2002-11-14 Andrew Cagney <ac131313@redhat.com>
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "target.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "doublest.h"
35 #include "value.h"
36 #include "parser-defs.h"
37
38 #include "libbfd.h" /* for bfd_default_set_arch_mach */
39 #include "coff/internal.h" /* for libcoff.h */
40 #include "libcoff.h" /* for xcoff_data */
41 #include "coff/xcoff.h"
42 #include "libxcoff.h"
43
44 #include "elf-bfd.h"
45
46 #include "solib-svr4.h"
47 #include "ppc-tdep.h"
48
49 /* If the kernel has to deliver a signal, it pushes a sigcontext
50 structure on the stack and then calls the signal handler, passing
51 the address of the sigcontext in an argument register. Usually
52 the signal handler doesn't save this register, so we have to
53 access the sigcontext structure via an offset from the signal handler
54 frame.
55 The following constants were determined by experimentation on AIX 3.2. */
56 #define SIG_FRAME_PC_OFFSET 96
57 #define SIG_FRAME_LR_OFFSET 108
58 #define SIG_FRAME_FP_OFFSET 284
59
60 /* To be used by skip_prologue. */
61
62 struct rs6000_framedata
63 {
64 int offset; /* total size of frame --- the distance
65 by which we decrement sp to allocate
66 the frame */
67 int saved_gpr; /* smallest # of saved gpr */
68 int saved_fpr; /* smallest # of saved fpr */
69 int saved_vr; /* smallest # of saved vr */
70 int saved_ev; /* smallest # of saved ev */
71 int alloca_reg; /* alloca register number (frame ptr) */
72 char frameless; /* true if frameless functions. */
73 char nosavedpc; /* true if pc not saved. */
74 int gpr_offset; /* offset of saved gprs from prev sp */
75 int fpr_offset; /* offset of saved fprs from prev sp */
76 int vr_offset; /* offset of saved vrs from prev sp */
77 int ev_offset; /* offset of saved evs from prev sp */
78 int lr_offset; /* offset of saved lr */
79 int cr_offset; /* offset of saved cr */
80 int vrsave_offset; /* offset of saved vrsave register */
81 };
82
83 /* Description of a single register. */
84
85 struct reg
86 {
87 char *name; /* name of register */
88 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
89 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
90 unsigned char fpr; /* whether register is floating-point */
91 unsigned char pseudo; /* whether register is pseudo */
92 };
93
94 /* Breakpoint shadows for the single step instructions will be kept here. */
95
96 static struct sstep_breaks
97 {
98 /* Address, or 0 if this is not in use. */
99 CORE_ADDR address;
100 /* Shadow contents. */
101 char data[4];
102 }
103 stepBreaks[2];
104
105 /* Hook for determining the TOC address when calling functions in the
106 inferior under AIX. The initialization code in rs6000-nat.c sets
107 this hook to point to find_toc_address. */
108
109 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
110
111 /* Hook to set the current architecture when starting a child process.
112 rs6000-nat.c sets this. */
113
114 void (*rs6000_set_host_arch_hook) (int) = NULL;
115
116 /* Static function prototypes */
117
118 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
119 CORE_ADDR safety);
120 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
121 struct rs6000_framedata *);
122 static void frame_get_saved_regs (struct frame_info * fi,
123 struct rs6000_framedata * fdatap);
124 static CORE_ADDR frame_initial_stack_address (struct frame_info *);
125
126 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
127 int
128 altivec_register_p (int regno)
129 {
130 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
131 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
132 return 0;
133 else
134 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
135 }
136
137 /* Read a LEN-byte address from debugged memory address MEMADDR. */
138
139 static CORE_ADDR
140 read_memory_addr (CORE_ADDR memaddr, int len)
141 {
142 return read_memory_unsigned_integer (memaddr, len);
143 }
144
145 static CORE_ADDR
146 rs6000_skip_prologue (CORE_ADDR pc)
147 {
148 struct rs6000_framedata frame;
149 pc = skip_prologue (pc, 0, &frame);
150 return pc;
151 }
152
153
154 /* Fill in fi->saved_regs */
155
156 struct frame_extra_info
157 {
158 /* Functions calling alloca() change the value of the stack
159 pointer. We need to use initial stack pointer (which is saved in
160 r31 by gcc) in such cases. If a compiler emits traceback table,
161 then we should use the alloca register specified in traceback
162 table. FIXME. */
163 CORE_ADDR initial_sp; /* initial stack pointer. */
164 };
165
166 void
167 rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
168 {
169 fi->extra_info = (struct frame_extra_info *)
170 frame_obstack_alloc (sizeof (struct frame_extra_info));
171 fi->extra_info->initial_sp = 0;
172 if (fi->next != (CORE_ADDR) 0
173 && fi->pc < TEXT_SEGMENT_BASE)
174 /* We're in get_prev_frame */
175 /* and this is a special signal frame. */
176 /* (fi->pc will be some low address in the kernel, */
177 /* to which the signal handler returns). */
178 fi->signal_handler_caller = 1;
179 }
180
181 /* Put here the code to store, into a struct frame_saved_regs,
182 the addresses of the saved registers of frame described by FRAME_INFO.
183 This includes special registers such as pc and fp saved in special
184 ways in the stack frame. sp is even more special:
185 the address we return for it IS the sp for the next frame. */
186
187 /* In this implementation for RS/6000, we do *not* save sp. I am
188 not sure if it will be needed. The following function takes care of gpr's
189 and fpr's only. */
190
191 void
192 rs6000_frame_init_saved_regs (struct frame_info *fi)
193 {
194 frame_get_saved_regs (fi, NULL);
195 }
196
197 static CORE_ADDR
198 rs6000_frame_args_address (struct frame_info *fi)
199 {
200 if (fi->extra_info->initial_sp != 0)
201 return fi->extra_info->initial_sp;
202 else
203 return frame_initial_stack_address (fi);
204 }
205
206 /* Immediately after a function call, return the saved pc.
207 Can't go through the frames for this because on some machines
208 the new frame is not set up until the new function executes
209 some instructions. */
210
211 static CORE_ADDR
212 rs6000_saved_pc_after_call (struct frame_info *fi)
213 {
214 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
215 }
216
217 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
218
219 static CORE_ADDR
220 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
221 {
222 CORE_ADDR dest;
223 int immediate;
224 int absolute;
225 int ext_op;
226
227 absolute = (int) ((instr >> 1) & 1);
228
229 switch (opcode)
230 {
231 case 18:
232 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
233 if (absolute)
234 dest = immediate;
235 else
236 dest = pc + immediate;
237 break;
238
239 case 16:
240 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
241 if (absolute)
242 dest = immediate;
243 else
244 dest = pc + immediate;
245 break;
246
247 case 19:
248 ext_op = (instr >> 1) & 0x3ff;
249
250 if (ext_op == 16) /* br conditional register */
251 {
252 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
253
254 /* If we are about to return from a signal handler, dest is
255 something like 0x3c90. The current frame is a signal handler
256 caller frame, upon completion of the sigreturn system call
257 execution will return to the saved PC in the frame. */
258 if (dest < TEXT_SEGMENT_BASE)
259 {
260 struct frame_info *fi;
261
262 fi = get_current_frame ();
263 if (fi != NULL)
264 dest = read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET,
265 gdbarch_tdep (current_gdbarch)->wordsize);
266 }
267 }
268
269 else if (ext_op == 528) /* br cond to count reg */
270 {
271 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
272
273 /* If we are about to execute a system call, dest is something
274 like 0x22fc or 0x3b00. Upon completion the system call
275 will return to the address in the link register. */
276 if (dest < TEXT_SEGMENT_BASE)
277 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
278 }
279 else
280 return -1;
281 break;
282
283 default:
284 return -1;
285 }
286 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
287 }
288
289
290 /* Sequence of bytes for breakpoint instruction. */
291
292 #define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
293 #define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
294
295 const static unsigned char *
296 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
297 {
298 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
299 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
300 *bp_size = 4;
301 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
302 return big_breakpoint;
303 else
304 return little_breakpoint;
305 }
306
307
308 /* AIX does not support PT_STEP. Simulate it. */
309
310 void
311 rs6000_software_single_step (enum target_signal signal,
312 int insert_breakpoints_p)
313 {
314 CORE_ADDR dummy;
315 int breakp_sz;
316 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
317 int ii, insn;
318 CORE_ADDR loc;
319 CORE_ADDR breaks[2];
320 int opcode;
321
322 if (insert_breakpoints_p)
323 {
324
325 loc = read_pc ();
326
327 insn = read_memory_integer (loc, 4);
328
329 breaks[0] = loc + breakp_sz;
330 opcode = insn >> 26;
331 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
332
333 /* Don't put two breakpoints on the same address. */
334 if (breaks[1] == breaks[0])
335 breaks[1] = -1;
336
337 stepBreaks[1].address = 0;
338
339 for (ii = 0; ii < 2; ++ii)
340 {
341
342 /* ignore invalid breakpoint. */
343 if (breaks[ii] == -1)
344 continue;
345 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
346 stepBreaks[ii].address = breaks[ii];
347 }
348
349 }
350 else
351 {
352
353 /* remove step breakpoints. */
354 for (ii = 0; ii < 2; ++ii)
355 if (stepBreaks[ii].address != 0)
356 target_remove_breakpoint (stepBreaks[ii].address,
357 stepBreaks[ii].data);
358 }
359 errno = 0; /* FIXME, don't ignore errors! */
360 /* What errors? {read,write}_memory call error(). */
361 }
362
363
364 /* return pc value after skipping a function prologue and also return
365 information about a function frame.
366
367 in struct rs6000_framedata fdata:
368 - frameless is TRUE, if function does not have a frame.
369 - nosavedpc is TRUE, if function does not save %pc value in its frame.
370 - offset is the initial size of this stack frame --- the amount by
371 which we decrement the sp to allocate the frame.
372 - saved_gpr is the number of the first saved gpr.
373 - saved_fpr is the number of the first saved fpr.
374 - saved_vr is the number of the first saved vr.
375 - saved_ev is the number of the first saved ev.
376 - alloca_reg is the number of the register used for alloca() handling.
377 Otherwise -1.
378 - gpr_offset is the offset of the first saved gpr from the previous frame.
379 - fpr_offset is the offset of the first saved fpr from the previous frame.
380 - vr_offset is the offset of the first saved vr from the previous frame.
381 - ev_offset is the offset of the first saved ev from the previous frame.
382 - lr_offset is the offset of the saved lr
383 - cr_offset is the offset of the saved cr
384 - vrsave_offset is the offset of the saved vrsave register
385 */
386
387 #define SIGNED_SHORT(x) \
388 ((sizeof (short) == 2) \
389 ? ((int)(short)(x)) \
390 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
391
392 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
393
394 /* Limit the number of skipped non-prologue instructions, as the examining
395 of the prologue is expensive. */
396 static int max_skip_non_prologue_insns = 10;
397
398 /* Given PC representing the starting address of a function, and
399 LIM_PC which is the (sloppy) limit to which to scan when looking
400 for a prologue, attempt to further refine this limit by using
401 the line data in the symbol table. If successful, a better guess
402 on where the prologue ends is returned, otherwise the previous
403 value of lim_pc is returned. */
404 static CORE_ADDR
405 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
406 {
407 struct symtab_and_line prologue_sal;
408
409 prologue_sal = find_pc_line (pc, 0);
410 if (prologue_sal.line != 0)
411 {
412 int i;
413 CORE_ADDR addr = prologue_sal.end;
414
415 /* Handle the case in which compiler's optimizer/scheduler
416 has moved instructions into the prologue. We scan ahead
417 in the function looking for address ranges whose corresponding
418 line number is less than or equal to the first one that we
419 found for the function. (It can be less than when the
420 scheduler puts a body instruction before the first prologue
421 instruction.) */
422 for (i = 2 * max_skip_non_prologue_insns;
423 i > 0 && (lim_pc == 0 || addr < lim_pc);
424 i--)
425 {
426 struct symtab_and_line sal;
427
428 sal = find_pc_line (addr, 0);
429 if (sal.line == 0)
430 break;
431 if (sal.line <= prologue_sal.line
432 && sal.symtab == prologue_sal.symtab)
433 {
434 prologue_sal = sal;
435 }
436 addr = sal.end;
437 }
438
439 if (lim_pc == 0 || prologue_sal.end < lim_pc)
440 lim_pc = prologue_sal.end;
441 }
442 return lim_pc;
443 }
444
445
446 static CORE_ADDR
447 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
448 {
449 CORE_ADDR orig_pc = pc;
450 CORE_ADDR last_prologue_pc = pc;
451 CORE_ADDR li_found_pc = 0;
452 char buf[4];
453 unsigned long op;
454 long offset = 0;
455 long vr_saved_offset = 0;
456 int lr_reg = -1;
457 int cr_reg = -1;
458 int vr_reg = -1;
459 int ev_reg = -1;
460 long ev_offset = 0;
461 int vrsave_reg = -1;
462 int reg;
463 int framep = 0;
464 int minimal_toc_loaded = 0;
465 int prev_insn_was_prologue_insn = 1;
466 int num_skip_non_prologue_insns = 0;
467 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
468 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
469
470 /* Attempt to find the end of the prologue when no limit is specified.
471 Note that refine_prologue_limit() has been written so that it may
472 be used to "refine" the limits of non-zero PC values too, but this
473 is only safe if we 1) trust the line information provided by the
474 compiler and 2) iterate enough to actually find the end of the
475 prologue.
476
477 It may become a good idea at some point (for both performance and
478 accuracy) to unconditionally call refine_prologue_limit(). But,
479 until we can make a clear determination that this is beneficial,
480 we'll play it safe and only use it to obtain a limit when none
481 has been specified. */
482 if (lim_pc == 0)
483 lim_pc = refine_prologue_limit (pc, lim_pc);
484
485 memset (fdata, 0, sizeof (struct rs6000_framedata));
486 fdata->saved_gpr = -1;
487 fdata->saved_fpr = -1;
488 fdata->saved_vr = -1;
489 fdata->saved_ev = -1;
490 fdata->alloca_reg = -1;
491 fdata->frameless = 1;
492 fdata->nosavedpc = 1;
493
494 for (;; pc += 4)
495 {
496 /* Sometimes it isn't clear if an instruction is a prologue
497 instruction or not. When we encounter one of these ambiguous
498 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
499 Otherwise, we'll assume that it really is a prologue instruction. */
500 if (prev_insn_was_prologue_insn)
501 last_prologue_pc = pc;
502
503 /* Stop scanning if we've hit the limit. */
504 if (lim_pc != 0 && pc >= lim_pc)
505 break;
506
507 prev_insn_was_prologue_insn = 1;
508
509 /* Fetch the instruction and convert it to an integer. */
510 if (target_read_memory (pc, buf, 4))
511 break;
512 op = extract_signed_integer (buf, 4);
513
514 if ((op & 0xfc1fffff) == 0x7c0802a6)
515 { /* mflr Rx */
516 lr_reg = (op & 0x03e00000) | 0x90010000;
517 continue;
518
519 }
520 else if ((op & 0xfc1fffff) == 0x7c000026)
521 { /* mfcr Rx */
522 cr_reg = (op & 0x03e00000) | 0x90010000;
523 continue;
524
525 }
526 else if ((op & 0xfc1f0000) == 0xd8010000)
527 { /* stfd Rx,NUM(r1) */
528 reg = GET_SRC_REG (op);
529 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
530 {
531 fdata->saved_fpr = reg;
532 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
533 }
534 continue;
535
536 }
537 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
538 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
539 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
540 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
541 {
542
543 reg = GET_SRC_REG (op);
544 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
545 {
546 fdata->saved_gpr = reg;
547 if ((op & 0xfc1f0003) == 0xf8010000)
548 op = (op >> 1) << 1;
549 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
550 }
551 continue;
552
553 }
554 else if ((op & 0xffff0000) == 0x60000000)
555 {
556 /* nop */
557 /* Allow nops in the prologue, but do not consider them to
558 be part of the prologue unless followed by other prologue
559 instructions. */
560 prev_insn_was_prologue_insn = 0;
561 continue;
562
563 }
564 else if ((op & 0xffff0000) == 0x3c000000)
565 { /* addis 0,0,NUM, used
566 for >= 32k frames */
567 fdata->offset = (op & 0x0000ffff) << 16;
568 fdata->frameless = 0;
569 continue;
570
571 }
572 else if ((op & 0xffff0000) == 0x60000000)
573 { /* ori 0,0,NUM, 2nd ha
574 lf of >= 32k frames */
575 fdata->offset |= (op & 0x0000ffff);
576 fdata->frameless = 0;
577 continue;
578
579 }
580 else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
581 { /* st Rx,NUM(r1)
582 where Rx == lr */
583 fdata->lr_offset = SIGNED_SHORT (op) + offset;
584 fdata->nosavedpc = 0;
585 lr_reg = 0;
586 continue;
587
588 }
589 else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
590 { /* st Rx,NUM(r1)
591 where Rx == cr */
592 fdata->cr_offset = SIGNED_SHORT (op) + offset;
593 cr_reg = 0;
594 continue;
595
596 }
597 else if (op == 0x48000005)
598 { /* bl .+4 used in
599 -mrelocatable */
600 continue;
601
602 }
603 else if (op == 0x48000004)
604 { /* b .+4 (xlc) */
605 break;
606
607 }
608 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
609 in V.4 -mminimal-toc */
610 (op & 0xffff0000) == 0x3bde0000)
611 { /* addi 30,30,foo@l */
612 continue;
613
614 }
615 else if ((op & 0xfc000001) == 0x48000001)
616 { /* bl foo,
617 to save fprs??? */
618
619 fdata->frameless = 0;
620 /* Don't skip over the subroutine call if it is not within
621 the first three instructions of the prologue. */
622 if ((pc - orig_pc) > 8)
623 break;
624
625 op = read_memory_integer (pc + 4, 4);
626
627 /* At this point, make sure this is not a trampoline
628 function (a function that simply calls another functions,
629 and nothing else). If the next is not a nop, this branch
630 was part of the function prologue. */
631
632 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
633 break; /* don't skip over
634 this branch */
635 continue;
636
637 /* update stack pointer */
638 }
639 else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */
640 (op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */
641 {
642 fdata->frameless = 0;
643 if ((op & 0xffff0003) == 0xf8210001)
644 op = (op >> 1) << 1;
645 fdata->offset = SIGNED_SHORT (op);
646 offset = fdata->offset;
647 continue;
648
649 }
650 else if (op == 0x7c21016e)
651 { /* stwux 1,1,0 */
652 fdata->frameless = 0;
653 offset = fdata->offset;
654 continue;
655
656 /* Load up minimal toc pointer */
657 }
658 else if ((op >> 22) == 0x20f
659 && !minimal_toc_loaded)
660 { /* l r31,... or l r30,... */
661 minimal_toc_loaded = 1;
662 continue;
663
664 /* move parameters from argument registers to local variable
665 registers */
666 }
667 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
668 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
669 (((op >> 21) & 31) <= 10) &&
670 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
671 {
672 continue;
673
674 /* store parameters in stack */
675 }
676 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
677 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
678 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
679 {
680 continue;
681
682 /* store parameters in stack via frame pointer */
683 }
684 else if (framep &&
685 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
686 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
687 (op & 0xfc1f0000) == 0xfc1f0000))
688 { /* frsp, fp?,NUM(r1) */
689 continue;
690
691 /* Set up frame pointer */
692 }
693 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
694 || op == 0x7c3f0b78)
695 { /* mr r31, r1 */
696 fdata->frameless = 0;
697 framep = 1;
698 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
699 continue;
700
701 /* Another way to set up the frame pointer. */
702 }
703 else if ((op & 0xfc1fffff) == 0x38010000)
704 { /* addi rX, r1, 0x0 */
705 fdata->frameless = 0;
706 framep = 1;
707 fdata->alloca_reg = (tdep->ppc_gp0_regnum
708 + ((op & ~0x38010000) >> 21));
709 continue;
710 }
711 /* AltiVec related instructions. */
712 /* Store the vrsave register (spr 256) in another register for
713 later manipulation, or load a register into the vrsave
714 register. 2 instructions are used: mfvrsave and
715 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
716 and mtspr SPR256, Rn. */
717 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
718 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
719 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
720 {
721 vrsave_reg = GET_SRC_REG (op);
722 continue;
723 }
724 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
725 {
726 continue;
727 }
728 /* Store the register where vrsave was saved to onto the stack:
729 rS is the register where vrsave was stored in a previous
730 instruction. */
731 /* 100100 sssss 00001 dddddddd dddddddd */
732 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
733 {
734 if (vrsave_reg == GET_SRC_REG (op))
735 {
736 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
737 vrsave_reg = -1;
738 }
739 continue;
740 }
741 /* Compute the new value of vrsave, by modifying the register
742 where vrsave was saved to. */
743 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
744 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
745 {
746 continue;
747 }
748 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
749 in a pair of insns to save the vector registers on the
750 stack. */
751 /* 001110 00000 00000 iiii iiii iiii iiii */
752 /* 001110 01110 00000 iiii iiii iiii iiii */
753 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
754 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
755 {
756 li_found_pc = pc;
757 vr_saved_offset = SIGNED_SHORT (op);
758 }
759 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
760 /* 011111 sssss 11111 00000 00111001110 */
761 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
762 {
763 if (pc == (li_found_pc + 4))
764 {
765 vr_reg = GET_SRC_REG (op);
766 /* If this is the first vector reg to be saved, or if
767 it has a lower number than others previously seen,
768 reupdate the frame info. */
769 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
770 {
771 fdata->saved_vr = vr_reg;
772 fdata->vr_offset = vr_saved_offset + offset;
773 }
774 vr_saved_offset = -1;
775 vr_reg = -1;
776 li_found_pc = 0;
777 }
778 }
779 /* End AltiVec related instructions. */
780
781 /* Start BookE related instructions. */
782 /* Store gen register S at (r31+uimm).
783 Any register less than r13 is volatile, so we don't care. */
784 /* 000100 sssss 11111 iiiii 01100100001 */
785 else if (arch_info->mach == bfd_mach_ppc_e500
786 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
787 {
788 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
789 {
790 unsigned int imm;
791 ev_reg = GET_SRC_REG (op);
792 imm = (op >> 11) & 0x1f;
793 ev_offset = imm * 8;
794 /* If this is the first vector reg to be saved, or if
795 it has a lower number than others previously seen,
796 reupdate the frame info. */
797 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
798 {
799 fdata->saved_ev = ev_reg;
800 fdata->ev_offset = ev_offset + offset;
801 }
802 }
803 continue;
804 }
805 /* Store gen register rS at (r1+rB). */
806 /* 000100 sssss 00001 bbbbb 01100100000 */
807 else if (arch_info->mach == bfd_mach_ppc_e500
808 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
809 {
810 if (pc == (li_found_pc + 4))
811 {
812 ev_reg = GET_SRC_REG (op);
813 /* If this is the first vector reg to be saved, or if
814 it has a lower number than others previously seen,
815 reupdate the frame info. */
816 /* We know the contents of rB from the previous instruction. */
817 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
818 {
819 fdata->saved_ev = ev_reg;
820 fdata->ev_offset = vr_saved_offset + offset;
821 }
822 vr_saved_offset = -1;
823 ev_reg = -1;
824 li_found_pc = 0;
825 }
826 continue;
827 }
828 /* Store gen register r31 at (rA+uimm). */
829 /* 000100 11111 aaaaa iiiii 01100100001 */
830 else if (arch_info->mach == bfd_mach_ppc_e500
831 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
832 {
833 /* Wwe know that the source register is 31 already, but
834 it can't hurt to compute it. */
835 ev_reg = GET_SRC_REG (op);
836 ev_offset = ((op >> 11) & 0x1f) * 8;
837 /* If this is the first vector reg to be saved, or if
838 it has a lower number than others previously seen,
839 reupdate the frame info. */
840 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
841 {
842 fdata->saved_ev = ev_reg;
843 fdata->ev_offset = ev_offset + offset;
844 }
845
846 continue;
847 }
848 /* Store gen register S at (r31+r0).
849 Store param on stack when offset from SP bigger than 4 bytes. */
850 /* 000100 sssss 11111 00000 01100100000 */
851 else if (arch_info->mach == bfd_mach_ppc_e500
852 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
853 {
854 if (pc == (li_found_pc + 4))
855 {
856 if ((op & 0x03e00000) >= 0x01a00000)
857 {
858 ev_reg = GET_SRC_REG (op);
859 /* If this is the first vector reg to be saved, or if
860 it has a lower number than others previously seen,
861 reupdate the frame info. */
862 /* We know the contents of r0 from the previous
863 instruction. */
864 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
865 {
866 fdata->saved_ev = ev_reg;
867 fdata->ev_offset = vr_saved_offset + offset;
868 }
869 ev_reg = -1;
870 }
871 vr_saved_offset = -1;
872 li_found_pc = 0;
873 continue;
874 }
875 }
876 /* End BookE related instructions. */
877
878 else
879 {
880 /* Not a recognized prologue instruction.
881 Handle optimizer code motions into the prologue by continuing
882 the search if we have no valid frame yet or if the return
883 address is not yet saved in the frame. */
884 if (fdata->frameless == 0
885 && (lr_reg == -1 || fdata->nosavedpc == 0))
886 break;
887
888 if (op == 0x4e800020 /* blr */
889 || op == 0x4e800420) /* bctr */
890 /* Do not scan past epilogue in frameless functions or
891 trampolines. */
892 break;
893 if ((op & 0xf4000000) == 0x40000000) /* bxx */
894 /* Never skip branches. */
895 break;
896
897 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
898 /* Do not scan too many insns, scanning insns is expensive with
899 remote targets. */
900 break;
901
902 /* Continue scanning. */
903 prev_insn_was_prologue_insn = 0;
904 continue;
905 }
906 }
907
908 #if 0
909 /* I have problems with skipping over __main() that I need to address
910 * sometime. Previously, I used to use misc_function_vector which
911 * didn't work as well as I wanted to be. -MGO */
912
913 /* If the first thing after skipping a prolog is a branch to a function,
914 this might be a call to an initializer in main(), introduced by gcc2.
915 We'd like to skip over it as well. Fortunately, xlc does some extra
916 work before calling a function right after a prologue, thus we can
917 single out such gcc2 behaviour. */
918
919
920 if ((op & 0xfc000001) == 0x48000001)
921 { /* bl foo, an initializer function? */
922 op = read_memory_integer (pc + 4, 4);
923
924 if (op == 0x4def7b82)
925 { /* cror 0xf, 0xf, 0xf (nop) */
926
927 /* Check and see if we are in main. If so, skip over this
928 initializer function as well. */
929
930 tmp = find_pc_misc_function (pc);
931 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
932 return pc + 8;
933 }
934 }
935 #endif /* 0 */
936
937 fdata->offset = -fdata->offset;
938 return last_prologue_pc;
939 }
940
941
942 /*************************************************************************
943 Support for creating pushing a dummy frame into the stack, and popping
944 frames, etc.
945 *************************************************************************/
946
947
948 /* Pop the innermost frame, go back to the caller. */
949
950 static void
951 rs6000_pop_frame (void)
952 {
953 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
954 struct rs6000_framedata fdata;
955 struct frame_info *frame = get_current_frame ();
956 int ii, wordsize;
957
958 pc = read_pc ();
959 sp = FRAME_FP (frame);
960
961 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
962 {
963 generic_pop_dummy_frame ();
964 flush_cached_frames ();
965 return;
966 }
967
968 /* Make sure that all registers are valid. */
969 deprecated_read_register_bytes (0, NULL, REGISTER_BYTES);
970
971 /* Figure out previous %pc value. If the function is frameless, it is
972 still in the link register, otherwise walk the frames and retrieve the
973 saved %pc value in the previous frame. */
974
975 addr = get_pc_function_start (frame->pc);
976 (void) skip_prologue (addr, frame->pc, &fdata);
977
978 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
979 if (fdata.frameless)
980 prev_sp = sp;
981 else
982 prev_sp = read_memory_addr (sp, wordsize);
983 if (fdata.lr_offset == 0)
984 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
985 else
986 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
987
988 /* reset %pc value. */
989 write_register (PC_REGNUM, lr);
990
991 /* reset register values if any was saved earlier. */
992
993 if (fdata.saved_gpr != -1)
994 {
995 addr = prev_sp + fdata.gpr_offset;
996 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
997 {
998 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii)],
999 wordsize);
1000 addr += wordsize;
1001 }
1002 }
1003
1004 if (fdata.saved_fpr != -1)
1005 {
1006 addr = prev_sp + fdata.fpr_offset;
1007 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1008 {
1009 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
1010 addr += 8;
1011 }
1012 }
1013
1014 write_register (SP_REGNUM, prev_sp);
1015 target_store_registers (-1);
1016 flush_cached_frames ();
1017 }
1018
1019 /* Fixup the call sequence of a dummy function, with the real function
1020 address. Its arguments will be passed by gdb. */
1021
1022 static void
1023 rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
1024 int nargs, struct value **args, struct type *type,
1025 int gcc_p)
1026 {
1027 int ii;
1028 CORE_ADDR target_addr;
1029
1030 if (rs6000_find_toc_address_hook != NULL)
1031 {
1032 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
1033 write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
1034 tocvalue);
1035 }
1036 }
1037
1038 /* All the ABI's require 16 byte alignment. */
1039 static CORE_ADDR
1040 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1041 {
1042 return (addr & -16);
1043 }
1044
1045 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1046 the first eight words of the argument list (that might be less than
1047 eight parameters if some parameters occupy more than one word) are
1048 passed in r3..r10 registers. float and double parameters are
1049 passed in fpr's, in addition to that. Rest of the parameters if any
1050 are passed in user stack. There might be cases in which half of the
1051 parameter is copied into registers, the other half is pushed into
1052 stack.
1053
1054 Stack must be aligned on 64-bit boundaries when synthesizing
1055 function calls.
1056
1057 If the function is returning a structure, then the return address is passed
1058 in r3, then the first 7 words of the parameters can be passed in registers,
1059 starting from r4. */
1060
1061 static CORE_ADDR
1062 rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1063 int struct_return, CORE_ADDR struct_addr)
1064 {
1065 int ii;
1066 int len = 0;
1067 int argno; /* current argument number */
1068 int argbytes; /* current argument byte */
1069 char tmp_buffer[50];
1070 int f_argno = 0; /* current floating point argno */
1071 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1072
1073 struct value *arg = 0;
1074 struct type *type;
1075
1076 CORE_ADDR saved_sp;
1077
1078 /* The first eight words of ther arguments are passed in registers.
1079 Copy them appropriately.
1080
1081 If the function is returning a `struct', then the first word (which
1082 will be passed in r3) is used for struct return address. In that
1083 case we should advance one word and start from r4 register to copy
1084 parameters. */
1085
1086 ii = struct_return ? 1 : 0;
1087
1088 /*
1089 effectively indirect call... gcc does...
1090
1091 return_val example( float, int);
1092
1093 eabi:
1094 float in fp0, int in r3
1095 offset of stack on overflow 8/16
1096 for varargs, must go by type.
1097 power open:
1098 float in r3&r4, int in r5
1099 offset of stack on overflow different
1100 both:
1101 return in r3 or f0. If no float, must study how gcc emulates floats;
1102 pay attention to arg promotion.
1103 User may have to cast\args to handle promotion correctly
1104 since gdb won't know if prototype supplied or not.
1105 */
1106
1107 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1108 {
1109 int reg_size = REGISTER_RAW_SIZE (ii + 3);
1110
1111 arg = args[argno];
1112 type = check_typedef (VALUE_TYPE (arg));
1113 len = TYPE_LENGTH (type);
1114
1115 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1116 {
1117
1118 /* Floating point arguments are passed in fpr's, as well as gpr's.
1119 There are 13 fpr's reserved for passing parameters. At this point
1120 there is no way we would run out of them. */
1121
1122 if (len > 8)
1123 printf_unfiltered (
1124 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1125
1126 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1127 VALUE_CONTENTS (arg),
1128 len);
1129 ++f_argno;
1130 }
1131
1132 if (len > reg_size)
1133 {
1134
1135 /* Argument takes more than one register. */
1136 while (argbytes < len)
1137 {
1138 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0,
1139 reg_size);
1140 memcpy (&deprecated_registers[REGISTER_BYTE (ii + 3)],
1141 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1142 (len - argbytes) > reg_size
1143 ? reg_size : len - argbytes);
1144 ++ii, argbytes += reg_size;
1145
1146 if (ii >= 8)
1147 goto ran_out_of_registers_for_arguments;
1148 }
1149 argbytes = 0;
1150 --ii;
1151 }
1152 else
1153 {
1154 /* Argument can fit in one register. No problem. */
1155 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1156 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1157 memcpy ((char *)&deprecated_registers[REGISTER_BYTE (ii + 3)] + adj,
1158 VALUE_CONTENTS (arg), len);
1159 }
1160 ++argno;
1161 }
1162
1163 ran_out_of_registers_for_arguments:
1164
1165 saved_sp = read_sp ();
1166
1167 /* Location for 8 parameters are always reserved. */
1168 sp -= wordsize * 8;
1169
1170 /* Another six words for back chain, TOC register, link register, etc. */
1171 sp -= wordsize * 6;
1172
1173 /* Stack pointer must be quadword aligned. */
1174 sp &= -16;
1175
1176 /* If there are more arguments, allocate space for them in
1177 the stack, then push them starting from the ninth one. */
1178
1179 if ((argno < nargs) || argbytes)
1180 {
1181 int space = 0, jj;
1182
1183 if (argbytes)
1184 {
1185 space += ((len - argbytes + 3) & -4);
1186 jj = argno + 1;
1187 }
1188 else
1189 jj = argno;
1190
1191 for (; jj < nargs; ++jj)
1192 {
1193 struct value *val = args[jj];
1194 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1195 }
1196
1197 /* Add location required for the rest of the parameters. */
1198 space = (space + 15) & -16;
1199 sp -= space;
1200
1201 /* This is another instance we need to be concerned about
1202 securing our stack space. If we write anything underneath %sp
1203 (r1), we might conflict with the kernel who thinks he is free
1204 to use this area. So, update %sp first before doing anything
1205 else. */
1206
1207 write_register (SP_REGNUM, sp);
1208
1209 /* If the last argument copied into the registers didn't fit there
1210 completely, push the rest of it into stack. */
1211
1212 if (argbytes)
1213 {
1214 write_memory (sp + 24 + (ii * 4),
1215 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1216 len - argbytes);
1217 ++argno;
1218 ii += ((len - argbytes + 3) & -4) / 4;
1219 }
1220
1221 /* Push the rest of the arguments into stack. */
1222 for (; argno < nargs; ++argno)
1223 {
1224
1225 arg = args[argno];
1226 type = check_typedef (VALUE_TYPE (arg));
1227 len = TYPE_LENGTH (type);
1228
1229
1230 /* Float types should be passed in fpr's, as well as in the
1231 stack. */
1232 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1233 {
1234
1235 if (len > 8)
1236 printf_unfiltered (
1237 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1238
1239 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1240 VALUE_CONTENTS (arg),
1241 len);
1242 ++f_argno;
1243 }
1244
1245 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1246 ii += ((len + 3) & -4) / 4;
1247 }
1248 }
1249 else
1250 /* Secure stack areas first, before doing anything else. */
1251 write_register (SP_REGNUM, sp);
1252
1253 /* set back chain properly */
1254 store_address (tmp_buffer, 4, saved_sp);
1255 write_memory (sp, tmp_buffer, 4);
1256
1257 target_store_registers (-1);
1258 return sp;
1259 }
1260
1261 /* Function: ppc_push_return_address (pc, sp)
1262 Set up the return address for the inferior function call. */
1263
1264 static CORE_ADDR
1265 ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1266 {
1267 write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
1268 CALL_DUMMY_ADDRESS ());
1269 return sp;
1270 }
1271
1272 /* Extract a function return value of type TYPE from raw register array
1273 REGBUF, and copy that return value into VALBUF in virtual format. */
1274 static void
1275 e500_extract_return_value (struct type *valtype, struct regcache *regbuf, void *valbuf)
1276 {
1277 int offset = 0;
1278 int vallen = TYPE_LENGTH (valtype);
1279 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1280
1281 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1282 && vallen == 8
1283 && TYPE_VECTOR (valtype))
1284 {
1285 regcache_raw_read (regbuf, tdep->ppc_ev0_regnum + 3, valbuf);
1286 }
1287 else
1288 {
1289 /* Return value is copied starting from r3. Note that r3 for us
1290 is a pseudo register. */
1291 int offset = 0;
1292 int return_regnum = tdep->ppc_gp0_regnum + 3;
1293 int reg_size = REGISTER_RAW_SIZE (return_regnum);
1294 int reg_part_size;
1295 char *val_buffer;
1296 int copied = 0;
1297 int i = 0;
1298
1299 /* Compute where we will start storing the value from. */
1300 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1301 {
1302 if (vallen <= reg_size)
1303 offset = reg_size - vallen;
1304 else
1305 offset = reg_size + (reg_size - vallen);
1306 }
1307
1308 /* How big does the local buffer need to be? */
1309 if (vallen <= reg_size)
1310 val_buffer = alloca (reg_size);
1311 else
1312 val_buffer = alloca (vallen);
1313
1314 /* Read all we need into our private buffer. We copy it in
1315 chunks that are as long as one register, never shorter, even
1316 if the value is smaller than the register. */
1317 while (copied < vallen)
1318 {
1319 reg_part_size = REGISTER_RAW_SIZE (return_regnum + i);
1320 /* It is a pseudo/cooked register. */
1321 regcache_cooked_read (regbuf, return_regnum + i,
1322 val_buffer + copied);
1323 copied += reg_part_size;
1324 i++;
1325 }
1326 /* Put the stuff in the return buffer. */
1327 memcpy (valbuf, val_buffer + offset, vallen);
1328 }
1329 }
1330
1331 static void
1332 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1333 {
1334 int offset = 0;
1335 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1336
1337 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1338 {
1339
1340 double dd;
1341 float ff;
1342 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1343 We need to truncate the return value into float size (4 byte) if
1344 necessary. */
1345
1346 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1347 memcpy (valbuf,
1348 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1349 TYPE_LENGTH (valtype));
1350 else
1351 { /* float */
1352 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1353 ff = (float) dd;
1354 memcpy (valbuf, &ff, sizeof (float));
1355 }
1356 }
1357 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1358 && TYPE_LENGTH (valtype) == 16
1359 && TYPE_VECTOR (valtype))
1360 {
1361 memcpy (valbuf, regbuf + REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1362 TYPE_LENGTH (valtype));
1363 }
1364 else
1365 {
1366 /* return value is copied starting from r3. */
1367 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1368 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1369 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1370
1371 memcpy (valbuf,
1372 regbuf + REGISTER_BYTE (3) + offset,
1373 TYPE_LENGTH (valtype));
1374 }
1375 }
1376
1377 /* Return whether handle_inferior_event() should proceed through code
1378 starting at PC in function NAME when stepping.
1379
1380 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1381 handle memory references that are too distant to fit in instructions
1382 generated by the compiler. For example, if 'foo' in the following
1383 instruction:
1384
1385 lwz r9,foo(r2)
1386
1387 is greater than 32767, the linker might replace the lwz with a branch to
1388 somewhere in @FIX1 that does the load in 2 instructions and then branches
1389 back to where execution should continue.
1390
1391 GDB should silently step over @FIX code, just like AIX dbx does.
1392 Unfortunately, the linker uses the "b" instruction for the branches,
1393 meaning that the link register doesn't get set. Therefore, GDB's usual
1394 step_over_function() mechanism won't work.
1395
1396 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1397 in handle_inferior_event() to skip past @FIX code. */
1398
1399 int
1400 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1401 {
1402 return name && !strncmp (name, "@FIX", 4);
1403 }
1404
1405 /* Skip code that the user doesn't want to see when stepping:
1406
1407 1. Indirect function calls use a piece of trampoline code to do context
1408 switching, i.e. to set the new TOC table. Skip such code if we are on
1409 its first instruction (as when we have single-stepped to here).
1410
1411 2. Skip shared library trampoline code (which is different from
1412 indirect function call trampolines).
1413
1414 3. Skip bigtoc fixup code.
1415
1416 Result is desired PC to step until, or NULL if we are not in
1417 code that should be skipped. */
1418
1419 CORE_ADDR
1420 rs6000_skip_trampoline_code (CORE_ADDR pc)
1421 {
1422 register unsigned int ii, op;
1423 int rel;
1424 CORE_ADDR solib_target_pc;
1425 struct minimal_symbol *msymbol;
1426
1427 static unsigned trampoline_code[] =
1428 {
1429 0x800b0000, /* l r0,0x0(r11) */
1430 0x90410014, /* st r2,0x14(r1) */
1431 0x7c0903a6, /* mtctr r0 */
1432 0x804b0004, /* l r2,0x4(r11) */
1433 0x816b0008, /* l r11,0x8(r11) */
1434 0x4e800420, /* bctr */
1435 0x4e800020, /* br */
1436 0
1437 };
1438
1439 /* Check for bigtoc fixup code. */
1440 msymbol = lookup_minimal_symbol_by_pc (pc);
1441 if (msymbol && rs6000_in_solib_return_trampoline (pc, SYMBOL_NAME (msymbol)))
1442 {
1443 /* Double-check that the third instruction from PC is relative "b". */
1444 op = read_memory_integer (pc + 8, 4);
1445 if ((op & 0xfc000003) == 0x48000000)
1446 {
1447 /* Extract bits 6-29 as a signed 24-bit relative word address and
1448 add it to the containing PC. */
1449 rel = ((int)(op << 6) >> 6);
1450 return pc + 8 + rel;
1451 }
1452 }
1453
1454 /* If pc is in a shared library trampoline, return its target. */
1455 solib_target_pc = find_solib_trampoline_target (pc);
1456 if (solib_target_pc)
1457 return solib_target_pc;
1458
1459 for (ii = 0; trampoline_code[ii]; ++ii)
1460 {
1461 op = read_memory_integer (pc + (ii * 4), 4);
1462 if (op != trampoline_code[ii])
1463 return 0;
1464 }
1465 ii = read_register (11); /* r11 holds destination addr */
1466 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1467 return pc;
1468 }
1469
1470 /* Determines whether the function FI has a frame on the stack or not. */
1471
1472 int
1473 rs6000_frameless_function_invocation (struct frame_info *fi)
1474 {
1475 CORE_ADDR func_start;
1476 struct rs6000_framedata fdata;
1477
1478 /* Don't even think about framelessness except on the innermost frame
1479 or if the function was interrupted by a signal. */
1480 if (fi->next != NULL && !fi->next->signal_handler_caller)
1481 return 0;
1482
1483 func_start = get_pc_function_start (fi->pc);
1484
1485 /* If we failed to find the start of the function, it is a mistake
1486 to inspect the instructions. */
1487
1488 if (!func_start)
1489 {
1490 /* A frame with a zero PC is usually created by dereferencing a NULL
1491 function pointer, normally causing an immediate core dump of the
1492 inferior. Mark function as frameless, as the inferior has no chance
1493 of setting up a stack frame. */
1494 if (fi->pc == 0)
1495 return 1;
1496 else
1497 return 0;
1498 }
1499
1500 (void) skip_prologue (func_start, fi->pc, &fdata);
1501 return fdata.frameless;
1502 }
1503
1504 /* Return the PC saved in a frame. */
1505
1506 CORE_ADDR
1507 rs6000_frame_saved_pc (struct frame_info *fi)
1508 {
1509 CORE_ADDR func_start;
1510 struct rs6000_framedata fdata;
1511 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1512 int wordsize = tdep->wordsize;
1513
1514 if (fi->signal_handler_caller)
1515 return read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET, wordsize);
1516
1517 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
1518 return deprecated_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
1519
1520 func_start = get_pc_function_start (fi->pc);
1521
1522 /* If we failed to find the start of the function, it is a mistake
1523 to inspect the instructions. */
1524 if (!func_start)
1525 return 0;
1526
1527 (void) skip_prologue (func_start, fi->pc, &fdata);
1528
1529 if (fdata.lr_offset == 0 && fi->next != NULL)
1530 {
1531 if (fi->next->signal_handler_caller)
1532 return read_memory_addr (fi->next->frame + SIG_FRAME_LR_OFFSET,
1533 wordsize);
1534 else if (PC_IN_CALL_DUMMY (get_next_frame (fi)->pc, 0, 0))
1535 /* The link register wasn't saved by this frame and the next
1536 (inner, newer) frame is a dummy. Get the link register
1537 value by unwinding it from that [dummy] frame. */
1538 {
1539 ULONGEST lr;
1540 frame_unwind_unsigned_register (get_next_frame (fi),
1541 tdep->ppc_lr_regnum, &lr);
1542 return lr;
1543 }
1544 else
1545 return read_memory_addr (FRAME_CHAIN (fi) + tdep->lr_frame_offset,
1546 wordsize);
1547 }
1548
1549 if (fdata.lr_offset == 0)
1550 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1551
1552 return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize);
1553 }
1554
1555 /* If saved registers of frame FI are not known yet, read and cache them.
1556 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1557 in which case the framedata are read. */
1558
1559 static void
1560 frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
1561 {
1562 CORE_ADDR frame_addr;
1563 struct rs6000_framedata work_fdata;
1564 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1565 int wordsize = tdep->wordsize;
1566
1567 if (fi->saved_regs)
1568 return;
1569
1570 if (fdatap == NULL)
1571 {
1572 fdatap = &work_fdata;
1573 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, fdatap);
1574 }
1575
1576 frame_saved_regs_zalloc (fi);
1577
1578 /* If there were any saved registers, figure out parent's stack
1579 pointer. */
1580 /* The following is true only if the frame doesn't have a call to
1581 alloca(), FIXME. */
1582
1583 if (fdatap->saved_fpr == 0
1584 && fdatap->saved_gpr == 0
1585 && fdatap->saved_vr == 0
1586 && fdatap->saved_ev == 0
1587 && fdatap->lr_offset == 0
1588 && fdatap->cr_offset == 0
1589 && fdatap->vr_offset == 0
1590 && fdatap->ev_offset == 0)
1591 frame_addr = 0;
1592 else
1593 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1594 address of the current frame. Things might be easier if the
1595 ->frame pointed to the outer-most address of the frame. In the
1596 mean time, the address of the prev frame is used as the base
1597 address of this frame. */
1598 frame_addr = FRAME_CHAIN (fi);
1599
1600 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1601 All fpr's from saved_fpr to fp31 are saved. */
1602
1603 if (fdatap->saved_fpr >= 0)
1604 {
1605 int i;
1606 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
1607 for (i = fdatap->saved_fpr; i < 32; i++)
1608 {
1609 fi->saved_regs[FP0_REGNUM + i] = fpr_addr;
1610 fpr_addr += 8;
1611 }
1612 }
1613
1614 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1615 All gpr's from saved_gpr to gpr31 are saved. */
1616
1617 if (fdatap->saved_gpr >= 0)
1618 {
1619 int i;
1620 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
1621 for (i = fdatap->saved_gpr; i < 32; i++)
1622 {
1623 fi->saved_regs[i] = gpr_addr;
1624 gpr_addr += wordsize;
1625 }
1626 }
1627
1628 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1629 All vr's from saved_vr to vr31 are saved. */
1630 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1631 {
1632 if (fdatap->saved_vr >= 0)
1633 {
1634 int i;
1635 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1636 for (i = fdatap->saved_vr; i < 32; i++)
1637 {
1638 fi->saved_regs[tdep->ppc_vr0_regnum + i] = vr_addr;
1639 vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1640 }
1641 }
1642 }
1643
1644 /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1645 All vr's from saved_ev to ev31 are saved. ????? */
1646 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1647 {
1648 if (fdatap->saved_ev >= 0)
1649 {
1650 int i;
1651 CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1652 for (i = fdatap->saved_ev; i < 32; i++)
1653 {
1654 fi->saved_regs[tdep->ppc_ev0_regnum + i] = ev_addr;
1655 fi->saved_regs[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
1656 ev_addr += REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
1657 }
1658 }
1659 }
1660
1661 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1662 the CR. */
1663 if (fdatap->cr_offset != 0)
1664 fi->saved_regs[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
1665
1666 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1667 the LR. */
1668 if (fdatap->lr_offset != 0)
1669 fi->saved_regs[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
1670
1671 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1672 the VRSAVE. */
1673 if (fdatap->vrsave_offset != 0)
1674 fi->saved_regs[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
1675 }
1676
1677 /* Return the address of a frame. This is the inital %sp value when the frame
1678 was first allocated. For functions calling alloca(), it might be saved in
1679 an alloca register. */
1680
1681 static CORE_ADDR
1682 frame_initial_stack_address (struct frame_info *fi)
1683 {
1684 CORE_ADDR tmpaddr;
1685 struct rs6000_framedata fdata;
1686 struct frame_info *callee_fi;
1687
1688 /* If the initial stack pointer (frame address) of this frame is known,
1689 just return it. */
1690
1691 if (fi->extra_info->initial_sp)
1692 return fi->extra_info->initial_sp;
1693
1694 /* Find out if this function is using an alloca register. */
1695
1696 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, &fdata);
1697
1698 /* If saved registers of this frame are not known yet, read and
1699 cache them. */
1700
1701 if (!fi->saved_regs)
1702 frame_get_saved_regs (fi, &fdata);
1703
1704 /* If no alloca register used, then fi->frame is the value of the %sp for
1705 this frame, and it is good enough. */
1706
1707 if (fdata.alloca_reg < 0)
1708 {
1709 fi->extra_info->initial_sp = fi->frame;
1710 return fi->extra_info->initial_sp;
1711 }
1712
1713 /* There is an alloca register, use its value, in the current frame,
1714 as the initial stack pointer. */
1715 {
1716 char *tmpbuf = alloca (MAX_REGISTER_RAW_SIZE);
1717 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1718 {
1719 fi->extra_info->initial_sp
1720 = extract_unsigned_integer (tmpbuf,
1721 REGISTER_RAW_SIZE (fdata.alloca_reg));
1722 }
1723 else
1724 /* NOTE: cagney/2002-04-17: At present the only time
1725 frame_register_read will fail is when the register isn't
1726 available. If that does happen, use the frame. */
1727 fi->extra_info->initial_sp = fi->frame;
1728 }
1729 return fi->extra_info->initial_sp;
1730 }
1731
1732 /* Describe the pointer in each stack frame to the previous stack frame
1733 (its caller). */
1734
1735 /* FRAME_CHAIN takes a frame's nominal address
1736 and produces the frame's chain-pointer. */
1737
1738 /* In the case of the RS/6000, the frame's nominal address
1739 is the address of a 4-byte word containing the calling frame's address. */
1740
1741 CORE_ADDR
1742 rs6000_frame_chain (struct frame_info *thisframe)
1743 {
1744 CORE_ADDR fp, fpp, lr;
1745 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1746
1747 if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
1748 /* A dummy frame always correctly chains back to the previous
1749 frame. */
1750 return read_memory_addr ((thisframe)->frame, wordsize);
1751
1752 if (inside_entry_file (thisframe->pc) ||
1753 thisframe->pc == entry_point_address ())
1754 return 0;
1755
1756 if (thisframe->signal_handler_caller)
1757 fp = read_memory_addr (thisframe->frame + SIG_FRAME_FP_OFFSET,
1758 wordsize);
1759 else if (thisframe->next != NULL
1760 && thisframe->next->signal_handler_caller
1761 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
1762 /* A frameless function interrupted by a signal did not change the
1763 frame pointer. */
1764 fp = FRAME_FP (thisframe);
1765 else
1766 fp = read_memory_addr ((thisframe)->frame, wordsize);
1767 return fp;
1768 }
1769
1770 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1771 isn't available with that word size, return 0. */
1772
1773 static int
1774 regsize (const struct reg *reg, int wordsize)
1775 {
1776 return wordsize == 8 ? reg->sz64 : reg->sz32;
1777 }
1778
1779 /* Return the name of register number N, or null if no such register exists
1780 in the current architecture. */
1781
1782 static const char *
1783 rs6000_register_name (int n)
1784 {
1785 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1786 const struct reg *reg = tdep->regs + n;
1787
1788 if (!regsize (reg, tdep->wordsize))
1789 return NULL;
1790 return reg->name;
1791 }
1792
1793 /* Index within `registers' of the first byte of the space for
1794 register N. */
1795
1796 static int
1797 rs6000_register_byte (int n)
1798 {
1799 return gdbarch_tdep (current_gdbarch)->regoff[n];
1800 }
1801
1802 /* Return the number of bytes of storage in the actual machine representation
1803 for register N if that register is available, else return 0. */
1804
1805 static int
1806 rs6000_register_raw_size (int n)
1807 {
1808 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1809 const struct reg *reg = tdep->regs + n;
1810 return regsize (reg, tdep->wordsize);
1811 }
1812
1813 /* Return the GDB type object for the "standard" data type
1814 of data in register N. */
1815
1816 static struct type *
1817 rs6000_register_virtual_type (int n)
1818 {
1819 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1820 const struct reg *reg = tdep->regs + n;
1821
1822 if (reg->fpr)
1823 return builtin_type_double;
1824 else
1825 {
1826 int size = regsize (reg, tdep->wordsize);
1827 switch (size)
1828 {
1829 case 8:
1830 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1831 return builtin_type_vec64;
1832 else
1833 return builtin_type_int64;
1834 break;
1835 case 16:
1836 return builtin_type_vec128;
1837 break;
1838 default:
1839 return builtin_type_int32;
1840 break;
1841 }
1842 }
1843 }
1844
1845 /* For the PowerPC, it appears that the debug info marks float parameters as
1846 floats regardless of whether the function is prototyped, but the actual
1847 values are always passed in as doubles. Tell gdb to always assume that
1848 floats are passed as doubles and then converted in the callee. */
1849
1850 static int
1851 rs6000_coerce_float_to_double (struct type *formal, struct type *actual)
1852 {
1853 return 1;
1854 }
1855
1856 /* Return whether register N requires conversion when moving from raw format
1857 to virtual format.
1858
1859 The register format for RS/6000 floating point registers is always
1860 double, we need a conversion if the memory format is float. */
1861
1862 static int
1863 rs6000_register_convertible (int n)
1864 {
1865 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
1866 return reg->fpr;
1867 }
1868
1869 /* Convert data from raw format for register N in buffer FROM
1870 to virtual format with type TYPE in buffer TO. */
1871
1872 static void
1873 rs6000_register_convert_to_virtual (int n, struct type *type,
1874 char *from, char *to)
1875 {
1876 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1877 {
1878 double val = extract_floating (from, REGISTER_RAW_SIZE (n));
1879 store_floating (to, TYPE_LENGTH (type), val);
1880 }
1881 else
1882 memcpy (to, from, REGISTER_RAW_SIZE (n));
1883 }
1884
1885 /* Convert data from virtual format with type TYPE in buffer FROM
1886 to raw format for register N in buffer TO. */
1887
1888 static void
1889 rs6000_register_convert_to_raw (struct type *type, int n,
1890 char *from, char *to)
1891 {
1892 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1893 {
1894 double val = extract_floating (from, TYPE_LENGTH (type));
1895 store_floating (to, REGISTER_RAW_SIZE (n), val);
1896 }
1897 else
1898 memcpy (to, from, REGISTER_RAW_SIZE (n));
1899 }
1900
1901 static void
1902 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1903 int reg_nr, void *buffer)
1904 {
1905 int base_regnum;
1906 int offset = 0;
1907 char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1908 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1909
1910 if (reg_nr >= tdep->ppc_gp0_regnum
1911 && reg_nr <= tdep->ppc_gplast_regnum)
1912 {
1913 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1914
1915 /* Build the value in the provided buffer. */
1916 /* Read the raw register of which this one is the lower portion. */
1917 regcache_raw_read (regcache, base_regnum, temp_buffer);
1918 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1919 offset = 4;
1920 memcpy ((char *) buffer, temp_buffer + offset, 4);
1921 }
1922 }
1923
1924 static void
1925 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1926 int reg_nr, const void *buffer)
1927 {
1928 int base_regnum;
1929 int offset = 0;
1930 char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1931 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1932
1933 if (reg_nr >= tdep->ppc_gp0_regnum
1934 && reg_nr <= tdep->ppc_gplast_regnum)
1935 {
1936 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1937 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1938 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1939 offset = 4;
1940
1941 /* Let's read the value of the base register into a temporary
1942 buffer, so that overwriting the last four bytes with the new
1943 value of the pseudo will leave the upper 4 bytes unchanged. */
1944 regcache_raw_read (regcache, base_regnum, temp_buffer);
1945
1946 /* Write as an 8 byte quantity. */
1947 memcpy (temp_buffer + offset, (char *) buffer, 4);
1948 regcache_raw_write (regcache, base_regnum, temp_buffer);
1949 }
1950 }
1951
1952 /* Convert a dwarf2 register number to a gdb REGNUM. */
1953 static int
1954 e500_dwarf2_reg_to_regnum (int num)
1955 {
1956 int regnum;
1957 if (0 <= num && num <= 31)
1958 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
1959 else
1960 return num;
1961 }
1962
1963 /* Convert a dbx stab register number (from `r' declaration) to a gdb
1964 REGNUM. */
1965 static int
1966 rs6000_stab_reg_to_regnum (int num)
1967 {
1968 int regnum;
1969 switch (num)
1970 {
1971 case 64:
1972 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1973 break;
1974 case 65:
1975 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1976 break;
1977 case 66:
1978 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1979 break;
1980 case 76:
1981 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1982 break;
1983 default:
1984 regnum = num;
1985 break;
1986 }
1987 return regnum;
1988 }
1989
1990 /* Store the address of the place in which to copy the structure the
1991 subroutine will return. */
1992
1993 static void
1994 rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1995 {
1996 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1997 write_register (tdep->ppc_gp0_regnum + 3, addr);
1998 }
1999
2000 /* Write into appropriate registers a function return value
2001 of type TYPE, given in virtual format. */
2002 static void
2003 e500_store_return_value (struct type *type, char *valbuf)
2004 {
2005 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2006
2007 /* Everything is returned in GPR3 and up. */
2008 int copied = 0;
2009 int i = 0;
2010 int len = TYPE_LENGTH (type);
2011 while (copied < len)
2012 {
2013 int regnum = gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3 + i;
2014 int reg_size = REGISTER_RAW_SIZE (regnum);
2015 char *reg_val_buf = alloca (reg_size);
2016
2017 memcpy (reg_val_buf, valbuf + copied, reg_size);
2018 copied += reg_size;
2019 deprecated_write_register_gen (regnum, reg_val_buf);
2020 i++;
2021 }
2022 }
2023
2024 static void
2025 rs6000_store_return_value (struct type *type, char *valbuf)
2026 {
2027 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2028
2029 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2030
2031 /* Floating point values are returned starting from FPR1 and up.
2032 Say a double_double_double type could be returned in
2033 FPR1/FPR2/FPR3 triple. */
2034
2035 deprecated_write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
2036 TYPE_LENGTH (type));
2037 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2038 {
2039 if (TYPE_LENGTH (type) == 16
2040 && TYPE_VECTOR (type))
2041 deprecated_write_register_bytes (REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
2042 valbuf, TYPE_LENGTH (type));
2043 }
2044 else
2045 /* Everything else is returned in GPR3 and up. */
2046 deprecated_write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
2047 valbuf, TYPE_LENGTH (type));
2048 }
2049
2050 /* Extract from an array REGBUF containing the (raw) register state
2051 the address in which a function should return its structure value,
2052 as a CORE_ADDR (or an expression that can be used as one). */
2053
2054 static CORE_ADDR
2055 rs6000_extract_struct_value_address (struct regcache *regcache)
2056 {
2057 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2058 function call GDB knows the address of the struct return value
2059 and hence, should not need to call this function. Unfortunately,
2060 the current hand_function_call() code only saves the most recent
2061 struct address leading to occasional calls. The code should
2062 instead maintain a stack of such addresses (in the dummy frame
2063 object). */
2064 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2065 really got no idea where the return value is being stored. While
2066 r3, on function entry, contained the address it will have since
2067 been reused (scratch) and hence wouldn't be valid */
2068 return 0;
2069 }
2070
2071 /* Return whether PC is in a dummy function call.
2072
2073 FIXME: This just checks for the end of the stack, which is broken
2074 for things like stepping through gcc nested function stubs. */
2075
2076 static int
2077 rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
2078 {
2079 return sp < pc && pc < fp;
2080 }
2081
2082 /* Hook called when a new child process is started. */
2083
2084 void
2085 rs6000_create_inferior (int pid)
2086 {
2087 if (rs6000_set_host_arch_hook)
2088 rs6000_set_host_arch_hook (pid);
2089 }
2090 \f
2091 /* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
2092
2093 Usually a function pointer's representation is simply the address
2094 of the function. On the RS/6000 however, a function pointer is
2095 represented by a pointer to a TOC entry. This TOC entry contains
2096 three words, the first word is the address of the function, the
2097 second word is the TOC pointer (r2), and the third word is the
2098 static chain value. Throughout GDB it is currently assumed that a
2099 function pointer contains the address of the function, which is not
2100 easy to fix. In addition, the conversion of a function address to
2101 a function pointer would require allocation of a TOC entry in the
2102 inferior's memory space, with all its drawbacks. To be able to
2103 call C++ virtual methods in the inferior (which are called via
2104 function pointers), find_function_addr uses this function to get the
2105 function address from a function pointer. */
2106
2107 /* Return real function address if ADDR (a function pointer) is in the data
2108 space and is therefore a special function pointer. */
2109
2110 CORE_ADDR
2111 rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
2112 {
2113 struct obj_section *s;
2114
2115 s = find_pc_section (addr);
2116 if (s && s->the_bfd_section->flags & SEC_CODE)
2117 return addr;
2118
2119 /* ADDR is in the data space, so it's a special function pointer. */
2120 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2121 }
2122 \f
2123
2124 /* Handling the various POWER/PowerPC variants. */
2125
2126
2127 /* The arrays here called registers_MUMBLE hold information about available
2128 registers.
2129
2130 For each family of PPC variants, I've tried to isolate out the
2131 common registers and put them up front, so that as long as you get
2132 the general family right, GDB will correctly identify the registers
2133 common to that family. The common register sets are:
2134
2135 For the 60x family: hid0 hid1 iabr dabr pir
2136
2137 For the 505 and 860 family: eie eid nri
2138
2139 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2140 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2141 pbu1 pbl2 pbu2
2142
2143 Most of these register groups aren't anything formal. I arrived at
2144 them by looking at the registers that occurred in more than one
2145 processor.
2146
2147 Note: kevinb/2002-04-30: Support for the fpscr register was added
2148 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2149 for Power. For PowerPC, slot 70 was unused and was already in the
2150 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2151 slot 70 was being used for "mq", so the next available slot (71)
2152 was chosen. It would have been nice to be able to make the
2153 register numbers the same across processor cores, but this wasn't
2154 possible without either 1) renumbering some registers for some
2155 processors or 2) assigning fpscr to a really high slot that's
2156 larger than any current register number. Doing (1) is bad because
2157 existing stubs would break. Doing (2) is undesirable because it
2158 would introduce a really large gap between fpscr and the rest of
2159 the registers for most processors. */
2160
2161 /* Convenience macros for populating register arrays. */
2162
2163 /* Within another macro, convert S to a string. */
2164
2165 #define STR(s) #s
2166
2167 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2168 and 64 bits on 64-bit systems. */
2169 #define R(name) { STR(name), 4, 8, 0, 0 }
2170
2171 /* Return a struct reg defining register NAME that's 32 bits on all
2172 systems. */
2173 #define R4(name) { STR(name), 4, 4, 0, 0 }
2174
2175 /* Return a struct reg defining register NAME that's 64 bits on all
2176 systems. */
2177 #define R8(name) { STR(name), 8, 8, 0, 0 }
2178
2179 /* Return a struct reg defining register NAME that's 128 bits on all
2180 systems. */
2181 #define R16(name) { STR(name), 16, 16, 0, 0 }
2182
2183 /* Return a struct reg defining floating-point register NAME. */
2184 #define F(name) { STR(name), 8, 8, 1, 0 }
2185
2186 /* Return a struct reg defining a pseudo register NAME. */
2187 #define P(name) { STR(name), 4, 8, 0, 1}
2188
2189 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2190 systems and that doesn't exist on 64-bit systems. */
2191 #define R32(name) { STR(name), 4, 0, 0, 0 }
2192
2193 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2194 systems and that doesn't exist on 32-bit systems. */
2195 #define R64(name) { STR(name), 0, 8, 0, 0 }
2196
2197 /* Return a struct reg placeholder for a register that doesn't exist. */
2198 #define R0 { 0, 0, 0, 0, 0 }
2199
2200 /* UISA registers common across all architectures, including POWER. */
2201
2202 #define COMMON_UISA_REGS \
2203 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2204 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2205 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2206 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2207 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2208 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2209 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2210 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2211 /* 64 */ R(pc), R(ps)
2212
2213 #define COMMON_UISA_NOFP_REGS \
2214 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2215 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2216 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2217 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2218 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2219 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2220 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2221 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2222 /* 64 */ R(pc), R(ps)
2223
2224 /* UISA-level SPRs for PowerPC. */
2225 #define PPC_UISA_SPRS \
2226 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
2227
2228 /* UISA-level SPRs for PowerPC without floating point support. */
2229 #define PPC_UISA_NOFP_SPRS \
2230 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2231
2232 /* Segment registers, for PowerPC. */
2233 #define PPC_SEGMENT_REGS \
2234 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2235 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2236 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2237 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2238
2239 /* OEA SPRs for PowerPC. */
2240 #define PPC_OEA_SPRS \
2241 /* 87 */ R4(pvr), \
2242 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2243 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2244 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2245 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2246 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2247 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2248 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2249 /* 116 */ R4(dec), R(dabr), R4(ear)
2250
2251 /* AltiVec registers. */
2252 #define PPC_ALTIVEC_REGS \
2253 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2254 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2255 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2256 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2257 /*151*/R4(vscr), R4(vrsave)
2258
2259 /* Vectors of hi-lo general purpose registers. */
2260 #define PPC_EV_REGS \
2261 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2262 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2263 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2264 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2265
2266 /* Lower half of the EV registers. */
2267 #define PPC_GPRS_PSEUDO_REGS \
2268 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2269 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2270 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
2271 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31), \
2272
2273 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2274 user-level SPR's. */
2275 static const struct reg registers_power[] =
2276 {
2277 COMMON_UISA_REGS,
2278 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2279 /* 71 */ R4(fpscr)
2280 };
2281
2282 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2283 view of the PowerPC. */
2284 static const struct reg registers_powerpc[] =
2285 {
2286 COMMON_UISA_REGS,
2287 PPC_UISA_SPRS,
2288 PPC_ALTIVEC_REGS
2289 };
2290
2291 /* PowerPC UISA - a PPC processor as viewed by user-level
2292 code, but without floating point registers. */
2293 static const struct reg registers_powerpc_nofp[] =
2294 {
2295 COMMON_UISA_NOFP_REGS,
2296 PPC_UISA_SPRS
2297 };
2298
2299 /* IBM PowerPC 403. */
2300 static const struct reg registers_403[] =
2301 {
2302 COMMON_UISA_REGS,
2303 PPC_UISA_SPRS,
2304 PPC_SEGMENT_REGS,
2305 PPC_OEA_SPRS,
2306 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2307 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2308 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2309 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2310 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2311 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
2312 };
2313
2314 /* IBM PowerPC 403GC. */
2315 static const struct reg registers_403GC[] =
2316 {
2317 COMMON_UISA_REGS,
2318 PPC_UISA_SPRS,
2319 PPC_SEGMENT_REGS,
2320 PPC_OEA_SPRS,
2321 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2322 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2323 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2324 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2325 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2326 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2327 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2328 /* 147 */ R(tbhu), R(tblu)
2329 };
2330
2331 /* Motorola PowerPC 505. */
2332 static const struct reg registers_505[] =
2333 {
2334 COMMON_UISA_REGS,
2335 PPC_UISA_SPRS,
2336 PPC_SEGMENT_REGS,
2337 PPC_OEA_SPRS,
2338 /* 119 */ R(eie), R(eid), R(nri)
2339 };
2340
2341 /* Motorola PowerPC 860 or 850. */
2342 static const struct reg registers_860[] =
2343 {
2344 COMMON_UISA_REGS,
2345 PPC_UISA_SPRS,
2346 PPC_SEGMENT_REGS,
2347 PPC_OEA_SPRS,
2348 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2349 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2350 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2351 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2352 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2353 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2354 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2355 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2356 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2357 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2358 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2359 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
2360 };
2361
2362 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2363 for reading and writing RTCU and RTCL. However, how one reads and writes a
2364 register is the stub's problem. */
2365 static const struct reg registers_601[] =
2366 {
2367 COMMON_UISA_REGS,
2368 PPC_UISA_SPRS,
2369 PPC_SEGMENT_REGS,
2370 PPC_OEA_SPRS,
2371 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2372 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
2373 };
2374
2375 /* Motorola PowerPC 602. */
2376 static const struct reg registers_602[] =
2377 {
2378 COMMON_UISA_REGS,
2379 PPC_UISA_SPRS,
2380 PPC_SEGMENT_REGS,
2381 PPC_OEA_SPRS,
2382 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2383 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2384 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
2385 };
2386
2387 /* Motorola/IBM PowerPC 603 or 603e. */
2388 static const struct reg registers_603[] =
2389 {
2390 COMMON_UISA_REGS,
2391 PPC_UISA_SPRS,
2392 PPC_SEGMENT_REGS,
2393 PPC_OEA_SPRS,
2394 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2395 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2396 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
2397 };
2398
2399 /* Motorola PowerPC 604 or 604e. */
2400 static const struct reg registers_604[] =
2401 {
2402 COMMON_UISA_REGS,
2403 PPC_UISA_SPRS,
2404 PPC_SEGMENT_REGS,
2405 PPC_OEA_SPRS,
2406 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2407 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2408 /* 127 */ R(sia), R(sda)
2409 };
2410
2411 /* Motorola/IBM PowerPC 750 or 740. */
2412 static const struct reg registers_750[] =
2413 {
2414 COMMON_UISA_REGS,
2415 PPC_UISA_SPRS,
2416 PPC_SEGMENT_REGS,
2417 PPC_OEA_SPRS,
2418 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2419 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2420 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2421 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2422 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2423 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
2424 };
2425
2426
2427 /* Motorola PowerPC 7400. */
2428 static const struct reg registers_7400[] =
2429 {
2430 /* gpr0-gpr31, fpr0-fpr31 */
2431 COMMON_UISA_REGS,
2432 /* ctr, xre, lr, cr */
2433 PPC_UISA_SPRS,
2434 /* sr0-sr15 */
2435 PPC_SEGMENT_REGS,
2436 PPC_OEA_SPRS,
2437 /* vr0-vr31, vrsave, vscr */
2438 PPC_ALTIVEC_REGS
2439 /* FIXME? Add more registers? */
2440 };
2441
2442 /* Motorola e500. */
2443 static const struct reg registers_e500[] =
2444 {
2445 R(pc), R(ps),
2446 /* cr, lr, ctr, xer, "" */
2447 PPC_UISA_NOFP_SPRS,
2448 /* 7...38 */
2449 PPC_EV_REGS,
2450 /* 39...70 */
2451 PPC_GPRS_PSEUDO_REGS
2452 };
2453
2454 /* Information about a particular processor variant. */
2455
2456 struct variant
2457 {
2458 /* Name of this variant. */
2459 char *name;
2460
2461 /* English description of the variant. */
2462 char *description;
2463
2464 /* bfd_arch_info.arch corresponding to variant. */
2465 enum bfd_architecture arch;
2466
2467 /* bfd_arch_info.mach corresponding to variant. */
2468 unsigned long mach;
2469
2470 /* Number of real registers. */
2471 int nregs;
2472
2473 /* Number of pseudo registers. */
2474 int npregs;
2475
2476 /* Number of total registers (the sum of nregs and npregs). */
2477 int num_tot_regs;
2478
2479 /* Table of register names; registers[R] is the name of the register
2480 number R. */
2481 const struct reg *regs;
2482 };
2483
2484 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2485
2486 static int
2487 num_registers (const struct reg *reg_list, int num_tot_regs)
2488 {
2489 int i;
2490 int nregs = 0;
2491
2492 for (i = 0; i < num_tot_regs; i++)
2493 if (!reg_list[i].pseudo)
2494 nregs++;
2495
2496 return nregs;
2497 }
2498
2499 static int
2500 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2501 {
2502 int i;
2503 int npregs = 0;
2504
2505 for (i = 0; i < num_tot_regs; i++)
2506 if (reg_list[i].pseudo)
2507 npregs ++;
2508
2509 return npregs;
2510 }
2511
2512 /* Information in this table comes from the following web sites:
2513 IBM: http://www.chips.ibm.com:80/products/embedded/
2514 Motorola: http://www.mot.com/SPS/PowerPC/
2515
2516 I'm sure I've got some of the variant descriptions not quite right.
2517 Please report any inaccuracies you find to GDB's maintainer.
2518
2519 If you add entries to this table, please be sure to allow the new
2520 value as an argument to the --with-cpu flag, in configure.in. */
2521
2522 static struct variant variants[] =
2523 {
2524
2525 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2526 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2527 registers_powerpc},
2528 {"power", "POWER user-level", bfd_arch_rs6000,
2529 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2530 registers_power},
2531 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2532 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2533 registers_403},
2534 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2535 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2536 registers_601},
2537 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2538 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2539 registers_602},
2540 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2541 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2542 registers_603},
2543 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2544 604, -1, -1, tot_num_registers (registers_604),
2545 registers_604},
2546 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2547 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2548 registers_403GC},
2549 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2550 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2551 registers_505},
2552 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2553 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2554 registers_860},
2555 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2556 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2557 registers_750},
2558 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2559 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2560 registers_7400},
2561 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2562 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2563 registers_e500},
2564
2565 /* 64-bit */
2566 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2567 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2568 registers_powerpc},
2569 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2570 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2571 registers_powerpc},
2572 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2573 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2574 registers_powerpc},
2575 {"a35", "PowerPC A35", bfd_arch_powerpc,
2576 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2577 registers_powerpc},
2578 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2579 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2580 registers_powerpc},
2581 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2582 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2583 registers_powerpc},
2584
2585 /* FIXME: I haven't checked the register sets of the following. */
2586 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2587 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2588 registers_power},
2589 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2590 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2591 registers_power},
2592 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2593 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2594 registers_power},
2595
2596 {0, 0, 0, 0, 0, 0, 0, 0}
2597 };
2598
2599 /* Initialize the number of registers and pseudo registers in each variant. */
2600
2601 static void
2602 init_variants (void)
2603 {
2604 struct variant *v;
2605
2606 for (v = variants; v->name; v++)
2607 {
2608 if (v->nregs == -1)
2609 v->nregs = num_registers (v->regs, v->num_tot_regs);
2610 if (v->npregs == -1)
2611 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2612 }
2613 }
2614
2615 /* Return the variant corresponding to architecture ARCH and machine number
2616 MACH. If no such variant exists, return null. */
2617
2618 static const struct variant *
2619 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2620 {
2621 const struct variant *v;
2622
2623 for (v = variants; v->name; v++)
2624 if (arch == v->arch && mach == v->mach)
2625 return v;
2626
2627 return NULL;
2628 }
2629
2630 static int
2631 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2632 {
2633 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2634 return print_insn_big_powerpc (memaddr, info);
2635 else
2636 return print_insn_little_powerpc (memaddr, info);
2637 }
2638 \f
2639 /* Initialize the current architecture based on INFO. If possible, re-use an
2640 architecture from ARCHES, which is a list of architectures already created
2641 during this debugging session.
2642
2643 Called e.g. at program startup, when reading a core file, and when reading
2644 a binary file. */
2645
2646 static struct gdbarch *
2647 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2648 {
2649 struct gdbarch *gdbarch;
2650 struct gdbarch_tdep *tdep;
2651 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2652 struct reg *regs;
2653 const struct variant *v;
2654 enum bfd_architecture arch;
2655 unsigned long mach;
2656 bfd abfd;
2657 int sysv_abi;
2658 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
2659 asection *sect;
2660
2661 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2662 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2663
2664 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2665 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2666
2667 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2668
2669 if (info.abfd)
2670 osabi = gdbarch_lookup_osabi (info.abfd);
2671
2672 /* Check word size. If INFO is from a binary file, infer it from
2673 that, else choose a likely default. */
2674 if (from_xcoff_exec)
2675 {
2676 if (bfd_xcoff_is_xcoff64 (info.abfd))
2677 wordsize = 8;
2678 else
2679 wordsize = 4;
2680 }
2681 else if (from_elf_exec)
2682 {
2683 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2684 wordsize = 8;
2685 else
2686 wordsize = 4;
2687 }
2688 else
2689 {
2690 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2691 wordsize = info.bfd_arch_info->bits_per_word /
2692 info.bfd_arch_info->bits_per_byte;
2693 else
2694 wordsize = 4;
2695 }
2696
2697 /* Find a candidate among extant architectures. */
2698 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2699 arches != NULL;
2700 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2701 {
2702 /* Word size in the various PowerPC bfd_arch_info structs isn't
2703 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2704 separate word size check. */
2705 tdep = gdbarch_tdep (arches->gdbarch);
2706 if (tdep && tdep->wordsize == wordsize && tdep->osabi == osabi)
2707 return arches->gdbarch;
2708 }
2709
2710 /* None found, create a new architecture from INFO, whose bfd_arch_info
2711 validity depends on the source:
2712 - executable useless
2713 - rs6000_host_arch() good
2714 - core file good
2715 - "set arch" trust blindly
2716 - GDB startup useless but harmless */
2717
2718 if (!from_xcoff_exec)
2719 {
2720 arch = info.bfd_arch_info->arch;
2721 mach = info.bfd_arch_info->mach;
2722 }
2723 else
2724 {
2725 arch = bfd_arch_powerpc;
2726 mach = 0;
2727 bfd_default_set_arch_mach (&abfd, arch, mach);
2728 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2729 }
2730 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2731 tdep->wordsize = wordsize;
2732 tdep->osabi = osabi;
2733
2734 /* For e500 executables, the apuinfo section is of help here. Such
2735 section contains the identifier and revision number of each
2736 Application-specific Processing Unit that is present on the
2737 chip. The content of the section is determined by the assembler
2738 which looks at each instruction and determines which unit (and
2739 which version of it) can execute it. In our case we just look for
2740 the existance of the section. */
2741
2742 if (info.abfd)
2743 {
2744 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2745 if (sect)
2746 {
2747 arch = info.bfd_arch_info->arch;
2748 mach = bfd_mach_ppc_e500;
2749 bfd_default_set_arch_mach (&abfd, arch, mach);
2750 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2751 }
2752 }
2753
2754 gdbarch = gdbarch_alloc (&info, tdep);
2755 power = arch == bfd_arch_rs6000;
2756
2757 /* Initialize the number of real and pseudo registers in each variant. */
2758 init_variants ();
2759
2760 /* Choose variant. */
2761 v = find_variant_by_arch (arch, mach);
2762 if (!v)
2763 return NULL;
2764
2765 tdep->regs = v->regs;
2766
2767 tdep->ppc_gp0_regnum = 0;
2768 tdep->ppc_gplast_regnum = 31;
2769 tdep->ppc_toc_regnum = 2;
2770 tdep->ppc_ps_regnum = 65;
2771 tdep->ppc_cr_regnum = 66;
2772 tdep->ppc_lr_regnum = 67;
2773 tdep->ppc_ctr_regnum = 68;
2774 tdep->ppc_xer_regnum = 69;
2775 if (v->mach == bfd_mach_ppc_601)
2776 tdep->ppc_mq_regnum = 124;
2777 else if (power)
2778 tdep->ppc_mq_regnum = 70;
2779 else
2780 tdep->ppc_mq_regnum = -1;
2781 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2782
2783 set_gdbarch_pc_regnum (gdbarch, 64);
2784 set_gdbarch_sp_regnum (gdbarch, 1);
2785 set_gdbarch_fp_regnum (gdbarch, 1);
2786 set_gdbarch_deprecated_extract_return_value (gdbarch,
2787 rs6000_extract_return_value);
2788 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
2789
2790 if (v->arch == bfd_arch_powerpc)
2791 switch (v->mach)
2792 {
2793 case bfd_mach_ppc:
2794 tdep->ppc_vr0_regnum = 71;
2795 tdep->ppc_vrsave_regnum = 104;
2796 tdep->ppc_ev0_regnum = -1;
2797 tdep->ppc_ev31_regnum = -1;
2798 break;
2799 case bfd_mach_ppc_7400:
2800 tdep->ppc_vr0_regnum = 119;
2801 tdep->ppc_vrsave_regnum = 152;
2802 tdep->ppc_ev0_regnum = -1;
2803 tdep->ppc_ev31_regnum = -1;
2804 break;
2805 case bfd_mach_ppc_e500:
2806 tdep->ppc_gp0_regnum = 39;
2807 tdep->ppc_gplast_regnum = 70;
2808 tdep->ppc_toc_regnum = -1;
2809 tdep->ppc_ps_regnum = 1;
2810 tdep->ppc_cr_regnum = 2;
2811 tdep->ppc_lr_regnum = 3;
2812 tdep->ppc_ctr_regnum = 4;
2813 tdep->ppc_xer_regnum = 5;
2814 tdep->ppc_ev0_regnum = 7;
2815 tdep->ppc_ev31_regnum = 38;
2816 set_gdbarch_pc_regnum (gdbarch, 0);
2817 set_gdbarch_sp_regnum (gdbarch, 40);
2818 set_gdbarch_fp_regnum (gdbarch, 40);
2819 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2820 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2821 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
2822 set_gdbarch_extract_return_value (gdbarch, e500_extract_return_value);
2823 set_gdbarch_deprecated_store_return_value (gdbarch, e500_store_return_value);
2824 break;
2825 default:
2826 tdep->ppc_vr0_regnum = -1;
2827 tdep->ppc_vrsave_regnum = -1;
2828 tdep->ppc_ev0_regnum = -1;
2829 tdep->ppc_ev31_regnum = -1;
2830 break;
2831 }
2832
2833 /* Set lr_frame_offset. */
2834 if (wordsize == 8)
2835 tdep->lr_frame_offset = 16;
2836 else if (sysv_abi)
2837 tdep->lr_frame_offset = 4;
2838 else
2839 tdep->lr_frame_offset = 8;
2840
2841 /* Calculate byte offsets in raw register array. */
2842 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2843 for (i = off = 0; i < v->num_tot_regs; i++)
2844 {
2845 tdep->regoff[i] = off;
2846 off += regsize (v->regs + i, wordsize);
2847 }
2848
2849 /* Select instruction printer. */
2850 if (arch == power)
2851 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
2852 else
2853 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
2854
2855 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
2856 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2857 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
2858 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
2859 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
2860
2861 set_gdbarch_num_regs (gdbarch, v->nregs);
2862 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
2863 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2864 set_gdbarch_register_size (gdbarch, wordsize);
2865 set_gdbarch_register_bytes (gdbarch, off);
2866 set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
2867 set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
2868 set_gdbarch_max_register_raw_size (gdbarch, 16);
2869 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
2870 set_gdbarch_max_register_virtual_size (gdbarch, 16);
2871 set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2872
2873 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2874 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2875 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2876 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2877 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2878 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2879 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2880 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2881 set_gdbarch_char_signed (gdbarch, 0);
2882
2883 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
2884 set_gdbarch_call_dummy_length (gdbarch, 0);
2885 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
2886 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2887 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2888 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2889 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
2890 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
2891 set_gdbarch_call_dummy_p (gdbarch, 1);
2892 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2893 set_gdbarch_get_saved_register (gdbarch, generic_unwind_get_saved_register);
2894 set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
2895 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
2896 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
2897 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
2898 set_gdbarch_push_return_address (gdbarch, ppc_push_return_address);
2899 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2900 set_gdbarch_coerce_float_to_double (gdbarch, rs6000_coerce_float_to_double);
2901
2902 set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
2903 set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2904 set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2905 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2906 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2907 is correct for the SysV ABI when the wordsize is 8, but I'm also
2908 fairly certain that ppc_sysv_abi_push_arguments() will give even
2909 worse results since it only works for 32-bit code. So, for the moment,
2910 we're better off calling rs6000_push_arguments() since it works for
2911 64-bit code. At some point in the future, this matter needs to be
2912 revisited. */
2913 if (sysv_abi && wordsize == 4)
2914 set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
2915 else
2916 set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments);
2917
2918 set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return);
2919 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2920 set_gdbarch_pop_frame (gdbarch, rs6000_pop_frame);
2921
2922 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2923 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2924 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2925 set_gdbarch_function_start_offset (gdbarch, 0);
2926 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2927
2928 /* Not sure on this. FIXMEmgo */
2929 set_gdbarch_frame_args_skip (gdbarch, 8);
2930
2931 if (sysv_abi)
2932 set_gdbarch_use_struct_convention (gdbarch,
2933 ppc_sysv_abi_use_struct_convention);
2934 else
2935 set_gdbarch_use_struct_convention (gdbarch,
2936 generic_use_struct_convention);
2937
2938 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
2939
2940 set_gdbarch_frameless_function_invocation (gdbarch,
2941 rs6000_frameless_function_invocation);
2942 set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain);
2943 set_gdbarch_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2944
2945 set_gdbarch_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2946 set_gdbarch_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
2947
2948 if (!sysv_abi)
2949 {
2950 /* Handle RS/6000 function pointers (which are really function
2951 descriptors). */
2952 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2953 rs6000_convert_from_func_ptr_addr);
2954 }
2955 set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
2956 set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
2957 set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2958
2959 /* We can't tell how many args there are
2960 now that the C compiler delays popping them. */
2961 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2962
2963 /* Hook in ABI-specific overrides, if they have been registered. */
2964 gdbarch_init_osabi (info, gdbarch, osabi);
2965
2966 return gdbarch;
2967 }
2968
2969 static void
2970 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2971 {
2972 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2973
2974 if (tdep == NULL)
2975 return;
2976
2977 fprintf_unfiltered (file, "rs6000_dump_tdep: OS ABI = %s\n",
2978 gdbarch_osabi_name (tdep->osabi));
2979 }
2980
2981 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2982
2983 static void
2984 rs6000_info_powerpc_command (char *args, int from_tty)
2985 {
2986 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2987 }
2988
2989 /* Initialization code. */
2990
2991 void
2992 _initialize_rs6000_tdep (void)
2993 {
2994 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
2995 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
2996
2997 /* Add root prefix command for "info powerpc" commands */
2998 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2999 "Various POWERPC info specific commands.",
3000 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
3001 }
This page took 0.125054 seconds and 4 git commands to generate.