno = 0; /* current floating point argno */
1119 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1120
1121 struct value *arg = 0;
1122 struct type *type;
1123
1124 CORE_ADDR saved_sp;
1125
1126 /* The first eight words of ther arguments are passed in registers.
1127 Copy them appropriately.
1128
1129 If the function is returning a `struct', then the first word (which
1130 will be passed in r3) is used for struct return address. In that
1131 case we should advance one word and start from r4 register to copy
1132 parameters. */
1133
1134 ii = struct_return ? 1 : 0;
1135
1136 /*
1137 effectively indirect call... gcc does...
1138
1139 return_val example( float, int);
1140
1141 eabi:
1142 float in fp0, int in r3
1143 offset of stack on overflow 8/16
1144 for varargs, must go by type.
1145 power open:
1146 float in r3&r4, int in r5
1147 offset of stack on overflow different
1148 both:
1149 return in r3 or f0. If no float, must study how gcc emulates floats;
1150 pay attention to arg promotion.
1151 User may have to cast\args to handle promotion correctly
1152 since gdb won't know if prototype supplied or not.
1153 */
1154
1155 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1156 {
1157 int reg_size = REGISTER_RAW_SIZE (ii + 3);
1158
1159 arg = args[argno];
1160 type = check_typedef (VALUE_TYPE (arg));
1161 len = TYPE_LENGTH (type);
1162
1163 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1164 {
1165
1166 /* Floating point arguments are passed in fpr's, as well as gpr's.
1167 There are 13 fpr's reserved for passing parameters. At this point
1168 there is no way we would run out of them. */
1169
1170 if (len > 8)
1171 printf_unfiltered (
1172 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1173
1174 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1175 VALUE_CONTENTS (arg),
1176 len);
1177 ++f_argno;
1178 }
1179
1180 if (len > reg_size)
1181 {
1182
1183 /* Argument takes more than one register. */
1184 while (argbytes < len)
1185 {
1186 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0,
1187 reg_size);
1188 memcpy (&deprecated_registers[REGISTER_BYTE (ii + 3)],
1189 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1190 (len - argbytes) > reg_size
1191 ? reg_size : len - argbytes);
1192 ++ii, argbytes += reg_size;
1193
1194 if (ii >= 8)
1195 goto ran_out_of_registers_for_arguments;
1196 }
1197 argbytes = 0;
1198 --ii;
1199 }
1200 else
1201 {
1202 /* Argument can fit in one register. No problem. */
1203 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1204 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1205 memcpy ((char *)&deprecated_registers[REGISTER_BYTE (ii + 3)] + adj,
1206 VALUE_CONTENTS (arg), len);
1207 }
1208 ++argno;
1209 }
1210
1211 ran_out_of_registers_for_arguments:
1212
1213 saved_sp = read_sp ();
1214
1215 /* Location for 8 parameters are always reserved. */
1216 sp -= wordsize * 8;
1217
1218 /* Another six words for back chain, TOC register, link register, etc. */
1219 sp -= wordsize * 6;
1220
1221 /* Stack pointer must be quadword aligned. */
1222 sp &= -16;
1223
1224 /* If there are more arguments, allocate space for them in
1225 the stack, then push them starting from the ninth one. */
1226
1227 if ((argno < nargs) || argbytes)
1228 {
1229 int space = 0, jj;
1230
1231 if (argbytes)
1232 {
1233 space += ((len - argbytes + 3) & -4);
1234 jj = argno + 1;
1235 }
1236 else
1237 jj = argno;
1238
1239 for (; jj < nargs; ++jj)
1240 {
1241 struct value *val = args[jj];
1242 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1243 }
1244
1245 /* Add location required for the rest of the parameters. */
1246 space = (space + 15) & -16;
1247 sp -= space;
1248
1249 /* This is another instance we need to be concerned about
1250 securing our stack space. If we write anything underneath %sp
1251 (r1), we might conflict with the kernel who thinks he is free
1252 to use this area. So, update %sp first before doing anything
1253 else. */
1254
1255 write_register (SP_REGNUM, sp);
1256
1257 /* If the last argument copied into the registers didn't fit there
1258 completely, push the rest of it into stack. */
1259
1260 if (argbytes)
1261 {
1262 write_memory (sp + 24 + (ii * 4),
1263 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1264 len - argbytes);
1265 ++argno;
1266 ii += ((len - argbytes + 3) & -4) / 4;
1267 }
1268
1269 /* Push the rest of the arguments into stack. */
1270 for (; argno < nargs; ++argno)
1271 {
1272
1273 arg = args[argno];
1274 type = check_typedef (VALUE_TYPE (arg));
1275 len = TYPE_LENGTH (type);
1276
1277
1278 /* Float types should be passed in fpr's, as well as in the
1279 stack. */
1280 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1281 {
1282
1283 if (len > 8)
1284 printf_unfiltered (
1285 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1286
1287 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1288 VALUE_CONTENTS (arg),
1289 len);
1290 ++f_argno;
1291 }
1292
1293 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1294 ii += ((len + 3) & -4) / 4;
1295 }
1296 }
1297 else
1298 /* Secure stack areas first, before doing anything else. */
1299 write_register (SP_REGNUM, sp);
1300
1301 /* set back chain properly */
1302 store_unsigned_integer (tmp_buffer, 4, saved_sp);
1303 write_memory (sp, tmp_buffer, 4);
1304
1305 target_store_registers (-1);
1306 return sp;
1307 }
1308
1309 /* Function: ppc_push_return_address (pc, sp)
1310 Set up the return address for the inferior function call. */
1311
1312 static CORE_ADDR
1313 ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1314 {
1315 write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
1316 CALL_DUMMY_ADDRESS ());
1317 return sp;
1318 }
1319
1320 /* Extract a function return value of type TYPE from raw register array
1321 REGBUF, and copy that return value into VALBUF in virtual format. */
1322 static void
1323 e500_extract_return_value (struct type *valtype, struct regcache *regbuf, void *valbuf)
1324 {
1325 int offset = 0;
1326 int vallen = TYPE_LENGTH (valtype);
1327 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1328
1329 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1330 && vallen == 8
1331 && TYPE_VECTOR (valtype))
1332 {
1333 regcache_raw_read (regbuf, tdep->ppc_ev0_regnum + 3, valbuf);
1334 }
1335 else
1336 {
1337 /* Return value is copied starting from r3. Note that r3 for us
1338 is a pseudo register. */
1339 int offset = 0;
1340 int return_regnum = tdep->ppc_gp0_regnum + 3;
1341 int reg_size = REGISTER_RAW_SIZE (return_regnum);
1342 int reg_part_size;
1343 char *val_buffer;
1344 int copied = 0;
1345 int i = 0;
1346
1347 /* Compute where we will start storing the value from. */
1348 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1349 {
1350 if (vallen <= reg_size)
1351 offset = reg_size - vallen;
1352 else
1353 offset = reg_size + (reg_size - vallen);
1354 }
1355
1356 /* How big does the local buffer need to be? */
1357 if (vallen <= reg_size)
1358 val_buffer = alloca (reg_size);
1359 else
1360 val_buffer = alloca (vallen);
1361
1362 /* Read all we need into our private buffer. We copy it in
1363 chunks that are as long as one register, never shorter, even
1364 if the value is smaller than the register. */
1365 while (copied < vallen)
1366 {
1367 reg_part_size = REGISTER_RAW_SIZE (return_regnum + i);
1368 /* It is a pseudo/cooked register. */
1369 regcache_cooked_read (regbuf, return_regnum + i,
1370 val_buffer + copied);
1371 copied += reg_part_size;
1372 i++;
1373 }
1374 /* Put the stuff in the return buffer. */
1375 memcpy (valbuf, val_buffer + offset, vallen);
1376 }
1377 }
1378
1379 static void
1380 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1381 {
1382 int offset = 0;
1383 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1384
1385 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1386 {
1387
1388 double dd;
1389 float ff;
1390 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1391 We need to truncate the return value into float size (4 byte) if
1392 necessary. */
1393
1394 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1395 memcpy (valbuf,
1396 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1397 TYPE_LENGTH (valtype));
1398 else
1399 { /* float */
1400 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1401 ff = (float) dd;
1402 memcpy (valbuf, &ff, sizeof (float));
1403 }
1404 }
1405 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1406 && TYPE_LENGTH (valtype) == 16
1407 && TYPE_VECTOR (valtype))
1408 {
1409 memcpy (valbuf, regbuf + REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1410 TYPE_LENGTH (valtype));
1411 }
1412 else
1413 {
1414 /* return value is copied starting from r3. */
1415 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1416 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1417 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1418
1419 memcpy (valbuf,
1420 regbuf + REGISTER_BYTE (3) + offset,
1421 TYPE_LENGTH (valtype));
1422 }
1423 }
1424
1425 /* Return whether handle_inferior_event() should proceed through code
1426 starting at PC in function NAME when stepping.
1427
1428 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1429 handle memory references that are too distant to fit in instructions
1430 generated by the compiler. For example, if 'foo' in the following
1431 instruction:
1432
1433 lwz r9,foo(r2)
1434
1435 is greater than 32767, the linker might replace the lwz with a branch to
1436 somewhere in @FIX1 that does the load in 2 instructions and then branches
1437 back to where execution should continue.
1438
1439 GDB should silently step over @FIX code, just like AIX dbx does.
1440 Unfortunately, the linker uses the "b" instruction for the branches,
1441 meaning that the link register doesn't get set. Therefore, GDB's usual
1442 step_over_function() mechanism won't work.
1443
1444 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1445 in handle_inferior_event() to skip past @FIX code. */
1446
1447 int
1448 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1449 {
1450 return name && !strncmp (name, "@FIX", 4);
1451 }
1452
1453 /* Skip code that the user doesn't want to see when stepping:
1454
1455 1. Indirect function calls use a piece of trampoline code to do context
1456 switching, i.e. to set the new TOC table. Skip such code if we are on
1457 its first instruction (as when we have single-stepped to here).
1458
1459 2. Skip shared library trampoline code (which is different from
1460 indirect function call trampolines).
1461
1462 3. Skip bigtoc fixup code.
1463
1464 Result is desired PC to step until, or NULL if we are not in
1465 code that should be skipped. */
1466
1467 CORE_ADDR
1468 rs6000_skip_trampoline_code (CORE_ADDR pc)
1469 {
1470 register unsigned int ii, op;
1471 int rel;
1472 CORE_ADDR solib_target_pc;
1473 struct minimal_symbol *msymbol;
1474
1475 static unsigned trampoline_code[] =
1476 {
1477 0x800b0000, /* l r0,0x0(r11) */
1478 0x90410014, /* st r2,0x14(r1) */
1479 0x7c0903a6, /* mtctr r0 */
1480 0x804b0004, /* l r2,0x4(r11) */
1481 0x816b0008, /* l r11,0x8(r11) */
1482 0x4e800420, /* bctr */
1483 0x4e800020, /* br */
1484 0
1485 };
1486
1487 /* Check for bigtoc fixup code. */
1488 msymbol = lookup_minimal_symbol_by_pc (pc);
1489 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
1490 {
1491 /* Double-check that the third instruction from PC is relative "b". */
1492 op = read_memory_integer (pc + 8, 4);
1493 if ((op & 0xfc000003) == 0x48000000)
1494 {
1495 /* Extract bits 6-29 as a signed 24-bit relative word address and
1496 add it to the containing PC. */
1497 rel = ((int)(op << 6) >> 6);
1498 return pc + 8 + rel;
1499 }
1500 }
1501
1502 /* If pc is in a shared library trampoline, return its target. */
1503 solib_target_pc = find_solib_trampoline_target (pc);
1504 if (solib_target_pc)
1505 return solib_target_pc;
1506
1507 for (ii = 0; trampoline_code[ii]; ++ii)
1508 {
1509 op = read_memory_integer (pc + (ii * 4), 4);
1510 if (op != trampoline_code[ii])
1511 return 0;
1512 }
1513 ii = read_register (11); /* r11 holds destination addr */
1514 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1515 return pc;
1516 }
1517
1518 /* Determines whether the function FI has a frame on the stack or not. */
1519
1520 int
1521 rs6000_frameless_function_invocation (struct frame_info *fi)
1522 {
1523 CORE_ADDR func_start;
1524 struct rs6000_framedata fdata;
1525
1526 /* Don't even think about framelessness except on the innermost frame
1527 or if the function was interrupted by a signal. */
1528 if (get_next_frame (fi) != NULL
1529 && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
1530 return 0;
1531
1532 func_start = get_frame_func (fi);
1533
1534 /* If we failed to find the start of the function, it is a mistake
1535 to inspect the instructions. */
1536
1537 if (!func_start)
1538 {
1539 /* A frame with a zero PC is usually created by dereferencing a NULL
1540 function pointer, normally causing an immediate core dump of the
1541 inferior. Mark function as frameless, as the inferior has no chance
1542 of setting up a stack frame. */
1543 if (get_frame_pc (fi) == 0)
1544 return 1;
1545 else
1546 return 0;
1547 }
1548
1549 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
1550 return fdata.frameless;
1551 }
1552
1553 /* Return the PC saved in a frame. */
1554
1555 CORE_ADDR
1556 rs6000_frame_saved_pc (struct frame_info *fi)
1557 {
1558 CORE_ADDR func_start;
1559 struct rs6000_framedata fdata;
1560 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1561 int wordsize = tdep->wordsize;
1562
1563 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
1564 return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
1565 wordsize);
1566
1567 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1568 get_frame_base (fi),
1569 get_frame_base (fi)))
1570 return deprecated_read_register_dummy (get_frame_pc (fi),
1571 get_frame_base (fi), PC_REGNUM);
1572
1573 func_start = get_frame_func (fi);
1574
1575 /* If we failed to find the start of the function, it is a mistake
1576 to inspect the instructions. */
1577 if (!func_start)
1578 return 0;
1579
1580 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
1581
1582 if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
1583 {
1584 if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
1585 return read_memory_addr ((get_frame_base (get_next_frame (fi))
1586 + SIG_FRAME_LR_OFFSET),
1587 wordsize);
1588 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
1589 /* The link register wasn't saved by this frame and the next
1590 (inner, newer) frame is a dummy. Get the link register
1591 value by unwinding it from that [dummy] frame. */
1592 {
1593 ULONGEST lr;
1594 frame_unwind_unsigned_register (get_next_frame (fi),
1595 tdep->ppc_lr_regnum, &lr);
1596 return lr;
1597 }
1598 else
1599 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi)
1600 + tdep->lr_frame_offset,
1601 wordsize);
1602 }
1603
1604 if (fdata.lr_offset == 0)
1605 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1606
1607 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi) + fdata.lr_offset,
1608 wordsize);
1609 }
1610
1611 /* If saved registers of frame FI are not known yet, read and cache them.
1612 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1613 in which case the framedata are read. */
1614
1615 static void
1616 frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
1617 {
1618 CORE_ADDR frame_addr;
1619 struct rs6000_framedata work_fdata;
1620 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1621 int wordsize = tdep->wordsize;
1622
1623 if (get_frame_saved_regs (fi))
1624 return;
1625
1626 if (fdatap == NULL)
1627 {
1628 fdatap = &work_fdata;
1629 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), fdatap);
1630 }
1631
1632 frame_saved_regs_zalloc (fi);
1633
1634 /* If there were any saved registers, figure out parent's stack
1635 pointer. */
1636 /* The following is true only if the frame doesn't have a call to
1637 alloca(), FIXME. */
1638
1639 if (fdatap->saved_fpr == 0
1640 && fdatap->saved_gpr == 0
1641 && fdatap->saved_vr == 0
1642 && fdatap->saved_ev == 0
1643 && fdatap->lr_offset == 0
1644 && fdatap->cr_offset == 0
1645 && fdatap->vr_offset == 0
1646 && fdatap->ev_offset == 0)
1647 frame_addr = 0;
1648 else
1649 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1650 address of the current frame. Things might be easier if the
1651 ->frame pointed to the outer-most address of the frame. In the
1652 mean time, the address of the prev frame is used as the base
1653 address of this frame. */
1654 frame_addr = DEPRECATED_FRAME_CHAIN (fi);
1655
1656 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1657 All fpr's from saved_fpr to fp31 are saved. */
1658
1659 if (fdatap->saved_fpr >= 0)
1660 {
1661 int i;
1662 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
1663 for (i = fdatap->saved_fpr; i < 32; i++)
1664 {
1665 get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
1666 fpr_addr += 8;
1667 }
1668 }
1669
1670 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1671 All gpr's from saved_gpr to gpr31 are saved. */
1672
1673 if (fdatap->saved_gpr >= 0)
1674 {
1675 int i;
1676 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
1677 for (i = fdatap->saved_gpr; i < 32; i++)
1678 {
1679 get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = gpr_addr;
1680 gpr_addr += wordsize;
1681 }
1682 }
1683
1684 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1685 All vr's from saved_vr to vr31 are saved. */
1686 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1687 {
1688 if (fdatap->saved_vr >= 0)
1689 {
1690 int i;
1691 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1692 for (i = fdatap->saved_vr; i < 32; i++)
1693 {
1694 get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
1695 vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1696 }
1697 }
1698 }
1699
1700 /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1701 All vr's from saved_ev to ev31 are saved. ????? */
1702 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1703 {
1704 if (fdatap->saved_ev >= 0)
1705 {
1706 int i;
1707 CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1708 for (i = fdatap->saved_ev; i < 32; i++)
1709 {
1710 get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
1711 get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
1712 ev_addr += REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
1713 }
1714 }
1715 }
1716
1717 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1718 the CR. */
1719 if (fdatap->cr_offset != 0)
1720 get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
1721
1722 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1723 the LR. */
1724 if (fdatap->lr_offset != 0)
1725 get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
1726
1727 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1728 the VRSAVE. */
1729 if (fdatap->vrsave_offset != 0)
1730 get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
1731 }
1732
1733 /* Return the address of a frame. This is the inital %sp value when the frame
1734 was first allocated. For functions calling alloca(), it might be saved in
1735 an alloca register. */
1736
1737 static CORE_ADDR
1738 frame_initial_stack_address (struct frame_info *fi)
1739 {
1740 CORE_ADDR tmpaddr;
1741 struct rs6000_framedata fdata;
1742 struct frame_info *callee_fi;
1743
1744 /* If the initial stack pointer (frame address) of this frame is known,
1745 just return it. */
1746
1747 if (get_frame_extra_info (fi)->initial_sp)
1748 return get_frame_extra_info (fi)->initial_sp;
1749
1750 /* Find out if this function is using an alloca register. */
1751
1752 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), &fdata);
1753
1754 /* If saved registers of this frame are not known yet, read and
1755 cache them. */
1756
1757 if (!get_frame_saved_regs (fi))
1758 frame_get_saved_regs (fi, &fdata);
1759
1760 /* If no alloca register used, then fi->frame is the value of the %sp for
1761 this frame, and it is good enough. */
1762
1763 if (fdata.alloca_reg < 0)
1764 {
1765 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1766 return get_frame_extra_info (fi)->initial_sp;
1767 }
1768
1769 /* There is an alloca register, use its value, in the current frame,
1770 as the initial stack pointer. */
1771 {
1772 char tmpbuf[MAX_REGISTER_SIZE];
1773 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1774 {
1775 get_frame_extra_info (fi)->initial_sp
1776 = extract_unsigned_integer (tmpbuf,
1777 REGISTER_RAW_SIZE (fdata.alloca_reg));
1778 }
1779 else
1780 /* NOTE: cagney/2002-04-17: At present the only time
1781 frame_register_read will fail is when the register isn't
1782 available. If that does happen, use the frame. */
1783 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1784 }
1785 return get_frame_extra_info (fi)->initial_sp;
1786 }
1787
1788 /* Describe the pointer in each stack frame to the previous stack frame
1789 (its caller). */
1790
1791 /* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and produces
1792 the frame's chain-pointer. */
1793
1794 /* In the case of the RS/6000, the frame's nominal address
1795 is the address of a 4-byte word containing the calling frame's address. */
1796
1797 CORE_ADDR
1798 rs6000_frame_chain (struct frame_info *thisframe)
1799 {
1800 CORE_ADDR fp, fpp, lr;
1801 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1802
1803 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
1804 get_frame_base (thisframe),
1805 get_frame_base (thisframe)))
1806 /* A dummy frame always correctly chains back to the previous
1807 frame. */
1808 return read_memory_addr (get_frame_base (thisframe), wordsize);
1809
1810 if (inside_entry_file (get_frame_pc (thisframe))
1811 || get_frame_pc (thisframe) == entry_point_address ())
1812 return 0;
1813
1814 if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
1815 fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
1816 wordsize);
1817 else if (get_next_frame (thisframe) != NULL
1818 && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
1819 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
1820 /* A frameless function interrupted by a signal did not change the
1821 frame pointer. */
1822 fp = get_frame_base (thisframe);
1823 else
1824 fp = read_memory_addr (get_frame_base (thisframe), wordsize);
1825 return fp;
1826 }
1827
1828 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1829 isn't available with that word size, return 0. */
1830
1831 static int
1832 regsize (const struct reg *reg, int wordsize)
1833 {
1834 return wordsize == 8 ? reg->sz64 : reg->sz32;
1835 }
1836
1837 /* Return the name of register number N, or null if no such register exists
1838 in the current architecture. */
1839
1840 static const char *
1841 rs6000_register_name (int n)
1842 {
1843 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1844 const struct reg *reg = tdep->regs + n;
1845
1846 if (!regsize (reg, tdep->wordsize))
1847 return NULL;
1848 return reg->name;
1849 }
1850
1851 /* Index within `registers' of the first byte of the space for
1852 register N. */
1853
1854 static int
1855 rs6000_register_byte (int n)
1856 {
1857 return gdbarch_tdep (current_gdbarch)->regoff[n];
1858 }
1859
1860 /* Return the number of bytes of storage in the actual machine representation
1861 for register N if that register is available, else return 0. */
1862
1863 static int
1864 rs6000_register_raw_size (int n)
1865 {
1866 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1867 const struct reg *reg = tdep->regs + n;
1868 return regsize (reg, tdep->wordsize);
1869 }
1870
1871 /* Return the GDB type object for the "standard" data type
1872 of data in register N. */
1873
1874 static struct type *
1875 rs6000_register_virtual_type (int n)
1876 {
1877 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1878 const struct reg *reg = tdep->regs + n;
1879
1880 if (reg->fpr)
1881 return builtin_type_double;
1882 else
1883 {
1884 int size = regsize (reg, tdep->wordsize);
1885 switch (size)
1886 {
1887 case 8:
1888 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1889 return builtin_type_vec64;
1890 else
1891 return builtin_type_int64;
1892 break;
1893 case 16:
1894 return builtin_type_vec128;
1895 break;
1896 default:
1897 return builtin_type_int32;
1898 break;
1899 }
1900 }
1901 }
1902
1903 /* Return whether register N requires conversion when moving from raw format
1904 to virtual format.
1905
1906 The register format for RS/6000 floating point registers is always
1907 double, we need a conversion if the memory format is float. */
1908
1909 static int
1910 rs6000_register_convertible (int n)
1911 {
1912 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
1913 return reg->fpr;
1914 }
1915
1916 /* Convert data from raw format for register N in buffer FROM
1917 to virtual format with type TYPE in buffer TO. */
1918
1919 static void
1920 rs6000_register_convert_to_virtual (int n, struct type *type,
1921 char *from, char *to)
1922 {
1923 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1924 {
1925 double val = deprecated_extract_floating (from, REGISTER_RAW_SIZE (n));
1926 deprecated_store_floating (to, TYPE_LENGTH (type), val);
1927 }
1928 else
1929 memcpy (to, from, REGISTER_RAW_SIZE (n));
1930 }
1931
1932 /* Convert data from virtual format with type TYPE in buffer FROM
1933 to raw format for register N in buffer TO. */
1934
1935 static void
1936 rs6000_register_convert_to_raw (struct type *type, int n,
1937 char *from, char *to)
1938 {
1939 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1940 {
1941 double val = deprecated_extract_floating (from, TYPE_LENGTH (type));
1942 deprecated_store_floating (to, REGISTER_RAW_SIZE (n), val);
1943 }
1944 else
1945 memcpy (to, from, REGISTER_RAW_SIZE (n));
1946 }
1947
1948 static void
1949 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1950 int reg_nr, void *buffer)
1951 {
1952 int base_regnum;
1953 int offset = 0;
1954 char temp_buffer[MAX_REGISTER_SIZE];
1955 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1956
1957 if (reg_nr >= tdep->ppc_gp0_regnum
1958 && reg_nr <= tdep->ppc_gplast_regnum)
1959 {
1960 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1961
1962 /* Build the value in the provided buffer. */
1963 /* Read the raw register of which this one is the lower portion. */
1964 regcache_raw_read (regcache, base_regnum, temp_buffer);
1965 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1966 offset = 4;
1967 memcpy ((char *) buffer, temp_buffer + offset, 4);
1968 }
1969 }
1970
1971 static void
1972 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1973 int reg_nr, const void *buffer)
1974 {
1975 int base_regnum;
1976 int offset = 0;
1977 char temp_buffer[MAX_REGISTER_SIZE];
1978 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1979
1980 if (reg_nr >= tdep->ppc_gp0_regnum
1981 && reg_nr <= tdep->ppc_gplast_regnum)
1982 {
1983 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1984 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1985 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1986 offset = 4;
1987
1988 /* Let's read the value of the base register into a temporary
1989 buffer, so that overwriting the last four bytes with the new
1990 value of the pseudo will leave the upper 4 bytes unchanged. */
1991 regcache_raw_read (regcache, base_regnum, temp_buffer);
1992
1993 /* Write as an 8 byte quantity. */
1994 memcpy (temp_buffer + offset, (char *) buffer, 4);
1995 regcache_raw_write (regcache, base_regnum, temp_buffer);
1996 }
1997 }
1998
1999 /* Convert a dwarf2 register number to a gdb REGNUM. */
2000 static int
2001 e500_dwarf2_reg_to_regnum (int num)
2002 {
2003 int regnum;
2004 if (0 <= num && num <= 31)
2005 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
2006 else
2007 return num;
2008 }
2009
2010 /* Convert a dbx stab register number (from `r' declaration) to a gdb
2011 REGNUM. */
2012 static int
2013 rs6000_stab_reg_to_regnum (int num)
2014 {
2015 int regnum;
2016 switch (num)
2017 {
2018 case 64:
2019 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
2020 break;
2021 case 65:
2022 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
2023 break;
2024 case 66:
2025 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
2026 break;
2027 case 76:
2028 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
2029 break;
2030 default:
2031 regnum = num;
2032 break;
2033 }
2034 return regnum;
2035 }
2036
2037 /* Store the address of the place in which to copy the structure the
2038 subroutine will return. */
2039
2040 static void
2041 rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
2042 {
2043 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2044 write_register (tdep->ppc_gp0_regnum + 3, addr);
2045 }
2046
2047 /* Write into appropriate registers a function return value
2048 of type TYPE, given in virtual format. */
2049 static void
2050 e500_store_return_value (struct type *type, char *valbuf)
2051 {
2052 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2053
2054 /* Everything is returned in GPR3 and up. */
2055 int copied = 0;
2056 int i = 0;
2057 int len = TYPE_LENGTH (type);
2058 while (copied < len)
2059 {
2060 int regnum = gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3 + i;
2061 int reg_size = REGISTER_RAW_SIZE (regnum);
2062 char *reg_val_buf = alloca (reg_size);
2063
2064 memcpy (reg_val_buf, valbuf + copied, reg_size);
2065 copied += reg_size;
2066 deprecated_write_register_gen (regnum, reg_val_buf);
2067 i++;
2068 }
2069 }
2070
2071 static void
2072 rs6000_store_return_value (struct type *type, char *valbuf)
2073 {
2074 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2075
2076 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2077
2078 /* Floating point values are returned starting from FPR1 and up.
2079 Say a double_double_double type could be returned in
2080 FPR1/FPR2/FPR3 triple. */
2081
2082 deprecated_write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
2083 TYPE_LENGTH (type));
2084 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2085 {
2086 if (TYPE_LENGTH (type) == 16
2087 && TYPE_VECTOR (type))
2088 deprecated_write_register_bytes (REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
2089 valbuf, TYPE_LENGTH (type));
2090 }
2091 else
2092 /* Everything else is returned in GPR3 and up. */
2093 deprecated_write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
2094 valbuf, TYPE_LENGTH (type));
2095 }
2096
2097 /* Extract from an array REGBUF containing the (raw) register state
2098 the address in which a function should return its structure value,
2099 as a CORE_ADDR (or an expression that can be used as one). */
2100
2101 static CORE_ADDR
2102 rs6000_extract_struct_value_address (struct regcache *regcache)
2103 {
2104 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2105 function call GDB knows the address of the struct return value
2106 and hence, should not need to call this function. Unfortunately,
2107 the current call_function_by_hand() code only saves the most
2108 recent struct address leading to occasional calls. The code
2109 should instead maintain a stack of such addresses (in the dummy
2110 frame object). */
2111 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2112 really got no idea where the return value is being stored. While
2113 r3, on function entry, contained the address it will have since
2114 been reused (scratch) and hence wouldn't be valid */
2115 return 0;
2116 }
2117
2118 /* Return whether PC is in a dummy function call.
2119
2120 FIXME: This just checks for the end of the stack, which is broken
2121 for things like stepping through gcc nested function stubs. */
2122
2123 static int
2124 rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
2125 {
2126 return sp < pc && pc < fp;
2127 }
2128
2129 /* Hook called when a new child process is started. */
2130
2131 void
2132 rs6000_create_inferior (int pid)
2133 {
2134 if (rs6000_set_host_arch_hook)
2135 rs6000_set_host_arch_hook (pid);
2136 }
2137 \f
2138 /* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
2139
2140 Usually a function pointer's representation is simply the address
2141 of the function. On the RS/6000 however, a function pointer is
2142 represented by a pointer to a TOC entry. This TOC entry contains
2143 three words, the first word is the address of the function, the
2144 second word is the TOC pointer (r2), and the third word is the
2145 static chain value. Throughout GDB it is currently assumed that a
2146 function pointer contains the address of the function, which is not
2147 easy to fix. In addition, the conversion of a function address to
2148 a function pointer would require allocation of a TOC entry in the
2149 inferior's memory space, with all its drawbacks. To be able to
2150 call C++ virtual methods in the inferior (which are called via
2151 function pointers), find_function_addr uses this function to get the
2152 function address from a function pointer. */
2153
2154 /* Return real function address if ADDR (a function pointer) is in the data
2155 space and is therefore a special function pointer. */
2156
2157 CORE_ADDR
2158 rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
2159 {
2160 struct obj_section *s;
2161
2162 s = find_pc_section (addr);
2163 if (s && s->the_bfd_section->flags & SEC_CODE)
2164 return addr;
2165
2166 /* ADDR is in the data space, so it's a special function pointer. */
2167 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2168 }
2169 \f
2170
2171 /* Handling the various POWER/PowerPC variants. */
2172
2173
2174 /* The arrays here called registers_MUMBLE hold information about available
2175 registers.
2176
2177 For each family of PPC variants, I've tried to isolate out the
2178 common registers and put them up front, so that as long as you get
2179 the general family right, GDB will correctly identify the registers
2180 common to that family. The common register sets are:
2181
2182 For the 60x family: hid0 hid1 iabr dabr pir
2183
2184 For the 505 and 860 family: eie eid nri
2185
2186 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2187 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2188 pbu1 pbl2 pbu2
2189
2190 Most of these register groups aren't anything formal. I arrived at
2191 them by looking at the registers that occurred in more than one
2192 processor.
2193
2194 Note: kevinb/2002-04-30: Support for the fpscr register was added
2195 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2196 for Power. For PowerPC, slot 70 was unused and was already in the
2197 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2198 slot 70 was being used for "mq", so the next available slot (71)
2199 was chosen. It would have been nice to be able to make the
2200 register numbers the same across processor cores, but this wasn't
2201 possible without either 1) renumbering some registers for some
2202 processors or 2) assigning fpscr to a really high slot that's
2203 larger than any current register number. Doing (1) is bad because
2204 existing stubs would break. Doing (2) is undesirable because it
2205 would introduce a really large gap between fpscr and the rest of
2206 the registers for most processors. */
2207
2208 /* Convenience macros for populating register arrays. */
2209
2210 /* Within another macro, convert S to a string. */
2211
2212 #define STR(s) #s
2213
2214 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2215 and 64 bits on 64-bit systems. */
2216 #define R(name) { STR(name), 4, 8, 0, 0 }
2217
2218 /* Return a struct reg defining register NAME that's 32 bits on all
2219 systems. */
2220 #define R4(name) { STR(name), 4, 4, 0, 0 }
2221
2222 /* Return a struct reg defining register NAME that's 64 bits on all
2223 systems. */
2224 #define R8(name) { STR(name), 8, 8, 0, 0 }
2225
2226 /* Return a struct reg defining register NAME that's 128 bits on all
2227 systems. */
2228 #define R16(name) { STR(name), 16, 16, 0, 0 }
2229
2230 /* Return a struct reg defining floating-point register NAME. */
2231 #define F(name) { STR(name), 8, 8, 1, 0 }
2232
2233 /* Return a struct reg defining a pseudo register NAME. */
2234 #define P(name) { STR(name), 4, 8, 0, 1}
2235
2236 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2237 systems and that doesn't exist on 64-bit systems. */
2238 #define R32(name) { STR(name), 4, 0, 0, 0 }
2239
2240 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2241 systems and that doesn't exist on 32-bit systems. */
2242 #define R64(name) { STR(name), 0, 8, 0, 0 }
2243
2244 /* Return a struct reg placeholder for a register that doesn't exist. */
2245 #define R0 { 0, 0, 0, 0, 0 }
2246
2247 /* UISA registers common across all architectures, including POWER. */
2248
2249 #define COMMON_UISA_REGS \
2250 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2251 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2252 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2253 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2254 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2255 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2256 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2257 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2258 /* 64 */ R(pc), R(ps)
2259
2260 #define COMMON_UISA_NOFP_REGS \
2261 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2262 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2263 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2264 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2265 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2266 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2267 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2268 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2269 /* 64 */ R(pc), R(ps)
2270
2271 /* UISA-level SPRs for PowerPC. */
2272 #define PPC_UISA_SPRS \
2273 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
2274
2275 /* UISA-level SPRs for PowerPC without floating point support. */
2276 #define PPC_UISA_NOFP_SPRS \
2277 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2278
2279 /* Segment registers, for PowerPC. */
2280 #define PPC_SEGMENT_REGS \
2281 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2282 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2283 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2284 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2285
2286 /* OEA SPRs for PowerPC. */
2287 #define PPC_OEA_SPRS \
2288 /* 87 */ R4(pvr), \
2289 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2290 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2291 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2292 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2293 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2294 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2295 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2296 /* 116 */ R4(dec), R(dabr), R4(ear)
2297
2298 /* AltiVec registers. */
2299 #define PPC_ALTIVEC_REGS \
2300 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2301 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2302 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2303 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2304 /*151*/R4(vscr), R4(vrsave)
2305
2306 /* Vectors of hi-lo general purpose registers. */
2307 #define PPC_EV_REGS \
2308 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2309 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2310 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2311 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2312
2313 /* Lower half of the EV registers. */
2314 #define PPC_GPRS_PSEUDO_REGS \
2315 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2316 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2317 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
2318 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
2319
2320 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2321 user-level SPR's. */
2322 static const struct reg registers_power[] =
2323 {
2324 COMMON_UISA_REGS,
2325 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2326 /* 71 */ R4(fpscr)
2327 };
2328
2329 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2330 view of the PowerPC. */
2331 static const struct reg registers_powerpc[] =
2332 {
2333 COMMON_UISA_REGS,
2334 PPC_UISA_SPRS,
2335 PPC_ALTIVEC_REGS
2336 };
2337
2338 /* PowerPC UISA - a PPC processor as viewed by user-level
2339 code, but without floating point registers. */
2340 static const struct reg registers_powerpc_nofp[] =
2341 {
2342 COMMON_UISA_NOFP_REGS,
2343 PPC_UISA_SPRS
2344 };
2345
2346 /* IBM PowerPC 403. */
2347 static const struct reg registers_403[] =
2348 {
2349 COMMON_UISA_REGS,
2350 PPC_UISA_SPRS,
2351 PPC_SEGMENT_REGS,
2352 PPC_OEA_SPRS,
2353 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2354 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2355 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2356 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2357 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2358 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
2359 };
2360
2361 /* IBM PowerPC 403GC. */
2362 static const struct reg registers_403GC[] =
2363 {
2364 COMMON_UISA_REGS,
2365 PPC_UISA_SPRS,
2366 PPC_SEGMENT_REGS,
2367 PPC_OEA_SPRS,
2368 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2369 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2370 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2371 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2372 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2373 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2374 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2375 /* 147 */ R(tbhu), R(tblu)
2376 };
2377
2378 /* Motorola PowerPC 505. */
2379 static const struct reg registers_505[] =
2380 {
2381 COMMON_UISA_REGS,
2382 PPC_UISA_SPRS,
2383 PPC_SEGMENT_REGS,
2384 PPC_OEA_SPRS,
2385 /* 119 */ R(eie), R(eid), R(nri)
2386 };
2387
2388 /* Motorola PowerPC 860 or 850. */
2389 static const struct reg registers_860[] =
2390 {
2391 COMMON_UISA_REGS,
2392 PPC_UISA_SPRS,
2393 PPC_SEGMENT_REGS,
2394 PPC_OEA_SPRS,
2395 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2396 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2397 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2398 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2399 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2400 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2401 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2402 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2403 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2404 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2405 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2406 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
2407 };
2408
2409 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2410 for reading and writing RTCU and RTCL. However, how one reads and writes a
2411 register is the stub's problem. */
2412 static const struct reg registers_601[] =
2413 {
2414 COMMON_UISA_REGS,
2415 PPC_UISA_SPRS,
2416 PPC_SEGMENT_REGS,
2417 PPC_OEA_SPRS,
2418 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2419 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
2420 };
2421
2422 /* Motorola PowerPC 602. */
2423 static const struct reg registers_602[] =
2424 {
2425 COMMON_UISA_REGS,
2426 PPC_UISA_SPRS,
2427 PPC_SEGMENT_REGS,
2428 PPC_OEA_SPRS,
2429 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2430 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2431 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
2432 };
2433
2434 /* Motorola/IBM PowerPC 603 or 603e. */
2435 static const struct reg registers_603[] =
2436 {
2437 COMMON_UISA_REGS,
2438 PPC_UISA_SPRS,
2439 PPC_SEGMENT_REGS,
2440 PPC_OEA_SPRS,
2441 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2442 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2443 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
2444 };
2445
2446 /* Motorola PowerPC 604 or 604e. */
2447 static const struct reg registers_604[] =
2448 {
2449 COMMON_UISA_REGS,
2450 PPC_UISA_SPRS,
2451 PPC_SEGMENT_REGS,
2452 PPC_OEA_SPRS,
2453 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2454 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2455 /* 127 */ R(sia), R(sda)
2456 };
2457
2458 /* Motorola/IBM PowerPC 750 or 740. */
2459 static const struct reg registers_750[] =
2460 {
2461 COMMON_UISA_REGS,
2462 PPC_UISA_SPRS,
2463 PPC_SEGMENT_REGS,
2464 PPC_OEA_SPRS,
2465 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2466 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2467 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2468 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2469 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2470 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
2471 };
2472
2473
2474 /* Motorola PowerPC 7400. */
2475 static const struct reg registers_7400[] =
2476 {
2477 /* gpr0-gpr31, fpr0-fpr31 */
2478 COMMON_UISA_REGS,
2479 /* ctr, xre, lr, cr */
2480 PPC_UISA_SPRS,
2481 /* sr0-sr15 */
2482 PPC_SEGMENT_REGS,
2483 PPC_OEA_SPRS,
2484 /* vr0-vr31, vrsave, vscr */
2485 PPC_ALTIVEC_REGS
2486 /* FIXME? Add more registers? */
2487 };
2488
2489 /* Motorola e500. */
2490 static const struct reg registers_e500[] =
2491 {
2492 R(pc), R(ps),
2493 /* cr, lr, ctr, xer, "" */
2494 PPC_UISA_NOFP_SPRS,
2495 /* 7...38 */
2496 PPC_EV_REGS,
2497 R8(acc), R(spefscr),
2498 /* NOTE: Add new registers here the end of the raw register
2499 list and just before the first pseudo register. */
2500 /* 39...70 */
2501 PPC_GPRS_PSEUDO_REGS
2502 };
2503
2504 /* Information about a particular processor variant. */
2505
2506 struct variant
2507 {
2508 /* Name of this variant. */
2509 char *name;
2510
2511 /* English description of the variant. */
2512 char *description;
2513
2514 /* bfd_arch_info.arch corresponding to variant. */
2515 enum bfd_architecture arch;
2516
2517 /* bfd_arch_info.mach corresponding to variant. */
2518 unsigned long mach;
2519
2520 /* Number of real registers. */
2521 int nregs;
2522
2523 /* Number of pseudo registers. */
2524 int npregs;
2525
2526 /* Number of total registers (the sum of nregs and npregs). */
2527 int num_tot_regs;
2528
2529 /* Table of register names; registers[R] is the name of the register
2530 number R. */
2531 const struct reg *regs;
2532 };
2533
2534 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2535
2536 static int
2537 num_registers (const struct reg *reg_list, int num_tot_regs)
2538 {
2539 int i;
2540 int nregs = 0;
2541
2542 for (i = 0; i < num_tot_regs; i++)
2543 if (!reg_list[i].pseudo)
2544 nregs++;
2545
2546 return nregs;
2547 }
2548
2549 static int
2550 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2551 {
2552 int i;
2553 int npregs = 0;
2554
2555 for (i = 0; i < num_tot_regs; i++)
2556 if (reg_list[i].pseudo)
2557 npregs ++;
2558
2559 return npregs;
2560 }
2561
2562 /* Information in this table comes from the following web sites:
2563 IBM: http://www.chips.ibm.com:80/products/embedded/
2564 Motorola: http://www.mot.com/SPS/PowerPC/
2565
2566 I'm sure I've got some of the variant descriptions not quite right.
2567 Please report any inaccuracies you find to GDB's maintainer.
2568
2569 If you add entries to this table, please be sure to allow the new
2570 value as an argument to the --with-cpu flag, in configure.in. */
2571
2572 static struct variant variants[] =
2573 {
2574
2575 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2576 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2577 registers_powerpc},
2578 {"power", "POWER user-level", bfd_arch_rs6000,
2579 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2580 registers_power},
2581 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2582 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2583 registers_403},
2584 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2585 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2586 registers_601},
2587 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2588 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2589 registers_602},
2590 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2591 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2592 registers_603},
2593 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2594 604, -1, -1, tot_num_registers (registers_604),
2595 registers_604},
2596 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2597 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2598 registers_403GC},
2599 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2600 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2601 registers_505},
2602 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2603 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2604 registers_860},
2605 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2606 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2607 registers_750},
2608 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2609 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2610 registers_7400},
2611 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2612 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2613 registers_e500},
2614
2615 /* 64-bit */
2616 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2617 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2618 registers_powerpc},
2619 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2620 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2621 registers_powerpc},
2622 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2623 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2624 registers_powerpc},
2625 {"a35", "PowerPC A35", bfd_arch_powerpc,
2626 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2627 registers_powerpc},
2628 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2629 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2630 registers_powerpc},
2631 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2632 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2633 registers_powerpc},
2634
2635 /* FIXME: I haven't checked the register sets of the following. */
2636 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2637 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2638 registers_power},
2639 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2640 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2641 registers_power},
2642 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2643 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2644 registers_power},
2645
2646 {0, 0, 0, 0, 0, 0, 0, 0}
2647 };
2648
2649 /* Initialize the number of registers and pseudo registers in each variant. */
2650
2651 static void
2652 init_variants (void)
2653 {
2654 struct variant *v;
2655
2656 for (v = variants; v->name; v++)
2657 {
2658 if (v->nregs == -1)
2659 v->nregs = num_registers (v->regs, v->num_tot_regs);
2660 if (v->npregs == -1)
2661 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2662 }
2663 }
2664
2665 /* Return the variant corresponding to architecture ARCH and machine number
2666 MACH. If no such variant exists, return null. */
2667
2668 static const struct variant *
2669 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2670 {
2671 const struct variant *v;
2672
2673 for (v = variants; v->name; v++)
2674 if (arch == v->arch && mach == v->mach)
2675 return v;
2676
2677 return NULL;
2678 }
2679
2680 static int
2681 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2682 {
2683 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2684 return print_insn_big_powerpc (memaddr, info);
2685 else
2686 return print_insn_little_powerpc (memaddr, info);
2687 }
2688 \f
2689 /* Initialize the current architecture based on INFO. If possible, re-use an
2690 architecture from ARCHES, which is a list of architectures already created
2691 during this debugging session.
2692
2693 Called e.g. at program startup, when reading a core file, and when reading
2694 a binary file. */
2695
2696 static struct gdbarch *
2697 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2698 {
2699 struct gdbarch *gdbarch;
2700 struct gdbarch_tdep *tdep;
2701 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2702 struct reg *regs;
2703 const struct variant *v;
2704 enum bfd_architecture arch;
2705 unsigned long mach;
2706 bfd abfd;
2707 int sysv_abi;
2708 asection *sect;
2709
2710 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2711 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2712
2713 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2714 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2715
2716 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2717
2718 /* Check word size. If INFO is from a binary file, infer it from
2719 that, else choose a likely default. */
2720 if (from_xcoff_exec)
2721 {
2722 if (bfd_xcoff_is_xcoff64 (info.abfd))
2723 wordsize = 8;
2724 else
2725 wordsize = 4;
2726 }
2727 else if (from_elf_exec)
2728 {
2729 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2730 wordsize = 8;
2731 else
2732 wordsize = 4;
2733 }
2734 else
2735 {
2736 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2737 wordsize = info.bfd_arch_info->bits_per_word /
2738 info.bfd_arch_info->bits_per_byte;
2739 else
2740 wordsize = 4;
2741 }
2742
2743 /* Find a candidate among extant architectures. */
2744 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2745 arches != NULL;
2746 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2747 {
2748 /* Word size in the various PowerPC bfd_arch_info structs isn't
2749 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2750 separate word size check. */
2751 tdep = gdbarch_tdep (arches->gdbarch);
2752 if (tdep && tdep->wordsize == wordsize)
2753 return arches->gdbarch;
2754 }
2755
2756 /* None found, create a new architecture from INFO, whose bfd_arch_info
2757 validity depends on the source:
2758 - executable useless
2759 - rs6000_host_arch() good
2760 - core file good
2761 - "set arch" trust blindly
2762 - GDB startup useless but harmless */
2763
2764 if (!from_xcoff_exec)
2765 {
2766 arch = info.bfd_arch_info->arch;
2767 mach = info.bfd_arch_info->mach;
2768 }
2769 else
2770 {
2771 arch = bfd_arch_powerpc;
2772 bfd_default_set_arch_mach (&abfd, arch, 0);
2773 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2774 mach = info.bfd_arch_info->mach;
2775 }
2776 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2777 tdep->wordsize = wordsize;
2778
2779 /* For e500 executables, the apuinfo section is of help here. Such
2780 section contains the identifier and revision number of each
2781 Application-specific Processing Unit that is present on the
2782 chip. The content of the section is determined by the assembler
2783 which looks at each instruction and determines which unit (and
2784 which version of it) can execute it. In our case we just look for
2785 the existance of the section. */
2786
2787 if (info.abfd)
2788 {
2789 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2790 if (sect)
2791 {
2792 arch = info.bfd_arch_info->arch;
2793 mach = bfd_mach_ppc_e500;
2794 bfd_default_set_arch_mach (&abfd, arch, mach);
2795 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2796 }
2797 }
2798
2799 gdbarch = gdbarch_alloc (&info, tdep);
2800 power = arch == bfd_arch_rs6000;
2801
2802 /* Initialize the number of real and pseudo registers in each variant. */
2803 init_variants ();
2804
2805 /* Choose variant. */
2806 v = find_variant_by_arch (arch, mach);
2807 if (!v)
2808 return NULL;
2809
2810 tdep->regs = v->regs;
2811
2812 tdep->ppc_gp0_regnum = 0;
2813 tdep->ppc_gplast_regnum = 31;
2814 tdep->ppc_toc_regnum = 2;
2815 tdep->ppc_ps_regnum = 65;
2816 tdep->ppc_cr_regnum = 66;
2817 tdep->ppc_lr_regnum = 67;
2818 tdep->ppc_ctr_regnum = 68;
2819 tdep->ppc_xer_regnum = 69;
2820 if (v->mach == bfd_mach_ppc_601)
2821 tdep->ppc_mq_regnum = 124;
2822 else if (power)
2823 tdep->ppc_mq_regnum = 70;
2824 else
2825 tdep->ppc_mq_regnum = -1;
2826 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2827
2828 set_gdbarch_pc_regnum (gdbarch, 64);
2829 set_gdbarch_sp_regnum (gdbarch, 1);
2830 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
2831 set_gdbarch_deprecated_extract_return_value (gdbarch,
2832 rs6000_extract_return_value);
2833 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
2834
2835 if (v->arch == bfd_arch_powerpc)
2836 switch (v->mach)
2837 {
2838 case bfd_mach_ppc:
2839 tdep->ppc_vr0_regnum = 71;
2840 tdep->ppc_vrsave_regnum = 104;
2841 tdep->ppc_ev0_regnum = -1;
2842 tdep->ppc_ev31_regnum = -1;
2843 break;
2844 case bfd_mach_ppc_7400:
2845 tdep->ppc_vr0_regnum = 119;
2846 tdep->ppc_vrsave_regnum = 152;
2847 tdep->ppc_ev0_regnum = -1;
2848 tdep->ppc_ev31_regnum = -1;
2849 break;
2850 case bfd_mach_ppc_e500:
2851 tdep->ppc_gp0_regnum = 41;
2852 tdep->ppc_gplast_regnum = tdep->ppc_gp0_regnum + 32 - 1;
2853 tdep->ppc_toc_regnum = -1;
2854 tdep->ppc_ps_regnum = 1;
2855 tdep->ppc_cr_regnum = 2;
2856 tdep->ppc_lr_regnum = 3;
2857 tdep->ppc_ctr_regnum = 4;
2858 tdep->ppc_xer_regnum = 5;
2859 tdep->ppc_ev0_regnum = 7;
2860 tdep->ppc_ev31_regnum = 38;
2861 set_gdbarch_pc_regnum (gdbarch, 0);
2862 set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2863 set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2864 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2865 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2866 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
2867 set_gdbarch_extract_return_value (gdbarch, e500_extract_return_value);
2868 set_gdbarch_deprecated_store_return_value (gdbarch, e500_store_return_value);
2869 break;
2870 default:
2871 tdep->ppc_vr0_regnum = -1;
2872 tdep->ppc_vrsave_regnum = -1;
2873 tdep->ppc_ev0_regnum = -1;
2874 tdep->ppc_ev31_regnum = -1;
2875 break;
2876 }
2877
2878 /* Sanity check on registers. */
2879 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
2880
2881 /* Set lr_frame_offset. */
2882 if (wordsize == 8)
2883 tdep->lr_frame_offset = 16;
2884 else if (sysv_abi)
2885 tdep->lr_frame_offset = 4;
2886 else
2887 tdep->lr_frame_offset = 8;
2888
2889 /* Calculate byte offsets in raw register array. */
2890 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2891 for (i = off = 0; i < v->num_tot_regs; i++)
2892 {
2893 tdep->regoff[i] = off;
2894 off += regsize (v->regs + i, wordsize);
2895 }
2896
2897 /* Select instruction printer. */
2898 if (arch == power)
2899 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
2900 else
2901 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
2902
2903 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
2904 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2905 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
2906 set_gdbarch_deprecated_dummy_write_sp (gdbarch, generic_target_write_sp);
2907
2908 set_gdbarch_num_regs (gdbarch, v->nregs);
2909 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
2910 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2911 set_gdbarch_deprecated_register_size (gdbarch, wordsize);
2912 set_gdbarch_deprecated_register_bytes (gdbarch, off);
2913 set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
2914 set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
2915 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 16);
2916 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
2917 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 16);
2918 set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2919
2920 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2921 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2922 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2923 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2924 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2925 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2926 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2927 if (sysv_abi)
2928 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
2929 else
2930 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2931 set_gdbarch_char_signed (gdbarch, 0);
2932
2933 set_gdbarch_deprecated_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
2934 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
2935 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
2936 set_gdbarch_deprecated_push_return_address (gdbarch, ppc_push_return_address);
2937 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2938
2939 set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
2940 set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2941 set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2942 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2943 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2944 is correct for the SysV ABI when the wordsize is 8, but I'm also
2945 fairly certain that ppc_sysv_abi_push_arguments() will give even
2946 worse results since it only works for 32-bit code. So, for the moment,
2947 we're better off calling rs6000_push_arguments() since it works for
2948 64-bit code. At some point in the future, this matter needs to be
2949 revisited. */
2950 if (sysv_abi && wordsize == 4)
2951 set_gdbarch_deprecated_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
2952 else
2953 set_gdbarch_deprecated_push_arguments (gdbarch, rs6000_push_arguments);
2954
2955 set_gdbarch_deprecated_store_struct_return (gdbarch, rs6000_store_struct_return);
2956 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2957 set_gdbarch_deprecated_pop_frame (gdbarch, rs6000_pop_frame);
2958
2959 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2960 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2961 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2962 set_gdbarch_function_start_offset (gdbarch, 0);
2963 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2964
2965 /* Not sure on this. FIXMEmgo */
2966 set_gdbarch_frame_args_skip (gdbarch, 8);
2967
2968 if (sysv_abi)
2969 set_gdbarch_use_struct_convention (gdbarch,
2970 ppc_sysv_abi_use_struct_convention);
2971 else
2972 set_gdbarch_use_struct_convention (gdbarch,
2973 generic_use_struct_convention);
2974
2975 set_gdbarch_frameless_function_invocation (gdbarch,
2976 rs6000_frameless_function_invocation);
2977 set_gdbarch_deprecated_frame_chain (gdbarch, rs6000_frame_chain);
2978 set_gdbarch_deprecated_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2979
2980 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2981 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
2982
2983 if (!sysv_abi)
2984 {
2985 /* Handle RS/6000 function pointers (which are really function
2986 descriptors). */
2987 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2988 rs6000_convert_from_func_ptr_addr);
2989 }
2990 set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
2991 set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
2992 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2993
2994 /* We can't tell how many args there are
2995 now that the C compiler delays popping them. */
2996 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2997
2998 /* Hook in ABI-specific overrides, if they have been registered. */
2999 gdbarch_init_osabi (info, gdbarch);
3000
3001 return gdbarch;
3002 }
3003
3004 static void
3005 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3006 {
3007 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3008
3009 if (tdep == NULL)
3010 return;
3011
3012 /* FIXME: Dump gdbarch_tdep. */
3013 }
3014
3015 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
3016
3017 static void
3018 rs6000_info_powerpc_command (char *args, int from_tty)
3019 {
3020 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
3021 }
3022
3023 /* Initialization code. */
3024
3025 void
3026 _initialize_rs6000_tdep (void)
3027 {
3028 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3029 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
3030
3031 /* Add root prefix command for "info powerpc" commands */
3032 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
3033 "Various POWERPC info specific commands.",
3034 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
3035 }
This page took 0.129242 seconds and 4 git commands to generate.