* ppc-linux-nat.c (right_fill_reg): Delete.
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "inferior.h"
25 #include "symtab.h"
26 #include "target.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "objfiles.h"
30 #include "arch-utils.h"
31 #include "regcache.h"
32 #include "regset.h"
33 #include "doublest.h"
34 #include "value.h"
35 #include "parser-defs.h"
36 #include "osabi.h"
37 #include "infcall.h"
38 #include "sim-regno.h"
39 #include "gdb/sim-ppc.h"
40 #include "reggroups.h"
41 #include "dwarf2-frame.h"
42
43 #include "libbfd.h" /* for bfd_default_set_arch_mach */
44 #include "coff/internal.h" /* for libcoff.h */
45 #include "libcoff.h" /* for xcoff_data */
46 #include "coff/xcoff.h"
47 #include "libxcoff.h"
48
49 #include "elf-bfd.h"
50
51 #include "solib-svr4.h"
52 #include "ppc-tdep.h"
53
54 #include "gdb_assert.h"
55 #include "dis-asm.h"
56
57 #include "trad-frame.h"
58 #include "frame-unwind.h"
59 #include "frame-base.h"
60
61 #include "rs6000-tdep.h"
62
63 /* If the kernel has to deliver a signal, it pushes a sigcontext
64 structure on the stack and then calls the signal handler, passing
65 the address of the sigcontext in an argument register. Usually
66 the signal handler doesn't save this register, so we have to
67 access the sigcontext structure via an offset from the signal handler
68 frame.
69 The following constants were determined by experimentation on AIX 3.2. */
70 #define SIG_FRAME_PC_OFFSET 96
71 #define SIG_FRAME_LR_OFFSET 108
72 #define SIG_FRAME_FP_OFFSET 284
73
74 /* To be used by skip_prologue. */
75
76 struct rs6000_framedata
77 {
78 int offset; /* total size of frame --- the distance
79 by which we decrement sp to allocate
80 the frame */
81 int saved_gpr; /* smallest # of saved gpr */
82 int saved_fpr; /* smallest # of saved fpr */
83 int saved_vr; /* smallest # of saved vr */
84 int saved_ev; /* smallest # of saved ev */
85 int alloca_reg; /* alloca register number (frame ptr) */
86 char frameless; /* true if frameless functions. */
87 char nosavedpc; /* true if pc not saved. */
88 int gpr_offset; /* offset of saved gprs from prev sp */
89 int fpr_offset; /* offset of saved fprs from prev sp */
90 int vr_offset; /* offset of saved vrs from prev sp */
91 int ev_offset; /* offset of saved evs from prev sp */
92 int lr_offset; /* offset of saved lr */
93 int cr_offset; /* offset of saved cr */
94 int vrsave_offset; /* offset of saved vrsave register */
95 };
96
97 /* Description of a single register. */
98
99 struct reg
100 {
101 char *name; /* name of register */
102 unsigned char sz32; /* size on 32-bit arch, 0 if nonexistent */
103 unsigned char sz64; /* size on 64-bit arch, 0 if nonexistent */
104 unsigned char fpr; /* whether register is floating-point */
105 unsigned char pseudo; /* whether register is pseudo */
106 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
107 This is an ISA SPR number, not a GDB
108 register number. */
109 };
110
111 /* Hook for determining the TOC address when calling functions in the
112 inferior under AIX. The initialization code in rs6000-nat.c sets
113 this hook to point to find_toc_address. */
114
115 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
116
117 /* Static function prototypes */
118
119 static CORE_ADDR branch_dest (struct frame_info *frame, int opcode,
120 int instr, CORE_ADDR pc, CORE_ADDR safety);
121 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
122 struct rs6000_framedata *);
123
124 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
125 int
126 altivec_register_p (int regno)
127 {
128 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
129 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
130 return 0;
131 else
132 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
133 }
134
135
136 /* Return true if REGNO is an SPE register, false otherwise. */
137 int
138 spe_register_p (int regno)
139 {
140 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
141
142 /* Is it a reference to EV0 -- EV31, and do we have those? */
143 if (tdep->ppc_ev0_regnum >= 0
144 && tdep->ppc_ev31_regnum >= 0
145 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
146 return 1;
147
148 /* Is it a reference to one of the raw upper GPR halves? */
149 if (tdep->ppc_ev0_upper_regnum >= 0
150 && tdep->ppc_ev0_upper_regnum <= regno
151 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
152 return 1;
153
154 /* Is it a reference to the 64-bit accumulator, and do we have that? */
155 if (tdep->ppc_acc_regnum >= 0
156 && tdep->ppc_acc_regnum == regno)
157 return 1;
158
159 /* Is it a reference to the SPE floating-point status and control register,
160 and do we have that? */
161 if (tdep->ppc_spefscr_regnum >= 0
162 && tdep->ppc_spefscr_regnum == regno)
163 return 1;
164
165 return 0;
166 }
167
168
169 /* Return non-zero if the architecture described by GDBARCH has
170 floating-point registers (f0 --- f31 and fpscr). */
171 int
172 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
173 {
174 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
175
176 return (tdep->ppc_fp0_regnum >= 0
177 && tdep->ppc_fpscr_regnum >= 0);
178 }
179
180
181 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
182 set it to SIM_REGNO.
183
184 This is a helper function for init_sim_regno_table, constructing
185 the table mapping GDB register numbers to sim register numbers; we
186 initialize every element in that table to -1 before we start
187 filling it in. */
188 static void
189 set_sim_regno (int *table, int gdb_regno, int sim_regno)
190 {
191 /* Make sure we don't try to assign any given GDB register a sim
192 register number more than once. */
193 gdb_assert (table[gdb_regno] == -1);
194 table[gdb_regno] = sim_regno;
195 }
196
197
198 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
199 numbers to simulator register numbers, based on the values placed
200 in the ARCH->tdep->ppc_foo_regnum members. */
201 static void
202 init_sim_regno_table (struct gdbarch *arch)
203 {
204 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
205 int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
206 const struct reg *regs = tdep->regs;
207 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
208 int i;
209
210 /* Presume that all registers not explicitly mentioned below are
211 unavailable from the sim. */
212 for (i = 0; i < total_regs; i++)
213 sim_regno[i] = -1;
214
215 /* General-purpose registers. */
216 for (i = 0; i < ppc_num_gprs; i++)
217 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
218
219 /* Floating-point registers. */
220 if (tdep->ppc_fp0_regnum >= 0)
221 for (i = 0; i < ppc_num_fprs; i++)
222 set_sim_regno (sim_regno,
223 tdep->ppc_fp0_regnum + i,
224 sim_ppc_f0_regnum + i);
225 if (tdep->ppc_fpscr_regnum >= 0)
226 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
227
228 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
229 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
230 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
231
232 /* Segment registers. */
233 if (tdep->ppc_sr0_regnum >= 0)
234 for (i = 0; i < ppc_num_srs; i++)
235 set_sim_regno (sim_regno,
236 tdep->ppc_sr0_regnum + i,
237 sim_ppc_sr0_regnum + i);
238
239 /* Altivec registers. */
240 if (tdep->ppc_vr0_regnum >= 0)
241 {
242 for (i = 0; i < ppc_num_vrs; i++)
243 set_sim_regno (sim_regno,
244 tdep->ppc_vr0_regnum + i,
245 sim_ppc_vr0_regnum + i);
246
247 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
248 we can treat this more like the other cases. */
249 set_sim_regno (sim_regno,
250 tdep->ppc_vr0_regnum + ppc_num_vrs,
251 sim_ppc_vscr_regnum);
252 }
253 /* vsave is a special-purpose register, so the code below handles it. */
254
255 /* SPE APU (E500) registers. */
256 if (tdep->ppc_ev0_regnum >= 0)
257 for (i = 0; i < ppc_num_gprs; i++)
258 set_sim_regno (sim_regno,
259 tdep->ppc_ev0_regnum + i,
260 sim_ppc_ev0_regnum + i);
261 if (tdep->ppc_ev0_upper_regnum >= 0)
262 for (i = 0; i < ppc_num_gprs; i++)
263 set_sim_regno (sim_regno,
264 tdep->ppc_ev0_upper_regnum + i,
265 sim_ppc_rh0_regnum + i);
266 if (tdep->ppc_acc_regnum >= 0)
267 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
268 /* spefscr is a special-purpose register, so the code below handles it. */
269
270 /* Now handle all special-purpose registers. Verify that they
271 haven't mistakenly been assigned numbers by any of the above
272 code). */
273 for (i = 0; i < total_regs; i++)
274 if (regs[i].spr_num >= 0)
275 set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
276
277 /* Drop the initialized array into place. */
278 tdep->sim_regno = sim_regno;
279 }
280
281
282 /* Given a GDB register number REG, return the corresponding SIM
283 register number. */
284 static int
285 rs6000_register_sim_regno (int reg)
286 {
287 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
288 int sim_regno;
289
290 gdb_assert (0 <= reg
291 && reg <= gdbarch_num_regs (current_gdbarch)
292 + gdbarch_num_pseudo_regs (current_gdbarch));
293 sim_regno = tdep->sim_regno[reg];
294
295 if (sim_regno >= 0)
296 return sim_regno;
297 else
298 return LEGACY_SIM_REGNO_IGNORE;
299 }
300
301 \f
302
303 /* Register set support functions. */
304
305 /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
306 Write the register to REGCACHE. */
307
308 static void
309 ppc_supply_reg (struct regcache *regcache, int regnum,
310 const gdb_byte *regs, size_t offset, int regsize)
311 {
312 if (regnum != -1 && offset != -1)
313 {
314 if (regsize > 4)
315 {
316 struct gdbarch *gdbarch = get_regcache_arch (regcache);
317 int gdb_regsize = register_size (gdbarch, regnum);
318 if (gdb_regsize < regsize
319 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
320 offset += regsize - gdb_regsize;
321 }
322 regcache_raw_supply (regcache, regnum, regs + offset);
323 }
324 }
325
326 /* Read register REGNUM from REGCACHE and store to REGS + OFFSET
327 in a field REGSIZE wide. Zero pad as necessary. */
328
329 static void
330 ppc_collect_reg (const struct regcache *regcache, int regnum,
331 gdb_byte *regs, size_t offset, int regsize)
332 {
333 if (regnum != -1 && offset != -1)
334 {
335 if (regsize > 4)
336 {
337 struct gdbarch *gdbarch = get_regcache_arch (regcache);
338 int gdb_regsize = register_size (gdbarch, regnum);
339 if (gdb_regsize < regsize)
340 {
341 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
342 {
343 memset (regs + offset, 0, regsize - gdb_regsize);
344 offset += regsize - gdb_regsize;
345 }
346 else
347 memset (regs + offset + regsize - gdb_regsize, 0,
348 regsize - gdb_regsize);
349 }
350 }
351 regcache_raw_collect (regcache, regnum, regs + offset);
352 }
353 }
354
355 static int
356 ppc_greg_offset (struct gdbarch *gdbarch,
357 struct gdbarch_tdep *tdep,
358 const struct ppc_reg_offsets *offsets,
359 int regnum,
360 int *regsize)
361 {
362 *regsize = offsets->gpr_size;
363 if (regnum >= tdep->ppc_gp0_regnum
364 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
365 return (offsets->r0_offset
366 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
367
368 if (regnum == gdbarch_pc_regnum (gdbarch))
369 return offsets->pc_offset;
370
371 if (regnum == tdep->ppc_ps_regnum)
372 return offsets->ps_offset;
373
374 if (regnum == tdep->ppc_lr_regnum)
375 return offsets->lr_offset;
376
377 if (regnum == tdep->ppc_ctr_regnum)
378 return offsets->ctr_offset;
379
380 *regsize = offsets->xr_size;
381 if (regnum == tdep->ppc_cr_regnum)
382 return offsets->cr_offset;
383
384 if (regnum == tdep->ppc_xer_regnum)
385 return offsets->xer_offset;
386
387 if (regnum == tdep->ppc_mq_regnum)
388 return offsets->mq_offset;
389
390 return -1;
391 }
392
393 static int
394 ppc_fpreg_offset (struct gdbarch_tdep *tdep,
395 const struct ppc_reg_offsets *offsets,
396 int regnum)
397 {
398 if (regnum >= tdep->ppc_fp0_regnum
399 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
400 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
401
402 if (regnum == tdep->ppc_fpscr_regnum)
403 return offsets->fpscr_offset;
404
405 return -1;
406 }
407
408 /* Supply register REGNUM in the general-purpose register set REGSET
409 from the buffer specified by GREGS and LEN to register cache
410 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
411
412 void
413 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
414 int regnum, const void *gregs, size_t len)
415 {
416 struct gdbarch *gdbarch = get_regcache_arch (regcache);
417 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
418 const struct ppc_reg_offsets *offsets = regset->descr;
419 size_t offset;
420 int regsize;
421
422 if (regnum == -1)
423 {
424 int i;
425 int gpr_size = offsets->gpr_size;
426
427 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
428 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
429 i++, offset += gpr_size)
430 ppc_supply_reg (regcache, i, gregs, offset, gpr_size);
431
432 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
433 gregs, offsets->pc_offset, gpr_size);
434 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
435 gregs, offsets->ps_offset, gpr_size);
436 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
437 gregs, offsets->lr_offset, gpr_size);
438 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
439 gregs, offsets->ctr_offset, gpr_size);
440 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
441 gregs, offsets->cr_offset, offsets->xr_size);
442 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
443 gregs, offsets->xer_offset, offsets->xr_size);
444 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
445 gregs, offsets->mq_offset, offsets->xr_size);
446 return;
447 }
448
449 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
450 ppc_supply_reg (regcache, regnum, gregs, offset, regsize);
451 }
452
453 /* Supply register REGNUM in the floating-point register set REGSET
454 from the buffer specified by FPREGS and LEN to register cache
455 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
456
457 void
458 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
459 int regnum, const void *fpregs, size_t len)
460 {
461 struct gdbarch *gdbarch = get_regcache_arch (regcache);
462 struct gdbarch_tdep *tdep;
463 const struct ppc_reg_offsets *offsets;
464 size_t offset;
465
466 if (!ppc_floating_point_unit_p (gdbarch))
467 return;
468
469 tdep = gdbarch_tdep (gdbarch);
470 offsets = regset->descr;
471 if (regnum == -1)
472 {
473 int i;
474
475 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
476 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
477 i++, offset += 8)
478 ppc_supply_reg (regcache, i, fpregs, offset, 8);
479
480 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
481 fpregs, offsets->fpscr_offset, offsets->fpscr_size);
482 return;
483 }
484
485 offset = ppc_fpreg_offset (tdep, offsets, regnum);
486 ppc_supply_reg (regcache, regnum, fpregs, offset,
487 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
488 }
489
490 /* Collect register REGNUM in the general-purpose register set
491 REGSET from register cache REGCACHE into the buffer specified by
492 GREGS and LEN. If REGNUM is -1, do this for all registers in
493 REGSET. */
494
495 void
496 ppc_collect_gregset (const struct regset *regset,
497 const struct regcache *regcache,
498 int regnum, void *gregs, size_t len)
499 {
500 struct gdbarch *gdbarch = get_regcache_arch (regcache);
501 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
502 const struct ppc_reg_offsets *offsets = regset->descr;
503 size_t offset;
504 int regsize;
505
506 if (regnum == -1)
507 {
508 int i;
509 int gpr_size = offsets->gpr_size;
510
511 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
512 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
513 i++, offset += gpr_size)
514 ppc_collect_reg (regcache, i, gregs, offset, gpr_size);
515
516 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
517 gregs, offsets->pc_offset, gpr_size);
518 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
519 gregs, offsets->ps_offset, gpr_size);
520 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
521 gregs, offsets->lr_offset, gpr_size);
522 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
523 gregs, offsets->ctr_offset, gpr_size);
524 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
525 gregs, offsets->cr_offset, offsets->xr_size);
526 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
527 gregs, offsets->xer_offset, offsets->xr_size);
528 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
529 gregs, offsets->mq_offset, offsets->xr_size);
530 return;
531 }
532
533 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
534 ppc_collect_reg (regcache, regnum, gregs, offset, regsize);
535 }
536
537 /* Collect register REGNUM in the floating-point register set
538 REGSET from register cache REGCACHE into the buffer specified by
539 FPREGS and LEN. If REGNUM is -1, do this for all registers in
540 REGSET. */
541
542 void
543 ppc_collect_fpregset (const struct regset *regset,
544 const struct regcache *regcache,
545 int regnum, void *fpregs, size_t len)
546 {
547 struct gdbarch *gdbarch = get_regcache_arch (regcache);
548 struct gdbarch_tdep *tdep;
549 const struct ppc_reg_offsets *offsets;
550 size_t offset;
551
552 if (!ppc_floating_point_unit_p (gdbarch))
553 return;
554
555 tdep = gdbarch_tdep (gdbarch);
556 offsets = regset->descr;
557 if (regnum == -1)
558 {
559 int i;
560
561 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
562 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
563 i++, offset += 8)
564 ppc_collect_reg (regcache, i, fpregs, offset, 8);
565
566 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
567 fpregs, offsets->fpscr_offset, offsets->fpscr_size);
568 return;
569 }
570
571 offset = ppc_fpreg_offset (tdep, offsets, regnum);
572 ppc_collect_reg (regcache, regnum, fpregs, offset,
573 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
574 }
575 \f
576
577 /* Read a LEN-byte address from debugged memory address MEMADDR. */
578
579 static CORE_ADDR
580 read_memory_addr (CORE_ADDR memaddr, int len)
581 {
582 return read_memory_unsigned_integer (memaddr, len);
583 }
584
585 static CORE_ADDR
586 rs6000_skip_prologue (CORE_ADDR pc)
587 {
588 struct rs6000_framedata frame;
589 CORE_ADDR limit_pc, func_addr;
590
591 /* See if we can determine the end of the prologue via the symbol table.
592 If so, then return either PC, or the PC after the prologue, whichever
593 is greater. */
594 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
595 {
596 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
597 if (post_prologue_pc != 0)
598 return max (pc, post_prologue_pc);
599 }
600
601 /* Can't determine prologue from the symbol table, need to examine
602 instructions. */
603
604 /* Find an upper limit on the function prologue using the debug
605 information. If the debug information could not be used to provide
606 that bound, then use an arbitrary large number as the upper bound. */
607 limit_pc = skip_prologue_using_sal (pc);
608 if (limit_pc == 0)
609 limit_pc = pc + 100; /* Magic. */
610
611 pc = skip_prologue (pc, limit_pc, &frame);
612 return pc;
613 }
614
615 static int
616 insn_changes_sp_or_jumps (unsigned long insn)
617 {
618 int opcode = (insn >> 26) & 0x03f;
619 int sd = (insn >> 21) & 0x01f;
620 int a = (insn >> 16) & 0x01f;
621 int subcode = (insn >> 1) & 0x3ff;
622
623 /* Changes the stack pointer. */
624
625 /* NOTE: There are many ways to change the value of a given register.
626 The ways below are those used when the register is R1, the SP,
627 in a funtion's epilogue. */
628
629 if (opcode == 31 && subcode == 444 && a == 1)
630 return 1; /* mr R1,Rn */
631 if (opcode == 14 && sd == 1)
632 return 1; /* addi R1,Rn,simm */
633 if (opcode == 58 && sd == 1)
634 return 1; /* ld R1,ds(Rn) */
635
636 /* Transfers control. */
637
638 if (opcode == 18)
639 return 1; /* b */
640 if (opcode == 16)
641 return 1; /* bc */
642 if (opcode == 19 && subcode == 16)
643 return 1; /* bclr */
644 if (opcode == 19 && subcode == 528)
645 return 1; /* bcctr */
646
647 return 0;
648 }
649
650 /* Return true if we are in the function's epilogue, i.e. after the
651 instruction that destroyed the function's stack frame.
652
653 1) scan forward from the point of execution:
654 a) If you find an instruction that modifies the stack pointer
655 or transfers control (except a return), execution is not in
656 an epilogue, return.
657 b) Stop scanning if you find a return instruction or reach the
658 end of the function or reach the hard limit for the size of
659 an epilogue.
660 2) scan backward from the point of execution:
661 a) If you find an instruction that modifies the stack pointer,
662 execution *is* in an epilogue, return.
663 b) Stop scanning if you reach an instruction that transfers
664 control or the beginning of the function or reach the hard
665 limit for the size of an epilogue. */
666
667 static int
668 rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
669 {
670 bfd_byte insn_buf[PPC_INSN_SIZE];
671 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
672 unsigned long insn;
673 struct frame_info *curfrm;
674
675 /* Find the search limits based on function boundaries and hard limit. */
676
677 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
678 return 0;
679
680 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
681 if (epilogue_start < func_start) epilogue_start = func_start;
682
683 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
684 if (epilogue_end > func_end) epilogue_end = func_end;
685
686 curfrm = get_current_frame ();
687
688 /* Scan forward until next 'blr'. */
689
690 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
691 {
692 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
693 return 0;
694 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
695 if (insn == 0x4e800020)
696 break;
697 if (insn_changes_sp_or_jumps (insn))
698 return 0;
699 }
700
701 /* Scan backward until adjustment to stack pointer (R1). */
702
703 for (scan_pc = pc - PPC_INSN_SIZE;
704 scan_pc >= epilogue_start;
705 scan_pc -= PPC_INSN_SIZE)
706 {
707 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
708 return 0;
709 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
710 if (insn_changes_sp_or_jumps (insn))
711 return 1;
712 }
713
714 return 0;
715 }
716
717 /* Get the ith function argument for the current function. */
718 static CORE_ADDR
719 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
720 struct type *type)
721 {
722 return get_frame_register_unsigned (frame, 3 + argi);
723 }
724
725 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
726
727 static CORE_ADDR
728 branch_dest (struct frame_info *frame, int opcode, int instr,
729 CORE_ADDR pc, CORE_ADDR safety)
730 {
731 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
732 CORE_ADDR dest;
733 int immediate;
734 int absolute;
735 int ext_op;
736
737 absolute = (int) ((instr >> 1) & 1);
738
739 switch (opcode)
740 {
741 case 18:
742 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
743 if (absolute)
744 dest = immediate;
745 else
746 dest = pc + immediate;
747 break;
748
749 case 16:
750 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
751 if (absolute)
752 dest = immediate;
753 else
754 dest = pc + immediate;
755 break;
756
757 case 19:
758 ext_op = (instr >> 1) & 0x3ff;
759
760 if (ext_op == 16) /* br conditional register */
761 {
762 dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3;
763
764 /* If we are about to return from a signal handler, dest is
765 something like 0x3c90. The current frame is a signal handler
766 caller frame, upon completion of the sigreturn system call
767 execution will return to the saved PC in the frame. */
768 if (dest < tdep->text_segment_base)
769 dest = read_memory_addr (get_frame_base (frame) + SIG_FRAME_PC_OFFSET,
770 tdep->wordsize);
771 }
772
773 else if (ext_op == 528) /* br cond to count reg */
774 {
775 dest = get_frame_register_unsigned (frame, tdep->ppc_ctr_regnum) & ~3;
776
777 /* If we are about to execute a system call, dest is something
778 like 0x22fc or 0x3b00. Upon completion the system call
779 will return to the address in the link register. */
780 if (dest < tdep->text_segment_base)
781 dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3;
782 }
783 else
784 return -1;
785 break;
786
787 default:
788 return -1;
789 }
790 return (dest < tdep->text_segment_base) ? safety : dest;
791 }
792
793
794 /* Sequence of bytes for breakpoint instruction. */
795
796 const static unsigned char *
797 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
798 {
799 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
800 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
801 *bp_size = 4;
802 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
803 return big_breakpoint;
804 else
805 return little_breakpoint;
806 }
807
808
809 /* Instruction masks used during single-stepping of atomic sequences. */
810 #define LWARX_MASK 0xfc0007fe
811 #define LWARX_INSTRUCTION 0x7c000028
812 #define LDARX_INSTRUCTION 0x7c0000A8
813 #define STWCX_MASK 0xfc0007ff
814 #define STWCX_INSTRUCTION 0x7c00012d
815 #define STDCX_INSTRUCTION 0x7c0001ad
816 #define BC_MASK 0xfc000000
817 #define BC_INSTRUCTION 0x40000000
818
819 /* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
820 instruction and ending with a STWCX/STDCX instruction. If such a sequence
821 is found, attempt to step through it. A breakpoint is placed at the end of
822 the sequence. */
823
824 static int
825 deal_with_atomic_sequence (struct frame_info *frame)
826 {
827 CORE_ADDR pc = get_frame_pc (frame);
828 CORE_ADDR breaks[2] = {-1, -1};
829 CORE_ADDR loc = pc;
830 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
831 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
832 int insn = read_memory_integer (loc, PPC_INSN_SIZE);
833 int insn_count;
834 int index;
835 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
836 const int atomic_sequence_length = 16; /* Instruction sequence length. */
837 int opcode; /* Branch instruction's OPcode. */
838 int bc_insn_count = 0; /* Conditional branch instruction count. */
839
840 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
841 if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
842 && (insn & LWARX_MASK) != LDARX_INSTRUCTION)
843 return 0;
844
845 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
846 instructions. */
847 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
848 {
849 loc += PPC_INSN_SIZE;
850 insn = read_memory_integer (loc, PPC_INSN_SIZE);
851
852 /* Assume that there is at most one conditional branch in the atomic
853 sequence. If a conditional branch is found, put a breakpoint in
854 its destination address. */
855 if ((insn & BC_MASK) == BC_INSTRUCTION)
856 {
857 if (bc_insn_count >= 1)
858 return 0; /* More than one conditional branch found, fallback
859 to the standard single-step code. */
860
861 opcode = insn >> 26;
862 branch_bp = branch_dest (frame, opcode, insn, pc, breaks[0]);
863
864 if (branch_bp != -1)
865 {
866 breaks[1] = branch_bp;
867 bc_insn_count++;
868 last_breakpoint++;
869 }
870 }
871
872 if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
873 || (insn & STWCX_MASK) == STDCX_INSTRUCTION)
874 break;
875 }
876
877 /* Assume that the atomic sequence ends with a stwcx/stdcx instruction. */
878 if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
879 && (insn & STWCX_MASK) != STDCX_INSTRUCTION)
880 return 0;
881
882 closing_insn = loc;
883 loc += PPC_INSN_SIZE;
884 insn = read_memory_integer (loc, PPC_INSN_SIZE);
885
886 /* Insert a breakpoint right after the end of the atomic sequence. */
887 breaks[0] = loc;
888
889 /* Check for duplicated breakpoints. Check also for a breakpoint
890 placed (branch instruction's destination) at the stwcx/stdcx
891 instruction, this resets the reservation and take us back to the
892 lwarx/ldarx instruction at the beginning of the atomic sequence. */
893 if (last_breakpoint && ((breaks[1] == breaks[0])
894 || (breaks[1] == closing_insn)))
895 last_breakpoint = 0;
896
897 /* Effectively inserts the breakpoints. */
898 for (index = 0; index <= last_breakpoint; index++)
899 insert_single_step_breakpoint (breaks[index]);
900
901 return 1;
902 }
903
904 /* AIX does not support PT_STEP. Simulate it. */
905
906 int
907 rs6000_software_single_step (struct frame_info *frame)
908 {
909 CORE_ADDR dummy;
910 int breakp_sz;
911 const gdb_byte *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
912 int ii, insn;
913 CORE_ADDR loc;
914 CORE_ADDR breaks[2];
915 int opcode;
916
917 loc = get_frame_pc (frame);
918
919 insn = read_memory_integer (loc, 4);
920
921 if (deal_with_atomic_sequence (frame))
922 return 1;
923
924 breaks[0] = loc + breakp_sz;
925 opcode = insn >> 26;
926 breaks[1] = branch_dest (frame, opcode, insn, loc, breaks[0]);
927
928 /* Don't put two breakpoints on the same address. */
929 if (breaks[1] == breaks[0])
930 breaks[1] = -1;
931
932 for (ii = 0; ii < 2; ++ii)
933 {
934 /* ignore invalid breakpoint. */
935 if (breaks[ii] == -1)
936 continue;
937 insert_single_step_breakpoint (breaks[ii]);
938 }
939
940 errno = 0; /* FIXME, don't ignore errors! */
941 /* What errors? {read,write}_memory call error(). */
942 return 1;
943 }
944
945
946 /* return pc value after skipping a function prologue and also return
947 information about a function frame.
948
949 in struct rs6000_framedata fdata:
950 - frameless is TRUE, if function does not have a frame.
951 - nosavedpc is TRUE, if function does not save %pc value in its frame.
952 - offset is the initial size of this stack frame --- the amount by
953 which we decrement the sp to allocate the frame.
954 - saved_gpr is the number of the first saved gpr.
955 - saved_fpr is the number of the first saved fpr.
956 - saved_vr is the number of the first saved vr.
957 - saved_ev is the number of the first saved ev.
958 - alloca_reg is the number of the register used for alloca() handling.
959 Otherwise -1.
960 - gpr_offset is the offset of the first saved gpr from the previous frame.
961 - fpr_offset is the offset of the first saved fpr from the previous frame.
962 - vr_offset is the offset of the first saved vr from the previous frame.
963 - ev_offset is the offset of the first saved ev from the previous frame.
964 - lr_offset is the offset of the saved lr
965 - cr_offset is the offset of the saved cr
966 - vrsave_offset is the offset of the saved vrsave register
967 */
968
969 #define SIGNED_SHORT(x) \
970 ((sizeof (short) == 2) \
971 ? ((int)(short)(x)) \
972 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
973
974 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
975
976 /* Limit the number of skipped non-prologue instructions, as the examining
977 of the prologue is expensive. */
978 static int max_skip_non_prologue_insns = 10;
979
980 /* Return nonzero if the given instruction OP can be part of the prologue
981 of a function and saves a parameter on the stack. FRAMEP should be
982 set if one of the previous instructions in the function has set the
983 Frame Pointer. */
984
985 static int
986 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
987 {
988 /* Move parameters from argument registers to temporary register. */
989 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
990 {
991 /* Rx must be scratch register r0. */
992 const int rx_regno = (op >> 16) & 31;
993 /* Ry: Only r3 - r10 are used for parameter passing. */
994 const int ry_regno = GET_SRC_REG (op);
995
996 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
997 {
998 *r0_contains_arg = 1;
999 return 1;
1000 }
1001 else
1002 return 0;
1003 }
1004
1005 /* Save a General Purpose Register on stack. */
1006
1007 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1008 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1009 {
1010 /* Rx: Only r3 - r10 are used for parameter passing. */
1011 const int rx_regno = GET_SRC_REG (op);
1012
1013 return (rx_regno >= 3 && rx_regno <= 10);
1014 }
1015
1016 /* Save a General Purpose Register on stack via the Frame Pointer. */
1017
1018 if (framep &&
1019 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1020 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1021 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1022 {
1023 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1024 However, the compiler sometimes uses r0 to hold an argument. */
1025 const int rx_regno = GET_SRC_REG (op);
1026
1027 return ((rx_regno >= 3 && rx_regno <= 10)
1028 || (rx_regno == 0 && *r0_contains_arg));
1029 }
1030
1031 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1032 {
1033 /* Only f2 - f8 are used for parameter passing. */
1034 const int src_regno = GET_SRC_REG (op);
1035
1036 return (src_regno >= 2 && src_regno <= 8);
1037 }
1038
1039 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1040 {
1041 /* Only f2 - f8 are used for parameter passing. */
1042 const int src_regno = GET_SRC_REG (op);
1043
1044 return (src_regno >= 2 && src_regno <= 8);
1045 }
1046
1047 /* Not an insn that saves a parameter on stack. */
1048 return 0;
1049 }
1050
1051 /* Assuming that INSN is a "bl" instruction located at PC, return
1052 nonzero if the destination of the branch is a "blrl" instruction.
1053
1054 This sequence is sometimes found in certain function prologues.
1055 It allows the function to load the LR register with a value that
1056 they can use to access PIC data using PC-relative offsets. */
1057
1058 static int
1059 bl_to_blrl_insn_p (CORE_ADDR pc, int insn)
1060 {
1061 CORE_ADDR dest;
1062 int immediate;
1063 int absolute;
1064 int dest_insn;
1065
1066 absolute = (int) ((insn >> 1) & 1);
1067 immediate = ((insn & ~3) << 6) >> 6;
1068 if (absolute)
1069 dest = immediate;
1070 else
1071 dest = pc + immediate;
1072
1073 dest_insn = read_memory_integer (dest, 4);
1074 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1075 return 1;
1076
1077 return 0;
1078 }
1079
1080 static CORE_ADDR
1081 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
1082 {
1083 CORE_ADDR orig_pc = pc;
1084 CORE_ADDR last_prologue_pc = pc;
1085 CORE_ADDR li_found_pc = 0;
1086 gdb_byte buf[4];
1087 unsigned long op;
1088 long offset = 0;
1089 long vr_saved_offset = 0;
1090 int lr_reg = -1;
1091 int cr_reg = -1;
1092 int vr_reg = -1;
1093 int ev_reg = -1;
1094 long ev_offset = 0;
1095 int vrsave_reg = -1;
1096 int reg;
1097 int framep = 0;
1098 int minimal_toc_loaded = 0;
1099 int prev_insn_was_prologue_insn = 1;
1100 int num_skip_non_prologue_insns = 0;
1101 int r0_contains_arg = 0;
1102 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
1103 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1104
1105 memset (fdata, 0, sizeof (struct rs6000_framedata));
1106 fdata->saved_gpr = -1;
1107 fdata->saved_fpr = -1;
1108 fdata->saved_vr = -1;
1109 fdata->saved_ev = -1;
1110 fdata->alloca_reg = -1;
1111 fdata->frameless = 1;
1112 fdata->nosavedpc = 1;
1113
1114 for (;; pc += 4)
1115 {
1116 /* Sometimes it isn't clear if an instruction is a prologue
1117 instruction or not. When we encounter one of these ambiguous
1118 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1119 Otherwise, we'll assume that it really is a prologue instruction. */
1120 if (prev_insn_was_prologue_insn)
1121 last_prologue_pc = pc;
1122
1123 /* Stop scanning if we've hit the limit. */
1124 if (pc >= lim_pc)
1125 break;
1126
1127 prev_insn_was_prologue_insn = 1;
1128
1129 /* Fetch the instruction and convert it to an integer. */
1130 if (target_read_memory (pc, buf, 4))
1131 break;
1132 op = extract_unsigned_integer (buf, 4);
1133
1134 if ((op & 0xfc1fffff) == 0x7c0802a6)
1135 { /* mflr Rx */
1136 /* Since shared library / PIC code, which needs to get its
1137 address at runtime, can appear to save more than one link
1138 register vis:
1139
1140 *INDENT-OFF*
1141 stwu r1,-304(r1)
1142 mflr r3
1143 bl 0xff570d0 (blrl)
1144 stw r30,296(r1)
1145 mflr r30
1146 stw r31,300(r1)
1147 stw r3,308(r1);
1148 ...
1149 *INDENT-ON*
1150
1151 remember just the first one, but skip over additional
1152 ones. */
1153 if (lr_reg == -1)
1154 lr_reg = (op & 0x03e00000);
1155 if (lr_reg == 0)
1156 r0_contains_arg = 0;
1157 continue;
1158 }
1159 else if ((op & 0xfc1fffff) == 0x7c000026)
1160 { /* mfcr Rx */
1161 cr_reg = (op & 0x03e00000);
1162 if (cr_reg == 0)
1163 r0_contains_arg = 0;
1164 continue;
1165
1166 }
1167 else if ((op & 0xfc1f0000) == 0xd8010000)
1168 { /* stfd Rx,NUM(r1) */
1169 reg = GET_SRC_REG (op);
1170 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1171 {
1172 fdata->saved_fpr = reg;
1173 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1174 }
1175 continue;
1176
1177 }
1178 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1179 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1180 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1181 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1182 {
1183
1184 reg = GET_SRC_REG (op);
1185 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1186 {
1187 fdata->saved_gpr = reg;
1188 if ((op & 0xfc1f0003) == 0xf8010000)
1189 op &= ~3UL;
1190 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1191 }
1192 continue;
1193
1194 }
1195 else if ((op & 0xffff0000) == 0x60000000)
1196 {
1197 /* nop */
1198 /* Allow nops in the prologue, but do not consider them to
1199 be part of the prologue unless followed by other prologue
1200 instructions. */
1201 prev_insn_was_prologue_insn = 0;
1202 continue;
1203
1204 }
1205 else if ((op & 0xffff0000) == 0x3c000000)
1206 { /* addis 0,0,NUM, used
1207 for >= 32k frames */
1208 fdata->offset = (op & 0x0000ffff) << 16;
1209 fdata->frameless = 0;
1210 r0_contains_arg = 0;
1211 continue;
1212
1213 }
1214 else if ((op & 0xffff0000) == 0x60000000)
1215 { /* ori 0,0,NUM, 2nd ha
1216 lf of >= 32k frames */
1217 fdata->offset |= (op & 0x0000ffff);
1218 fdata->frameless = 0;
1219 r0_contains_arg = 0;
1220 continue;
1221
1222 }
1223 else if (lr_reg >= 0 &&
1224 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1225 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1226 /* stw Rx, NUM(r1) */
1227 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1228 /* stwu Rx, NUM(r1) */
1229 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1230 { /* where Rx == lr */
1231 fdata->lr_offset = offset;
1232 fdata->nosavedpc = 0;
1233 /* Invalidate lr_reg, but don't set it to -1.
1234 That would mean that it had never been set. */
1235 lr_reg = -2;
1236 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1237 (op & 0xfc000000) == 0x90000000) /* stw */
1238 {
1239 /* Does not update r1, so add displacement to lr_offset. */
1240 fdata->lr_offset += SIGNED_SHORT (op);
1241 }
1242 continue;
1243
1244 }
1245 else if (cr_reg >= 0 &&
1246 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1247 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1248 /* stw Rx, NUM(r1) */
1249 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1250 /* stwu Rx, NUM(r1) */
1251 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1252 { /* where Rx == cr */
1253 fdata->cr_offset = offset;
1254 /* Invalidate cr_reg, but don't set it to -1.
1255 That would mean that it had never been set. */
1256 cr_reg = -2;
1257 if ((op & 0xfc000003) == 0xf8000000 ||
1258 (op & 0xfc000000) == 0x90000000)
1259 {
1260 /* Does not update r1, so add displacement to cr_offset. */
1261 fdata->cr_offset += SIGNED_SHORT (op);
1262 }
1263 continue;
1264
1265 }
1266 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1267 {
1268 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1269 prediction bits. If the LR has already been saved, we can
1270 skip it. */
1271 continue;
1272 }
1273 else if (op == 0x48000005)
1274 { /* bl .+4 used in
1275 -mrelocatable */
1276 continue;
1277
1278 }
1279 else if (op == 0x48000004)
1280 { /* b .+4 (xlc) */
1281 break;
1282
1283 }
1284 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1285 in V.4 -mminimal-toc */
1286 (op & 0xffff0000) == 0x3bde0000)
1287 { /* addi 30,30,foo@l */
1288 continue;
1289
1290 }
1291 else if ((op & 0xfc000001) == 0x48000001)
1292 { /* bl foo,
1293 to save fprs??? */
1294
1295 fdata->frameless = 0;
1296
1297 /* If the return address has already been saved, we can skip
1298 calls to blrl (for PIC). */
1299 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op))
1300 continue;
1301
1302 /* Don't skip over the subroutine call if it is not within
1303 the first three instructions of the prologue and either
1304 we have no line table information or the line info tells
1305 us that the subroutine call is not part of the line
1306 associated with the prologue. */
1307 if ((pc - orig_pc) > 8)
1308 {
1309 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1310 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1311
1312 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1313 break;
1314 }
1315
1316 op = read_memory_integer (pc + 4, 4);
1317
1318 /* At this point, make sure this is not a trampoline
1319 function (a function that simply calls another functions,
1320 and nothing else). If the next is not a nop, this branch
1321 was part of the function prologue. */
1322
1323 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1324 break; /* don't skip over
1325 this branch */
1326 continue;
1327
1328 }
1329 /* update stack pointer */
1330 else if ((op & 0xfc1f0000) == 0x94010000)
1331 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1332 fdata->frameless = 0;
1333 fdata->offset = SIGNED_SHORT (op);
1334 offset = fdata->offset;
1335 continue;
1336 }
1337 else if ((op & 0xfc1f016a) == 0x7c01016e)
1338 { /* stwux rX,r1,rY */
1339 /* no way to figure out what r1 is going to be */
1340 fdata->frameless = 0;
1341 offset = fdata->offset;
1342 continue;
1343 }
1344 else if ((op & 0xfc1f0003) == 0xf8010001)
1345 { /* stdu rX,NUM(r1) */
1346 fdata->frameless = 0;
1347 fdata->offset = SIGNED_SHORT (op & ~3UL);
1348 offset = fdata->offset;
1349 continue;
1350 }
1351 else if ((op & 0xfc1f016a) == 0x7c01016a)
1352 { /* stdux rX,r1,rY */
1353 /* no way to figure out what r1 is going to be */
1354 fdata->frameless = 0;
1355 offset = fdata->offset;
1356 continue;
1357 }
1358 else if ((op & 0xffff0000) == 0x38210000)
1359 { /* addi r1,r1,SIMM */
1360 fdata->frameless = 0;
1361 fdata->offset += SIGNED_SHORT (op);
1362 offset = fdata->offset;
1363 continue;
1364 }
1365 /* Load up minimal toc pointer. Do not treat an epilogue restore
1366 of r31 as a minimal TOC load. */
1367 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1368 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1369 && !framep
1370 && !minimal_toc_loaded)
1371 {
1372 minimal_toc_loaded = 1;
1373 continue;
1374
1375 /* move parameters from argument registers to local variable
1376 registers */
1377 }
1378 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1379 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1380 (((op >> 21) & 31) <= 10) &&
1381 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
1382 {
1383 continue;
1384
1385 /* store parameters in stack */
1386 }
1387 /* Move parameters from argument registers to temporary register. */
1388 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1389 {
1390 continue;
1391
1392 /* Set up frame pointer */
1393 }
1394 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1395 || op == 0x7c3f0b78)
1396 { /* mr r31, r1 */
1397 fdata->frameless = 0;
1398 framep = 1;
1399 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1400 continue;
1401
1402 /* Another way to set up the frame pointer. */
1403 }
1404 else if ((op & 0xfc1fffff) == 0x38010000)
1405 { /* addi rX, r1, 0x0 */
1406 fdata->frameless = 0;
1407 framep = 1;
1408 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1409 + ((op & ~0x38010000) >> 21));
1410 continue;
1411 }
1412 /* AltiVec related instructions. */
1413 /* Store the vrsave register (spr 256) in another register for
1414 later manipulation, or load a register into the vrsave
1415 register. 2 instructions are used: mfvrsave and
1416 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1417 and mtspr SPR256, Rn. */
1418 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1419 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1420 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1421 {
1422 vrsave_reg = GET_SRC_REG (op);
1423 continue;
1424 }
1425 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1426 {
1427 continue;
1428 }
1429 /* Store the register where vrsave was saved to onto the stack:
1430 rS is the register where vrsave was stored in a previous
1431 instruction. */
1432 /* 100100 sssss 00001 dddddddd dddddddd */
1433 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1434 {
1435 if (vrsave_reg == GET_SRC_REG (op))
1436 {
1437 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1438 vrsave_reg = -1;
1439 }
1440 continue;
1441 }
1442 /* Compute the new value of vrsave, by modifying the register
1443 where vrsave was saved to. */
1444 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1445 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1446 {
1447 continue;
1448 }
1449 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1450 in a pair of insns to save the vector registers on the
1451 stack. */
1452 /* 001110 00000 00000 iiii iiii iiii iiii */
1453 /* 001110 01110 00000 iiii iiii iiii iiii */
1454 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1455 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1456 {
1457 if ((op & 0xffff0000) == 0x38000000)
1458 r0_contains_arg = 0;
1459 li_found_pc = pc;
1460 vr_saved_offset = SIGNED_SHORT (op);
1461
1462 /* This insn by itself is not part of the prologue, unless
1463 if part of the pair of insns mentioned above. So do not
1464 record this insn as part of the prologue yet. */
1465 prev_insn_was_prologue_insn = 0;
1466 }
1467 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1468 /* 011111 sssss 11111 00000 00111001110 */
1469 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1470 {
1471 if (pc == (li_found_pc + 4))
1472 {
1473 vr_reg = GET_SRC_REG (op);
1474 /* If this is the first vector reg to be saved, or if
1475 it has a lower number than others previously seen,
1476 reupdate the frame info. */
1477 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1478 {
1479 fdata->saved_vr = vr_reg;
1480 fdata->vr_offset = vr_saved_offset + offset;
1481 }
1482 vr_saved_offset = -1;
1483 vr_reg = -1;
1484 li_found_pc = 0;
1485 }
1486 }
1487 /* End AltiVec related instructions. */
1488
1489 /* Start BookE related instructions. */
1490 /* Store gen register S at (r31+uimm).
1491 Any register less than r13 is volatile, so we don't care. */
1492 /* 000100 sssss 11111 iiiii 01100100001 */
1493 else if (arch_info->mach == bfd_mach_ppc_e500
1494 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1495 {
1496 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1497 {
1498 unsigned int imm;
1499 ev_reg = GET_SRC_REG (op);
1500 imm = (op >> 11) & 0x1f;
1501 ev_offset = imm * 8;
1502 /* If this is the first vector reg to be saved, or if
1503 it has a lower number than others previously seen,
1504 reupdate the frame info. */
1505 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1506 {
1507 fdata->saved_ev = ev_reg;
1508 fdata->ev_offset = ev_offset + offset;
1509 }
1510 }
1511 continue;
1512 }
1513 /* Store gen register rS at (r1+rB). */
1514 /* 000100 sssss 00001 bbbbb 01100100000 */
1515 else if (arch_info->mach == bfd_mach_ppc_e500
1516 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1517 {
1518 if (pc == (li_found_pc + 4))
1519 {
1520 ev_reg = GET_SRC_REG (op);
1521 /* If this is the first vector reg to be saved, or if
1522 it has a lower number than others previously seen,
1523 reupdate the frame info. */
1524 /* We know the contents of rB from the previous instruction. */
1525 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1526 {
1527 fdata->saved_ev = ev_reg;
1528 fdata->ev_offset = vr_saved_offset + offset;
1529 }
1530 vr_saved_offset = -1;
1531 ev_reg = -1;
1532 li_found_pc = 0;
1533 }
1534 continue;
1535 }
1536 /* Store gen register r31 at (rA+uimm). */
1537 /* 000100 11111 aaaaa iiiii 01100100001 */
1538 else if (arch_info->mach == bfd_mach_ppc_e500
1539 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1540 {
1541 /* Wwe know that the source register is 31 already, but
1542 it can't hurt to compute it. */
1543 ev_reg = GET_SRC_REG (op);
1544 ev_offset = ((op >> 11) & 0x1f) * 8;
1545 /* If this is the first vector reg to be saved, or if
1546 it has a lower number than others previously seen,
1547 reupdate the frame info. */
1548 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1549 {
1550 fdata->saved_ev = ev_reg;
1551 fdata->ev_offset = ev_offset + offset;
1552 }
1553
1554 continue;
1555 }
1556 /* Store gen register S at (r31+r0).
1557 Store param on stack when offset from SP bigger than 4 bytes. */
1558 /* 000100 sssss 11111 00000 01100100000 */
1559 else if (arch_info->mach == bfd_mach_ppc_e500
1560 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1561 {
1562 if (pc == (li_found_pc + 4))
1563 {
1564 if ((op & 0x03e00000) >= 0x01a00000)
1565 {
1566 ev_reg = GET_SRC_REG (op);
1567 /* If this is the first vector reg to be saved, or if
1568 it has a lower number than others previously seen,
1569 reupdate the frame info. */
1570 /* We know the contents of r0 from the previous
1571 instruction. */
1572 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1573 {
1574 fdata->saved_ev = ev_reg;
1575 fdata->ev_offset = vr_saved_offset + offset;
1576 }
1577 ev_reg = -1;
1578 }
1579 vr_saved_offset = -1;
1580 li_found_pc = 0;
1581 continue;
1582 }
1583 }
1584 /* End BookE related instructions. */
1585
1586 else
1587 {
1588 /* Not a recognized prologue instruction.
1589 Handle optimizer code motions into the prologue by continuing
1590 the search if we have no valid frame yet or if the return
1591 address is not yet saved in the frame. */
1592 if (fdata->frameless == 0 && fdata->nosavedpc == 0)
1593 break;
1594
1595 if (op == 0x4e800020 /* blr */
1596 || op == 0x4e800420) /* bctr */
1597 /* Do not scan past epilogue in frameless functions or
1598 trampolines. */
1599 break;
1600 if ((op & 0xf4000000) == 0x40000000) /* bxx */
1601 /* Never skip branches. */
1602 break;
1603
1604 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1605 /* Do not scan too many insns, scanning insns is expensive with
1606 remote targets. */
1607 break;
1608
1609 /* Continue scanning. */
1610 prev_insn_was_prologue_insn = 0;
1611 continue;
1612 }
1613 }
1614
1615 #if 0
1616 /* I have problems with skipping over __main() that I need to address
1617 * sometime. Previously, I used to use misc_function_vector which
1618 * didn't work as well as I wanted to be. -MGO */
1619
1620 /* If the first thing after skipping a prolog is a branch to a function,
1621 this might be a call to an initializer in main(), introduced by gcc2.
1622 We'd like to skip over it as well. Fortunately, xlc does some extra
1623 work before calling a function right after a prologue, thus we can
1624 single out such gcc2 behaviour. */
1625
1626
1627 if ((op & 0xfc000001) == 0x48000001)
1628 { /* bl foo, an initializer function? */
1629 op = read_memory_integer (pc + 4, 4);
1630
1631 if (op == 0x4def7b82)
1632 { /* cror 0xf, 0xf, 0xf (nop) */
1633
1634 /* Check and see if we are in main. If so, skip over this
1635 initializer function as well. */
1636
1637 tmp = find_pc_misc_function (pc);
1638 if (tmp >= 0
1639 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
1640 return pc + 8;
1641 }
1642 }
1643 #endif /* 0 */
1644
1645 fdata->offset = -fdata->offset;
1646 return last_prologue_pc;
1647 }
1648
1649
1650 /*************************************************************************
1651 Support for creating pushing a dummy frame into the stack, and popping
1652 frames, etc.
1653 *************************************************************************/
1654
1655
1656 /* All the ABI's require 16 byte alignment. */
1657 static CORE_ADDR
1658 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1659 {
1660 return (addr & -16);
1661 }
1662
1663 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1664 the first eight words of the argument list (that might be less than
1665 eight parameters if some parameters occupy more than one word) are
1666 passed in r3..r10 registers. float and double parameters are
1667 passed in fpr's, in addition to that. Rest of the parameters if any
1668 are passed in user stack. There might be cases in which half of the
1669 parameter is copied into registers, the other half is pushed into
1670 stack.
1671
1672 Stack must be aligned on 64-bit boundaries when synthesizing
1673 function calls.
1674
1675 If the function is returning a structure, then the return address is passed
1676 in r3, then the first 7 words of the parameters can be passed in registers,
1677 starting from r4. */
1678
1679 static CORE_ADDR
1680 rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1681 struct regcache *regcache, CORE_ADDR bp_addr,
1682 int nargs, struct value **args, CORE_ADDR sp,
1683 int struct_return, CORE_ADDR struct_addr)
1684 {
1685 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1686 int ii;
1687 int len = 0;
1688 int argno; /* current argument number */
1689 int argbytes; /* current argument byte */
1690 gdb_byte tmp_buffer[50];
1691 int f_argno = 0; /* current floating point argno */
1692 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1693 CORE_ADDR func_addr = find_function_addr (function, NULL);
1694
1695 struct value *arg = 0;
1696 struct type *type;
1697
1698 ULONGEST saved_sp;
1699
1700 /* The calling convention this function implements assumes the
1701 processor has floating-point registers. We shouldn't be using it
1702 on PPC variants that lack them. */
1703 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1704
1705 /* The first eight words of ther arguments are passed in registers.
1706 Copy them appropriately. */
1707 ii = 0;
1708
1709 /* If the function is returning a `struct', then the first word
1710 (which will be passed in r3) is used for struct return address.
1711 In that case we should advance one word and start from r4
1712 register to copy parameters. */
1713 if (struct_return)
1714 {
1715 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1716 struct_addr);
1717 ii++;
1718 }
1719
1720 /*
1721 effectively indirect call... gcc does...
1722
1723 return_val example( float, int);
1724
1725 eabi:
1726 float in fp0, int in r3
1727 offset of stack on overflow 8/16
1728 for varargs, must go by type.
1729 power open:
1730 float in r3&r4, int in r5
1731 offset of stack on overflow different
1732 both:
1733 return in r3 or f0. If no float, must study how gcc emulates floats;
1734 pay attention to arg promotion.
1735 User may have to cast\args to handle promotion correctly
1736 since gdb won't know if prototype supplied or not.
1737 */
1738
1739 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1740 {
1741 int reg_size = register_size (current_gdbarch, ii + 3);
1742
1743 arg = args[argno];
1744 type = check_typedef (value_type (arg));
1745 len = TYPE_LENGTH (type);
1746
1747 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1748 {
1749
1750 /* Floating point arguments are passed in fpr's, as well as gpr's.
1751 There are 13 fpr's reserved for passing parameters. At this point
1752 there is no way we would run out of them. */
1753
1754 gdb_assert (len <= 8);
1755
1756 regcache_cooked_write (regcache,
1757 tdep->ppc_fp0_regnum + 1 + f_argno,
1758 value_contents (arg));
1759 ++f_argno;
1760 }
1761
1762 if (len > reg_size)
1763 {
1764
1765 /* Argument takes more than one register. */
1766 while (argbytes < len)
1767 {
1768 gdb_byte word[MAX_REGISTER_SIZE];
1769 memset (word, 0, reg_size);
1770 memcpy (word,
1771 ((char *) value_contents (arg)) + argbytes,
1772 (len - argbytes) > reg_size
1773 ? reg_size : len - argbytes);
1774 regcache_cooked_write (regcache,
1775 tdep->ppc_gp0_regnum + 3 + ii,
1776 word);
1777 ++ii, argbytes += reg_size;
1778
1779 if (ii >= 8)
1780 goto ran_out_of_registers_for_arguments;
1781 }
1782 argbytes = 0;
1783 --ii;
1784 }
1785 else
1786 {
1787 /* Argument can fit in one register. No problem. */
1788 int adj = gdbarch_byte_order (current_gdbarch)
1789 == BFD_ENDIAN_BIG ? reg_size - len : 0;
1790 gdb_byte word[MAX_REGISTER_SIZE];
1791
1792 memset (word, 0, reg_size);
1793 memcpy (word, value_contents (arg), len);
1794 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
1795 }
1796 ++argno;
1797 }
1798
1799 ran_out_of_registers_for_arguments:
1800
1801 regcache_cooked_read_unsigned (regcache,
1802 gdbarch_sp_regnum (current_gdbarch),
1803 &saved_sp);
1804
1805 /* Location for 8 parameters are always reserved. */
1806 sp -= wordsize * 8;
1807
1808 /* Another six words for back chain, TOC register, link register, etc. */
1809 sp -= wordsize * 6;
1810
1811 /* Stack pointer must be quadword aligned. */
1812 sp &= -16;
1813
1814 /* If there are more arguments, allocate space for them in
1815 the stack, then push them starting from the ninth one. */
1816
1817 if ((argno < nargs) || argbytes)
1818 {
1819 int space = 0, jj;
1820
1821 if (argbytes)
1822 {
1823 space += ((len - argbytes + 3) & -4);
1824 jj = argno + 1;
1825 }
1826 else
1827 jj = argno;
1828
1829 for (; jj < nargs; ++jj)
1830 {
1831 struct value *val = args[jj];
1832 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
1833 }
1834
1835 /* Add location required for the rest of the parameters. */
1836 space = (space + 15) & -16;
1837 sp -= space;
1838
1839 /* This is another instance we need to be concerned about
1840 securing our stack space. If we write anything underneath %sp
1841 (r1), we might conflict with the kernel who thinks he is free
1842 to use this area. So, update %sp first before doing anything
1843 else. */
1844
1845 regcache_raw_write_signed (regcache,
1846 gdbarch_sp_regnum (current_gdbarch), sp);
1847
1848 /* If the last argument copied into the registers didn't fit there
1849 completely, push the rest of it into stack. */
1850
1851 if (argbytes)
1852 {
1853 write_memory (sp + 24 + (ii * 4),
1854 value_contents (arg) + argbytes,
1855 len - argbytes);
1856 ++argno;
1857 ii += ((len - argbytes + 3) & -4) / 4;
1858 }
1859
1860 /* Push the rest of the arguments into stack. */
1861 for (; argno < nargs; ++argno)
1862 {
1863
1864 arg = args[argno];
1865 type = check_typedef (value_type (arg));
1866 len = TYPE_LENGTH (type);
1867
1868
1869 /* Float types should be passed in fpr's, as well as in the
1870 stack. */
1871 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1872 {
1873
1874 gdb_assert (len <= 8);
1875
1876 regcache_cooked_write (regcache,
1877 tdep->ppc_fp0_regnum + 1 + f_argno,
1878 value_contents (arg));
1879 ++f_argno;
1880 }
1881
1882 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
1883 ii += ((len + 3) & -4) / 4;
1884 }
1885 }
1886
1887 /* Set the stack pointer. According to the ABI, the SP is meant to
1888 be set _before_ the corresponding stack space is used. On AIX,
1889 this even applies when the target has been completely stopped!
1890 Not doing this can lead to conflicts with the kernel which thinks
1891 that it still has control over this not-yet-allocated stack
1892 region. */
1893 regcache_raw_write_signed (regcache, gdbarch_sp_regnum (current_gdbarch), sp);
1894
1895 /* Set back chain properly. */
1896 store_unsigned_integer (tmp_buffer, wordsize, saved_sp);
1897 write_memory (sp, tmp_buffer, wordsize);
1898
1899 /* Point the inferior function call's return address at the dummy's
1900 breakpoint. */
1901 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1902
1903 /* Set the TOC register, get the value from the objfile reader
1904 which, in turn, gets it from the VMAP table. */
1905 if (rs6000_find_toc_address_hook != NULL)
1906 {
1907 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1908 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1909 }
1910
1911 target_store_registers (regcache, -1);
1912 return sp;
1913 }
1914
1915 static enum return_value_convention
1916 rs6000_return_value (struct gdbarch *gdbarch, struct type *valtype,
1917 struct regcache *regcache, gdb_byte *readbuf,
1918 const gdb_byte *writebuf)
1919 {
1920 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1921 gdb_byte buf[8];
1922
1923 /* The calling convention this function implements assumes the
1924 processor has floating-point registers. We shouldn't be using it
1925 on PowerPC variants that lack them. */
1926 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1927
1928 /* AltiVec extension: Functions that declare a vector data type as a
1929 return value place that return value in VR2. */
1930 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
1931 && TYPE_LENGTH (valtype) == 16)
1932 {
1933 if (readbuf)
1934 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
1935 if (writebuf)
1936 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
1937
1938 return RETURN_VALUE_REGISTER_CONVENTION;
1939 }
1940
1941 /* If the called subprogram returns an aggregate, there exists an
1942 implicit first argument, whose value is the address of a caller-
1943 allocated buffer into which the callee is assumed to store its
1944 return value. All explicit parameters are appropriately
1945 relabeled. */
1946 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1947 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1948 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1949 return RETURN_VALUE_STRUCT_CONVENTION;
1950
1951 /* Scalar floating-point values are returned in FPR1 for float or
1952 double, and in FPR1:FPR2 for quadword precision. Fortran
1953 complex*8 and complex*16 are returned in FPR1:FPR2, and
1954 complex*32 is returned in FPR1:FPR4. */
1955 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
1956 && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
1957 {
1958 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
1959 gdb_byte regval[8];
1960
1961 /* FIXME: kettenis/2007-01-01: Add support for quadword
1962 precision and complex. */
1963
1964 if (readbuf)
1965 {
1966 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
1967 convert_typed_floating (regval, regtype, readbuf, valtype);
1968 }
1969 if (writebuf)
1970 {
1971 convert_typed_floating (writebuf, valtype, regval, regtype);
1972 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
1973 }
1974
1975 return RETURN_VALUE_REGISTER_CONVENTION;
1976 }
1977
1978 /* Values of the types int, long, short, pointer, and char (length
1979 is less than or equal to four bytes), as well as bit values of
1980 lengths less than or equal to 32 bits, must be returned right
1981 justified in GPR3 with signed values sign extended and unsigned
1982 values zero extended, as necessary. */
1983 if (TYPE_LENGTH (valtype) <= tdep->wordsize)
1984 {
1985 if (readbuf)
1986 {
1987 ULONGEST regval;
1988
1989 /* For reading we don't have to worry about sign extension. */
1990 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1991 &regval);
1992 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);
1993 }
1994 if (writebuf)
1995 {
1996 /* For writing, use unpack_long since that should handle any
1997 required sign extension. */
1998 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1999 unpack_long (valtype, writebuf));
2000 }
2001
2002 return RETURN_VALUE_REGISTER_CONVENTION;
2003 }
2004
2005 /* Eight-byte non-floating-point scalar values must be returned in
2006 GPR3:GPR4. */
2007
2008 if (TYPE_LENGTH (valtype) == 8)
2009 {
2010 gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
2011 gdb_assert (tdep->wordsize == 4);
2012
2013 if (readbuf)
2014 {
2015 gdb_byte regval[8];
2016
2017 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval);
2018 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
2019 regval + 4);
2020 memcpy (readbuf, regval, 8);
2021 }
2022 if (writebuf)
2023 {
2024 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
2025 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
2026 writebuf + 4);
2027 }
2028
2029 return RETURN_VALUE_REGISTER_CONVENTION;
2030 }
2031
2032 return RETURN_VALUE_STRUCT_CONVENTION;
2033 }
2034
2035 /* Return whether handle_inferior_event() should proceed through code
2036 starting at PC in function NAME when stepping.
2037
2038 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2039 handle memory references that are too distant to fit in instructions
2040 generated by the compiler. For example, if 'foo' in the following
2041 instruction:
2042
2043 lwz r9,foo(r2)
2044
2045 is greater than 32767, the linker might replace the lwz with a branch to
2046 somewhere in @FIX1 that does the load in 2 instructions and then branches
2047 back to where execution should continue.
2048
2049 GDB should silently step over @FIX code, just like AIX dbx does.
2050 Unfortunately, the linker uses the "b" instruction for the
2051 branches, meaning that the link register doesn't get set.
2052 Therefore, GDB's usual step_over_function () mechanism won't work.
2053
2054 Instead, use the gdbarch_skip_trampoline_code and
2055 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2056 @FIX code. */
2057
2058 int
2059 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
2060 {
2061 return name && !strncmp (name, "@FIX", 4);
2062 }
2063
2064 /* Skip code that the user doesn't want to see when stepping:
2065
2066 1. Indirect function calls use a piece of trampoline code to do context
2067 switching, i.e. to set the new TOC table. Skip such code if we are on
2068 its first instruction (as when we have single-stepped to here).
2069
2070 2. Skip shared library trampoline code (which is different from
2071 indirect function call trampolines).
2072
2073 3. Skip bigtoc fixup code.
2074
2075 Result is desired PC to step until, or NULL if we are not in
2076 code that should be skipped. */
2077
2078 CORE_ADDR
2079 rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2080 {
2081 unsigned int ii, op;
2082 int rel;
2083 CORE_ADDR solib_target_pc;
2084 struct minimal_symbol *msymbol;
2085
2086 static unsigned trampoline_code[] =
2087 {
2088 0x800b0000, /* l r0,0x0(r11) */
2089 0x90410014, /* st r2,0x14(r1) */
2090 0x7c0903a6, /* mtctr r0 */
2091 0x804b0004, /* l r2,0x4(r11) */
2092 0x816b0008, /* l r11,0x8(r11) */
2093 0x4e800420, /* bctr */
2094 0x4e800020, /* br */
2095 0
2096 };
2097
2098 /* Check for bigtoc fixup code. */
2099 msymbol = lookup_minimal_symbol_by_pc (pc);
2100 if (msymbol
2101 && rs6000_in_solib_return_trampoline (pc,
2102 DEPRECATED_SYMBOL_NAME (msymbol)))
2103 {
2104 /* Double-check that the third instruction from PC is relative "b". */
2105 op = read_memory_integer (pc + 8, 4);
2106 if ((op & 0xfc000003) == 0x48000000)
2107 {
2108 /* Extract bits 6-29 as a signed 24-bit relative word address and
2109 add it to the containing PC. */
2110 rel = ((int)(op << 6) >> 6);
2111 return pc + 8 + rel;
2112 }
2113 }
2114
2115 /* If pc is in a shared library trampoline, return its target. */
2116 solib_target_pc = find_solib_trampoline_target (frame, pc);
2117 if (solib_target_pc)
2118 return solib_target_pc;
2119
2120 for (ii = 0; trampoline_code[ii]; ++ii)
2121 {
2122 op = read_memory_integer (pc + (ii * 4), 4);
2123 if (op != trampoline_code[ii])
2124 return 0;
2125 }
2126 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination addr */
2127 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
2128 return pc;
2129 }
2130
2131 /* ISA-specific vector types. */
2132
2133 static struct type *
2134 rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2135 {
2136 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2137
2138 if (!tdep->ppc_builtin_type_vec64)
2139 {
2140 /* The type we're building is this: */
2141 #if 0
2142 union __gdb_builtin_type_vec64
2143 {
2144 int64_t uint64;
2145 float v2_float[2];
2146 int32_t v2_int32[2];
2147 int16_t v4_int16[4];
2148 int8_t v8_int8[8];
2149 };
2150 #endif
2151
2152 struct type *t;
2153
2154 t = init_composite_type ("__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2155 append_composite_type_field (t, "uint64", builtin_type_int64);
2156 append_composite_type_field (t, "v2_float",
2157 init_vector_type (builtin_type_float, 2));
2158 append_composite_type_field (t, "v2_int32",
2159 init_vector_type (builtin_type_int32, 2));
2160 append_composite_type_field (t, "v4_int16",
2161 init_vector_type (builtin_type_int16, 4));
2162 append_composite_type_field (t, "v8_int8",
2163 init_vector_type (builtin_type_int8, 8));
2164
2165 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
2166 TYPE_NAME (t) = "ppc_builtin_type_vec64";
2167 tdep->ppc_builtin_type_vec64 = t;
2168 }
2169
2170 return tdep->ppc_builtin_type_vec64;
2171 }
2172
2173 static struct type *
2174 rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2175 {
2176 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2177
2178 if (!tdep->ppc_builtin_type_vec128)
2179 {
2180 /* The type we're building is this: */
2181 #if 0
2182 union __gdb_builtin_type_vec128
2183 {
2184 int128_t uint128;
2185 float v4_float[4];
2186 int32_t v4_int32[4];
2187 int16_t v8_int16[8];
2188 int8_t v16_int8[16];
2189 };
2190 #endif
2191
2192 struct type *t;
2193
2194 t = init_composite_type ("__ppc_builtin_type_vec128", TYPE_CODE_UNION);
2195 append_composite_type_field (t, "uint128", builtin_type_int128);
2196 append_composite_type_field (t, "v4_float",
2197 init_vector_type (builtin_type_float, 4));
2198 append_composite_type_field (t, "v4_int32",
2199 init_vector_type (builtin_type_int32, 4));
2200 append_composite_type_field (t, "v8_int16",
2201 init_vector_type (builtin_type_int16, 8));
2202 append_composite_type_field (t, "v16_int8",
2203 init_vector_type (builtin_type_int8, 16));
2204
2205 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
2206 TYPE_NAME (t) = "ppc_builtin_type_vec128";
2207 tdep->ppc_builtin_type_vec128 = t;
2208 }
2209
2210 return tdep->ppc_builtin_type_vec128;
2211 }
2212
2213 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
2214 isn't available with that word size, return 0. */
2215
2216 static int
2217 regsize (const struct reg *reg, int wordsize)
2218 {
2219 return wordsize == 8 ? reg->sz64 : reg->sz32;
2220 }
2221
2222 /* Return the name of register number N, or null if no such register exists
2223 in the current architecture. */
2224
2225 static const char *
2226 rs6000_register_name (int n)
2227 {
2228 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2229 const struct reg *reg = tdep->regs + n;
2230
2231 if (!regsize (reg, tdep->wordsize))
2232 return NULL;
2233 return reg->name;
2234 }
2235
2236 /* Return the GDB type object for the "standard" data type
2237 of data in register N. */
2238
2239 static struct type *
2240 rs6000_register_type (struct gdbarch *gdbarch, int n)
2241 {
2242 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2243 const struct reg *reg = tdep->regs + n;
2244
2245 if (reg->fpr)
2246 return builtin_type_double;
2247 else
2248 {
2249 int size = regsize (reg, tdep->wordsize);
2250 switch (size)
2251 {
2252 case 0:
2253 return builtin_type_int0;
2254 case 4:
2255 return builtin_type_uint32;
2256 case 8:
2257 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
2258 return rs6000_builtin_type_vec64 (gdbarch);
2259 else
2260 return builtin_type_uint64;
2261 break;
2262 case 16:
2263 return rs6000_builtin_type_vec128 (gdbarch);
2264 break;
2265 default:
2266 internal_error (__FILE__, __LINE__, _("Register %d size %d unknown"),
2267 n, size);
2268 }
2269 }
2270 }
2271
2272 /* Is REGNUM a member of REGGROUP? */
2273 static int
2274 rs6000_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2275 struct reggroup *group)
2276 {
2277 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2278 int float_p;
2279 int vector_p;
2280 int general_p;
2281
2282 if (gdbarch_register_name (current_gdbarch, regnum) == NULL
2283 || *gdbarch_register_name (current_gdbarch, regnum) == '\0')
2284 return 0;
2285 if (group == all_reggroup)
2286 return 1;
2287
2288 float_p = (regnum == tdep->ppc_fpscr_regnum
2289 || (regnum >= tdep->ppc_fp0_regnum
2290 && regnum < tdep->ppc_fp0_regnum + 32));
2291 if (group == float_reggroup)
2292 return float_p;
2293
2294 vector_p = ((tdep->ppc_vr0_regnum >= 0
2295 && regnum >= tdep->ppc_vr0_regnum
2296 && regnum < tdep->ppc_vr0_regnum + 32)
2297 || (tdep->ppc_ev0_regnum >= 0
2298 && regnum >= tdep->ppc_ev0_regnum
2299 && regnum < tdep->ppc_ev0_regnum + 32)
2300 || regnum == tdep->ppc_vrsave_regnum - 1 /* vscr */
2301 || regnum == tdep->ppc_vrsave_regnum
2302 || regnum == tdep->ppc_acc_regnum
2303 || regnum == tdep->ppc_spefscr_regnum);
2304 if (group == vector_reggroup)
2305 return vector_p;
2306
2307 /* Note that PS aka MSR isn't included - it's a system register (and
2308 besides, due to GCC's CFI foobar you do not want to restore
2309 it). */
2310 general_p = ((regnum >= tdep->ppc_gp0_regnum
2311 && regnum < tdep->ppc_gp0_regnum + 32)
2312 || regnum == tdep->ppc_toc_regnum
2313 || regnum == tdep->ppc_cr_regnum
2314 || regnum == tdep->ppc_lr_regnum
2315 || regnum == tdep->ppc_ctr_regnum
2316 || regnum == tdep->ppc_xer_regnum
2317 || regnum == gdbarch_pc_regnum (current_gdbarch));
2318 if (group == general_reggroup)
2319 return general_p;
2320
2321 if (group == save_reggroup || group == restore_reggroup)
2322 return general_p || vector_p || float_p;
2323
2324 return 0;
2325 }
2326
2327 /* The register format for RS/6000 floating point registers is always
2328 double, we need a conversion if the memory format is float. */
2329
2330 static int
2331 rs6000_convert_register_p (int regnum, struct type *type)
2332 {
2333 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2334
2335 return (reg->fpr
2336 && TYPE_CODE (type) == TYPE_CODE_FLT
2337 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
2338 }
2339
2340 static void
2341 rs6000_register_to_value (struct frame_info *frame,
2342 int regnum,
2343 struct type *type,
2344 gdb_byte *to)
2345 {
2346 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2347 gdb_byte from[MAX_REGISTER_SIZE];
2348
2349 gdb_assert (reg->fpr);
2350 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2351
2352 get_frame_register (frame, regnum, from);
2353 convert_typed_floating (from, builtin_type_double, to, type);
2354 }
2355
2356 static void
2357 rs6000_value_to_register (struct frame_info *frame,
2358 int regnum,
2359 struct type *type,
2360 const gdb_byte *from)
2361 {
2362 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2363 gdb_byte to[MAX_REGISTER_SIZE];
2364
2365 gdb_assert (reg->fpr);
2366 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2367
2368 convert_typed_floating (from, type, to, builtin_type_double);
2369 put_frame_register (frame, regnum, to);
2370 }
2371
2372 /* Move SPE vector register values between a 64-bit buffer and the two
2373 32-bit raw register halves in a regcache. This function handles
2374 both splitting a 64-bit value into two 32-bit halves, and joining
2375 two halves into a whole 64-bit value, depending on the function
2376 passed as the MOVE argument.
2377
2378 EV_REG must be the number of an SPE evN vector register --- a
2379 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2380 64-bit buffer.
2381
2382 Call MOVE once for each 32-bit half of that register, passing
2383 REGCACHE, the number of the raw register corresponding to that
2384 half, and the address of the appropriate half of BUFFER.
2385
2386 For example, passing 'regcache_raw_read' as the MOVE function will
2387 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2388 'regcache_raw_supply' will supply the contents of BUFFER to the
2389 appropriate pair of raw registers in REGCACHE.
2390
2391 You may need to cast away some 'const' qualifiers when passing
2392 MOVE, since this function can't tell at compile-time which of
2393 REGCACHE or BUFFER is acting as the source of the data. If C had
2394 co-variant type qualifiers, ... */
2395 static void
2396 e500_move_ev_register (void (*move) (struct regcache *regcache,
2397 int regnum, gdb_byte *buf),
2398 struct regcache *regcache, int ev_reg,
2399 gdb_byte *buffer)
2400 {
2401 struct gdbarch *arch = get_regcache_arch (regcache);
2402 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2403 int reg_index;
2404 gdb_byte *byte_buffer = buffer;
2405
2406 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
2407 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
2408
2409 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2410
2411 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
2412 {
2413 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2414 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2415 }
2416 else
2417 {
2418 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2419 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2420 }
2421 }
2422
2423 static void
2424 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2425 int reg_nr, gdb_byte *buffer)
2426 {
2427 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2428 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2429
2430 gdb_assert (regcache_arch == gdbarch);
2431
2432 if (tdep->ppc_ev0_regnum <= reg_nr
2433 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2434 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2435 else
2436 internal_error (__FILE__, __LINE__,
2437 _("e500_pseudo_register_read: "
2438 "called on unexpected register '%s' (%d)"),
2439 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2440 }
2441
2442 static void
2443 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2444 int reg_nr, const gdb_byte *buffer)
2445 {
2446 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2447 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2448
2449 gdb_assert (regcache_arch == gdbarch);
2450
2451 if (tdep->ppc_ev0_regnum <= reg_nr
2452 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2453 e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
2454 regcache_raw_write,
2455 regcache, reg_nr, (gdb_byte *) buffer);
2456 else
2457 internal_error (__FILE__, __LINE__,
2458 _("e500_pseudo_register_read: "
2459 "called on unexpected register '%s' (%d)"),
2460 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2461 }
2462
2463 /* The E500 needs a custom reggroup function: it has anonymous raw
2464 registers, and default_register_reggroup_p assumes that anonymous
2465 registers are not members of any reggroup. */
2466 static int
2467 e500_register_reggroup_p (struct gdbarch *gdbarch,
2468 int regnum,
2469 struct reggroup *group)
2470 {
2471 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2472
2473 /* The save and restore register groups need to include the
2474 upper-half registers, even though they're anonymous. */
2475 if ((group == save_reggroup
2476 || group == restore_reggroup)
2477 && (tdep->ppc_ev0_upper_regnum <= regnum
2478 && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
2479 return 1;
2480
2481 /* In all other regards, the default reggroup definition is fine. */
2482 return default_register_reggroup_p (gdbarch, regnum, group);
2483 }
2484
2485 /* Convert a DBX STABS register number to a GDB register number. */
2486 static int
2487 rs6000_stab_reg_to_regnum (int num)
2488 {
2489 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2490
2491 if (0 <= num && num <= 31)
2492 return tdep->ppc_gp0_regnum + num;
2493 else if (32 <= num && num <= 63)
2494 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2495 specifies registers the architecture doesn't have? Our
2496 callers don't check the value we return. */
2497 return tdep->ppc_fp0_regnum + (num - 32);
2498 else if (77 <= num && num <= 108)
2499 return tdep->ppc_vr0_regnum + (num - 77);
2500 else if (1200 <= num && num < 1200 + 32)
2501 return tdep->ppc_ev0_regnum + (num - 1200);
2502 else
2503 switch (num)
2504 {
2505 case 64:
2506 return tdep->ppc_mq_regnum;
2507 case 65:
2508 return tdep->ppc_lr_regnum;
2509 case 66:
2510 return tdep->ppc_ctr_regnum;
2511 case 76:
2512 return tdep->ppc_xer_regnum;
2513 case 109:
2514 return tdep->ppc_vrsave_regnum;
2515 case 110:
2516 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2517 case 111:
2518 return tdep->ppc_acc_regnum;
2519 case 112:
2520 return tdep->ppc_spefscr_regnum;
2521 default:
2522 return num;
2523 }
2524 }
2525
2526
2527 /* Convert a Dwarf 2 register number to a GDB register number. */
2528 static int
2529 rs6000_dwarf2_reg_to_regnum (int num)
2530 {
2531 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2532
2533 if (0 <= num && num <= 31)
2534 return tdep->ppc_gp0_regnum + num;
2535 else if (32 <= num && num <= 63)
2536 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2537 specifies registers the architecture doesn't have? Our
2538 callers don't check the value we return. */
2539 return tdep->ppc_fp0_regnum + (num - 32);
2540 else if (1124 <= num && num < 1124 + 32)
2541 return tdep->ppc_vr0_regnum + (num - 1124);
2542 else if (1200 <= num && num < 1200 + 32)
2543 return tdep->ppc_ev0_regnum + (num - 1200);
2544 else
2545 switch (num)
2546 {
2547 case 64:
2548 return tdep->ppc_cr_regnum;
2549 case 67:
2550 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2551 case 99:
2552 return tdep->ppc_acc_regnum;
2553 case 100:
2554 return tdep->ppc_mq_regnum;
2555 case 101:
2556 return tdep->ppc_xer_regnum;
2557 case 108:
2558 return tdep->ppc_lr_regnum;
2559 case 109:
2560 return tdep->ppc_ctr_regnum;
2561 case 356:
2562 return tdep->ppc_vrsave_regnum;
2563 case 612:
2564 return tdep->ppc_spefscr_regnum;
2565 default:
2566 return num;
2567 }
2568 }
2569
2570 /* Translate a .eh_frame register to DWARF register, or adjust a
2571 .debug_frame register. */
2572
2573 static int
2574 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
2575 {
2576 /* GCC releases before 3.4 use GCC internal register numbering in
2577 .debug_frame (and .debug_info, et cetera). The numbering is
2578 different from the standard SysV numbering for everything except
2579 for GPRs and FPRs. We can not detect this problem in most cases
2580 - to get accurate debug info for variables living in lr, ctr, v0,
2581 et cetera, use a newer version of GCC. But we must detect
2582 one important case - lr is in column 65 in .debug_frame output,
2583 instead of 108.
2584
2585 GCC 3.4, and the "hammer" branch, have a related problem. They
2586 record lr register saves in .debug_frame as 108, but still record
2587 the return column as 65. We fix that up too.
2588
2589 We can do this because 65 is assigned to fpsr, and GCC never
2590 generates debug info referring to it. To add support for
2591 handwritten debug info that restores fpsr, we would need to add a
2592 producer version check to this. */
2593 if (!eh_frame_p)
2594 {
2595 if (num == 65)
2596 return 108;
2597 else
2598 return num;
2599 }
2600
2601 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
2602 internal register numbering; translate that to the standard DWARF2
2603 register numbering. */
2604 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
2605 return num;
2606 else if (68 <= num && num <= 75) /* cr0-cr8 */
2607 return num - 68 + 86;
2608 else if (77 <= num && num <= 108) /* vr0-vr31 */
2609 return num - 77 + 1124;
2610 else
2611 switch (num)
2612 {
2613 case 64: /* mq */
2614 return 100;
2615 case 65: /* lr */
2616 return 108;
2617 case 66: /* ctr */
2618 return 109;
2619 case 76: /* xer */
2620 return 101;
2621 case 109: /* vrsave */
2622 return 356;
2623 case 110: /* vscr */
2624 return 67;
2625 case 111: /* spe_acc */
2626 return 99;
2627 case 112: /* spefscr */
2628 return 612;
2629 default:
2630 return num;
2631 }
2632 }
2633 \f
2634 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
2635
2636 Usually a function pointer's representation is simply the address
2637 of the function. On the RS/6000 however, a function pointer is
2638 represented by a pointer to an OPD entry. This OPD entry contains
2639 three words, the first word is the address of the function, the
2640 second word is the TOC pointer (r2), and the third word is the
2641 static chain value. Throughout GDB it is currently assumed that a
2642 function pointer contains the address of the function, which is not
2643 easy to fix. In addition, the conversion of a function address to
2644 a function pointer would require allocation of an OPD entry in the
2645 inferior's memory space, with all its drawbacks. To be able to
2646 call C++ virtual methods in the inferior (which are called via
2647 function pointers), find_function_addr uses this function to get the
2648 function address from a function pointer. */
2649
2650 /* Return real function address if ADDR (a function pointer) is in the data
2651 space and is therefore a special function pointer. */
2652
2653 static CORE_ADDR
2654 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2655 CORE_ADDR addr,
2656 struct target_ops *targ)
2657 {
2658 struct obj_section *s;
2659
2660 s = find_pc_section (addr);
2661 if (s && s->the_bfd_section->flags & SEC_CODE)
2662 return addr;
2663
2664 /* ADDR is in the data space, so it's a special function pointer. */
2665 return read_memory_addr (addr, gdbarch_tdep (gdbarch)->wordsize);
2666 }
2667 \f
2668
2669 /* Handling the various POWER/PowerPC variants. */
2670
2671
2672 /* The arrays here called registers_MUMBLE hold information about available
2673 registers.
2674
2675 For each family of PPC variants, I've tried to isolate out the
2676 common registers and put them up front, so that as long as you get
2677 the general family right, GDB will correctly identify the registers
2678 common to that family. The common register sets are:
2679
2680 For the 60x family: hid0 hid1 iabr dabr pir
2681
2682 For the 505 and 860 family: eie eid nri
2683
2684 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2685 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2686 pbu1 pbl2 pbu2
2687
2688 Most of these register groups aren't anything formal. I arrived at
2689 them by looking at the registers that occurred in more than one
2690 processor.
2691
2692 Note: kevinb/2002-04-30: Support for the fpscr register was added
2693 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2694 for Power. For PowerPC, slot 70 was unused and was already in the
2695 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2696 slot 70 was being used for "mq", so the next available slot (71)
2697 was chosen. It would have been nice to be able to make the
2698 register numbers the same across processor cores, but this wasn't
2699 possible without either 1) renumbering some registers for some
2700 processors or 2) assigning fpscr to a really high slot that's
2701 larger than any current register number. Doing (1) is bad because
2702 existing stubs would break. Doing (2) is undesirable because it
2703 would introduce a really large gap between fpscr and the rest of
2704 the registers for most processors. */
2705
2706 /* Convenience macros for populating register arrays. */
2707
2708 /* Within another macro, convert S to a string. */
2709
2710 #define STR(s) #s
2711
2712 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2713 and 64 bits on 64-bit systems. */
2714 #define R(name) { STR(name), 4, 8, 0, 0, -1 }
2715
2716 /* Return a struct reg defining register NAME that's 32 bits on all
2717 systems. */
2718 #define R4(name) { STR(name), 4, 4, 0, 0, -1 }
2719
2720 /* Return a struct reg defining register NAME that's 64 bits on all
2721 systems. */
2722 #define R8(name) { STR(name), 8, 8, 0, 0, -1 }
2723
2724 /* Return a struct reg defining register NAME that's 128 bits on all
2725 systems. */
2726 #define R16(name) { STR(name), 16, 16, 0, 0, -1 }
2727
2728 /* Return a struct reg defining floating-point register NAME. */
2729 #define F(name) { STR(name), 8, 8, 1, 0, -1 }
2730
2731 /* Return a struct reg defining a pseudo register NAME that is 64 bits
2732 long on all systems. */
2733 #define P8(name) { STR(name), 8, 8, 0, 1, -1 }
2734
2735 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2736 systems and that doesn't exist on 64-bit systems. */
2737 #define R32(name) { STR(name), 4, 0, 0, 0, -1 }
2738
2739 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2740 systems and that doesn't exist on 32-bit systems. */
2741 #define R64(name) { STR(name), 0, 8, 0, 0, -1 }
2742
2743 /* Return a struct reg placeholder for a register that doesn't exist. */
2744 #define R0 { 0, 0, 0, 0, 0, -1 }
2745
2746 /* Return a struct reg defining an anonymous raw register that's 32
2747 bits on all systems. */
2748 #define A4 { 0, 4, 4, 0, 0, -1 }
2749
2750 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2751 32-bit systems and 64 bits on 64-bit systems. */
2752 #define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2753
2754 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2755 all systems. */
2756 #define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2757
2758 /* Return a struct reg defining an SPR named NAME that is 32 bits on
2759 all systems, and whose SPR number is NUMBER. */
2760 #define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2761
2762 /* Return a struct reg defining an SPR named NAME that's 64 bits on
2763 64-bit systems and that doesn't exist on 32-bit systems. */
2764 #define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2765
2766 /* UISA registers common across all architectures, including POWER. */
2767
2768 #define COMMON_UISA_REGS \
2769 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2770 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2771 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2772 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2773 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2774 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2775 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2776 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2777 /* 64 */ R(pc), R(ps)
2778
2779 /* UISA-level SPRs for PowerPC. */
2780 #define PPC_UISA_SPRS \
2781 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
2782
2783 /* UISA-level SPRs for PowerPC without floating point support. */
2784 #define PPC_UISA_NOFP_SPRS \
2785 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
2786
2787 /* Segment registers, for PowerPC. */
2788 #define PPC_SEGMENT_REGS \
2789 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2790 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2791 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2792 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2793
2794 /* OEA SPRs for PowerPC. */
2795 #define PPC_OEA_SPRS \
2796 /* 87 */ S4(pvr), \
2797 /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2798 /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2799 /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2800 /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2801 /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
2802 /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
2803 /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
2804 /* 116 */ S4(dec), S(dabr), S4(ear)
2805
2806 /* AltiVec registers. */
2807 #define PPC_ALTIVEC_REGS \
2808 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2809 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2810 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2811 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2812 /*151*/R4(vscr), R4(vrsave)
2813
2814
2815 /* On machines supporting the SPE APU, the general-purpose registers
2816 are 64 bits long. There are SIMD vector instructions to treat them
2817 as pairs of floats, but the rest of the instruction set treats them
2818 as 32-bit registers, and only operates on their lower halves.
2819
2820 In the GDB regcache, we treat their high and low halves as separate
2821 registers. The low halves we present as the general-purpose
2822 registers, and then we have pseudo-registers that stitch together
2823 the upper and lower halves and present them as pseudo-registers. */
2824
2825 /* SPE GPR lower halves --- raw registers. */
2826 #define PPC_SPE_GP_REGS \
2827 /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
2828 /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2829 /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2830 /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2831
2832 /* SPE GPR upper halves --- anonymous raw registers. */
2833 #define PPC_SPE_UPPER_GP_REGS \
2834 /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2835 /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2836 /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2837 /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2838
2839 /* SPE GPR vector registers --- pseudo registers based on underlying
2840 gprs and the anonymous upper half raw registers. */
2841 #define PPC_EV_PSEUDO_REGS \
2842 /* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2843 /* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2844 /*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2845 /*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
2846
2847 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2848 user-level SPR's. */
2849 static const struct reg registers_power[] =
2850 {
2851 COMMON_UISA_REGS,
2852 /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
2853 /* 71 */ R4(fpscr)
2854 };
2855
2856 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2857 view of the PowerPC. */
2858 static const struct reg registers_powerpc[] =
2859 {
2860 COMMON_UISA_REGS,
2861 PPC_UISA_SPRS,
2862 PPC_ALTIVEC_REGS
2863 };
2864
2865 /* IBM PowerPC 403.
2866
2867 Some notes about the "tcr" special-purpose register:
2868 - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2869 403's programmable interval timer, fixed interval timer, and
2870 watchdog timer.
2871 - On the 602, SPR 984 is named "tcr", and it controls the 602's
2872 watchdog timer, and nothing else.
2873
2874 Some of the fields are similar between the two, but they're not
2875 compatible with each other. Since the two variants have different
2876 registers, with different numbers, but the same name, we can't
2877 splice the register name to get the SPR number. */
2878 static const struct reg registers_403[] =
2879 {
2880 COMMON_UISA_REGS,
2881 PPC_UISA_SPRS,
2882 PPC_SEGMENT_REGS,
2883 PPC_OEA_SPRS,
2884 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2885 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2886 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2887 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2888 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2889 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
2890 };
2891
2892 /* IBM PowerPC 403GC.
2893 See the comments about 'tcr' for the 403, above. */
2894 static const struct reg registers_403GC[] =
2895 {
2896 COMMON_UISA_REGS,
2897 PPC_UISA_SPRS,
2898 PPC_SEGMENT_REGS,
2899 PPC_OEA_SPRS,
2900 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2901 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2902 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2903 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2904 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2905 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
2906 /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
2907 /* 147 */ S(tbhu), S(tblu)
2908 };
2909
2910 /* Motorola PowerPC 505. */
2911 static const struct reg registers_505[] =
2912 {
2913 COMMON_UISA_REGS,
2914 PPC_UISA_SPRS,
2915 PPC_SEGMENT_REGS,
2916 PPC_OEA_SPRS,
2917 /* 119 */ S(eie), S(eid), S(nri)
2918 };
2919
2920 /* Motorola PowerPC 860 or 850. */
2921 static const struct reg registers_860[] =
2922 {
2923 COMMON_UISA_REGS,
2924 PPC_UISA_SPRS,
2925 PPC_SEGMENT_REGS,
2926 PPC_OEA_SPRS,
2927 /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2928 /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2929 /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2930 /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2931 /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2932 /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2933 /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2934 /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2935 /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2936 /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2937 /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2938 /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
2939 };
2940
2941 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2942 for reading and writing RTCU and RTCL. However, how one reads and writes a
2943 register is the stub's problem. */
2944 static const struct reg registers_601[] =
2945 {
2946 COMMON_UISA_REGS,
2947 PPC_UISA_SPRS,
2948 PPC_SEGMENT_REGS,
2949 PPC_OEA_SPRS,
2950 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2951 /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
2952 };
2953
2954 /* Motorola PowerPC 602.
2955 See the notes under the 403 about 'tcr'. */
2956 static const struct reg registers_602[] =
2957 {
2958 COMMON_UISA_REGS,
2959 PPC_UISA_SPRS,
2960 PPC_SEGMENT_REGS,
2961 PPC_OEA_SPRS,
2962 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2963 /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2964 /* 127 */ S(sebr), S(ser), S(sp), S(lt)
2965 };
2966
2967 /* Motorola/IBM PowerPC 603 or 603e. */
2968 static const struct reg registers_603[] =
2969 {
2970 COMMON_UISA_REGS,
2971 PPC_UISA_SPRS,
2972 PPC_SEGMENT_REGS,
2973 PPC_OEA_SPRS,
2974 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2975 /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2976 /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
2977 };
2978
2979 /* Motorola PowerPC 604 or 604e. */
2980 static const struct reg registers_604[] =
2981 {
2982 COMMON_UISA_REGS,
2983 PPC_UISA_SPRS,
2984 PPC_SEGMENT_REGS,
2985 PPC_OEA_SPRS,
2986 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2987 /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2988 /* 127 */ S(sia), S(sda)
2989 };
2990
2991 /* Motorola/IBM PowerPC 750 or 740. */
2992 static const struct reg registers_750[] =
2993 {
2994 COMMON_UISA_REGS,
2995 PPC_UISA_SPRS,
2996 PPC_SEGMENT_REGS,
2997 PPC_OEA_SPRS,
2998 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2999 /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
3000 /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
3001 /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
3002 /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
3003 /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
3004 };
3005
3006
3007 /* Motorola PowerPC 7400. */
3008 static const struct reg registers_7400[] =
3009 {
3010 /* gpr0-gpr31, fpr0-fpr31 */
3011 COMMON_UISA_REGS,
3012 /* cr, lr, ctr, xer, fpscr */
3013 PPC_UISA_SPRS,
3014 /* sr0-sr15 */
3015 PPC_SEGMENT_REGS,
3016 PPC_OEA_SPRS,
3017 /* vr0-vr31, vrsave, vscr */
3018 PPC_ALTIVEC_REGS
3019 /* FIXME? Add more registers? */
3020 };
3021
3022 /* Motorola e500. */
3023 static const struct reg registers_e500[] =
3024 {
3025 /* 0 .. 31 */ PPC_SPE_GP_REGS,
3026 /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
3027 /* 64 .. 65 */ R(pc), R(ps),
3028 /* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
3029 /* 71 .. 72 */ R8(acc), S4(spefscr),
3030 /* NOTE: Add new registers here the end of the raw register
3031 list and just before the first pseudo register. */
3032 /* 73 .. 104 */ PPC_EV_PSEUDO_REGS
3033 };
3034
3035 /* Information about a particular processor variant. */
3036
3037 struct variant
3038 {
3039 /* Name of this variant. */
3040 char *name;
3041
3042 /* English description of the variant. */
3043 char *description;
3044
3045 /* bfd_arch_info.arch corresponding to variant. */
3046 enum bfd_architecture arch;
3047
3048 /* bfd_arch_info.mach corresponding to variant. */
3049 unsigned long mach;
3050
3051 /* Number of real registers. */
3052 int nregs;
3053
3054 /* Number of pseudo registers. */
3055 int npregs;
3056
3057 /* Number of total registers (the sum of nregs and npregs). */
3058 int num_tot_regs;
3059
3060 /* Table of register names; registers[R] is the name of the register
3061 number R. */
3062 const struct reg *regs;
3063 };
3064
3065 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
3066
3067 static int
3068 num_registers (const struct reg *reg_list, int num_tot_regs)
3069 {
3070 int i;
3071 int nregs = 0;
3072
3073 for (i = 0; i < num_tot_regs; i++)
3074 if (!reg_list[i].pseudo)
3075 nregs++;
3076
3077 return nregs;
3078 }
3079
3080 static int
3081 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
3082 {
3083 int i;
3084 int npregs = 0;
3085
3086 for (i = 0; i < num_tot_regs; i++)
3087 if (reg_list[i].pseudo)
3088 npregs ++;
3089
3090 return npregs;
3091 }
3092
3093 /* Information in this table comes from the following web sites:
3094 IBM: http://www.chips.ibm.com:80/products/embedded/
3095 Motorola: http://www.mot.com/SPS/PowerPC/
3096
3097 I'm sure I've got some of the variant descriptions not quite right.
3098 Please report any inaccuracies you find to GDB's maintainer.
3099
3100 If you add entries to this table, please be sure to allow the new
3101 value as an argument to the --with-cpu flag, in configure.in. */
3102
3103 static struct variant variants[] =
3104 {
3105
3106 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
3107 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
3108 registers_powerpc},
3109 {"power", "POWER user-level", bfd_arch_rs6000,
3110 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
3111 registers_power},
3112 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
3113 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
3114 registers_403},
3115 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
3116 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
3117 registers_601},
3118 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
3119 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
3120 registers_602},
3121 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
3122 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
3123 registers_603},
3124 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
3125 604, -1, -1, tot_num_registers (registers_604),
3126 registers_604},
3127 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
3128 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
3129 registers_403GC},
3130 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
3131 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
3132 registers_505},
3133 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
3134 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
3135 registers_860},
3136 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
3137 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
3138 registers_750},
3139 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
3140 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
3141 registers_7400},
3142 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
3143 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
3144 registers_e500},
3145
3146 /* 64-bit */
3147 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
3148 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
3149 registers_powerpc},
3150 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
3151 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
3152 registers_powerpc},
3153 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
3154 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
3155 registers_powerpc},
3156 {"a35", "PowerPC A35", bfd_arch_powerpc,
3157 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
3158 registers_powerpc},
3159 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
3160 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
3161 registers_powerpc},
3162 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
3163 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
3164 registers_powerpc},
3165
3166 /* FIXME: I haven't checked the register sets of the following. */
3167 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
3168 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
3169 registers_power},
3170 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
3171 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
3172 registers_power},
3173 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
3174 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
3175 registers_power},
3176
3177 {0, 0, 0, 0, 0, 0, 0, 0}
3178 };
3179
3180 /* Initialize the number of registers and pseudo registers in each variant. */
3181
3182 static void
3183 init_variants (void)
3184 {
3185 struct variant *v;
3186
3187 for (v = variants; v->name; v++)
3188 {
3189 if (v->nregs == -1)
3190 v->nregs = num_registers (v->regs, v->num_tot_regs);
3191 if (v->npregs == -1)
3192 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
3193 }
3194 }
3195
3196 /* Return the variant corresponding to architecture ARCH and machine number
3197 MACH. If no such variant exists, return null. */
3198
3199 static const struct variant *
3200 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
3201 {
3202 const struct variant *v;
3203
3204 for (v = variants; v->name; v++)
3205 if (arch == v->arch && mach == v->mach)
3206 return v;
3207
3208 return NULL;
3209 }
3210
3211 static int
3212 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
3213 {
3214 if (!info->disassembler_options)
3215 info->disassembler_options = "any";
3216
3217 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
3218 return print_insn_big_powerpc (memaddr, info);
3219 else
3220 return print_insn_little_powerpc (memaddr, info);
3221 }
3222 \f
3223 static CORE_ADDR
3224 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3225 {
3226 return frame_unwind_register_unsigned (next_frame,
3227 gdbarch_pc_regnum (current_gdbarch));
3228 }
3229
3230 static struct frame_id
3231 rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
3232 {
3233 return frame_id_build (frame_unwind_register_unsigned
3234 (next_frame, gdbarch_sp_regnum (current_gdbarch)),
3235 frame_pc_unwind (next_frame));
3236 }
3237
3238 struct rs6000_frame_cache
3239 {
3240 CORE_ADDR base;
3241 CORE_ADDR initial_sp;
3242 struct trad_frame_saved_reg *saved_regs;
3243 };
3244
3245 static struct rs6000_frame_cache *
3246 rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
3247 {
3248 struct rs6000_frame_cache *cache;
3249 struct gdbarch *gdbarch = get_frame_arch (next_frame);
3250 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3251 struct rs6000_framedata fdata;
3252 int wordsize = tdep->wordsize;
3253 CORE_ADDR func, pc;
3254
3255 if ((*this_cache) != NULL)
3256 return (*this_cache);
3257 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3258 (*this_cache) = cache;
3259 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
3260
3261 func = frame_func_unwind (next_frame, NORMAL_FRAME);
3262 pc = frame_pc_unwind (next_frame);
3263 skip_prologue (func, pc, &fdata);
3264
3265 /* Figure out the parent's stack pointer. */
3266
3267 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3268 address of the current frame. Things might be easier if the
3269 ->frame pointed to the outer-most address of the frame. In
3270 the mean time, the address of the prev frame is used as the
3271 base address of this frame. */
3272 cache->base = frame_unwind_register_unsigned
3273 (next_frame, gdbarch_sp_regnum (current_gdbarch));
3274
3275 /* If the function appears to be frameless, check a couple of likely
3276 indicators that we have simply failed to find the frame setup.
3277 Two common cases of this are missing symbols (i.e.
3278 frame_func_unwind returns the wrong address or 0), and assembly
3279 stubs which have a fast exit path but set up a frame on the slow
3280 path.
3281
3282 If the LR appears to return to this function, then presume that
3283 we have an ABI compliant frame that we failed to find. */
3284 if (fdata.frameless && fdata.lr_offset == 0)
3285 {
3286 CORE_ADDR saved_lr;
3287 int make_frame = 0;
3288
3289 saved_lr = frame_unwind_register_unsigned (next_frame,
3290 tdep->ppc_lr_regnum);
3291 if (func == 0 && saved_lr == pc)
3292 make_frame = 1;
3293 else if (func != 0)
3294 {
3295 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3296 if (func == saved_func)
3297 make_frame = 1;
3298 }
3299
3300 if (make_frame)
3301 {
3302 fdata.frameless = 0;
3303 fdata.lr_offset = tdep->lr_frame_offset;
3304 }
3305 }
3306
3307 if (!fdata.frameless)
3308 /* Frameless really means stackless. */
3309 cache->base = read_memory_addr (cache->base, wordsize);
3310
3311 trad_frame_set_value (cache->saved_regs,
3312 gdbarch_sp_regnum (current_gdbarch), cache->base);
3313
3314 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3315 All fpr's from saved_fpr to fp31 are saved. */
3316
3317 if (fdata.saved_fpr >= 0)
3318 {
3319 int i;
3320 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3321
3322 /* If skip_prologue says floating-point registers were saved,
3323 but the current architecture has no floating-point registers,
3324 then that's strange. But we have no indices to even record
3325 the addresses under, so we just ignore it. */
3326 if (ppc_floating_point_unit_p (gdbarch))
3327 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3328 {
3329 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3330 fpr_addr += 8;
3331 }
3332 }
3333
3334 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3335 All gpr's from saved_gpr to gpr31 are saved. */
3336
3337 if (fdata.saved_gpr >= 0)
3338 {
3339 int i;
3340 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3341 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3342 {
3343 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3344 gpr_addr += wordsize;
3345 }
3346 }
3347
3348 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3349 All vr's from saved_vr to vr31 are saved. */
3350 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3351 {
3352 if (fdata.saved_vr >= 0)
3353 {
3354 int i;
3355 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3356 for (i = fdata.saved_vr; i < 32; i++)
3357 {
3358 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3359 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3360 }
3361 }
3362 }
3363
3364 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3365 All vr's from saved_ev to ev31 are saved. ????? */
3366 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
3367 {
3368 if (fdata.saved_ev >= 0)
3369 {
3370 int i;
3371 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3372 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3373 {
3374 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3375 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
3376 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3377 }
3378 }
3379 }
3380
3381 /* If != 0, fdata.cr_offset is the offset from the frame that
3382 holds the CR. */
3383 if (fdata.cr_offset != 0)
3384 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
3385
3386 /* If != 0, fdata.lr_offset is the offset from the frame that
3387 holds the LR. */
3388 if (fdata.lr_offset != 0)
3389 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
3390 /* The PC is found in the link register. */
3391 cache->saved_regs[gdbarch_pc_regnum (current_gdbarch)] =
3392 cache->saved_regs[tdep->ppc_lr_regnum];
3393
3394 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3395 holds the VRSAVE. */
3396 if (fdata.vrsave_offset != 0)
3397 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
3398
3399 if (fdata.alloca_reg < 0)
3400 /* If no alloca register used, then fi->frame is the value of the
3401 %sp for this frame, and it is good enough. */
3402 cache->initial_sp = frame_unwind_register_unsigned
3403 (next_frame, gdbarch_sp_regnum (current_gdbarch));
3404 else
3405 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
3406 fdata.alloca_reg);
3407
3408 return cache;
3409 }
3410
3411 static void
3412 rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
3413 struct frame_id *this_id)
3414 {
3415 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3416 this_cache);
3417 (*this_id) = frame_id_build (info->base,
3418 frame_func_unwind (next_frame, NORMAL_FRAME));
3419 }
3420
3421 static void
3422 rs6000_frame_prev_register (struct frame_info *next_frame,
3423 void **this_cache,
3424 int regnum, int *optimizedp,
3425 enum lval_type *lvalp, CORE_ADDR *addrp,
3426 int *realnump, gdb_byte *valuep)
3427 {
3428 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3429 this_cache);
3430 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
3431 optimizedp, lvalp, addrp, realnump, valuep);
3432 }
3433
3434 static const struct frame_unwind rs6000_frame_unwind =
3435 {
3436 NORMAL_FRAME,
3437 rs6000_frame_this_id,
3438 rs6000_frame_prev_register
3439 };
3440
3441 static const struct frame_unwind *
3442 rs6000_frame_sniffer (struct frame_info *next_frame)
3443 {
3444 return &rs6000_frame_unwind;
3445 }
3446
3447 \f
3448
3449 static CORE_ADDR
3450 rs6000_frame_base_address (struct frame_info *next_frame,
3451 void **this_cache)
3452 {
3453 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3454 this_cache);
3455 return info->initial_sp;
3456 }
3457
3458 static const struct frame_base rs6000_frame_base = {
3459 &rs6000_frame_unwind,
3460 rs6000_frame_base_address,
3461 rs6000_frame_base_address,
3462 rs6000_frame_base_address
3463 };
3464
3465 static const struct frame_base *
3466 rs6000_frame_base_sniffer (struct frame_info *next_frame)
3467 {
3468 return &rs6000_frame_base;
3469 }
3470
3471 /* Initialize the current architecture based on INFO. If possible, re-use an
3472 architecture from ARCHES, which is a list of architectures already created
3473 during this debugging session.
3474
3475 Called e.g. at program startup, when reading a core file, and when reading
3476 a binary file. */
3477
3478 static struct gdbarch *
3479 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3480 {
3481 struct gdbarch *gdbarch;
3482 struct gdbarch_tdep *tdep;
3483 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
3484 struct reg *regs;
3485 const struct variant *v;
3486 enum bfd_architecture arch;
3487 unsigned long mach;
3488 bfd abfd;
3489 int sysv_abi;
3490 asection *sect;
3491
3492 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
3493 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3494
3495 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3496 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3497
3498 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3499
3500 /* Check word size. If INFO is from a binary file, infer it from
3501 that, else choose a likely default. */
3502 if (from_xcoff_exec)
3503 {
3504 if (bfd_xcoff_is_xcoff64 (info.abfd))
3505 wordsize = 8;
3506 else
3507 wordsize = 4;
3508 }
3509 else if (from_elf_exec)
3510 {
3511 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3512 wordsize = 8;
3513 else
3514 wordsize = 4;
3515 }
3516 else
3517 {
3518 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3519 wordsize = info.bfd_arch_info->bits_per_word /
3520 info.bfd_arch_info->bits_per_byte;
3521 else
3522 wordsize = 4;
3523 }
3524
3525 /* Find a candidate among extant architectures. */
3526 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3527 arches != NULL;
3528 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3529 {
3530 /* Word size in the various PowerPC bfd_arch_info structs isn't
3531 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
3532 separate word size check. */
3533 tdep = gdbarch_tdep (arches->gdbarch);
3534 if (tdep && tdep->wordsize == wordsize)
3535 return arches->gdbarch;
3536 }
3537
3538 /* None found, create a new architecture from INFO, whose bfd_arch_info
3539 validity depends on the source:
3540 - executable useless
3541 - rs6000_host_arch() good
3542 - core file good
3543 - "set arch" trust blindly
3544 - GDB startup useless but harmless */
3545
3546 if (!from_xcoff_exec)
3547 {
3548 arch = info.bfd_arch_info->arch;
3549 mach = info.bfd_arch_info->mach;
3550 }
3551 else
3552 {
3553 arch = bfd_arch_powerpc;
3554 bfd_default_set_arch_mach (&abfd, arch, 0);
3555 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3556 mach = info.bfd_arch_info->mach;
3557 }
3558 tdep = XCALLOC (1, struct gdbarch_tdep);
3559 tdep->wordsize = wordsize;
3560
3561 /* For e500 executables, the apuinfo section is of help here. Such
3562 section contains the identifier and revision number of each
3563 Application-specific Processing Unit that is present on the
3564 chip. The content of the section is determined by the assembler
3565 which looks at each instruction and determines which unit (and
3566 which version of it) can execute it. In our case we just look for
3567 the existance of the section. */
3568
3569 if (info.abfd)
3570 {
3571 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3572 if (sect)
3573 {
3574 arch = info.bfd_arch_info->arch;
3575 mach = bfd_mach_ppc_e500;
3576 bfd_default_set_arch_mach (&abfd, arch, mach);
3577 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3578 }
3579 }
3580
3581 gdbarch = gdbarch_alloc (&info, tdep);
3582
3583 /* Initialize the number of real and pseudo registers in each variant. */
3584 init_variants ();
3585
3586 /* Choose variant. */
3587 v = find_variant_by_arch (arch, mach);
3588 if (!v)
3589 return NULL;
3590
3591 tdep->regs = v->regs;
3592
3593 tdep->ppc_gp0_regnum = 0;
3594 tdep->ppc_toc_regnum = 2;
3595 tdep->ppc_ps_regnum = 65;
3596 tdep->ppc_cr_regnum = 66;
3597 tdep->ppc_lr_regnum = 67;
3598 tdep->ppc_ctr_regnum = 68;
3599 tdep->ppc_xer_regnum = 69;
3600 if (v->mach == bfd_mach_ppc_601)
3601 tdep->ppc_mq_regnum = 124;
3602 else if (arch == bfd_arch_rs6000)
3603 tdep->ppc_mq_regnum = 70;
3604 else
3605 tdep->ppc_mq_regnum = -1;
3606 tdep->ppc_fp0_regnum = 32;
3607 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
3608 tdep->ppc_sr0_regnum = 71;
3609 tdep->ppc_vr0_regnum = -1;
3610 tdep->ppc_vrsave_regnum = -1;
3611 tdep->ppc_ev0_upper_regnum = -1;
3612 tdep->ppc_ev0_regnum = -1;
3613 tdep->ppc_ev31_regnum = -1;
3614 tdep->ppc_acc_regnum = -1;
3615 tdep->ppc_spefscr_regnum = -1;
3616
3617 set_gdbarch_pc_regnum (gdbarch, 64);
3618 set_gdbarch_sp_regnum (gdbarch, 1);
3619 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
3620 set_gdbarch_fp0_regnum (gdbarch, 32);
3621 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
3622 if (sysv_abi && wordsize == 8)
3623 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
3624 else if (sysv_abi && wordsize == 4)
3625 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
3626 else
3627 set_gdbarch_return_value (gdbarch, rs6000_return_value);
3628
3629 /* Set lr_frame_offset. */
3630 if (wordsize == 8)
3631 tdep->lr_frame_offset = 16;
3632 else if (sysv_abi)
3633 tdep->lr_frame_offset = 4;
3634 else
3635 tdep->lr_frame_offset = 8;
3636
3637 if (v->arch == bfd_arch_rs6000)
3638 tdep->ppc_sr0_regnum = -1;
3639 else if (v->arch == bfd_arch_powerpc)
3640 switch (v->mach)
3641 {
3642 case bfd_mach_ppc:
3643 tdep->ppc_sr0_regnum = -1;
3644 tdep->ppc_vr0_regnum = 71;
3645 tdep->ppc_vrsave_regnum = 104;
3646 break;
3647 case bfd_mach_ppc_7400:
3648 tdep->ppc_vr0_regnum = 119;
3649 tdep->ppc_vrsave_regnum = 152;
3650 break;
3651 case bfd_mach_ppc_e500:
3652 tdep->ppc_toc_regnum = -1;
3653 tdep->ppc_ev0_upper_regnum = 32;
3654 tdep->ppc_ev0_regnum = 73;
3655 tdep->ppc_ev31_regnum = 104;
3656 tdep->ppc_acc_regnum = 71;
3657 tdep->ppc_spefscr_regnum = 72;
3658 tdep->ppc_fp0_regnum = -1;
3659 tdep->ppc_fpscr_regnum = -1;
3660 tdep->ppc_sr0_regnum = -1;
3661 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3662 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
3663 set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
3664 break;
3665
3666 case bfd_mach_ppc64:
3667 case bfd_mach_ppc_620:
3668 case bfd_mach_ppc_630:
3669 case bfd_mach_ppc_a35:
3670 case bfd_mach_ppc_rs64ii:
3671 case bfd_mach_ppc_rs64iii:
3672 /* These processor's register sets don't have segment registers. */
3673 tdep->ppc_sr0_regnum = -1;
3674 break;
3675 }
3676 else
3677 internal_error (__FILE__, __LINE__,
3678 _("rs6000_gdbarch_init: "
3679 "received unexpected BFD 'arch' value"));
3680
3681 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3682
3683 /* Sanity check on registers. */
3684 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3685
3686 /* Select instruction printer. */
3687 if (arch == bfd_arch_rs6000)
3688 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
3689 else
3690 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
3691
3692 set_gdbarch_num_regs (gdbarch, v->nregs);
3693 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
3694 set_gdbarch_register_name (gdbarch, rs6000_register_name);
3695 set_gdbarch_register_type (gdbarch, rs6000_register_type);
3696 set_gdbarch_register_reggroup_p (gdbarch, rs6000_register_reggroup_p);
3697
3698 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3699 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3700 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3701 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3702 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3703 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3704 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3705 if (sysv_abi)
3706 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3707 else
3708 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3709 set_gdbarch_char_signed (gdbarch, 0);
3710
3711 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
3712 if (sysv_abi && wordsize == 8)
3713 /* PPC64 SYSV. */
3714 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3715 else if (!sysv_abi && wordsize == 4)
3716 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3717 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3718 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3719 224. */
3720 set_gdbarch_frame_red_zone_size (gdbarch, 224);
3721
3722 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3723 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3724 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3725
3726 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3727 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
3728
3729 if (sysv_abi && wordsize == 4)
3730 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
3731 else if (sysv_abi && wordsize == 8)
3732 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
3733 else
3734 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
3735
3736 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
3737 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
3738
3739 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3740 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3741
3742 /* Handles single stepping of atomic sequences. */
3743 set_gdbarch_software_single_step (gdbarch, deal_with_atomic_sequence);
3744
3745 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3746 for the descriptor and ".FN" for the entry-point -- a user
3747 specifying "break FN" will unexpectedly end up with a breakpoint
3748 on the descriptor and not the function. This architecture method
3749 transforms any breakpoints on descriptors into breakpoints on the
3750 corresponding entry point. */
3751 if (sysv_abi && wordsize == 8)
3752 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3753
3754 /* Not sure on this. FIXMEmgo */
3755 set_gdbarch_frame_args_skip (gdbarch, 8);
3756
3757 if (!sysv_abi)
3758 {
3759 /* Handle RS/6000 function pointers (which are really function
3760 descriptors). */
3761 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3762 rs6000_convert_from_func_ptr_addr);
3763 }
3764
3765 /* Helpers for function argument information. */
3766 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3767
3768 /* Trampoline. */
3769 set_gdbarch_in_solib_return_trampoline
3770 (gdbarch, rs6000_in_solib_return_trampoline);
3771 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
3772
3773 /* Hook in the DWARF CFI frame unwinder. */
3774 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
3775 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
3776
3777 /* Hook in ABI-specific overrides, if they have been registered. */
3778 gdbarch_init_osabi (info, gdbarch);
3779
3780 switch (info.osabi)
3781 {
3782 case GDB_OSABI_LINUX:
3783 /* FIXME: pgilliam/2005-10-21: Assume all PowerPC 64-bit linux systems
3784 have altivec registers. If not, ptrace will fail the first time it's
3785 called to access one and will not be called again. This wart will
3786 be removed when Daniel Jacobowitz's proposal for autodetecting target
3787 registers is implemented. */
3788 if ((v->arch == bfd_arch_powerpc) && ((v->mach)== bfd_mach_ppc64))
3789 {
3790 tdep->ppc_vr0_regnum = 71;
3791 tdep->ppc_vrsave_regnum = 104;
3792 }
3793 /* Fall Thru */
3794 case GDB_OSABI_NETBSD_AOUT:
3795 case GDB_OSABI_NETBSD_ELF:
3796 case GDB_OSABI_UNKNOWN:
3797 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3798 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3799 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3800 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3801 break;
3802 default:
3803 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3804
3805 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3806 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3807 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3808 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3809 }
3810
3811 init_sim_regno_table (gdbarch);
3812
3813 return gdbarch;
3814 }
3815
3816 static void
3817 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3818 {
3819 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3820
3821 if (tdep == NULL)
3822 return;
3823
3824 /* FIXME: Dump gdbarch_tdep. */
3825 }
3826
3827 /* Initialization code. */
3828
3829 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
3830
3831 void
3832 _initialize_rs6000_tdep (void)
3833 {
3834 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3835 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
3836 }
This page took 0.21772 seconds and 4 git commands to generate.