3bcd20515b602b2296e60f20e715a377b2109b1c
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "infrun.h"
24 #include "symtab.h"
25 #include "target.h"
26 #include "gdbcore.h"
27 #include "gdbcmd.h"
28 #include "objfiles.h"
29 #include "arch-utils.h"
30 #include "regcache.h"
31 #include "regset.h"
32 #include "doublest.h"
33 #include "value.h"
34 #include "parser-defs.h"
35 #include "osabi.h"
36 #include "infcall.h"
37 #include "sim-regno.h"
38 #include "gdb/sim-ppc.h"
39 #include "reggroups.h"
40 #include "dwarf2-frame.h"
41 #include "target-descriptions.h"
42 #include "user-regs.h"
43 #include "record-full.h"
44 #include "auxv.h"
45
46 #include "libbfd.h" /* for bfd_default_set_arch_mach */
47 #include "coff/internal.h" /* for libcoff.h */
48 #include "libcoff.h" /* for xcoff_data */
49 #include "coff/xcoff.h"
50 #include "libxcoff.h"
51
52 #include "elf-bfd.h"
53 #include "elf/ppc.h"
54 #include "elf/ppc64.h"
55
56 #include "solib-svr4.h"
57 #include "ppc-tdep.h"
58 #include "ppc-ravenscar-thread.h"
59
60 #include "dis-asm.h"
61
62 #include "trad-frame.h"
63 #include "frame-unwind.h"
64 #include "frame-base.h"
65
66 #include "features/rs6000/powerpc-32.c"
67 #include "features/rs6000/powerpc-altivec32.c"
68 #include "features/rs6000/powerpc-vsx32.c"
69 #include "features/rs6000/powerpc-403.c"
70 #include "features/rs6000/powerpc-403gc.c"
71 #include "features/rs6000/powerpc-405.c"
72 #include "features/rs6000/powerpc-505.c"
73 #include "features/rs6000/powerpc-601.c"
74 #include "features/rs6000/powerpc-602.c"
75 #include "features/rs6000/powerpc-603.c"
76 #include "features/rs6000/powerpc-604.c"
77 #include "features/rs6000/powerpc-64.c"
78 #include "features/rs6000/powerpc-altivec64.c"
79 #include "features/rs6000/powerpc-vsx64.c"
80 #include "features/rs6000/powerpc-7400.c"
81 #include "features/rs6000/powerpc-750.c"
82 #include "features/rs6000/powerpc-860.c"
83 #include "features/rs6000/powerpc-e500.c"
84 #include "features/rs6000/rs6000.c"
85
86 /* Determine if regnum is an SPE pseudo-register. */
87 #define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
88 && (regnum) >= (tdep)->ppc_ev0_regnum \
89 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
90
91 /* Determine if regnum is a decimal float pseudo-register. */
92 #define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
93 && (regnum) >= (tdep)->ppc_dl0_regnum \
94 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
95
96 /* Determine if regnum is a POWER7 VSX register. */
97 #define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
98 && (regnum) >= (tdep)->ppc_vsr0_regnum \
99 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
100
101 /* Determine if regnum is a POWER7 Extended FP register. */
102 #define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
103 && (regnum) >= (tdep)->ppc_efpr0_regnum \
104 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
105
106 /* The list of available "set powerpc ..." and "show powerpc ..."
107 commands. */
108 static struct cmd_list_element *setpowerpccmdlist = NULL;
109 static struct cmd_list_element *showpowerpccmdlist = NULL;
110
111 static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
112
113 /* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
114 static const char *const powerpc_vector_strings[] =
115 {
116 "auto",
117 "generic",
118 "altivec",
119 "spe",
120 NULL
121 };
122
123 /* A variable that can be configured by the user. */
124 static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
125 static const char *powerpc_vector_abi_string = "auto";
126
127 /* To be used by skip_prologue. */
128
129 struct rs6000_framedata
130 {
131 int offset; /* total size of frame --- the distance
132 by which we decrement sp to allocate
133 the frame */
134 int saved_gpr; /* smallest # of saved gpr */
135 unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
136 int saved_fpr; /* smallest # of saved fpr */
137 int saved_vr; /* smallest # of saved vr */
138 int saved_ev; /* smallest # of saved ev */
139 int alloca_reg; /* alloca register number (frame ptr) */
140 char frameless; /* true if frameless functions. */
141 char nosavedpc; /* true if pc not saved. */
142 char used_bl; /* true if link register clobbered */
143 int gpr_offset; /* offset of saved gprs from prev sp */
144 int fpr_offset; /* offset of saved fprs from prev sp */
145 int vr_offset; /* offset of saved vrs from prev sp */
146 int ev_offset; /* offset of saved evs from prev sp */
147 int lr_offset; /* offset of saved lr */
148 int lr_register; /* register of saved lr, if trustworthy */
149 int cr_offset; /* offset of saved cr */
150 int vrsave_offset; /* offset of saved vrsave register */
151 };
152
153
154 /* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
155 int
156 vsx_register_p (struct gdbarch *gdbarch, int regno)
157 {
158 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
159 if (tdep->ppc_vsr0_regnum < 0)
160 return 0;
161 else
162 return (regno >= tdep->ppc_vsr0_upper_regnum && regno
163 <= tdep->ppc_vsr0_upper_regnum + 31);
164 }
165
166 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
167 int
168 altivec_register_p (struct gdbarch *gdbarch, int regno)
169 {
170 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
171 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
172 return 0;
173 else
174 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
175 }
176
177
178 /* Return true if REGNO is an SPE register, false otherwise. */
179 int
180 spe_register_p (struct gdbarch *gdbarch, int regno)
181 {
182 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
183
184 /* Is it a reference to EV0 -- EV31, and do we have those? */
185 if (IS_SPE_PSEUDOREG (tdep, regno))
186 return 1;
187
188 /* Is it a reference to one of the raw upper GPR halves? */
189 if (tdep->ppc_ev0_upper_regnum >= 0
190 && tdep->ppc_ev0_upper_regnum <= regno
191 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
192 return 1;
193
194 /* Is it a reference to the 64-bit accumulator, and do we have that? */
195 if (tdep->ppc_acc_regnum >= 0
196 && tdep->ppc_acc_regnum == regno)
197 return 1;
198
199 /* Is it a reference to the SPE floating-point status and control register,
200 and do we have that? */
201 if (tdep->ppc_spefscr_regnum >= 0
202 && tdep->ppc_spefscr_regnum == regno)
203 return 1;
204
205 return 0;
206 }
207
208
209 /* Return non-zero if the architecture described by GDBARCH has
210 floating-point registers (f0 --- f31 and fpscr). */
211 int
212 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
213 {
214 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
215
216 return (tdep->ppc_fp0_regnum >= 0
217 && tdep->ppc_fpscr_regnum >= 0);
218 }
219
220 /* Return non-zero if the architecture described by GDBARCH has
221 VSX registers (vsr0 --- vsr63). */
222 static int
223 ppc_vsx_support_p (struct gdbarch *gdbarch)
224 {
225 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
226
227 return tdep->ppc_vsr0_regnum >= 0;
228 }
229
230 /* Return non-zero if the architecture described by GDBARCH has
231 Altivec registers (vr0 --- vr31, vrsave and vscr). */
232 int
233 ppc_altivec_support_p (struct gdbarch *gdbarch)
234 {
235 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236
237 return (tdep->ppc_vr0_regnum >= 0
238 && tdep->ppc_vrsave_regnum >= 0);
239 }
240
241 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
242 set it to SIM_REGNO.
243
244 This is a helper function for init_sim_regno_table, constructing
245 the table mapping GDB register numbers to sim register numbers; we
246 initialize every element in that table to -1 before we start
247 filling it in. */
248 static void
249 set_sim_regno (int *table, int gdb_regno, int sim_regno)
250 {
251 /* Make sure we don't try to assign any given GDB register a sim
252 register number more than once. */
253 gdb_assert (table[gdb_regno] == -1);
254 table[gdb_regno] = sim_regno;
255 }
256
257
258 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
259 numbers to simulator register numbers, based on the values placed
260 in the ARCH->tdep->ppc_foo_regnum members. */
261 static void
262 init_sim_regno_table (struct gdbarch *arch)
263 {
264 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
265 int total_regs = gdbarch_num_regs (arch);
266 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
267 int i;
268 static const char *const segment_regs[] = {
269 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
270 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
271 };
272
273 /* Presume that all registers not explicitly mentioned below are
274 unavailable from the sim. */
275 for (i = 0; i < total_regs; i++)
276 sim_regno[i] = -1;
277
278 /* General-purpose registers. */
279 for (i = 0; i < ppc_num_gprs; i++)
280 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
281
282 /* Floating-point registers. */
283 if (tdep->ppc_fp0_regnum >= 0)
284 for (i = 0; i < ppc_num_fprs; i++)
285 set_sim_regno (sim_regno,
286 tdep->ppc_fp0_regnum + i,
287 sim_ppc_f0_regnum + i);
288 if (tdep->ppc_fpscr_regnum >= 0)
289 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
290
291 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
292 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
293 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
294
295 /* Segment registers. */
296 for (i = 0; i < ppc_num_srs; i++)
297 {
298 int gdb_regno;
299
300 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
301 if (gdb_regno >= 0)
302 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
303 }
304
305 /* Altivec registers. */
306 if (tdep->ppc_vr0_regnum >= 0)
307 {
308 for (i = 0; i < ppc_num_vrs; i++)
309 set_sim_regno (sim_regno,
310 tdep->ppc_vr0_regnum + i,
311 sim_ppc_vr0_regnum + i);
312
313 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
314 we can treat this more like the other cases. */
315 set_sim_regno (sim_regno,
316 tdep->ppc_vr0_regnum + ppc_num_vrs,
317 sim_ppc_vscr_regnum);
318 }
319 /* vsave is a special-purpose register, so the code below handles it. */
320
321 /* SPE APU (E500) registers. */
322 if (tdep->ppc_ev0_upper_regnum >= 0)
323 for (i = 0; i < ppc_num_gprs; i++)
324 set_sim_regno (sim_regno,
325 tdep->ppc_ev0_upper_regnum + i,
326 sim_ppc_rh0_regnum + i);
327 if (tdep->ppc_acc_regnum >= 0)
328 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
329 /* spefscr is a special-purpose register, so the code below handles it. */
330
331 #ifdef WITH_PPC_SIM
332 /* Now handle all special-purpose registers. Verify that they
333 haven't mistakenly been assigned numbers by any of the above
334 code. */
335 for (i = 0; i < sim_ppc_num_sprs; i++)
336 {
337 const char *spr_name = sim_spr_register_name (i);
338 int gdb_regno = -1;
339
340 if (spr_name != NULL)
341 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
342
343 if (gdb_regno != -1)
344 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
345 }
346 #endif
347
348 /* Drop the initialized array into place. */
349 tdep->sim_regno = sim_regno;
350 }
351
352
353 /* Given a GDB register number REG, return the corresponding SIM
354 register number. */
355 static int
356 rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
357 {
358 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
359 int sim_regno;
360
361 if (tdep->sim_regno == NULL)
362 init_sim_regno_table (gdbarch);
363
364 gdb_assert (0 <= reg
365 && reg <= gdbarch_num_regs (gdbarch)
366 + gdbarch_num_pseudo_regs (gdbarch));
367 sim_regno = tdep->sim_regno[reg];
368
369 if (sim_regno >= 0)
370 return sim_regno;
371 else
372 return LEGACY_SIM_REGNO_IGNORE;
373 }
374
375 \f
376
377 /* Register set support functions. */
378
379 /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
380 Write the register to REGCACHE. */
381
382 void
383 ppc_supply_reg (struct regcache *regcache, int regnum,
384 const gdb_byte *regs, size_t offset, int regsize)
385 {
386 if (regnum != -1 && offset != -1)
387 {
388 if (regsize > 4)
389 {
390 struct gdbarch *gdbarch = get_regcache_arch (regcache);
391 int gdb_regsize = register_size (gdbarch, regnum);
392 if (gdb_regsize < regsize
393 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
394 offset += regsize - gdb_regsize;
395 }
396 regcache_raw_supply (regcache, regnum, regs + offset);
397 }
398 }
399
400 /* Read register REGNUM from REGCACHE and store to REGS + OFFSET
401 in a field REGSIZE wide. Zero pad as necessary. */
402
403 void
404 ppc_collect_reg (const struct regcache *regcache, int regnum,
405 gdb_byte *regs, size_t offset, int regsize)
406 {
407 if (regnum != -1 && offset != -1)
408 {
409 if (regsize > 4)
410 {
411 struct gdbarch *gdbarch = get_regcache_arch (regcache);
412 int gdb_regsize = register_size (gdbarch, regnum);
413 if (gdb_regsize < regsize)
414 {
415 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
416 {
417 memset (regs + offset, 0, regsize - gdb_regsize);
418 offset += regsize - gdb_regsize;
419 }
420 else
421 memset (regs + offset + regsize - gdb_regsize, 0,
422 regsize - gdb_regsize);
423 }
424 }
425 regcache_raw_collect (regcache, regnum, regs + offset);
426 }
427 }
428
429 static int
430 ppc_greg_offset (struct gdbarch *gdbarch,
431 struct gdbarch_tdep *tdep,
432 const struct ppc_reg_offsets *offsets,
433 int regnum,
434 int *regsize)
435 {
436 *regsize = offsets->gpr_size;
437 if (regnum >= tdep->ppc_gp0_regnum
438 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
439 return (offsets->r0_offset
440 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
441
442 if (regnum == gdbarch_pc_regnum (gdbarch))
443 return offsets->pc_offset;
444
445 if (regnum == tdep->ppc_ps_regnum)
446 return offsets->ps_offset;
447
448 if (regnum == tdep->ppc_lr_regnum)
449 return offsets->lr_offset;
450
451 if (regnum == tdep->ppc_ctr_regnum)
452 return offsets->ctr_offset;
453
454 *regsize = offsets->xr_size;
455 if (regnum == tdep->ppc_cr_regnum)
456 return offsets->cr_offset;
457
458 if (regnum == tdep->ppc_xer_regnum)
459 return offsets->xer_offset;
460
461 if (regnum == tdep->ppc_mq_regnum)
462 return offsets->mq_offset;
463
464 return -1;
465 }
466
467 static int
468 ppc_fpreg_offset (struct gdbarch_tdep *tdep,
469 const struct ppc_reg_offsets *offsets,
470 int regnum)
471 {
472 if (regnum >= tdep->ppc_fp0_regnum
473 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
474 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
475
476 if (regnum == tdep->ppc_fpscr_regnum)
477 return offsets->fpscr_offset;
478
479 return -1;
480 }
481
482 static int
483 ppc_vrreg_offset (struct gdbarch_tdep *tdep,
484 const struct ppc_reg_offsets *offsets,
485 int regnum)
486 {
487 if (regnum >= tdep->ppc_vr0_regnum
488 && regnum < tdep->ppc_vr0_regnum + ppc_num_vrs)
489 return offsets->vr0_offset + (regnum - tdep->ppc_vr0_regnum) * 16;
490
491 if (regnum == tdep->ppc_vrsave_regnum - 1)
492 return offsets->vscr_offset;
493
494 if (regnum == tdep->ppc_vrsave_regnum)
495 return offsets->vrsave_offset;
496
497 return -1;
498 }
499
500 /* Supply register REGNUM in the general-purpose register set REGSET
501 from the buffer specified by GREGS and LEN to register cache
502 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
503
504 void
505 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
506 int regnum, const void *gregs, size_t len)
507 {
508 struct gdbarch *gdbarch = get_regcache_arch (regcache);
509 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
510 const struct ppc_reg_offsets *offsets
511 = (const struct ppc_reg_offsets *) regset->regmap;
512 size_t offset;
513 int regsize;
514
515 if (regnum == -1)
516 {
517 int i;
518 int gpr_size = offsets->gpr_size;
519
520 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
521 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
522 i++, offset += gpr_size)
523 ppc_supply_reg (regcache, i, (const gdb_byte *) gregs, offset,
524 gpr_size);
525
526 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
527 (const gdb_byte *) gregs, offsets->pc_offset, gpr_size);
528 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
529 (const gdb_byte *) gregs, offsets->ps_offset, gpr_size);
530 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
531 (const gdb_byte *) gregs, offsets->lr_offset, gpr_size);
532 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
533 (const gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
534 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
535 (const gdb_byte *) gregs, offsets->cr_offset,
536 offsets->xr_size);
537 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
538 (const gdb_byte *) gregs, offsets->xer_offset,
539 offsets->xr_size);
540 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
541 (const gdb_byte *) gregs, offsets->mq_offset,
542 offsets->xr_size);
543 return;
544 }
545
546 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
547 ppc_supply_reg (regcache, regnum, (const gdb_byte *) gregs, offset, regsize);
548 }
549
550 /* Supply register REGNUM in the floating-point register set REGSET
551 from the buffer specified by FPREGS and LEN to register cache
552 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
553
554 void
555 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
556 int regnum, const void *fpregs, size_t len)
557 {
558 struct gdbarch *gdbarch = get_regcache_arch (regcache);
559 struct gdbarch_tdep *tdep;
560 const struct ppc_reg_offsets *offsets;
561 size_t offset;
562
563 if (!ppc_floating_point_unit_p (gdbarch))
564 return;
565
566 tdep = gdbarch_tdep (gdbarch);
567 offsets = (const struct ppc_reg_offsets *) regset->regmap;
568 if (regnum == -1)
569 {
570 int i;
571
572 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
573 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
574 i++, offset += 8)
575 ppc_supply_reg (regcache, i, (const gdb_byte *) fpregs, offset, 8);
576
577 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
578 (const gdb_byte *) fpregs, offsets->fpscr_offset,
579 offsets->fpscr_size);
580 return;
581 }
582
583 offset = ppc_fpreg_offset (tdep, offsets, regnum);
584 ppc_supply_reg (regcache, regnum, (const gdb_byte *) fpregs, offset,
585 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
586 }
587
588 /* Supply register REGNUM in the VSX register set REGSET
589 from the buffer specified by VSXREGS and LEN to register cache
590 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
591
592 void
593 ppc_supply_vsxregset (const struct regset *regset, struct regcache *regcache,
594 int regnum, const void *vsxregs, size_t len)
595 {
596 struct gdbarch *gdbarch = get_regcache_arch (regcache);
597 struct gdbarch_tdep *tdep;
598
599 if (!ppc_vsx_support_p (gdbarch))
600 return;
601
602 tdep = gdbarch_tdep (gdbarch);
603
604 if (regnum == -1)
605 {
606 int i;
607
608 for (i = tdep->ppc_vsr0_upper_regnum;
609 i < tdep->ppc_vsr0_upper_regnum + 32;
610 i++)
611 ppc_supply_reg (regcache, i, (const gdb_byte *) vsxregs, 0, 8);
612
613 return;
614 }
615 else
616 ppc_supply_reg (regcache, regnum, (const gdb_byte *) vsxregs, 0, 8);
617 }
618
619 /* Supply register REGNUM in the Altivec register set REGSET
620 from the buffer specified by VRREGS and LEN to register cache
621 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
622
623 void
624 ppc_supply_vrregset (const struct regset *regset, struct regcache *regcache,
625 int regnum, const void *vrregs, size_t len)
626 {
627 struct gdbarch *gdbarch = get_regcache_arch (regcache);
628 struct gdbarch_tdep *tdep;
629 const struct ppc_reg_offsets *offsets;
630 size_t offset;
631
632 if (!ppc_altivec_support_p (gdbarch))
633 return;
634
635 tdep = gdbarch_tdep (gdbarch);
636 offsets = (const struct ppc_reg_offsets *) regset->regmap;
637 if (regnum == -1)
638 {
639 int i;
640
641 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
642 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
643 i++, offset += 16)
644 ppc_supply_reg (regcache, i, (const gdb_byte *) vrregs, offset, 16);
645
646 ppc_supply_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
647 (const gdb_byte *) vrregs, offsets->vscr_offset, 4);
648
649 ppc_supply_reg (regcache, tdep->ppc_vrsave_regnum,
650 (const gdb_byte *) vrregs, offsets->vrsave_offset, 4);
651 return;
652 }
653
654 offset = ppc_vrreg_offset (tdep, offsets, regnum);
655 if (regnum != tdep->ppc_vrsave_regnum
656 && regnum != tdep->ppc_vrsave_regnum - 1)
657 ppc_supply_reg (regcache, regnum, (const gdb_byte *) vrregs, offset, 16);
658 else
659 ppc_supply_reg (regcache, regnum,
660 (const gdb_byte *) vrregs, offset, 4);
661 }
662
663 /* Collect register REGNUM in the general-purpose register set
664 REGSET from register cache REGCACHE into the buffer specified by
665 GREGS and LEN. If REGNUM is -1, do this for all registers in
666 REGSET. */
667
668 void
669 ppc_collect_gregset (const struct regset *regset,
670 const struct regcache *regcache,
671 int regnum, void *gregs, size_t len)
672 {
673 struct gdbarch *gdbarch = get_regcache_arch (regcache);
674 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
675 const struct ppc_reg_offsets *offsets
676 = (const struct ppc_reg_offsets *) regset->regmap;
677 size_t offset;
678 int regsize;
679
680 if (regnum == -1)
681 {
682 int i;
683 int gpr_size = offsets->gpr_size;
684
685 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
686 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
687 i++, offset += gpr_size)
688 ppc_collect_reg (regcache, i, (gdb_byte *) gregs, offset, gpr_size);
689
690 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
691 (gdb_byte *) gregs, offsets->pc_offset, gpr_size);
692 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
693 (gdb_byte *) gregs, offsets->ps_offset, gpr_size);
694 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
695 (gdb_byte *) gregs, offsets->lr_offset, gpr_size);
696 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
697 (gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
698 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
699 (gdb_byte *) gregs, offsets->cr_offset,
700 offsets->xr_size);
701 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
702 (gdb_byte *) gregs, offsets->xer_offset,
703 offsets->xr_size);
704 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
705 (gdb_byte *) gregs, offsets->mq_offset,
706 offsets->xr_size);
707 return;
708 }
709
710 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
711 ppc_collect_reg (regcache, regnum, (gdb_byte *) gregs, offset, regsize);
712 }
713
714 /* Collect register REGNUM in the floating-point register set
715 REGSET from register cache REGCACHE into the buffer specified by
716 FPREGS and LEN. If REGNUM is -1, do this for all registers in
717 REGSET. */
718
719 void
720 ppc_collect_fpregset (const struct regset *regset,
721 const struct regcache *regcache,
722 int regnum, void *fpregs, size_t len)
723 {
724 struct gdbarch *gdbarch = get_regcache_arch (regcache);
725 struct gdbarch_tdep *tdep;
726 const struct ppc_reg_offsets *offsets;
727 size_t offset;
728
729 if (!ppc_floating_point_unit_p (gdbarch))
730 return;
731
732 tdep = gdbarch_tdep (gdbarch);
733 offsets = (const struct ppc_reg_offsets *) regset->regmap;
734 if (regnum == -1)
735 {
736 int i;
737
738 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
739 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
740 i++, offset += 8)
741 ppc_collect_reg (regcache, i, (gdb_byte *) fpregs, offset, 8);
742
743 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
744 (gdb_byte *) fpregs, offsets->fpscr_offset,
745 offsets->fpscr_size);
746 return;
747 }
748
749 offset = ppc_fpreg_offset (tdep, offsets, regnum);
750 ppc_collect_reg (regcache, regnum, (gdb_byte *) fpregs, offset,
751 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
752 }
753
754 /* Collect register REGNUM in the VSX register set
755 REGSET from register cache REGCACHE into the buffer specified by
756 VSXREGS and LEN. If REGNUM is -1, do this for all registers in
757 REGSET. */
758
759 void
760 ppc_collect_vsxregset (const struct regset *regset,
761 const struct regcache *regcache,
762 int regnum, void *vsxregs, size_t len)
763 {
764 struct gdbarch *gdbarch = get_regcache_arch (regcache);
765 struct gdbarch_tdep *tdep;
766
767 if (!ppc_vsx_support_p (gdbarch))
768 return;
769
770 tdep = gdbarch_tdep (gdbarch);
771
772 if (regnum == -1)
773 {
774 int i;
775
776 for (i = tdep->ppc_vsr0_upper_regnum;
777 i < tdep->ppc_vsr0_upper_regnum + 32;
778 i++)
779 ppc_collect_reg (regcache, i, (gdb_byte *) vsxregs, 0, 8);
780
781 return;
782 }
783 else
784 ppc_collect_reg (regcache, regnum, (gdb_byte *) vsxregs, 0, 8);
785 }
786
787
788 /* Collect register REGNUM in the Altivec register set
789 REGSET from register cache REGCACHE into the buffer specified by
790 VRREGS and LEN. If REGNUM is -1, do this for all registers in
791 REGSET. */
792
793 void
794 ppc_collect_vrregset (const struct regset *regset,
795 const struct regcache *regcache,
796 int regnum, void *vrregs, size_t len)
797 {
798 struct gdbarch *gdbarch = get_regcache_arch (regcache);
799 struct gdbarch_tdep *tdep;
800 const struct ppc_reg_offsets *offsets;
801 size_t offset;
802
803 if (!ppc_altivec_support_p (gdbarch))
804 return;
805
806 tdep = gdbarch_tdep (gdbarch);
807 offsets = (const struct ppc_reg_offsets *) regset->regmap;
808 if (regnum == -1)
809 {
810 int i;
811
812 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
813 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
814 i++, offset += 16)
815 ppc_collect_reg (regcache, i, (gdb_byte *) vrregs, offset, 16);
816
817 ppc_collect_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
818 (gdb_byte *) vrregs, offsets->vscr_offset, 4);
819
820 ppc_collect_reg (regcache, tdep->ppc_vrsave_regnum,
821 (gdb_byte *) vrregs, offsets->vrsave_offset, 4);
822 return;
823 }
824
825 offset = ppc_vrreg_offset (tdep, offsets, regnum);
826 if (regnum != tdep->ppc_vrsave_regnum
827 && regnum != tdep->ppc_vrsave_regnum - 1)
828 ppc_collect_reg (regcache, regnum, (gdb_byte *) vrregs, offset, 16);
829 else
830 ppc_collect_reg (regcache, regnum,
831 (gdb_byte *) vrregs, offset, 4);
832 }
833 \f
834
835 static int
836 insn_changes_sp_or_jumps (unsigned long insn)
837 {
838 int opcode = (insn >> 26) & 0x03f;
839 int sd = (insn >> 21) & 0x01f;
840 int a = (insn >> 16) & 0x01f;
841 int subcode = (insn >> 1) & 0x3ff;
842
843 /* Changes the stack pointer. */
844
845 /* NOTE: There are many ways to change the value of a given register.
846 The ways below are those used when the register is R1, the SP,
847 in a funtion's epilogue. */
848
849 if (opcode == 31 && subcode == 444 && a == 1)
850 return 1; /* mr R1,Rn */
851 if (opcode == 14 && sd == 1)
852 return 1; /* addi R1,Rn,simm */
853 if (opcode == 58 && sd == 1)
854 return 1; /* ld R1,ds(Rn) */
855
856 /* Transfers control. */
857
858 if (opcode == 18)
859 return 1; /* b */
860 if (opcode == 16)
861 return 1; /* bc */
862 if (opcode == 19 && subcode == 16)
863 return 1; /* bclr */
864 if (opcode == 19 && subcode == 528)
865 return 1; /* bcctr */
866
867 return 0;
868 }
869
870 /* Return true if we are in the function's epilogue, i.e. after the
871 instruction that destroyed the function's stack frame.
872
873 1) scan forward from the point of execution:
874 a) If you find an instruction that modifies the stack pointer
875 or transfers control (except a return), execution is not in
876 an epilogue, return.
877 b) Stop scanning if you find a return instruction or reach the
878 end of the function or reach the hard limit for the size of
879 an epilogue.
880 2) scan backward from the point of execution:
881 a) If you find an instruction that modifies the stack pointer,
882 execution *is* in an epilogue, return.
883 b) Stop scanning if you reach an instruction that transfers
884 control or the beginning of the function or reach the hard
885 limit for the size of an epilogue. */
886
887 static int
888 rs6000_in_function_epilogue_frame_p (struct frame_info *curfrm,
889 struct gdbarch *gdbarch, CORE_ADDR pc)
890 {
891 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
892 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
893 bfd_byte insn_buf[PPC_INSN_SIZE];
894 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
895 unsigned long insn;
896
897 /* Find the search limits based on function boundaries and hard limit. */
898
899 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
900 return 0;
901
902 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
903 if (epilogue_start < func_start) epilogue_start = func_start;
904
905 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
906 if (epilogue_end > func_end) epilogue_end = func_end;
907
908 /* Scan forward until next 'blr'. */
909
910 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
911 {
912 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
913 return 0;
914 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
915 if (insn == 0x4e800020)
916 break;
917 /* Assume a bctr is a tail call unless it points strictly within
918 this function. */
919 if (insn == 0x4e800420)
920 {
921 CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
922 tdep->ppc_ctr_regnum);
923 if (ctr > func_start && ctr < func_end)
924 return 0;
925 else
926 break;
927 }
928 if (insn_changes_sp_or_jumps (insn))
929 return 0;
930 }
931
932 /* Scan backward until adjustment to stack pointer (R1). */
933
934 for (scan_pc = pc - PPC_INSN_SIZE;
935 scan_pc >= epilogue_start;
936 scan_pc -= PPC_INSN_SIZE)
937 {
938 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
939 return 0;
940 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
941 if (insn_changes_sp_or_jumps (insn))
942 return 1;
943 }
944
945 return 0;
946 }
947
948 /* Implement the stack_frame_destroyed_p gdbarch method. */
949
950 static int
951 rs6000_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
952 {
953 return rs6000_in_function_epilogue_frame_p (get_current_frame (),
954 gdbarch, pc);
955 }
956
957 /* Get the ith function argument for the current function. */
958 static CORE_ADDR
959 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
960 struct type *type)
961 {
962 return get_frame_register_unsigned (frame, 3 + argi);
963 }
964
965 /* Sequence of bytes for breakpoint instruction. */
966
967 static const unsigned char *
968 rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
969 int *bp_size)
970 {
971 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
972 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
973 *bp_size = 4;
974 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
975 return big_breakpoint;
976 else
977 return little_breakpoint;
978 }
979
980 /* Instruction masks for displaced stepping. */
981 #define BRANCH_MASK 0xfc000000
982 #define BP_MASK 0xFC0007FE
983 #define B_INSN 0x48000000
984 #define BC_INSN 0x40000000
985 #define BXL_INSN 0x4c000000
986 #define BP_INSN 0x7C000008
987
988 /* Instruction masks used during single-stepping of atomic
989 sequences. */
990 #define LWARX_MASK 0xfc0007fe
991 #define LWARX_INSTRUCTION 0x7c000028
992 #define LDARX_INSTRUCTION 0x7c0000A8
993 #define STWCX_MASK 0xfc0007ff
994 #define STWCX_INSTRUCTION 0x7c00012d
995 #define STDCX_INSTRUCTION 0x7c0001ad
996
997 /* We can't displaced step atomic sequences. Otherwise this is just
998 like simple_displaced_step_copy_insn. */
999
1000 static struct displaced_step_closure *
1001 ppc_displaced_step_copy_insn (struct gdbarch *gdbarch,
1002 CORE_ADDR from, CORE_ADDR to,
1003 struct regcache *regs)
1004 {
1005 size_t len = gdbarch_max_insn_length (gdbarch);
1006 gdb_byte *buf = (gdb_byte *) xmalloc (len);
1007 struct cleanup *old_chain = make_cleanup (xfree, buf);
1008 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1009 int insn;
1010
1011 read_memory (from, buf, len);
1012
1013 insn = extract_signed_integer (buf, PPC_INSN_SIZE, byte_order);
1014
1015 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
1016 if ((insn & LWARX_MASK) == LWARX_INSTRUCTION
1017 || (insn & LWARX_MASK) == LDARX_INSTRUCTION)
1018 {
1019 if (debug_displaced)
1020 {
1021 fprintf_unfiltered (gdb_stdlog,
1022 "displaced: can't displaced step "
1023 "atomic sequence at %s\n",
1024 paddress (gdbarch, from));
1025 }
1026 do_cleanups (old_chain);
1027 return NULL;
1028 }
1029
1030 write_memory (to, buf, len);
1031
1032 if (debug_displaced)
1033 {
1034 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1035 paddress (gdbarch, from), paddress (gdbarch, to));
1036 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1037 }
1038
1039 discard_cleanups (old_chain);
1040 return (struct displaced_step_closure *) buf;
1041 }
1042
1043 /* Fix up the state of registers and memory after having single-stepped
1044 a displaced instruction. */
1045 static void
1046 ppc_displaced_step_fixup (struct gdbarch *gdbarch,
1047 struct displaced_step_closure *closure,
1048 CORE_ADDR from, CORE_ADDR to,
1049 struct regcache *regs)
1050 {
1051 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1052 /* Our closure is a copy of the instruction. */
1053 ULONGEST insn = extract_unsigned_integer ((gdb_byte *) closure,
1054 PPC_INSN_SIZE, byte_order);
1055 ULONGEST opcode = 0;
1056 /* Offset for non PC-relative instructions. */
1057 LONGEST offset = PPC_INSN_SIZE;
1058
1059 opcode = insn & BRANCH_MASK;
1060
1061 if (debug_displaced)
1062 fprintf_unfiltered (gdb_stdlog,
1063 "displaced: (ppc) fixup (%s, %s)\n",
1064 paddress (gdbarch, from), paddress (gdbarch, to));
1065
1066
1067 /* Handle PC-relative branch instructions. */
1068 if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
1069 {
1070 ULONGEST current_pc;
1071
1072 /* Read the current PC value after the instruction has been executed
1073 in a displaced location. Calculate the offset to be applied to the
1074 original PC value before the displaced stepping. */
1075 regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1076 &current_pc);
1077 offset = current_pc - to;
1078
1079 if (opcode != BXL_INSN)
1080 {
1081 /* Check for AA bit indicating whether this is an absolute
1082 addressing or PC-relative (1: absolute, 0: relative). */
1083 if (!(insn & 0x2))
1084 {
1085 /* PC-relative addressing is being used in the branch. */
1086 if (debug_displaced)
1087 fprintf_unfiltered
1088 (gdb_stdlog,
1089 "displaced: (ppc) branch instruction: %s\n"
1090 "displaced: (ppc) adjusted PC from %s to %s\n",
1091 paddress (gdbarch, insn), paddress (gdbarch, current_pc),
1092 paddress (gdbarch, from + offset));
1093
1094 regcache_cooked_write_unsigned (regs,
1095 gdbarch_pc_regnum (gdbarch),
1096 from + offset);
1097 }
1098 }
1099 else
1100 {
1101 /* If we're here, it means we have a branch to LR or CTR. If the
1102 branch was taken, the offset is probably greater than 4 (the next
1103 instruction), so it's safe to assume that an offset of 4 means we
1104 did not take the branch. */
1105 if (offset == PPC_INSN_SIZE)
1106 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1107 from + PPC_INSN_SIZE);
1108 }
1109
1110 /* Check for LK bit indicating whether we should set the link
1111 register to point to the next instruction
1112 (1: Set, 0: Don't set). */
1113 if (insn & 0x1)
1114 {
1115 /* Link register needs to be set to the next instruction's PC. */
1116 regcache_cooked_write_unsigned (regs,
1117 gdbarch_tdep (gdbarch)->ppc_lr_regnum,
1118 from + PPC_INSN_SIZE);
1119 if (debug_displaced)
1120 fprintf_unfiltered (gdb_stdlog,
1121 "displaced: (ppc) adjusted LR to %s\n",
1122 paddress (gdbarch, from + PPC_INSN_SIZE));
1123
1124 }
1125 }
1126 /* Check for breakpoints in the inferior. If we've found one, place the PC
1127 right at the breakpoint instruction. */
1128 else if ((insn & BP_MASK) == BP_INSN)
1129 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
1130 else
1131 /* Handle any other instructions that do not fit in the categories above. */
1132 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1133 from + offset);
1134 }
1135
1136 /* Always use hardware single-stepping to execute the
1137 displaced instruction. */
1138 static int
1139 ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
1140 struct displaced_step_closure *closure)
1141 {
1142 return 1;
1143 }
1144
1145 /* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
1146 instruction and ending with a STWCX/STDCX instruction. If such a sequence
1147 is found, attempt to step through it. A breakpoint is placed at the end of
1148 the sequence. */
1149
1150 int
1151 ppc_deal_with_atomic_sequence (struct frame_info *frame)
1152 {
1153 struct gdbarch *gdbarch = get_frame_arch (frame);
1154 struct address_space *aspace = get_frame_address_space (frame);
1155 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1156 CORE_ADDR pc = get_frame_pc (frame);
1157 CORE_ADDR breaks[2] = {-1, -1};
1158 CORE_ADDR loc = pc;
1159 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
1160 int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1161 int insn_count;
1162 int index;
1163 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
1164 const int atomic_sequence_length = 16; /* Instruction sequence length. */
1165 int opcode; /* Branch instruction's OPcode. */
1166 int bc_insn_count = 0; /* Conditional branch instruction count. */
1167
1168 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
1169 if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
1170 && (insn & LWARX_MASK) != LDARX_INSTRUCTION)
1171 return 0;
1172
1173 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1174 instructions. */
1175 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1176 {
1177 loc += PPC_INSN_SIZE;
1178 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1179
1180 /* Assume that there is at most one conditional branch in the atomic
1181 sequence. If a conditional branch is found, put a breakpoint in
1182 its destination address. */
1183 if ((insn & BRANCH_MASK) == BC_INSN)
1184 {
1185 int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
1186 int absolute = insn & 2;
1187
1188 if (bc_insn_count >= 1)
1189 return 0; /* More than one conditional branch found, fallback
1190 to the standard single-step code. */
1191
1192 if (absolute)
1193 breaks[1] = immediate;
1194 else
1195 breaks[1] = loc + immediate;
1196
1197 bc_insn_count++;
1198 last_breakpoint++;
1199 }
1200
1201 if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
1202 || (insn & STWCX_MASK) == STDCX_INSTRUCTION)
1203 break;
1204 }
1205
1206 /* Assume that the atomic sequence ends with a stwcx/stdcx instruction. */
1207 if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
1208 && (insn & STWCX_MASK) != STDCX_INSTRUCTION)
1209 return 0;
1210
1211 closing_insn = loc;
1212 loc += PPC_INSN_SIZE;
1213 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1214
1215 /* Insert a breakpoint right after the end of the atomic sequence. */
1216 breaks[0] = loc;
1217
1218 /* Check for duplicated breakpoints. Check also for a breakpoint
1219 placed (branch instruction's destination) anywhere in sequence. */
1220 if (last_breakpoint
1221 && (breaks[1] == breaks[0]
1222 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
1223 last_breakpoint = 0;
1224
1225 /* Effectively inserts the breakpoints. */
1226 for (index = 0; index <= last_breakpoint; index++)
1227 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
1228
1229 return 1;
1230 }
1231
1232
1233 #define SIGNED_SHORT(x) \
1234 ((sizeof (short) == 2) \
1235 ? ((int)(short)(x)) \
1236 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1237
1238 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1239
1240 /* Limit the number of skipped non-prologue instructions, as the examining
1241 of the prologue is expensive. */
1242 static int max_skip_non_prologue_insns = 10;
1243
1244 /* Return nonzero if the given instruction OP can be part of the prologue
1245 of a function and saves a parameter on the stack. FRAMEP should be
1246 set if one of the previous instructions in the function has set the
1247 Frame Pointer. */
1248
1249 static int
1250 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1251 {
1252 /* Move parameters from argument registers to temporary register. */
1253 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1254 {
1255 /* Rx must be scratch register r0. */
1256 const int rx_regno = (op >> 16) & 31;
1257 /* Ry: Only r3 - r10 are used for parameter passing. */
1258 const int ry_regno = GET_SRC_REG (op);
1259
1260 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1261 {
1262 *r0_contains_arg = 1;
1263 return 1;
1264 }
1265 else
1266 return 0;
1267 }
1268
1269 /* Save a General Purpose Register on stack. */
1270
1271 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1272 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1273 {
1274 /* Rx: Only r3 - r10 are used for parameter passing. */
1275 const int rx_regno = GET_SRC_REG (op);
1276
1277 return (rx_regno >= 3 && rx_regno <= 10);
1278 }
1279
1280 /* Save a General Purpose Register on stack via the Frame Pointer. */
1281
1282 if (framep &&
1283 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1284 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1285 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1286 {
1287 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1288 However, the compiler sometimes uses r0 to hold an argument. */
1289 const int rx_regno = GET_SRC_REG (op);
1290
1291 return ((rx_regno >= 3 && rx_regno <= 10)
1292 || (rx_regno == 0 && *r0_contains_arg));
1293 }
1294
1295 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1296 {
1297 /* Only f2 - f8 are used for parameter passing. */
1298 const int src_regno = GET_SRC_REG (op);
1299
1300 return (src_regno >= 2 && src_regno <= 8);
1301 }
1302
1303 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1304 {
1305 /* Only f2 - f8 are used for parameter passing. */
1306 const int src_regno = GET_SRC_REG (op);
1307
1308 return (src_regno >= 2 && src_regno <= 8);
1309 }
1310
1311 /* Not an insn that saves a parameter on stack. */
1312 return 0;
1313 }
1314
1315 /* Assuming that INSN is a "bl" instruction located at PC, return
1316 nonzero if the destination of the branch is a "blrl" instruction.
1317
1318 This sequence is sometimes found in certain function prologues.
1319 It allows the function to load the LR register with a value that
1320 they can use to access PIC data using PC-relative offsets. */
1321
1322 static int
1323 bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
1324 {
1325 CORE_ADDR dest;
1326 int immediate;
1327 int absolute;
1328 int dest_insn;
1329
1330 absolute = (int) ((insn >> 1) & 1);
1331 immediate = ((insn & ~3) << 6) >> 6;
1332 if (absolute)
1333 dest = immediate;
1334 else
1335 dest = pc + immediate;
1336
1337 dest_insn = read_memory_integer (dest, 4, byte_order);
1338 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1339 return 1;
1340
1341 return 0;
1342 }
1343
1344 /* Masks for decoding a branch-and-link (bl) instruction.
1345
1346 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1347 The former is anded with the opcode in question; if the result of
1348 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1349 question is a ``bl'' instruction.
1350
1351 BL_DISPLACMENT_MASK is anded with the opcode in order to extract
1352 the branch displacement. */
1353
1354 #define BL_MASK 0xfc000001
1355 #define BL_INSTRUCTION 0x48000001
1356 #define BL_DISPLACEMENT_MASK 0x03fffffc
1357
1358 static unsigned long
1359 rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
1360 {
1361 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1362 gdb_byte buf[4];
1363 unsigned long op;
1364
1365 /* Fetch the instruction and convert it to an integer. */
1366 if (target_read_memory (pc, buf, 4))
1367 return 0;
1368 op = extract_unsigned_integer (buf, 4, byte_order);
1369
1370 return op;
1371 }
1372
1373 /* GCC generates several well-known sequences of instructions at the begining
1374 of each function prologue when compiling with -fstack-check. If one of
1375 such sequences starts at START_PC, then return the address of the
1376 instruction immediately past this sequence. Otherwise, return START_PC. */
1377
1378 static CORE_ADDR
1379 rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
1380 {
1381 CORE_ADDR pc = start_pc;
1382 unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
1383
1384 /* First possible sequence: A small number of probes.
1385 stw 0, -<some immediate>(1)
1386 [repeat this instruction any (small) number of times]. */
1387
1388 if ((op & 0xffff0000) == 0x90010000)
1389 {
1390 while ((op & 0xffff0000) == 0x90010000)
1391 {
1392 pc = pc + 4;
1393 op = rs6000_fetch_instruction (gdbarch, pc);
1394 }
1395 return pc;
1396 }
1397
1398 /* Second sequence: A probing loop.
1399 addi 12,1,-<some immediate>
1400 lis 0,-<some immediate>
1401 [possibly ori 0,0,<some immediate>]
1402 add 0,12,0
1403 cmpw 0,12,0
1404 beq 0,<disp>
1405 addi 12,12,-<some immediate>
1406 stw 0,0(12)
1407 b <disp>
1408 [possibly one last probe: stw 0,<some immediate>(12)]. */
1409
1410 while (1)
1411 {
1412 /* addi 12,1,-<some immediate> */
1413 if ((op & 0xffff0000) != 0x39810000)
1414 break;
1415
1416 /* lis 0,-<some immediate> */
1417 pc = pc + 4;
1418 op = rs6000_fetch_instruction (gdbarch, pc);
1419 if ((op & 0xffff0000) != 0x3c000000)
1420 break;
1421
1422 pc = pc + 4;
1423 op = rs6000_fetch_instruction (gdbarch, pc);
1424 /* [possibly ori 0,0,<some immediate>] */
1425 if ((op & 0xffff0000) == 0x60000000)
1426 {
1427 pc = pc + 4;
1428 op = rs6000_fetch_instruction (gdbarch, pc);
1429 }
1430 /* add 0,12,0 */
1431 if (op != 0x7c0c0214)
1432 break;
1433
1434 /* cmpw 0,12,0 */
1435 pc = pc + 4;
1436 op = rs6000_fetch_instruction (gdbarch, pc);
1437 if (op != 0x7c0c0000)
1438 break;
1439
1440 /* beq 0,<disp> */
1441 pc = pc + 4;
1442 op = rs6000_fetch_instruction (gdbarch, pc);
1443 if ((op & 0xff9f0001) != 0x41820000)
1444 break;
1445
1446 /* addi 12,12,-<some immediate> */
1447 pc = pc + 4;
1448 op = rs6000_fetch_instruction (gdbarch, pc);
1449 if ((op & 0xffff0000) != 0x398c0000)
1450 break;
1451
1452 /* stw 0,0(12) */
1453 pc = pc + 4;
1454 op = rs6000_fetch_instruction (gdbarch, pc);
1455 if (op != 0x900c0000)
1456 break;
1457
1458 /* b <disp> */
1459 pc = pc + 4;
1460 op = rs6000_fetch_instruction (gdbarch, pc);
1461 if ((op & 0xfc000001) != 0x48000000)
1462 break;
1463
1464 /* [possibly one last probe: stw 0,<some immediate>(12)]. */
1465 pc = pc + 4;
1466 op = rs6000_fetch_instruction (gdbarch, pc);
1467 if ((op & 0xffff0000) == 0x900c0000)
1468 {
1469 pc = pc + 4;
1470 op = rs6000_fetch_instruction (gdbarch, pc);
1471 }
1472
1473 /* We found a valid stack-check sequence, return the new PC. */
1474 return pc;
1475 }
1476
1477 /* Third sequence: No probe; instead, a comparizon between the stack size
1478 limit (saved in a run-time global variable) and the current stack
1479 pointer:
1480
1481 addi 0,1,-<some immediate>
1482 lis 12,__gnat_stack_limit@ha
1483 lwz 12,__gnat_stack_limit@l(12)
1484 twllt 0,12
1485
1486 or, with a small variant in the case of a bigger stack frame:
1487 addis 0,1,<some immediate>
1488 addic 0,0,-<some immediate>
1489 lis 12,__gnat_stack_limit@ha
1490 lwz 12,__gnat_stack_limit@l(12)
1491 twllt 0,12
1492 */
1493 while (1)
1494 {
1495 /* addi 0,1,-<some immediate> */
1496 if ((op & 0xffff0000) != 0x38010000)
1497 {
1498 /* small stack frame variant not recognized; try the
1499 big stack frame variant: */
1500
1501 /* addis 0,1,<some immediate> */
1502 if ((op & 0xffff0000) != 0x3c010000)
1503 break;
1504
1505 /* addic 0,0,-<some immediate> */
1506 pc = pc + 4;
1507 op = rs6000_fetch_instruction (gdbarch, pc);
1508 if ((op & 0xffff0000) != 0x30000000)
1509 break;
1510 }
1511
1512 /* lis 12,<some immediate> */
1513 pc = pc + 4;
1514 op = rs6000_fetch_instruction (gdbarch, pc);
1515 if ((op & 0xffff0000) != 0x3d800000)
1516 break;
1517
1518 /* lwz 12,<some immediate>(12) */
1519 pc = pc + 4;
1520 op = rs6000_fetch_instruction (gdbarch, pc);
1521 if ((op & 0xffff0000) != 0x818c0000)
1522 break;
1523
1524 /* twllt 0,12 */
1525 pc = pc + 4;
1526 op = rs6000_fetch_instruction (gdbarch, pc);
1527 if ((op & 0xfffffffe) != 0x7c406008)
1528 break;
1529
1530 /* We found a valid stack-check sequence, return the new PC. */
1531 return pc;
1532 }
1533
1534 /* No stack check code in our prologue, return the start_pc. */
1535 return start_pc;
1536 }
1537
1538 /* return pc value after skipping a function prologue and also return
1539 information about a function frame.
1540
1541 in struct rs6000_framedata fdata:
1542 - frameless is TRUE, if function does not have a frame.
1543 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1544 - offset is the initial size of this stack frame --- the amount by
1545 which we decrement the sp to allocate the frame.
1546 - saved_gpr is the number of the first saved gpr.
1547 - saved_fpr is the number of the first saved fpr.
1548 - saved_vr is the number of the first saved vr.
1549 - saved_ev is the number of the first saved ev.
1550 - alloca_reg is the number of the register used for alloca() handling.
1551 Otherwise -1.
1552 - gpr_offset is the offset of the first saved gpr from the previous frame.
1553 - fpr_offset is the offset of the first saved fpr from the previous frame.
1554 - vr_offset is the offset of the first saved vr from the previous frame.
1555 - ev_offset is the offset of the first saved ev from the previous frame.
1556 - lr_offset is the offset of the saved lr
1557 - cr_offset is the offset of the saved cr
1558 - vrsave_offset is the offset of the saved vrsave register. */
1559
1560 static CORE_ADDR
1561 skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1562 struct rs6000_framedata *fdata)
1563 {
1564 CORE_ADDR orig_pc = pc;
1565 CORE_ADDR last_prologue_pc = pc;
1566 CORE_ADDR li_found_pc = 0;
1567 gdb_byte buf[4];
1568 unsigned long op;
1569 long offset = 0;
1570 long vr_saved_offset = 0;
1571 int lr_reg = -1;
1572 int cr_reg = -1;
1573 int vr_reg = -1;
1574 int ev_reg = -1;
1575 long ev_offset = 0;
1576 int vrsave_reg = -1;
1577 int reg;
1578 int framep = 0;
1579 int minimal_toc_loaded = 0;
1580 int prev_insn_was_prologue_insn = 1;
1581 int num_skip_non_prologue_insns = 0;
1582 int r0_contains_arg = 0;
1583 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1584 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1585 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1586
1587 memset (fdata, 0, sizeof (struct rs6000_framedata));
1588 fdata->saved_gpr = -1;
1589 fdata->saved_fpr = -1;
1590 fdata->saved_vr = -1;
1591 fdata->saved_ev = -1;
1592 fdata->alloca_reg = -1;
1593 fdata->frameless = 1;
1594 fdata->nosavedpc = 1;
1595 fdata->lr_register = -1;
1596
1597 pc = rs6000_skip_stack_check (gdbarch, pc);
1598 if (pc >= lim_pc)
1599 pc = lim_pc;
1600
1601 for (;; pc += 4)
1602 {
1603 /* Sometimes it isn't clear if an instruction is a prologue
1604 instruction or not. When we encounter one of these ambiguous
1605 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1606 Otherwise, we'll assume that it really is a prologue instruction. */
1607 if (prev_insn_was_prologue_insn)
1608 last_prologue_pc = pc;
1609
1610 /* Stop scanning if we've hit the limit. */
1611 if (pc >= lim_pc)
1612 break;
1613
1614 prev_insn_was_prologue_insn = 1;
1615
1616 /* Fetch the instruction and convert it to an integer. */
1617 if (target_read_memory (pc, buf, 4))
1618 break;
1619 op = extract_unsigned_integer (buf, 4, byte_order);
1620
1621 if ((op & 0xfc1fffff) == 0x7c0802a6)
1622 { /* mflr Rx */
1623 /* Since shared library / PIC code, which needs to get its
1624 address at runtime, can appear to save more than one link
1625 register vis:
1626
1627 *INDENT-OFF*
1628 stwu r1,-304(r1)
1629 mflr r3
1630 bl 0xff570d0 (blrl)
1631 stw r30,296(r1)
1632 mflr r30
1633 stw r31,300(r1)
1634 stw r3,308(r1);
1635 ...
1636 *INDENT-ON*
1637
1638 remember just the first one, but skip over additional
1639 ones. */
1640 if (lr_reg == -1)
1641 lr_reg = (op & 0x03e00000) >> 21;
1642 if (lr_reg == 0)
1643 r0_contains_arg = 0;
1644 continue;
1645 }
1646 else if ((op & 0xfc1fffff) == 0x7c000026)
1647 { /* mfcr Rx */
1648 cr_reg = (op & 0x03e00000);
1649 if (cr_reg == 0)
1650 r0_contains_arg = 0;
1651 continue;
1652
1653 }
1654 else if ((op & 0xfc1f0000) == 0xd8010000)
1655 { /* stfd Rx,NUM(r1) */
1656 reg = GET_SRC_REG (op);
1657 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1658 {
1659 fdata->saved_fpr = reg;
1660 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1661 }
1662 continue;
1663
1664 }
1665 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1666 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1667 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1668 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1669 {
1670
1671 reg = GET_SRC_REG (op);
1672 if ((op & 0xfc1f0000) == 0xbc010000)
1673 fdata->gpr_mask |= ~((1U << reg) - 1);
1674 else
1675 fdata->gpr_mask |= 1U << reg;
1676 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1677 {
1678 fdata->saved_gpr = reg;
1679 if ((op & 0xfc1f0003) == 0xf8010000)
1680 op &= ~3UL;
1681 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1682 }
1683 continue;
1684
1685 }
1686 else if ((op & 0xffff0000) == 0x3c4c0000
1687 || (op & 0xffff0000) == 0x3c400000
1688 || (op & 0xffff0000) == 0x38420000)
1689 {
1690 /* . 0: addis 2,12,.TOC.-0b@ha
1691 . addi 2,2,.TOC.-0b@l
1692 or
1693 . lis 2,.TOC.@ha
1694 . addi 2,2,.TOC.@l
1695 used by ELFv2 global entry points to set up r2. */
1696 continue;
1697 }
1698 else if (op == 0x60000000)
1699 {
1700 /* nop */
1701 /* Allow nops in the prologue, but do not consider them to
1702 be part of the prologue unless followed by other prologue
1703 instructions. */
1704 prev_insn_was_prologue_insn = 0;
1705 continue;
1706
1707 }
1708 else if ((op & 0xffff0000) == 0x3c000000)
1709 { /* addis 0,0,NUM, used for >= 32k frames */
1710 fdata->offset = (op & 0x0000ffff) << 16;
1711 fdata->frameless = 0;
1712 r0_contains_arg = 0;
1713 continue;
1714
1715 }
1716 else if ((op & 0xffff0000) == 0x60000000)
1717 { /* ori 0,0,NUM, 2nd half of >= 32k frames */
1718 fdata->offset |= (op & 0x0000ffff);
1719 fdata->frameless = 0;
1720 r0_contains_arg = 0;
1721 continue;
1722
1723 }
1724 else if (lr_reg >= 0 &&
1725 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1726 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1727 /* stw Rx, NUM(r1) */
1728 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1729 /* stwu Rx, NUM(r1) */
1730 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1731 { /* where Rx == lr */
1732 fdata->lr_offset = offset;
1733 fdata->nosavedpc = 0;
1734 /* Invalidate lr_reg, but don't set it to -1.
1735 That would mean that it had never been set. */
1736 lr_reg = -2;
1737 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1738 (op & 0xfc000000) == 0x90000000) /* stw */
1739 {
1740 /* Does not update r1, so add displacement to lr_offset. */
1741 fdata->lr_offset += SIGNED_SHORT (op);
1742 }
1743 continue;
1744
1745 }
1746 else if (cr_reg >= 0 &&
1747 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1748 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1749 /* stw Rx, NUM(r1) */
1750 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1751 /* stwu Rx, NUM(r1) */
1752 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1753 { /* where Rx == cr */
1754 fdata->cr_offset = offset;
1755 /* Invalidate cr_reg, but don't set it to -1.
1756 That would mean that it had never been set. */
1757 cr_reg = -2;
1758 if ((op & 0xfc000003) == 0xf8000000 ||
1759 (op & 0xfc000000) == 0x90000000)
1760 {
1761 /* Does not update r1, so add displacement to cr_offset. */
1762 fdata->cr_offset += SIGNED_SHORT (op);
1763 }
1764 continue;
1765
1766 }
1767 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1768 {
1769 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1770 prediction bits. If the LR has already been saved, we can
1771 skip it. */
1772 continue;
1773 }
1774 else if (op == 0x48000005)
1775 { /* bl .+4 used in
1776 -mrelocatable */
1777 fdata->used_bl = 1;
1778 continue;
1779
1780 }
1781 else if (op == 0x48000004)
1782 { /* b .+4 (xlc) */
1783 break;
1784
1785 }
1786 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1787 in V.4 -mminimal-toc */
1788 (op & 0xffff0000) == 0x3bde0000)
1789 { /* addi 30,30,foo@l */
1790 continue;
1791
1792 }
1793 else if ((op & 0xfc000001) == 0x48000001)
1794 { /* bl foo,
1795 to save fprs??? */
1796
1797 fdata->frameless = 0;
1798
1799 /* If the return address has already been saved, we can skip
1800 calls to blrl (for PIC). */
1801 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
1802 {
1803 fdata->used_bl = 1;
1804 continue;
1805 }
1806
1807 /* Don't skip over the subroutine call if it is not within
1808 the first three instructions of the prologue and either
1809 we have no line table information or the line info tells
1810 us that the subroutine call is not part of the line
1811 associated with the prologue. */
1812 if ((pc - orig_pc) > 8)
1813 {
1814 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1815 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1816
1817 if ((prologue_sal.line == 0)
1818 || (prologue_sal.line != this_sal.line))
1819 break;
1820 }
1821
1822 op = read_memory_integer (pc + 4, 4, byte_order);
1823
1824 /* At this point, make sure this is not a trampoline
1825 function (a function that simply calls another functions,
1826 and nothing else). If the next is not a nop, this branch
1827 was part of the function prologue. */
1828
1829 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1830 break; /* Don't skip over
1831 this branch. */
1832
1833 fdata->used_bl = 1;
1834 continue;
1835 }
1836 /* update stack pointer */
1837 else if ((op & 0xfc1f0000) == 0x94010000)
1838 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1839 fdata->frameless = 0;
1840 fdata->offset = SIGNED_SHORT (op);
1841 offset = fdata->offset;
1842 continue;
1843 }
1844 else if ((op & 0xfc1f016a) == 0x7c01016e)
1845 { /* stwux rX,r1,rY */
1846 /* No way to figure out what r1 is going to be. */
1847 fdata->frameless = 0;
1848 offset = fdata->offset;
1849 continue;
1850 }
1851 else if ((op & 0xfc1f0003) == 0xf8010001)
1852 { /* stdu rX,NUM(r1) */
1853 fdata->frameless = 0;
1854 fdata->offset = SIGNED_SHORT (op & ~3UL);
1855 offset = fdata->offset;
1856 continue;
1857 }
1858 else if ((op & 0xfc1f016a) == 0x7c01016a)
1859 { /* stdux rX,r1,rY */
1860 /* No way to figure out what r1 is going to be. */
1861 fdata->frameless = 0;
1862 offset = fdata->offset;
1863 continue;
1864 }
1865 else if ((op & 0xffff0000) == 0x38210000)
1866 { /* addi r1,r1,SIMM */
1867 fdata->frameless = 0;
1868 fdata->offset += SIGNED_SHORT (op);
1869 offset = fdata->offset;
1870 continue;
1871 }
1872 /* Load up minimal toc pointer. Do not treat an epilogue restore
1873 of r31 as a minimal TOC load. */
1874 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1875 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1876 && !framep
1877 && !minimal_toc_loaded)
1878 {
1879 minimal_toc_loaded = 1;
1880 continue;
1881
1882 /* move parameters from argument registers to local variable
1883 registers */
1884 }
1885 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1886 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1887 (((op >> 21) & 31) <= 10) &&
1888 ((long) ((op >> 16) & 31)
1889 >= fdata->saved_gpr)) /* Rx: local var reg */
1890 {
1891 continue;
1892
1893 /* store parameters in stack */
1894 }
1895 /* Move parameters from argument registers to temporary register. */
1896 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1897 {
1898 continue;
1899
1900 /* Set up frame pointer */
1901 }
1902 else if (op == 0x603d0000) /* oril r29, r1, 0x0 */
1903 {
1904 fdata->frameless = 0;
1905 framep = 1;
1906 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
1907 continue;
1908
1909 /* Another way to set up the frame pointer. */
1910 }
1911 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1912 || op == 0x7c3f0b78)
1913 { /* mr r31, r1 */
1914 fdata->frameless = 0;
1915 framep = 1;
1916 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1917 continue;
1918
1919 /* Another way to set up the frame pointer. */
1920 }
1921 else if ((op & 0xfc1fffff) == 0x38010000)
1922 { /* addi rX, r1, 0x0 */
1923 fdata->frameless = 0;
1924 framep = 1;
1925 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1926 + ((op & ~0x38010000) >> 21));
1927 continue;
1928 }
1929 /* AltiVec related instructions. */
1930 /* Store the vrsave register (spr 256) in another register for
1931 later manipulation, or load a register into the vrsave
1932 register. 2 instructions are used: mfvrsave and
1933 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1934 and mtspr SPR256, Rn. */
1935 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1936 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1937 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1938 {
1939 vrsave_reg = GET_SRC_REG (op);
1940 continue;
1941 }
1942 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1943 {
1944 continue;
1945 }
1946 /* Store the register where vrsave was saved to onto the stack:
1947 rS is the register where vrsave was stored in a previous
1948 instruction. */
1949 /* 100100 sssss 00001 dddddddd dddddddd */
1950 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1951 {
1952 if (vrsave_reg == GET_SRC_REG (op))
1953 {
1954 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1955 vrsave_reg = -1;
1956 }
1957 continue;
1958 }
1959 /* Compute the new value of vrsave, by modifying the register
1960 where vrsave was saved to. */
1961 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1962 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1963 {
1964 continue;
1965 }
1966 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1967 in a pair of insns to save the vector registers on the
1968 stack. */
1969 /* 001110 00000 00000 iiii iiii iiii iiii */
1970 /* 001110 01110 00000 iiii iiii iiii iiii */
1971 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1972 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1973 {
1974 if ((op & 0xffff0000) == 0x38000000)
1975 r0_contains_arg = 0;
1976 li_found_pc = pc;
1977 vr_saved_offset = SIGNED_SHORT (op);
1978
1979 /* This insn by itself is not part of the prologue, unless
1980 if part of the pair of insns mentioned above. So do not
1981 record this insn as part of the prologue yet. */
1982 prev_insn_was_prologue_insn = 0;
1983 }
1984 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1985 /* 011111 sssss 11111 00000 00111001110 */
1986 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1987 {
1988 if (pc == (li_found_pc + 4))
1989 {
1990 vr_reg = GET_SRC_REG (op);
1991 /* If this is the first vector reg to be saved, or if
1992 it has a lower number than others previously seen,
1993 reupdate the frame info. */
1994 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1995 {
1996 fdata->saved_vr = vr_reg;
1997 fdata->vr_offset = vr_saved_offset + offset;
1998 }
1999 vr_saved_offset = -1;
2000 vr_reg = -1;
2001 li_found_pc = 0;
2002 }
2003 }
2004 /* End AltiVec related instructions. */
2005
2006 /* Start BookE related instructions. */
2007 /* Store gen register S at (r31+uimm).
2008 Any register less than r13 is volatile, so we don't care. */
2009 /* 000100 sssss 11111 iiiii 01100100001 */
2010 else if (arch_info->mach == bfd_mach_ppc_e500
2011 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
2012 {
2013 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
2014 {
2015 unsigned int imm;
2016 ev_reg = GET_SRC_REG (op);
2017 imm = (op >> 11) & 0x1f;
2018 ev_offset = imm * 8;
2019 /* If this is the first vector reg to be saved, or if
2020 it has a lower number than others previously seen,
2021 reupdate the frame info. */
2022 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2023 {
2024 fdata->saved_ev = ev_reg;
2025 fdata->ev_offset = ev_offset + offset;
2026 }
2027 }
2028 continue;
2029 }
2030 /* Store gen register rS at (r1+rB). */
2031 /* 000100 sssss 00001 bbbbb 01100100000 */
2032 else if (arch_info->mach == bfd_mach_ppc_e500
2033 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
2034 {
2035 if (pc == (li_found_pc + 4))
2036 {
2037 ev_reg = GET_SRC_REG (op);
2038 /* If this is the first vector reg to be saved, or if
2039 it has a lower number than others previously seen,
2040 reupdate the frame info. */
2041 /* We know the contents of rB from the previous instruction. */
2042 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2043 {
2044 fdata->saved_ev = ev_reg;
2045 fdata->ev_offset = vr_saved_offset + offset;
2046 }
2047 vr_saved_offset = -1;
2048 ev_reg = -1;
2049 li_found_pc = 0;
2050 }
2051 continue;
2052 }
2053 /* Store gen register r31 at (rA+uimm). */
2054 /* 000100 11111 aaaaa iiiii 01100100001 */
2055 else if (arch_info->mach == bfd_mach_ppc_e500
2056 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
2057 {
2058 /* Wwe know that the source register is 31 already, but
2059 it can't hurt to compute it. */
2060 ev_reg = GET_SRC_REG (op);
2061 ev_offset = ((op >> 11) & 0x1f) * 8;
2062 /* If this is the first vector reg to be saved, or if
2063 it has a lower number than others previously seen,
2064 reupdate the frame info. */
2065 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2066 {
2067 fdata->saved_ev = ev_reg;
2068 fdata->ev_offset = ev_offset + offset;
2069 }
2070
2071 continue;
2072 }
2073 /* Store gen register S at (r31+r0).
2074 Store param on stack when offset from SP bigger than 4 bytes. */
2075 /* 000100 sssss 11111 00000 01100100000 */
2076 else if (arch_info->mach == bfd_mach_ppc_e500
2077 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
2078 {
2079 if (pc == (li_found_pc + 4))
2080 {
2081 if ((op & 0x03e00000) >= 0x01a00000)
2082 {
2083 ev_reg = GET_SRC_REG (op);
2084 /* If this is the first vector reg to be saved, or if
2085 it has a lower number than others previously seen,
2086 reupdate the frame info. */
2087 /* We know the contents of r0 from the previous
2088 instruction. */
2089 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2090 {
2091 fdata->saved_ev = ev_reg;
2092 fdata->ev_offset = vr_saved_offset + offset;
2093 }
2094 ev_reg = -1;
2095 }
2096 vr_saved_offset = -1;
2097 li_found_pc = 0;
2098 continue;
2099 }
2100 }
2101 /* End BookE related instructions. */
2102
2103 else
2104 {
2105 unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
2106
2107 /* Not a recognized prologue instruction.
2108 Handle optimizer code motions into the prologue by continuing
2109 the search if we have no valid frame yet or if the return
2110 address is not yet saved in the frame. Also skip instructions
2111 if some of the GPRs expected to be saved are not yet saved. */
2112 if (fdata->frameless == 0 && fdata->nosavedpc == 0
2113 && (fdata->gpr_mask & all_mask) == all_mask)
2114 break;
2115
2116 if (op == 0x4e800020 /* blr */
2117 || op == 0x4e800420) /* bctr */
2118 /* Do not scan past epilogue in frameless functions or
2119 trampolines. */
2120 break;
2121 if ((op & 0xf4000000) == 0x40000000) /* bxx */
2122 /* Never skip branches. */
2123 break;
2124
2125 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
2126 /* Do not scan too many insns, scanning insns is expensive with
2127 remote targets. */
2128 break;
2129
2130 /* Continue scanning. */
2131 prev_insn_was_prologue_insn = 0;
2132 continue;
2133 }
2134 }
2135
2136 #if 0
2137 /* I have problems with skipping over __main() that I need to address
2138 * sometime. Previously, I used to use misc_function_vector which
2139 * didn't work as well as I wanted to be. -MGO */
2140
2141 /* If the first thing after skipping a prolog is a branch to a function,
2142 this might be a call to an initializer in main(), introduced by gcc2.
2143 We'd like to skip over it as well. Fortunately, xlc does some extra
2144 work before calling a function right after a prologue, thus we can
2145 single out such gcc2 behaviour. */
2146
2147
2148 if ((op & 0xfc000001) == 0x48000001)
2149 { /* bl foo, an initializer function? */
2150 op = read_memory_integer (pc + 4, 4, byte_order);
2151
2152 if (op == 0x4def7b82)
2153 { /* cror 0xf, 0xf, 0xf (nop) */
2154
2155 /* Check and see if we are in main. If so, skip over this
2156 initializer function as well. */
2157
2158 tmp = find_pc_misc_function (pc);
2159 if (tmp >= 0
2160 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
2161 return pc + 8;
2162 }
2163 }
2164 #endif /* 0 */
2165
2166 if (pc == lim_pc && lr_reg >= 0)
2167 fdata->lr_register = lr_reg;
2168
2169 fdata->offset = -fdata->offset;
2170 return last_prologue_pc;
2171 }
2172
2173 static CORE_ADDR
2174 rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2175 {
2176 struct rs6000_framedata frame;
2177 CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
2178
2179 /* See if we can determine the end of the prologue via the symbol table.
2180 If so, then return either PC, or the PC after the prologue, whichever
2181 is greater. */
2182 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
2183 {
2184 CORE_ADDR post_prologue_pc
2185 = skip_prologue_using_sal (gdbarch, func_addr);
2186 if (post_prologue_pc != 0)
2187 return max (pc, post_prologue_pc);
2188 }
2189
2190 /* Can't determine prologue from the symbol table, need to examine
2191 instructions. */
2192
2193 /* Find an upper limit on the function prologue using the debug
2194 information. If the debug information could not be used to provide
2195 that bound, then use an arbitrary large number as the upper bound. */
2196 limit_pc = skip_prologue_using_sal (gdbarch, pc);
2197 if (limit_pc == 0)
2198 limit_pc = pc + 100; /* Magic. */
2199
2200 /* Do not allow limit_pc to be past the function end, if we know
2201 where that end is... */
2202 if (func_end_addr && limit_pc > func_end_addr)
2203 limit_pc = func_end_addr;
2204
2205 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2206 return pc;
2207 }
2208
2209 /* When compiling for EABI, some versions of GCC emit a call to __eabi
2210 in the prologue of main().
2211
2212 The function below examines the code pointed at by PC and checks to
2213 see if it corresponds to a call to __eabi. If so, it returns the
2214 address of the instruction following that call. Otherwise, it simply
2215 returns PC. */
2216
2217 static CORE_ADDR
2218 rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2219 {
2220 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2221 gdb_byte buf[4];
2222 unsigned long op;
2223
2224 if (target_read_memory (pc, buf, 4))
2225 return pc;
2226 op = extract_unsigned_integer (buf, 4, byte_order);
2227
2228 if ((op & BL_MASK) == BL_INSTRUCTION)
2229 {
2230 CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2231 CORE_ADDR call_dest = pc + 4 + displ;
2232 struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
2233
2234 /* We check for ___eabi (three leading underscores) in addition
2235 to __eabi in case the GCC option "-fleading-underscore" was
2236 used to compile the program. */
2237 if (s.minsym != NULL
2238 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
2239 && (strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__eabi") == 0
2240 || strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "___eabi") == 0))
2241 pc += 4;
2242 }
2243 return pc;
2244 }
2245
2246 /* All the ABI's require 16 byte alignment. */
2247 static CORE_ADDR
2248 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2249 {
2250 return (addr & -16);
2251 }
2252
2253 /* Return whether handle_inferior_event() should proceed through code
2254 starting at PC in function NAME when stepping.
2255
2256 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2257 handle memory references that are too distant to fit in instructions
2258 generated by the compiler. For example, if 'foo' in the following
2259 instruction:
2260
2261 lwz r9,foo(r2)
2262
2263 is greater than 32767, the linker might replace the lwz with a branch to
2264 somewhere in @FIX1 that does the load in 2 instructions and then branches
2265 back to where execution should continue.
2266
2267 GDB should silently step over @FIX code, just like AIX dbx does.
2268 Unfortunately, the linker uses the "b" instruction for the
2269 branches, meaning that the link register doesn't get set.
2270 Therefore, GDB's usual step_over_function () mechanism won't work.
2271
2272 Instead, use the gdbarch_skip_trampoline_code and
2273 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2274 @FIX code. */
2275
2276 static int
2277 rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2278 CORE_ADDR pc, const char *name)
2279 {
2280 return name && startswith (name, "@FIX");
2281 }
2282
2283 /* Skip code that the user doesn't want to see when stepping:
2284
2285 1. Indirect function calls use a piece of trampoline code to do context
2286 switching, i.e. to set the new TOC table. Skip such code if we are on
2287 its first instruction (as when we have single-stepped to here).
2288
2289 2. Skip shared library trampoline code (which is different from
2290 indirect function call trampolines).
2291
2292 3. Skip bigtoc fixup code.
2293
2294 Result is desired PC to step until, or NULL if we are not in
2295 code that should be skipped. */
2296
2297 static CORE_ADDR
2298 rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2299 {
2300 struct gdbarch *gdbarch = get_frame_arch (frame);
2301 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2302 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2303 unsigned int ii, op;
2304 int rel;
2305 CORE_ADDR solib_target_pc;
2306 struct bound_minimal_symbol msymbol;
2307
2308 static unsigned trampoline_code[] =
2309 {
2310 0x800b0000, /* l r0,0x0(r11) */
2311 0x90410014, /* st r2,0x14(r1) */
2312 0x7c0903a6, /* mtctr r0 */
2313 0x804b0004, /* l r2,0x4(r11) */
2314 0x816b0008, /* l r11,0x8(r11) */
2315 0x4e800420, /* bctr */
2316 0x4e800020, /* br */
2317 0
2318 };
2319
2320 /* Check for bigtoc fixup code. */
2321 msymbol = lookup_minimal_symbol_by_pc (pc);
2322 if (msymbol.minsym
2323 && rs6000_in_solib_return_trampoline (gdbarch, pc,
2324 MSYMBOL_LINKAGE_NAME (msymbol.minsym)))
2325 {
2326 /* Double-check that the third instruction from PC is relative "b". */
2327 op = read_memory_integer (pc + 8, 4, byte_order);
2328 if ((op & 0xfc000003) == 0x48000000)
2329 {
2330 /* Extract bits 6-29 as a signed 24-bit relative word address and
2331 add it to the containing PC. */
2332 rel = ((int)(op << 6) >> 6);
2333 return pc + 8 + rel;
2334 }
2335 }
2336
2337 /* If pc is in a shared library trampoline, return its target. */
2338 solib_target_pc = find_solib_trampoline_target (frame, pc);
2339 if (solib_target_pc)
2340 return solib_target_pc;
2341
2342 for (ii = 0; trampoline_code[ii]; ++ii)
2343 {
2344 op = read_memory_integer (pc + (ii * 4), 4, byte_order);
2345 if (op != trampoline_code[ii])
2346 return 0;
2347 }
2348 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination
2349 addr. */
2350 pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
2351 return pc;
2352 }
2353
2354 /* ISA-specific vector types. */
2355
2356 static struct type *
2357 rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2358 {
2359 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2360
2361 if (!tdep->ppc_builtin_type_vec64)
2362 {
2363 const struct builtin_type *bt = builtin_type (gdbarch);
2364
2365 /* The type we're building is this: */
2366 #if 0
2367 union __gdb_builtin_type_vec64
2368 {
2369 int64_t uint64;
2370 float v2_float[2];
2371 int32_t v2_int32[2];
2372 int16_t v4_int16[4];
2373 int8_t v8_int8[8];
2374 };
2375 #endif
2376
2377 struct type *t;
2378
2379 t = arch_composite_type (gdbarch,
2380 "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2381 append_composite_type_field (t, "uint64", bt->builtin_int64);
2382 append_composite_type_field (t, "v2_float",
2383 init_vector_type (bt->builtin_float, 2));
2384 append_composite_type_field (t, "v2_int32",
2385 init_vector_type (bt->builtin_int32, 2));
2386 append_composite_type_field (t, "v4_int16",
2387 init_vector_type (bt->builtin_int16, 4));
2388 append_composite_type_field (t, "v8_int8",
2389 init_vector_type (bt->builtin_int8, 8));
2390
2391 TYPE_VECTOR (t) = 1;
2392 TYPE_NAME (t) = "ppc_builtin_type_vec64";
2393 tdep->ppc_builtin_type_vec64 = t;
2394 }
2395
2396 return tdep->ppc_builtin_type_vec64;
2397 }
2398
2399 /* Vector 128 type. */
2400
2401 static struct type *
2402 rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2403 {
2404 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2405
2406 if (!tdep->ppc_builtin_type_vec128)
2407 {
2408 const struct builtin_type *bt = builtin_type (gdbarch);
2409
2410 /* The type we're building is this
2411
2412 type = union __ppc_builtin_type_vec128 {
2413 uint128_t uint128;
2414 double v2_double[2];
2415 float v4_float[4];
2416 int32_t v4_int32[4];
2417 int16_t v8_int16[8];
2418 int8_t v16_int8[16];
2419 }
2420 */
2421
2422 struct type *t;
2423
2424 t = arch_composite_type (gdbarch,
2425 "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
2426 append_composite_type_field (t, "uint128", bt->builtin_uint128);
2427 append_composite_type_field (t, "v2_double",
2428 init_vector_type (bt->builtin_double, 2));
2429 append_composite_type_field (t, "v4_float",
2430 init_vector_type (bt->builtin_float, 4));
2431 append_composite_type_field (t, "v4_int32",
2432 init_vector_type (bt->builtin_int32, 4));
2433 append_composite_type_field (t, "v8_int16",
2434 init_vector_type (bt->builtin_int16, 8));
2435 append_composite_type_field (t, "v16_int8",
2436 init_vector_type (bt->builtin_int8, 16));
2437
2438 TYPE_VECTOR (t) = 1;
2439 TYPE_NAME (t) = "ppc_builtin_type_vec128";
2440 tdep->ppc_builtin_type_vec128 = t;
2441 }
2442
2443 return tdep->ppc_builtin_type_vec128;
2444 }
2445
2446 /* Return the name of register number REGNO, or the empty string if it
2447 is an anonymous register. */
2448
2449 static const char *
2450 rs6000_register_name (struct gdbarch *gdbarch, int regno)
2451 {
2452 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2453
2454 /* The upper half "registers" have names in the XML description,
2455 but we present only the low GPRs and the full 64-bit registers
2456 to the user. */
2457 if (tdep->ppc_ev0_upper_regnum >= 0
2458 && tdep->ppc_ev0_upper_regnum <= regno
2459 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2460 return "";
2461
2462 /* Hide the upper halves of the vs0~vs31 registers. */
2463 if (tdep->ppc_vsr0_regnum >= 0
2464 && tdep->ppc_vsr0_upper_regnum <= regno
2465 && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2466 return "";
2467
2468 /* Check if the SPE pseudo registers are available. */
2469 if (IS_SPE_PSEUDOREG (tdep, regno))
2470 {
2471 static const char *const spe_regnames[] = {
2472 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2473 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2474 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2475 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2476 };
2477 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2478 }
2479
2480 /* Check if the decimal128 pseudo-registers are available. */
2481 if (IS_DFP_PSEUDOREG (tdep, regno))
2482 {
2483 static const char *const dfp128_regnames[] = {
2484 "dl0", "dl1", "dl2", "dl3",
2485 "dl4", "dl5", "dl6", "dl7",
2486 "dl8", "dl9", "dl10", "dl11",
2487 "dl12", "dl13", "dl14", "dl15"
2488 };
2489 return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2490 }
2491
2492 /* Check if this is a VSX pseudo-register. */
2493 if (IS_VSX_PSEUDOREG (tdep, regno))
2494 {
2495 static const char *const vsx_regnames[] = {
2496 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2497 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2498 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2499 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2500 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2501 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2502 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2503 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2504 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2505 };
2506 return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2507 }
2508
2509 /* Check if the this is a Extended FP pseudo-register. */
2510 if (IS_EFP_PSEUDOREG (tdep, regno))
2511 {
2512 static const char *const efpr_regnames[] = {
2513 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2514 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2515 "f46", "f47", "f48", "f49", "f50", "f51",
2516 "f52", "f53", "f54", "f55", "f56", "f57",
2517 "f58", "f59", "f60", "f61", "f62", "f63"
2518 };
2519 return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2520 }
2521
2522 return tdesc_register_name (gdbarch, regno);
2523 }
2524
2525 /* Return the GDB type object for the "standard" data type of data in
2526 register N. */
2527
2528 static struct type *
2529 rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2530 {
2531 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2532
2533 /* These are the only pseudo-registers we support. */
2534 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2535 || IS_DFP_PSEUDOREG (tdep, regnum)
2536 || IS_VSX_PSEUDOREG (tdep, regnum)
2537 || IS_EFP_PSEUDOREG (tdep, regnum));
2538
2539 /* These are the e500 pseudo-registers. */
2540 if (IS_SPE_PSEUDOREG (tdep, regnum))
2541 return rs6000_builtin_type_vec64 (gdbarch);
2542 else if (IS_DFP_PSEUDOREG (tdep, regnum))
2543 /* PPC decimal128 pseudo-registers. */
2544 return builtin_type (gdbarch)->builtin_declong;
2545 else if (IS_VSX_PSEUDOREG (tdep, regnum))
2546 /* POWER7 VSX pseudo-registers. */
2547 return rs6000_builtin_type_vec128 (gdbarch);
2548 else
2549 /* POWER7 Extended FP pseudo-registers. */
2550 return builtin_type (gdbarch)->builtin_double;
2551 }
2552
2553 /* Is REGNUM a member of REGGROUP? */
2554 static int
2555 rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2556 struct reggroup *group)
2557 {
2558 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2559
2560 /* These are the only pseudo-registers we support. */
2561 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2562 || IS_DFP_PSEUDOREG (tdep, regnum)
2563 || IS_VSX_PSEUDOREG (tdep, regnum)
2564 || IS_EFP_PSEUDOREG (tdep, regnum));
2565
2566 /* These are the e500 pseudo-registers or the POWER7 VSX registers. */
2567 if (IS_SPE_PSEUDOREG (tdep, regnum) || IS_VSX_PSEUDOREG (tdep, regnum))
2568 return group == all_reggroup || group == vector_reggroup;
2569 else
2570 /* PPC decimal128 or Extended FP pseudo-registers. */
2571 return group == all_reggroup || group == float_reggroup;
2572 }
2573
2574 /* The register format for RS/6000 floating point registers is always
2575 double, we need a conversion if the memory format is float. */
2576
2577 static int
2578 rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2579 struct type *type)
2580 {
2581 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2582
2583 return (tdep->ppc_fp0_regnum >= 0
2584 && regnum >= tdep->ppc_fp0_regnum
2585 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2586 && TYPE_CODE (type) == TYPE_CODE_FLT
2587 && TYPE_LENGTH (type)
2588 != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
2589 }
2590
2591 static int
2592 rs6000_register_to_value (struct frame_info *frame,
2593 int regnum,
2594 struct type *type,
2595 gdb_byte *to,
2596 int *optimizedp, int *unavailablep)
2597 {
2598 struct gdbarch *gdbarch = get_frame_arch (frame);
2599 gdb_byte from[MAX_REGISTER_SIZE];
2600
2601 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2602
2603 if (!get_frame_register_bytes (frame, regnum, 0,
2604 register_size (gdbarch, regnum),
2605 from, optimizedp, unavailablep))
2606 return 0;
2607
2608 convert_typed_floating (from, builtin_type (gdbarch)->builtin_double,
2609 to, type);
2610 *optimizedp = *unavailablep = 0;
2611 return 1;
2612 }
2613
2614 static void
2615 rs6000_value_to_register (struct frame_info *frame,
2616 int regnum,
2617 struct type *type,
2618 const gdb_byte *from)
2619 {
2620 struct gdbarch *gdbarch = get_frame_arch (frame);
2621 gdb_byte to[MAX_REGISTER_SIZE];
2622
2623 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2624
2625 convert_typed_floating (from, type,
2626 to, builtin_type (gdbarch)->builtin_double);
2627 put_frame_register (frame, regnum, to);
2628 }
2629
2630 /* The type of a function that moves the value of REG between CACHE
2631 or BUF --- in either direction. */
2632 typedef enum register_status (*move_ev_register_func) (struct regcache *,
2633 int, void *);
2634
2635 /* Move SPE vector register values between a 64-bit buffer and the two
2636 32-bit raw register halves in a regcache. This function handles
2637 both splitting a 64-bit value into two 32-bit halves, and joining
2638 two halves into a whole 64-bit value, depending on the function
2639 passed as the MOVE argument.
2640
2641 EV_REG must be the number of an SPE evN vector register --- a
2642 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2643 64-bit buffer.
2644
2645 Call MOVE once for each 32-bit half of that register, passing
2646 REGCACHE, the number of the raw register corresponding to that
2647 half, and the address of the appropriate half of BUFFER.
2648
2649 For example, passing 'regcache_raw_read' as the MOVE function will
2650 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2651 'regcache_raw_supply' will supply the contents of BUFFER to the
2652 appropriate pair of raw registers in REGCACHE.
2653
2654 You may need to cast away some 'const' qualifiers when passing
2655 MOVE, since this function can't tell at compile-time which of
2656 REGCACHE or BUFFER is acting as the source of the data. If C had
2657 co-variant type qualifiers, ... */
2658
2659 static enum register_status
2660 e500_move_ev_register (move_ev_register_func move,
2661 struct regcache *regcache, int ev_reg, void *buffer)
2662 {
2663 struct gdbarch *arch = get_regcache_arch (regcache);
2664 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2665 int reg_index;
2666 gdb_byte *byte_buffer = (gdb_byte *) buffer;
2667 enum register_status status;
2668
2669 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2670
2671 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2672
2673 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2674 {
2675 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2676 byte_buffer);
2677 if (status == REG_VALID)
2678 status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
2679 byte_buffer + 4);
2680 }
2681 else
2682 {
2683 status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2684 if (status == REG_VALID)
2685 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2686 byte_buffer + 4);
2687 }
2688
2689 return status;
2690 }
2691
2692 static enum register_status
2693 do_regcache_raw_read (struct regcache *regcache, int regnum, void *buffer)
2694 {
2695 return regcache_raw_read (regcache, regnum, (gdb_byte *) buffer);
2696 }
2697
2698 static enum register_status
2699 do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
2700 {
2701 regcache_raw_write (regcache, regnum, (const gdb_byte *) buffer);
2702
2703 return REG_VALID;
2704 }
2705
2706 static enum register_status
2707 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2708 int reg_nr, gdb_byte *buffer)
2709 {
2710 return e500_move_ev_register (do_regcache_raw_read, regcache, reg_nr, buffer);
2711 }
2712
2713 static void
2714 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2715 int reg_nr, const gdb_byte *buffer)
2716 {
2717 e500_move_ev_register (do_regcache_raw_write, regcache,
2718 reg_nr, (void *) buffer);
2719 }
2720
2721 /* Read method for DFP pseudo-registers. */
2722 static enum register_status
2723 dfp_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2724 int reg_nr, gdb_byte *buffer)
2725 {
2726 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2727 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2728 enum register_status status;
2729
2730 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2731 {
2732 /* Read two FP registers to form a whole dl register. */
2733 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2734 2 * reg_index, buffer);
2735 if (status == REG_VALID)
2736 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2737 2 * reg_index + 1, buffer + 8);
2738 }
2739 else
2740 {
2741 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2742 2 * reg_index + 1, buffer);
2743 if (status == REG_VALID)
2744 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2745 2 * reg_index, buffer + 8);
2746 }
2747
2748 return status;
2749 }
2750
2751 /* Write method for DFP pseudo-registers. */
2752 static void
2753 dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2754 int reg_nr, const gdb_byte *buffer)
2755 {
2756 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2757 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2758
2759 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2760 {
2761 /* Write each half of the dl register into a separate
2762 FP register. */
2763 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2764 2 * reg_index, buffer);
2765 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2766 2 * reg_index + 1, buffer + 8);
2767 }
2768 else
2769 {
2770 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2771 2 * reg_index + 1, buffer);
2772 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2773 2 * reg_index, buffer + 8);
2774 }
2775 }
2776
2777 /* Read method for POWER7 VSX pseudo-registers. */
2778 static enum register_status
2779 vsx_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2780 int reg_nr, gdb_byte *buffer)
2781 {
2782 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2783 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2784 enum register_status status;
2785
2786 /* Read the portion that overlaps the VMX registers. */
2787 if (reg_index > 31)
2788 status = regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
2789 reg_index - 32, buffer);
2790 else
2791 /* Read the portion that overlaps the FPR registers. */
2792 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2793 {
2794 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2795 reg_index, buffer);
2796 if (status == REG_VALID)
2797 status = regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2798 reg_index, buffer + 8);
2799 }
2800 else
2801 {
2802 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2803 reg_index, buffer + 8);
2804 if (status == REG_VALID)
2805 status = regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2806 reg_index, buffer);
2807 }
2808
2809 return status;
2810 }
2811
2812 /* Write method for POWER7 VSX pseudo-registers. */
2813 static void
2814 vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2815 int reg_nr, const gdb_byte *buffer)
2816 {
2817 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2818 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2819
2820 /* Write the portion that overlaps the VMX registers. */
2821 if (reg_index > 31)
2822 regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
2823 reg_index - 32, buffer);
2824 else
2825 /* Write the portion that overlaps the FPR registers. */
2826 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2827 {
2828 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2829 reg_index, buffer);
2830 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2831 reg_index, buffer + 8);
2832 }
2833 else
2834 {
2835 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2836 reg_index, buffer + 8);
2837 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2838 reg_index, buffer);
2839 }
2840 }
2841
2842 /* Read method for POWER7 Extended FP pseudo-registers. */
2843 static enum register_status
2844 efpr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2845 int reg_nr, gdb_byte *buffer)
2846 {
2847 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2848 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2849 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2850
2851 /* Read the portion that overlaps the VMX register. */
2852 return regcache_raw_read_part (regcache, tdep->ppc_vr0_regnum + reg_index,
2853 offset, register_size (gdbarch, reg_nr),
2854 buffer);
2855 }
2856
2857 /* Write method for POWER7 Extended FP pseudo-registers. */
2858 static void
2859 efpr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2860 int reg_nr, const gdb_byte *buffer)
2861 {
2862 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2863 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2864 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2865
2866 /* Write the portion that overlaps the VMX register. */
2867 regcache_raw_write_part (regcache, tdep->ppc_vr0_regnum + reg_index,
2868 offset, register_size (gdbarch, reg_nr),
2869 buffer);
2870 }
2871
2872 static enum register_status
2873 rs6000_pseudo_register_read (struct gdbarch *gdbarch,
2874 struct regcache *regcache,
2875 int reg_nr, gdb_byte *buffer)
2876 {
2877 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2878 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2879
2880 gdb_assert (regcache_arch == gdbarch);
2881
2882 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2883 return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2884 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2885 return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2886 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2887 return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2888 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2889 return efpr_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2890 else
2891 internal_error (__FILE__, __LINE__,
2892 _("rs6000_pseudo_register_read: "
2893 "called on unexpected register '%s' (%d)"),
2894 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2895 }
2896
2897 static void
2898 rs6000_pseudo_register_write (struct gdbarch *gdbarch,
2899 struct regcache *regcache,
2900 int reg_nr, const gdb_byte *buffer)
2901 {
2902 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2903 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2904
2905 gdb_assert (regcache_arch == gdbarch);
2906
2907 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2908 e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2909 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2910 dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2911 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2912 vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2913 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2914 efpr_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2915 else
2916 internal_error (__FILE__, __LINE__,
2917 _("rs6000_pseudo_register_write: "
2918 "called on unexpected register '%s' (%d)"),
2919 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2920 }
2921
2922 static int
2923 rs6000_ax_pseudo_register_collect (struct gdbarch *gdbarch,
2924 struct agent_expr *ax, int reg_nr)
2925 {
2926 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2927 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2928 {
2929 int reg_index = reg_nr - tdep->ppc_ev0_regnum;
2930 ax_reg_mask (ax, tdep->ppc_gp0_regnum + reg_index);
2931 ax_reg_mask (ax, tdep->ppc_ev0_upper_regnum + reg_index);
2932 }
2933 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2934 {
2935 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2936 ax_reg_mask (ax, tdep->ppc_fp0_regnum + 2 * reg_index);
2937 ax_reg_mask (ax, tdep->ppc_fp0_regnum + 2 * reg_index + 1);
2938 }
2939 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2940 {
2941 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2942 if (reg_index > 31)
2943 {
2944 ax_reg_mask (ax, tdep->ppc_vr0_regnum + reg_index - 32);
2945 }
2946 else
2947 {
2948 ax_reg_mask (ax, tdep->ppc_fp0_regnum + reg_index);
2949 ax_reg_mask (ax, tdep->ppc_vsr0_upper_regnum + reg_index);
2950 }
2951 }
2952 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2953 {
2954 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2955 ax_reg_mask (ax, tdep->ppc_vr0_regnum + reg_index);
2956 }
2957 else
2958 internal_error (__FILE__, __LINE__,
2959 _("rs6000_pseudo_register_collect: "
2960 "called on unexpected register '%s' (%d)"),
2961 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2962 return 0;
2963 }
2964
2965
2966 /* Convert a DBX STABS register number to a GDB register number. */
2967 static int
2968 rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
2969 {
2970 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2971
2972 if (0 <= num && num <= 31)
2973 return tdep->ppc_gp0_regnum + num;
2974 else if (32 <= num && num <= 63)
2975 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2976 specifies registers the architecture doesn't have? Our
2977 callers don't check the value we return. */
2978 return tdep->ppc_fp0_regnum + (num - 32);
2979 else if (77 <= num && num <= 108)
2980 return tdep->ppc_vr0_regnum + (num - 77);
2981 else if (1200 <= num && num < 1200 + 32)
2982 return tdep->ppc_ev0_upper_regnum + (num - 1200);
2983 else
2984 switch (num)
2985 {
2986 case 64:
2987 return tdep->ppc_mq_regnum;
2988 case 65:
2989 return tdep->ppc_lr_regnum;
2990 case 66:
2991 return tdep->ppc_ctr_regnum;
2992 case 76:
2993 return tdep->ppc_xer_regnum;
2994 case 109:
2995 return tdep->ppc_vrsave_regnum;
2996 case 110:
2997 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2998 case 111:
2999 return tdep->ppc_acc_regnum;
3000 case 112:
3001 return tdep->ppc_spefscr_regnum;
3002 default:
3003 return num;
3004 }
3005 }
3006
3007
3008 /* Convert a Dwarf 2 register number to a GDB register number. */
3009 static int
3010 rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
3011 {
3012 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3013
3014 if (0 <= num && num <= 31)
3015 return tdep->ppc_gp0_regnum + num;
3016 else if (32 <= num && num <= 63)
3017 /* FIXME: jimb/2004-05-05: What should we do when the debug info
3018 specifies registers the architecture doesn't have? Our
3019 callers don't check the value we return. */
3020 return tdep->ppc_fp0_regnum + (num - 32);
3021 else if (1124 <= num && num < 1124 + 32)
3022 return tdep->ppc_vr0_regnum + (num - 1124);
3023 else if (1200 <= num && num < 1200 + 32)
3024 return tdep->ppc_ev0_upper_regnum + (num - 1200);
3025 else
3026 switch (num)
3027 {
3028 case 64:
3029 return tdep->ppc_cr_regnum;
3030 case 67:
3031 return tdep->ppc_vrsave_regnum - 1; /* vscr */
3032 case 99:
3033 return tdep->ppc_acc_regnum;
3034 case 100:
3035 return tdep->ppc_mq_regnum;
3036 case 101:
3037 return tdep->ppc_xer_regnum;
3038 case 108:
3039 return tdep->ppc_lr_regnum;
3040 case 109:
3041 return tdep->ppc_ctr_regnum;
3042 case 356:
3043 return tdep->ppc_vrsave_regnum;
3044 case 612:
3045 return tdep->ppc_spefscr_regnum;
3046 default:
3047 return num;
3048 }
3049 }
3050
3051 /* Translate a .eh_frame register to DWARF register, or adjust a
3052 .debug_frame register. */
3053
3054 static int
3055 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
3056 {
3057 /* GCC releases before 3.4 use GCC internal register numbering in
3058 .debug_frame (and .debug_info, et cetera). The numbering is
3059 different from the standard SysV numbering for everything except
3060 for GPRs and FPRs. We can not detect this problem in most cases
3061 - to get accurate debug info for variables living in lr, ctr, v0,
3062 et cetera, use a newer version of GCC. But we must detect
3063 one important case - lr is in column 65 in .debug_frame output,
3064 instead of 108.
3065
3066 GCC 3.4, and the "hammer" branch, have a related problem. They
3067 record lr register saves in .debug_frame as 108, but still record
3068 the return column as 65. We fix that up too.
3069
3070 We can do this because 65 is assigned to fpsr, and GCC never
3071 generates debug info referring to it. To add support for
3072 handwritten debug info that restores fpsr, we would need to add a
3073 producer version check to this. */
3074 if (!eh_frame_p)
3075 {
3076 if (num == 65)
3077 return 108;
3078 else
3079 return num;
3080 }
3081
3082 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
3083 internal register numbering; translate that to the standard DWARF2
3084 register numbering. */
3085 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
3086 return num;
3087 else if (68 <= num && num <= 75) /* cr0-cr8 */
3088 return num - 68 + 86;
3089 else if (77 <= num && num <= 108) /* vr0-vr31 */
3090 return num - 77 + 1124;
3091 else
3092 switch (num)
3093 {
3094 case 64: /* mq */
3095 return 100;
3096 case 65: /* lr */
3097 return 108;
3098 case 66: /* ctr */
3099 return 109;
3100 case 76: /* xer */
3101 return 101;
3102 case 109: /* vrsave */
3103 return 356;
3104 case 110: /* vscr */
3105 return 67;
3106 case 111: /* spe_acc */
3107 return 99;
3108 case 112: /* spefscr */
3109 return 612;
3110 default:
3111 return num;
3112 }
3113 }
3114 \f
3115
3116 /* Handling the various POWER/PowerPC variants. */
3117
3118 /* Information about a particular processor variant. */
3119
3120 struct variant
3121 {
3122 /* Name of this variant. */
3123 char *name;
3124
3125 /* English description of the variant. */
3126 char *description;
3127
3128 /* bfd_arch_info.arch corresponding to variant. */
3129 enum bfd_architecture arch;
3130
3131 /* bfd_arch_info.mach corresponding to variant. */
3132 unsigned long mach;
3133
3134 /* Target description for this variant. */
3135 struct target_desc **tdesc;
3136 };
3137
3138 static struct variant variants[] =
3139 {
3140 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
3141 bfd_mach_ppc, &tdesc_powerpc_altivec32},
3142 {"power", "POWER user-level", bfd_arch_rs6000,
3143 bfd_mach_rs6k, &tdesc_rs6000},
3144 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
3145 bfd_mach_ppc_403, &tdesc_powerpc_403},
3146 {"405", "IBM PowerPC 405", bfd_arch_powerpc,
3147 bfd_mach_ppc_405, &tdesc_powerpc_405},
3148 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
3149 bfd_mach_ppc_601, &tdesc_powerpc_601},
3150 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
3151 bfd_mach_ppc_602, &tdesc_powerpc_602},
3152 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
3153 bfd_mach_ppc_603, &tdesc_powerpc_603},
3154 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
3155 604, &tdesc_powerpc_604},
3156 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
3157 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
3158 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
3159 bfd_mach_ppc_505, &tdesc_powerpc_505},
3160 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
3161 bfd_mach_ppc_860, &tdesc_powerpc_860},
3162 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
3163 bfd_mach_ppc_750, &tdesc_powerpc_750},
3164 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
3165 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
3166 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
3167 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
3168
3169 /* 64-bit */
3170 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
3171 bfd_mach_ppc64, &tdesc_powerpc_altivec64},
3172 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
3173 bfd_mach_ppc_620, &tdesc_powerpc_64},
3174 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
3175 bfd_mach_ppc_630, &tdesc_powerpc_64},
3176 {"a35", "PowerPC A35", bfd_arch_powerpc,
3177 bfd_mach_ppc_a35, &tdesc_powerpc_64},
3178 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
3179 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
3180 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
3181 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
3182
3183 /* FIXME: I haven't checked the register sets of the following. */
3184 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
3185 bfd_mach_rs6k_rs1, &tdesc_rs6000},
3186 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
3187 bfd_mach_rs6k_rsc, &tdesc_rs6000},
3188 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
3189 bfd_mach_rs6k_rs2, &tdesc_rs6000},
3190
3191 {0, 0, (enum bfd_architecture) 0, 0, 0}
3192 };
3193
3194 /* Return the variant corresponding to architecture ARCH and machine number
3195 MACH. If no such variant exists, return null. */
3196
3197 static const struct variant *
3198 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
3199 {
3200 const struct variant *v;
3201
3202 for (v = variants; v->name; v++)
3203 if (arch == v->arch && mach == v->mach)
3204 return v;
3205
3206 return NULL;
3207 }
3208
3209 static int
3210 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
3211 {
3212 if (info->endian == BFD_ENDIAN_BIG)
3213 return print_insn_big_powerpc (memaddr, info);
3214 else
3215 return print_insn_little_powerpc (memaddr, info);
3216 }
3217 \f
3218 static CORE_ADDR
3219 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3220 {
3221 return frame_unwind_register_unsigned (next_frame,
3222 gdbarch_pc_regnum (gdbarch));
3223 }
3224
3225 static struct frame_id
3226 rs6000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
3227 {
3228 return frame_id_build (get_frame_register_unsigned
3229 (this_frame, gdbarch_sp_regnum (gdbarch)),
3230 get_frame_pc (this_frame));
3231 }
3232
3233 struct rs6000_frame_cache
3234 {
3235 CORE_ADDR base;
3236 CORE_ADDR initial_sp;
3237 struct trad_frame_saved_reg *saved_regs;
3238
3239 /* Set BASE_P to true if this frame cache is properly initialized.
3240 Otherwise set to false because some registers or memory cannot
3241 collected. */
3242 int base_p;
3243 /* Cache PC for building unavailable frame. */
3244 CORE_ADDR pc;
3245 };
3246
3247 static struct rs6000_frame_cache *
3248 rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
3249 {
3250 struct rs6000_frame_cache *cache;
3251 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3252 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3253 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3254 struct rs6000_framedata fdata;
3255 int wordsize = tdep->wordsize;
3256 CORE_ADDR func = 0, pc = 0;
3257
3258 if ((*this_cache) != NULL)
3259 return (struct rs6000_frame_cache *) (*this_cache);
3260 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3261 (*this_cache) = cache;
3262 cache->pc = 0;
3263 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3264
3265 TRY
3266 {
3267 func = get_frame_func (this_frame);
3268 cache->pc = func;
3269 pc = get_frame_pc (this_frame);
3270 skip_prologue (gdbarch, func, pc, &fdata);
3271
3272 /* Figure out the parent's stack pointer. */
3273
3274 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3275 address of the current frame. Things might be easier if the
3276 ->frame pointed to the outer-most address of the frame. In
3277 the mean time, the address of the prev frame is used as the
3278 base address of this frame. */
3279 cache->base = get_frame_register_unsigned
3280 (this_frame, gdbarch_sp_regnum (gdbarch));
3281 }
3282 CATCH (ex, RETURN_MASK_ERROR)
3283 {
3284 if (ex.error != NOT_AVAILABLE_ERROR)
3285 throw_exception (ex);
3286 return (struct rs6000_frame_cache *) (*this_cache);
3287 }
3288 END_CATCH
3289
3290 /* If the function appears to be frameless, check a couple of likely
3291 indicators that we have simply failed to find the frame setup.
3292 Two common cases of this are missing symbols (i.e.
3293 get_frame_func returns the wrong address or 0), and assembly
3294 stubs which have a fast exit path but set up a frame on the slow
3295 path.
3296
3297 If the LR appears to return to this function, then presume that
3298 we have an ABI compliant frame that we failed to find. */
3299 if (fdata.frameless && fdata.lr_offset == 0)
3300 {
3301 CORE_ADDR saved_lr;
3302 int make_frame = 0;
3303
3304 saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3305 if (func == 0 && saved_lr == pc)
3306 make_frame = 1;
3307 else if (func != 0)
3308 {
3309 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3310 if (func == saved_func)
3311 make_frame = 1;
3312 }
3313
3314 if (make_frame)
3315 {
3316 fdata.frameless = 0;
3317 fdata.lr_offset = tdep->lr_frame_offset;
3318 }
3319 }
3320
3321 if (!fdata.frameless)
3322 {
3323 /* Frameless really means stackless. */
3324 LONGEST backchain;
3325
3326 if (safe_read_memory_integer (cache->base, wordsize,
3327 byte_order, &backchain))
3328 cache->base = (CORE_ADDR) backchain;
3329 }
3330
3331 trad_frame_set_value (cache->saved_regs,
3332 gdbarch_sp_regnum (gdbarch), cache->base);
3333
3334 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3335 All fpr's from saved_fpr to fp31 are saved. */
3336
3337 if (fdata.saved_fpr >= 0)
3338 {
3339 int i;
3340 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3341
3342 /* If skip_prologue says floating-point registers were saved,
3343 but the current architecture has no floating-point registers,
3344 then that's strange. But we have no indices to even record
3345 the addresses under, so we just ignore it. */
3346 if (ppc_floating_point_unit_p (gdbarch))
3347 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3348 {
3349 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3350 fpr_addr += 8;
3351 }
3352 }
3353
3354 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3355 All gpr's from saved_gpr to gpr31 are saved (except during the
3356 prologue). */
3357
3358 if (fdata.saved_gpr >= 0)
3359 {
3360 int i;
3361 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3362 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3363 {
3364 if (fdata.gpr_mask & (1U << i))
3365 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3366 gpr_addr += wordsize;
3367 }
3368 }
3369
3370 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3371 All vr's from saved_vr to vr31 are saved. */
3372 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3373 {
3374 if (fdata.saved_vr >= 0)
3375 {
3376 int i;
3377 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3378 for (i = fdata.saved_vr; i < 32; i++)
3379 {
3380 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3381 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3382 }
3383 }
3384 }
3385
3386 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3387 All vr's from saved_ev to ev31 are saved. ????? */
3388 if (tdep->ppc_ev0_regnum != -1)
3389 {
3390 if (fdata.saved_ev >= 0)
3391 {
3392 int i;
3393 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3394 CORE_ADDR off = (byte_order == BFD_ENDIAN_BIG ? 4 : 0);
3395
3396 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3397 {
3398 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3399 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + off;
3400 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3401 }
3402 }
3403 }
3404
3405 /* If != 0, fdata.cr_offset is the offset from the frame that
3406 holds the CR. */
3407 if (fdata.cr_offset != 0)
3408 cache->saved_regs[tdep->ppc_cr_regnum].addr
3409 = cache->base + fdata.cr_offset;
3410
3411 /* If != 0, fdata.lr_offset is the offset from the frame that
3412 holds the LR. */
3413 if (fdata.lr_offset != 0)
3414 cache->saved_regs[tdep->ppc_lr_regnum].addr
3415 = cache->base + fdata.lr_offset;
3416 else if (fdata.lr_register != -1)
3417 cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
3418 /* The PC is found in the link register. */
3419 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3420 cache->saved_regs[tdep->ppc_lr_regnum];
3421
3422 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3423 holds the VRSAVE. */
3424 if (fdata.vrsave_offset != 0)
3425 cache->saved_regs[tdep->ppc_vrsave_regnum].addr
3426 = cache->base + fdata.vrsave_offset;
3427
3428 if (fdata.alloca_reg < 0)
3429 /* If no alloca register used, then fi->frame is the value of the
3430 %sp for this frame, and it is good enough. */
3431 cache->initial_sp
3432 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3433 else
3434 cache->initial_sp
3435 = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
3436
3437 cache->base_p = 1;
3438 return cache;
3439 }
3440
3441 static void
3442 rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
3443 struct frame_id *this_id)
3444 {
3445 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3446 this_cache);
3447
3448 if (!info->base_p)
3449 {
3450 (*this_id) = frame_id_build_unavailable_stack (info->pc);
3451 return;
3452 }
3453
3454 /* This marks the outermost frame. */
3455 if (info->base == 0)
3456 return;
3457
3458 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3459 }
3460
3461 static struct value *
3462 rs6000_frame_prev_register (struct frame_info *this_frame,
3463 void **this_cache, int regnum)
3464 {
3465 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3466 this_cache);
3467 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3468 }
3469
3470 static const struct frame_unwind rs6000_frame_unwind =
3471 {
3472 NORMAL_FRAME,
3473 default_frame_unwind_stop_reason,
3474 rs6000_frame_this_id,
3475 rs6000_frame_prev_register,
3476 NULL,
3477 default_frame_sniffer
3478 };
3479
3480 /* Allocate and initialize a frame cache for an epilogue frame.
3481 SP is restored and prev-PC is stored in LR. */
3482
3483 static struct rs6000_frame_cache *
3484 rs6000_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
3485 {
3486 struct rs6000_frame_cache *cache;
3487 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3488 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3489
3490 if (*this_cache)
3491 return (struct rs6000_frame_cache *) *this_cache;
3492
3493 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3494 (*this_cache) = cache;
3495 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3496
3497 TRY
3498 {
3499 /* At this point the stack looks as if we just entered the
3500 function, and the return address is stored in LR. */
3501 CORE_ADDR sp, lr;
3502
3503 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3504 lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3505
3506 cache->base = sp;
3507 cache->initial_sp = sp;
3508
3509 trad_frame_set_value (cache->saved_regs,
3510 gdbarch_pc_regnum (gdbarch), lr);
3511 }
3512 CATCH (ex, RETURN_MASK_ERROR)
3513 {
3514 if (ex.error != NOT_AVAILABLE_ERROR)
3515 throw_exception (ex);
3516 }
3517 END_CATCH
3518
3519 return cache;
3520 }
3521
3522 /* Implementation of frame_unwind.this_id, as defined in frame_unwind.h.
3523 Return the frame ID of an epilogue frame. */
3524
3525 static void
3526 rs6000_epilogue_frame_this_id (struct frame_info *this_frame,
3527 void **this_cache, struct frame_id *this_id)
3528 {
3529 CORE_ADDR pc;
3530 struct rs6000_frame_cache *info =
3531 rs6000_epilogue_frame_cache (this_frame, this_cache);
3532
3533 pc = get_frame_func (this_frame);
3534 if (info->base == 0)
3535 (*this_id) = frame_id_build_unavailable_stack (pc);
3536 else
3537 (*this_id) = frame_id_build (info->base, pc);
3538 }
3539
3540 /* Implementation of frame_unwind.prev_register, as defined in frame_unwind.h.
3541 Return the register value of REGNUM in previous frame. */
3542
3543 static struct value *
3544 rs6000_epilogue_frame_prev_register (struct frame_info *this_frame,
3545 void **this_cache, int regnum)
3546 {
3547 struct rs6000_frame_cache *info =
3548 rs6000_epilogue_frame_cache (this_frame, this_cache);
3549 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3550 }
3551
3552 /* Implementation of frame_unwind.sniffer, as defined in frame_unwind.h.
3553 Check whether this an epilogue frame. */
3554
3555 static int
3556 rs6000_epilogue_frame_sniffer (const struct frame_unwind *self,
3557 struct frame_info *this_frame,
3558 void **this_prologue_cache)
3559 {
3560 if (frame_relative_level (this_frame) == 0)
3561 return rs6000_in_function_epilogue_frame_p (this_frame,
3562 get_frame_arch (this_frame),
3563 get_frame_pc (this_frame));
3564 else
3565 return 0;
3566 }
3567
3568 /* Frame unwinder for epilogue frame. This is required for reverse step-over
3569 a function without debug information. */
3570
3571 static const struct frame_unwind rs6000_epilogue_frame_unwind =
3572 {
3573 NORMAL_FRAME,
3574 default_frame_unwind_stop_reason,
3575 rs6000_epilogue_frame_this_id, rs6000_epilogue_frame_prev_register,
3576 NULL,
3577 rs6000_epilogue_frame_sniffer
3578 };
3579 \f
3580
3581 static CORE_ADDR
3582 rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
3583 {
3584 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3585 this_cache);
3586 return info->initial_sp;
3587 }
3588
3589 static const struct frame_base rs6000_frame_base = {
3590 &rs6000_frame_unwind,
3591 rs6000_frame_base_address,
3592 rs6000_frame_base_address,
3593 rs6000_frame_base_address
3594 };
3595
3596 static const struct frame_base *
3597 rs6000_frame_base_sniffer (struct frame_info *this_frame)
3598 {
3599 return &rs6000_frame_base;
3600 }
3601
3602 /* DWARF-2 frame support. Used to handle the detection of
3603 clobbered registers during function calls. */
3604
3605 static void
3606 ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3607 struct dwarf2_frame_state_reg *reg,
3608 struct frame_info *this_frame)
3609 {
3610 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3611
3612 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3613 non-volatile registers. We will use the same code for both. */
3614
3615 /* Call-saved GP registers. */
3616 if ((regnum >= tdep->ppc_gp0_regnum + 14
3617 && regnum <= tdep->ppc_gp0_regnum + 31)
3618 || (regnum == tdep->ppc_gp0_regnum + 1))
3619 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3620
3621 /* Call-clobbered GP registers. */
3622 if ((regnum >= tdep->ppc_gp0_regnum + 3
3623 && regnum <= tdep->ppc_gp0_regnum + 12)
3624 || (regnum == tdep->ppc_gp0_regnum))
3625 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3626
3627 /* Deal with FP registers, if supported. */
3628 if (tdep->ppc_fp0_regnum >= 0)
3629 {
3630 /* Call-saved FP registers. */
3631 if ((regnum >= tdep->ppc_fp0_regnum + 14
3632 && regnum <= tdep->ppc_fp0_regnum + 31))
3633 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3634
3635 /* Call-clobbered FP registers. */
3636 if ((regnum >= tdep->ppc_fp0_regnum
3637 && regnum <= tdep->ppc_fp0_regnum + 13))
3638 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3639 }
3640
3641 /* Deal with ALTIVEC registers, if supported. */
3642 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3643 {
3644 /* Call-saved Altivec registers. */
3645 if ((regnum >= tdep->ppc_vr0_regnum + 20
3646 && regnum <= tdep->ppc_vr0_regnum + 31)
3647 || regnum == tdep->ppc_vrsave_regnum)
3648 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3649
3650 /* Call-clobbered Altivec registers. */
3651 if ((regnum >= tdep->ppc_vr0_regnum
3652 && regnum <= tdep->ppc_vr0_regnum + 19))
3653 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3654 }
3655
3656 /* Handle PC register and Stack Pointer correctly. */
3657 if (regnum == gdbarch_pc_regnum (gdbarch))
3658 reg->how = DWARF2_FRAME_REG_RA;
3659 else if (regnum == gdbarch_sp_regnum (gdbarch))
3660 reg->how = DWARF2_FRAME_REG_CFA;
3661 }
3662
3663
3664 /* Return true if a .gnu_attributes section exists in BFD and it
3665 indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
3666 section exists in BFD and it indicates that SPE extensions are in
3667 use. Check the .gnu.attributes section first, as the binary might be
3668 compiled for SPE, but not actually using SPE instructions. */
3669
3670 static int
3671 bfd_uses_spe_extensions (bfd *abfd)
3672 {
3673 asection *sect;
3674 gdb_byte *contents = NULL;
3675 bfd_size_type size;
3676 gdb_byte *ptr;
3677 int success = 0;
3678 int vector_abi;
3679
3680 if (!abfd)
3681 return 0;
3682
3683 #ifdef HAVE_ELF
3684 /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
3685 could be using the SPE vector abi without actually using any spe
3686 bits whatsoever. But it's close enough for now. */
3687 vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
3688 Tag_GNU_Power_ABI_Vector);
3689 if (vector_abi == 3)
3690 return 1;
3691 #endif
3692
3693 sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
3694 if (!sect)
3695 return 0;
3696
3697 size = bfd_get_section_size (sect);
3698 contents = (gdb_byte *) xmalloc (size);
3699 if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
3700 {
3701 xfree (contents);
3702 return 0;
3703 }
3704
3705 /* Parse the .PPC.EMB.apuinfo section. The layout is as follows:
3706
3707 struct {
3708 uint32 name_len;
3709 uint32 data_len;
3710 uint32 type;
3711 char name[name_len rounded up to 4-byte alignment];
3712 char data[data_len];
3713 };
3714
3715 Technically, there's only supposed to be one such structure in a
3716 given apuinfo section, but the linker is not always vigilant about
3717 merging apuinfo sections from input files. Just go ahead and parse
3718 them all, exiting early when we discover the binary uses SPE
3719 insns.
3720
3721 It's not specified in what endianness the information in this
3722 section is stored. Assume that it's the endianness of the BFD. */
3723 ptr = contents;
3724 while (1)
3725 {
3726 unsigned int name_len;
3727 unsigned int data_len;
3728 unsigned int type;
3729
3730 /* If we can't read the first three fields, we're done. */
3731 if (size < 12)
3732 break;
3733
3734 name_len = bfd_get_32 (abfd, ptr);
3735 name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */
3736 data_len = bfd_get_32 (abfd, ptr + 4);
3737 type = bfd_get_32 (abfd, ptr + 8);
3738 ptr += 12;
3739
3740 /* The name must be "APUinfo\0". */
3741 if (name_len != 8
3742 && strcmp ((const char *) ptr, "APUinfo") != 0)
3743 break;
3744 ptr += name_len;
3745
3746 /* The type must be 2. */
3747 if (type != 2)
3748 break;
3749
3750 /* The data is stored as a series of uint32. The upper half of
3751 each uint32 indicates the particular APU used and the lower
3752 half indicates the revision of that APU. We just care about
3753 the upper half. */
3754
3755 /* Not 4-byte quantities. */
3756 if (data_len & 3U)
3757 break;
3758
3759 while (data_len)
3760 {
3761 unsigned int apuinfo = bfd_get_32 (abfd, ptr);
3762 unsigned int apu = apuinfo >> 16;
3763 ptr += 4;
3764 data_len -= 4;
3765
3766 /* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept
3767 either. */
3768 if (apu == 0x100 || apu == 0x101)
3769 {
3770 success = 1;
3771 data_len = 0;
3772 }
3773 }
3774
3775 if (success)
3776 break;
3777 }
3778
3779 xfree (contents);
3780 return success;
3781 }
3782
3783 /* These are macros for parsing instruction fields (I.1.6.28) */
3784
3785 #define PPC_FIELD(value, from, len) \
3786 (((value) >> (32 - (from) - (len))) & ((1 << (len)) - 1))
3787 #define PPC_SEXT(v, bs) \
3788 ((((CORE_ADDR) (v) & (((CORE_ADDR) 1 << (bs)) - 1)) \
3789 ^ ((CORE_ADDR) 1 << ((bs) - 1))) \
3790 - ((CORE_ADDR) 1 << ((bs) - 1)))
3791 #define PPC_OP6(insn) PPC_FIELD (insn, 0, 6)
3792 #define PPC_EXTOP(insn) PPC_FIELD (insn, 21, 10)
3793 #define PPC_RT(insn) PPC_FIELD (insn, 6, 5)
3794 #define PPC_RS(insn) PPC_FIELD (insn, 6, 5)
3795 #define PPC_RA(insn) PPC_FIELD (insn, 11, 5)
3796 #define PPC_RB(insn) PPC_FIELD (insn, 16, 5)
3797 #define PPC_NB(insn) PPC_FIELD (insn, 16, 5)
3798 #define PPC_VRT(insn) PPC_FIELD (insn, 6, 5)
3799 #define PPC_FRT(insn) PPC_FIELD (insn, 6, 5)
3800 #define PPC_SPR(insn) (PPC_FIELD (insn, 11, 5) \
3801 | (PPC_FIELD (insn, 16, 5) << 5))
3802 #define PPC_BO(insn) PPC_FIELD (insn, 6, 5)
3803 #define PPC_T(insn) PPC_FIELD (insn, 6, 5)
3804 #define PPC_D(insn) PPC_SEXT (PPC_FIELD (insn, 16, 16), 16)
3805 #define PPC_DS(insn) PPC_SEXT (PPC_FIELD (insn, 16, 14), 14)
3806 #define PPC_BIT(insn,n) ((insn & (1 << (31 - (n)))) ? 1 : 0)
3807 #define PPC_OE(insn) PPC_BIT (insn, 21)
3808 #define PPC_RC(insn) PPC_BIT (insn, 31)
3809 #define PPC_Rc(insn) PPC_BIT (insn, 21)
3810 #define PPC_LK(insn) PPC_BIT (insn, 31)
3811 #define PPC_TX(insn) PPC_BIT (insn, 31)
3812 #define PPC_LEV(insn) PPC_FIELD (insn, 20, 7)
3813
3814 #define PPC_XT(insn) ((PPC_TX (insn) << 5) | PPC_T (insn))
3815 #define PPC_XER_NB(xer) (xer & 0x7f)
3816
3817 /* Record Vector-Scalar Registers.
3818 For VSR less than 32, it's represented by an FPR and an VSR-upper register.
3819 Otherwise, it's just a VR register. Record them accordingly. */
3820
3821 static int
3822 ppc_record_vsr (struct regcache *regcache, struct gdbarch_tdep *tdep, int vsr)
3823 {
3824 if (vsr < 0 || vsr >= 64)
3825 return -1;
3826
3827 if (vsr >= 32)
3828 {
3829 if (tdep->ppc_vr0_regnum >= 0)
3830 record_full_arch_list_add_reg (regcache, tdep->ppc_vr0_regnum + vsr - 32);
3831 }
3832 else
3833 {
3834 if (tdep->ppc_fp0_regnum >= 0)
3835 record_full_arch_list_add_reg (regcache, tdep->ppc_fp0_regnum + vsr);
3836 if (tdep->ppc_vsr0_upper_regnum >= 0)
3837 record_full_arch_list_add_reg (regcache,
3838 tdep->ppc_vsr0_upper_regnum + vsr);
3839 }
3840
3841 return 0;
3842 }
3843
3844 /* Parse and record instructions primary opcode-4 at ADDR.
3845 Return 0 if successful. */
3846
3847 static int
3848 ppc_process_record_op4 (struct gdbarch *gdbarch, struct regcache *regcache,
3849 CORE_ADDR addr, uint32_t insn)
3850 {
3851 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3852 int ext = PPC_FIELD (insn, 21, 11);
3853
3854 switch (ext & 0x3f)
3855 {
3856 case 32: /* Vector Multiply-High-Add Signed Halfword Saturate */
3857 case 33: /* Vector Multiply-High-Round-Add Signed Halfword Saturate */
3858 case 39: /* Vector Multiply-Sum Unsigned Halfword Saturate */
3859 case 41: /* Vector Multiply-Sum Signed Halfword Saturate */
3860 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
3861 /* FALL-THROUGH */
3862 case 42: /* Vector Select */
3863 case 43: /* Vector Permute */
3864 case 44: /* Vector Shift Left Double by Octet Immediate */
3865 case 45: /* Vector Permute and Exclusive-OR */
3866 case 60: /* Vector Add Extended Unsigned Quadword Modulo */
3867 case 61: /* Vector Add Extended & write Carry Unsigned Quadword */
3868 case 62: /* Vector Subtract Extended Unsigned Quadword Modulo */
3869 case 63: /* Vector Subtract Extended & write Carry Unsigned Quadword */
3870 case 34: /* Vector Multiply-Low-Add Unsigned Halfword Modulo */
3871 case 36: /* Vector Multiply-Sum Unsigned Byte Modulo */
3872 case 37: /* Vector Multiply-Sum Mixed Byte Modulo */
3873 case 38: /* Vector Multiply-Sum Unsigned Halfword Modulo */
3874 case 40: /* Vector Multiply-Sum Signed Halfword Modulo */
3875 case 46: /* Vector Multiply-Add Single-Precision */
3876 case 47: /* Vector Negative Multiply-Subtract Single-Precision */
3877 record_full_arch_list_add_reg (regcache,
3878 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3879 return 0;
3880 }
3881
3882 switch ((ext & 0x1ff))
3883 {
3884 /* 5.16 Decimal Integer Arithmetic Instructions */
3885 case 1: /* Decimal Add Modulo */
3886 case 65: /* Decimal Subtract Modulo */
3887
3888 /* Bit-21 should be set. */
3889 if (!PPC_BIT (insn, 21))
3890 break;
3891
3892 record_full_arch_list_add_reg (regcache,
3893 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3894 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
3895 return 0;
3896 }
3897
3898 /* Bit-21 is used for RC */
3899 switch (ext & 0x3ff)
3900 {
3901 case 6: /* Vector Compare Equal To Unsigned Byte */
3902 case 70: /* Vector Compare Equal To Unsigned Halfword */
3903 case 134: /* Vector Compare Equal To Unsigned Word */
3904 case 199: /* Vector Compare Equal To Unsigned Doubleword */
3905 case 774: /* Vector Compare Greater Than Signed Byte */
3906 case 838: /* Vector Compare Greater Than Signed Halfword */
3907 case 902: /* Vector Compare Greater Than Signed Word */
3908 case 967: /* Vector Compare Greater Than Signed Doubleword */
3909 case 518: /* Vector Compare Greater Than Unsigned Byte */
3910 case 646: /* Vector Compare Greater Than Unsigned Word */
3911 case 582: /* Vector Compare Greater Than Unsigned Halfword */
3912 case 711: /* Vector Compare Greater Than Unsigned Doubleword */
3913 case 966: /* Vector Compare Bounds Single-Precision */
3914 case 198: /* Vector Compare Equal To Single-Precision */
3915 case 454: /* Vector Compare Greater Than or Equal To Single-Precision */
3916 case 710: /* Vector Compare Greater Than Single-Precision */
3917 if (PPC_Rc (insn))
3918 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
3919 record_full_arch_list_add_reg (regcache,
3920 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3921 return 0;
3922 }
3923
3924 switch (ext)
3925 {
3926 case 142: /* Vector Pack Unsigned Halfword Unsigned Saturate */
3927 case 206: /* Vector Pack Unsigned Word Unsigned Saturate */
3928 case 270: /* Vector Pack Signed Halfword Unsigned Saturate */
3929 case 334: /* Vector Pack Signed Word Unsigned Saturate */
3930 case 398: /* Vector Pack Signed Halfword Signed Saturate */
3931 case 462: /* Vector Pack Signed Word Signed Saturate */
3932 case 1230: /* Vector Pack Unsigned Doubleword Unsigned Saturate */
3933 case 1358: /* Vector Pack Signed Doubleword Unsigned Saturate */
3934 case 1486: /* Vector Pack Signed Doubleword Signed Saturate */
3935 case 512: /* Vector Add Unsigned Byte Saturate */
3936 case 576: /* Vector Add Unsigned Halfword Saturate */
3937 case 640: /* Vector Add Unsigned Word Saturate */
3938 case 768: /* Vector Add Signed Byte Saturate */
3939 case 832: /* Vector Add Signed Halfword Saturate */
3940 case 896: /* Vector Add Signed Word Saturate */
3941 case 1536: /* Vector Subtract Unsigned Byte Saturate */
3942 case 1600: /* Vector Subtract Unsigned Halfword Saturate */
3943 case 1664: /* Vector Subtract Unsigned Word Saturate */
3944 case 1792: /* Vector Subtract Signed Byte Saturate */
3945 case 1856: /* Vector Subtract Signed Halfword Saturate */
3946 case 1920: /* Vector Subtract Signed Word Saturate */
3947
3948 case 1544: /* Vector Sum across Quarter Unsigned Byte Saturate */
3949 case 1800: /* Vector Sum across Quarter Signed Byte Saturate */
3950 case 1608: /* Vector Sum across Quarter Signed Halfword Saturate */
3951 case 1672: /* Vector Sum across Half Signed Word Saturate */
3952 case 1928: /* Vector Sum across Signed Word Saturate */
3953 case 970: /* Vector Convert To Signed Fixed-Point Word Saturate */
3954 case 906: /* Vector Convert To Unsigned Fixed-Point Word Saturate */
3955 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
3956 /* FALL-THROUGH */
3957 case 12: /* Vector Merge High Byte */
3958 case 14: /* Vector Pack Unsigned Halfword Unsigned Modulo */
3959 case 76: /* Vector Merge High Halfword */
3960 case 78: /* Vector Pack Unsigned Word Unsigned Modulo */
3961 case 140: /* Vector Merge High Word */
3962 case 268: /* Vector Merge Low Byte */
3963 case 332: /* Vector Merge Low Halfword */
3964 case 396: /* Vector Merge Low Word */
3965 case 526: /* Vector Unpack High Signed Byte */
3966 case 590: /* Vector Unpack High Signed Halfword */
3967 case 654: /* Vector Unpack Low Signed Byte */
3968 case 718: /* Vector Unpack Low Signed Halfword */
3969 case 782: /* Vector Pack Pixel */
3970 case 846: /* Vector Unpack High Pixel */
3971 case 974: /* Vector Unpack Low Pixel */
3972 case 1102: /* Vector Pack Unsigned Doubleword Unsigned Modulo */
3973 case 1614: /* Vector Unpack High Signed Word */
3974 case 1676: /* Vector Merge Odd Word */
3975 case 1742: /* Vector Unpack Low Signed Word */
3976 case 1932: /* Vector Merge Even Word */
3977 case 524: /* Vector Splat Byte */
3978 case 588: /* Vector Splat Halfword */
3979 case 652: /* Vector Splat Word */
3980 case 780: /* Vector Splat Immediate Signed Byte */
3981 case 844: /* Vector Splat Immediate Signed Halfword */
3982 case 908: /* Vector Splat Immediate Signed Word */
3983 case 452: /* Vector Shift Left */
3984 case 708: /* Vector Shift Right */
3985 case 1036: /* Vector Shift Left by Octet */
3986 case 1100: /* Vector Shift Right by Octet */
3987 case 0: /* Vector Add Unsigned Byte Modulo */
3988 case 64: /* Vector Add Unsigned Halfword Modulo */
3989 case 128: /* Vector Add Unsigned Word Modulo */
3990 case 192: /* Vector Add Unsigned Doubleword Modulo */
3991 case 256: /* Vector Add Unsigned Quadword Modulo */
3992 case 320: /* Vector Add & write Carry Unsigned Quadword */
3993 case 384: /* Vector Add and Write Carry-Out Unsigned Word */
3994 case 8: /* Vector Multiply Odd Unsigned Byte */
3995 case 72: /* Vector Multiply Odd Unsigned Halfword */
3996 case 136: /* Vector Multiply Odd Unsigned Word */
3997 case 264: /* Vector Multiply Odd Signed Byte */
3998 case 328: /* Vector Multiply Odd Signed Halfword */
3999 case 392: /* Vector Multiply Odd Signed Word */
4000 case 520: /* Vector Multiply Even Unsigned Byte */
4001 case 584: /* Vector Multiply Even Unsigned Halfword */
4002 case 648: /* Vector Multiply Even Unsigned Word */
4003 case 776: /* Vector Multiply Even Signed Byte */
4004 case 840: /* Vector Multiply Even Signed Halfword */
4005 case 904: /* Vector Multiply Even Signed Word */
4006 case 137: /* Vector Multiply Unsigned Word Modulo */
4007 case 1024: /* Vector Subtract Unsigned Byte Modulo */
4008 case 1088: /* Vector Subtract Unsigned Halfword Modulo */
4009 case 1152: /* Vector Subtract Unsigned Word Modulo */
4010 case 1216: /* Vector Subtract Unsigned Doubleword Modulo */
4011 case 1280: /* Vector Subtract Unsigned Quadword Modulo */
4012 case 1344: /* Vector Subtract & write Carry Unsigned Quadword */
4013 case 1408: /* Vector Subtract and Write Carry-Out Unsigned Word */
4014 case 1282: /* Vector Average Signed Byte */
4015 case 1346: /* Vector Average Signed Halfword */
4016 case 1410: /* Vector Average Signed Word */
4017 case 1026: /* Vector Average Unsigned Byte */
4018 case 1090: /* Vector Average Unsigned Halfword */
4019 case 1154: /* Vector Average Unsigned Word */
4020 case 258: /* Vector Maximum Signed Byte */
4021 case 322: /* Vector Maximum Signed Halfword */
4022 case 386: /* Vector Maximum Signed Word */
4023 case 450: /* Vector Maximum Signed Doubleword */
4024 case 2: /* Vector Maximum Unsigned Byte */
4025 case 66: /* Vector Maximum Unsigned Halfword */
4026 case 130: /* Vector Maximum Unsigned Word */
4027 case 194: /* Vector Maximum Unsigned Doubleword */
4028 case 770: /* Vector Minimum Signed Byte */
4029 case 834: /* Vector Minimum Signed Halfword */
4030 case 898: /* Vector Minimum Signed Word */
4031 case 962: /* Vector Minimum Signed Doubleword */
4032 case 514: /* Vector Minimum Unsigned Byte */
4033 case 578: /* Vector Minimum Unsigned Halfword */
4034 case 642: /* Vector Minimum Unsigned Word */
4035 case 706: /* Vector Minimum Unsigned Doubleword */
4036 case 1028: /* Vector Logical AND */
4037 case 1668: /* Vector Logical Equivalent */
4038 case 1092: /* Vector Logical AND with Complement */
4039 case 1412: /* Vector Logical NAND */
4040 case 1348: /* Vector Logical OR with Complement */
4041 case 1156: /* Vector Logical OR */
4042 case 1284: /* Vector Logical NOR */
4043 case 1220: /* Vector Logical XOR */
4044 case 4: /* Vector Rotate Left Byte */
4045 case 132: /* Vector Rotate Left Word VX-form */
4046 case 68: /* Vector Rotate Left Halfword */
4047 case 196: /* Vector Rotate Left Doubleword */
4048 case 260: /* Vector Shift Left Byte */
4049 case 388: /* Vector Shift Left Word */
4050 case 324: /* Vector Shift Left Halfword */
4051 case 1476: /* Vector Shift Left Doubleword */
4052 case 516: /* Vector Shift Right Byte */
4053 case 644: /* Vector Shift Right Word */
4054 case 580: /* Vector Shift Right Halfword */
4055 case 1732: /* Vector Shift Right Doubleword */
4056 case 772: /* Vector Shift Right Algebraic Byte */
4057 case 900: /* Vector Shift Right Algebraic Word */
4058 case 836: /* Vector Shift Right Algebraic Halfword */
4059 case 964: /* Vector Shift Right Algebraic Doubleword */
4060 case 10: /* Vector Add Single-Precision */
4061 case 74: /* Vector Subtract Single-Precision */
4062 case 1034: /* Vector Maximum Single-Precision */
4063 case 1098: /* Vector Minimum Single-Precision */
4064 case 842: /* Vector Convert From Signed Fixed-Point Word */
4065 case 778: /* Vector Convert From Unsigned Fixed-Point Word */
4066 case 714: /* Vector Round to Single-Precision Integer toward -Infinity */
4067 case 522: /* Vector Round to Single-Precision Integer Nearest */
4068 case 650: /* Vector Round to Single-Precision Integer toward +Infinity */
4069 case 586: /* Vector Round to Single-Precision Integer toward Zero */
4070 case 394: /* Vector 2 Raised to the Exponent Estimate Floating-Point */
4071 case 458: /* Vector Log Base 2 Estimate Floating-Point */
4072 case 266: /* Vector Reciprocal Estimate Single-Precision */
4073 case 330: /* Vector Reciprocal Square Root Estimate Single-Precision */
4074 case 1288: /* Vector AES Cipher */
4075 case 1289: /* Vector AES Cipher Last */
4076 case 1352: /* Vector AES Inverse Cipher */
4077 case 1353: /* Vector AES Inverse Cipher Last */
4078 case 1480: /* Vector AES SubBytes */
4079 case 1730: /* Vector SHA-512 Sigma Doubleword */
4080 case 1666: /* Vector SHA-256 Sigma Word */
4081 case 1032: /* Vector Polynomial Multiply-Sum Byte */
4082 case 1160: /* Vector Polynomial Multiply-Sum Word */
4083 case 1096: /* Vector Polynomial Multiply-Sum Halfword */
4084 case 1224: /* Vector Polynomial Multiply-Sum Doubleword */
4085 case 1292: /* Vector Gather Bits by Bytes by Doubleword */
4086 case 1794: /* Vector Count Leading Zeros Byte */
4087 case 1858: /* Vector Count Leading Zeros Halfword */
4088 case 1922: /* Vector Count Leading Zeros Word */
4089 case 1986: /* Vector Count Leading Zeros Doubleword */
4090 case 1795: /* Vector Population Count Byte */
4091 case 1859: /* Vector Population Count Halfword */
4092 case 1923: /* Vector Population Count Word */
4093 case 1987: /* Vector Population Count Doubleword */
4094 case 1356: /* Vector Bit Permute Quadword */
4095 record_full_arch_list_add_reg (regcache,
4096 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4097 return 0;
4098
4099 case 1604: /* Move To Vector Status and Control Register */
4100 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4101 return 0;
4102 case 1540: /* Move From Vector Status and Control Register */
4103 record_full_arch_list_add_reg (regcache,
4104 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4105 return 0;
4106 }
4107
4108 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4109 "at %s, 4-%d.\n", insn, paddress (gdbarch, addr), ext);
4110 return -1;
4111 }
4112
4113 /* Parse and record instructions of primary opcode-19 at ADDR.
4114 Return 0 if successful. */
4115
4116 static int
4117 ppc_process_record_op19 (struct gdbarch *gdbarch, struct regcache *regcache,
4118 CORE_ADDR addr, uint32_t insn)
4119 {
4120 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4121 int ext = PPC_EXTOP (insn);
4122
4123 switch (ext)
4124 {
4125 case 0: /* Move Condition Register Field */
4126 case 33: /* Condition Register NOR */
4127 case 129: /* Condition Register AND with Complement */
4128 case 193: /* Condition Register XOR */
4129 case 225: /* Condition Register NAND */
4130 case 257: /* Condition Register AND */
4131 case 289: /* Condition Register Equivalent */
4132 case 417: /* Condition Register OR with Complement */
4133 case 449: /* Condition Register OR */
4134 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4135 return 0;
4136
4137 case 16: /* Branch Conditional */
4138 case 560: /* Branch Conditional to Branch Target Address Register */
4139 if ((PPC_BO (insn) & 0x4) == 0)
4140 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4141 /* FALL-THROUGH */
4142 case 528: /* Branch Conditional to Count Register */
4143 if (PPC_LK (insn))
4144 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4145 return 0;
4146
4147 case 150: /* Instruction Synchronize */
4148 /* Do nothing. */
4149 return 0;
4150 }
4151
4152 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4153 "at %s, 19-%d.\n", insn, paddress (gdbarch, addr), ext);
4154 return -1;
4155 }
4156
4157 /* Parse and record instructions of primary opcode-31 at ADDR.
4158 Return 0 if successful. */
4159
4160 static int
4161 ppc_process_record_op31 (struct gdbarch *gdbarch, struct regcache *regcache,
4162 CORE_ADDR addr, uint32_t insn)
4163 {
4164 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4165 int ext = PPC_EXTOP (insn);
4166 int tmp, nr, nb, i;
4167 CORE_ADDR at_dcsz, ea = 0;
4168 ULONGEST rb, ra, xer;
4169 int size = 0;
4170
4171 /* These instructions have OE bit. */
4172 switch (ext & 0x1ff)
4173 {
4174 /* These write RT and XER. Update CR if RC is set. */
4175 case 8: /* Subtract from carrying */
4176 case 10: /* Add carrying */
4177 case 136: /* Subtract from extended */
4178 case 138: /* Add extended */
4179 case 200: /* Subtract from zero extended */
4180 case 202: /* Add to zero extended */
4181 case 232: /* Subtract from minus one extended */
4182 case 234: /* Add to minus one extended */
4183 /* CA is always altered, but SO/OV are only altered when OE=1.
4184 In any case, XER is always altered. */
4185 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4186 if (PPC_RC (insn))
4187 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4188 record_full_arch_list_add_reg (regcache,
4189 tdep->ppc_gp0_regnum + PPC_RT (insn));
4190 return 0;
4191
4192 /* These write RT. Update CR if RC is set and update XER if OE is set. */
4193 case 40: /* Subtract from */
4194 case 104: /* Negate */
4195 case 233: /* Multiply low doubleword */
4196 case 235: /* Multiply low word */
4197 case 266: /* Add */
4198 case 393: /* Divide Doubleword Extended Unsigned */
4199 case 395: /* Divide Word Extended Unsigned */
4200 case 425: /* Divide Doubleword Extended */
4201 case 427: /* Divide Word Extended */
4202 case 457: /* Divide Doubleword Unsigned */
4203 case 459: /* Divide Word Unsigned */
4204 case 489: /* Divide Doubleword */
4205 case 491: /* Divide Word */
4206 if (PPC_OE (insn))
4207 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4208 /* FALL-THROUGH */
4209 case 9: /* Multiply High Doubleword Unsigned */
4210 case 11: /* Multiply High Word Unsigned */
4211 case 73: /* Multiply High Doubleword */
4212 case 75: /* Multiply High Word */
4213 if (PPC_RC (insn))
4214 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4215 record_full_arch_list_add_reg (regcache,
4216 tdep->ppc_gp0_regnum + PPC_RT (insn));
4217 return 0;
4218 }
4219
4220 if ((ext & 0x1f) == 15)
4221 {
4222 /* Integer Select. bit[16:20] is used for BC. */
4223 record_full_arch_list_add_reg (regcache,
4224 tdep->ppc_gp0_regnum + PPC_RT (insn));
4225 return 0;
4226 }
4227
4228 switch (ext)
4229 {
4230 case 78: /* Determine Leftmost Zero Byte */
4231 if (PPC_RC (insn))
4232 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4233 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4234 record_full_arch_list_add_reg (regcache,
4235 tdep->ppc_gp0_regnum + PPC_RT (insn));
4236 return 0;
4237
4238 /* These only write RT. */
4239 case 19: /* Move from condition register */
4240 /* Move From One Condition Register Field */
4241 case 74: /* Add and Generate Sixes */
4242 case 74 | 0x200: /* Add and Generate Sixes (bit-21 dont-care) */
4243 case 302: /* Move From Branch History Rolling Buffer */
4244 case 339: /* Move From Special Purpose Register */
4245 case 371: /* Move From Time Base [Phased-Out] */
4246 record_full_arch_list_add_reg (regcache,
4247 tdep->ppc_gp0_regnum + PPC_RT (insn));
4248 return 0;
4249
4250 /* These only write to RA. */
4251 case 51: /* Move From VSR Doubleword */
4252 case 115: /* Move From VSR Word and Zero */
4253 case 122: /* Population count bytes */
4254 case 378: /* Population count words */
4255 case 506: /* Population count doublewords */
4256 case 154: /* Parity Word */
4257 case 186: /* Parity Doubleword */
4258 case 252: /* Bit Permute Doubleword */
4259 case 282: /* Convert Declets To Binary Coded Decimal */
4260 case 314: /* Convert Binary Coded Decimal To Declets */
4261 case 508: /* Compare bytes */
4262 record_full_arch_list_add_reg (regcache,
4263 tdep->ppc_gp0_regnum + PPC_RA (insn));
4264 return 0;
4265
4266 /* These write CR and optional RA. */
4267 case 792: /* Shift Right Algebraic Word */
4268 case 794: /* Shift Right Algebraic Doubleword */
4269 case 824: /* Shift Right Algebraic Word Immediate */
4270 case 826: /* Shift Right Algebraic Doubleword Immediate (413) */
4271 case 826 | 1: /* Shift Right Algebraic Doubleword Immediate (413) */
4272 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4273 record_full_arch_list_add_reg (regcache,
4274 tdep->ppc_gp0_regnum + PPC_RA (insn));
4275 /* FALL-THROUGH */
4276 case 0: /* Compare */
4277 case 32: /* Compare logical */
4278 case 144: /* Move To Condition Register Fields */
4279 /* Move To One Condition Register Field */
4280 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4281 return 0;
4282
4283 /* These write to RT. Update RA if 'update indexed.' */
4284 case 53: /* Load Doubleword with Update Indexed */
4285 case 119: /* Load Byte and Zero with Update Indexed */
4286 case 311: /* Load Halfword and Zero with Update Indexed */
4287 case 55: /* Load Word and Zero with Update Indexed */
4288 case 375: /* Load Halfword Algebraic with Update Indexed */
4289 case 373: /* Load Word Algebraic with Update Indexed */
4290 record_full_arch_list_add_reg (regcache,
4291 tdep->ppc_gp0_regnum + PPC_RA (insn));
4292 /* FALL-THROUGH */
4293 case 21: /* Load Doubleword Indexed */
4294 case 52: /* Load Byte And Reserve Indexed */
4295 case 116: /* Load Halfword And Reserve Indexed */
4296 case 20: /* Load Word And Reserve Indexed */
4297 case 84: /* Load Doubleword And Reserve Indexed */
4298 case 87: /* Load Byte and Zero Indexed */
4299 case 279: /* Load Halfword and Zero Indexed */
4300 case 23: /* Load Word and Zero Indexed */
4301 case 343: /* Load Halfword Algebraic Indexed */
4302 case 341: /* Load Word Algebraic Indexed */
4303 case 790: /* Load Halfword Byte-Reverse Indexed */
4304 case 534: /* Load Word Byte-Reverse Indexed */
4305 case 532: /* Load Doubleword Byte-Reverse Indexed */
4306 record_full_arch_list_add_reg (regcache,
4307 tdep->ppc_gp0_regnum + PPC_RT (insn));
4308 return 0;
4309
4310 case 597: /* Load String Word Immediate */
4311 case 533: /* Load String Word Indexed */
4312 if (ext == 597)
4313 {
4314 nr = PPC_NB (insn);
4315 if (nr == 0)
4316 nr = 32;
4317 }
4318 else
4319 {
4320 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4321 nr = PPC_XER_NB (xer);
4322 }
4323
4324 nr = (nr + 3) >> 2;
4325
4326 /* If n=0, the contents of register RT are undefined. */
4327 if (nr == 0)
4328 nr = 1;
4329
4330 for (i = 0; i < nr; i++)
4331 record_full_arch_list_add_reg (regcache,
4332 tdep->ppc_gp0_regnum
4333 + ((PPC_RT (insn) + i) & 0x1f));
4334 return 0;
4335
4336 case 276: /* Load Quadword And Reserve Indexed */
4337 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
4338 record_full_arch_list_add_reg (regcache, tmp);
4339 record_full_arch_list_add_reg (regcache, tmp + 1);
4340 return 0;
4341
4342 /* These write VRT. */
4343 case 6: /* Load Vector for Shift Left Indexed */
4344 case 38: /* Load Vector for Shift Right Indexed */
4345 case 7: /* Load Vector Element Byte Indexed */
4346 case 39: /* Load Vector Element Halfword Indexed */
4347 case 71: /* Load Vector Element Word Indexed */
4348 case 103: /* Load Vector Indexed */
4349 case 359: /* Load Vector Indexed LRU */
4350 record_full_arch_list_add_reg (regcache,
4351 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4352 return 0;
4353
4354 /* These write FRT. Update RA if 'update indexed.' */
4355 case 567: /* Load Floating-Point Single with Update Indexed */
4356 case 631: /* Load Floating-Point Double with Update Indexed */
4357 record_full_arch_list_add_reg (regcache,
4358 tdep->ppc_gp0_regnum + PPC_RA (insn));
4359 /* FALL-THROUGH */
4360 case 535: /* Load Floating-Point Single Indexed */
4361 case 599: /* Load Floating-Point Double Indexed */
4362 case 855: /* Load Floating-Point as Integer Word Algebraic Indexed */
4363 case 887: /* Load Floating-Point as Integer Word and Zero Indexed */
4364 record_full_arch_list_add_reg (regcache,
4365 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4366 return 0;
4367
4368 case 791: /* Load Floating-Point Double Pair Indexed */
4369 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
4370 record_full_arch_list_add_reg (regcache, tmp);
4371 record_full_arch_list_add_reg (regcache, tmp + 1);
4372 return 0;
4373
4374 case 179: /* Move To VSR Doubleword */
4375 case 211: /* Move To VSR Word Algebraic */
4376 case 243: /* Move To VSR Word and Zero */
4377 case 588: /* Load VSX Scalar Doubleword Indexed */
4378 case 524: /* Load VSX Scalar Single-Precision Indexed */
4379 case 76: /* Load VSX Scalar as Integer Word Algebraic Indexed */
4380 case 12: /* Load VSX Scalar as Integer Word and Zero Indexed */
4381 case 844: /* Load VSX Vector Doubleword*2 Indexed */
4382 case 332: /* Load VSX Vector Doubleword & Splat Indexed */
4383 case 780: /* Load VSX Vector Word*4 Indexed */
4384 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4385 return 0;
4386
4387 /* These write RA. Update CR if RC is set. */
4388 case 24: /* Shift Left Word */
4389 case 26: /* Count Leading Zeros Word */
4390 case 27: /* Shift Left Doubleword */
4391 case 28: /* AND */
4392 case 58: /* Count Leading Zeros Doubleword */
4393 case 60: /* AND with Complement */
4394 case 124: /* NOR */
4395 case 284: /* Equivalent */
4396 case 316: /* XOR */
4397 case 476: /* NAND */
4398 case 412: /* OR with Complement */
4399 case 444: /* OR */
4400 case 536: /* Shift Right Word */
4401 case 539: /* Shift Right Doubleword */
4402 case 922: /* Extend Sign Halfword */
4403 case 954: /* Extend Sign Byte */
4404 case 986: /* Extend Sign Word */
4405 if (PPC_RC (insn))
4406 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4407 record_full_arch_list_add_reg (regcache,
4408 tdep->ppc_gp0_regnum + PPC_RA (insn));
4409 return 0;
4410
4411 /* Store memory. */
4412 case 181: /* Store Doubleword with Update Indexed */
4413 case 183: /* Store Word with Update Indexed */
4414 case 247: /* Store Byte with Update Indexed */
4415 case 439: /* Store Half Word with Update Indexed */
4416 case 695: /* Store Floating-Point Single with Update Indexed */
4417 case 759: /* Store Floating-Point Double with Update Indexed */
4418 record_full_arch_list_add_reg (regcache,
4419 tdep->ppc_gp0_regnum + PPC_RA (insn));
4420 /* FALL-THROUGH */
4421 case 135: /* Store Vector Element Byte Indexed */
4422 case 167: /* Store Vector Element Halfword Indexed */
4423 case 199: /* Store Vector Element Word Indexed */
4424 case 231: /* Store Vector Indexed */
4425 case 487: /* Store Vector Indexed LRU */
4426 case 716: /* Store VSX Scalar Doubleword Indexed */
4427 case 140: /* Store VSX Scalar as Integer Word Indexed */
4428 case 652: /* Store VSX Scalar Single-Precision Indexed */
4429 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4430 case 908: /* Store VSX Vector Word*4 Indexed */
4431 case 149: /* Store Doubleword Indexed */
4432 case 151: /* Store Word Indexed */
4433 case 215: /* Store Byte Indexed */
4434 case 407: /* Store Half Word Indexed */
4435 case 694: /* Store Byte Conditional Indexed */
4436 case 726: /* Store Halfword Conditional Indexed */
4437 case 150: /* Store Word Conditional Indexed */
4438 case 214: /* Store Doubleword Conditional Indexed */
4439 case 182: /* Store Quadword Conditional Indexed */
4440 case 662: /* Store Word Byte-Reverse Indexed */
4441 case 918: /* Store Halfword Byte-Reverse Indexed */
4442 case 660: /* Store Doubleword Byte-Reverse Indexed */
4443 case 663: /* Store Floating-Point Single Indexed */
4444 case 727: /* Store Floating-Point Double Indexed */
4445 case 919: /* Store Floating-Point Double Pair Indexed */
4446 case 983: /* Store Floating-Point as Integer Word Indexed */
4447 if (ext == 694 || ext == 726 || ext == 150 || ext == 214 || ext == 182)
4448 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4449
4450 ra = 0;
4451 if (PPC_RA (insn) != 0)
4452 regcache_raw_read_unsigned (regcache,
4453 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4454 regcache_raw_read_unsigned (regcache,
4455 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4456 ea = ra + rb;
4457
4458 switch (ext)
4459 {
4460 case 183: /* Store Word with Update Indexed */
4461 case 199: /* Store Vector Element Word Indexed */
4462 case 140: /* Store VSX Scalar as Integer Word Indexed */
4463 case 652: /* Store VSX Scalar Single-Precision Indexed */
4464 case 151: /* Store Word Indexed */
4465 case 150: /* Store Word Conditional Indexed */
4466 case 662: /* Store Word Byte-Reverse Indexed */
4467 case 663: /* Store Floating-Point Single Indexed */
4468 case 695: /* Store Floating-Point Single with Update Indexed */
4469 case 983: /* Store Floating-Point as Integer Word Indexed */
4470 size = 4;
4471 break;
4472 case 247: /* Store Byte with Update Indexed */
4473 case 135: /* Store Vector Element Byte Indexed */
4474 case 215: /* Store Byte Indexed */
4475 case 694: /* Store Byte Conditional Indexed */
4476 size = 1;
4477 break;
4478 case 439: /* Store Halfword with Update Indexed */
4479 case 167: /* Store Vector Element Halfword Indexed */
4480 case 407: /* Store Halfword Indexed */
4481 case 726: /* Store Halfword Conditional Indexed */
4482 case 918: /* Store Halfword Byte-Reverse Indexed */
4483 size = 2;
4484 break;
4485 case 181: /* Store Doubleword with Update Indexed */
4486 case 716: /* Store VSX Scalar Doubleword Indexed */
4487 case 149: /* Store Doubleword Indexed */
4488 case 214: /* Store Doubleword Conditional Indexed */
4489 case 660: /* Store Doubleword Byte-Reverse Indexed */
4490 case 727: /* Store Floating-Point Double Indexed */
4491 case 759: /* Store Floating-Point Double with Update Indexed */
4492 size = 8;
4493 break;
4494 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4495 case 908: /* Store VSX Vector Word*4 Indexed */
4496 case 182: /* Store Quadword Conditional Indexed */
4497 case 231: /* Store Vector Indexed */
4498 case 487: /* Store Vector Indexed LRU */
4499 case 919: /* Store Floating-Point Double Pair Indexed */
4500 size = 16;
4501 break;
4502 default:
4503 gdb_assert (0);
4504 }
4505
4506 /* Align address for Store Vector instructions. */
4507 switch (ext)
4508 {
4509 case 167: /* Store Vector Element Halfword Indexed */
4510 addr = addr & ~0x1ULL;
4511 break;
4512
4513 case 199: /* Store Vector Element Word Indexed */
4514 addr = addr & ~0x3ULL;
4515 break;
4516
4517 case 231: /* Store Vector Indexed */
4518 case 487: /* Store Vector Indexed LRU */
4519 addr = addr & ~0xfULL;
4520 break;
4521 }
4522
4523 record_full_arch_list_add_mem (addr, size);
4524 return 0;
4525
4526 case 725: /* Store String Word Immediate */
4527 ra = 0;
4528 if (PPC_RA (insn) != 0)
4529 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &ra);
4530 ea += ra;
4531
4532 nb = PPC_NB (insn);
4533 if (nb == 0)
4534 nb = 32;
4535
4536 record_full_arch_list_add_mem (ea, nb);
4537
4538 return 0;
4539
4540 case 661: /* Store String Word Indexed */
4541 ra = 0;
4542 if (PPC_RA (insn) != 0)
4543 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &ra);
4544 ea += ra;
4545
4546 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4547 nb = PPC_XER_NB (xer);
4548
4549 if (nb != 0)
4550 {
4551 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &rb);
4552 ea += rb;
4553 record_full_arch_list_add_mem (ea, nb);
4554 }
4555
4556 return 0;
4557
4558 case 467: /* Move To Special Purpose Register */
4559 switch (PPC_SPR (insn))
4560 {
4561 case 1: /* XER */
4562 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4563 return 0;
4564 case 8: /* LR */
4565 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4566 return 0;
4567 case 9: /* CTR */
4568 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4569 return 0;
4570 case 256: /* VRSAVE */
4571 record_full_arch_list_add_reg (regcache, tdep->ppc_vrsave_regnum);
4572 return 0;
4573 }
4574
4575 goto UNKNOWN_OP;
4576
4577 case 147: /* Move To Split Little Endian */
4578 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
4579 return 0;
4580
4581 case 512: /* Move to Condition Register from XER */
4582 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4583 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4584 return 0;
4585
4586 case 4: /* Trap Word */
4587 case 68: /* Trap Doubleword */
4588 case 430: /* Clear BHRB */
4589 case 598: /* Synchronize */
4590 case 62: /* Wait for Interrupt */
4591 case 22: /* Instruction Cache Block Touch */
4592 case 854: /* Enforce In-order Execution of I/O */
4593 case 246: /* Data Cache Block Touch for Store */
4594 case 54: /* Data Cache Block Store */
4595 case 86: /* Data Cache Block Flush */
4596 case 278: /* Data Cache Block Touch */
4597 case 758: /* Data Cache Block Allocate */
4598 case 982: /* Instruction Cache Block Invalidate */
4599 return 0;
4600
4601 case 654: /* Transaction Begin */
4602 case 686: /* Transaction End */
4603 case 718: /* Transaction Check */
4604 case 750: /* Transaction Suspend or Resume */
4605 case 782: /* Transaction Abort Word Conditional */
4606 case 814: /* Transaction Abort Doubleword Conditional */
4607 case 846: /* Transaction Abort Word Conditional Immediate */
4608 case 878: /* Transaction Abort Doubleword Conditional Immediate */
4609 case 910: /* Transaction Abort */
4610 fprintf_unfiltered (gdb_stdlog, "Cannot record Transaction instructions. "
4611 "%08x at %s, 31-%d.\n",
4612 insn, paddress (gdbarch, addr), ext);
4613 return -1;
4614
4615 case 1014: /* Data Cache Block set to Zero */
4616 if (target_auxv_search (&current_target, AT_DCACHEBSIZE, &at_dcsz) <= 0
4617 || at_dcsz == 0)
4618 at_dcsz = 128; /* Assume 128-byte cache line size (POWER8) */
4619
4620 if (PPC_RA (insn) != 0)
4621 regcache_raw_read_unsigned (regcache,
4622 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4623 regcache_raw_read_unsigned (regcache,
4624 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4625 ea = (ra + rb) & ~((ULONGEST) (at_dcsz - 1));
4626 record_full_arch_list_add_mem (ea, at_dcsz);
4627 return 0;
4628 }
4629
4630 UNKNOWN_OP:
4631 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4632 "at %s, 31-%d.\n", insn, paddress (gdbarch, addr), ext);
4633 return -1;
4634 }
4635
4636 /* Parse and record instructions of primary opcode-59 at ADDR.
4637 Return 0 if successful. */
4638
4639 static int
4640 ppc_process_record_op59 (struct gdbarch *gdbarch, struct regcache *regcache,
4641 CORE_ADDR addr, uint32_t insn)
4642 {
4643 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4644 int ext = PPC_EXTOP (insn);
4645
4646 switch (ext & 0x1f)
4647 {
4648 case 18: /* Floating Divide */
4649 case 20: /* Floating Subtract */
4650 case 21: /* Floating Add */
4651 case 22: /* Floating Square Root */
4652 case 24: /* Floating Reciprocal Estimate */
4653 case 25: /* Floating Multiply */
4654 case 26: /* Floating Reciprocal Square Root Estimate */
4655 case 28: /* Floating Multiply-Subtract */
4656 case 29: /* Floating Multiply-Add */
4657 case 30: /* Floating Negative Multiply-Subtract */
4658 case 31: /* Floating Negative Multiply-Add */
4659 record_full_arch_list_add_reg (regcache,
4660 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4661 if (PPC_RC (insn))
4662 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4663 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4664
4665 return 0;
4666 }
4667
4668 switch (ext)
4669 {
4670 case 2: /* DFP Add */
4671 case 3: /* DFP Quantize */
4672 case 34: /* DFP Multiply */
4673 case 35: /* DFP Reround */
4674 case 67: /* DFP Quantize Immediate */
4675 case 99: /* DFP Round To FP Integer With Inexact */
4676 case 227: /* DFP Round To FP Integer Without Inexact */
4677 case 258: /* DFP Convert To DFP Long! */
4678 case 290: /* DFP Convert To Fixed */
4679 case 514: /* DFP Subtract */
4680 case 546: /* DFP Divide */
4681 case 770: /* DFP Round To DFP Short! */
4682 case 802: /* DFP Convert From Fixed */
4683 case 834: /* DFP Encode BCD To DPD */
4684 if (PPC_RC (insn))
4685 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4686 record_full_arch_list_add_reg (regcache,
4687 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4688 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4689 return 0;
4690
4691 case 130: /* DFP Compare Ordered */
4692 case 162: /* DFP Test Exponent */
4693 case 194: /* DFP Test Data Class */
4694 case 226: /* DFP Test Data Group */
4695 case 642: /* DFP Compare Unordered */
4696 case 674: /* DFP Test Significance */
4697 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4698 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4699 return 0;
4700
4701 case 66: /* DFP Shift Significand Left Immediate */
4702 case 98: /* DFP Shift Significand Right Immediate */
4703 case 322: /* DFP Decode DPD To BCD */
4704 case 354: /* DFP Extract Biased Exponent */
4705 case 866: /* DFP Insert Biased Exponent */
4706 record_full_arch_list_add_reg (regcache,
4707 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4708 if (PPC_RC (insn))
4709 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4710 return 0;
4711
4712 case 846: /* Floating Convert From Integer Doubleword Single */
4713 case 974: /* Floating Convert From Integer Doubleword Unsigned
4714 Single */
4715 record_full_arch_list_add_reg (regcache,
4716 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4717 if (PPC_RC (insn))
4718 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4719 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4720
4721 return 0;
4722 }
4723
4724 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4725 "at %s, 59-%d.\n", insn, paddress (gdbarch, addr), ext);
4726 return -1;
4727 }
4728
4729 /* Parse and record instructions of primary opcode-60 at ADDR.
4730 Return 0 if successful. */
4731
4732 static int
4733 ppc_process_record_op60 (struct gdbarch *gdbarch, struct regcache *regcache,
4734 CORE_ADDR addr, uint32_t insn)
4735 {
4736 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4737 int ext = PPC_EXTOP (insn);
4738
4739 switch (ext >> 2)
4740 {
4741 case 0: /* VSX Scalar Add Single-Precision */
4742 case 32: /* VSX Scalar Add Double-Precision */
4743 case 24: /* VSX Scalar Divide Single-Precision */
4744 case 56: /* VSX Scalar Divide Double-Precision */
4745 case 176: /* VSX Scalar Copy Sign Double-Precision */
4746 case 33: /* VSX Scalar Multiply-Add Double-Precision */
4747 case 41: /* ditto */
4748 case 1: /* VSX Scalar Multiply-Add Single-Precision */
4749 case 9: /* ditto */
4750 case 160: /* VSX Scalar Maximum Double-Precision */
4751 case 168: /* VSX Scalar Minimum Double-Precision */
4752 case 49: /* VSX Scalar Multiply-Subtract Double-Precision */
4753 case 57: /* ditto */
4754 case 17: /* VSX Scalar Multiply-Subtract Single-Precision */
4755 case 25: /* ditto */
4756 case 48: /* VSX Scalar Multiply Double-Precision */
4757 case 16: /* VSX Scalar Multiply Single-Precision */
4758 case 161: /* VSX Scalar Negative Multiply-Add Double-Precision */
4759 case 169: /* ditto */
4760 case 129: /* VSX Scalar Negative Multiply-Add Single-Precision */
4761 case 137: /* ditto */
4762 case 177: /* VSX Scalar Negative Multiply-Subtract Double-Precision */
4763 case 185: /* ditto */
4764 case 145: /* VSX Scalar Negative Multiply-Subtract Single-Precision */
4765 case 153: /* ditto */
4766 case 40: /* VSX Scalar Subtract Double-Precision */
4767 case 8: /* VSX Scalar Subtract Single-Precision */
4768 case 96: /* VSX Vector Add Double-Precision */
4769 case 64: /* VSX Vector Add Single-Precision */
4770 case 120: /* VSX Vector Divide Double-Precision */
4771 case 88: /* VSX Vector Divide Single-Precision */
4772 case 97: /* VSX Vector Multiply-Add Double-Precision */
4773 case 105: /* ditto */
4774 case 65: /* VSX Vector Multiply-Add Single-Precision */
4775 case 73: /* ditto */
4776 case 224: /* VSX Vector Maximum Double-Precision */
4777 case 192: /* VSX Vector Maximum Single-Precision */
4778 case 232: /* VSX Vector Minimum Double-Precision */
4779 case 200: /* VSX Vector Minimum Single-Precision */
4780 case 113: /* VSX Vector Multiply-Subtract Double-Precision */
4781 case 121: /* ditto */
4782 case 81: /* VSX Vector Multiply-Subtract Single-Precision */
4783 case 89: /* ditto */
4784 case 112: /* VSX Vector Multiply Double-Precision */
4785 case 80: /* VSX Vector Multiply Single-Precision */
4786 case 225: /* VSX Vector Negative Multiply-Add Double-Precision */
4787 case 233: /* ditto */
4788 case 193: /* VSX Vector Negative Multiply-Add Single-Precision */
4789 case 201: /* ditto */
4790 case 241: /* VSX Vector Negative Multiply-Subtract Double-Precision */
4791 case 249: /* ditto */
4792 case 209: /* VSX Vector Negative Multiply-Subtract Single-Precision */
4793 case 217: /* ditto */
4794 case 104: /* VSX Vector Subtract Double-Precision */
4795 case 72: /* VSX Vector Subtract Single-Precision */
4796 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4797 case 240: /* VSX Vector Copy Sign Double-Precision */
4798 case 208: /* VSX Vector Copy Sign Single-Precision */
4799 case 130: /* VSX Logical AND */
4800 case 138: /* VSX Logical AND with Complement */
4801 case 186: /* VSX Logical Equivalence */
4802 case 178: /* VSX Logical NAND */
4803 case 170: /* VSX Logical OR with Complement */
4804 case 162: /* VSX Logical NOR */
4805 case 146: /* VSX Logical OR */
4806 case 154: /* VSX Logical XOR */
4807 case 18: /* VSX Merge High Word */
4808 case 50: /* VSX Merge Low Word */
4809 case 10: /* VSX Permute Doubleword Immediate (DM=0) */
4810 case 10 | 0x20: /* VSX Permute Doubleword Immediate (DM=1) */
4811 case 10 | 0x40: /* VSX Permute Doubleword Immediate (DM=2) */
4812 case 10 | 0x60: /* VSX Permute Doubleword Immediate (DM=3) */
4813 case 2: /* VSX Shift Left Double by Word Immediate (SHW=0) */
4814 case 2 | 0x20: /* VSX Shift Left Double by Word Immediate (SHW=1) */
4815 case 2 | 0x40: /* VSX Shift Left Double by Word Immediate (SHW=2) */
4816 case 2 | 0x60: /* VSX Shift Left Double by Word Immediate (SHW=3) */
4817 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4818 return 0;
4819
4820 case 61: /* VSX Scalar Test for software Divide Double-Precision */
4821 case 125: /* VSX Vector Test for software Divide Double-Precision */
4822 case 93: /* VSX Vector Test for software Divide Single-Precision */
4823 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4824 return 0;
4825
4826 case 35: /* VSX Scalar Compare Unordered Double-Precision */
4827 case 43: /* VSX Scalar Compare Ordered Double-Precision */
4828 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4829 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4830 return 0;
4831 }
4832
4833 switch ((ext >> 2) & 0x7f) /* Mask out Rc-bit. */
4834 {
4835 case 99: /* VSX Vector Compare Equal To Double-Precision */
4836 case 67: /* VSX Vector Compare Equal To Single-Precision */
4837 case 115: /* VSX Vector Compare Greater Than or
4838 Equal To Double-Precision */
4839 case 83: /* VSX Vector Compare Greater Than or
4840 Equal To Single-Precision */
4841 case 107: /* VSX Vector Compare Greater Than Double-Precision */
4842 case 75: /* VSX Vector Compare Greater Than Single-Precision */
4843 if (PPC_Rc (insn))
4844 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4845 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4846 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4847 return 0;
4848 }
4849
4850 switch (ext >> 1)
4851 {
4852 case 265: /* VSX Scalar round Double-Precision to
4853 Single-Precision and Convert to
4854 Single-Precision format */
4855 case 344: /* VSX Scalar truncate Double-Precision to
4856 Integer and Convert to Signed Integer
4857 Doubleword format with Saturate */
4858 case 88: /* VSX Scalar truncate Double-Precision to
4859 Integer and Convert to Signed Integer Word
4860 Format with Saturate */
4861 case 328: /* VSX Scalar truncate Double-Precision integer
4862 and Convert to Unsigned Integer Doubleword
4863 Format with Saturate */
4864 case 72: /* VSX Scalar truncate Double-Precision to
4865 Integer and Convert to Unsigned Integer Word
4866 Format with Saturate */
4867 case 329: /* VSX Scalar Convert Single-Precision to
4868 Double-Precision format */
4869 case 376: /* VSX Scalar Convert Signed Integer
4870 Doubleword to floating-point format and
4871 Round to Double-Precision format */
4872 case 312: /* VSX Scalar Convert Signed Integer
4873 Doubleword to floating-point format and
4874 round to Single-Precision */
4875 case 360: /* VSX Scalar Convert Unsigned Integer
4876 Doubleword to floating-point format and
4877 Round to Double-Precision format */
4878 case 296: /* VSX Scalar Convert Unsigned Integer
4879 Doubleword to floating-point format and
4880 Round to Single-Precision */
4881 case 73: /* VSX Scalar Round to Double-Precision Integer
4882 Using Round to Nearest Away */
4883 case 107: /* VSX Scalar Round to Double-Precision Integer
4884 Exact using Current rounding mode */
4885 case 121: /* VSX Scalar Round to Double-Precision Integer
4886 Using Round toward -Infinity */
4887 case 105: /* VSX Scalar Round to Double-Precision Integer
4888 Using Round toward +Infinity */
4889 case 89: /* VSX Scalar Round to Double-Precision Integer
4890 Using Round toward Zero */
4891 case 90: /* VSX Scalar Reciprocal Estimate Double-Precision */
4892 case 26: /* VSX Scalar Reciprocal Estimate Single-Precision */
4893 case 281: /* VSX Scalar Round to Single-Precision */
4894 case 74: /* VSX Scalar Reciprocal Square Root Estimate
4895 Double-Precision */
4896 case 10: /* VSX Scalar Reciprocal Square Root Estimate
4897 Single-Precision */
4898 case 75: /* VSX Scalar Square Root Double-Precision */
4899 case 11: /* VSX Scalar Square Root Single-Precision */
4900 case 393: /* VSX Vector round Double-Precision to
4901 Single-Precision and Convert to
4902 Single-Precision format */
4903 case 472: /* VSX Vector truncate Double-Precision to
4904 Integer and Convert to Signed Integer
4905 Doubleword format with Saturate */
4906 case 216: /* VSX Vector truncate Double-Precision to
4907 Integer and Convert to Signed Integer Word
4908 Format with Saturate */
4909 case 456: /* VSX Vector truncate Double-Precision to
4910 Integer and Convert to Unsigned Integer
4911 Doubleword format with Saturate */
4912 case 200: /* VSX Vector truncate Double-Precision to
4913 Integer and Convert to Unsigned Integer Word
4914 Format with Saturate */
4915 case 457: /* VSX Vector Convert Single-Precision to
4916 Double-Precision format */
4917 case 408: /* VSX Vector truncate Single-Precision to
4918 Integer and Convert to Signed Integer
4919 Doubleword format with Saturate */
4920 case 152: /* VSX Vector truncate Single-Precision to
4921 Integer and Convert to Signed Integer Word
4922 Format with Saturate */
4923 case 392: /* VSX Vector truncate Single-Precision to
4924 Integer and Convert to Unsigned Integer
4925 Doubleword format with Saturate */
4926 case 136: /* VSX Vector truncate Single-Precision to
4927 Integer and Convert to Unsigned Integer Word
4928 Format with Saturate */
4929 case 504: /* VSX Vector Convert and round Signed Integer
4930 Doubleword to Double-Precision format */
4931 case 440: /* VSX Vector Convert and round Signed Integer
4932 Doubleword to Single-Precision format */
4933 case 248: /* VSX Vector Convert Signed Integer Word to
4934 Double-Precision format */
4935 case 184: /* VSX Vector Convert and round Signed Integer
4936 Word to Single-Precision format */
4937 case 488: /* VSX Vector Convert and round Unsigned
4938 Integer Doubleword to Double-Precision format */
4939 case 424: /* VSX Vector Convert and round Unsigned
4940 Integer Doubleword to Single-Precision format */
4941 case 232: /* VSX Vector Convert and round Unsigned
4942 Integer Word to Double-Precision format */
4943 case 168: /* VSX Vector Convert and round Unsigned
4944 Integer Word to Single-Precision format */
4945 case 201: /* VSX Vector Round to Double-Precision
4946 Integer using round to Nearest Away */
4947 case 235: /* VSX Vector Round to Double-Precision
4948 Integer Exact using Current rounding mode */
4949 case 249: /* VSX Vector Round to Double-Precision
4950 Integer using round toward -Infinity */
4951 case 233: /* VSX Vector Round to Double-Precision
4952 Integer using round toward +Infinity */
4953 case 217: /* VSX Vector Round to Double-Precision
4954 Integer using round toward Zero */
4955 case 218: /* VSX Vector Reciprocal Estimate Double-Precision */
4956 case 154: /* VSX Vector Reciprocal Estimate Single-Precision */
4957 case 137: /* VSX Vector Round to Single-Precision Integer
4958 Using Round to Nearest Away */
4959 case 171: /* VSX Vector Round to Single-Precision Integer
4960 Exact Using Current rounding mode */
4961 case 185: /* VSX Vector Round to Single-Precision Integer
4962 Using Round toward -Infinity */
4963 case 169: /* VSX Vector Round to Single-Precision Integer
4964 Using Round toward +Infinity */
4965 case 153: /* VSX Vector Round to Single-Precision Integer
4966 Using round toward Zero */
4967 case 202: /* VSX Vector Reciprocal Square Root Estimate
4968 Double-Precision */
4969 case 138: /* VSX Vector Reciprocal Square Root Estimate
4970 Single-Precision */
4971 case 203: /* VSX Vector Square Root Double-Precision */
4972 case 139: /* VSX Vector Square Root Single-Precision */
4973 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4974 case 345: /* VSX Scalar Absolute Value Double-Precision */
4975 case 267: /* VSX Scalar Convert Scalar Single-Precision to
4976 Vector Single-Precision format Non-signalling */
4977 case 331: /* VSX Scalar Convert Single-Precision to
4978 Double-Precision format Non-signalling */
4979 case 361: /* VSX Scalar Negative Absolute Value Double-Precision */
4980 case 377: /* VSX Scalar Negate Double-Precision */
4981 case 473: /* VSX Vector Absolute Value Double-Precision */
4982 case 409: /* VSX Vector Absolute Value Single-Precision */
4983 case 489: /* VSX Vector Negative Absolute Value Double-Precision */
4984 case 425: /* VSX Vector Negative Absolute Value Single-Precision */
4985 case 505: /* VSX Vector Negate Double-Precision */
4986 case 441: /* VSX Vector Negate Single-Precision */
4987 case 164: /* VSX Splat Word */
4988 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4989 return 0;
4990
4991 case 106: /* VSX Scalar Test for software Square Root
4992 Double-Precision */
4993 case 234: /* VSX Vector Test for software Square Root
4994 Double-Precision */
4995 case 170: /* VSX Vector Test for software Square Root
4996 Single-Precision */
4997 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4998 return 0;
4999 }
5000
5001 if (((ext >> 3) & 0x3) == 3) /* VSX Select */
5002 {
5003 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5004 return 0;
5005 }
5006
5007 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5008 "at %s, 60-%d.\n", insn, paddress (gdbarch, addr), ext);
5009 return -1;
5010 }
5011
5012 /* Parse and record instructions of primary opcode-63 at ADDR.
5013 Return 0 if successful. */
5014
5015 static int
5016 ppc_process_record_op63 (struct gdbarch *gdbarch, struct regcache *regcache,
5017 CORE_ADDR addr, uint32_t insn)
5018 {
5019 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5020 int ext = PPC_EXTOP (insn);
5021 int tmp;
5022
5023 switch (ext & 0x1f)
5024 {
5025 case 18: /* Floating Divide */
5026 case 20: /* Floating Subtract */
5027 case 21: /* Floating Add */
5028 case 22: /* Floating Square Root */
5029 case 24: /* Floating Reciprocal Estimate */
5030 case 25: /* Floating Multiply */
5031 case 26: /* Floating Reciprocal Square Root Estimate */
5032 case 28: /* Floating Multiply-Subtract */
5033 case 29: /* Floating Multiply-Add */
5034 case 30: /* Floating Negative Multiply-Subtract */
5035 case 31: /* Floating Negative Multiply-Add */
5036 record_full_arch_list_add_reg (regcache,
5037 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5038 if (PPC_RC (insn))
5039 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5040 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5041 return 0;
5042
5043 case 23: /* Floating Select */
5044 record_full_arch_list_add_reg (regcache,
5045 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5046 if (PPC_RC (insn))
5047 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5048 }
5049
5050 switch (ext)
5051 {
5052 case 2: /* DFP Add Quad */
5053 case 3: /* DFP Quantize Quad */
5054 case 34: /* DFP Multiply Quad */
5055 case 35: /* DFP Reround Quad */
5056 case 67: /* DFP Quantize Immediate Quad */
5057 case 99: /* DFP Round To FP Integer With Inexact Quad */
5058 case 227: /* DFP Round To FP Integer Without Inexact Quad */
5059 case 258: /* DFP Convert To DFP Extended Quad */
5060 case 514: /* DFP Subtract Quad */
5061 case 546: /* DFP Divide Quad */
5062 case 770: /* DFP Round To DFP Long Quad */
5063 case 802: /* DFP Convert From Fixed Quad */
5064 case 834: /* DFP Encode BCD To DPD Quad */
5065 if (PPC_RC (insn))
5066 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5067 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5068 record_full_arch_list_add_reg (regcache, tmp);
5069 record_full_arch_list_add_reg (regcache, tmp + 1);
5070 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5071 return 0;
5072
5073 case 130: /* DFP Compare Ordered Quad */
5074 case 162: /* DFP Test Exponent Quad */
5075 case 194: /* DFP Test Data Class Quad */
5076 case 226: /* DFP Test Data Group Quad */
5077 case 642: /* DFP Compare Unordered Quad */
5078 case 674: /* DFP Test Significance Quad */
5079 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5080 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5081 return 0;
5082
5083 case 66: /* DFP Shift Significand Left Immediate Quad */
5084 case 98: /* DFP Shift Significand Right Immediate Quad */
5085 case 322: /* DFP Decode DPD To BCD Quad */
5086 case 866: /* DFP Insert Biased Exponent Quad */
5087 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5088 record_full_arch_list_add_reg (regcache, tmp);
5089 record_full_arch_list_add_reg (regcache, tmp + 1);
5090 if (PPC_RC (insn))
5091 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5092 return 0;
5093
5094 case 290: /* DFP Convert To Fixed Quad */
5095 record_full_arch_list_add_reg (regcache,
5096 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5097 if (PPC_RC (insn))
5098 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5099 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5100 break;
5101
5102 case 354: /* DFP Extract Biased Exponent Quad */
5103 record_full_arch_list_add_reg (regcache,
5104 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5105 if (PPC_RC (insn))
5106 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5107 return 0;
5108
5109 case 12: /* Floating Round to Single-Precision */
5110 case 14: /* Floating Convert To Integer Word */
5111 case 15: /* Floating Convert To Integer Word
5112 with round toward Zero */
5113 case 142: /* Floating Convert To Integer Word Unsigned */
5114 case 143: /* Floating Convert To Integer Word Unsigned
5115 with round toward Zero */
5116 case 392: /* Floating Round to Integer Nearest */
5117 case 424: /* Floating Round to Integer Toward Zero */
5118 case 456: /* Floating Round to Integer Plus */
5119 case 488: /* Floating Round to Integer Minus */
5120 case 814: /* Floating Convert To Integer Doubleword */
5121 case 815: /* Floating Convert To Integer Doubleword
5122 with round toward Zero */
5123 case 846: /* Floating Convert From Integer Doubleword */
5124 case 942: /* Floating Convert To Integer Doubleword Unsigned */
5125 case 943: /* Floating Convert To Integer Doubleword Unsigned
5126 with round toward Zero */
5127 case 974: /* Floating Convert From Integer Doubleword Unsigned */
5128 record_full_arch_list_add_reg (regcache,
5129 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5130 if (PPC_RC (insn))
5131 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5132 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5133 return 0;
5134
5135 case 583: /* Move From FPSCR */
5136 case 8: /* Floating Copy Sign */
5137 case 40: /* Floating Negate */
5138 case 72: /* Floating Move Register */
5139 case 136: /* Floating Negative Absolute Value */
5140 case 264: /* Floating Absolute Value */
5141 record_full_arch_list_add_reg (regcache,
5142 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5143 if (PPC_RC (insn))
5144 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5145 return 0;
5146
5147 case 838: /* Floating Merge Odd Word */
5148 case 966: /* Floating Merge Even Word */
5149 record_full_arch_list_add_reg (regcache,
5150 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5151 return 0;
5152
5153 case 38: /* Move To FPSCR Bit 1 */
5154 case 70: /* Move To FPSCR Bit 0 */
5155 case 134: /* Move To FPSCR Field Immediate */
5156 case 711: /* Move To FPSCR Fields */
5157 if (PPC_RC (insn))
5158 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5159 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5160 break;
5161
5162 case 0: /* Floating Compare Unordered */
5163 case 32: /* Floating Compare Ordered */
5164 case 64: /* Move to Condition Register from FPSCR */
5165 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5166 /* FALL-THROUGH */
5167 case 128: /* Floating Test for software Divide */
5168 case 160: /* Floating Test for software Square Root */
5169 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5170 return 0;
5171
5172 }
5173
5174 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5175 "at %s, 59-%d.\n", insn, paddress (gdbarch, addr), ext);
5176 return -1;
5177 }
5178
5179 /* Parse the current instruction and record the values of the registers and
5180 memory that will be changed in current instruction to "record_arch_list".
5181 Return -1 if something wrong. */
5182
5183 int
5184 ppc_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5185 CORE_ADDR addr)
5186 {
5187 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5188 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5189 uint32_t insn;
5190 int op6, tmp, i;
5191
5192 insn = read_memory_unsigned_integer (addr, 4, byte_order);
5193 op6 = PPC_OP6 (insn);
5194
5195 switch (op6)
5196 {
5197 case 2: /* Trap Doubleword Immediate */
5198 case 3: /* Trap Word Immediate */
5199 /* Do nothing. */
5200 break;
5201
5202 case 4:
5203 if (ppc_process_record_op4 (gdbarch, regcache, addr, insn) != 0)
5204 return -1;
5205 break;
5206
5207 case 17: /* System call */
5208 if (PPC_LEV (insn) != 0)
5209 goto UNKNOWN_OP;
5210
5211 if (tdep->ppc_syscall_record != NULL)
5212 {
5213 if (tdep->ppc_syscall_record (regcache) != 0)
5214 return -1;
5215 }
5216 else
5217 {
5218 printf_unfiltered (_("no syscall record support\n"));
5219 return -1;
5220 }
5221 break;
5222
5223 case 7: /* Multiply Low Immediate */
5224 record_full_arch_list_add_reg (regcache,
5225 tdep->ppc_gp0_regnum + PPC_RT (insn));
5226 break;
5227
5228 case 8: /* Subtract From Immediate Carrying */
5229 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5230 record_full_arch_list_add_reg (regcache,
5231 tdep->ppc_gp0_regnum + PPC_RT (insn));
5232 break;
5233
5234 case 10: /* Compare Logical Immediate */
5235 case 11: /* Compare Immediate */
5236 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5237 break;
5238
5239 case 13: /* Add Immediate Carrying and Record */
5240 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5241 /* FALL-THROUGH */
5242 case 12: /* Add Immediate Carrying */
5243 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5244 /* FALL-THROUGH */
5245 case 14: /* Add Immediate */
5246 case 15: /* Add Immediate Shifted */
5247 record_full_arch_list_add_reg (regcache,
5248 tdep->ppc_gp0_regnum + PPC_RT (insn));
5249 break;
5250
5251 case 16: /* Branch Conditional */
5252 if ((PPC_BO (insn) & 0x4) == 0)
5253 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
5254 /* FALL-THROUGH */
5255 case 18: /* Branch */
5256 if (PPC_LK (insn))
5257 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
5258 break;
5259
5260 case 19:
5261 if (ppc_process_record_op19 (gdbarch, regcache, addr, insn) != 0)
5262 return -1;
5263 break;
5264
5265 case 20: /* Rotate Left Word Immediate then Mask Insert */
5266 case 21: /* Rotate Left Word Immediate then AND with Mask */
5267 case 23: /* Rotate Left Word then AND with Mask */
5268 case 30: /* Rotate Left Doubleword Immediate then Clear Left */
5269 /* Rotate Left Doubleword Immediate then Clear Right */
5270 /* Rotate Left Doubleword Immediate then Clear */
5271 /* Rotate Left Doubleword then Clear Left */
5272 /* Rotate Left Doubleword then Clear Right */
5273 /* Rotate Left Doubleword Immediate then Mask Insert */
5274 if (PPC_RC (insn))
5275 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5276 record_full_arch_list_add_reg (regcache,
5277 tdep->ppc_gp0_regnum + PPC_RA (insn));
5278 break;
5279
5280 case 28: /* AND Immediate */
5281 case 29: /* AND Immediate Shifted */
5282 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5283 /* FALL-THROUGH */
5284 case 24: /* OR Immediate */
5285 case 25: /* OR Immediate Shifted */
5286 case 26: /* XOR Immediate */
5287 case 27: /* XOR Immediate Shifted */
5288 record_full_arch_list_add_reg (regcache,
5289 tdep->ppc_gp0_regnum + PPC_RA (insn));
5290 break;
5291
5292 case 31:
5293 if (ppc_process_record_op31 (gdbarch, regcache, addr, insn) != 0)
5294 return -1;
5295 break;
5296
5297 case 33: /* Load Word and Zero with Update */
5298 case 35: /* Load Byte and Zero with Update */
5299 case 41: /* Load Halfword and Zero with Update */
5300 case 43: /* Load Halfword Algebraic with Update */
5301 record_full_arch_list_add_reg (regcache,
5302 tdep->ppc_gp0_regnum + PPC_RA (insn));
5303 /* FALL-THROUGH */
5304 case 32: /* Load Word and Zero */
5305 case 34: /* Load Byte and Zero */
5306 case 40: /* Load Halfword and Zero */
5307 case 42: /* Load Halfword Algebraic */
5308 record_full_arch_list_add_reg (regcache,
5309 tdep->ppc_gp0_regnum + PPC_RT (insn));
5310 break;
5311
5312 case 46: /* Load Multiple Word */
5313 for (i = PPC_RT (insn); i < 32; i++)
5314 record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i);
5315 break;
5316
5317 case 56: /* Load Quadword */
5318 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
5319 record_full_arch_list_add_reg (regcache, tmp);
5320 record_full_arch_list_add_reg (regcache, tmp + 1);
5321 break;
5322
5323 case 49: /* Load Floating-Point Single with Update */
5324 case 51: /* Load Floating-Point Double with Update */
5325 record_full_arch_list_add_reg (regcache,
5326 tdep->ppc_gp0_regnum + PPC_RA (insn));
5327 /* FALL-THROUGH */
5328 case 48: /* Load Floating-Point Single */
5329 case 50: /* Load Floating-Point Double */
5330 record_full_arch_list_add_reg (regcache,
5331 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5332 break;
5333
5334 case 47: /* Store Multiple Word */
5335 {
5336 ULONGEST addr = 0;
5337
5338 if (PPC_RA (insn) != 0)
5339 regcache_raw_read_unsigned (regcache,
5340 tdep->ppc_gp0_regnum + PPC_RA (insn),
5341 &addr);
5342
5343 addr += PPC_D (insn);
5344 record_full_arch_list_add_mem (addr, 4 * (32 - PPC_RS (insn)));
5345 }
5346 break;
5347
5348 case 37: /* Store Word with Update */
5349 case 39: /* Store Byte with Update */
5350 case 45: /* Store Halfword with Update */
5351 case 53: /* Store Floating-Point Single with Update */
5352 case 55: /* Store Floating-Point Double with Update */
5353 record_full_arch_list_add_reg (regcache,
5354 tdep->ppc_gp0_regnum + PPC_RA (insn));
5355 /* FALL-THROUGH */
5356 case 36: /* Store Word */
5357 case 38: /* Store Byte */
5358 case 44: /* Store Halfword */
5359 case 52: /* Store Floating-Point Single */
5360 case 54: /* Store Floating-Point Double */
5361 {
5362 ULONGEST addr = 0;
5363 int size = -1;
5364
5365 if (PPC_RA (insn) != 0)
5366 regcache_raw_read_unsigned (regcache,
5367 tdep->ppc_gp0_regnum + PPC_RA (insn),
5368 &addr);
5369 addr += PPC_D (insn);
5370
5371 if (op6 == 36 || op6 == 37 || op6 == 52 || op6 == 53)
5372 size = 4;
5373 else if (op6 == 54 || op6 == 55)
5374 size = 8;
5375 else if (op6 == 44 || op6 == 45)
5376 size = 2;
5377 else if (op6 == 38 || op6 == 39)
5378 size = 1;
5379 else
5380 gdb_assert (0);
5381
5382 record_full_arch_list_add_mem (addr, size);
5383 }
5384 break;
5385
5386 case 57: /* Load Floating-Point Double Pair */
5387 if (PPC_FIELD (insn, 30, 2) != 0)
5388 goto UNKNOWN_OP;
5389 tmp = tdep->ppc_fp0_regnum + (PPC_RT (insn) & ~1);
5390 record_full_arch_list_add_reg (regcache, tmp);
5391 record_full_arch_list_add_reg (regcache, tmp + 1);
5392 break;
5393
5394 case 58: /* Load Doubleword */
5395 /* Load Doubleword with Update */
5396 /* Load Word Algebraic */
5397 if (PPC_FIELD (insn, 30, 2) > 2)
5398 goto UNKNOWN_OP;
5399
5400 record_full_arch_list_add_reg (regcache,
5401 tdep->ppc_gp0_regnum + PPC_RT (insn));
5402 if (PPC_BIT (insn, 31))
5403 record_full_arch_list_add_reg (regcache,
5404 tdep->ppc_gp0_regnum + PPC_RA (insn));
5405 break;
5406
5407 case 59:
5408 if (ppc_process_record_op59 (gdbarch, regcache, addr, insn) != 0)
5409 return -1;
5410 break;
5411
5412 case 60:
5413 if (ppc_process_record_op60 (gdbarch, regcache, addr, insn) != 0)
5414 return -1;
5415 break;
5416
5417 case 61: /* Store Floating-Point Double Pair */
5418 case 62: /* Store Doubleword */
5419 /* Store Doubleword with Update */
5420 /* Store Quadword with Update */
5421 {
5422 ULONGEST addr = 0;
5423 int size;
5424 int sub2 = PPC_FIELD (insn, 30, 2);
5425
5426 if ((op6 == 61 && sub2 != 0) || (op6 == 62 && sub2 > 2))
5427 goto UNKNOWN_OP;
5428
5429 if (PPC_RA (insn) != 0)
5430 regcache_raw_read_unsigned (regcache,
5431 tdep->ppc_gp0_regnum + PPC_RA (insn),
5432 &addr);
5433
5434 size = ((op6 == 61) || sub2 == 2) ? 16 : 8;
5435
5436 addr += PPC_DS (insn) << 2;
5437 record_full_arch_list_add_mem (addr, size);
5438
5439 if (op6 == 62 && sub2 == 1)
5440 record_full_arch_list_add_reg (regcache,
5441 tdep->ppc_gp0_regnum +
5442 PPC_RA (insn));
5443
5444 break;
5445 }
5446
5447 case 63:
5448 if (ppc_process_record_op63 (gdbarch, regcache, addr, insn) != 0)
5449 return -1;
5450 break;
5451
5452 default:
5453 UNKNOWN_OP:
5454 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5455 "at %s, %d.\n", insn, paddress (gdbarch, addr), op6);
5456 return -1;
5457 }
5458
5459 if (record_full_arch_list_add_reg (regcache, PPC_PC_REGNUM))
5460 return -1;
5461 if (record_full_arch_list_add_end ())
5462 return -1;
5463 return 0;
5464 }
5465
5466 /* Initialize the current architecture based on INFO. If possible, re-use an
5467 architecture from ARCHES, which is a list of architectures already created
5468 during this debugging session.
5469
5470 Called e.g. at program startup, when reading a core file, and when reading
5471 a binary file. */
5472
5473 static struct gdbarch *
5474 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5475 {
5476 struct gdbarch *gdbarch;
5477 struct gdbarch_tdep *tdep;
5478 int wordsize, from_xcoff_exec, from_elf_exec;
5479 enum bfd_architecture arch;
5480 unsigned long mach;
5481 bfd abfd;
5482 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
5483 int soft_float;
5484 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
5485 enum powerpc_elf_abi elf_abi = POWERPC_ELF_AUTO;
5486 int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0,
5487 have_vsx = 0;
5488 int tdesc_wordsize = -1;
5489 const struct target_desc *tdesc = info.target_desc;
5490 struct tdesc_arch_data *tdesc_data = NULL;
5491 int num_pseudoregs = 0;
5492 int cur_reg;
5493
5494 /* INFO may refer to a binary that is not of the PowerPC architecture,
5495 e.g. when debugging a stand-alone SPE executable on a Cell/B.E. system.
5496 In this case, we must not attempt to infer properties of the (PowerPC
5497 side) of the target system from properties of that executable. Trust
5498 the target description instead. */
5499 if (info.abfd
5500 && bfd_get_arch (info.abfd) != bfd_arch_powerpc
5501 && bfd_get_arch (info.abfd) != bfd_arch_rs6000)
5502 info.abfd = NULL;
5503
5504 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
5505 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
5506
5507 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
5508 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
5509
5510 /* Check word size. If INFO is from a binary file, infer it from
5511 that, else choose a likely default. */
5512 if (from_xcoff_exec)
5513 {
5514 if (bfd_xcoff_is_xcoff64 (info.abfd))
5515 wordsize = 8;
5516 else
5517 wordsize = 4;
5518 }
5519 else if (from_elf_exec)
5520 {
5521 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5522 wordsize = 8;
5523 else
5524 wordsize = 4;
5525 }
5526 else if (tdesc_has_registers (tdesc))
5527 wordsize = -1;
5528 else
5529 {
5530 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
5531 wordsize = (info.bfd_arch_info->bits_per_word
5532 / info.bfd_arch_info->bits_per_byte);
5533 else
5534 wordsize = 4;
5535 }
5536
5537 /* Get the architecture and machine from the BFD. */
5538 arch = info.bfd_arch_info->arch;
5539 mach = info.bfd_arch_info->mach;
5540
5541 /* For e500 executables, the apuinfo section is of help here. Such
5542 section contains the identifier and revision number of each
5543 Application-specific Processing Unit that is present on the
5544 chip. The content of the section is determined by the assembler
5545 which looks at each instruction and determines which unit (and
5546 which version of it) can execute it. Grovel through the section
5547 looking for relevant e500 APUs. */
5548
5549 if (bfd_uses_spe_extensions (info.abfd))
5550 {
5551 arch = info.bfd_arch_info->arch;
5552 mach = bfd_mach_ppc_e500;
5553 bfd_default_set_arch_mach (&abfd, arch, mach);
5554 info.bfd_arch_info = bfd_get_arch_info (&abfd);
5555 }
5556
5557 /* Find a default target description which describes our register
5558 layout, if we do not already have one. */
5559 if (! tdesc_has_registers (tdesc))
5560 {
5561 const struct variant *v;
5562
5563 /* Choose variant. */
5564 v = find_variant_by_arch (arch, mach);
5565 if (!v)
5566 return NULL;
5567
5568 tdesc = *v->tdesc;
5569 }
5570
5571 gdb_assert (tdesc_has_registers (tdesc));
5572
5573 /* Check any target description for validity. */
5574 if (tdesc_has_registers (tdesc))
5575 {
5576 static const char *const gprs[] = {
5577 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
5578 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
5579 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
5580 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
5581 };
5582 const struct tdesc_feature *feature;
5583 int i, valid_p;
5584 static const char *const msr_names[] = { "msr", "ps" };
5585 static const char *const cr_names[] = { "cr", "cnd" };
5586 static const char *const ctr_names[] = { "ctr", "cnt" };
5587
5588 feature = tdesc_find_feature (tdesc,
5589 "org.gnu.gdb.power.core");
5590 if (feature == NULL)
5591 return NULL;
5592
5593 tdesc_data = tdesc_data_alloc ();
5594
5595 valid_p = 1;
5596 for (i = 0; i < ppc_num_gprs; i++)
5597 valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
5598 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
5599 "pc");
5600 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
5601 "lr");
5602 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
5603 "xer");
5604
5605 /* Allow alternate names for these registers, to accomodate GDB's
5606 historic naming. */
5607 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
5608 PPC_MSR_REGNUM, msr_names);
5609 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
5610 PPC_CR_REGNUM, cr_names);
5611 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
5612 PPC_CTR_REGNUM, ctr_names);
5613
5614 if (!valid_p)
5615 {
5616 tdesc_data_cleanup (tdesc_data);
5617 return NULL;
5618 }
5619
5620 have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
5621 "mq");
5622
5623 tdesc_wordsize = tdesc_register_size (feature, "pc") / 8;
5624 if (wordsize == -1)
5625 wordsize = tdesc_wordsize;
5626
5627 feature = tdesc_find_feature (tdesc,
5628 "org.gnu.gdb.power.fpu");
5629 if (feature != NULL)
5630 {
5631 static const char *const fprs[] = {
5632 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
5633 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
5634 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
5635 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
5636 };
5637 valid_p = 1;
5638 for (i = 0; i < ppc_num_fprs; i++)
5639 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5640 PPC_F0_REGNUM + i, fprs[i]);
5641 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5642 PPC_FPSCR_REGNUM, "fpscr");
5643
5644 if (!valid_p)
5645 {
5646 tdesc_data_cleanup (tdesc_data);
5647 return NULL;
5648 }
5649 have_fpu = 1;
5650 }
5651 else
5652 have_fpu = 0;
5653
5654 /* The DFP pseudo-registers will be available when there are floating
5655 point registers. */
5656 have_dfp = have_fpu;
5657
5658 feature = tdesc_find_feature (tdesc,
5659 "org.gnu.gdb.power.altivec");
5660 if (feature != NULL)
5661 {
5662 static const char *const vector_regs[] = {
5663 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
5664 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
5665 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
5666 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
5667 };
5668
5669 valid_p = 1;
5670 for (i = 0; i < ppc_num_gprs; i++)
5671 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5672 PPC_VR0_REGNUM + i,
5673 vector_regs[i]);
5674 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5675 PPC_VSCR_REGNUM, "vscr");
5676 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5677 PPC_VRSAVE_REGNUM, "vrsave");
5678
5679 if (have_spe || !valid_p)
5680 {
5681 tdesc_data_cleanup (tdesc_data);
5682 return NULL;
5683 }
5684 have_altivec = 1;
5685 }
5686 else
5687 have_altivec = 0;
5688
5689 /* Check for POWER7 VSX registers support. */
5690 feature = tdesc_find_feature (tdesc,
5691 "org.gnu.gdb.power.vsx");
5692
5693 if (feature != NULL)
5694 {
5695 static const char *const vsx_regs[] = {
5696 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
5697 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
5698 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
5699 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
5700 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
5701 "vs30h", "vs31h"
5702 };
5703
5704 valid_p = 1;
5705
5706 for (i = 0; i < ppc_num_vshrs; i++)
5707 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5708 PPC_VSR0_UPPER_REGNUM + i,
5709 vsx_regs[i]);
5710 if (!valid_p)
5711 {
5712 tdesc_data_cleanup (tdesc_data);
5713 return NULL;
5714 }
5715
5716 have_vsx = 1;
5717 }
5718 else
5719 have_vsx = 0;
5720
5721 /* On machines supporting the SPE APU, the general-purpose registers
5722 are 64 bits long. There are SIMD vector instructions to treat them
5723 as pairs of floats, but the rest of the instruction set treats them
5724 as 32-bit registers, and only operates on their lower halves.
5725
5726 In the GDB regcache, we treat their high and low halves as separate
5727 registers. The low halves we present as the general-purpose
5728 registers, and then we have pseudo-registers that stitch together
5729 the upper and lower halves and present them as pseudo-registers.
5730
5731 Thus, the target description is expected to supply the upper
5732 halves separately. */
5733
5734 feature = tdesc_find_feature (tdesc,
5735 "org.gnu.gdb.power.spe");
5736 if (feature != NULL)
5737 {
5738 static const char *const upper_spe[] = {
5739 "ev0h", "ev1h", "ev2h", "ev3h",
5740 "ev4h", "ev5h", "ev6h", "ev7h",
5741 "ev8h", "ev9h", "ev10h", "ev11h",
5742 "ev12h", "ev13h", "ev14h", "ev15h",
5743 "ev16h", "ev17h", "ev18h", "ev19h",
5744 "ev20h", "ev21h", "ev22h", "ev23h",
5745 "ev24h", "ev25h", "ev26h", "ev27h",
5746 "ev28h", "ev29h", "ev30h", "ev31h"
5747 };
5748
5749 valid_p = 1;
5750 for (i = 0; i < ppc_num_gprs; i++)
5751 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5752 PPC_SPE_UPPER_GP0_REGNUM + i,
5753 upper_spe[i]);
5754 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5755 PPC_SPE_ACC_REGNUM, "acc");
5756 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5757 PPC_SPE_FSCR_REGNUM, "spefscr");
5758
5759 if (have_mq || have_fpu || !valid_p)
5760 {
5761 tdesc_data_cleanup (tdesc_data);
5762 return NULL;
5763 }
5764 have_spe = 1;
5765 }
5766 else
5767 have_spe = 0;
5768 }
5769
5770 /* If we have a 64-bit binary on a 32-bit target, complain. Also
5771 complain for a 32-bit binary on a 64-bit target; we do not yet
5772 support that. For instance, the 32-bit ABI routines expect
5773 32-bit GPRs.
5774
5775 As long as there isn't an explicit target description, we'll
5776 choose one based on the BFD architecture and get a word size
5777 matching the binary (probably powerpc:common or
5778 powerpc:common64). So there is only trouble if a 64-bit target
5779 supplies a 64-bit description while debugging a 32-bit
5780 binary. */
5781 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
5782 {
5783 tdesc_data_cleanup (tdesc_data);
5784 return NULL;
5785 }
5786
5787 #ifdef HAVE_ELF
5788 if (from_elf_exec)
5789 {
5790 switch (elf_elfheader (info.abfd)->e_flags & EF_PPC64_ABI)
5791 {
5792 case 1:
5793 elf_abi = POWERPC_ELF_V1;
5794 break;
5795 case 2:
5796 elf_abi = POWERPC_ELF_V2;
5797 break;
5798 default:
5799 break;
5800 }
5801 }
5802
5803 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
5804 {
5805 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
5806 Tag_GNU_Power_ABI_FP))
5807 {
5808 case 1:
5809 soft_float_flag = AUTO_BOOLEAN_FALSE;
5810 break;
5811 case 2:
5812 soft_float_flag = AUTO_BOOLEAN_TRUE;
5813 break;
5814 default:
5815 break;
5816 }
5817 }
5818
5819 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
5820 {
5821 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
5822 Tag_GNU_Power_ABI_Vector))
5823 {
5824 case 1:
5825 vector_abi = POWERPC_VEC_GENERIC;
5826 break;
5827 case 2:
5828 vector_abi = POWERPC_VEC_ALTIVEC;
5829 break;
5830 case 3:
5831 vector_abi = POWERPC_VEC_SPE;
5832 break;
5833 default:
5834 break;
5835 }
5836 }
5837 #endif
5838
5839 /* At this point, the only supported ELF-based 64-bit little-endian
5840 operating system is GNU/Linux, and this uses the ELFv2 ABI by
5841 default. All other supported ELF-based operating systems use the
5842 ELFv1 ABI by default. Therefore, if the ABI marker is missing,
5843 e.g. because we run a legacy binary, or have attached to a process
5844 and have not found any associated binary file, set the default
5845 according to this heuristic. */
5846 if (elf_abi == POWERPC_ELF_AUTO)
5847 {
5848 if (wordsize == 8 && info.byte_order == BFD_ENDIAN_LITTLE)
5849 elf_abi = POWERPC_ELF_V2;
5850 else
5851 elf_abi = POWERPC_ELF_V1;
5852 }
5853
5854 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
5855 soft_float = 1;
5856 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
5857 soft_float = 0;
5858 else
5859 soft_float = !have_fpu;
5860
5861 /* If we have a hard float binary or setting but no floating point
5862 registers, downgrade to soft float anyway. We're still somewhat
5863 useful in this scenario. */
5864 if (!soft_float && !have_fpu)
5865 soft_float = 1;
5866
5867 /* Similarly for vector registers. */
5868 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
5869 vector_abi = POWERPC_VEC_GENERIC;
5870
5871 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
5872 vector_abi = POWERPC_VEC_GENERIC;
5873
5874 if (vector_abi == POWERPC_VEC_AUTO)
5875 {
5876 if (have_altivec)
5877 vector_abi = POWERPC_VEC_ALTIVEC;
5878 else if (have_spe)
5879 vector_abi = POWERPC_VEC_SPE;
5880 else
5881 vector_abi = POWERPC_VEC_GENERIC;
5882 }
5883
5884 /* Do not limit the vector ABI based on available hardware, since we
5885 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
5886
5887 /* Find a candidate among extant architectures. */
5888 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5889 arches != NULL;
5890 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5891 {
5892 /* Word size in the various PowerPC bfd_arch_info structs isn't
5893 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
5894 separate word size check. */
5895 tdep = gdbarch_tdep (arches->gdbarch);
5896 if (tdep && tdep->elf_abi != elf_abi)
5897 continue;
5898 if (tdep && tdep->soft_float != soft_float)
5899 continue;
5900 if (tdep && tdep->vector_abi != vector_abi)
5901 continue;
5902 if (tdep && tdep->wordsize == wordsize)
5903 {
5904 if (tdesc_data != NULL)
5905 tdesc_data_cleanup (tdesc_data);
5906 return arches->gdbarch;
5907 }
5908 }
5909
5910 /* None found, create a new architecture from INFO, whose bfd_arch_info
5911 validity depends on the source:
5912 - executable useless
5913 - rs6000_host_arch() good
5914 - core file good
5915 - "set arch" trust blindly
5916 - GDB startup useless but harmless */
5917
5918 tdep = XCNEW (struct gdbarch_tdep);
5919 tdep->wordsize = wordsize;
5920 tdep->elf_abi = elf_abi;
5921 tdep->soft_float = soft_float;
5922 tdep->vector_abi = vector_abi;
5923
5924 gdbarch = gdbarch_alloc (&info, tdep);
5925
5926 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
5927 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
5928 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
5929 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
5930 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
5931 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
5932 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
5933 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
5934
5935 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
5936 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
5937 tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
5938 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
5939 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
5940 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
5941 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
5942 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
5943
5944 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
5945 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
5946 set_gdbarch_deprecated_fp_regnum (gdbarch, PPC_R0_REGNUM + 1);
5947 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
5948 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
5949
5950 /* The XML specification for PowerPC sensibly calls the MSR "msr".
5951 GDB traditionally called it "ps", though, so let GDB add an
5952 alias. */
5953 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
5954
5955 if (wordsize == 8)
5956 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
5957 else
5958 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
5959
5960 /* Set lr_frame_offset. */
5961 if (wordsize == 8)
5962 tdep->lr_frame_offset = 16;
5963 else
5964 tdep->lr_frame_offset = 4;
5965
5966 if (have_spe || have_dfp || have_vsx)
5967 {
5968 set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
5969 set_gdbarch_pseudo_register_write (gdbarch,
5970 rs6000_pseudo_register_write);
5971 set_gdbarch_ax_pseudo_register_collect (gdbarch,
5972 rs6000_ax_pseudo_register_collect);
5973 }
5974
5975 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5976
5977 /* Select instruction printer. */
5978 if (arch == bfd_arch_rs6000)
5979 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
5980 else
5981 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
5982
5983 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
5984
5985 if (have_spe)
5986 num_pseudoregs += 32;
5987 if (have_dfp)
5988 num_pseudoregs += 16;
5989 if (have_vsx)
5990 /* Include both VSX and Extended FP registers. */
5991 num_pseudoregs += 96;
5992
5993 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
5994
5995 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
5996 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
5997 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
5998 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
5999 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
6000 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
6001 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
6002 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
6003 set_gdbarch_char_signed (gdbarch, 0);
6004
6005 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
6006 if (wordsize == 8)
6007 /* PPC64 SYSV. */
6008 set_gdbarch_frame_red_zone_size (gdbarch, 288);
6009
6010 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
6011 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
6012 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
6013
6014 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
6015 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
6016
6017 if (wordsize == 4)
6018 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
6019 else if (wordsize == 8)
6020 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
6021
6022 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
6023 set_gdbarch_stack_frame_destroyed_p (gdbarch, rs6000_stack_frame_destroyed_p);
6024 set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
6025
6026 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6027 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
6028
6029 /* The value of symbols of type N_SO and N_FUN maybe null when
6030 it shouldn't be. */
6031 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
6032
6033 /* Handles single stepping of atomic sequences. */
6034 set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
6035
6036 /* Not sure on this. FIXMEmgo */
6037 set_gdbarch_frame_args_skip (gdbarch, 8);
6038
6039 /* Helpers for function argument information. */
6040 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
6041
6042 /* Trampoline. */
6043 set_gdbarch_in_solib_return_trampoline
6044 (gdbarch, rs6000_in_solib_return_trampoline);
6045 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
6046
6047 /* Hook in the DWARF CFI frame unwinder. */
6048 dwarf2_append_unwinders (gdbarch);
6049 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
6050
6051 /* Frame handling. */
6052 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
6053
6054 /* Setup displaced stepping. */
6055 set_gdbarch_displaced_step_copy_insn (gdbarch,
6056 ppc_displaced_step_copy_insn);
6057 set_gdbarch_displaced_step_hw_singlestep (gdbarch,
6058 ppc_displaced_step_hw_singlestep);
6059 set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
6060 set_gdbarch_displaced_step_free_closure (gdbarch,
6061 simple_displaced_step_free_closure);
6062 set_gdbarch_displaced_step_location (gdbarch,
6063 displaced_step_at_entry_point);
6064
6065 set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
6066
6067 /* Hook in ABI-specific overrides, if they have been registered. */
6068 info.target_desc = tdesc;
6069 info.tdep_info = tdesc_data;
6070 gdbarch_init_osabi (info, gdbarch);
6071
6072 switch (info.osabi)
6073 {
6074 case GDB_OSABI_LINUX:
6075 case GDB_OSABI_NETBSD_AOUT:
6076 case GDB_OSABI_NETBSD_ELF:
6077 case GDB_OSABI_UNKNOWN:
6078 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
6079 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
6080 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
6081 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
6082 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
6083 break;
6084 default:
6085 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
6086
6087 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
6088 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
6089 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
6090 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
6091 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
6092 }
6093
6094 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
6095 set_tdesc_pseudo_register_reggroup_p (gdbarch,
6096 rs6000_pseudo_register_reggroup_p);
6097 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
6098
6099 /* Override the normal target description method to make the SPE upper
6100 halves anonymous. */
6101 set_gdbarch_register_name (gdbarch, rs6000_register_name);
6102
6103 /* Choose register numbers for all supported pseudo-registers. */
6104 tdep->ppc_ev0_regnum = -1;
6105 tdep->ppc_dl0_regnum = -1;
6106 tdep->ppc_vsr0_regnum = -1;
6107 tdep->ppc_efpr0_regnum = -1;
6108
6109 cur_reg = gdbarch_num_regs (gdbarch);
6110
6111 if (have_spe)
6112 {
6113 tdep->ppc_ev0_regnum = cur_reg;
6114 cur_reg += 32;
6115 }
6116 if (have_dfp)
6117 {
6118 tdep->ppc_dl0_regnum = cur_reg;
6119 cur_reg += 16;
6120 }
6121 if (have_vsx)
6122 {
6123 tdep->ppc_vsr0_regnum = cur_reg;
6124 cur_reg += 64;
6125 tdep->ppc_efpr0_regnum = cur_reg;
6126 cur_reg += 32;
6127 }
6128
6129 gdb_assert (gdbarch_num_regs (gdbarch)
6130 + gdbarch_num_pseudo_regs (gdbarch) == cur_reg);
6131
6132 /* Register the ravenscar_arch_ops. */
6133 if (mach == bfd_mach_ppc_e500)
6134 register_e500_ravenscar_ops (gdbarch);
6135 else
6136 register_ppc_ravenscar_ops (gdbarch);
6137
6138 return gdbarch;
6139 }
6140
6141 static void
6142 rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
6143 {
6144 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6145
6146 if (tdep == NULL)
6147 return;
6148
6149 /* FIXME: Dump gdbarch_tdep. */
6150 }
6151
6152 /* PowerPC-specific commands. */
6153
6154 static void
6155 set_powerpc_command (char *args, int from_tty)
6156 {
6157 printf_unfiltered (_("\
6158 \"set powerpc\" must be followed by an appropriate subcommand.\n"));
6159 help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
6160 }
6161
6162 static void
6163 show_powerpc_command (char *args, int from_tty)
6164 {
6165 cmd_show_list (showpowerpccmdlist, from_tty, "");
6166 }
6167
6168 static void
6169 powerpc_set_soft_float (char *args, int from_tty,
6170 struct cmd_list_element *c)
6171 {
6172 struct gdbarch_info info;
6173
6174 /* Update the architecture. */
6175 gdbarch_info_init (&info);
6176 if (!gdbarch_update_p (info))
6177 internal_error (__FILE__, __LINE__, _("could not update architecture"));
6178 }
6179
6180 static void
6181 powerpc_set_vector_abi (char *args, int from_tty,
6182 struct cmd_list_element *c)
6183 {
6184 struct gdbarch_info info;
6185 int vector_abi;
6186
6187 for (vector_abi = POWERPC_VEC_AUTO;
6188 vector_abi != POWERPC_VEC_LAST;
6189 vector_abi++)
6190 if (strcmp (powerpc_vector_abi_string,
6191 powerpc_vector_strings[vector_abi]) == 0)
6192 {
6193 powerpc_vector_abi_global = (enum powerpc_vector_abi) vector_abi;
6194 break;
6195 }
6196
6197 if (vector_abi == POWERPC_VEC_LAST)
6198 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
6199 powerpc_vector_abi_string);
6200
6201 /* Update the architecture. */
6202 gdbarch_info_init (&info);
6203 if (!gdbarch_update_p (info))
6204 internal_error (__FILE__, __LINE__, _("could not update architecture"));
6205 }
6206
6207 /* Show the current setting of the exact watchpoints flag. */
6208
6209 static void
6210 show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
6211 struct cmd_list_element *c,
6212 const char *value)
6213 {
6214 fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value);
6215 }
6216
6217 /* Read a PPC instruction from memory. */
6218
6219 static unsigned int
6220 read_insn (struct frame_info *frame, CORE_ADDR pc)
6221 {
6222 struct gdbarch *gdbarch = get_frame_arch (frame);
6223 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6224
6225 return read_memory_unsigned_integer (pc, 4, byte_order);
6226 }
6227
6228 /* Return non-zero if the instructions at PC match the series
6229 described in PATTERN, or zero otherwise. PATTERN is an array of
6230 'struct ppc_insn_pattern' objects, terminated by an entry whose
6231 mask is zero.
6232
6233 When the match is successful, fill INSN[i] with what PATTERN[i]
6234 matched. If PATTERN[i] is optional, and the instruction wasn't
6235 present, set INSN[i] to 0 (which is not a valid PPC instruction).
6236 INSN should have as many elements as PATTERN. Note that, if
6237 PATTERN contains optional instructions which aren't present in
6238 memory, then INSN will have holes, so INSN[i] isn't necessarily the
6239 i'th instruction in memory. */
6240
6241 int
6242 ppc_insns_match_pattern (struct frame_info *frame, CORE_ADDR pc,
6243 struct ppc_insn_pattern *pattern,
6244 unsigned int *insns)
6245 {
6246 int i;
6247 unsigned int insn;
6248
6249 for (i = 0, insn = 0; pattern[i].mask; i++)
6250 {
6251 if (insn == 0)
6252 insn = read_insn (frame, pc);
6253 insns[i] = 0;
6254 if ((insn & pattern[i].mask) == pattern[i].data)
6255 {
6256 insns[i] = insn;
6257 pc += 4;
6258 insn = 0;
6259 }
6260 else if (!pattern[i].optional)
6261 return 0;
6262 }
6263
6264 return 1;
6265 }
6266
6267 /* Return the 'd' field of the d-form instruction INSN, properly
6268 sign-extended. */
6269
6270 CORE_ADDR
6271 ppc_insn_d_field (unsigned int insn)
6272 {
6273 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
6274 }
6275
6276 /* Return the 'ds' field of the ds-form instruction INSN, with the two
6277 zero bits concatenated at the right, and properly
6278 sign-extended. */
6279
6280 CORE_ADDR
6281 ppc_insn_ds_field (unsigned int insn)
6282 {
6283 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
6284 }
6285
6286 /* Initialization code. */
6287
6288 /* -Wmissing-prototypes */
6289 extern initialize_file_ftype _initialize_rs6000_tdep;
6290
6291 void
6292 _initialize_rs6000_tdep (void)
6293 {
6294 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
6295 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
6296
6297 /* Initialize the standard target descriptions. */
6298 initialize_tdesc_powerpc_32 ();
6299 initialize_tdesc_powerpc_altivec32 ();
6300 initialize_tdesc_powerpc_vsx32 ();
6301 initialize_tdesc_powerpc_403 ();
6302 initialize_tdesc_powerpc_403gc ();
6303 initialize_tdesc_powerpc_405 ();
6304 initialize_tdesc_powerpc_505 ();
6305 initialize_tdesc_powerpc_601 ();
6306 initialize_tdesc_powerpc_602 ();
6307 initialize_tdesc_powerpc_603 ();
6308 initialize_tdesc_powerpc_604 ();
6309 initialize_tdesc_powerpc_64 ();
6310 initialize_tdesc_powerpc_altivec64 ();
6311 initialize_tdesc_powerpc_vsx64 ();
6312 initialize_tdesc_powerpc_7400 ();
6313 initialize_tdesc_powerpc_750 ();
6314 initialize_tdesc_powerpc_860 ();
6315 initialize_tdesc_powerpc_e500 ();
6316 initialize_tdesc_rs6000 ();
6317
6318 /* Add root prefix command for all "set powerpc"/"show powerpc"
6319 commands. */
6320 add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
6321 _("Various PowerPC-specific commands."),
6322 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
6323
6324 add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
6325 _("Various PowerPC-specific commands."),
6326 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
6327
6328 /* Add a command to allow the user to force the ABI. */
6329 add_setshow_auto_boolean_cmd ("soft-float", class_support,
6330 &powerpc_soft_float_global,
6331 _("Set whether to use a soft-float ABI."),
6332 _("Show whether to use a soft-float ABI."),
6333 NULL,
6334 powerpc_set_soft_float, NULL,
6335 &setpowerpccmdlist, &showpowerpccmdlist);
6336
6337 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
6338 &powerpc_vector_abi_string,
6339 _("Set the vector ABI."),
6340 _("Show the vector ABI."),
6341 NULL, powerpc_set_vector_abi, NULL,
6342 &setpowerpccmdlist, &showpowerpccmdlist);
6343
6344 add_setshow_boolean_cmd ("exact-watchpoints", class_support,
6345 &target_exact_watchpoints,
6346 _("\
6347 Set whether to use just one debug register for watchpoints on scalars."),
6348 _("\
6349 Show whether to use just one debug register for watchpoints on scalars."),
6350 _("\
6351 If true, GDB will use only one debug register when watching a variable of\n\
6352 scalar type, thus assuming that the variable is accessed through the address\n\
6353 of its first byte."),
6354 NULL, show_powerpc_exact_watchpoints,
6355 &setpowerpccmdlist, &showpowerpccmdlist);
6356 }
This page took 0.164064 seconds and 4 git commands to generate.