* inftarg.c (child_create_inferior, child_attach,
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "symtab.h"
24 #include "target.h"
25
26 #include <sys/param.h>
27 #include <sys/dir.h>
28 #include <sys/user.h>
29 #include <signal.h>
30 #include <sys/ioctl.h>
31 #include <fcntl.h>
32
33 #include <sys/ptrace.h>
34 #include <sys/reg.h>
35
36 #include <a.out.h>
37 #include <sys/file.h>
38 #include <sys/stat.h>
39 #include <sys/core.h>
40 #include <sys/ldr.h>
41
42
43 extern struct obstack frame_cache_obstack;
44
45 extern int errno;
46
47 /* Nonzero if we just simulated a single step break. */
48 int one_stepped;
49
50 /* Breakpoint shadows for the single step instructions will be kept here. */
51
52 static struct sstep_breaks {
53 int address;
54 int data;
55 } stepBreaks[2];
56
57 /* Static function prototypes */
58
59 static void
60 add_text_to_loadinfo PARAMS ((CORE_ADDR textaddr, CORE_ADDR dataaddr));
61
62 static CORE_ADDR
63 find_toc_address PARAMS ((CORE_ADDR pc));
64
65 static CORE_ADDR
66 branch_dest PARAMS ((int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety));
67
68 static void
69 frame_get_cache_fsr PARAMS ((struct frame_info *fi,
70 struct aix_framedata *fdatap));
71
72 /*
73 * Calculate the destination of a branch/jump. Return -1 if not a branch.
74 */
75 static CORE_ADDR
76 branch_dest (opcode, instr, pc, safety)
77 int opcode;
78 int instr;
79 CORE_ADDR pc;
80 CORE_ADDR safety;
81 {
82 register long offset;
83 CORE_ADDR dest;
84 int immediate;
85 int absolute;
86 int ext_op;
87
88 absolute = (int) ((instr >> 1) & 1);
89
90 switch (opcode) {
91 case 18 :
92 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
93
94 case 16 :
95 if (opcode != 18) /* br conditional */
96 immediate = ((instr & ~3) << 16) >> 16;
97 if (absolute)
98 dest = immediate;
99 else
100 dest = pc + immediate;
101 break;
102
103 case 19 :
104 ext_op = (instr>>1) & 0x3ff;
105
106 if (ext_op == 16) /* br conditional register */
107 dest = read_register (LR_REGNUM) & ~3;
108
109 else if (ext_op == 528) /* br cond to count reg */
110 dest = read_register (CTR_REGNUM) & ~3;
111
112 else return -1;
113 break;
114
115 default: return -1;
116 }
117 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
118 }
119
120
121
122 /* AIX does not support PT_STEP. Simulate it. */
123
124 void
125 single_step (signal)
126 int signal;
127 {
128 #define INSNLEN(OPCODE) 4
129
130 static char breakp[] = BREAKPOINT;
131 int ii, insn, ret, loc;
132 int breaks[2], opcode;
133
134 if (!one_stepped) {
135 loc = read_pc ();
136
137 ret = read_memory (loc, &insn, sizeof (int));
138 if (ret)
139 printf ("Error in single_step()!!\n");
140
141 breaks[0] = loc + INSNLEN(insn);
142 opcode = insn >> 26;
143 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
144
145 /* Don't put two breakpoints on the same address. */
146 if (breaks[1] == breaks[0])
147 breaks[1] = -1;
148
149 stepBreaks[1].address = -1;
150
151 for (ii=0; ii < 2; ++ii) {
152
153 /* ignore invalid breakpoint. */
154 if ( breaks[ii] == -1)
155 continue;
156
157 read_memory (breaks[ii], &(stepBreaks[ii].data), sizeof(int));
158
159 ret = write_memory (breaks[ii], breakp, sizeof(int));
160 stepBreaks[ii].address = breaks[ii];
161 }
162
163 one_stepped = 1;
164 } else {
165
166 /* remove step breakpoints. */
167 for (ii=0; ii < 2; ++ii)
168 if (stepBreaks[ii].address != -1)
169 write_memory
170 (stepBreaks[ii].address, &(stepBreaks[ii].data), sizeof(int));
171
172 one_stepped = 0;
173 }
174 errno = 0; /* FIXME, don't ignore errors! */
175 }
176
177
178 /* return pc value after skipping a function prologue. */
179
180 skip_prologue (pc)
181 CORE_ADDR pc;
182 {
183 unsigned int tmp;
184 unsigned int op; /* FIXME, assumes instruction size matches host int!!! */
185
186 if (target_read_memory (pc, (char *)&op, sizeof (op)))
187 return pc; /* Can't access it -- assume no prologue. */
188 SWAP_TARGET_AND_HOST (&op, sizeof (op));
189
190 /* Assume that subsequent fetches can fail with low probability. */
191
192 if (op == 0x7c0802a6) { /* mflr r0 */
193 pc += 4;
194 op = read_memory_integer (pc, 4);
195 }
196
197 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
198 pc += 4;
199 op = read_memory_integer (pc, 4);
200 }
201
202 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
203 pc += 4;
204 op = read_memory_integer (pc, 4);
205
206 /* At this point, make sure this is not a trampoline function
207 (a function that simply calls another functions, and nothing else).
208 If the next is not a nop, this branch was part of the function
209 prologue. */
210
211 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
212 op == 0x0)
213 return pc - 4; /* don't skip over this branch */
214 }
215
216 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
217 pc += 4;
218 op = read_memory_integer (pc, 4);
219 }
220
221 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
222 (tmp == 0x9421) || /* stu r1, NUM(r1) */
223 (op == 0x93e1fffc)) /* st r31,-4(r1) */
224 {
225 pc += 4;
226 op = read_memory_integer (pc, 4);
227 }
228
229 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
230 pc += 4; /* l r30, ... */
231 op = read_memory_integer (pc, 4);
232 }
233
234 /* store parameters into stack */
235 while(
236 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
237 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
238 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
239 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
240 {
241 pc += 4; /* store fpr double */
242 op = read_memory_integer (pc, 4);
243 }
244
245 if (op == 0x603f0000) { /* oril r31, r1, 0x0 */
246 pc += 4; /* this happens if r31 is used as */
247 op = read_memory_integer (pc, 4); /* frame ptr. (gcc does that) */
248
249 tmp = 0;
250 while ((op >> 16) == (0x907f + tmp)) { /* st r3, NUM(r31) */
251 pc += 4; /* st r4, NUM(r31), ... */
252 op = read_memory_integer (pc, 4);
253 tmp += 0x20;
254 }
255 }
256 #if 0
257 /* I have problems with skipping over __main() that I need to address
258 * sometime. Previously, I used to use misc_function_vector which
259 * didn't work as well as I wanted to be. -MGO */
260
261 /* If the first thing after skipping a prolog is a branch to a function,
262 this might be a call to an initializer in main(), introduced by gcc2.
263 We'd like to skip over it as well. Fortunately, xlc does some extra
264 work before calling a function right after a prologue, thus we can
265 single out such gcc2 behaviour. */
266
267
268 if ((op & 0xfc000001) == 0x48000001) { /* bl foo, an initializer function? */
269 op = read_memory_integer (pc+4, 4);
270
271 if (op == 0x4def7b82) { /* cror 0xf, 0xf, 0xf (nop) */
272
273 /* check and see if we are in main. If so, skip over this initializer
274 function as well. */
275
276 tmp = find_pc_misc_function (pc);
277 if (tmp >= 0 && !strcmp (misc_function_vector [tmp].name, "main"))
278 return pc + 8;
279 }
280 }
281 #endif /* 0 */
282
283 return pc;
284 }
285
286
287 /*************************************************************************
288 Support for creating pushind a dummy frame into the stack, and popping
289 frames, etc.
290 *************************************************************************/
291
292 /* The total size of dummy frame is 436, which is;
293
294 32 gpr's - 128 bytes
295 32 fpr's - 256 "
296 7 the rest - 28 "
297 and 24 extra bytes for the callee's link area. The last 24 bytes
298 for the link area might not be necessary, since it will be taken
299 care of by push_arguments(). */
300
301 #define DUMMY_FRAME_SIZE 436
302
303 #define DUMMY_FRAME_ADDR_SIZE 10
304
305 /* Make sure you initialize these in somewhere, in case gdb gives up what it
306 was debugging and starts debugging something else. FIXMEibm */
307
308 static int dummy_frame_count = 0;
309 static int dummy_frame_size = 0;
310 static CORE_ADDR *dummy_frame_addr = 0;
311
312 extern int stop_stack_dummy;
313
314 /* push a dummy frame into stack, save all register. Currently we are saving
315 only gpr's and fpr's, which is not good enough! FIXMEmgo */
316
317 void
318 push_dummy_frame ()
319 {
320 int sp, pc; /* stack pointer and link register */
321 int ii;
322
323 target_fetch_registers (-1);
324
325 if (dummy_frame_count >= dummy_frame_size) {
326 dummy_frame_size += DUMMY_FRAME_ADDR_SIZE;
327 if (dummy_frame_addr)
328 dummy_frame_addr = (CORE_ADDR*) xrealloc
329 (dummy_frame_addr, sizeof(CORE_ADDR) * (dummy_frame_size));
330 else
331 dummy_frame_addr = (CORE_ADDR*)
332 xmalloc (sizeof(CORE_ADDR) * (dummy_frame_size));
333 }
334
335 sp = read_register(SP_REGNUM);
336 pc = read_register(PC_REGNUM);
337
338 dummy_frame_addr [dummy_frame_count++] = sp;
339
340 /* Be careful! If the stack pointer is not decremented first, then kernel
341 thinks he is free to use the space underneath it. And kernel actually
342 uses that area for IPC purposes when executing ptrace(2) calls. So
343 before writing register values into the new frame, decrement and update
344 %sp first in order to secure your frame. */
345
346 write_register (SP_REGNUM, sp-DUMMY_FRAME_SIZE);
347
348 /* gdb relies on the state of current_frame. We'd better update it,
349 otherwise things like do_registers_info() wouldn't work properly! */
350
351 flush_cached_frames ();
352 set_current_frame (create_new_frame (sp-DUMMY_FRAME_SIZE, pc));
353
354 /* save program counter in link register's space. */
355 write_memory (sp+8, &pc, 4);
356
357 /* save all floating point and general purpose registers here. */
358
359 /* fpr's, f0..f31 */
360 for (ii = 0; ii < 32; ++ii)
361 write_memory (sp-8-(ii*8), &registers[REGISTER_BYTE (31-ii+FP0_REGNUM)], 8);
362
363 /* gpr's r0..r31 */
364 for (ii=1; ii <=32; ++ii)
365 write_memory (sp-256-(ii*4), &registers[REGISTER_BYTE (32-ii)], 4);
366
367 /* so far, 32*2 + 32 words = 384 bytes have been written.
368 7 extra registers in our register set: pc, ps, cnd, lr, cnt, xer, mq */
369
370 for (ii=1; ii <= (LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii) {
371 write_memory (sp-384-(ii*4),
372 &registers[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
373 }
374
375 /* Save sp or so called back chain right here. */
376 write_memory (sp-DUMMY_FRAME_SIZE, &sp, 4);
377 sp -= DUMMY_FRAME_SIZE;
378
379 /* And finally, this is the back chain. */
380 write_memory (sp+8, &pc, 4);
381 }
382
383
384 /* Pop a dummy frame.
385
386 In rs6000 when we push a dummy frame, we save all of the registers. This
387 is usually done before user calls a function explicitly.
388
389 After a dummy frame is pushed, some instructions are copied into stack,
390 and stack pointer is decremented even more. Since we don't have a frame
391 pointer to get back to the parent frame of the dummy, we start having
392 trouble poping it. Therefore, we keep a dummy frame stack, keeping
393 addresses of dummy frames as such. When poping happens and when we
394 detect that was a dummy frame, we pop it back to its parent by using
395 dummy frame stack (`dummy_frame_addr' array).
396
397 FIXME: This whole concept is broken. You should be able to detect
398 a dummy stack frame *on the user's stack itself*. When you do,
399 then you know the format of that stack frame -- including its
400 saved SP register! There should *not* be a separate stack in the
401 GDB process that keeps track of these dummy frames! -- gnu@cygnus.com Aug92
402 */
403
404 pop_dummy_frame ()
405 {
406 CORE_ADDR sp, pc;
407 int ii;
408 sp = dummy_frame_addr [--dummy_frame_count];
409
410 /* restore all fpr's. */
411 for (ii = 1; ii <= 32; ++ii)
412 read_memory (sp-(ii*8), &registers[REGISTER_BYTE (32-ii+FP0_REGNUM)], 8);
413
414 /* restore all gpr's */
415 for (ii=1; ii <= 32; ++ii) {
416 read_memory (sp-256-(ii*4), &registers[REGISTER_BYTE (32-ii)], 4);
417 }
418
419 /* restore the rest of the registers. */
420 for (ii=1; ii <=(LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii)
421 read_memory (sp-384-(ii*4),
422 &registers[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
423
424 read_memory (sp-(DUMMY_FRAME_SIZE-8),
425 &registers [REGISTER_BYTE(PC_REGNUM)], 4);
426
427 /* when a dummy frame was being pushed, we had to decrement %sp first, in
428 order to secure astack space. Thus, saved %sp (or %r1) value, is not the
429 one we should restore. Change it with the one we need. */
430
431 *(int*)&registers [REGISTER_BYTE(FP_REGNUM)] = sp;
432
433 /* Now we can restore all registers. */
434
435 target_store_registers (-1);
436 pc = read_pc ();
437 flush_cached_frames ();
438 set_current_frame (create_new_frame (sp, pc));
439 }
440
441
442 /* pop the innermost frame, go back to the caller. */
443
444 void
445 pop_frame ()
446 {
447 int pc, lr, sp, prev_sp; /* %pc, %lr, %sp */
448 struct aix_framedata fdata;
449 FRAME fr = get_current_frame ();
450 int addr, ii;
451
452 pc = read_pc ();
453 sp = FRAME_FP (fr);
454
455 if (stop_stack_dummy && dummy_frame_count) {
456 pop_dummy_frame ();
457 return;
458 }
459
460 /* figure out previous %pc value. If the function is frameless, it is
461 still in the link register, otherwise walk the frames and retrieve the
462 saved %pc value in the previous frame. */
463
464 addr = get_pc_function_start (fr->pc) + FUNCTION_START_OFFSET;
465 function_frame_info (addr, &fdata);
466
467 read_memory (sp, &prev_sp, 4);
468 if (fdata.frameless)
469 lr = read_register (LR_REGNUM);
470 else
471 read_memory (prev_sp+8, &lr, 4);
472
473 /* reset %pc value. */
474 write_register (PC_REGNUM, lr);
475
476 /* reset register values if any was saved earlier. */
477 addr = prev_sp - fdata.offset;
478
479 if (fdata.saved_gpr != -1)
480 for (ii=fdata.saved_gpr; ii <= 31; ++ii) {
481 read_memory (addr, &registers [REGISTER_BYTE (ii)], 4);
482 addr += sizeof (int);
483 }
484
485 if (fdata.saved_fpr != -1)
486 for (ii=fdata.saved_fpr; ii <= 31; ++ii) {
487 read_memory (addr, &registers [REGISTER_BYTE (ii+FP0_REGNUM)], 8);
488 addr += 8;
489 }
490
491 write_register (SP_REGNUM, prev_sp);
492 target_store_registers (-1);
493 flush_cached_frames ();
494 set_current_frame (create_new_frame (prev_sp, lr));
495 }
496
497
498 /* fixup the call sequence of a dummy function, with the real function address.
499 its argumets will be passed by gdb. */
500
501 void
502 fix_call_dummy(dummyname, pc, fun, nargs, type)
503 char *dummyname;
504 CORE_ADDR pc;
505 CORE_ADDR fun;
506 int nargs; /* not used */
507 int type; /* not used */
508 {
509 #define TOC_ADDR_OFFSET 20
510 #define TARGET_ADDR_OFFSET 28
511
512 int ii;
513 CORE_ADDR target_addr;
514 CORE_ADDR tocvalue;
515
516 target_addr = fun;
517 tocvalue = find_toc_address (target_addr);
518
519 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET);
520 ii = (ii & 0xffff0000) | (tocvalue >> 16);
521 *(int*)((char*)dummyname + TOC_ADDR_OFFSET) = ii;
522
523 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4);
524 ii = (ii & 0xffff0000) | (tocvalue & 0x0000ffff);
525 *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4) = ii;
526
527 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET);
528 ii = (ii & 0xffff0000) | (target_addr >> 16);
529 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET) = ii;
530
531 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4);
532 ii = (ii & 0xffff0000) | (target_addr & 0x0000ffff);
533 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4) = ii;
534 }
535
536
537 /* return information about a function frame.
538 in struct aix_frameinfo fdata:
539 - frameless is TRUE, if function does not save %pc value in its frame.
540 - offset is the number of bytes used in the frame to save registers.
541 - saved_gpr is the number of the first saved gpr.
542 - saved_fpr is the number of the first saved fpr.
543 - alloca_reg is the number of the register used for alloca() handling.
544 Otherwise -1.
545 */
546 void
547 function_frame_info (pc, fdata)
548 CORE_ADDR pc;
549 struct aix_framedata *fdata;
550 {
551 unsigned int tmp;
552 register unsigned int op;
553
554 fdata->offset = 0;
555 fdata->saved_gpr = fdata->saved_fpr = fdata->alloca_reg = -1;
556
557 op = read_memory_integer (pc, 4);
558 if (op == 0x7c0802a6) { /* mflr r0 */
559 pc += 4;
560 op = read_memory_integer (pc, 4);
561 fdata->frameless = 0;
562 }
563 else /* else, this is a frameless invocation */
564 fdata->frameless = 1;
565
566
567 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
568 pc += 4;
569 op = read_memory_integer (pc, 4);
570 }
571
572 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
573 pc += 4;
574 op = read_memory_integer (pc, 4);
575 /* At this point, make sure this is not a trampoline function
576 (a function that simply calls another functions, and nothing else).
577 If the next is not a nop, this branch was part of the function
578 prologue. */
579
580 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
581 op == 0x0)
582 return; /* prologue is over */
583 }
584
585 if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
586 pc += 4; /* store floating register double */
587 op = read_memory_integer (pc, 4);
588 }
589
590 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
591 int tmp2;
592 fdata->saved_gpr = (op >> 21) & 0x1f;
593 tmp2 = op & 0xffff;
594 if (tmp2 > 0x7fff)
595 tmp2 = 0xffff0000 | tmp2;
596
597 if (tmp2 < 0) {
598 tmp2 = tmp2 * -1;
599 fdata->saved_fpr = (tmp2 - ((32 - fdata->saved_gpr) * 4)) / 8;
600 if ( fdata->saved_fpr > 0)
601 fdata->saved_fpr = 32 - fdata->saved_fpr;
602 else
603 fdata->saved_fpr = -1;
604 }
605 fdata->offset = tmp2;
606 pc += 4;
607 op = read_memory_integer (pc, 4);
608 }
609
610 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
611 (tmp == 0x9421) || /* stu r1, NUM(r1) */
612 (op == 0x93e1fffc)) /* st r31,-4(r1) */
613 {
614 /* gcc takes a short cut and uses this instruction to save r31 only. */
615
616 if (op == 0x93e1fffc) {
617 if (fdata->offset)
618 /* fatal ("Unrecognized prolog."); */
619 printf ("Unrecognized prolog!\n");
620
621 fdata->saved_gpr = 31;
622 fdata->offset = 4;
623 }
624 pc += 4;
625 op = read_memory_integer (pc, 4);
626 }
627
628 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
629 pc += 4; /* l r30, ... */
630 op = read_memory_integer (pc, 4);
631 }
632
633 /* store parameters into stack */
634 while(
635 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
636 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
637 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
638 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
639 {
640 pc += 4; /* store fpr double */
641 op = read_memory_integer (pc, 4);
642 }
643
644 if (op == 0x603f0000) /* oril r31, r1, 0x0 */
645 fdata->alloca_reg = 31;
646 }
647
648
649 /* Pass the arguments in either registers, or in the stack. In RS6000, the first
650 eight words of the argument list (that might be less than eight parameters if
651 some parameters occupy more than one word) are passed in r3..r11 registers.
652 float and double parameters are passed in fpr's, in addition to that. Rest of
653 the parameters if any are passed in user stack. There might be cases in which
654 half of the parameter is copied into registers, the other half is pushed into
655 stack.
656
657 If the function is returning a structure, then the return address is passed
658 in r3, then the first 7 words of the parametes can be passed in registers,
659 starting from r4. */
660
661 CORE_ADDR
662 push_arguments (nargs, args, sp, struct_return, struct_addr)
663 int nargs;
664 value *args;
665 CORE_ADDR sp;
666 int struct_return;
667 CORE_ADDR struct_addr;
668 {
669 int ii, len;
670 int argno; /* current argument number */
671 int argbytes; /* current argument byte */
672 char tmp_buffer [50];
673 value arg;
674 int f_argno = 0; /* current floating point argno */
675
676 CORE_ADDR saved_sp, pc;
677
678 if ( dummy_frame_count <= 0)
679 printf ("FATAL ERROR -push_arguments()! frame not found!!\n");
680
681 /* The first eight words of ther arguments are passed in registers. Copy
682 them appropriately.
683
684 If the function is returning a `struct', then the first word (which
685 will be passed in r3) is used for struct return address. In that
686 case we should advance one word and start from r4 register to copy
687 parameters. */
688
689 ii = struct_return ? 1 : 0;
690
691 for (argno=0, argbytes=0; argno < nargs && ii<8; ++ii) {
692
693 arg = value_arg_coerce (args[argno]);
694 len = TYPE_LENGTH (VALUE_TYPE (arg));
695
696 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT) {
697
698 /* floating point arguments are passed in fpr's, as well as gpr's.
699 There are 13 fpr's reserved for passing parameters. At this point
700 there is no way we would run out of them. */
701
702 if (len > 8)
703 printf (
704 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
705
706 bcopy (VALUE_CONTENTS (arg),
707 &registers[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], len);
708 ++f_argno;
709 }
710
711 if (len > 4) {
712
713 /* Argument takes more than one register. */
714 while (argbytes < len) {
715
716 *(int*)&registers[REGISTER_BYTE(ii+3)] = 0;
717 bcopy ( ((char*)VALUE_CONTENTS (arg))+argbytes,
718 &registers[REGISTER_BYTE(ii+3)],
719 (len - argbytes) > 4 ? 4 : len - argbytes);
720 ++ii, argbytes += 4;
721
722 if (ii >= 8)
723 goto ran_out_of_registers_for_arguments;
724 }
725 argbytes = 0;
726 --ii;
727 }
728 else { /* Argument can fit in one register. No problem. */
729 *(int*)&registers[REGISTER_BYTE(ii+3)] = 0;
730 bcopy (VALUE_CONTENTS (arg), &registers[REGISTER_BYTE(ii+3)], len);
731 }
732 ++argno;
733 }
734
735 ran_out_of_registers_for_arguments:
736
737 /* location for 8 parameters are always reserved. */
738 sp -= 4 * 8;
739
740 /* another six words for back chain, TOC register, link register, etc. */
741 sp -= 24;
742
743 /* if there are more arguments, allocate space for them in
744 the stack, then push them starting from the ninth one. */
745
746 if ((argno < nargs) || argbytes) {
747 int space = 0, jj;
748 value val;
749
750 if (argbytes) {
751 space += ((len - argbytes + 3) & -4);
752 jj = argno + 1;
753 }
754 else
755 jj = argno;
756
757 for (; jj < nargs; ++jj) {
758 val = value_arg_coerce (args[jj]);
759 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
760 }
761
762 /* add location required for the rest of the parameters */
763 space = (space + 7) & -8;
764 sp -= space;
765
766 /* This is another instance we need to be concerned about securing our
767 stack space. If we write anything underneath %sp (r1), we might conflict
768 with the kernel who thinks he is free to use this area. So, update %sp
769 first before doing anything else. */
770
771 write_register (SP_REGNUM, sp);
772
773 /* if the last argument copied into the registers didn't fit there
774 completely, push the rest of it into stack. */
775
776 if (argbytes) {
777 write_memory (
778 sp+24+(ii*4), ((char*)VALUE_CONTENTS (arg))+argbytes, len - argbytes);
779 ++argno;
780 ii += ((len - argbytes + 3) & -4) / 4;
781 }
782
783 /* push the rest of the arguments into stack. */
784 for (; argno < nargs; ++argno) {
785
786 arg = value_arg_coerce (args[argno]);
787 len = TYPE_LENGTH (VALUE_TYPE (arg));
788
789
790 /* float types should be passed in fpr's, as well as in the stack. */
791 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT && f_argno < 13) {
792
793 if (len > 8)
794 printf (
795 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
796
797 bcopy (VALUE_CONTENTS (arg),
798 &registers[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], len);
799 ++f_argno;
800 }
801
802 write_memory (sp+24+(ii*4), VALUE_CONTENTS (arg), len);
803 ii += ((len + 3) & -4) / 4;
804 }
805 }
806 else
807 /* Secure stack areas first, before doing anything else. */
808 write_register (SP_REGNUM, sp);
809
810 saved_sp = dummy_frame_addr [dummy_frame_count - 1];
811 read_memory (saved_sp, tmp_buffer, 24);
812 write_memory (sp, tmp_buffer, 24);
813
814 write_memory (sp, &saved_sp, 4); /* set back chain properly */
815
816 target_store_registers (-1);
817 return sp;
818 }
819
820 /* a given return value in `regbuf' with a type `valtype', extract and copy its
821 value into `valbuf' */
822
823 void
824 extract_return_value (valtype, regbuf, valbuf)
825 struct type *valtype;
826 char regbuf[REGISTER_BYTES];
827 char *valbuf;
828 {
829
830 if (TYPE_CODE (valtype) == TYPE_CODE_FLT) {
831
832 double dd; float ff;
833 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
834 We need to truncate the return value into float size (4 byte) if
835 necessary. */
836
837 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
838 bcopy (&regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], valbuf,
839 TYPE_LENGTH (valtype));
840 else { /* float */
841 bcopy (&regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], &dd, 8);
842 ff = (float)dd;
843 bcopy (&ff, valbuf, sizeof(float));
844 }
845 }
846 else
847 /* return value is copied starting from r3. */
848 bcopy (&regbuf[REGISTER_BYTE (3)], valbuf, TYPE_LENGTH (valtype));
849 }
850
851
852 /* keep structure return address in this variable.
853 FIXME: This is a horrid kludge which should not be allowed to continue
854 living. This only allows a single nested call to a structure-returning
855 function. Come on, guys! -- gnu@cygnus.com, Aug 92 */
856
857 CORE_ADDR rs6000_struct_return_address;
858
859
860 /* Throw away this debugging code. FIXMEmgo. */
861 void
862 print_frame(fram)
863 int fram;
864 {
865 int ii, val;
866 for (ii=0; ii<40; ++ii) {
867 if ((ii % 4) == 0)
868 printf ("\n");
869 val = read_memory_integer (fram + ii * 4, 4);
870 printf ("0x%08x\t", val);
871 }
872 printf ("\n");
873 }
874
875
876
877 /* Indirect function calls use a piece of trampoline code to do context
878 switching, i.e. to set the new TOC table. Skip such code if we are on
879 its first instruction (as when we have single-stepped to here).
880 Result is desired PC to step until, or NULL if we are not in
881 trampoline code. */
882
883 CORE_ADDR
884 skip_trampoline_code (pc)
885 CORE_ADDR pc;
886 {
887 register unsigned int ii, op;
888
889 static unsigned trampoline_code[] = {
890 0x800b0000, /* l r0,0x0(r11) */
891 0x90410014, /* st r2,0x14(r1) */
892 0x7c0903a6, /* mtctr r0 */
893 0x804b0004, /* l r2,0x4(r11) */
894 0x816b0008, /* l r11,0x8(r11) */
895 0x4e800420, /* bctr */
896 0x4e800020, /* br */
897 0
898 };
899
900 for (ii=0; trampoline_code[ii]; ++ii) {
901 op = read_memory_integer (pc + (ii*4), 4);
902 if (op != trampoline_code [ii])
903 return NULL;
904 }
905 ii = read_register (11); /* r11 holds destination addr */
906 pc = read_memory_integer (ii, 4); /* (r11) value */
907 return pc;
908 }
909
910
911 /* Determines whether the function FI has a frame on the stack or not.
912 Called from the FRAMELESS_FUNCTION_INVOCATION macro in tm.h. */
913
914 int
915 frameless_function_invocation (fi)
916 struct frame_info *fi;
917 {
918 CORE_ADDR func_start;
919 struct aix_framedata fdata;
920
921 func_start = get_pc_function_start (fi->pc) + FUNCTION_START_OFFSET;
922
923 /* If we failed to find the start of the function, it is a mistake
924 to inspect the instructions. */
925
926 if (!func_start)
927 return 0;
928
929 function_frame_info (func_start, &fdata);
930 return fdata.frameless;
931 }
932
933
934 /* If saved registers of frame FI are not known yet, read and cache them.
935 &FDATAP contains aix_framedata; TDATAP can be NULL,
936 in which case the framedata are read. */
937
938 static void
939 frame_get_cache_fsr (fi, fdatap)
940 struct frame_info *fi;
941 struct aix_framedata *fdatap;
942 {
943 int ii;
944 CORE_ADDR frame_addr;
945 struct aix_framedata work_fdata;
946
947 if (fi->cache_fsr)
948 return;
949
950 if (fdatap == NULL) {
951 fdatap = &work_fdata;
952 function_frame_info (get_pc_function_start (fi->pc), fdatap);
953 }
954
955 fi->cache_fsr = (struct frame_saved_regs *)
956 obstack_alloc (&frame_cache_obstack, sizeof (struct frame_saved_regs));
957 bzero (fi->cache_fsr, sizeof (struct frame_saved_regs));
958
959 if (fi->prev && fi->prev->frame)
960 frame_addr = fi->prev->frame;
961 else
962 frame_addr = read_memory_integer (fi->frame, 4);
963
964 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
965 All fpr's from saved_fpr to fp31 are saved right underneath caller
966 stack pointer, starting from fp31 first. */
967
968 if (fdatap->saved_fpr >= 0) {
969 for (ii=31; ii >= fdatap->saved_fpr; --ii)
970 fi->cache_fsr->regs [FP0_REGNUM + ii] = frame_addr - ((32 - ii) * 8);
971 frame_addr -= (32 - fdatap->saved_fpr) * 8;
972 }
973
974 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
975 All gpr's from saved_gpr to gpr31 are saved right under saved fprs,
976 starting from r31 first. */
977
978 if (fdatap->saved_gpr >= 0)
979 for (ii=31; ii >= fdatap->saved_gpr; --ii)
980 fi->cache_fsr->regs [ii] = frame_addr - ((32 - ii) * 4);
981 }
982
983 /* Return the address of a frame. This is the inital %sp value when the frame
984 was first allocated. For functions calling alloca(), it might be saved in
985 an alloca register. */
986
987 CORE_ADDR
988 frame_initial_stack_address (fi)
989 struct frame_info *fi;
990 {
991 CORE_ADDR tmpaddr;
992 struct aix_framedata fdata;
993 struct frame_info *callee_fi;
994
995 /* if the initial stack pointer (frame address) of this frame is known,
996 just return it. */
997
998 if (fi->initial_sp)
999 return fi->initial_sp;
1000
1001 /* find out if this function is using an alloca register.. */
1002
1003 function_frame_info (get_pc_function_start (fi->pc), &fdata);
1004
1005 /* if saved registers of this frame are not known yet, read and cache them. */
1006
1007 if (!fi->cache_fsr)
1008 frame_get_cache_fsr (fi, &fdata);
1009
1010 /* If no alloca register used, then fi->frame is the value of the %sp for
1011 this frame, and it is good enough. */
1012
1013 if (fdata.alloca_reg < 0) {
1014 fi->initial_sp = fi->frame;
1015 return fi->initial_sp;
1016 }
1017
1018 /* This function has an alloca register. If this is the top-most frame
1019 (with the lowest address), the value in alloca register is good. */
1020
1021 if (!fi->next)
1022 return fi->initial_sp = read_register (fdata.alloca_reg);
1023
1024 /* Otherwise, this is a caller frame. Callee has usually already saved
1025 registers, but there are exceptions (such as when the callee
1026 has no parameters). Find the address in which caller's alloca
1027 register is saved. */
1028
1029 for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next) {
1030
1031 if (!callee_fi->cache_fsr)
1032 frame_get_cache_fsr (fi, NULL);
1033
1034 /* this is the address in which alloca register is saved. */
1035
1036 tmpaddr = callee_fi->cache_fsr->regs [fdata.alloca_reg];
1037 if (tmpaddr) {
1038 fi->initial_sp = read_memory_integer (tmpaddr, 4);
1039 return fi->initial_sp;
1040 }
1041
1042 /* Go look into deeper levels of the frame chain to see if any one of
1043 the callees has saved alloca register. */
1044 }
1045
1046 /* If alloca register was not saved, by the callee (or any of its callees)
1047 then the value in the register is still good. */
1048
1049 return fi->initial_sp = read_register (fdata.alloca_reg);
1050 }
1051
1052 /* xcoff_relocate_symtab - hook for symbol table relocation.
1053 also reads shared libraries.. */
1054
1055 xcoff_relocate_symtab (pid)
1056 unsigned int pid;
1057 {
1058 #define MAX_LOAD_SEGS 64 /* maximum number of load segments */
1059
1060 struct ld_info *ldi;
1061 int temp;
1062
1063 ldi = (void *) alloca(MAX_LOAD_SEGS * sizeof (*ldi));
1064
1065 /* According to my humble theory, AIX has some timing problems and
1066 when the user stack grows, kernel doesn't update stack info in time
1067 and ptrace calls step on user stack. That is why we sleep here a little,
1068 and give kernel to update its internals. */
1069
1070 usleep (36000);
1071
1072 errno = 0;
1073 ptrace(PT_LDINFO, pid, (PTRACE_ARG3_TYPE) ldi,
1074 MAX_LOAD_SEGS * sizeof(*ldi), ldi);
1075 if (errno) {
1076 perror_with_name ("ptrace ldinfo");
1077 return 0;
1078 }
1079
1080 vmap_ldinfo(ldi);
1081
1082 do {
1083 add_text_to_loadinfo (ldi->ldinfo_textorg, ldi->ldinfo_dataorg);
1084 } while (ldi->ldinfo_next
1085 && (ldi = (void *) (ldi->ldinfo_next + (char *) ldi)));
1086
1087 #if 0
1088 /* Now that we've jumbled things around, re-sort them. */
1089 sort_minimal_symbols ();
1090 #endif
1091
1092 /* relocate the exec and core sections as well. */
1093 vmap_exec ();
1094 }
1095 \f
1096 /* Keep an array of load segment information and their TOC table addresses.
1097 This info will be useful when calling a shared library function by hand. */
1098
1099 struct loadinfo {
1100 CORE_ADDR textorg, dataorg;
1101 unsigned long toc_offset;
1102 };
1103
1104 #define LOADINFOLEN 10
1105
1106 /* FIXME Warning -- loadinfotextindex is used for a nefarious purpose by
1107 tm-rs6000.h. */
1108
1109 static struct loadinfo *loadinfo = NULL;
1110 static int loadinfolen = 0;
1111 static int loadinfotocindex = 0;
1112 int loadinfotextindex = 0;
1113
1114
1115 void
1116 xcoff_init_loadinfo ()
1117 {
1118 loadinfotocindex = 0;
1119 loadinfotextindex = 0;
1120
1121 if (loadinfolen == 0) {
1122 loadinfo = (struct loadinfo *)
1123 xmalloc (sizeof (struct loadinfo) * LOADINFOLEN);
1124 loadinfolen = LOADINFOLEN;
1125 }
1126 }
1127
1128
1129 /* FIXME -- this is never called! */
1130 void
1131 free_loadinfo ()
1132 {
1133 if (loadinfo)
1134 free (loadinfo);
1135 loadinfo = NULL;
1136 loadinfolen = 0;
1137 loadinfotocindex = 0;
1138 loadinfotextindex = 0;
1139 }
1140
1141 /* this is called from xcoffread.c */
1142
1143 void
1144 xcoff_add_toc_to_loadinfo (unsigned long tocoff)
1145 {
1146 while (loadinfotocindex >= loadinfolen) {
1147 loadinfolen += LOADINFOLEN;
1148 loadinfo = (struct loadinfo *)
1149 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1150 }
1151 loadinfo [loadinfotocindex++].toc_offset = tocoff;
1152 }
1153
1154
1155 static void
1156 add_text_to_loadinfo (textaddr, dataaddr)
1157 CORE_ADDR textaddr;
1158 CORE_ADDR dataaddr;
1159 {
1160 while (loadinfotextindex >= loadinfolen) {
1161 loadinfolen += LOADINFOLEN;
1162 loadinfo = (struct loadinfo *)
1163 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1164 }
1165 loadinfo [loadinfotextindex].textorg = textaddr;
1166 loadinfo [loadinfotextindex].dataorg = dataaddr;
1167 ++loadinfotextindex;
1168 }
1169
1170
1171 /* FIXME: This assumes that the "textorg" and "dataorg" elements
1172 of a member of this array are correlated with the "toc_offset"
1173 element of the same member. But they are sequentially assigned in wildly
1174 different places, and probably there is no correlation. FIXME! */
1175
1176 static CORE_ADDR
1177 find_toc_address (pc)
1178 CORE_ADDR pc;
1179 {
1180 int ii, toc_entry, tocbase = 0;
1181
1182 for (ii=0; ii < loadinfotextindex; ++ii)
1183 if (pc > loadinfo[ii].textorg && loadinfo[ii].textorg > tocbase) {
1184 toc_entry = ii;
1185 tocbase = loadinfo[ii].textorg;
1186 }
1187
1188 return loadinfo[toc_entry].dataorg + loadinfo[toc_entry].toc_offset;
1189 }
This page took 0.103467 seconds and 4 git commands to generate.