1 /* Target-dependent code for GDB, the GNU debugger.
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
29 #include "arch-utils.h"
34 #include "parser-defs.h"
37 #include "sim-regno.h"
38 #include "gdb/sim-ppc.h"
39 #include "reggroups.h"
40 #include "dwarf2-frame.h"
41 #include "target-descriptions.h"
42 #include "user-regs.h"
44 #include "libbfd.h" /* for bfd_default_set_arch_mach */
45 #include "coff/internal.h" /* for libcoff.h */
46 #include "libcoff.h" /* for xcoff_data */
47 #include "coff/xcoff.h"
52 #include "elf/ppc64.h"
54 #include "solib-svr4.h"
56 #include "ppc-ravenscar-thread.h"
60 #include "trad-frame.h"
61 #include "frame-unwind.h"
62 #include "frame-base.h"
64 #include "features/rs6000/powerpc-32.c"
65 #include "features/rs6000/powerpc-altivec32.c"
66 #include "features/rs6000/powerpc-vsx32.c"
67 #include "features/rs6000/powerpc-403.c"
68 #include "features/rs6000/powerpc-403gc.c"
69 #include "features/rs6000/powerpc-405.c"
70 #include "features/rs6000/powerpc-505.c"
71 #include "features/rs6000/powerpc-601.c"
72 #include "features/rs6000/powerpc-602.c"
73 #include "features/rs6000/powerpc-603.c"
74 #include "features/rs6000/powerpc-604.c"
75 #include "features/rs6000/powerpc-64.c"
76 #include "features/rs6000/powerpc-altivec64.c"
77 #include "features/rs6000/powerpc-vsx64.c"
78 #include "features/rs6000/powerpc-7400.c"
79 #include "features/rs6000/powerpc-750.c"
80 #include "features/rs6000/powerpc-860.c"
81 #include "features/rs6000/powerpc-e500.c"
82 #include "features/rs6000/rs6000.c"
84 /* Determine if regnum is an SPE pseudo-register. */
85 #define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
86 && (regnum) >= (tdep)->ppc_ev0_regnum \
87 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
89 /* Determine if regnum is a decimal float pseudo-register. */
90 #define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
91 && (regnum) >= (tdep)->ppc_dl0_regnum \
92 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
94 /* Determine if regnum is a POWER7 VSX register. */
95 #define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
96 && (regnum) >= (tdep)->ppc_vsr0_regnum \
97 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
99 /* Determine if regnum is a POWER7 Extended FP register. */
100 #define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
101 && (regnum) >= (tdep)->ppc_efpr0_regnum \
102 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
104 /* The list of available "set powerpc ..." and "show powerpc ..."
106 static struct cmd_list_element
*setpowerpccmdlist
= NULL
;
107 static struct cmd_list_element
*showpowerpccmdlist
= NULL
;
109 static enum auto_boolean powerpc_soft_float_global
= AUTO_BOOLEAN_AUTO
;
111 /* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
112 static const char *const powerpc_vector_strings
[] =
121 /* A variable that can be configured by the user. */
122 static enum powerpc_vector_abi powerpc_vector_abi_global
= POWERPC_VEC_AUTO
;
123 static const char *powerpc_vector_abi_string
= "auto";
125 /* To be used by skip_prologue. */
127 struct rs6000_framedata
129 int offset
; /* total size of frame --- the distance
130 by which we decrement sp to allocate
132 int saved_gpr
; /* smallest # of saved gpr */
133 unsigned int gpr_mask
; /* Each bit is an individual saved GPR. */
134 int saved_fpr
; /* smallest # of saved fpr */
135 int saved_vr
; /* smallest # of saved vr */
136 int saved_ev
; /* smallest # of saved ev */
137 int alloca_reg
; /* alloca register number (frame ptr) */
138 char frameless
; /* true if frameless functions. */
139 char nosavedpc
; /* true if pc not saved. */
140 char used_bl
; /* true if link register clobbered */
141 int gpr_offset
; /* offset of saved gprs from prev sp */
142 int fpr_offset
; /* offset of saved fprs from prev sp */
143 int vr_offset
; /* offset of saved vrs from prev sp */
144 int ev_offset
; /* offset of saved evs from prev sp */
145 int lr_offset
; /* offset of saved lr */
146 int lr_register
; /* register of saved lr, if trustworthy */
147 int cr_offset
; /* offset of saved cr */
148 int vrsave_offset
; /* offset of saved vrsave register */
152 /* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
154 vsx_register_p (struct gdbarch
*gdbarch
, int regno
)
156 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
157 if (tdep
->ppc_vsr0_regnum
< 0)
160 return (regno
>= tdep
->ppc_vsr0_upper_regnum
&& regno
161 <= tdep
->ppc_vsr0_upper_regnum
+ 31);
164 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
166 altivec_register_p (struct gdbarch
*gdbarch
, int regno
)
168 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
169 if (tdep
->ppc_vr0_regnum
< 0 || tdep
->ppc_vrsave_regnum
< 0)
172 return (regno
>= tdep
->ppc_vr0_regnum
&& regno
<= tdep
->ppc_vrsave_regnum
);
176 /* Return true if REGNO is an SPE register, false otherwise. */
178 spe_register_p (struct gdbarch
*gdbarch
, int regno
)
180 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
182 /* Is it a reference to EV0 -- EV31, and do we have those? */
183 if (IS_SPE_PSEUDOREG (tdep
, regno
))
186 /* Is it a reference to one of the raw upper GPR halves? */
187 if (tdep
->ppc_ev0_upper_regnum
>= 0
188 && tdep
->ppc_ev0_upper_regnum
<= regno
189 && regno
< tdep
->ppc_ev0_upper_regnum
+ ppc_num_gprs
)
192 /* Is it a reference to the 64-bit accumulator, and do we have that? */
193 if (tdep
->ppc_acc_regnum
>= 0
194 && tdep
->ppc_acc_regnum
== regno
)
197 /* Is it a reference to the SPE floating-point status and control register,
198 and do we have that? */
199 if (tdep
->ppc_spefscr_regnum
>= 0
200 && tdep
->ppc_spefscr_regnum
== regno
)
207 /* Return non-zero if the architecture described by GDBARCH has
208 floating-point registers (f0 --- f31 and fpscr). */
210 ppc_floating_point_unit_p (struct gdbarch
*gdbarch
)
212 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
214 return (tdep
->ppc_fp0_regnum
>= 0
215 && tdep
->ppc_fpscr_regnum
>= 0);
218 /* Return non-zero if the architecture described by GDBARCH has
219 VSX registers (vsr0 --- vsr63). */
221 ppc_vsx_support_p (struct gdbarch
*gdbarch
)
223 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
225 return tdep
->ppc_vsr0_regnum
>= 0;
228 /* Return non-zero if the architecture described by GDBARCH has
229 Altivec registers (vr0 --- vr31, vrsave and vscr). */
231 ppc_altivec_support_p (struct gdbarch
*gdbarch
)
233 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
235 return (tdep
->ppc_vr0_regnum
>= 0
236 && tdep
->ppc_vrsave_regnum
>= 0);
239 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
242 This is a helper function for init_sim_regno_table, constructing
243 the table mapping GDB register numbers to sim register numbers; we
244 initialize every element in that table to -1 before we start
247 set_sim_regno (int *table
, int gdb_regno
, int sim_regno
)
249 /* Make sure we don't try to assign any given GDB register a sim
250 register number more than once. */
251 gdb_assert (table
[gdb_regno
] == -1);
252 table
[gdb_regno
] = sim_regno
;
256 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
257 numbers to simulator register numbers, based on the values placed
258 in the ARCH->tdep->ppc_foo_regnum members. */
260 init_sim_regno_table (struct gdbarch
*arch
)
262 struct gdbarch_tdep
*tdep
= gdbarch_tdep (arch
);
263 int total_regs
= gdbarch_num_regs (arch
);
264 int *sim_regno
= GDBARCH_OBSTACK_CALLOC (arch
, total_regs
, int);
266 static const char *const segment_regs
[] = {
267 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
268 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
271 /* Presume that all registers not explicitly mentioned below are
272 unavailable from the sim. */
273 for (i
= 0; i
< total_regs
; i
++)
276 /* General-purpose registers. */
277 for (i
= 0; i
< ppc_num_gprs
; i
++)
278 set_sim_regno (sim_regno
, tdep
->ppc_gp0_regnum
+ i
, sim_ppc_r0_regnum
+ i
);
280 /* Floating-point registers. */
281 if (tdep
->ppc_fp0_regnum
>= 0)
282 for (i
= 0; i
< ppc_num_fprs
; i
++)
283 set_sim_regno (sim_regno
,
284 tdep
->ppc_fp0_regnum
+ i
,
285 sim_ppc_f0_regnum
+ i
);
286 if (tdep
->ppc_fpscr_regnum
>= 0)
287 set_sim_regno (sim_regno
, tdep
->ppc_fpscr_regnum
, sim_ppc_fpscr_regnum
);
289 set_sim_regno (sim_regno
, gdbarch_pc_regnum (arch
), sim_ppc_pc_regnum
);
290 set_sim_regno (sim_regno
, tdep
->ppc_ps_regnum
, sim_ppc_ps_regnum
);
291 set_sim_regno (sim_regno
, tdep
->ppc_cr_regnum
, sim_ppc_cr_regnum
);
293 /* Segment registers. */
294 for (i
= 0; i
< ppc_num_srs
; i
++)
298 gdb_regno
= user_reg_map_name_to_regnum (arch
, segment_regs
[i
], -1);
300 set_sim_regno (sim_regno
, gdb_regno
, sim_ppc_sr0_regnum
+ i
);
303 /* Altivec registers. */
304 if (tdep
->ppc_vr0_regnum
>= 0)
306 for (i
= 0; i
< ppc_num_vrs
; i
++)
307 set_sim_regno (sim_regno
,
308 tdep
->ppc_vr0_regnum
+ i
,
309 sim_ppc_vr0_regnum
+ i
);
311 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
312 we can treat this more like the other cases. */
313 set_sim_regno (sim_regno
,
314 tdep
->ppc_vr0_regnum
+ ppc_num_vrs
,
315 sim_ppc_vscr_regnum
);
317 /* vsave is a special-purpose register, so the code below handles it. */
319 /* SPE APU (E500) registers. */
320 if (tdep
->ppc_ev0_upper_regnum
>= 0)
321 for (i
= 0; i
< ppc_num_gprs
; i
++)
322 set_sim_regno (sim_regno
,
323 tdep
->ppc_ev0_upper_regnum
+ i
,
324 sim_ppc_rh0_regnum
+ i
);
325 if (tdep
->ppc_acc_regnum
>= 0)
326 set_sim_regno (sim_regno
, tdep
->ppc_acc_regnum
, sim_ppc_acc_regnum
);
327 /* spefscr is a special-purpose register, so the code below handles it. */
330 /* Now handle all special-purpose registers. Verify that they
331 haven't mistakenly been assigned numbers by any of the above
333 for (i
= 0; i
< sim_ppc_num_sprs
; i
++)
335 const char *spr_name
= sim_spr_register_name (i
);
338 if (spr_name
!= NULL
)
339 gdb_regno
= user_reg_map_name_to_regnum (arch
, spr_name
, -1);
342 set_sim_regno (sim_regno
, gdb_regno
, sim_ppc_spr0_regnum
+ i
);
346 /* Drop the initialized array into place. */
347 tdep
->sim_regno
= sim_regno
;
351 /* Given a GDB register number REG, return the corresponding SIM
354 rs6000_register_sim_regno (struct gdbarch
*gdbarch
, int reg
)
356 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
359 if (tdep
->sim_regno
== NULL
)
360 init_sim_regno_table (gdbarch
);
363 && reg
<= gdbarch_num_regs (gdbarch
)
364 + gdbarch_num_pseudo_regs (gdbarch
));
365 sim_regno
= tdep
->sim_regno
[reg
];
370 return LEGACY_SIM_REGNO_IGNORE
;
375 /* Register set support functions. */
377 /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
378 Write the register to REGCACHE. */
381 ppc_supply_reg (struct regcache
*regcache
, int regnum
,
382 const gdb_byte
*regs
, size_t offset
, int regsize
)
384 if (regnum
!= -1 && offset
!= -1)
388 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
389 int gdb_regsize
= register_size (gdbarch
, regnum
);
390 if (gdb_regsize
< regsize
391 && gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
392 offset
+= regsize
- gdb_regsize
;
394 regcache_raw_supply (regcache
, regnum
, regs
+ offset
);
398 /* Read register REGNUM from REGCACHE and store to REGS + OFFSET
399 in a field REGSIZE wide. Zero pad as necessary. */
402 ppc_collect_reg (const struct regcache
*regcache
, int regnum
,
403 gdb_byte
*regs
, size_t offset
, int regsize
)
405 if (regnum
!= -1 && offset
!= -1)
409 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
410 int gdb_regsize
= register_size (gdbarch
, regnum
);
411 if (gdb_regsize
< regsize
)
413 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
415 memset (regs
+ offset
, 0, regsize
- gdb_regsize
);
416 offset
+= regsize
- gdb_regsize
;
419 memset (regs
+ offset
+ regsize
- gdb_regsize
, 0,
420 regsize
- gdb_regsize
);
423 regcache_raw_collect (regcache
, regnum
, regs
+ offset
);
428 ppc_greg_offset (struct gdbarch
*gdbarch
,
429 struct gdbarch_tdep
*tdep
,
430 const struct ppc_reg_offsets
*offsets
,
434 *regsize
= offsets
->gpr_size
;
435 if (regnum
>= tdep
->ppc_gp0_regnum
436 && regnum
< tdep
->ppc_gp0_regnum
+ ppc_num_gprs
)
437 return (offsets
->r0_offset
438 + (regnum
- tdep
->ppc_gp0_regnum
) * offsets
->gpr_size
);
440 if (regnum
== gdbarch_pc_regnum (gdbarch
))
441 return offsets
->pc_offset
;
443 if (regnum
== tdep
->ppc_ps_regnum
)
444 return offsets
->ps_offset
;
446 if (regnum
== tdep
->ppc_lr_regnum
)
447 return offsets
->lr_offset
;
449 if (regnum
== tdep
->ppc_ctr_regnum
)
450 return offsets
->ctr_offset
;
452 *regsize
= offsets
->xr_size
;
453 if (regnum
== tdep
->ppc_cr_regnum
)
454 return offsets
->cr_offset
;
456 if (regnum
== tdep
->ppc_xer_regnum
)
457 return offsets
->xer_offset
;
459 if (regnum
== tdep
->ppc_mq_regnum
)
460 return offsets
->mq_offset
;
466 ppc_fpreg_offset (struct gdbarch_tdep
*tdep
,
467 const struct ppc_reg_offsets
*offsets
,
470 if (regnum
>= tdep
->ppc_fp0_regnum
471 && regnum
< tdep
->ppc_fp0_regnum
+ ppc_num_fprs
)
472 return offsets
->f0_offset
+ (regnum
- tdep
->ppc_fp0_regnum
) * 8;
474 if (regnum
== tdep
->ppc_fpscr_regnum
)
475 return offsets
->fpscr_offset
;
481 ppc_vrreg_offset (struct gdbarch_tdep
*tdep
,
482 const struct ppc_reg_offsets
*offsets
,
485 if (regnum
>= tdep
->ppc_vr0_regnum
486 && regnum
< tdep
->ppc_vr0_regnum
+ ppc_num_vrs
)
487 return offsets
->vr0_offset
+ (regnum
- tdep
->ppc_vr0_regnum
) * 16;
489 if (regnum
== tdep
->ppc_vrsave_regnum
- 1)
490 return offsets
->vscr_offset
;
492 if (regnum
== tdep
->ppc_vrsave_regnum
)
493 return offsets
->vrsave_offset
;
498 /* Supply register REGNUM in the general-purpose register set REGSET
499 from the buffer specified by GREGS and LEN to register cache
500 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
503 ppc_supply_gregset (const struct regset
*regset
, struct regcache
*regcache
,
504 int regnum
, const void *gregs
, size_t len
)
506 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
507 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
508 const struct ppc_reg_offsets
*offsets
= regset
->descr
;
515 int gpr_size
= offsets
->gpr_size
;
517 for (i
= tdep
->ppc_gp0_regnum
, offset
= offsets
->r0_offset
;
518 i
< tdep
->ppc_gp0_regnum
+ ppc_num_gprs
;
519 i
++, offset
+= gpr_size
)
520 ppc_supply_reg (regcache
, i
, gregs
, offset
, gpr_size
);
522 ppc_supply_reg (regcache
, gdbarch_pc_regnum (gdbarch
),
523 gregs
, offsets
->pc_offset
, gpr_size
);
524 ppc_supply_reg (regcache
, tdep
->ppc_ps_regnum
,
525 gregs
, offsets
->ps_offset
, gpr_size
);
526 ppc_supply_reg (regcache
, tdep
->ppc_lr_regnum
,
527 gregs
, offsets
->lr_offset
, gpr_size
);
528 ppc_supply_reg (regcache
, tdep
->ppc_ctr_regnum
,
529 gregs
, offsets
->ctr_offset
, gpr_size
);
530 ppc_supply_reg (regcache
, tdep
->ppc_cr_regnum
,
531 gregs
, offsets
->cr_offset
, offsets
->xr_size
);
532 ppc_supply_reg (regcache
, tdep
->ppc_xer_regnum
,
533 gregs
, offsets
->xer_offset
, offsets
->xr_size
);
534 ppc_supply_reg (regcache
, tdep
->ppc_mq_regnum
,
535 gregs
, offsets
->mq_offset
, offsets
->xr_size
);
539 offset
= ppc_greg_offset (gdbarch
, tdep
, offsets
, regnum
, ®size
);
540 ppc_supply_reg (regcache
, regnum
, gregs
, offset
, regsize
);
543 /* Supply register REGNUM in the floating-point register set REGSET
544 from the buffer specified by FPREGS and LEN to register cache
545 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
548 ppc_supply_fpregset (const struct regset
*regset
, struct regcache
*regcache
,
549 int regnum
, const void *fpregs
, size_t len
)
551 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
552 struct gdbarch_tdep
*tdep
;
553 const struct ppc_reg_offsets
*offsets
;
556 if (!ppc_floating_point_unit_p (gdbarch
))
559 tdep
= gdbarch_tdep (gdbarch
);
560 offsets
= regset
->descr
;
565 for (i
= tdep
->ppc_fp0_regnum
, offset
= offsets
->f0_offset
;
566 i
< tdep
->ppc_fp0_regnum
+ ppc_num_fprs
;
568 ppc_supply_reg (regcache
, i
, fpregs
, offset
, 8);
570 ppc_supply_reg (regcache
, tdep
->ppc_fpscr_regnum
,
571 fpregs
, offsets
->fpscr_offset
, offsets
->fpscr_size
);
575 offset
= ppc_fpreg_offset (tdep
, offsets
, regnum
);
576 ppc_supply_reg (regcache
, regnum
, fpregs
, offset
,
577 regnum
== tdep
->ppc_fpscr_regnum
? offsets
->fpscr_size
: 8);
580 /* Supply register REGNUM in the VSX register set REGSET
581 from the buffer specified by VSXREGS and LEN to register cache
582 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
585 ppc_supply_vsxregset (const struct regset
*regset
, struct regcache
*regcache
,
586 int regnum
, const void *vsxregs
, size_t len
)
588 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
589 struct gdbarch_tdep
*tdep
;
591 if (!ppc_vsx_support_p (gdbarch
))
594 tdep
= gdbarch_tdep (gdbarch
);
600 for (i
= tdep
->ppc_vsr0_upper_regnum
;
601 i
< tdep
->ppc_vsr0_upper_regnum
+ 32;
603 ppc_supply_reg (regcache
, i
, vsxregs
, 0, 8);
608 ppc_supply_reg (regcache
, regnum
, vsxregs
, 0, 8);
611 /* Supply register REGNUM in the Altivec register set REGSET
612 from the buffer specified by VRREGS and LEN to register cache
613 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
616 ppc_supply_vrregset (const struct regset
*regset
, struct regcache
*regcache
,
617 int regnum
, const void *vrregs
, size_t len
)
619 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
620 struct gdbarch_tdep
*tdep
;
621 const struct ppc_reg_offsets
*offsets
;
624 if (!ppc_altivec_support_p (gdbarch
))
627 tdep
= gdbarch_tdep (gdbarch
);
628 offsets
= regset
->descr
;
633 for (i
= tdep
->ppc_vr0_regnum
, offset
= offsets
->vr0_offset
;
634 i
< tdep
->ppc_vr0_regnum
+ ppc_num_vrs
;
636 ppc_supply_reg (regcache
, i
, vrregs
, offset
, 16);
638 ppc_supply_reg (regcache
, (tdep
->ppc_vrsave_regnum
- 1),
639 vrregs
, offsets
->vscr_offset
, 4);
641 ppc_supply_reg (regcache
, tdep
->ppc_vrsave_regnum
,
642 vrregs
, offsets
->vrsave_offset
, 4);
646 offset
= ppc_vrreg_offset (tdep
, offsets
, regnum
);
647 if (regnum
!= tdep
->ppc_vrsave_regnum
648 && regnum
!= tdep
->ppc_vrsave_regnum
- 1)
649 ppc_supply_reg (regcache
, regnum
, vrregs
, offset
, 16);
651 ppc_supply_reg (regcache
, regnum
,
655 /* Collect register REGNUM in the general-purpose register set
656 REGSET from register cache REGCACHE into the buffer specified by
657 GREGS and LEN. If REGNUM is -1, do this for all registers in
661 ppc_collect_gregset (const struct regset
*regset
,
662 const struct regcache
*regcache
,
663 int regnum
, void *gregs
, size_t len
)
665 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
666 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
667 const struct ppc_reg_offsets
*offsets
= regset
->descr
;
674 int gpr_size
= offsets
->gpr_size
;
676 for (i
= tdep
->ppc_gp0_regnum
, offset
= offsets
->r0_offset
;
677 i
< tdep
->ppc_gp0_regnum
+ ppc_num_gprs
;
678 i
++, offset
+= gpr_size
)
679 ppc_collect_reg (regcache
, i
, gregs
, offset
, gpr_size
);
681 ppc_collect_reg (regcache
, gdbarch_pc_regnum (gdbarch
),
682 gregs
, offsets
->pc_offset
, gpr_size
);
683 ppc_collect_reg (regcache
, tdep
->ppc_ps_regnum
,
684 gregs
, offsets
->ps_offset
, gpr_size
);
685 ppc_collect_reg (regcache
, tdep
->ppc_lr_regnum
,
686 gregs
, offsets
->lr_offset
, gpr_size
);
687 ppc_collect_reg (regcache
, tdep
->ppc_ctr_regnum
,
688 gregs
, offsets
->ctr_offset
, gpr_size
);
689 ppc_collect_reg (regcache
, tdep
->ppc_cr_regnum
,
690 gregs
, offsets
->cr_offset
, offsets
->xr_size
);
691 ppc_collect_reg (regcache
, tdep
->ppc_xer_regnum
,
692 gregs
, offsets
->xer_offset
, offsets
->xr_size
);
693 ppc_collect_reg (regcache
, tdep
->ppc_mq_regnum
,
694 gregs
, offsets
->mq_offset
, offsets
->xr_size
);
698 offset
= ppc_greg_offset (gdbarch
, tdep
, offsets
, regnum
, ®size
);
699 ppc_collect_reg (regcache
, regnum
, gregs
, offset
, regsize
);
702 /* Collect register REGNUM in the floating-point register set
703 REGSET from register cache REGCACHE into the buffer specified by
704 FPREGS and LEN. If REGNUM is -1, do this for all registers in
708 ppc_collect_fpregset (const struct regset
*regset
,
709 const struct regcache
*regcache
,
710 int regnum
, void *fpregs
, size_t len
)
712 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
713 struct gdbarch_tdep
*tdep
;
714 const struct ppc_reg_offsets
*offsets
;
717 if (!ppc_floating_point_unit_p (gdbarch
))
720 tdep
= gdbarch_tdep (gdbarch
);
721 offsets
= regset
->descr
;
726 for (i
= tdep
->ppc_fp0_regnum
, offset
= offsets
->f0_offset
;
727 i
< tdep
->ppc_fp0_regnum
+ ppc_num_fprs
;
729 ppc_collect_reg (regcache
, i
, fpregs
, offset
, 8);
731 ppc_collect_reg (regcache
, tdep
->ppc_fpscr_regnum
,
732 fpregs
, offsets
->fpscr_offset
, offsets
->fpscr_size
);
736 offset
= ppc_fpreg_offset (tdep
, offsets
, regnum
);
737 ppc_collect_reg (regcache
, regnum
, fpregs
, offset
,
738 regnum
== tdep
->ppc_fpscr_regnum
? offsets
->fpscr_size
: 8);
741 /* Collect register REGNUM in the VSX register set
742 REGSET from register cache REGCACHE into the buffer specified by
743 VSXREGS and LEN. If REGNUM is -1, do this for all registers in
747 ppc_collect_vsxregset (const struct regset
*regset
,
748 const struct regcache
*regcache
,
749 int regnum
, void *vsxregs
, size_t len
)
751 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
752 struct gdbarch_tdep
*tdep
;
754 if (!ppc_vsx_support_p (gdbarch
))
757 tdep
= gdbarch_tdep (gdbarch
);
763 for (i
= tdep
->ppc_vsr0_upper_regnum
;
764 i
< tdep
->ppc_vsr0_upper_regnum
+ 32;
766 ppc_collect_reg (regcache
, i
, vsxregs
, 0, 8);
771 ppc_collect_reg (regcache
, regnum
, vsxregs
, 0, 8);
775 /* Collect register REGNUM in the Altivec register set
776 REGSET from register cache REGCACHE into the buffer specified by
777 VRREGS and LEN. If REGNUM is -1, do this for all registers in
781 ppc_collect_vrregset (const struct regset
*regset
,
782 const struct regcache
*regcache
,
783 int regnum
, void *vrregs
, size_t len
)
785 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
786 struct gdbarch_tdep
*tdep
;
787 const struct ppc_reg_offsets
*offsets
;
790 if (!ppc_altivec_support_p (gdbarch
))
793 tdep
= gdbarch_tdep (gdbarch
);
794 offsets
= regset
->descr
;
799 for (i
= tdep
->ppc_vr0_regnum
, offset
= offsets
->vr0_offset
;
800 i
< tdep
->ppc_vr0_regnum
+ ppc_num_vrs
;
802 ppc_collect_reg (regcache
, i
, vrregs
, offset
, 16);
804 ppc_collect_reg (regcache
, (tdep
->ppc_vrsave_regnum
- 1),
805 vrregs
, offsets
->vscr_offset
, 4);
807 ppc_collect_reg (regcache
, tdep
->ppc_vrsave_regnum
,
808 vrregs
, offsets
->vrsave_offset
, 4);
812 offset
= ppc_vrreg_offset (tdep
, offsets
, regnum
);
813 if (regnum
!= tdep
->ppc_vrsave_regnum
814 && regnum
!= tdep
->ppc_vrsave_regnum
- 1)
815 ppc_collect_reg (regcache
, regnum
, vrregs
, offset
, 16);
817 ppc_collect_reg (regcache
, regnum
,
823 insn_changes_sp_or_jumps (unsigned long insn
)
825 int opcode
= (insn
>> 26) & 0x03f;
826 int sd
= (insn
>> 21) & 0x01f;
827 int a
= (insn
>> 16) & 0x01f;
828 int subcode
= (insn
>> 1) & 0x3ff;
830 /* Changes the stack pointer. */
832 /* NOTE: There are many ways to change the value of a given register.
833 The ways below are those used when the register is R1, the SP,
834 in a funtion's epilogue. */
836 if (opcode
== 31 && subcode
== 444 && a
== 1)
837 return 1; /* mr R1,Rn */
838 if (opcode
== 14 && sd
== 1)
839 return 1; /* addi R1,Rn,simm */
840 if (opcode
== 58 && sd
== 1)
841 return 1; /* ld R1,ds(Rn) */
843 /* Transfers control. */
849 if (opcode
== 19 && subcode
== 16)
851 if (opcode
== 19 && subcode
== 528)
852 return 1; /* bcctr */
857 /* Return true if we are in the function's epilogue, i.e. after the
858 instruction that destroyed the function's stack frame.
860 1) scan forward from the point of execution:
861 a) If you find an instruction that modifies the stack pointer
862 or transfers control (except a return), execution is not in
864 b) Stop scanning if you find a return instruction or reach the
865 end of the function or reach the hard limit for the size of
867 2) scan backward from the point of execution:
868 a) If you find an instruction that modifies the stack pointer,
869 execution *is* in an epilogue, return.
870 b) Stop scanning if you reach an instruction that transfers
871 control or the beginning of the function or reach the hard
872 limit for the size of an epilogue. */
875 rs6000_in_function_epilogue_p (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
877 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
878 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
879 bfd_byte insn_buf
[PPC_INSN_SIZE
];
880 CORE_ADDR scan_pc
, func_start
, func_end
, epilogue_start
, epilogue_end
;
882 struct frame_info
*curfrm
;
884 /* Find the search limits based on function boundaries and hard limit. */
886 if (!find_pc_partial_function (pc
, NULL
, &func_start
, &func_end
))
889 epilogue_start
= pc
- PPC_MAX_EPILOGUE_INSTRUCTIONS
* PPC_INSN_SIZE
;
890 if (epilogue_start
< func_start
) epilogue_start
= func_start
;
892 epilogue_end
= pc
+ PPC_MAX_EPILOGUE_INSTRUCTIONS
* PPC_INSN_SIZE
;
893 if (epilogue_end
> func_end
) epilogue_end
= func_end
;
895 curfrm
= get_current_frame ();
897 /* Scan forward until next 'blr'. */
899 for (scan_pc
= pc
; scan_pc
< epilogue_end
; scan_pc
+= PPC_INSN_SIZE
)
901 if (!safe_frame_unwind_memory (curfrm
, scan_pc
, insn_buf
, PPC_INSN_SIZE
))
903 insn
= extract_unsigned_integer (insn_buf
, PPC_INSN_SIZE
, byte_order
);
904 if (insn
== 0x4e800020)
906 /* Assume a bctr is a tail call unless it points strictly within
908 if (insn
== 0x4e800420)
910 CORE_ADDR ctr
= get_frame_register_unsigned (curfrm
,
911 tdep
->ppc_ctr_regnum
);
912 if (ctr
> func_start
&& ctr
< func_end
)
917 if (insn_changes_sp_or_jumps (insn
))
921 /* Scan backward until adjustment to stack pointer (R1). */
923 for (scan_pc
= pc
- PPC_INSN_SIZE
;
924 scan_pc
>= epilogue_start
;
925 scan_pc
-= PPC_INSN_SIZE
)
927 if (!safe_frame_unwind_memory (curfrm
, scan_pc
, insn_buf
, PPC_INSN_SIZE
))
929 insn
= extract_unsigned_integer (insn_buf
, PPC_INSN_SIZE
, byte_order
);
930 if (insn_changes_sp_or_jumps (insn
))
937 /* Get the ith function argument for the current function. */
939 rs6000_fetch_pointer_argument (struct frame_info
*frame
, int argi
,
942 return get_frame_register_unsigned (frame
, 3 + argi
);
945 /* Sequence of bytes for breakpoint instruction. */
947 static const unsigned char *
948 rs6000_breakpoint_from_pc (struct gdbarch
*gdbarch
, CORE_ADDR
*bp_addr
,
951 static unsigned char big_breakpoint
[] = { 0x7d, 0x82, 0x10, 0x08 };
952 static unsigned char little_breakpoint
[] = { 0x08, 0x10, 0x82, 0x7d };
954 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
955 return big_breakpoint
;
957 return little_breakpoint
;
960 /* Instruction masks for displaced stepping. */
961 #define BRANCH_MASK 0xfc000000
962 #define BP_MASK 0xFC0007FE
963 #define B_INSN 0x48000000
964 #define BC_INSN 0x40000000
965 #define BXL_INSN 0x4c000000
966 #define BP_INSN 0x7C000008
968 /* Fix up the state of registers and memory after having single-stepped
969 a displaced instruction. */
971 ppc_displaced_step_fixup (struct gdbarch
*gdbarch
,
972 struct displaced_step_closure
*closure
,
973 CORE_ADDR from
, CORE_ADDR to
,
974 struct regcache
*regs
)
976 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
977 /* Since we use simple_displaced_step_copy_insn, our closure is a
978 copy of the instruction. */
979 ULONGEST insn
= extract_unsigned_integer ((gdb_byte
*) closure
,
980 PPC_INSN_SIZE
, byte_order
);
982 /* Offset for non PC-relative instructions. */
983 LONGEST offset
= PPC_INSN_SIZE
;
985 opcode
= insn
& BRANCH_MASK
;
988 fprintf_unfiltered (gdb_stdlog
,
989 "displaced: (ppc) fixup (%s, %s)\n",
990 paddress (gdbarch
, from
), paddress (gdbarch
, to
));
993 /* Handle PC-relative branch instructions. */
994 if (opcode
== B_INSN
|| opcode
== BC_INSN
|| opcode
== BXL_INSN
)
998 /* Read the current PC value after the instruction has been executed
999 in a displaced location. Calculate the offset to be applied to the
1000 original PC value before the displaced stepping. */
1001 regcache_cooked_read_unsigned (regs
, gdbarch_pc_regnum (gdbarch
),
1003 offset
= current_pc
- to
;
1005 if (opcode
!= BXL_INSN
)
1007 /* Check for AA bit indicating whether this is an absolute
1008 addressing or PC-relative (1: absolute, 0: relative). */
1011 /* PC-relative addressing is being used in the branch. */
1012 if (debug_displaced
)
1015 "displaced: (ppc) branch instruction: %s\n"
1016 "displaced: (ppc) adjusted PC from %s to %s\n",
1017 paddress (gdbarch
, insn
), paddress (gdbarch
, current_pc
),
1018 paddress (gdbarch
, from
+ offset
));
1020 regcache_cooked_write_unsigned (regs
,
1021 gdbarch_pc_regnum (gdbarch
),
1027 /* If we're here, it means we have a branch to LR or CTR. If the
1028 branch was taken, the offset is probably greater than 4 (the next
1029 instruction), so it's safe to assume that an offset of 4 means we
1030 did not take the branch. */
1031 if (offset
== PPC_INSN_SIZE
)
1032 regcache_cooked_write_unsigned (regs
, gdbarch_pc_regnum (gdbarch
),
1033 from
+ PPC_INSN_SIZE
);
1036 /* Check for LK bit indicating whether we should set the link
1037 register to point to the next instruction
1038 (1: Set, 0: Don't set). */
1041 /* Link register needs to be set to the next instruction's PC. */
1042 regcache_cooked_write_unsigned (regs
,
1043 gdbarch_tdep (gdbarch
)->ppc_lr_regnum
,
1044 from
+ PPC_INSN_SIZE
);
1045 if (debug_displaced
)
1046 fprintf_unfiltered (gdb_stdlog
,
1047 "displaced: (ppc) adjusted LR to %s\n",
1048 paddress (gdbarch
, from
+ PPC_INSN_SIZE
));
1052 /* Check for breakpoints in the inferior. If we've found one, place the PC
1053 right at the breakpoint instruction. */
1054 else if ((insn
& BP_MASK
) == BP_INSN
)
1055 regcache_cooked_write_unsigned (regs
, gdbarch_pc_regnum (gdbarch
), from
);
1057 /* Handle any other instructions that do not fit in the categories above. */
1058 regcache_cooked_write_unsigned (regs
, gdbarch_pc_regnum (gdbarch
),
1062 /* Always use hardware single-stepping to execute the
1063 displaced instruction. */
1065 ppc_displaced_step_hw_singlestep (struct gdbarch
*gdbarch
,
1066 struct displaced_step_closure
*closure
)
1071 /* Instruction masks used during single-stepping of atomic sequences. */
1072 #define LWARX_MASK 0xfc0007fe
1073 #define LWARX_INSTRUCTION 0x7c000028
1074 #define LDARX_INSTRUCTION 0x7c0000A8
1075 #define STWCX_MASK 0xfc0007ff
1076 #define STWCX_INSTRUCTION 0x7c00012d
1077 #define STDCX_INSTRUCTION 0x7c0001ad
1079 /* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
1080 instruction and ending with a STWCX/STDCX instruction. If such a sequence
1081 is found, attempt to step through it. A breakpoint is placed at the end of
1085 ppc_deal_with_atomic_sequence (struct frame_info
*frame
)
1087 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
1088 struct address_space
*aspace
= get_frame_address_space (frame
);
1089 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1090 CORE_ADDR pc
= get_frame_pc (frame
);
1091 CORE_ADDR breaks
[2] = {-1, -1};
1093 CORE_ADDR closing_insn
; /* Instruction that closes the atomic sequence. */
1094 int insn
= read_memory_integer (loc
, PPC_INSN_SIZE
, byte_order
);
1097 int last_breakpoint
= 0; /* Defaults to 0 (no breakpoints placed). */
1098 const int atomic_sequence_length
= 16; /* Instruction sequence length. */
1099 int opcode
; /* Branch instruction's OPcode. */
1100 int bc_insn_count
= 0; /* Conditional branch instruction count. */
1102 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
1103 if ((insn
& LWARX_MASK
) != LWARX_INSTRUCTION
1104 && (insn
& LWARX_MASK
) != LDARX_INSTRUCTION
)
1107 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1109 for (insn_count
= 0; insn_count
< atomic_sequence_length
; ++insn_count
)
1111 loc
+= PPC_INSN_SIZE
;
1112 insn
= read_memory_integer (loc
, PPC_INSN_SIZE
, byte_order
);
1114 /* Assume that there is at most one conditional branch in the atomic
1115 sequence. If a conditional branch is found, put a breakpoint in
1116 its destination address. */
1117 if ((insn
& BRANCH_MASK
) == BC_INSN
)
1119 int immediate
= ((insn
& 0xfffc) ^ 0x8000) - 0x8000;
1120 int absolute
= insn
& 2;
1122 if (bc_insn_count
>= 1)
1123 return 0; /* More than one conditional branch found, fallback
1124 to the standard single-step code. */
1127 breaks
[1] = immediate
;
1129 breaks
[1] = loc
+ immediate
;
1135 if ((insn
& STWCX_MASK
) == STWCX_INSTRUCTION
1136 || (insn
& STWCX_MASK
) == STDCX_INSTRUCTION
)
1140 /* Assume that the atomic sequence ends with a stwcx/stdcx instruction. */
1141 if ((insn
& STWCX_MASK
) != STWCX_INSTRUCTION
1142 && (insn
& STWCX_MASK
) != STDCX_INSTRUCTION
)
1146 loc
+= PPC_INSN_SIZE
;
1147 insn
= read_memory_integer (loc
, PPC_INSN_SIZE
, byte_order
);
1149 /* Insert a breakpoint right after the end of the atomic sequence. */
1152 /* Check for duplicated breakpoints. Check also for a breakpoint
1153 placed (branch instruction's destination) anywhere in sequence. */
1155 && (breaks
[1] == breaks
[0]
1156 || (breaks
[1] >= pc
&& breaks
[1] <= closing_insn
)))
1157 last_breakpoint
= 0;
1159 /* Effectively inserts the breakpoints. */
1160 for (index
= 0; index
<= last_breakpoint
; index
++)
1161 insert_single_step_breakpoint (gdbarch
, aspace
, breaks
[index
]);
1167 #define SIGNED_SHORT(x) \
1168 ((sizeof (short) == 2) \
1169 ? ((int)(short)(x)) \
1170 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1172 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1174 /* Limit the number of skipped non-prologue instructions, as the examining
1175 of the prologue is expensive. */
1176 static int max_skip_non_prologue_insns
= 10;
1178 /* Return nonzero if the given instruction OP can be part of the prologue
1179 of a function and saves a parameter on the stack. FRAMEP should be
1180 set if one of the previous instructions in the function has set the
1184 store_param_on_stack_p (unsigned long op
, int framep
, int *r0_contains_arg
)
1186 /* Move parameters from argument registers to temporary register. */
1187 if ((op
& 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1189 /* Rx must be scratch register r0. */
1190 const int rx_regno
= (op
>> 16) & 31;
1191 /* Ry: Only r3 - r10 are used for parameter passing. */
1192 const int ry_regno
= GET_SRC_REG (op
);
1194 if (rx_regno
== 0 && ry_regno
>= 3 && ry_regno
<= 10)
1196 *r0_contains_arg
= 1;
1203 /* Save a General Purpose Register on stack. */
1205 if ((op
& 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1206 (op
& 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1208 /* Rx: Only r3 - r10 are used for parameter passing. */
1209 const int rx_regno
= GET_SRC_REG (op
);
1211 return (rx_regno
>= 3 && rx_regno
<= 10);
1214 /* Save a General Purpose Register on stack via the Frame Pointer. */
1217 ((op
& 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1218 (op
& 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1219 (op
& 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1221 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1222 However, the compiler sometimes uses r0 to hold an argument. */
1223 const int rx_regno
= GET_SRC_REG (op
);
1225 return ((rx_regno
>= 3 && rx_regno
<= 10)
1226 || (rx_regno
== 0 && *r0_contains_arg
));
1229 if ((op
& 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1231 /* Only f2 - f8 are used for parameter passing. */
1232 const int src_regno
= GET_SRC_REG (op
);
1234 return (src_regno
>= 2 && src_regno
<= 8);
1237 if (framep
&& ((op
& 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1239 /* Only f2 - f8 are used for parameter passing. */
1240 const int src_regno
= GET_SRC_REG (op
);
1242 return (src_regno
>= 2 && src_regno
<= 8);
1245 /* Not an insn that saves a parameter on stack. */
1249 /* Assuming that INSN is a "bl" instruction located at PC, return
1250 nonzero if the destination of the branch is a "blrl" instruction.
1252 This sequence is sometimes found in certain function prologues.
1253 It allows the function to load the LR register with a value that
1254 they can use to access PIC data using PC-relative offsets. */
1257 bl_to_blrl_insn_p (CORE_ADDR pc
, int insn
, enum bfd_endian byte_order
)
1264 absolute
= (int) ((insn
>> 1) & 1);
1265 immediate
= ((insn
& ~3) << 6) >> 6;
1269 dest
= pc
+ immediate
;
1271 dest_insn
= read_memory_integer (dest
, 4, byte_order
);
1272 if ((dest_insn
& 0xfc00ffff) == 0x4c000021) /* blrl */
1278 /* Masks for decoding a branch-and-link (bl) instruction.
1280 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1281 The former is anded with the opcode in question; if the result of
1282 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1283 question is a ``bl'' instruction.
1285 BL_DISPLACMENT_MASK is anded with the opcode in order to extract
1286 the branch displacement. */
1288 #define BL_MASK 0xfc000001
1289 #define BL_INSTRUCTION 0x48000001
1290 #define BL_DISPLACEMENT_MASK 0x03fffffc
1292 static unsigned long
1293 rs6000_fetch_instruction (struct gdbarch
*gdbarch
, const CORE_ADDR pc
)
1295 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1299 /* Fetch the instruction and convert it to an integer. */
1300 if (target_read_memory (pc
, buf
, 4))
1302 op
= extract_unsigned_integer (buf
, 4, byte_order
);
1307 /* GCC generates several well-known sequences of instructions at the begining
1308 of each function prologue when compiling with -fstack-check. If one of
1309 such sequences starts at START_PC, then return the address of the
1310 instruction immediately past this sequence. Otherwise, return START_PC. */
1313 rs6000_skip_stack_check (struct gdbarch
*gdbarch
, const CORE_ADDR start_pc
)
1315 CORE_ADDR pc
= start_pc
;
1316 unsigned long op
= rs6000_fetch_instruction (gdbarch
, pc
);
1318 /* First possible sequence: A small number of probes.
1319 stw 0, -<some immediate>(1)
1320 [repeat this instruction any (small) number of times]. */
1322 if ((op
& 0xffff0000) == 0x90010000)
1324 while ((op
& 0xffff0000) == 0x90010000)
1327 op
= rs6000_fetch_instruction (gdbarch
, pc
);
1332 /* Second sequence: A probing loop.
1333 addi 12,1,-<some immediate>
1334 lis 0,-<some immediate>
1335 [possibly ori 0,0,<some immediate>]
1339 addi 12,12,-<some immediate>
1342 [possibly one last probe: stw 0,<some immediate>(12)]. */
1346 /* addi 12,1,-<some immediate> */
1347 if ((op
& 0xffff0000) != 0x39810000)
1350 /* lis 0,-<some immediate> */
1352 op
= rs6000_fetch_instruction (gdbarch
, pc
);
1353 if ((op
& 0xffff0000) != 0x3c000000)
1357 op
= rs6000_fetch_instruction (gdbarch
, pc
);
1358 /* [possibly ori 0,0,<some immediate>] */
1359 if ((op
& 0xffff0000) == 0x60000000)
1362 op
= rs6000_fetch_instruction (gdbarch
, pc
);
1365 if (op
!= 0x7c0c0214)
1370 op
= rs6000_fetch_instruction (gdbarch
, pc
);
1371 if (op
!= 0x7c0c0000)
1376 op
= rs6000_fetch_instruction (gdbarch
, pc
);
1377 if ((op
& 0xff9f0001) != 0x41820000)
1380 /* addi 12,12,-<some immediate> */
1382 op
= rs6000_fetch_instruction (gdbarch
, pc
);
1383 if ((op
& 0xffff0000) != 0x398c0000)
1388 op
= rs6000_fetch_instruction (gdbarch
, pc
);
1389 if (op
!= 0x900c0000)
1394 op
= rs6000_fetch_instruction (gdbarch
, pc
);
1395 if ((op
& 0xfc000001) != 0x48000000)
1398 /* [possibly one last probe: stw 0,<some immediate>(12)]. */
1400 op
= rs6000_fetch_instruction (gdbarch
, pc
);
1401 if ((op
& 0xffff0000) == 0x900c0000)
1404 op
= rs6000_fetch_instruction (gdbarch
, pc
);
1407 /* We found a valid stack-check sequence, return the new PC. */
1411 /* Third sequence: No probe; instead, a comparizon between the stack size
1412 limit (saved in a run-time global variable) and the current stack
1415 addi 0,1,-<some immediate>
1416 lis 12,__gnat_stack_limit@ha
1417 lwz 12,__gnat_stack_limit@l(12)
1420 or, with a small variant in the case of a bigger stack frame:
1421 addis 0,1,<some immediate>
1422 addic 0,0,-<some immediate>
1423 lis 12,__gnat_stack_limit@ha
1424 lwz 12,__gnat_stack_limit@l(12)
1429 /* addi 0,1,-<some immediate> */
1430 if ((op
& 0xffff0000) != 0x38010000)
1432 /* small stack frame variant not recognized; try the
1433 big stack frame variant: */
1435 /* addis 0,1,<some immediate> */
1436 if ((op
& 0xffff0000) != 0x3c010000)
1439 /* addic 0,0,-<some immediate> */
1441 op
= rs6000_fetch_instruction (gdbarch
, pc
);
1442 if ((op
& 0xffff0000) != 0x30000000)
1446 /* lis 12,<some immediate> */
1448 op
= rs6000_fetch_instruction (gdbarch
, pc
);
1449 if ((op
& 0xffff0000) != 0x3d800000)
1452 /* lwz 12,<some immediate>(12) */
1454 op
= rs6000_fetch_instruction (gdbarch
, pc
);
1455 if ((op
& 0xffff0000) != 0x818c0000)
1460 op
= rs6000_fetch_instruction (gdbarch
, pc
);
1461 if ((op
& 0xfffffffe) != 0x7c406008)
1464 /* We found a valid stack-check sequence, return the new PC. */
1468 /* No stack check code in our prologue, return the start_pc. */
1472 /* return pc value after skipping a function prologue and also return
1473 information about a function frame.
1475 in struct rs6000_framedata fdata:
1476 - frameless is TRUE, if function does not have a frame.
1477 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1478 - offset is the initial size of this stack frame --- the amount by
1479 which we decrement the sp to allocate the frame.
1480 - saved_gpr is the number of the first saved gpr.
1481 - saved_fpr is the number of the first saved fpr.
1482 - saved_vr is the number of the first saved vr.
1483 - saved_ev is the number of the first saved ev.
1484 - alloca_reg is the number of the register used for alloca() handling.
1486 - gpr_offset is the offset of the first saved gpr from the previous frame.
1487 - fpr_offset is the offset of the first saved fpr from the previous frame.
1488 - vr_offset is the offset of the first saved vr from the previous frame.
1489 - ev_offset is the offset of the first saved ev from the previous frame.
1490 - lr_offset is the offset of the saved lr
1491 - cr_offset is the offset of the saved cr
1492 - vrsave_offset is the offset of the saved vrsave register. */
1495 skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
, CORE_ADDR lim_pc
,
1496 struct rs6000_framedata
*fdata
)
1498 CORE_ADDR orig_pc
= pc
;
1499 CORE_ADDR last_prologue_pc
= pc
;
1500 CORE_ADDR li_found_pc
= 0;
1504 long vr_saved_offset
= 0;
1510 int vrsave_reg
= -1;
1513 int minimal_toc_loaded
= 0;
1514 int prev_insn_was_prologue_insn
= 1;
1515 int num_skip_non_prologue_insns
= 0;
1516 int r0_contains_arg
= 0;
1517 const struct bfd_arch_info
*arch_info
= gdbarch_bfd_arch_info (gdbarch
);
1518 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
1519 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1521 memset (fdata
, 0, sizeof (struct rs6000_framedata
));
1522 fdata
->saved_gpr
= -1;
1523 fdata
->saved_fpr
= -1;
1524 fdata
->saved_vr
= -1;
1525 fdata
->saved_ev
= -1;
1526 fdata
->alloca_reg
= -1;
1527 fdata
->frameless
= 1;
1528 fdata
->nosavedpc
= 1;
1529 fdata
->lr_register
= -1;
1531 pc
= rs6000_skip_stack_check (gdbarch
, pc
);
1537 /* Sometimes it isn't clear if an instruction is a prologue
1538 instruction or not. When we encounter one of these ambiguous
1539 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1540 Otherwise, we'll assume that it really is a prologue instruction. */
1541 if (prev_insn_was_prologue_insn
)
1542 last_prologue_pc
= pc
;
1544 /* Stop scanning if we've hit the limit. */
1548 prev_insn_was_prologue_insn
= 1;
1550 /* Fetch the instruction and convert it to an integer. */
1551 if (target_read_memory (pc
, buf
, 4))
1553 op
= extract_unsigned_integer (buf
, 4, byte_order
);
1555 if ((op
& 0xfc1fffff) == 0x7c0802a6)
1557 /* Since shared library / PIC code, which needs to get its
1558 address at runtime, can appear to save more than one link
1572 remember just the first one, but skip over additional
1575 lr_reg
= (op
& 0x03e00000) >> 21;
1577 r0_contains_arg
= 0;
1580 else if ((op
& 0xfc1fffff) == 0x7c000026)
1582 cr_reg
= (op
& 0x03e00000);
1584 r0_contains_arg
= 0;
1588 else if ((op
& 0xfc1f0000) == 0xd8010000)
1589 { /* stfd Rx,NUM(r1) */
1590 reg
= GET_SRC_REG (op
);
1591 if (fdata
->saved_fpr
== -1 || fdata
->saved_fpr
> reg
)
1593 fdata
->saved_fpr
= reg
;
1594 fdata
->fpr_offset
= SIGNED_SHORT (op
) + offset
;
1599 else if (((op
& 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1600 (((op
& 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1601 (op
& 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1602 (op
& 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1605 reg
= GET_SRC_REG (op
);
1606 if ((op
& 0xfc1f0000) == 0xbc010000)
1607 fdata
->gpr_mask
|= ~((1U << reg
) - 1);
1609 fdata
->gpr_mask
|= 1U << reg
;
1610 if (fdata
->saved_gpr
== -1 || fdata
->saved_gpr
> reg
)
1612 fdata
->saved_gpr
= reg
;
1613 if ((op
& 0xfc1f0003) == 0xf8010000)
1615 fdata
->gpr_offset
= SIGNED_SHORT (op
) + offset
;
1620 else if ((op
& 0xffff0000) == 0x3c4c0000
1621 || (op
& 0xffff0000) == 0x3c400000
1622 || (op
& 0xffff0000) == 0x38420000)
1624 /* . 0: addis 2,12,.TOC.-0b@ha
1625 . addi 2,2,.TOC.-0b@l
1629 used by ELFv2 global entry points to set up r2. */
1632 else if (op
== 0x60000000)
1635 /* Allow nops in the prologue, but do not consider them to
1636 be part of the prologue unless followed by other prologue
1638 prev_insn_was_prologue_insn
= 0;
1642 else if ((op
& 0xffff0000) == 0x3c000000)
1643 { /* addis 0,0,NUM, used for >= 32k frames */
1644 fdata
->offset
= (op
& 0x0000ffff) << 16;
1645 fdata
->frameless
= 0;
1646 r0_contains_arg
= 0;
1650 else if ((op
& 0xffff0000) == 0x60000000)
1651 { /* ori 0,0,NUM, 2nd half of >= 32k frames */
1652 fdata
->offset
|= (op
& 0x0000ffff);
1653 fdata
->frameless
= 0;
1654 r0_contains_arg
= 0;
1658 else if (lr_reg
>= 0 &&
1659 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1660 (((op
& 0xffff0000) == (lr_reg
| 0xf8010000)) ||
1661 /* stw Rx, NUM(r1) */
1662 ((op
& 0xffff0000) == (lr_reg
| 0x90010000)) ||
1663 /* stwu Rx, NUM(r1) */
1664 ((op
& 0xffff0000) == (lr_reg
| 0x94010000))))
1665 { /* where Rx == lr */
1666 fdata
->lr_offset
= offset
;
1667 fdata
->nosavedpc
= 0;
1668 /* Invalidate lr_reg, but don't set it to -1.
1669 That would mean that it had never been set. */
1671 if ((op
& 0xfc000003) == 0xf8000000 || /* std */
1672 (op
& 0xfc000000) == 0x90000000) /* stw */
1674 /* Does not update r1, so add displacement to lr_offset. */
1675 fdata
->lr_offset
+= SIGNED_SHORT (op
);
1680 else if (cr_reg
>= 0 &&
1681 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1682 (((op
& 0xffff0000) == (cr_reg
| 0xf8010000)) ||
1683 /* stw Rx, NUM(r1) */
1684 ((op
& 0xffff0000) == (cr_reg
| 0x90010000)) ||
1685 /* stwu Rx, NUM(r1) */
1686 ((op
& 0xffff0000) == (cr_reg
| 0x94010000))))
1687 { /* where Rx == cr */
1688 fdata
->cr_offset
= offset
;
1689 /* Invalidate cr_reg, but don't set it to -1.
1690 That would mean that it had never been set. */
1692 if ((op
& 0xfc000003) == 0xf8000000 ||
1693 (op
& 0xfc000000) == 0x90000000)
1695 /* Does not update r1, so add displacement to cr_offset. */
1696 fdata
->cr_offset
+= SIGNED_SHORT (op
);
1701 else if ((op
& 0xfe80ffff) == 0x42800005 && lr_reg
!= -1)
1703 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1704 prediction bits. If the LR has already been saved, we can
1708 else if (op
== 0x48000005)
1715 else if (op
== 0x48000004)
1720 else if ((op
& 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1721 in V.4 -mminimal-toc */
1722 (op
& 0xffff0000) == 0x3bde0000)
1723 { /* addi 30,30,foo@l */
1727 else if ((op
& 0xfc000001) == 0x48000001)
1731 fdata
->frameless
= 0;
1733 /* If the return address has already been saved, we can skip
1734 calls to blrl (for PIC). */
1735 if (lr_reg
!= -1 && bl_to_blrl_insn_p (pc
, op
, byte_order
))
1741 /* Don't skip over the subroutine call if it is not within
1742 the first three instructions of the prologue and either
1743 we have no line table information or the line info tells
1744 us that the subroutine call is not part of the line
1745 associated with the prologue. */
1746 if ((pc
- orig_pc
) > 8)
1748 struct symtab_and_line prologue_sal
= find_pc_line (orig_pc
, 0);
1749 struct symtab_and_line this_sal
= find_pc_line (pc
, 0);
1751 if ((prologue_sal
.line
== 0)
1752 || (prologue_sal
.line
!= this_sal
.line
))
1756 op
= read_memory_integer (pc
+ 4, 4, byte_order
);
1758 /* At this point, make sure this is not a trampoline
1759 function (a function that simply calls another functions,
1760 and nothing else). If the next is not a nop, this branch
1761 was part of the function prologue. */
1763 if (op
== 0x4def7b82 || op
== 0) /* crorc 15, 15, 15 */
1764 break; /* Don't skip over
1770 /* update stack pointer */
1771 else if ((op
& 0xfc1f0000) == 0x94010000)
1772 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1773 fdata
->frameless
= 0;
1774 fdata
->offset
= SIGNED_SHORT (op
);
1775 offset
= fdata
->offset
;
1778 else if ((op
& 0xfc1f016a) == 0x7c01016e)
1779 { /* stwux rX,r1,rY */
1780 /* No way to figure out what r1 is going to be. */
1781 fdata
->frameless
= 0;
1782 offset
= fdata
->offset
;
1785 else if ((op
& 0xfc1f0003) == 0xf8010001)
1786 { /* stdu rX,NUM(r1) */
1787 fdata
->frameless
= 0;
1788 fdata
->offset
= SIGNED_SHORT (op
& ~3UL);
1789 offset
= fdata
->offset
;
1792 else if ((op
& 0xfc1f016a) == 0x7c01016a)
1793 { /* stdux rX,r1,rY */
1794 /* No way to figure out what r1 is going to be. */
1795 fdata
->frameless
= 0;
1796 offset
= fdata
->offset
;
1799 else if ((op
& 0xffff0000) == 0x38210000)
1800 { /* addi r1,r1,SIMM */
1801 fdata
->frameless
= 0;
1802 fdata
->offset
+= SIGNED_SHORT (op
);
1803 offset
= fdata
->offset
;
1806 /* Load up minimal toc pointer. Do not treat an epilogue restore
1807 of r31 as a minimal TOC load. */
1808 else if (((op
>> 22) == 0x20f || /* l r31,... or l r30,... */
1809 (op
>> 22) == 0x3af) /* ld r31,... or ld r30,... */
1811 && !minimal_toc_loaded
)
1813 minimal_toc_loaded
= 1;
1816 /* move parameters from argument registers to local variable
1819 else if ((op
& 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1820 (((op
>> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1821 (((op
>> 21) & 31) <= 10) &&
1822 ((long) ((op
>> 16) & 31)
1823 >= fdata
->saved_gpr
)) /* Rx: local var reg */
1827 /* store parameters in stack */
1829 /* Move parameters from argument registers to temporary register. */
1830 else if (store_param_on_stack_p (op
, framep
, &r0_contains_arg
))
1834 /* Set up frame pointer */
1836 else if (op
== 0x603d0000) /* oril r29, r1, 0x0 */
1838 fdata
->frameless
= 0;
1840 fdata
->alloca_reg
= (tdep
->ppc_gp0_regnum
+ 29);
1843 /* Another way to set up the frame pointer. */
1845 else if (op
== 0x603f0000 /* oril r31, r1, 0x0 */
1846 || op
== 0x7c3f0b78)
1848 fdata
->frameless
= 0;
1850 fdata
->alloca_reg
= (tdep
->ppc_gp0_regnum
+ 31);
1853 /* Another way to set up the frame pointer. */
1855 else if ((op
& 0xfc1fffff) == 0x38010000)
1856 { /* addi rX, r1, 0x0 */
1857 fdata
->frameless
= 0;
1859 fdata
->alloca_reg
= (tdep
->ppc_gp0_regnum
1860 + ((op
& ~0x38010000) >> 21));
1863 /* AltiVec related instructions. */
1864 /* Store the vrsave register (spr 256) in another register for
1865 later manipulation, or load a register into the vrsave
1866 register. 2 instructions are used: mfvrsave and
1867 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1868 and mtspr SPR256, Rn. */
1869 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1870 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1871 else if ((op
& 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1873 vrsave_reg
= GET_SRC_REG (op
);
1876 else if ((op
& 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1880 /* Store the register where vrsave was saved to onto the stack:
1881 rS is the register where vrsave was stored in a previous
1883 /* 100100 sssss 00001 dddddddd dddddddd */
1884 else if ((op
& 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1886 if (vrsave_reg
== GET_SRC_REG (op
))
1888 fdata
->vrsave_offset
= SIGNED_SHORT (op
) + offset
;
1893 /* Compute the new value of vrsave, by modifying the register
1894 where vrsave was saved to. */
1895 else if (((op
& 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1896 || ((op
& 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1900 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1901 in a pair of insns to save the vector registers on the
1903 /* 001110 00000 00000 iiii iiii iiii iiii */
1904 /* 001110 01110 00000 iiii iiii iiii iiii */
1905 else if ((op
& 0xffff0000) == 0x38000000 /* li r0, SIMM */
1906 || (op
& 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1908 if ((op
& 0xffff0000) == 0x38000000)
1909 r0_contains_arg
= 0;
1911 vr_saved_offset
= SIGNED_SHORT (op
);
1913 /* This insn by itself is not part of the prologue, unless
1914 if part of the pair of insns mentioned above. So do not
1915 record this insn as part of the prologue yet. */
1916 prev_insn_was_prologue_insn
= 0;
1918 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1919 /* 011111 sssss 11111 00000 00111001110 */
1920 else if ((op
& 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1922 if (pc
== (li_found_pc
+ 4))
1924 vr_reg
= GET_SRC_REG (op
);
1925 /* If this is the first vector reg to be saved, or if
1926 it has a lower number than others previously seen,
1927 reupdate the frame info. */
1928 if (fdata
->saved_vr
== -1 || fdata
->saved_vr
> vr_reg
)
1930 fdata
->saved_vr
= vr_reg
;
1931 fdata
->vr_offset
= vr_saved_offset
+ offset
;
1933 vr_saved_offset
= -1;
1938 /* End AltiVec related instructions. */
1940 /* Start BookE related instructions. */
1941 /* Store gen register S at (r31+uimm).
1942 Any register less than r13 is volatile, so we don't care. */
1943 /* 000100 sssss 11111 iiiii 01100100001 */
1944 else if (arch_info
->mach
== bfd_mach_ppc_e500
1945 && (op
& 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1947 if ((op
& 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1950 ev_reg
= GET_SRC_REG (op
);
1951 imm
= (op
>> 11) & 0x1f;
1952 ev_offset
= imm
* 8;
1953 /* If this is the first vector reg to be saved, or if
1954 it has a lower number than others previously seen,
1955 reupdate the frame info. */
1956 if (fdata
->saved_ev
== -1 || fdata
->saved_ev
> ev_reg
)
1958 fdata
->saved_ev
= ev_reg
;
1959 fdata
->ev_offset
= ev_offset
+ offset
;
1964 /* Store gen register rS at (r1+rB). */
1965 /* 000100 sssss 00001 bbbbb 01100100000 */
1966 else if (arch_info
->mach
== bfd_mach_ppc_e500
1967 && (op
& 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1969 if (pc
== (li_found_pc
+ 4))
1971 ev_reg
= GET_SRC_REG (op
);
1972 /* If this is the first vector reg to be saved, or if
1973 it has a lower number than others previously seen,
1974 reupdate the frame info. */
1975 /* We know the contents of rB from the previous instruction. */
1976 if (fdata
->saved_ev
== -1 || fdata
->saved_ev
> ev_reg
)
1978 fdata
->saved_ev
= ev_reg
;
1979 fdata
->ev_offset
= vr_saved_offset
+ offset
;
1981 vr_saved_offset
= -1;
1987 /* Store gen register r31 at (rA+uimm). */
1988 /* 000100 11111 aaaaa iiiii 01100100001 */
1989 else if (arch_info
->mach
== bfd_mach_ppc_e500
1990 && (op
& 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1992 /* Wwe know that the source register is 31 already, but
1993 it can't hurt to compute it. */
1994 ev_reg
= GET_SRC_REG (op
);
1995 ev_offset
= ((op
>> 11) & 0x1f) * 8;
1996 /* If this is the first vector reg to be saved, or if
1997 it has a lower number than others previously seen,
1998 reupdate the frame info. */
1999 if (fdata
->saved_ev
== -1 || fdata
->saved_ev
> ev_reg
)
2001 fdata
->saved_ev
= ev_reg
;
2002 fdata
->ev_offset
= ev_offset
+ offset
;
2007 /* Store gen register S at (r31+r0).
2008 Store param on stack when offset from SP bigger than 4 bytes. */
2009 /* 000100 sssss 11111 00000 01100100000 */
2010 else if (arch_info
->mach
== bfd_mach_ppc_e500
2011 && (op
& 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
2013 if (pc
== (li_found_pc
+ 4))
2015 if ((op
& 0x03e00000) >= 0x01a00000)
2017 ev_reg
= GET_SRC_REG (op
);
2018 /* If this is the first vector reg to be saved, or if
2019 it has a lower number than others previously seen,
2020 reupdate the frame info. */
2021 /* We know the contents of r0 from the previous
2023 if (fdata
->saved_ev
== -1 || fdata
->saved_ev
> ev_reg
)
2025 fdata
->saved_ev
= ev_reg
;
2026 fdata
->ev_offset
= vr_saved_offset
+ offset
;
2030 vr_saved_offset
= -1;
2035 /* End BookE related instructions. */
2039 unsigned int all_mask
= ~((1U << fdata
->saved_gpr
) - 1);
2041 /* Not a recognized prologue instruction.
2042 Handle optimizer code motions into the prologue by continuing
2043 the search if we have no valid frame yet or if the return
2044 address is not yet saved in the frame. Also skip instructions
2045 if some of the GPRs expected to be saved are not yet saved. */
2046 if (fdata
->frameless
== 0 && fdata
->nosavedpc
== 0
2047 && (fdata
->gpr_mask
& all_mask
) == all_mask
)
2050 if (op
== 0x4e800020 /* blr */
2051 || op
== 0x4e800420) /* bctr */
2052 /* Do not scan past epilogue in frameless functions or
2055 if ((op
& 0xf4000000) == 0x40000000) /* bxx */
2056 /* Never skip branches. */
2059 if (num_skip_non_prologue_insns
++ > max_skip_non_prologue_insns
)
2060 /* Do not scan too many insns, scanning insns is expensive with
2064 /* Continue scanning. */
2065 prev_insn_was_prologue_insn
= 0;
2071 /* I have problems with skipping over __main() that I need to address
2072 * sometime. Previously, I used to use misc_function_vector which
2073 * didn't work as well as I wanted to be. -MGO */
2075 /* If the first thing after skipping a prolog is a branch to a function,
2076 this might be a call to an initializer in main(), introduced by gcc2.
2077 We'd like to skip over it as well. Fortunately, xlc does some extra
2078 work before calling a function right after a prologue, thus we can
2079 single out such gcc2 behaviour. */
2082 if ((op
& 0xfc000001) == 0x48000001)
2083 { /* bl foo, an initializer function? */
2084 op
= read_memory_integer (pc
+ 4, 4, byte_order
);
2086 if (op
== 0x4def7b82)
2087 { /* cror 0xf, 0xf, 0xf (nop) */
2089 /* Check and see if we are in main. If so, skip over this
2090 initializer function as well. */
2092 tmp
= find_pc_misc_function (pc
);
2094 && strcmp (misc_function_vector
[tmp
].name
, main_name ()) == 0)
2100 if (pc
== lim_pc
&& lr_reg
>= 0)
2101 fdata
->lr_register
= lr_reg
;
2103 fdata
->offset
= -fdata
->offset
;
2104 return last_prologue_pc
;
2108 rs6000_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
2110 struct rs6000_framedata frame
;
2111 CORE_ADDR limit_pc
, func_addr
, func_end_addr
= 0;
2113 /* See if we can determine the end of the prologue via the symbol table.
2114 If so, then return either PC, or the PC after the prologue, whichever
2116 if (find_pc_partial_function (pc
, NULL
, &func_addr
, &func_end_addr
))
2118 CORE_ADDR post_prologue_pc
2119 = skip_prologue_using_sal (gdbarch
, func_addr
);
2120 if (post_prologue_pc
!= 0)
2121 return max (pc
, post_prologue_pc
);
2124 /* Can't determine prologue from the symbol table, need to examine
2127 /* Find an upper limit on the function prologue using the debug
2128 information. If the debug information could not be used to provide
2129 that bound, then use an arbitrary large number as the upper bound. */
2130 limit_pc
= skip_prologue_using_sal (gdbarch
, pc
);
2132 limit_pc
= pc
+ 100; /* Magic. */
2134 /* Do not allow limit_pc to be past the function end, if we know
2135 where that end is... */
2136 if (func_end_addr
&& limit_pc
> func_end_addr
)
2137 limit_pc
= func_end_addr
;
2139 pc
= skip_prologue (gdbarch
, pc
, limit_pc
, &frame
);
2143 /* When compiling for EABI, some versions of GCC emit a call to __eabi
2144 in the prologue of main().
2146 The function below examines the code pointed at by PC and checks to
2147 see if it corresponds to a call to __eabi. If so, it returns the
2148 address of the instruction following that call. Otherwise, it simply
2152 rs6000_skip_main_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
2154 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
2158 if (target_read_memory (pc
, buf
, 4))
2160 op
= extract_unsigned_integer (buf
, 4, byte_order
);
2162 if ((op
& BL_MASK
) == BL_INSTRUCTION
)
2164 CORE_ADDR displ
= op
& BL_DISPLACEMENT_MASK
;
2165 CORE_ADDR call_dest
= pc
+ 4 + displ
;
2166 struct bound_minimal_symbol s
= lookup_minimal_symbol_by_pc (call_dest
);
2168 /* We check for ___eabi (three leading underscores) in addition
2169 to __eabi in case the GCC option "-fleading-underscore" was
2170 used to compile the program. */
2171 if (s
.minsym
!= NULL
2172 && MSYMBOL_LINKAGE_NAME (s
.minsym
) != NULL
2173 && (strcmp (MSYMBOL_LINKAGE_NAME (s
.minsym
), "__eabi") == 0
2174 || strcmp (MSYMBOL_LINKAGE_NAME (s
.minsym
), "___eabi") == 0))
2180 /* All the ABI's require 16 byte alignment. */
2182 rs6000_frame_align (struct gdbarch
*gdbarch
, CORE_ADDR addr
)
2184 return (addr
& -16);
2187 /* Return whether handle_inferior_event() should proceed through code
2188 starting at PC in function NAME when stepping.
2190 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2191 handle memory references that are too distant to fit in instructions
2192 generated by the compiler. For example, if 'foo' in the following
2197 is greater than 32767, the linker might replace the lwz with a branch to
2198 somewhere in @FIX1 that does the load in 2 instructions and then branches
2199 back to where execution should continue.
2201 GDB should silently step over @FIX code, just like AIX dbx does.
2202 Unfortunately, the linker uses the "b" instruction for the
2203 branches, meaning that the link register doesn't get set.
2204 Therefore, GDB's usual step_over_function () mechanism won't work.
2206 Instead, use the gdbarch_skip_trampoline_code and
2207 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2211 rs6000_in_solib_return_trampoline (struct gdbarch
*gdbarch
,
2212 CORE_ADDR pc
, const char *name
)
2214 return name
&& !strncmp (name
, "@FIX", 4);
2217 /* Skip code that the user doesn't want to see when stepping:
2219 1. Indirect function calls use a piece of trampoline code to do context
2220 switching, i.e. to set the new TOC table. Skip such code if we are on
2221 its first instruction (as when we have single-stepped to here).
2223 2. Skip shared library trampoline code (which is different from
2224 indirect function call trampolines).
2226 3. Skip bigtoc fixup code.
2228 Result is desired PC to step until, or NULL if we are not in
2229 code that should be skipped. */
2232 rs6000_skip_trampoline_code (struct frame_info
*frame
, CORE_ADDR pc
)
2234 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
2235 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2236 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
2237 unsigned int ii
, op
;
2239 CORE_ADDR solib_target_pc
;
2240 struct bound_minimal_symbol msymbol
;
2242 static unsigned trampoline_code
[] =
2244 0x800b0000, /* l r0,0x0(r11) */
2245 0x90410014, /* st r2,0x14(r1) */
2246 0x7c0903a6, /* mtctr r0 */
2247 0x804b0004, /* l r2,0x4(r11) */
2248 0x816b0008, /* l r11,0x8(r11) */
2249 0x4e800420, /* bctr */
2250 0x4e800020, /* br */
2254 /* Check for bigtoc fixup code. */
2255 msymbol
= lookup_minimal_symbol_by_pc (pc
);
2257 && rs6000_in_solib_return_trampoline (gdbarch
, pc
,
2258 MSYMBOL_LINKAGE_NAME (msymbol
.minsym
)))
2260 /* Double-check that the third instruction from PC is relative "b". */
2261 op
= read_memory_integer (pc
+ 8, 4, byte_order
);
2262 if ((op
& 0xfc000003) == 0x48000000)
2264 /* Extract bits 6-29 as a signed 24-bit relative word address and
2265 add it to the containing PC. */
2266 rel
= ((int)(op
<< 6) >> 6);
2267 return pc
+ 8 + rel
;
2271 /* If pc is in a shared library trampoline, return its target. */
2272 solib_target_pc
= find_solib_trampoline_target (frame
, pc
);
2273 if (solib_target_pc
)
2274 return solib_target_pc
;
2276 for (ii
= 0; trampoline_code
[ii
]; ++ii
)
2278 op
= read_memory_integer (pc
+ (ii
* 4), 4, byte_order
);
2279 if (op
!= trampoline_code
[ii
])
2282 ii
= get_frame_register_unsigned (frame
, 11); /* r11 holds destination
2284 pc
= read_memory_unsigned_integer (ii
, tdep
->wordsize
, byte_order
);
2288 /* ISA-specific vector types. */
2290 static struct type
*
2291 rs6000_builtin_type_vec64 (struct gdbarch
*gdbarch
)
2293 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2295 if (!tdep
->ppc_builtin_type_vec64
)
2297 const struct builtin_type
*bt
= builtin_type (gdbarch
);
2299 /* The type we're building is this: */
2301 union __gdb_builtin_type_vec64
2305 int32_t v2_int32
[2];
2306 int16_t v4_int16
[4];
2313 t
= arch_composite_type (gdbarch
,
2314 "__ppc_builtin_type_vec64", TYPE_CODE_UNION
);
2315 append_composite_type_field (t
, "uint64", bt
->builtin_int64
);
2316 append_composite_type_field (t
, "v2_float",
2317 init_vector_type (bt
->builtin_float
, 2));
2318 append_composite_type_field (t
, "v2_int32",
2319 init_vector_type (bt
->builtin_int32
, 2));
2320 append_composite_type_field (t
, "v4_int16",
2321 init_vector_type (bt
->builtin_int16
, 4));
2322 append_composite_type_field (t
, "v8_int8",
2323 init_vector_type (bt
->builtin_int8
, 8));
2325 TYPE_VECTOR (t
) = 1;
2326 TYPE_NAME (t
) = "ppc_builtin_type_vec64";
2327 tdep
->ppc_builtin_type_vec64
= t
;
2330 return tdep
->ppc_builtin_type_vec64
;
2333 /* Vector 128 type. */
2335 static struct type
*
2336 rs6000_builtin_type_vec128 (struct gdbarch
*gdbarch
)
2338 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2340 if (!tdep
->ppc_builtin_type_vec128
)
2342 const struct builtin_type
*bt
= builtin_type (gdbarch
);
2344 /* The type we're building is this
2346 type = union __ppc_builtin_type_vec128 {
2348 double v2_double[2];
2350 int32_t v4_int32[4];
2351 int16_t v8_int16[8];
2352 int8_t v16_int8[16];
2358 t
= arch_composite_type (gdbarch
,
2359 "__ppc_builtin_type_vec128", TYPE_CODE_UNION
);
2360 append_composite_type_field (t
, "uint128", bt
->builtin_uint128
);
2361 append_composite_type_field (t
, "v2_double",
2362 init_vector_type (bt
->builtin_double
, 2));
2363 append_composite_type_field (t
, "v4_float",
2364 init_vector_type (bt
->builtin_float
, 4));
2365 append_composite_type_field (t
, "v4_int32",
2366 init_vector_type (bt
->builtin_int32
, 4));
2367 append_composite_type_field (t
, "v8_int16",
2368 init_vector_type (bt
->builtin_int16
, 8));
2369 append_composite_type_field (t
, "v16_int8",
2370 init_vector_type (bt
->builtin_int8
, 16));
2372 TYPE_VECTOR (t
) = 1;
2373 TYPE_NAME (t
) = "ppc_builtin_type_vec128";
2374 tdep
->ppc_builtin_type_vec128
= t
;
2377 return tdep
->ppc_builtin_type_vec128
;
2380 /* Return the name of register number REGNO, or the empty string if it
2381 is an anonymous register. */
2384 rs6000_register_name (struct gdbarch
*gdbarch
, int regno
)
2386 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2388 /* The upper half "registers" have names in the XML description,
2389 but we present only the low GPRs and the full 64-bit registers
2391 if (tdep
->ppc_ev0_upper_regnum
>= 0
2392 && tdep
->ppc_ev0_upper_regnum
<= regno
2393 && regno
< tdep
->ppc_ev0_upper_regnum
+ ppc_num_gprs
)
2396 /* Hide the upper halves of the vs0~vs31 registers. */
2397 if (tdep
->ppc_vsr0_regnum
>= 0
2398 && tdep
->ppc_vsr0_upper_regnum
<= regno
2399 && regno
< tdep
->ppc_vsr0_upper_regnum
+ ppc_num_gprs
)
2402 /* Check if the SPE pseudo registers are available. */
2403 if (IS_SPE_PSEUDOREG (tdep
, regno
))
2405 static const char *const spe_regnames
[] = {
2406 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2407 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2408 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2409 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2411 return spe_regnames
[regno
- tdep
->ppc_ev0_regnum
];
2414 /* Check if the decimal128 pseudo-registers are available. */
2415 if (IS_DFP_PSEUDOREG (tdep
, regno
))
2417 static const char *const dfp128_regnames
[] = {
2418 "dl0", "dl1", "dl2", "dl3",
2419 "dl4", "dl5", "dl6", "dl7",
2420 "dl8", "dl9", "dl10", "dl11",
2421 "dl12", "dl13", "dl14", "dl15"
2423 return dfp128_regnames
[regno
- tdep
->ppc_dl0_regnum
];
2426 /* Check if this is a VSX pseudo-register. */
2427 if (IS_VSX_PSEUDOREG (tdep
, regno
))
2429 static const char *const vsx_regnames
[] = {
2430 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2431 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2432 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2433 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2434 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2435 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2436 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2437 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2438 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2440 return vsx_regnames
[regno
- tdep
->ppc_vsr0_regnum
];
2443 /* Check if the this is a Extended FP pseudo-register. */
2444 if (IS_EFP_PSEUDOREG (tdep
, regno
))
2446 static const char *const efpr_regnames
[] = {
2447 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2448 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2449 "f46", "f47", "f48", "f49", "f50", "f51",
2450 "f52", "f53", "f54", "f55", "f56", "f57",
2451 "f58", "f59", "f60", "f61", "f62", "f63"
2453 return efpr_regnames
[regno
- tdep
->ppc_efpr0_regnum
];
2456 return tdesc_register_name (gdbarch
, regno
);
2459 /* Return the GDB type object for the "standard" data type of data in
2462 static struct type
*
2463 rs6000_pseudo_register_type (struct gdbarch
*gdbarch
, int regnum
)
2465 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2467 /* These are the only pseudo-registers we support. */
2468 gdb_assert (IS_SPE_PSEUDOREG (tdep
, regnum
)
2469 || IS_DFP_PSEUDOREG (tdep
, regnum
)
2470 || IS_VSX_PSEUDOREG (tdep
, regnum
)
2471 || IS_EFP_PSEUDOREG (tdep
, regnum
));
2473 /* These are the e500 pseudo-registers. */
2474 if (IS_SPE_PSEUDOREG (tdep
, regnum
))
2475 return rs6000_builtin_type_vec64 (gdbarch
);
2476 else if (IS_DFP_PSEUDOREG (tdep
, regnum
))
2477 /* PPC decimal128 pseudo-registers. */
2478 return builtin_type (gdbarch
)->builtin_declong
;
2479 else if (IS_VSX_PSEUDOREG (tdep
, regnum
))
2480 /* POWER7 VSX pseudo-registers. */
2481 return rs6000_builtin_type_vec128 (gdbarch
);
2483 /* POWER7 Extended FP pseudo-registers. */
2484 return builtin_type (gdbarch
)->builtin_double
;
2487 /* Is REGNUM a member of REGGROUP? */
2489 rs6000_pseudo_register_reggroup_p (struct gdbarch
*gdbarch
, int regnum
,
2490 struct reggroup
*group
)
2492 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2494 /* These are the only pseudo-registers we support. */
2495 gdb_assert (IS_SPE_PSEUDOREG (tdep
, regnum
)
2496 || IS_DFP_PSEUDOREG (tdep
, regnum
)
2497 || IS_VSX_PSEUDOREG (tdep
, regnum
)
2498 || IS_EFP_PSEUDOREG (tdep
, regnum
));
2500 /* These are the e500 pseudo-registers or the POWER7 VSX registers. */
2501 if (IS_SPE_PSEUDOREG (tdep
, regnum
) || IS_VSX_PSEUDOREG (tdep
, regnum
))
2502 return group
== all_reggroup
|| group
== vector_reggroup
;
2504 /* PPC decimal128 or Extended FP pseudo-registers. */
2505 return group
== all_reggroup
|| group
== float_reggroup
;
2508 /* The register format for RS/6000 floating point registers is always
2509 double, we need a conversion if the memory format is float. */
2512 rs6000_convert_register_p (struct gdbarch
*gdbarch
, int regnum
,
2515 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2517 return (tdep
->ppc_fp0_regnum
>= 0
2518 && regnum
>= tdep
->ppc_fp0_regnum
2519 && regnum
< tdep
->ppc_fp0_regnum
+ ppc_num_fprs
2520 && TYPE_CODE (type
) == TYPE_CODE_FLT
2521 && TYPE_LENGTH (type
)
2522 != TYPE_LENGTH (builtin_type (gdbarch
)->builtin_double
));
2526 rs6000_register_to_value (struct frame_info
*frame
,
2530 int *optimizedp
, int *unavailablep
)
2532 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
2533 gdb_byte from
[MAX_REGISTER_SIZE
];
2535 gdb_assert (TYPE_CODE (type
) == TYPE_CODE_FLT
);
2537 if (!get_frame_register_bytes (frame
, regnum
, 0,
2538 register_size (gdbarch
, regnum
),
2539 from
, optimizedp
, unavailablep
))
2542 convert_typed_floating (from
, builtin_type (gdbarch
)->builtin_double
,
2544 *optimizedp
= *unavailablep
= 0;
2549 rs6000_value_to_register (struct frame_info
*frame
,
2552 const gdb_byte
*from
)
2554 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
2555 gdb_byte to
[MAX_REGISTER_SIZE
];
2557 gdb_assert (TYPE_CODE (type
) == TYPE_CODE_FLT
);
2559 convert_typed_floating (from
, type
,
2560 to
, builtin_type (gdbarch
)->builtin_double
);
2561 put_frame_register (frame
, regnum
, to
);
2564 /* The type of a function that moves the value of REG between CACHE
2565 or BUF --- in either direction. */
2566 typedef enum register_status (*move_ev_register_func
) (struct regcache
*,
2569 /* Move SPE vector register values between a 64-bit buffer and the two
2570 32-bit raw register halves in a regcache. This function handles
2571 both splitting a 64-bit value into two 32-bit halves, and joining
2572 two halves into a whole 64-bit value, depending on the function
2573 passed as the MOVE argument.
2575 EV_REG must be the number of an SPE evN vector register --- a
2576 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2579 Call MOVE once for each 32-bit half of that register, passing
2580 REGCACHE, the number of the raw register corresponding to that
2581 half, and the address of the appropriate half of BUFFER.
2583 For example, passing 'regcache_raw_read' as the MOVE function will
2584 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2585 'regcache_raw_supply' will supply the contents of BUFFER to the
2586 appropriate pair of raw registers in REGCACHE.
2588 You may need to cast away some 'const' qualifiers when passing
2589 MOVE, since this function can't tell at compile-time which of
2590 REGCACHE or BUFFER is acting as the source of the data. If C had
2591 co-variant type qualifiers, ... */
2593 static enum register_status
2594 e500_move_ev_register (move_ev_register_func move
,
2595 struct regcache
*regcache
, int ev_reg
, void *buffer
)
2597 struct gdbarch
*arch
= get_regcache_arch (regcache
);
2598 struct gdbarch_tdep
*tdep
= gdbarch_tdep (arch
);
2600 gdb_byte
*byte_buffer
= buffer
;
2601 enum register_status status
;
2603 gdb_assert (IS_SPE_PSEUDOREG (tdep
, ev_reg
));
2605 reg_index
= ev_reg
- tdep
->ppc_ev0_regnum
;
2607 if (gdbarch_byte_order (arch
) == BFD_ENDIAN_BIG
)
2609 status
= move (regcache
, tdep
->ppc_ev0_upper_regnum
+ reg_index
,
2611 if (status
== REG_VALID
)
2612 status
= move (regcache
, tdep
->ppc_gp0_regnum
+ reg_index
,
2617 status
= move (regcache
, tdep
->ppc_gp0_regnum
+ reg_index
, byte_buffer
);
2618 if (status
== REG_VALID
)
2619 status
= move (regcache
, tdep
->ppc_ev0_upper_regnum
+ reg_index
,
2626 static enum register_status
2627 do_regcache_raw_read (struct regcache
*regcache
, int regnum
, void *buffer
)
2629 return regcache_raw_read (regcache
, regnum
, buffer
);
2632 static enum register_status
2633 do_regcache_raw_write (struct regcache
*regcache
, int regnum
, void *buffer
)
2635 regcache_raw_write (regcache
, regnum
, buffer
);
2640 static enum register_status
2641 e500_pseudo_register_read (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
2642 int reg_nr
, gdb_byte
*buffer
)
2644 return e500_move_ev_register (do_regcache_raw_read
, regcache
, reg_nr
, buffer
);
2648 e500_pseudo_register_write (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
2649 int reg_nr
, const gdb_byte
*buffer
)
2651 e500_move_ev_register (do_regcache_raw_write
, regcache
,
2652 reg_nr
, (void *) buffer
);
2655 /* Read method for DFP pseudo-registers. */
2656 static enum register_status
2657 dfp_pseudo_register_read (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
2658 int reg_nr
, gdb_byte
*buffer
)
2660 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2661 int reg_index
= reg_nr
- tdep
->ppc_dl0_regnum
;
2662 enum register_status status
;
2664 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
2666 /* Read two FP registers to form a whole dl register. */
2667 status
= regcache_raw_read (regcache
, tdep
->ppc_fp0_regnum
+
2668 2 * reg_index
, buffer
);
2669 if (status
== REG_VALID
)
2670 status
= regcache_raw_read (regcache
, tdep
->ppc_fp0_regnum
+
2671 2 * reg_index
+ 1, buffer
+ 8);
2675 status
= regcache_raw_read (regcache
, tdep
->ppc_fp0_regnum
+
2676 2 * reg_index
+ 1, buffer
);
2677 if (status
== REG_VALID
)
2678 status
= regcache_raw_read (regcache
, tdep
->ppc_fp0_regnum
+
2679 2 * reg_index
, buffer
+ 8);
2685 /* Write method for DFP pseudo-registers. */
2687 dfp_pseudo_register_write (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
2688 int reg_nr
, const gdb_byte
*buffer
)
2690 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2691 int reg_index
= reg_nr
- tdep
->ppc_dl0_regnum
;
2693 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
2695 /* Write each half of the dl register into a separate
2697 regcache_raw_write (regcache
, tdep
->ppc_fp0_regnum
+
2698 2 * reg_index
, buffer
);
2699 regcache_raw_write (regcache
, tdep
->ppc_fp0_regnum
+
2700 2 * reg_index
+ 1, buffer
+ 8);
2704 regcache_raw_write (regcache
, tdep
->ppc_fp0_regnum
+
2705 2 * reg_index
+ 1, buffer
);
2706 regcache_raw_write (regcache
, tdep
->ppc_fp0_regnum
+
2707 2 * reg_index
, buffer
+ 8);
2711 /* Read method for POWER7 VSX pseudo-registers. */
2712 static enum register_status
2713 vsx_pseudo_register_read (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
2714 int reg_nr
, gdb_byte
*buffer
)
2716 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2717 int reg_index
= reg_nr
- tdep
->ppc_vsr0_regnum
;
2718 enum register_status status
;
2720 /* Read the portion that overlaps the VMX registers. */
2722 status
= regcache_raw_read (regcache
, tdep
->ppc_vr0_regnum
+
2723 reg_index
- 32, buffer
);
2725 /* Read the portion that overlaps the FPR registers. */
2726 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
2728 status
= regcache_raw_read (regcache
, tdep
->ppc_fp0_regnum
+
2730 if (status
== REG_VALID
)
2731 status
= regcache_raw_read (regcache
, tdep
->ppc_vsr0_upper_regnum
+
2732 reg_index
, buffer
+ 8);
2736 status
= regcache_raw_read (regcache
, tdep
->ppc_fp0_regnum
+
2737 reg_index
, buffer
+ 8);
2738 if (status
== REG_VALID
)
2739 status
= regcache_raw_read (regcache
, tdep
->ppc_vsr0_upper_regnum
+
2746 /* Write method for POWER7 VSX pseudo-registers. */
2748 vsx_pseudo_register_write (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
2749 int reg_nr
, const gdb_byte
*buffer
)
2751 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2752 int reg_index
= reg_nr
- tdep
->ppc_vsr0_regnum
;
2754 /* Write the portion that overlaps the VMX registers. */
2756 regcache_raw_write (regcache
, tdep
->ppc_vr0_regnum
+
2757 reg_index
- 32, buffer
);
2759 /* Write the portion that overlaps the FPR registers. */
2760 if (gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
)
2762 regcache_raw_write (regcache
, tdep
->ppc_fp0_regnum
+
2764 regcache_raw_write (regcache
, tdep
->ppc_vsr0_upper_regnum
+
2765 reg_index
, buffer
+ 8);
2769 regcache_raw_write (regcache
, tdep
->ppc_fp0_regnum
+
2770 reg_index
, buffer
+ 8);
2771 regcache_raw_write (regcache
, tdep
->ppc_vsr0_upper_regnum
+
2776 /* Read method for POWER7 Extended FP pseudo-registers. */
2777 static enum register_status
2778 efpr_pseudo_register_read (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
2779 int reg_nr
, gdb_byte
*buffer
)
2781 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2782 int reg_index
= reg_nr
- tdep
->ppc_efpr0_regnum
;
2783 int offset
= gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
? 0 : 8;
2785 /* Read the portion that overlaps the VMX register. */
2786 return regcache_raw_read_part (regcache
, tdep
->ppc_vr0_regnum
+ reg_index
,
2787 offset
, register_size (gdbarch
, reg_nr
),
2791 /* Write method for POWER7 Extended FP pseudo-registers. */
2793 efpr_pseudo_register_write (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
2794 int reg_nr
, const gdb_byte
*buffer
)
2796 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2797 int reg_index
= reg_nr
- tdep
->ppc_efpr0_regnum
;
2798 int offset
= gdbarch_byte_order (gdbarch
) == BFD_ENDIAN_BIG
? 0 : 8;
2800 /* Write the portion that overlaps the VMX register. */
2801 regcache_raw_write_part (regcache
, tdep
->ppc_vr0_regnum
+ reg_index
,
2802 offset
, register_size (gdbarch
, reg_nr
),
2806 static enum register_status
2807 rs6000_pseudo_register_read (struct gdbarch
*gdbarch
,
2808 struct regcache
*regcache
,
2809 int reg_nr
, gdb_byte
*buffer
)
2811 struct gdbarch
*regcache_arch
= get_regcache_arch (regcache
);
2812 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2814 gdb_assert (regcache_arch
== gdbarch
);
2816 if (IS_SPE_PSEUDOREG (tdep
, reg_nr
))
2817 return e500_pseudo_register_read (gdbarch
, regcache
, reg_nr
, buffer
);
2818 else if (IS_DFP_PSEUDOREG (tdep
, reg_nr
))
2819 return dfp_pseudo_register_read (gdbarch
, regcache
, reg_nr
, buffer
);
2820 else if (IS_VSX_PSEUDOREG (tdep
, reg_nr
))
2821 return vsx_pseudo_register_read (gdbarch
, regcache
, reg_nr
, buffer
);
2822 else if (IS_EFP_PSEUDOREG (tdep
, reg_nr
))
2823 return efpr_pseudo_register_read (gdbarch
, regcache
, reg_nr
, buffer
);
2825 internal_error (__FILE__
, __LINE__
,
2826 _("rs6000_pseudo_register_read: "
2827 "called on unexpected register '%s' (%d)"),
2828 gdbarch_register_name (gdbarch
, reg_nr
), reg_nr
);
2832 rs6000_pseudo_register_write (struct gdbarch
*gdbarch
,
2833 struct regcache
*regcache
,
2834 int reg_nr
, const gdb_byte
*buffer
)
2836 struct gdbarch
*regcache_arch
= get_regcache_arch (regcache
);
2837 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2839 gdb_assert (regcache_arch
== gdbarch
);
2841 if (IS_SPE_PSEUDOREG (tdep
, reg_nr
))
2842 e500_pseudo_register_write (gdbarch
, regcache
, reg_nr
, buffer
);
2843 else if (IS_DFP_PSEUDOREG (tdep
, reg_nr
))
2844 dfp_pseudo_register_write (gdbarch
, regcache
, reg_nr
, buffer
);
2845 else if (IS_VSX_PSEUDOREG (tdep
, reg_nr
))
2846 vsx_pseudo_register_write (gdbarch
, regcache
, reg_nr
, buffer
);
2847 else if (IS_EFP_PSEUDOREG (tdep
, reg_nr
))
2848 efpr_pseudo_register_write (gdbarch
, regcache
, reg_nr
, buffer
);
2850 internal_error (__FILE__
, __LINE__
,
2851 _("rs6000_pseudo_register_write: "
2852 "called on unexpected register '%s' (%d)"),
2853 gdbarch_register_name (gdbarch
, reg_nr
), reg_nr
);
2856 /* Convert a DBX STABS register number to a GDB register number. */
2858 rs6000_stab_reg_to_regnum (struct gdbarch
*gdbarch
, int num
)
2860 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2862 if (0 <= num
&& num
<= 31)
2863 return tdep
->ppc_gp0_regnum
+ num
;
2864 else if (32 <= num
&& num
<= 63)
2865 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2866 specifies registers the architecture doesn't have? Our
2867 callers don't check the value we return. */
2868 return tdep
->ppc_fp0_regnum
+ (num
- 32);
2869 else if (77 <= num
&& num
<= 108)
2870 return tdep
->ppc_vr0_regnum
+ (num
- 77);
2871 else if (1200 <= num
&& num
< 1200 + 32)
2872 return tdep
->ppc_ev0_upper_regnum
+ (num
- 1200);
2877 return tdep
->ppc_mq_regnum
;
2879 return tdep
->ppc_lr_regnum
;
2881 return tdep
->ppc_ctr_regnum
;
2883 return tdep
->ppc_xer_regnum
;
2885 return tdep
->ppc_vrsave_regnum
;
2887 return tdep
->ppc_vrsave_regnum
- 1; /* vscr */
2889 return tdep
->ppc_acc_regnum
;
2891 return tdep
->ppc_spefscr_regnum
;
2898 /* Convert a Dwarf 2 register number to a GDB register number. */
2900 rs6000_dwarf2_reg_to_regnum (struct gdbarch
*gdbarch
, int num
)
2902 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
2904 if (0 <= num
&& num
<= 31)
2905 return tdep
->ppc_gp0_regnum
+ num
;
2906 else if (32 <= num
&& num
<= 63)
2907 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2908 specifies registers the architecture doesn't have? Our
2909 callers don't check the value we return. */
2910 return tdep
->ppc_fp0_regnum
+ (num
- 32);
2911 else if (1124 <= num
&& num
< 1124 + 32)
2912 return tdep
->ppc_vr0_regnum
+ (num
- 1124);
2913 else if (1200 <= num
&& num
< 1200 + 32)
2914 return tdep
->ppc_ev0_upper_regnum
+ (num
- 1200);
2919 return tdep
->ppc_cr_regnum
;
2921 return tdep
->ppc_vrsave_regnum
- 1; /* vscr */
2923 return tdep
->ppc_acc_regnum
;
2925 return tdep
->ppc_mq_regnum
;
2927 return tdep
->ppc_xer_regnum
;
2929 return tdep
->ppc_lr_regnum
;
2931 return tdep
->ppc_ctr_regnum
;
2933 return tdep
->ppc_vrsave_regnum
;
2935 return tdep
->ppc_spefscr_regnum
;
2941 /* Translate a .eh_frame register to DWARF register, or adjust a
2942 .debug_frame register. */
2945 rs6000_adjust_frame_regnum (struct gdbarch
*gdbarch
, int num
, int eh_frame_p
)
2947 /* GCC releases before 3.4 use GCC internal register numbering in
2948 .debug_frame (and .debug_info, et cetera). The numbering is
2949 different from the standard SysV numbering for everything except
2950 for GPRs and FPRs. We can not detect this problem in most cases
2951 - to get accurate debug info for variables living in lr, ctr, v0,
2952 et cetera, use a newer version of GCC. But we must detect
2953 one important case - lr is in column 65 in .debug_frame output,
2956 GCC 3.4, and the "hammer" branch, have a related problem. They
2957 record lr register saves in .debug_frame as 108, but still record
2958 the return column as 65. We fix that up too.
2960 We can do this because 65 is assigned to fpsr, and GCC never
2961 generates debug info referring to it. To add support for
2962 handwritten debug info that restores fpsr, we would need to add a
2963 producer version check to this. */
2972 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
2973 internal register numbering; translate that to the standard DWARF2
2974 register numbering. */
2975 if (0 <= num
&& num
<= 63) /* r0-r31,fp0-fp31 */
2977 else if (68 <= num
&& num
<= 75) /* cr0-cr8 */
2978 return num
- 68 + 86;
2979 else if (77 <= num
&& num
<= 108) /* vr0-vr31 */
2980 return num
- 77 + 1124;
2992 case 109: /* vrsave */
2994 case 110: /* vscr */
2996 case 111: /* spe_acc */
2998 case 112: /* spefscr */
3006 /* Handling the various POWER/PowerPC variants. */
3008 /* Information about a particular processor variant. */
3012 /* Name of this variant. */
3015 /* English description of the variant. */
3018 /* bfd_arch_info.arch corresponding to variant. */
3019 enum bfd_architecture arch
;
3021 /* bfd_arch_info.mach corresponding to variant. */
3024 /* Target description for this variant. */
3025 struct target_desc
**tdesc
;
3028 static struct variant variants
[] =
3030 {"powerpc", "PowerPC user-level", bfd_arch_powerpc
,
3031 bfd_mach_ppc
, &tdesc_powerpc_altivec32
},
3032 {"power", "POWER user-level", bfd_arch_rs6000
,
3033 bfd_mach_rs6k
, &tdesc_rs6000
},
3034 {"403", "IBM PowerPC 403", bfd_arch_powerpc
,
3035 bfd_mach_ppc_403
, &tdesc_powerpc_403
},
3036 {"405", "IBM PowerPC 405", bfd_arch_powerpc
,
3037 bfd_mach_ppc_405
, &tdesc_powerpc_405
},
3038 {"601", "Motorola PowerPC 601", bfd_arch_powerpc
,
3039 bfd_mach_ppc_601
, &tdesc_powerpc_601
},
3040 {"602", "Motorola PowerPC 602", bfd_arch_powerpc
,
3041 bfd_mach_ppc_602
, &tdesc_powerpc_602
},
3042 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc
,
3043 bfd_mach_ppc_603
, &tdesc_powerpc_603
},
3044 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc
,
3045 604, &tdesc_powerpc_604
},
3046 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc
,
3047 bfd_mach_ppc_403gc
, &tdesc_powerpc_403gc
},
3048 {"505", "Motorola PowerPC 505", bfd_arch_powerpc
,
3049 bfd_mach_ppc_505
, &tdesc_powerpc_505
},
3050 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc
,
3051 bfd_mach_ppc_860
, &tdesc_powerpc_860
},
3052 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc
,
3053 bfd_mach_ppc_750
, &tdesc_powerpc_750
},
3054 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc
,
3055 bfd_mach_ppc_7400
, &tdesc_powerpc_7400
},
3056 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc
,
3057 bfd_mach_ppc_e500
, &tdesc_powerpc_e500
},
3060 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc
,
3061 bfd_mach_ppc64
, &tdesc_powerpc_altivec64
},
3062 {"620", "Motorola PowerPC 620", bfd_arch_powerpc
,
3063 bfd_mach_ppc_620
, &tdesc_powerpc_64
},
3064 {"630", "Motorola PowerPC 630", bfd_arch_powerpc
,
3065 bfd_mach_ppc_630
, &tdesc_powerpc_64
},
3066 {"a35", "PowerPC A35", bfd_arch_powerpc
,
3067 bfd_mach_ppc_a35
, &tdesc_powerpc_64
},
3068 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc
,
3069 bfd_mach_ppc_rs64ii
, &tdesc_powerpc_64
},
3070 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc
,
3071 bfd_mach_ppc_rs64iii
, &tdesc_powerpc_64
},
3073 /* FIXME: I haven't checked the register sets of the following. */
3074 {"rs1", "IBM POWER RS1", bfd_arch_rs6000
,
3075 bfd_mach_rs6k_rs1
, &tdesc_rs6000
},
3076 {"rsc", "IBM POWER RSC", bfd_arch_rs6000
,
3077 bfd_mach_rs6k_rsc
, &tdesc_rs6000
},
3078 {"rs2", "IBM POWER RS2", bfd_arch_rs6000
,
3079 bfd_mach_rs6k_rs2
, &tdesc_rs6000
},
3084 /* Return the variant corresponding to architecture ARCH and machine number
3085 MACH. If no such variant exists, return null. */
3087 static const struct variant
*
3088 find_variant_by_arch (enum bfd_architecture arch
, unsigned long mach
)
3090 const struct variant
*v
;
3092 for (v
= variants
; v
->name
; v
++)
3093 if (arch
== v
->arch
&& mach
== v
->mach
)
3100 gdb_print_insn_powerpc (bfd_vma memaddr
, disassemble_info
*info
)
3102 if (info
->endian
== BFD_ENDIAN_BIG
)
3103 return print_insn_big_powerpc (memaddr
, info
);
3105 return print_insn_little_powerpc (memaddr
, info
);
3109 rs6000_unwind_pc (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
3111 return frame_unwind_register_unsigned (next_frame
,
3112 gdbarch_pc_regnum (gdbarch
));
3115 static struct frame_id
3116 rs6000_dummy_id (struct gdbarch
*gdbarch
, struct frame_info
*this_frame
)
3118 return frame_id_build (get_frame_register_unsigned
3119 (this_frame
, gdbarch_sp_regnum (gdbarch
)),
3120 get_frame_pc (this_frame
));
3123 struct rs6000_frame_cache
3126 CORE_ADDR initial_sp
;
3127 struct trad_frame_saved_reg
*saved_regs
;
3130 static struct rs6000_frame_cache
*
3131 rs6000_frame_cache (struct frame_info
*this_frame
, void **this_cache
)
3133 struct rs6000_frame_cache
*cache
;
3134 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
3135 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3136 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
3137 struct rs6000_framedata fdata
;
3138 int wordsize
= tdep
->wordsize
;
3141 if ((*this_cache
) != NULL
)
3142 return (*this_cache
);
3143 cache
= FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache
);
3144 (*this_cache
) = cache
;
3145 cache
->saved_regs
= trad_frame_alloc_saved_regs (this_frame
);
3147 func
= get_frame_func (this_frame
);
3148 pc
= get_frame_pc (this_frame
);
3149 skip_prologue (gdbarch
, func
, pc
, &fdata
);
3151 /* Figure out the parent's stack pointer. */
3153 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3154 address of the current frame. Things might be easier if the
3155 ->frame pointed to the outer-most address of the frame. In
3156 the mean time, the address of the prev frame is used as the
3157 base address of this frame. */
3158 cache
->base
= get_frame_register_unsigned
3159 (this_frame
, gdbarch_sp_regnum (gdbarch
));
3161 /* If the function appears to be frameless, check a couple of likely
3162 indicators that we have simply failed to find the frame setup.
3163 Two common cases of this are missing symbols (i.e.
3164 get_frame_func returns the wrong address or 0), and assembly
3165 stubs which have a fast exit path but set up a frame on the slow
3168 If the LR appears to return to this function, then presume that
3169 we have an ABI compliant frame that we failed to find. */
3170 if (fdata
.frameless
&& fdata
.lr_offset
== 0)
3175 saved_lr
= get_frame_register_unsigned (this_frame
, tdep
->ppc_lr_regnum
);
3176 if (func
== 0 && saved_lr
== pc
)
3180 CORE_ADDR saved_func
= get_pc_function_start (saved_lr
);
3181 if (func
== saved_func
)
3187 fdata
.frameless
= 0;
3188 fdata
.lr_offset
= tdep
->lr_frame_offset
;
3192 if (!fdata
.frameless
)
3193 /* Frameless really means stackless. */
3195 = read_memory_unsigned_integer (cache
->base
, wordsize
, byte_order
);
3197 trad_frame_set_value (cache
->saved_regs
,
3198 gdbarch_sp_regnum (gdbarch
), cache
->base
);
3200 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3201 All fpr's from saved_fpr to fp31 are saved. */
3203 if (fdata
.saved_fpr
>= 0)
3206 CORE_ADDR fpr_addr
= cache
->base
+ fdata
.fpr_offset
;
3208 /* If skip_prologue says floating-point registers were saved,
3209 but the current architecture has no floating-point registers,
3210 then that's strange. But we have no indices to even record
3211 the addresses under, so we just ignore it. */
3212 if (ppc_floating_point_unit_p (gdbarch
))
3213 for (i
= fdata
.saved_fpr
; i
< ppc_num_fprs
; i
++)
3215 cache
->saved_regs
[tdep
->ppc_fp0_regnum
+ i
].addr
= fpr_addr
;
3220 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3221 All gpr's from saved_gpr to gpr31 are saved (except during the
3224 if (fdata
.saved_gpr
>= 0)
3227 CORE_ADDR gpr_addr
= cache
->base
+ fdata
.gpr_offset
;
3228 for (i
= fdata
.saved_gpr
; i
< ppc_num_gprs
; i
++)
3230 if (fdata
.gpr_mask
& (1U << i
))
3231 cache
->saved_regs
[tdep
->ppc_gp0_regnum
+ i
].addr
= gpr_addr
;
3232 gpr_addr
+= wordsize
;
3236 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3237 All vr's from saved_vr to vr31 are saved. */
3238 if (tdep
->ppc_vr0_regnum
!= -1 && tdep
->ppc_vrsave_regnum
!= -1)
3240 if (fdata
.saved_vr
>= 0)
3243 CORE_ADDR vr_addr
= cache
->base
+ fdata
.vr_offset
;
3244 for (i
= fdata
.saved_vr
; i
< 32; i
++)
3246 cache
->saved_regs
[tdep
->ppc_vr0_regnum
+ i
].addr
= vr_addr
;
3247 vr_addr
+= register_size (gdbarch
, tdep
->ppc_vr0_regnum
);
3252 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3253 All vr's from saved_ev to ev31 are saved. ????? */
3254 if (tdep
->ppc_ev0_regnum
!= -1)
3256 if (fdata
.saved_ev
>= 0)
3259 CORE_ADDR ev_addr
= cache
->base
+ fdata
.ev_offset
;
3260 CORE_ADDR off
= (byte_order
== BFD_ENDIAN_BIG
? 4 : 0);
3262 for (i
= fdata
.saved_ev
; i
< ppc_num_gprs
; i
++)
3264 cache
->saved_regs
[tdep
->ppc_ev0_regnum
+ i
].addr
= ev_addr
;
3265 cache
->saved_regs
[tdep
->ppc_gp0_regnum
+ i
].addr
= ev_addr
+ off
;
3266 ev_addr
+= register_size (gdbarch
, tdep
->ppc_ev0_regnum
);
3271 /* If != 0, fdata.cr_offset is the offset from the frame that
3273 if (fdata
.cr_offset
!= 0)
3274 cache
->saved_regs
[tdep
->ppc_cr_regnum
].addr
3275 = cache
->base
+ fdata
.cr_offset
;
3277 /* If != 0, fdata.lr_offset is the offset from the frame that
3279 if (fdata
.lr_offset
!= 0)
3280 cache
->saved_regs
[tdep
->ppc_lr_regnum
].addr
3281 = cache
->base
+ fdata
.lr_offset
;
3282 else if (fdata
.lr_register
!= -1)
3283 cache
->saved_regs
[tdep
->ppc_lr_regnum
].realreg
= fdata
.lr_register
;
3284 /* The PC is found in the link register. */
3285 cache
->saved_regs
[gdbarch_pc_regnum (gdbarch
)] =
3286 cache
->saved_regs
[tdep
->ppc_lr_regnum
];
3288 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3289 holds the VRSAVE. */
3290 if (fdata
.vrsave_offset
!= 0)
3291 cache
->saved_regs
[tdep
->ppc_vrsave_regnum
].addr
3292 = cache
->base
+ fdata
.vrsave_offset
;
3294 if (fdata
.alloca_reg
< 0)
3295 /* If no alloca register used, then fi->frame is the value of the
3296 %sp for this frame, and it is good enough. */
3298 = get_frame_register_unsigned (this_frame
, gdbarch_sp_regnum (gdbarch
));
3301 = get_frame_register_unsigned (this_frame
, fdata
.alloca_reg
);
3307 rs6000_frame_this_id (struct frame_info
*this_frame
, void **this_cache
,
3308 struct frame_id
*this_id
)
3310 struct rs6000_frame_cache
*info
= rs6000_frame_cache (this_frame
,
3312 /* This marks the outermost frame. */
3313 if (info
->base
== 0)
3316 (*this_id
) = frame_id_build (info
->base
, get_frame_func (this_frame
));
3319 static struct value
*
3320 rs6000_frame_prev_register (struct frame_info
*this_frame
,
3321 void **this_cache
, int regnum
)
3323 struct rs6000_frame_cache
*info
= rs6000_frame_cache (this_frame
,
3325 return trad_frame_get_prev_register (this_frame
, info
->saved_regs
, regnum
);
3328 static const struct frame_unwind rs6000_frame_unwind
=
3331 default_frame_unwind_stop_reason
,
3332 rs6000_frame_this_id
,
3333 rs6000_frame_prev_register
,
3335 default_frame_sniffer
3340 rs6000_frame_base_address (struct frame_info
*this_frame
, void **this_cache
)
3342 struct rs6000_frame_cache
*info
= rs6000_frame_cache (this_frame
,
3344 return info
->initial_sp
;
3347 static const struct frame_base rs6000_frame_base
= {
3348 &rs6000_frame_unwind
,
3349 rs6000_frame_base_address
,
3350 rs6000_frame_base_address
,
3351 rs6000_frame_base_address
3354 static const struct frame_base
*
3355 rs6000_frame_base_sniffer (struct frame_info
*this_frame
)
3357 return &rs6000_frame_base
;
3360 /* DWARF-2 frame support. Used to handle the detection of
3361 clobbered registers during function calls. */
3364 ppc_dwarf2_frame_init_reg (struct gdbarch
*gdbarch
, int regnum
,
3365 struct dwarf2_frame_state_reg
*reg
,
3366 struct frame_info
*this_frame
)
3368 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
3370 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3371 non-volatile registers. We will use the same code for both. */
3373 /* Call-saved GP registers. */
3374 if ((regnum
>= tdep
->ppc_gp0_regnum
+ 14
3375 && regnum
<= tdep
->ppc_gp0_regnum
+ 31)
3376 || (regnum
== tdep
->ppc_gp0_regnum
+ 1))
3377 reg
->how
= DWARF2_FRAME_REG_SAME_VALUE
;
3379 /* Call-clobbered GP registers. */
3380 if ((regnum
>= tdep
->ppc_gp0_regnum
+ 3
3381 && regnum
<= tdep
->ppc_gp0_regnum
+ 12)
3382 || (regnum
== tdep
->ppc_gp0_regnum
))
3383 reg
->how
= DWARF2_FRAME_REG_UNDEFINED
;
3385 /* Deal with FP registers, if supported. */
3386 if (tdep
->ppc_fp0_regnum
>= 0)
3388 /* Call-saved FP registers. */
3389 if ((regnum
>= tdep
->ppc_fp0_regnum
+ 14
3390 && regnum
<= tdep
->ppc_fp0_regnum
+ 31))
3391 reg
->how
= DWARF2_FRAME_REG_SAME_VALUE
;
3393 /* Call-clobbered FP registers. */
3394 if ((regnum
>= tdep
->ppc_fp0_regnum
3395 && regnum
<= tdep
->ppc_fp0_regnum
+ 13))
3396 reg
->how
= DWARF2_FRAME_REG_UNDEFINED
;
3399 /* Deal with ALTIVEC registers, if supported. */
3400 if (tdep
->ppc_vr0_regnum
> 0 && tdep
->ppc_vrsave_regnum
> 0)
3402 /* Call-saved Altivec registers. */
3403 if ((regnum
>= tdep
->ppc_vr0_regnum
+ 20
3404 && regnum
<= tdep
->ppc_vr0_regnum
+ 31)
3405 || regnum
== tdep
->ppc_vrsave_regnum
)
3406 reg
->how
= DWARF2_FRAME_REG_SAME_VALUE
;
3408 /* Call-clobbered Altivec registers. */
3409 if ((regnum
>= tdep
->ppc_vr0_regnum
3410 && regnum
<= tdep
->ppc_vr0_regnum
+ 19))
3411 reg
->how
= DWARF2_FRAME_REG_UNDEFINED
;
3414 /* Handle PC register and Stack Pointer correctly. */
3415 if (regnum
== gdbarch_pc_regnum (gdbarch
))
3416 reg
->how
= DWARF2_FRAME_REG_RA
;
3417 else if (regnum
== gdbarch_sp_regnum (gdbarch
))
3418 reg
->how
= DWARF2_FRAME_REG_CFA
;
3422 /* Return true if a .gnu_attributes section exists in BFD and it
3423 indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
3424 section exists in BFD and it indicates that SPE extensions are in
3425 use. Check the .gnu.attributes section first, as the binary might be
3426 compiled for SPE, but not actually using SPE instructions. */
3429 bfd_uses_spe_extensions (bfd
*abfd
)
3432 gdb_byte
*contents
= NULL
;
3442 /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
3443 could be using the SPE vector abi without actually using any spe
3444 bits whatsoever. But it's close enough for now. */
3445 vector_abi
= bfd_elf_get_obj_attr_int (abfd
, OBJ_ATTR_GNU
,
3446 Tag_GNU_Power_ABI_Vector
);
3447 if (vector_abi
== 3)
3451 sect
= bfd_get_section_by_name (abfd
, ".PPC.EMB.apuinfo");
3455 size
= bfd_get_section_size (sect
);
3456 contents
= xmalloc (size
);
3457 if (!bfd_get_section_contents (abfd
, sect
, contents
, 0, size
))
3463 /* Parse the .PPC.EMB.apuinfo section. The layout is as follows:
3469 char name[name_len rounded up to 4-byte alignment];
3470 char data[data_len];
3473 Technically, there's only supposed to be one such structure in a
3474 given apuinfo section, but the linker is not always vigilant about
3475 merging apuinfo sections from input files. Just go ahead and parse
3476 them all, exiting early when we discover the binary uses SPE
3479 It's not specified in what endianness the information in this
3480 section is stored. Assume that it's the endianness of the BFD. */
3484 unsigned int name_len
;
3485 unsigned int data_len
;
3488 /* If we can't read the first three fields, we're done. */
3492 name_len
= bfd_get_32 (abfd
, ptr
);
3493 name_len
= (name_len
+ 3) & ~3U; /* Round to 4 bytes. */
3494 data_len
= bfd_get_32 (abfd
, ptr
+ 4);
3495 type
= bfd_get_32 (abfd
, ptr
+ 8);
3498 /* The name must be "APUinfo\0". */
3500 && strcmp ((const char *) ptr
, "APUinfo") != 0)
3504 /* The type must be 2. */
3508 /* The data is stored as a series of uint32. The upper half of
3509 each uint32 indicates the particular APU used and the lower
3510 half indicates the revision of that APU. We just care about
3513 /* Not 4-byte quantities. */
3519 unsigned int apuinfo
= bfd_get_32 (abfd
, ptr
);
3520 unsigned int apu
= apuinfo
>> 16;
3524 /* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept
3526 if (apu
== 0x100 || apu
== 0x101)
3541 /* Initialize the current architecture based on INFO. If possible, re-use an
3542 architecture from ARCHES, which is a list of architectures already created
3543 during this debugging session.
3545 Called e.g. at program startup, when reading a core file, and when reading
3548 static struct gdbarch
*
3549 rs6000_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
3551 struct gdbarch
*gdbarch
;
3552 struct gdbarch_tdep
*tdep
;
3553 int wordsize
, from_xcoff_exec
, from_elf_exec
;
3554 enum bfd_architecture arch
;
3557 enum auto_boolean soft_float_flag
= powerpc_soft_float_global
;
3559 enum powerpc_vector_abi vector_abi
= powerpc_vector_abi_global
;
3560 enum powerpc_elf_abi elf_abi
= POWERPC_ELF_AUTO
;
3561 int have_fpu
= 1, have_spe
= 0, have_mq
= 0, have_altivec
= 0, have_dfp
= 0,
3563 int tdesc_wordsize
= -1;
3564 const struct target_desc
*tdesc
= info
.target_desc
;
3565 struct tdesc_arch_data
*tdesc_data
= NULL
;
3566 int num_pseudoregs
= 0;
3569 /* INFO may refer to a binary that is not of the PowerPC architecture,
3570 e.g. when debugging a stand-alone SPE executable on a Cell/B.E. system.
3571 In this case, we must not attempt to infer properties of the (PowerPC
3572 side) of the target system from properties of that executable. Trust
3573 the target description instead. */
3575 && bfd_get_arch (info
.abfd
) != bfd_arch_powerpc
3576 && bfd_get_arch (info
.abfd
) != bfd_arch_rs6000
)
3579 from_xcoff_exec
= info
.abfd
&& info
.abfd
->format
== bfd_object
&&
3580 bfd_get_flavour (info
.abfd
) == bfd_target_xcoff_flavour
;
3582 from_elf_exec
= info
.abfd
&& info
.abfd
->format
== bfd_object
&&
3583 bfd_get_flavour (info
.abfd
) == bfd_target_elf_flavour
;
3585 /* Check word size. If INFO is from a binary file, infer it from
3586 that, else choose a likely default. */
3587 if (from_xcoff_exec
)
3589 if (bfd_xcoff_is_xcoff64 (info
.abfd
))
3594 else if (from_elf_exec
)
3596 if (elf_elfheader (info
.abfd
)->e_ident
[EI_CLASS
] == ELFCLASS64
)
3601 else if (tdesc_has_registers (tdesc
))
3605 if (info
.bfd_arch_info
!= NULL
&& info
.bfd_arch_info
->bits_per_word
!= 0)
3606 wordsize
= info
.bfd_arch_info
->bits_per_word
/
3607 info
.bfd_arch_info
->bits_per_byte
;
3612 /* Get the architecture and machine from the BFD. */
3613 arch
= info
.bfd_arch_info
->arch
;
3614 mach
= info
.bfd_arch_info
->mach
;
3616 /* For e500 executables, the apuinfo section is of help here. Such
3617 section contains the identifier and revision number of each
3618 Application-specific Processing Unit that is present on the
3619 chip. The content of the section is determined by the assembler
3620 which looks at each instruction and determines which unit (and
3621 which version of it) can execute it. Grovel through the section
3622 looking for relevant e500 APUs. */
3624 if (bfd_uses_spe_extensions (info
.abfd
))
3626 arch
= info
.bfd_arch_info
->arch
;
3627 mach
= bfd_mach_ppc_e500
;
3628 bfd_default_set_arch_mach (&abfd
, arch
, mach
);
3629 info
.bfd_arch_info
= bfd_get_arch_info (&abfd
);
3632 /* Find a default target description which describes our register
3633 layout, if we do not already have one. */
3634 if (! tdesc_has_registers (tdesc
))
3636 const struct variant
*v
;
3638 /* Choose variant. */
3639 v
= find_variant_by_arch (arch
, mach
);
3646 gdb_assert (tdesc_has_registers (tdesc
));
3648 /* Check any target description for validity. */
3649 if (tdesc_has_registers (tdesc
))
3651 static const char *const gprs
[] = {
3652 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
3653 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
3654 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
3655 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
3657 const struct tdesc_feature
*feature
;
3659 static const char *const msr_names
[] = { "msr", "ps" };
3660 static const char *const cr_names
[] = { "cr", "cnd" };
3661 static const char *const ctr_names
[] = { "ctr", "cnt" };
3663 feature
= tdesc_find_feature (tdesc
,
3664 "org.gnu.gdb.power.core");
3665 if (feature
== NULL
)
3668 tdesc_data
= tdesc_data_alloc ();
3671 for (i
= 0; i
< ppc_num_gprs
; i
++)
3672 valid_p
&= tdesc_numbered_register (feature
, tdesc_data
, i
, gprs
[i
]);
3673 valid_p
&= tdesc_numbered_register (feature
, tdesc_data
, PPC_PC_REGNUM
,
3675 valid_p
&= tdesc_numbered_register (feature
, tdesc_data
, PPC_LR_REGNUM
,
3677 valid_p
&= tdesc_numbered_register (feature
, tdesc_data
, PPC_XER_REGNUM
,
3680 /* Allow alternate names for these registers, to accomodate GDB's
3682 valid_p
&= tdesc_numbered_register_choices (feature
, tdesc_data
,
3683 PPC_MSR_REGNUM
, msr_names
);
3684 valid_p
&= tdesc_numbered_register_choices (feature
, tdesc_data
,
3685 PPC_CR_REGNUM
, cr_names
);
3686 valid_p
&= tdesc_numbered_register_choices (feature
, tdesc_data
,
3687 PPC_CTR_REGNUM
, ctr_names
);
3691 tdesc_data_cleanup (tdesc_data
);
3695 have_mq
= tdesc_numbered_register (feature
, tdesc_data
, PPC_MQ_REGNUM
,
3698 tdesc_wordsize
= tdesc_register_size (feature
, "pc") / 8;
3700 wordsize
= tdesc_wordsize
;
3702 feature
= tdesc_find_feature (tdesc
,
3703 "org.gnu.gdb.power.fpu");
3704 if (feature
!= NULL
)
3706 static const char *const fprs
[] = {
3707 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
3708 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
3709 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
3710 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
3713 for (i
= 0; i
< ppc_num_fprs
; i
++)
3714 valid_p
&= tdesc_numbered_register (feature
, tdesc_data
,
3715 PPC_F0_REGNUM
+ i
, fprs
[i
]);
3716 valid_p
&= tdesc_numbered_register (feature
, tdesc_data
,
3717 PPC_FPSCR_REGNUM
, "fpscr");
3721 tdesc_data_cleanup (tdesc_data
);
3729 /* The DFP pseudo-registers will be available when there are floating
3731 have_dfp
= have_fpu
;
3733 feature
= tdesc_find_feature (tdesc
,
3734 "org.gnu.gdb.power.altivec");
3735 if (feature
!= NULL
)
3737 static const char *const vector_regs
[] = {
3738 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
3739 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
3740 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
3741 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
3745 for (i
= 0; i
< ppc_num_gprs
; i
++)
3746 valid_p
&= tdesc_numbered_register (feature
, tdesc_data
,
3749 valid_p
&= tdesc_numbered_register (feature
, tdesc_data
,
3750 PPC_VSCR_REGNUM
, "vscr");
3751 valid_p
&= tdesc_numbered_register (feature
, tdesc_data
,
3752 PPC_VRSAVE_REGNUM
, "vrsave");
3754 if (have_spe
|| !valid_p
)
3756 tdesc_data_cleanup (tdesc_data
);
3764 /* Check for POWER7 VSX registers support. */
3765 feature
= tdesc_find_feature (tdesc
,
3766 "org.gnu.gdb.power.vsx");
3768 if (feature
!= NULL
)
3770 static const char *const vsx_regs
[] = {
3771 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
3772 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
3773 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
3774 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
3775 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
3781 for (i
= 0; i
< ppc_num_vshrs
; i
++)
3782 valid_p
&= tdesc_numbered_register (feature
, tdesc_data
,
3783 PPC_VSR0_UPPER_REGNUM
+ i
,
3787 tdesc_data_cleanup (tdesc_data
);
3796 /* On machines supporting the SPE APU, the general-purpose registers
3797 are 64 bits long. There are SIMD vector instructions to treat them
3798 as pairs of floats, but the rest of the instruction set treats them
3799 as 32-bit registers, and only operates on their lower halves.
3801 In the GDB regcache, we treat their high and low halves as separate
3802 registers. The low halves we present as the general-purpose
3803 registers, and then we have pseudo-registers that stitch together
3804 the upper and lower halves and present them as pseudo-registers.
3806 Thus, the target description is expected to supply the upper
3807 halves separately. */
3809 feature
= tdesc_find_feature (tdesc
,
3810 "org.gnu.gdb.power.spe");
3811 if (feature
!= NULL
)
3813 static const char *const upper_spe
[] = {
3814 "ev0h", "ev1h", "ev2h", "ev3h",
3815 "ev4h", "ev5h", "ev6h", "ev7h",
3816 "ev8h", "ev9h", "ev10h", "ev11h",
3817 "ev12h", "ev13h", "ev14h", "ev15h",
3818 "ev16h", "ev17h", "ev18h", "ev19h",
3819 "ev20h", "ev21h", "ev22h", "ev23h",
3820 "ev24h", "ev25h", "ev26h", "ev27h",
3821 "ev28h", "ev29h", "ev30h", "ev31h"
3825 for (i
= 0; i
< ppc_num_gprs
; i
++)
3826 valid_p
&= tdesc_numbered_register (feature
, tdesc_data
,
3827 PPC_SPE_UPPER_GP0_REGNUM
+ i
,
3829 valid_p
&= tdesc_numbered_register (feature
, tdesc_data
,
3830 PPC_SPE_ACC_REGNUM
, "acc");
3831 valid_p
&= tdesc_numbered_register (feature
, tdesc_data
,
3832 PPC_SPE_FSCR_REGNUM
, "spefscr");
3834 if (have_mq
|| have_fpu
|| !valid_p
)
3836 tdesc_data_cleanup (tdesc_data
);
3845 /* If we have a 64-bit binary on a 32-bit target, complain. Also
3846 complain for a 32-bit binary on a 64-bit target; we do not yet
3847 support that. For instance, the 32-bit ABI routines expect
3850 As long as there isn't an explicit target description, we'll
3851 choose one based on the BFD architecture and get a word size
3852 matching the binary (probably powerpc:common or
3853 powerpc:common64). So there is only trouble if a 64-bit target
3854 supplies a 64-bit description while debugging a 32-bit
3856 if (tdesc_wordsize
!= -1 && tdesc_wordsize
!= wordsize
)
3858 tdesc_data_cleanup (tdesc_data
);
3865 switch (elf_elfheader (info
.abfd
)->e_flags
& EF_PPC64_ABI
)
3868 elf_abi
= POWERPC_ELF_V1
;
3871 elf_abi
= POWERPC_ELF_V2
;
3878 if (soft_float_flag
== AUTO_BOOLEAN_AUTO
&& from_elf_exec
)
3880 switch (bfd_elf_get_obj_attr_int (info
.abfd
, OBJ_ATTR_GNU
,
3881 Tag_GNU_Power_ABI_FP
))
3884 soft_float_flag
= AUTO_BOOLEAN_FALSE
;
3887 soft_float_flag
= AUTO_BOOLEAN_TRUE
;
3894 if (vector_abi
== POWERPC_VEC_AUTO
&& from_elf_exec
)
3896 switch (bfd_elf_get_obj_attr_int (info
.abfd
, OBJ_ATTR_GNU
,
3897 Tag_GNU_Power_ABI_Vector
))
3900 vector_abi
= POWERPC_VEC_GENERIC
;
3903 vector_abi
= POWERPC_VEC_ALTIVEC
;
3906 vector_abi
= POWERPC_VEC_SPE
;
3914 /* At this point, the only supported ELF-based 64-bit little-endian
3915 operating system is GNU/Linux, and this uses the ELFv2 ABI by
3916 default. All other supported ELF-based operating systems use the
3917 ELFv1 ABI by default. Therefore, if the ABI marker is missing,
3918 e.g. because we run a legacy binary, or have attached to a process
3919 and have not found any associated binary file, set the default
3920 according to this heuristic. */
3921 if (elf_abi
== POWERPC_ELF_AUTO
)
3923 if (wordsize
== 8 && info
.byte_order
== BFD_ENDIAN_LITTLE
)
3924 elf_abi
= POWERPC_ELF_V2
;
3926 elf_abi
= POWERPC_ELF_V1
;
3929 if (soft_float_flag
== AUTO_BOOLEAN_TRUE
)
3931 else if (soft_float_flag
== AUTO_BOOLEAN_FALSE
)
3934 soft_float
= !have_fpu
;
3936 /* If we have a hard float binary or setting but no floating point
3937 registers, downgrade to soft float anyway. We're still somewhat
3938 useful in this scenario. */
3939 if (!soft_float
&& !have_fpu
)
3942 /* Similarly for vector registers. */
3943 if (vector_abi
== POWERPC_VEC_ALTIVEC
&& !have_altivec
)
3944 vector_abi
= POWERPC_VEC_GENERIC
;
3946 if (vector_abi
== POWERPC_VEC_SPE
&& !have_spe
)
3947 vector_abi
= POWERPC_VEC_GENERIC
;
3949 if (vector_abi
== POWERPC_VEC_AUTO
)
3952 vector_abi
= POWERPC_VEC_ALTIVEC
;
3954 vector_abi
= POWERPC_VEC_SPE
;
3956 vector_abi
= POWERPC_VEC_GENERIC
;
3959 /* Do not limit the vector ABI based on available hardware, since we
3960 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
3962 /* Find a candidate among extant architectures. */
3963 for (arches
= gdbarch_list_lookup_by_info (arches
, &info
);
3965 arches
= gdbarch_list_lookup_by_info (arches
->next
, &info
))
3967 /* Word size in the various PowerPC bfd_arch_info structs isn't
3968 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
3969 separate word size check. */
3970 tdep
= gdbarch_tdep (arches
->gdbarch
);
3971 if (tdep
&& tdep
->elf_abi
!= elf_abi
)
3973 if (tdep
&& tdep
->soft_float
!= soft_float
)
3975 if (tdep
&& tdep
->vector_abi
!= vector_abi
)
3977 if (tdep
&& tdep
->wordsize
== wordsize
)
3979 if (tdesc_data
!= NULL
)
3980 tdesc_data_cleanup (tdesc_data
);
3981 return arches
->gdbarch
;
3985 /* None found, create a new architecture from INFO, whose bfd_arch_info
3986 validity depends on the source:
3987 - executable useless
3988 - rs6000_host_arch() good
3990 - "set arch" trust blindly
3991 - GDB startup useless but harmless */
3993 tdep
= XCNEW (struct gdbarch_tdep
);
3994 tdep
->wordsize
= wordsize
;
3995 tdep
->elf_abi
= elf_abi
;
3996 tdep
->soft_float
= soft_float
;
3997 tdep
->vector_abi
= vector_abi
;
3999 gdbarch
= gdbarch_alloc (&info
, tdep
);
4001 tdep
->ppc_gp0_regnum
= PPC_R0_REGNUM
;
4002 tdep
->ppc_toc_regnum
= PPC_R0_REGNUM
+ 2;
4003 tdep
->ppc_ps_regnum
= PPC_MSR_REGNUM
;
4004 tdep
->ppc_cr_regnum
= PPC_CR_REGNUM
;
4005 tdep
->ppc_lr_regnum
= PPC_LR_REGNUM
;
4006 tdep
->ppc_ctr_regnum
= PPC_CTR_REGNUM
;
4007 tdep
->ppc_xer_regnum
= PPC_XER_REGNUM
;
4008 tdep
->ppc_mq_regnum
= have_mq
? PPC_MQ_REGNUM
: -1;
4010 tdep
->ppc_fp0_regnum
= have_fpu
? PPC_F0_REGNUM
: -1;
4011 tdep
->ppc_fpscr_regnum
= have_fpu
? PPC_FPSCR_REGNUM
: -1;
4012 tdep
->ppc_vsr0_upper_regnum
= have_vsx
? PPC_VSR0_UPPER_REGNUM
: -1;
4013 tdep
->ppc_vr0_regnum
= have_altivec
? PPC_VR0_REGNUM
: -1;
4014 tdep
->ppc_vrsave_regnum
= have_altivec
? PPC_VRSAVE_REGNUM
: -1;
4015 tdep
->ppc_ev0_upper_regnum
= have_spe
? PPC_SPE_UPPER_GP0_REGNUM
: -1;
4016 tdep
->ppc_acc_regnum
= have_spe
? PPC_SPE_ACC_REGNUM
: -1;
4017 tdep
->ppc_spefscr_regnum
= have_spe
? PPC_SPE_FSCR_REGNUM
: -1;
4019 set_gdbarch_pc_regnum (gdbarch
, PPC_PC_REGNUM
);
4020 set_gdbarch_sp_regnum (gdbarch
, PPC_R0_REGNUM
+ 1);
4021 set_gdbarch_deprecated_fp_regnum (gdbarch
, PPC_R0_REGNUM
+ 1);
4022 set_gdbarch_fp0_regnum (gdbarch
, tdep
->ppc_fp0_regnum
);
4023 set_gdbarch_register_sim_regno (gdbarch
, rs6000_register_sim_regno
);
4025 /* The XML specification for PowerPC sensibly calls the MSR "msr".
4026 GDB traditionally called it "ps", though, so let GDB add an
4028 set_gdbarch_ps_regnum (gdbarch
, tdep
->ppc_ps_regnum
);
4031 set_gdbarch_return_value (gdbarch
, ppc64_sysv_abi_return_value
);
4033 set_gdbarch_return_value (gdbarch
, ppc_sysv_abi_return_value
);
4035 /* Set lr_frame_offset. */
4037 tdep
->lr_frame_offset
= 16;
4039 tdep
->lr_frame_offset
= 4;
4041 if (have_spe
|| have_dfp
|| have_vsx
)
4043 set_gdbarch_pseudo_register_read (gdbarch
, rs6000_pseudo_register_read
);
4044 set_gdbarch_pseudo_register_write (gdbarch
,
4045 rs6000_pseudo_register_write
);
4048 set_gdbarch_have_nonsteppable_watchpoint (gdbarch
, 1);
4050 /* Select instruction printer. */
4051 if (arch
== bfd_arch_rs6000
)
4052 set_gdbarch_print_insn (gdbarch
, print_insn_rs6000
);
4054 set_gdbarch_print_insn (gdbarch
, gdb_print_insn_powerpc
);
4056 set_gdbarch_num_regs (gdbarch
, PPC_NUM_REGS
);
4059 num_pseudoregs
+= 32;
4061 num_pseudoregs
+= 16;
4063 /* Include both VSX and Extended FP registers. */
4064 num_pseudoregs
+= 96;
4066 set_gdbarch_num_pseudo_regs (gdbarch
, num_pseudoregs
);
4068 set_gdbarch_ptr_bit (gdbarch
, wordsize
* TARGET_CHAR_BIT
);
4069 set_gdbarch_short_bit (gdbarch
, 2 * TARGET_CHAR_BIT
);
4070 set_gdbarch_int_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
4071 set_gdbarch_long_bit (gdbarch
, wordsize
* TARGET_CHAR_BIT
);
4072 set_gdbarch_long_long_bit (gdbarch
, 8 * TARGET_CHAR_BIT
);
4073 set_gdbarch_float_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
4074 set_gdbarch_double_bit (gdbarch
, 8 * TARGET_CHAR_BIT
);
4075 set_gdbarch_long_double_bit (gdbarch
, 16 * TARGET_CHAR_BIT
);
4076 set_gdbarch_char_signed (gdbarch
, 0);
4078 set_gdbarch_frame_align (gdbarch
, rs6000_frame_align
);
4081 set_gdbarch_frame_red_zone_size (gdbarch
, 288);
4083 set_gdbarch_convert_register_p (gdbarch
, rs6000_convert_register_p
);
4084 set_gdbarch_register_to_value (gdbarch
, rs6000_register_to_value
);
4085 set_gdbarch_value_to_register (gdbarch
, rs6000_value_to_register
);
4087 set_gdbarch_stab_reg_to_regnum (gdbarch
, rs6000_stab_reg_to_regnum
);
4088 set_gdbarch_dwarf2_reg_to_regnum (gdbarch
, rs6000_dwarf2_reg_to_regnum
);
4091 set_gdbarch_push_dummy_call (gdbarch
, ppc_sysv_abi_push_dummy_call
);
4092 else if (wordsize
== 8)
4093 set_gdbarch_push_dummy_call (gdbarch
, ppc64_sysv_abi_push_dummy_call
);
4095 set_gdbarch_skip_prologue (gdbarch
, rs6000_skip_prologue
);
4096 set_gdbarch_in_function_epilogue_p (gdbarch
, rs6000_in_function_epilogue_p
);
4097 set_gdbarch_skip_main_prologue (gdbarch
, rs6000_skip_main_prologue
);
4099 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
4100 set_gdbarch_breakpoint_from_pc (gdbarch
, rs6000_breakpoint_from_pc
);
4102 /* The value of symbols of type N_SO and N_FUN maybe null when
4104 set_gdbarch_sofun_address_maybe_missing (gdbarch
, 1);
4106 /* Handles single stepping of atomic sequences. */
4107 set_gdbarch_software_single_step (gdbarch
, ppc_deal_with_atomic_sequence
);
4109 /* Not sure on this. FIXMEmgo */
4110 set_gdbarch_frame_args_skip (gdbarch
, 8);
4112 /* Helpers for function argument information. */
4113 set_gdbarch_fetch_pointer_argument (gdbarch
, rs6000_fetch_pointer_argument
);
4116 set_gdbarch_in_solib_return_trampoline
4117 (gdbarch
, rs6000_in_solib_return_trampoline
);
4118 set_gdbarch_skip_trampoline_code (gdbarch
, rs6000_skip_trampoline_code
);
4120 /* Hook in the DWARF CFI frame unwinder. */
4121 dwarf2_append_unwinders (gdbarch
);
4122 dwarf2_frame_set_adjust_regnum (gdbarch
, rs6000_adjust_frame_regnum
);
4124 /* Frame handling. */
4125 dwarf2_frame_set_init_reg (gdbarch
, ppc_dwarf2_frame_init_reg
);
4127 /* Setup displaced stepping. */
4128 set_gdbarch_displaced_step_copy_insn (gdbarch
,
4129 simple_displaced_step_copy_insn
);
4130 set_gdbarch_displaced_step_hw_singlestep (gdbarch
,
4131 ppc_displaced_step_hw_singlestep
);
4132 set_gdbarch_displaced_step_fixup (gdbarch
, ppc_displaced_step_fixup
);
4133 set_gdbarch_displaced_step_free_closure (gdbarch
,
4134 simple_displaced_step_free_closure
);
4135 set_gdbarch_displaced_step_location (gdbarch
,
4136 displaced_step_at_entry_point
);
4138 set_gdbarch_max_insn_length (gdbarch
, PPC_INSN_SIZE
);
4140 /* Hook in ABI-specific overrides, if they have been registered. */
4141 info
.target_desc
= tdesc
;
4142 info
.tdep_info
= (void *) tdesc_data
;
4143 gdbarch_init_osabi (info
, gdbarch
);
4147 case GDB_OSABI_LINUX
:
4148 case GDB_OSABI_NETBSD_AOUT
:
4149 case GDB_OSABI_NETBSD_ELF
:
4150 case GDB_OSABI_UNKNOWN
:
4151 set_gdbarch_unwind_pc (gdbarch
, rs6000_unwind_pc
);
4152 frame_unwind_append_unwinder (gdbarch
, &rs6000_frame_unwind
);
4153 set_gdbarch_dummy_id (gdbarch
, rs6000_dummy_id
);
4154 frame_base_append_sniffer (gdbarch
, rs6000_frame_base_sniffer
);
4157 set_gdbarch_believe_pcc_promotion (gdbarch
, 1);
4159 set_gdbarch_unwind_pc (gdbarch
, rs6000_unwind_pc
);
4160 frame_unwind_append_unwinder (gdbarch
, &rs6000_frame_unwind
);
4161 set_gdbarch_dummy_id (gdbarch
, rs6000_dummy_id
);
4162 frame_base_append_sniffer (gdbarch
, rs6000_frame_base_sniffer
);
4165 set_tdesc_pseudo_register_type (gdbarch
, rs6000_pseudo_register_type
);
4166 set_tdesc_pseudo_register_reggroup_p (gdbarch
,
4167 rs6000_pseudo_register_reggroup_p
);
4168 tdesc_use_registers (gdbarch
, tdesc
, tdesc_data
);
4170 /* Override the normal target description method to make the SPE upper
4171 halves anonymous. */
4172 set_gdbarch_register_name (gdbarch
, rs6000_register_name
);
4174 /* Choose register numbers for all supported pseudo-registers. */
4175 tdep
->ppc_ev0_regnum
= -1;
4176 tdep
->ppc_dl0_regnum
= -1;
4177 tdep
->ppc_vsr0_regnum
= -1;
4178 tdep
->ppc_efpr0_regnum
= -1;
4180 cur_reg
= gdbarch_num_regs (gdbarch
);
4184 tdep
->ppc_ev0_regnum
= cur_reg
;
4189 tdep
->ppc_dl0_regnum
= cur_reg
;
4194 tdep
->ppc_vsr0_regnum
= cur_reg
;
4196 tdep
->ppc_efpr0_regnum
= cur_reg
;
4200 gdb_assert (gdbarch_num_regs (gdbarch
)
4201 + gdbarch_num_pseudo_regs (gdbarch
) == cur_reg
);
4203 /* Register the ravenscar_arch_ops. */
4204 if (mach
== bfd_mach_ppc_e500
)
4205 register_e500_ravenscar_ops (gdbarch
);
4207 register_ppc_ravenscar_ops (gdbarch
);
4213 rs6000_dump_tdep (struct gdbarch
*gdbarch
, struct ui_file
*file
)
4215 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
4220 /* FIXME: Dump gdbarch_tdep. */
4223 /* PowerPC-specific commands. */
4226 set_powerpc_command (char *args
, int from_tty
)
4228 printf_unfiltered (_("\
4229 \"set powerpc\" must be followed by an appropriate subcommand.\n"));
4230 help_list (setpowerpccmdlist
, "set powerpc ", all_commands
, gdb_stdout
);
4234 show_powerpc_command (char *args
, int from_tty
)
4236 cmd_show_list (showpowerpccmdlist
, from_tty
, "");
4240 powerpc_set_soft_float (char *args
, int from_tty
,
4241 struct cmd_list_element
*c
)
4243 struct gdbarch_info info
;
4245 /* Update the architecture. */
4246 gdbarch_info_init (&info
);
4247 if (!gdbarch_update_p (info
))
4248 internal_error (__FILE__
, __LINE__
, _("could not update architecture"));
4252 powerpc_set_vector_abi (char *args
, int from_tty
,
4253 struct cmd_list_element
*c
)
4255 struct gdbarch_info info
;
4256 enum powerpc_vector_abi vector_abi
;
4258 for (vector_abi
= POWERPC_VEC_AUTO
;
4259 vector_abi
!= POWERPC_VEC_LAST
;
4261 if (strcmp (powerpc_vector_abi_string
,
4262 powerpc_vector_strings
[vector_abi
]) == 0)
4264 powerpc_vector_abi_global
= vector_abi
;
4268 if (vector_abi
== POWERPC_VEC_LAST
)
4269 internal_error (__FILE__
, __LINE__
, _("Invalid vector ABI accepted: %s."),
4270 powerpc_vector_abi_string
);
4272 /* Update the architecture. */
4273 gdbarch_info_init (&info
);
4274 if (!gdbarch_update_p (info
))
4275 internal_error (__FILE__
, __LINE__
, _("could not update architecture"));
4278 /* Show the current setting of the exact watchpoints flag. */
4281 show_powerpc_exact_watchpoints (struct ui_file
*file
, int from_tty
,
4282 struct cmd_list_element
*c
,
4285 fprintf_filtered (file
, _("Use of exact watchpoints is %s.\n"), value
);
4288 /* Read a PPC instruction from memory. */
4291 read_insn (struct frame_info
*frame
, CORE_ADDR pc
)
4293 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
4294 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
4296 return read_memory_unsigned_integer (pc
, 4, byte_order
);
4299 /* Return non-zero if the instructions at PC match the series
4300 described in PATTERN, or zero otherwise. PATTERN is an array of
4301 'struct ppc_insn_pattern' objects, terminated by an entry whose
4304 When the match is successful, fill INSN[i] with what PATTERN[i]
4305 matched. If PATTERN[i] is optional, and the instruction wasn't
4306 present, set INSN[i] to 0 (which is not a valid PPC instruction).
4307 INSN should have as many elements as PATTERN. Note that, if
4308 PATTERN contains optional instructions which aren't present in
4309 memory, then INSN will have holes, so INSN[i] isn't necessarily the
4310 i'th instruction in memory. */
4313 ppc_insns_match_pattern (struct frame_info
*frame
, CORE_ADDR pc
,
4314 struct ppc_insn_pattern
*pattern
,
4315 unsigned int *insns
)
4320 for (i
= 0, insn
= 0; pattern
[i
].mask
; i
++)
4323 insn
= read_insn (frame
, pc
);
4325 if ((insn
& pattern
[i
].mask
) == pattern
[i
].data
)
4331 else if (!pattern
[i
].optional
)
4338 /* Return the 'd' field of the d-form instruction INSN, properly
4342 ppc_insn_d_field (unsigned int insn
)
4344 return ((((CORE_ADDR
) insn
& 0xffff) ^ 0x8000) - 0x8000);
4347 /* Return the 'ds' field of the ds-form instruction INSN, with the two
4348 zero bits concatenated at the right, and properly
4352 ppc_insn_ds_field (unsigned int insn
)
4354 return ((((CORE_ADDR
) insn
& 0xfffc) ^ 0x8000) - 0x8000);
4357 /* Initialization code. */
4359 /* -Wmissing-prototypes */
4360 extern initialize_file_ftype _initialize_rs6000_tdep
;
4363 _initialize_rs6000_tdep (void)
4365 gdbarch_register (bfd_arch_rs6000
, rs6000_gdbarch_init
, rs6000_dump_tdep
);
4366 gdbarch_register (bfd_arch_powerpc
, rs6000_gdbarch_init
, rs6000_dump_tdep
);
4368 /* Initialize the standard target descriptions. */
4369 initialize_tdesc_powerpc_32 ();
4370 initialize_tdesc_powerpc_altivec32 ();
4371 initialize_tdesc_powerpc_vsx32 ();
4372 initialize_tdesc_powerpc_403 ();
4373 initialize_tdesc_powerpc_403gc ();
4374 initialize_tdesc_powerpc_405 ();
4375 initialize_tdesc_powerpc_505 ();
4376 initialize_tdesc_powerpc_601 ();
4377 initialize_tdesc_powerpc_602 ();
4378 initialize_tdesc_powerpc_603 ();
4379 initialize_tdesc_powerpc_604 ();
4380 initialize_tdesc_powerpc_64 ();
4381 initialize_tdesc_powerpc_altivec64 ();
4382 initialize_tdesc_powerpc_vsx64 ();
4383 initialize_tdesc_powerpc_7400 ();
4384 initialize_tdesc_powerpc_750 ();
4385 initialize_tdesc_powerpc_860 ();
4386 initialize_tdesc_powerpc_e500 ();
4387 initialize_tdesc_rs6000 ();
4389 /* Add root prefix command for all "set powerpc"/"show powerpc"
4391 add_prefix_cmd ("powerpc", no_class
, set_powerpc_command
,
4392 _("Various PowerPC-specific commands."),
4393 &setpowerpccmdlist
, "set powerpc ", 0, &setlist
);
4395 add_prefix_cmd ("powerpc", no_class
, show_powerpc_command
,
4396 _("Various PowerPC-specific commands."),
4397 &showpowerpccmdlist
, "show powerpc ", 0, &showlist
);
4399 /* Add a command to allow the user to force the ABI. */
4400 add_setshow_auto_boolean_cmd ("soft-float", class_support
,
4401 &powerpc_soft_float_global
,
4402 _("Set whether to use a soft-float ABI."),
4403 _("Show whether to use a soft-float ABI."),
4405 powerpc_set_soft_float
, NULL
,
4406 &setpowerpccmdlist
, &showpowerpccmdlist
);
4408 add_setshow_enum_cmd ("vector-abi", class_support
, powerpc_vector_strings
,
4409 &powerpc_vector_abi_string
,
4410 _("Set the vector ABI."),
4411 _("Show the vector ABI."),
4412 NULL
, powerpc_set_vector_abi
, NULL
,
4413 &setpowerpccmdlist
, &showpowerpccmdlist
);
4415 add_setshow_boolean_cmd ("exact-watchpoints", class_support
,
4416 &target_exact_watchpoints
,
4418 Set whether to use just one debug register for watchpoints on scalars."),
4420 Show whether to use just one debug register for watchpoints on scalars."),
4422 If true, GDB will use only one debug register when watching a variable of\n\
4423 scalar type, thus assuming that the variable is accessed through the address\n\
4424 of its first byte."),
4425 NULL
, show_powerpc_exact_watchpoints
,
4426 &setpowerpccmdlist
, &showpowerpccmdlist
);