41f80d578030e014e737e9a3acf7ae4e1ba0c836
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "infrun.h"
24 #include "symtab.h"
25 #include "target.h"
26 #include "gdbcore.h"
27 #include "gdbcmd.h"
28 #include "objfiles.h"
29 #include "arch-utils.h"
30 #include "regcache.h"
31 #include "regset.h"
32 #include "doublest.h"
33 #include "value.h"
34 #include "parser-defs.h"
35 #include "osabi.h"
36 #include "infcall.h"
37 #include "sim-regno.h"
38 #include "gdb/sim-ppc.h"
39 #include "reggroups.h"
40 #include "dwarf2-frame.h"
41 #include "target-descriptions.h"
42 #include "user-regs.h"
43
44 #include "libbfd.h" /* for bfd_default_set_arch_mach */
45 #include "coff/internal.h" /* for libcoff.h */
46 #include "libcoff.h" /* for xcoff_data */
47 #include "coff/xcoff.h"
48 #include "libxcoff.h"
49
50 #include "elf-bfd.h"
51 #include "elf/ppc.h"
52 #include "elf/ppc64.h"
53
54 #include "solib-svr4.h"
55 #include "ppc-tdep.h"
56 #include "ppc-ravenscar-thread.h"
57
58 #include "dis-asm.h"
59
60 #include "trad-frame.h"
61 #include "frame-unwind.h"
62 #include "frame-base.h"
63
64 #include "features/rs6000/powerpc-32.c"
65 #include "features/rs6000/powerpc-altivec32.c"
66 #include "features/rs6000/powerpc-vsx32.c"
67 #include "features/rs6000/powerpc-403.c"
68 #include "features/rs6000/powerpc-403gc.c"
69 #include "features/rs6000/powerpc-405.c"
70 #include "features/rs6000/powerpc-505.c"
71 #include "features/rs6000/powerpc-601.c"
72 #include "features/rs6000/powerpc-602.c"
73 #include "features/rs6000/powerpc-603.c"
74 #include "features/rs6000/powerpc-604.c"
75 #include "features/rs6000/powerpc-64.c"
76 #include "features/rs6000/powerpc-altivec64.c"
77 #include "features/rs6000/powerpc-vsx64.c"
78 #include "features/rs6000/powerpc-7400.c"
79 #include "features/rs6000/powerpc-750.c"
80 #include "features/rs6000/powerpc-860.c"
81 #include "features/rs6000/powerpc-e500.c"
82 #include "features/rs6000/rs6000.c"
83
84 /* Determine if regnum is an SPE pseudo-register. */
85 #define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
86 && (regnum) >= (tdep)->ppc_ev0_regnum \
87 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
88
89 /* Determine if regnum is a decimal float pseudo-register. */
90 #define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
91 && (regnum) >= (tdep)->ppc_dl0_regnum \
92 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
93
94 /* Determine if regnum is a POWER7 VSX register. */
95 #define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
96 && (regnum) >= (tdep)->ppc_vsr0_regnum \
97 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
98
99 /* Determine if regnum is a POWER7 Extended FP register. */
100 #define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
101 && (regnum) >= (tdep)->ppc_efpr0_regnum \
102 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
103
104 /* The list of available "set powerpc ..." and "show powerpc ..."
105 commands. */
106 static struct cmd_list_element *setpowerpccmdlist = NULL;
107 static struct cmd_list_element *showpowerpccmdlist = NULL;
108
109 static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
110
111 /* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
112 static const char *const powerpc_vector_strings[] =
113 {
114 "auto",
115 "generic",
116 "altivec",
117 "spe",
118 NULL
119 };
120
121 /* A variable that can be configured by the user. */
122 static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
123 static const char *powerpc_vector_abi_string = "auto";
124
125 /* To be used by skip_prologue. */
126
127 struct rs6000_framedata
128 {
129 int offset; /* total size of frame --- the distance
130 by which we decrement sp to allocate
131 the frame */
132 int saved_gpr; /* smallest # of saved gpr */
133 unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
134 int saved_fpr; /* smallest # of saved fpr */
135 int saved_vr; /* smallest # of saved vr */
136 int saved_ev; /* smallest # of saved ev */
137 int alloca_reg; /* alloca register number (frame ptr) */
138 char frameless; /* true if frameless functions. */
139 char nosavedpc; /* true if pc not saved. */
140 char used_bl; /* true if link register clobbered */
141 int gpr_offset; /* offset of saved gprs from prev sp */
142 int fpr_offset; /* offset of saved fprs from prev sp */
143 int vr_offset; /* offset of saved vrs from prev sp */
144 int ev_offset; /* offset of saved evs from prev sp */
145 int lr_offset; /* offset of saved lr */
146 int lr_register; /* register of saved lr, if trustworthy */
147 int cr_offset; /* offset of saved cr */
148 int vrsave_offset; /* offset of saved vrsave register */
149 };
150
151
152 /* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
153 int
154 vsx_register_p (struct gdbarch *gdbarch, int regno)
155 {
156 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
157 if (tdep->ppc_vsr0_regnum < 0)
158 return 0;
159 else
160 return (regno >= tdep->ppc_vsr0_upper_regnum && regno
161 <= tdep->ppc_vsr0_upper_regnum + 31);
162 }
163
164 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
165 int
166 altivec_register_p (struct gdbarch *gdbarch, int regno)
167 {
168 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
169 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
170 return 0;
171 else
172 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
173 }
174
175
176 /* Return true if REGNO is an SPE register, false otherwise. */
177 int
178 spe_register_p (struct gdbarch *gdbarch, int regno)
179 {
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181
182 /* Is it a reference to EV0 -- EV31, and do we have those? */
183 if (IS_SPE_PSEUDOREG (tdep, regno))
184 return 1;
185
186 /* Is it a reference to one of the raw upper GPR halves? */
187 if (tdep->ppc_ev0_upper_regnum >= 0
188 && tdep->ppc_ev0_upper_regnum <= regno
189 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
190 return 1;
191
192 /* Is it a reference to the 64-bit accumulator, and do we have that? */
193 if (tdep->ppc_acc_regnum >= 0
194 && tdep->ppc_acc_regnum == regno)
195 return 1;
196
197 /* Is it a reference to the SPE floating-point status and control register,
198 and do we have that? */
199 if (tdep->ppc_spefscr_regnum >= 0
200 && tdep->ppc_spefscr_regnum == regno)
201 return 1;
202
203 return 0;
204 }
205
206
207 /* Return non-zero if the architecture described by GDBARCH has
208 floating-point registers (f0 --- f31 and fpscr). */
209 int
210 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
211 {
212 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
213
214 return (tdep->ppc_fp0_regnum >= 0
215 && tdep->ppc_fpscr_regnum >= 0);
216 }
217
218 /* Return non-zero if the architecture described by GDBARCH has
219 VSX registers (vsr0 --- vsr63). */
220 static int
221 ppc_vsx_support_p (struct gdbarch *gdbarch)
222 {
223 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
224
225 return tdep->ppc_vsr0_regnum >= 0;
226 }
227
228 /* Return non-zero if the architecture described by GDBARCH has
229 Altivec registers (vr0 --- vr31, vrsave and vscr). */
230 int
231 ppc_altivec_support_p (struct gdbarch *gdbarch)
232 {
233 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
234
235 return (tdep->ppc_vr0_regnum >= 0
236 && tdep->ppc_vrsave_regnum >= 0);
237 }
238
239 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
240 set it to SIM_REGNO.
241
242 This is a helper function for init_sim_regno_table, constructing
243 the table mapping GDB register numbers to sim register numbers; we
244 initialize every element in that table to -1 before we start
245 filling it in. */
246 static void
247 set_sim_regno (int *table, int gdb_regno, int sim_regno)
248 {
249 /* Make sure we don't try to assign any given GDB register a sim
250 register number more than once. */
251 gdb_assert (table[gdb_regno] == -1);
252 table[gdb_regno] = sim_regno;
253 }
254
255
256 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
257 numbers to simulator register numbers, based on the values placed
258 in the ARCH->tdep->ppc_foo_regnum members. */
259 static void
260 init_sim_regno_table (struct gdbarch *arch)
261 {
262 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
263 int total_regs = gdbarch_num_regs (arch);
264 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
265 int i;
266 static const char *const segment_regs[] = {
267 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
268 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
269 };
270
271 /* Presume that all registers not explicitly mentioned below are
272 unavailable from the sim. */
273 for (i = 0; i < total_regs; i++)
274 sim_regno[i] = -1;
275
276 /* General-purpose registers. */
277 for (i = 0; i < ppc_num_gprs; i++)
278 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
279
280 /* Floating-point registers. */
281 if (tdep->ppc_fp0_regnum >= 0)
282 for (i = 0; i < ppc_num_fprs; i++)
283 set_sim_regno (sim_regno,
284 tdep->ppc_fp0_regnum + i,
285 sim_ppc_f0_regnum + i);
286 if (tdep->ppc_fpscr_regnum >= 0)
287 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
288
289 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
290 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
291 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
292
293 /* Segment registers. */
294 for (i = 0; i < ppc_num_srs; i++)
295 {
296 int gdb_regno;
297
298 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
299 if (gdb_regno >= 0)
300 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
301 }
302
303 /* Altivec registers. */
304 if (tdep->ppc_vr0_regnum >= 0)
305 {
306 for (i = 0; i < ppc_num_vrs; i++)
307 set_sim_regno (sim_regno,
308 tdep->ppc_vr0_regnum + i,
309 sim_ppc_vr0_regnum + i);
310
311 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
312 we can treat this more like the other cases. */
313 set_sim_regno (sim_regno,
314 tdep->ppc_vr0_regnum + ppc_num_vrs,
315 sim_ppc_vscr_regnum);
316 }
317 /* vsave is a special-purpose register, so the code below handles it. */
318
319 /* SPE APU (E500) registers. */
320 if (tdep->ppc_ev0_upper_regnum >= 0)
321 for (i = 0; i < ppc_num_gprs; i++)
322 set_sim_regno (sim_regno,
323 tdep->ppc_ev0_upper_regnum + i,
324 sim_ppc_rh0_regnum + i);
325 if (tdep->ppc_acc_regnum >= 0)
326 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
327 /* spefscr is a special-purpose register, so the code below handles it. */
328
329 #ifdef WITH_SIM
330 /* Now handle all special-purpose registers. Verify that they
331 haven't mistakenly been assigned numbers by any of the above
332 code. */
333 for (i = 0; i < sim_ppc_num_sprs; i++)
334 {
335 const char *spr_name = sim_spr_register_name (i);
336 int gdb_regno = -1;
337
338 if (spr_name != NULL)
339 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
340
341 if (gdb_regno != -1)
342 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
343 }
344 #endif
345
346 /* Drop the initialized array into place. */
347 tdep->sim_regno = sim_regno;
348 }
349
350
351 /* Given a GDB register number REG, return the corresponding SIM
352 register number. */
353 static int
354 rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
355 {
356 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
357 int sim_regno;
358
359 if (tdep->sim_regno == NULL)
360 init_sim_regno_table (gdbarch);
361
362 gdb_assert (0 <= reg
363 && reg <= gdbarch_num_regs (gdbarch)
364 + gdbarch_num_pseudo_regs (gdbarch));
365 sim_regno = tdep->sim_regno[reg];
366
367 if (sim_regno >= 0)
368 return sim_regno;
369 else
370 return LEGACY_SIM_REGNO_IGNORE;
371 }
372
373 \f
374
375 /* Register set support functions. */
376
377 /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
378 Write the register to REGCACHE. */
379
380 void
381 ppc_supply_reg (struct regcache *regcache, int regnum,
382 const gdb_byte *regs, size_t offset, int regsize)
383 {
384 if (regnum != -1 && offset != -1)
385 {
386 if (regsize > 4)
387 {
388 struct gdbarch *gdbarch = get_regcache_arch (regcache);
389 int gdb_regsize = register_size (gdbarch, regnum);
390 if (gdb_regsize < regsize
391 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
392 offset += regsize - gdb_regsize;
393 }
394 regcache_raw_supply (regcache, regnum, regs + offset);
395 }
396 }
397
398 /* Read register REGNUM from REGCACHE and store to REGS + OFFSET
399 in a field REGSIZE wide. Zero pad as necessary. */
400
401 void
402 ppc_collect_reg (const struct regcache *regcache, int regnum,
403 gdb_byte *regs, size_t offset, int regsize)
404 {
405 if (regnum != -1 && offset != -1)
406 {
407 if (regsize > 4)
408 {
409 struct gdbarch *gdbarch = get_regcache_arch (regcache);
410 int gdb_regsize = register_size (gdbarch, regnum);
411 if (gdb_regsize < regsize)
412 {
413 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
414 {
415 memset (regs + offset, 0, regsize - gdb_regsize);
416 offset += regsize - gdb_regsize;
417 }
418 else
419 memset (regs + offset + regsize - gdb_regsize, 0,
420 regsize - gdb_regsize);
421 }
422 }
423 regcache_raw_collect (regcache, regnum, regs + offset);
424 }
425 }
426
427 static int
428 ppc_greg_offset (struct gdbarch *gdbarch,
429 struct gdbarch_tdep *tdep,
430 const struct ppc_reg_offsets *offsets,
431 int regnum,
432 int *regsize)
433 {
434 *regsize = offsets->gpr_size;
435 if (regnum >= tdep->ppc_gp0_regnum
436 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
437 return (offsets->r0_offset
438 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
439
440 if (regnum == gdbarch_pc_regnum (gdbarch))
441 return offsets->pc_offset;
442
443 if (regnum == tdep->ppc_ps_regnum)
444 return offsets->ps_offset;
445
446 if (regnum == tdep->ppc_lr_regnum)
447 return offsets->lr_offset;
448
449 if (regnum == tdep->ppc_ctr_regnum)
450 return offsets->ctr_offset;
451
452 *regsize = offsets->xr_size;
453 if (regnum == tdep->ppc_cr_regnum)
454 return offsets->cr_offset;
455
456 if (regnum == tdep->ppc_xer_regnum)
457 return offsets->xer_offset;
458
459 if (regnum == tdep->ppc_mq_regnum)
460 return offsets->mq_offset;
461
462 return -1;
463 }
464
465 static int
466 ppc_fpreg_offset (struct gdbarch_tdep *tdep,
467 const struct ppc_reg_offsets *offsets,
468 int regnum)
469 {
470 if (regnum >= tdep->ppc_fp0_regnum
471 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
472 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
473
474 if (regnum == tdep->ppc_fpscr_regnum)
475 return offsets->fpscr_offset;
476
477 return -1;
478 }
479
480 static int
481 ppc_vrreg_offset (struct gdbarch_tdep *tdep,
482 const struct ppc_reg_offsets *offsets,
483 int regnum)
484 {
485 if (regnum >= tdep->ppc_vr0_regnum
486 && regnum < tdep->ppc_vr0_regnum + ppc_num_vrs)
487 return offsets->vr0_offset + (regnum - tdep->ppc_vr0_regnum) * 16;
488
489 if (regnum == tdep->ppc_vrsave_regnum - 1)
490 return offsets->vscr_offset;
491
492 if (regnum == tdep->ppc_vrsave_regnum)
493 return offsets->vrsave_offset;
494
495 return -1;
496 }
497
498 /* Supply register REGNUM in the general-purpose register set REGSET
499 from the buffer specified by GREGS and LEN to register cache
500 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
501
502 void
503 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
504 int regnum, const void *gregs, size_t len)
505 {
506 struct gdbarch *gdbarch = get_regcache_arch (regcache);
507 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
508 const struct ppc_reg_offsets *offsets = regset->descr;
509 size_t offset;
510 int regsize;
511
512 if (regnum == -1)
513 {
514 int i;
515 int gpr_size = offsets->gpr_size;
516
517 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
518 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
519 i++, offset += gpr_size)
520 ppc_supply_reg (regcache, i, gregs, offset, gpr_size);
521
522 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
523 gregs, offsets->pc_offset, gpr_size);
524 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
525 gregs, offsets->ps_offset, gpr_size);
526 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
527 gregs, offsets->lr_offset, gpr_size);
528 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
529 gregs, offsets->ctr_offset, gpr_size);
530 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
531 gregs, offsets->cr_offset, offsets->xr_size);
532 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
533 gregs, offsets->xer_offset, offsets->xr_size);
534 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
535 gregs, offsets->mq_offset, offsets->xr_size);
536 return;
537 }
538
539 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
540 ppc_supply_reg (regcache, regnum, gregs, offset, regsize);
541 }
542
543 /* Supply register REGNUM in the floating-point register set REGSET
544 from the buffer specified by FPREGS and LEN to register cache
545 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
546
547 void
548 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
549 int regnum, const void *fpregs, size_t len)
550 {
551 struct gdbarch *gdbarch = get_regcache_arch (regcache);
552 struct gdbarch_tdep *tdep;
553 const struct ppc_reg_offsets *offsets;
554 size_t offset;
555
556 if (!ppc_floating_point_unit_p (gdbarch))
557 return;
558
559 tdep = gdbarch_tdep (gdbarch);
560 offsets = regset->descr;
561 if (regnum == -1)
562 {
563 int i;
564
565 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
566 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
567 i++, offset += 8)
568 ppc_supply_reg (regcache, i, fpregs, offset, 8);
569
570 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
571 fpregs, offsets->fpscr_offset, offsets->fpscr_size);
572 return;
573 }
574
575 offset = ppc_fpreg_offset (tdep, offsets, regnum);
576 ppc_supply_reg (regcache, regnum, fpregs, offset,
577 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
578 }
579
580 /* Supply register REGNUM in the VSX register set REGSET
581 from the buffer specified by VSXREGS and LEN to register cache
582 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
583
584 void
585 ppc_supply_vsxregset (const struct regset *regset, struct regcache *regcache,
586 int regnum, const void *vsxregs, size_t len)
587 {
588 struct gdbarch *gdbarch = get_regcache_arch (regcache);
589 struct gdbarch_tdep *tdep;
590
591 if (!ppc_vsx_support_p (gdbarch))
592 return;
593
594 tdep = gdbarch_tdep (gdbarch);
595
596 if (regnum == -1)
597 {
598 int i;
599
600 for (i = tdep->ppc_vsr0_upper_regnum;
601 i < tdep->ppc_vsr0_upper_regnum + 32;
602 i++)
603 ppc_supply_reg (regcache, i, vsxregs, 0, 8);
604
605 return;
606 }
607 else
608 ppc_supply_reg (regcache, regnum, vsxregs, 0, 8);
609 }
610
611 /* Supply register REGNUM in the Altivec register set REGSET
612 from the buffer specified by VRREGS and LEN to register cache
613 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
614
615 void
616 ppc_supply_vrregset (const struct regset *regset, struct regcache *regcache,
617 int regnum, const void *vrregs, size_t len)
618 {
619 struct gdbarch *gdbarch = get_regcache_arch (regcache);
620 struct gdbarch_tdep *tdep;
621 const struct ppc_reg_offsets *offsets;
622 size_t offset;
623
624 if (!ppc_altivec_support_p (gdbarch))
625 return;
626
627 tdep = gdbarch_tdep (gdbarch);
628 offsets = regset->descr;
629 if (regnum == -1)
630 {
631 int i;
632
633 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
634 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
635 i++, offset += 16)
636 ppc_supply_reg (regcache, i, vrregs, offset, 16);
637
638 ppc_supply_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
639 vrregs, offsets->vscr_offset, 4);
640
641 ppc_supply_reg (regcache, tdep->ppc_vrsave_regnum,
642 vrregs, offsets->vrsave_offset, 4);
643 return;
644 }
645
646 offset = ppc_vrreg_offset (tdep, offsets, regnum);
647 if (regnum != tdep->ppc_vrsave_regnum
648 && regnum != tdep->ppc_vrsave_regnum - 1)
649 ppc_supply_reg (regcache, regnum, vrregs, offset, 16);
650 else
651 ppc_supply_reg (regcache, regnum,
652 vrregs, offset, 4);
653 }
654
655 /* Collect register REGNUM in the general-purpose register set
656 REGSET from register cache REGCACHE into the buffer specified by
657 GREGS and LEN. If REGNUM is -1, do this for all registers in
658 REGSET. */
659
660 void
661 ppc_collect_gregset (const struct regset *regset,
662 const struct regcache *regcache,
663 int regnum, void *gregs, size_t len)
664 {
665 struct gdbarch *gdbarch = get_regcache_arch (regcache);
666 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
667 const struct ppc_reg_offsets *offsets = regset->descr;
668 size_t offset;
669 int regsize;
670
671 if (regnum == -1)
672 {
673 int i;
674 int gpr_size = offsets->gpr_size;
675
676 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
677 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
678 i++, offset += gpr_size)
679 ppc_collect_reg (regcache, i, gregs, offset, gpr_size);
680
681 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
682 gregs, offsets->pc_offset, gpr_size);
683 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
684 gregs, offsets->ps_offset, gpr_size);
685 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
686 gregs, offsets->lr_offset, gpr_size);
687 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
688 gregs, offsets->ctr_offset, gpr_size);
689 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
690 gregs, offsets->cr_offset, offsets->xr_size);
691 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
692 gregs, offsets->xer_offset, offsets->xr_size);
693 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
694 gregs, offsets->mq_offset, offsets->xr_size);
695 return;
696 }
697
698 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
699 ppc_collect_reg (regcache, regnum, gregs, offset, regsize);
700 }
701
702 /* Collect register REGNUM in the floating-point register set
703 REGSET from register cache REGCACHE into the buffer specified by
704 FPREGS and LEN. If REGNUM is -1, do this for all registers in
705 REGSET. */
706
707 void
708 ppc_collect_fpregset (const struct regset *regset,
709 const struct regcache *regcache,
710 int regnum, void *fpregs, size_t len)
711 {
712 struct gdbarch *gdbarch = get_regcache_arch (regcache);
713 struct gdbarch_tdep *tdep;
714 const struct ppc_reg_offsets *offsets;
715 size_t offset;
716
717 if (!ppc_floating_point_unit_p (gdbarch))
718 return;
719
720 tdep = gdbarch_tdep (gdbarch);
721 offsets = regset->descr;
722 if (regnum == -1)
723 {
724 int i;
725
726 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
727 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
728 i++, offset += 8)
729 ppc_collect_reg (regcache, i, fpregs, offset, 8);
730
731 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
732 fpregs, offsets->fpscr_offset, offsets->fpscr_size);
733 return;
734 }
735
736 offset = ppc_fpreg_offset (tdep, offsets, regnum);
737 ppc_collect_reg (regcache, regnum, fpregs, offset,
738 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
739 }
740
741 /* Collect register REGNUM in the VSX register set
742 REGSET from register cache REGCACHE into the buffer specified by
743 VSXREGS and LEN. If REGNUM is -1, do this for all registers in
744 REGSET. */
745
746 void
747 ppc_collect_vsxregset (const struct regset *regset,
748 const struct regcache *regcache,
749 int regnum, void *vsxregs, size_t len)
750 {
751 struct gdbarch *gdbarch = get_regcache_arch (regcache);
752 struct gdbarch_tdep *tdep;
753
754 if (!ppc_vsx_support_p (gdbarch))
755 return;
756
757 tdep = gdbarch_tdep (gdbarch);
758
759 if (regnum == -1)
760 {
761 int i;
762
763 for (i = tdep->ppc_vsr0_upper_regnum;
764 i < tdep->ppc_vsr0_upper_regnum + 32;
765 i++)
766 ppc_collect_reg (regcache, i, vsxregs, 0, 8);
767
768 return;
769 }
770 else
771 ppc_collect_reg (regcache, regnum, vsxregs, 0, 8);
772 }
773
774
775 /* Collect register REGNUM in the Altivec register set
776 REGSET from register cache REGCACHE into the buffer specified by
777 VRREGS and LEN. If REGNUM is -1, do this for all registers in
778 REGSET. */
779
780 void
781 ppc_collect_vrregset (const struct regset *regset,
782 const struct regcache *regcache,
783 int regnum, void *vrregs, size_t len)
784 {
785 struct gdbarch *gdbarch = get_regcache_arch (regcache);
786 struct gdbarch_tdep *tdep;
787 const struct ppc_reg_offsets *offsets;
788 size_t offset;
789
790 if (!ppc_altivec_support_p (gdbarch))
791 return;
792
793 tdep = gdbarch_tdep (gdbarch);
794 offsets = regset->descr;
795 if (regnum == -1)
796 {
797 int i;
798
799 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
800 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
801 i++, offset += 16)
802 ppc_collect_reg (regcache, i, vrregs, offset, 16);
803
804 ppc_collect_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
805 vrregs, offsets->vscr_offset, 4);
806
807 ppc_collect_reg (regcache, tdep->ppc_vrsave_regnum,
808 vrregs, offsets->vrsave_offset, 4);
809 return;
810 }
811
812 offset = ppc_vrreg_offset (tdep, offsets, regnum);
813 if (regnum != tdep->ppc_vrsave_regnum
814 && regnum != tdep->ppc_vrsave_regnum - 1)
815 ppc_collect_reg (regcache, regnum, vrregs, offset, 16);
816 else
817 ppc_collect_reg (regcache, regnum,
818 vrregs, offset, 4);
819 }
820 \f
821
822 static int
823 insn_changes_sp_or_jumps (unsigned long insn)
824 {
825 int opcode = (insn >> 26) & 0x03f;
826 int sd = (insn >> 21) & 0x01f;
827 int a = (insn >> 16) & 0x01f;
828 int subcode = (insn >> 1) & 0x3ff;
829
830 /* Changes the stack pointer. */
831
832 /* NOTE: There are many ways to change the value of a given register.
833 The ways below are those used when the register is R1, the SP,
834 in a funtion's epilogue. */
835
836 if (opcode == 31 && subcode == 444 && a == 1)
837 return 1; /* mr R1,Rn */
838 if (opcode == 14 && sd == 1)
839 return 1; /* addi R1,Rn,simm */
840 if (opcode == 58 && sd == 1)
841 return 1; /* ld R1,ds(Rn) */
842
843 /* Transfers control. */
844
845 if (opcode == 18)
846 return 1; /* b */
847 if (opcode == 16)
848 return 1; /* bc */
849 if (opcode == 19 && subcode == 16)
850 return 1; /* bclr */
851 if (opcode == 19 && subcode == 528)
852 return 1; /* bcctr */
853
854 return 0;
855 }
856
857 /* Return true if we are in the function's epilogue, i.e. after the
858 instruction that destroyed the function's stack frame.
859
860 1) scan forward from the point of execution:
861 a) If you find an instruction that modifies the stack pointer
862 or transfers control (except a return), execution is not in
863 an epilogue, return.
864 b) Stop scanning if you find a return instruction or reach the
865 end of the function or reach the hard limit for the size of
866 an epilogue.
867 2) scan backward from the point of execution:
868 a) If you find an instruction that modifies the stack pointer,
869 execution *is* in an epilogue, return.
870 b) Stop scanning if you reach an instruction that transfers
871 control or the beginning of the function or reach the hard
872 limit for the size of an epilogue. */
873
874 static int
875 rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
876 {
877 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
878 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
879 bfd_byte insn_buf[PPC_INSN_SIZE];
880 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
881 unsigned long insn;
882 struct frame_info *curfrm;
883
884 /* Find the search limits based on function boundaries and hard limit. */
885
886 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
887 return 0;
888
889 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
890 if (epilogue_start < func_start) epilogue_start = func_start;
891
892 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
893 if (epilogue_end > func_end) epilogue_end = func_end;
894
895 curfrm = get_current_frame ();
896
897 /* Scan forward until next 'blr'. */
898
899 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
900 {
901 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
902 return 0;
903 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
904 if (insn == 0x4e800020)
905 break;
906 /* Assume a bctr is a tail call unless it points strictly within
907 this function. */
908 if (insn == 0x4e800420)
909 {
910 CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
911 tdep->ppc_ctr_regnum);
912 if (ctr > func_start && ctr < func_end)
913 return 0;
914 else
915 break;
916 }
917 if (insn_changes_sp_or_jumps (insn))
918 return 0;
919 }
920
921 /* Scan backward until adjustment to stack pointer (R1). */
922
923 for (scan_pc = pc - PPC_INSN_SIZE;
924 scan_pc >= epilogue_start;
925 scan_pc -= PPC_INSN_SIZE)
926 {
927 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
928 return 0;
929 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
930 if (insn_changes_sp_or_jumps (insn))
931 return 1;
932 }
933
934 return 0;
935 }
936
937 /* Get the ith function argument for the current function. */
938 static CORE_ADDR
939 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
940 struct type *type)
941 {
942 return get_frame_register_unsigned (frame, 3 + argi);
943 }
944
945 /* Sequence of bytes for breakpoint instruction. */
946
947 static const unsigned char *
948 rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
949 int *bp_size)
950 {
951 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
952 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
953 *bp_size = 4;
954 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
955 return big_breakpoint;
956 else
957 return little_breakpoint;
958 }
959
960 /* Instruction masks for displaced stepping. */
961 #define BRANCH_MASK 0xfc000000
962 #define BP_MASK 0xFC0007FE
963 #define B_INSN 0x48000000
964 #define BC_INSN 0x40000000
965 #define BXL_INSN 0x4c000000
966 #define BP_INSN 0x7C000008
967
968 /* Fix up the state of registers and memory after having single-stepped
969 a displaced instruction. */
970 static void
971 ppc_displaced_step_fixup (struct gdbarch *gdbarch,
972 struct displaced_step_closure *closure,
973 CORE_ADDR from, CORE_ADDR to,
974 struct regcache *regs)
975 {
976 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
977 /* Since we use simple_displaced_step_copy_insn, our closure is a
978 copy of the instruction. */
979 ULONGEST insn = extract_unsigned_integer ((gdb_byte *) closure,
980 PPC_INSN_SIZE, byte_order);
981 ULONGEST opcode = 0;
982 /* Offset for non PC-relative instructions. */
983 LONGEST offset = PPC_INSN_SIZE;
984
985 opcode = insn & BRANCH_MASK;
986
987 if (debug_displaced)
988 fprintf_unfiltered (gdb_stdlog,
989 "displaced: (ppc) fixup (%s, %s)\n",
990 paddress (gdbarch, from), paddress (gdbarch, to));
991
992
993 /* Handle PC-relative branch instructions. */
994 if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
995 {
996 ULONGEST current_pc;
997
998 /* Read the current PC value after the instruction has been executed
999 in a displaced location. Calculate the offset to be applied to the
1000 original PC value before the displaced stepping. */
1001 regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1002 &current_pc);
1003 offset = current_pc - to;
1004
1005 if (opcode != BXL_INSN)
1006 {
1007 /* Check for AA bit indicating whether this is an absolute
1008 addressing or PC-relative (1: absolute, 0: relative). */
1009 if (!(insn & 0x2))
1010 {
1011 /* PC-relative addressing is being used in the branch. */
1012 if (debug_displaced)
1013 fprintf_unfiltered
1014 (gdb_stdlog,
1015 "displaced: (ppc) branch instruction: %s\n"
1016 "displaced: (ppc) adjusted PC from %s to %s\n",
1017 paddress (gdbarch, insn), paddress (gdbarch, current_pc),
1018 paddress (gdbarch, from + offset));
1019
1020 regcache_cooked_write_unsigned (regs,
1021 gdbarch_pc_regnum (gdbarch),
1022 from + offset);
1023 }
1024 }
1025 else
1026 {
1027 /* If we're here, it means we have a branch to LR or CTR. If the
1028 branch was taken, the offset is probably greater than 4 (the next
1029 instruction), so it's safe to assume that an offset of 4 means we
1030 did not take the branch. */
1031 if (offset == PPC_INSN_SIZE)
1032 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1033 from + PPC_INSN_SIZE);
1034 }
1035
1036 /* Check for LK bit indicating whether we should set the link
1037 register to point to the next instruction
1038 (1: Set, 0: Don't set). */
1039 if (insn & 0x1)
1040 {
1041 /* Link register needs to be set to the next instruction's PC. */
1042 regcache_cooked_write_unsigned (regs,
1043 gdbarch_tdep (gdbarch)->ppc_lr_regnum,
1044 from + PPC_INSN_SIZE);
1045 if (debug_displaced)
1046 fprintf_unfiltered (gdb_stdlog,
1047 "displaced: (ppc) adjusted LR to %s\n",
1048 paddress (gdbarch, from + PPC_INSN_SIZE));
1049
1050 }
1051 }
1052 /* Check for breakpoints in the inferior. If we've found one, place the PC
1053 right at the breakpoint instruction. */
1054 else if ((insn & BP_MASK) == BP_INSN)
1055 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
1056 else
1057 /* Handle any other instructions that do not fit in the categories above. */
1058 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1059 from + offset);
1060 }
1061
1062 /* Always use hardware single-stepping to execute the
1063 displaced instruction. */
1064 static int
1065 ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
1066 struct displaced_step_closure *closure)
1067 {
1068 return 1;
1069 }
1070
1071 /* Instruction masks used during single-stepping of atomic sequences. */
1072 #define LWARX_MASK 0xfc0007fe
1073 #define LWARX_INSTRUCTION 0x7c000028
1074 #define LDARX_INSTRUCTION 0x7c0000A8
1075 #define STWCX_MASK 0xfc0007ff
1076 #define STWCX_INSTRUCTION 0x7c00012d
1077 #define STDCX_INSTRUCTION 0x7c0001ad
1078
1079 /* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
1080 instruction and ending with a STWCX/STDCX instruction. If such a sequence
1081 is found, attempt to step through it. A breakpoint is placed at the end of
1082 the sequence. */
1083
1084 int
1085 ppc_deal_with_atomic_sequence (struct frame_info *frame)
1086 {
1087 struct gdbarch *gdbarch = get_frame_arch (frame);
1088 struct address_space *aspace = get_frame_address_space (frame);
1089 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1090 CORE_ADDR pc = get_frame_pc (frame);
1091 CORE_ADDR breaks[2] = {-1, -1};
1092 CORE_ADDR loc = pc;
1093 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
1094 int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1095 int insn_count;
1096 int index;
1097 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
1098 const int atomic_sequence_length = 16; /* Instruction sequence length. */
1099 int opcode; /* Branch instruction's OPcode. */
1100 int bc_insn_count = 0; /* Conditional branch instruction count. */
1101
1102 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
1103 if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
1104 && (insn & LWARX_MASK) != LDARX_INSTRUCTION)
1105 return 0;
1106
1107 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1108 instructions. */
1109 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1110 {
1111 loc += PPC_INSN_SIZE;
1112 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1113
1114 /* Assume that there is at most one conditional branch in the atomic
1115 sequence. If a conditional branch is found, put a breakpoint in
1116 its destination address. */
1117 if ((insn & BRANCH_MASK) == BC_INSN)
1118 {
1119 int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
1120 int absolute = insn & 2;
1121
1122 if (bc_insn_count >= 1)
1123 return 0; /* More than one conditional branch found, fallback
1124 to the standard single-step code. */
1125
1126 if (absolute)
1127 breaks[1] = immediate;
1128 else
1129 breaks[1] = loc + immediate;
1130
1131 bc_insn_count++;
1132 last_breakpoint++;
1133 }
1134
1135 if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
1136 || (insn & STWCX_MASK) == STDCX_INSTRUCTION)
1137 break;
1138 }
1139
1140 /* Assume that the atomic sequence ends with a stwcx/stdcx instruction. */
1141 if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
1142 && (insn & STWCX_MASK) != STDCX_INSTRUCTION)
1143 return 0;
1144
1145 closing_insn = loc;
1146 loc += PPC_INSN_SIZE;
1147 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1148
1149 /* Insert a breakpoint right after the end of the atomic sequence. */
1150 breaks[0] = loc;
1151
1152 /* Check for duplicated breakpoints. Check also for a breakpoint
1153 placed (branch instruction's destination) anywhere in sequence. */
1154 if (last_breakpoint
1155 && (breaks[1] == breaks[0]
1156 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
1157 last_breakpoint = 0;
1158
1159 /* Effectively inserts the breakpoints. */
1160 for (index = 0; index <= last_breakpoint; index++)
1161 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
1162
1163 return 1;
1164 }
1165
1166
1167 #define SIGNED_SHORT(x) \
1168 ((sizeof (short) == 2) \
1169 ? ((int)(short)(x)) \
1170 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1171
1172 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1173
1174 /* Limit the number of skipped non-prologue instructions, as the examining
1175 of the prologue is expensive. */
1176 static int max_skip_non_prologue_insns = 10;
1177
1178 /* Return nonzero if the given instruction OP can be part of the prologue
1179 of a function and saves a parameter on the stack. FRAMEP should be
1180 set if one of the previous instructions in the function has set the
1181 Frame Pointer. */
1182
1183 static int
1184 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1185 {
1186 /* Move parameters from argument registers to temporary register. */
1187 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1188 {
1189 /* Rx must be scratch register r0. */
1190 const int rx_regno = (op >> 16) & 31;
1191 /* Ry: Only r3 - r10 are used for parameter passing. */
1192 const int ry_regno = GET_SRC_REG (op);
1193
1194 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1195 {
1196 *r0_contains_arg = 1;
1197 return 1;
1198 }
1199 else
1200 return 0;
1201 }
1202
1203 /* Save a General Purpose Register on stack. */
1204
1205 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1206 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1207 {
1208 /* Rx: Only r3 - r10 are used for parameter passing. */
1209 const int rx_regno = GET_SRC_REG (op);
1210
1211 return (rx_regno >= 3 && rx_regno <= 10);
1212 }
1213
1214 /* Save a General Purpose Register on stack via the Frame Pointer. */
1215
1216 if (framep &&
1217 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1218 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1219 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1220 {
1221 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1222 However, the compiler sometimes uses r0 to hold an argument. */
1223 const int rx_regno = GET_SRC_REG (op);
1224
1225 return ((rx_regno >= 3 && rx_regno <= 10)
1226 || (rx_regno == 0 && *r0_contains_arg));
1227 }
1228
1229 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1230 {
1231 /* Only f2 - f8 are used for parameter passing. */
1232 const int src_regno = GET_SRC_REG (op);
1233
1234 return (src_regno >= 2 && src_regno <= 8);
1235 }
1236
1237 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1238 {
1239 /* Only f2 - f8 are used for parameter passing. */
1240 const int src_regno = GET_SRC_REG (op);
1241
1242 return (src_regno >= 2 && src_regno <= 8);
1243 }
1244
1245 /* Not an insn that saves a parameter on stack. */
1246 return 0;
1247 }
1248
1249 /* Assuming that INSN is a "bl" instruction located at PC, return
1250 nonzero if the destination of the branch is a "blrl" instruction.
1251
1252 This sequence is sometimes found in certain function prologues.
1253 It allows the function to load the LR register with a value that
1254 they can use to access PIC data using PC-relative offsets. */
1255
1256 static int
1257 bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
1258 {
1259 CORE_ADDR dest;
1260 int immediate;
1261 int absolute;
1262 int dest_insn;
1263
1264 absolute = (int) ((insn >> 1) & 1);
1265 immediate = ((insn & ~3) << 6) >> 6;
1266 if (absolute)
1267 dest = immediate;
1268 else
1269 dest = pc + immediate;
1270
1271 dest_insn = read_memory_integer (dest, 4, byte_order);
1272 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1273 return 1;
1274
1275 return 0;
1276 }
1277
1278 /* Masks for decoding a branch-and-link (bl) instruction.
1279
1280 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1281 The former is anded with the opcode in question; if the result of
1282 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1283 question is a ``bl'' instruction.
1284
1285 BL_DISPLACMENT_MASK is anded with the opcode in order to extract
1286 the branch displacement. */
1287
1288 #define BL_MASK 0xfc000001
1289 #define BL_INSTRUCTION 0x48000001
1290 #define BL_DISPLACEMENT_MASK 0x03fffffc
1291
1292 static unsigned long
1293 rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
1294 {
1295 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1296 gdb_byte buf[4];
1297 unsigned long op;
1298
1299 /* Fetch the instruction and convert it to an integer. */
1300 if (target_read_memory (pc, buf, 4))
1301 return 0;
1302 op = extract_unsigned_integer (buf, 4, byte_order);
1303
1304 return op;
1305 }
1306
1307 /* GCC generates several well-known sequences of instructions at the begining
1308 of each function prologue when compiling with -fstack-check. If one of
1309 such sequences starts at START_PC, then return the address of the
1310 instruction immediately past this sequence. Otherwise, return START_PC. */
1311
1312 static CORE_ADDR
1313 rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
1314 {
1315 CORE_ADDR pc = start_pc;
1316 unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
1317
1318 /* First possible sequence: A small number of probes.
1319 stw 0, -<some immediate>(1)
1320 [repeat this instruction any (small) number of times]. */
1321
1322 if ((op & 0xffff0000) == 0x90010000)
1323 {
1324 while ((op & 0xffff0000) == 0x90010000)
1325 {
1326 pc = pc + 4;
1327 op = rs6000_fetch_instruction (gdbarch, pc);
1328 }
1329 return pc;
1330 }
1331
1332 /* Second sequence: A probing loop.
1333 addi 12,1,-<some immediate>
1334 lis 0,-<some immediate>
1335 [possibly ori 0,0,<some immediate>]
1336 add 0,12,0
1337 cmpw 0,12,0
1338 beq 0,<disp>
1339 addi 12,12,-<some immediate>
1340 stw 0,0(12)
1341 b <disp>
1342 [possibly one last probe: stw 0,<some immediate>(12)]. */
1343
1344 while (1)
1345 {
1346 /* addi 12,1,-<some immediate> */
1347 if ((op & 0xffff0000) != 0x39810000)
1348 break;
1349
1350 /* lis 0,-<some immediate> */
1351 pc = pc + 4;
1352 op = rs6000_fetch_instruction (gdbarch, pc);
1353 if ((op & 0xffff0000) != 0x3c000000)
1354 break;
1355
1356 pc = pc + 4;
1357 op = rs6000_fetch_instruction (gdbarch, pc);
1358 /* [possibly ori 0,0,<some immediate>] */
1359 if ((op & 0xffff0000) == 0x60000000)
1360 {
1361 pc = pc + 4;
1362 op = rs6000_fetch_instruction (gdbarch, pc);
1363 }
1364 /* add 0,12,0 */
1365 if (op != 0x7c0c0214)
1366 break;
1367
1368 /* cmpw 0,12,0 */
1369 pc = pc + 4;
1370 op = rs6000_fetch_instruction (gdbarch, pc);
1371 if (op != 0x7c0c0000)
1372 break;
1373
1374 /* beq 0,<disp> */
1375 pc = pc + 4;
1376 op = rs6000_fetch_instruction (gdbarch, pc);
1377 if ((op & 0xff9f0001) != 0x41820000)
1378 break;
1379
1380 /* addi 12,12,-<some immediate> */
1381 pc = pc + 4;
1382 op = rs6000_fetch_instruction (gdbarch, pc);
1383 if ((op & 0xffff0000) != 0x398c0000)
1384 break;
1385
1386 /* stw 0,0(12) */
1387 pc = pc + 4;
1388 op = rs6000_fetch_instruction (gdbarch, pc);
1389 if (op != 0x900c0000)
1390 break;
1391
1392 /* b <disp> */
1393 pc = pc + 4;
1394 op = rs6000_fetch_instruction (gdbarch, pc);
1395 if ((op & 0xfc000001) != 0x48000000)
1396 break;
1397
1398 /* [possibly one last probe: stw 0,<some immediate>(12)]. */
1399 pc = pc + 4;
1400 op = rs6000_fetch_instruction (gdbarch, pc);
1401 if ((op & 0xffff0000) == 0x900c0000)
1402 {
1403 pc = pc + 4;
1404 op = rs6000_fetch_instruction (gdbarch, pc);
1405 }
1406
1407 /* We found a valid stack-check sequence, return the new PC. */
1408 return pc;
1409 }
1410
1411 /* Third sequence: No probe; instead, a comparizon between the stack size
1412 limit (saved in a run-time global variable) and the current stack
1413 pointer:
1414
1415 addi 0,1,-<some immediate>
1416 lis 12,__gnat_stack_limit@ha
1417 lwz 12,__gnat_stack_limit@l(12)
1418 twllt 0,12
1419
1420 or, with a small variant in the case of a bigger stack frame:
1421 addis 0,1,<some immediate>
1422 addic 0,0,-<some immediate>
1423 lis 12,__gnat_stack_limit@ha
1424 lwz 12,__gnat_stack_limit@l(12)
1425 twllt 0,12
1426 */
1427 while (1)
1428 {
1429 /* addi 0,1,-<some immediate> */
1430 if ((op & 0xffff0000) != 0x38010000)
1431 {
1432 /* small stack frame variant not recognized; try the
1433 big stack frame variant: */
1434
1435 /* addis 0,1,<some immediate> */
1436 if ((op & 0xffff0000) != 0x3c010000)
1437 break;
1438
1439 /* addic 0,0,-<some immediate> */
1440 pc = pc + 4;
1441 op = rs6000_fetch_instruction (gdbarch, pc);
1442 if ((op & 0xffff0000) != 0x30000000)
1443 break;
1444 }
1445
1446 /* lis 12,<some immediate> */
1447 pc = pc + 4;
1448 op = rs6000_fetch_instruction (gdbarch, pc);
1449 if ((op & 0xffff0000) != 0x3d800000)
1450 break;
1451
1452 /* lwz 12,<some immediate>(12) */
1453 pc = pc + 4;
1454 op = rs6000_fetch_instruction (gdbarch, pc);
1455 if ((op & 0xffff0000) != 0x818c0000)
1456 break;
1457
1458 /* twllt 0,12 */
1459 pc = pc + 4;
1460 op = rs6000_fetch_instruction (gdbarch, pc);
1461 if ((op & 0xfffffffe) != 0x7c406008)
1462 break;
1463
1464 /* We found a valid stack-check sequence, return the new PC. */
1465 return pc;
1466 }
1467
1468 /* No stack check code in our prologue, return the start_pc. */
1469 return start_pc;
1470 }
1471
1472 /* return pc value after skipping a function prologue and also return
1473 information about a function frame.
1474
1475 in struct rs6000_framedata fdata:
1476 - frameless is TRUE, if function does not have a frame.
1477 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1478 - offset is the initial size of this stack frame --- the amount by
1479 which we decrement the sp to allocate the frame.
1480 - saved_gpr is the number of the first saved gpr.
1481 - saved_fpr is the number of the first saved fpr.
1482 - saved_vr is the number of the first saved vr.
1483 - saved_ev is the number of the first saved ev.
1484 - alloca_reg is the number of the register used for alloca() handling.
1485 Otherwise -1.
1486 - gpr_offset is the offset of the first saved gpr from the previous frame.
1487 - fpr_offset is the offset of the first saved fpr from the previous frame.
1488 - vr_offset is the offset of the first saved vr from the previous frame.
1489 - ev_offset is the offset of the first saved ev from the previous frame.
1490 - lr_offset is the offset of the saved lr
1491 - cr_offset is the offset of the saved cr
1492 - vrsave_offset is the offset of the saved vrsave register. */
1493
1494 static CORE_ADDR
1495 skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1496 struct rs6000_framedata *fdata)
1497 {
1498 CORE_ADDR orig_pc = pc;
1499 CORE_ADDR last_prologue_pc = pc;
1500 CORE_ADDR li_found_pc = 0;
1501 gdb_byte buf[4];
1502 unsigned long op;
1503 long offset = 0;
1504 long vr_saved_offset = 0;
1505 int lr_reg = -1;
1506 int cr_reg = -1;
1507 int vr_reg = -1;
1508 int ev_reg = -1;
1509 long ev_offset = 0;
1510 int vrsave_reg = -1;
1511 int reg;
1512 int framep = 0;
1513 int minimal_toc_loaded = 0;
1514 int prev_insn_was_prologue_insn = 1;
1515 int num_skip_non_prologue_insns = 0;
1516 int r0_contains_arg = 0;
1517 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1518 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1519 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1520
1521 memset (fdata, 0, sizeof (struct rs6000_framedata));
1522 fdata->saved_gpr = -1;
1523 fdata->saved_fpr = -1;
1524 fdata->saved_vr = -1;
1525 fdata->saved_ev = -1;
1526 fdata->alloca_reg = -1;
1527 fdata->frameless = 1;
1528 fdata->nosavedpc = 1;
1529 fdata->lr_register = -1;
1530
1531 pc = rs6000_skip_stack_check (gdbarch, pc);
1532 if (pc >= lim_pc)
1533 pc = lim_pc;
1534
1535 for (;; pc += 4)
1536 {
1537 /* Sometimes it isn't clear if an instruction is a prologue
1538 instruction or not. When we encounter one of these ambiguous
1539 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1540 Otherwise, we'll assume that it really is a prologue instruction. */
1541 if (prev_insn_was_prologue_insn)
1542 last_prologue_pc = pc;
1543
1544 /* Stop scanning if we've hit the limit. */
1545 if (pc >= lim_pc)
1546 break;
1547
1548 prev_insn_was_prologue_insn = 1;
1549
1550 /* Fetch the instruction and convert it to an integer. */
1551 if (target_read_memory (pc, buf, 4))
1552 break;
1553 op = extract_unsigned_integer (buf, 4, byte_order);
1554
1555 if ((op & 0xfc1fffff) == 0x7c0802a6)
1556 { /* mflr Rx */
1557 /* Since shared library / PIC code, which needs to get its
1558 address at runtime, can appear to save more than one link
1559 register vis:
1560
1561 *INDENT-OFF*
1562 stwu r1,-304(r1)
1563 mflr r3
1564 bl 0xff570d0 (blrl)
1565 stw r30,296(r1)
1566 mflr r30
1567 stw r31,300(r1)
1568 stw r3,308(r1);
1569 ...
1570 *INDENT-ON*
1571
1572 remember just the first one, but skip over additional
1573 ones. */
1574 if (lr_reg == -1)
1575 lr_reg = (op & 0x03e00000) >> 21;
1576 if (lr_reg == 0)
1577 r0_contains_arg = 0;
1578 continue;
1579 }
1580 else if ((op & 0xfc1fffff) == 0x7c000026)
1581 { /* mfcr Rx */
1582 cr_reg = (op & 0x03e00000);
1583 if (cr_reg == 0)
1584 r0_contains_arg = 0;
1585 continue;
1586
1587 }
1588 else if ((op & 0xfc1f0000) == 0xd8010000)
1589 { /* stfd Rx,NUM(r1) */
1590 reg = GET_SRC_REG (op);
1591 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1592 {
1593 fdata->saved_fpr = reg;
1594 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1595 }
1596 continue;
1597
1598 }
1599 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1600 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1601 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1602 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1603 {
1604
1605 reg = GET_SRC_REG (op);
1606 if ((op & 0xfc1f0000) == 0xbc010000)
1607 fdata->gpr_mask |= ~((1U << reg) - 1);
1608 else
1609 fdata->gpr_mask |= 1U << reg;
1610 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1611 {
1612 fdata->saved_gpr = reg;
1613 if ((op & 0xfc1f0003) == 0xf8010000)
1614 op &= ~3UL;
1615 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1616 }
1617 continue;
1618
1619 }
1620 else if ((op & 0xffff0000) == 0x3c4c0000
1621 || (op & 0xffff0000) == 0x3c400000
1622 || (op & 0xffff0000) == 0x38420000)
1623 {
1624 /* . 0: addis 2,12,.TOC.-0b@ha
1625 . addi 2,2,.TOC.-0b@l
1626 or
1627 . lis 2,.TOC.@ha
1628 . addi 2,2,.TOC.@l
1629 used by ELFv2 global entry points to set up r2. */
1630 continue;
1631 }
1632 else if (op == 0x60000000)
1633 {
1634 /* nop */
1635 /* Allow nops in the prologue, but do not consider them to
1636 be part of the prologue unless followed by other prologue
1637 instructions. */
1638 prev_insn_was_prologue_insn = 0;
1639 continue;
1640
1641 }
1642 else if ((op & 0xffff0000) == 0x3c000000)
1643 { /* addis 0,0,NUM, used for >= 32k frames */
1644 fdata->offset = (op & 0x0000ffff) << 16;
1645 fdata->frameless = 0;
1646 r0_contains_arg = 0;
1647 continue;
1648
1649 }
1650 else if ((op & 0xffff0000) == 0x60000000)
1651 { /* ori 0,0,NUM, 2nd half of >= 32k frames */
1652 fdata->offset |= (op & 0x0000ffff);
1653 fdata->frameless = 0;
1654 r0_contains_arg = 0;
1655 continue;
1656
1657 }
1658 else if (lr_reg >= 0 &&
1659 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1660 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1661 /* stw Rx, NUM(r1) */
1662 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1663 /* stwu Rx, NUM(r1) */
1664 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1665 { /* where Rx == lr */
1666 fdata->lr_offset = offset;
1667 fdata->nosavedpc = 0;
1668 /* Invalidate lr_reg, but don't set it to -1.
1669 That would mean that it had never been set. */
1670 lr_reg = -2;
1671 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1672 (op & 0xfc000000) == 0x90000000) /* stw */
1673 {
1674 /* Does not update r1, so add displacement to lr_offset. */
1675 fdata->lr_offset += SIGNED_SHORT (op);
1676 }
1677 continue;
1678
1679 }
1680 else if (cr_reg >= 0 &&
1681 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1682 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1683 /* stw Rx, NUM(r1) */
1684 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1685 /* stwu Rx, NUM(r1) */
1686 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1687 { /* where Rx == cr */
1688 fdata->cr_offset = offset;
1689 /* Invalidate cr_reg, but don't set it to -1.
1690 That would mean that it had never been set. */
1691 cr_reg = -2;
1692 if ((op & 0xfc000003) == 0xf8000000 ||
1693 (op & 0xfc000000) == 0x90000000)
1694 {
1695 /* Does not update r1, so add displacement to cr_offset. */
1696 fdata->cr_offset += SIGNED_SHORT (op);
1697 }
1698 continue;
1699
1700 }
1701 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1702 {
1703 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1704 prediction bits. If the LR has already been saved, we can
1705 skip it. */
1706 continue;
1707 }
1708 else if (op == 0x48000005)
1709 { /* bl .+4 used in
1710 -mrelocatable */
1711 fdata->used_bl = 1;
1712 continue;
1713
1714 }
1715 else if (op == 0x48000004)
1716 { /* b .+4 (xlc) */
1717 break;
1718
1719 }
1720 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1721 in V.4 -mminimal-toc */
1722 (op & 0xffff0000) == 0x3bde0000)
1723 { /* addi 30,30,foo@l */
1724 continue;
1725
1726 }
1727 else if ((op & 0xfc000001) == 0x48000001)
1728 { /* bl foo,
1729 to save fprs??? */
1730
1731 fdata->frameless = 0;
1732
1733 /* If the return address has already been saved, we can skip
1734 calls to blrl (for PIC). */
1735 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
1736 {
1737 fdata->used_bl = 1;
1738 continue;
1739 }
1740
1741 /* Don't skip over the subroutine call if it is not within
1742 the first three instructions of the prologue and either
1743 we have no line table information or the line info tells
1744 us that the subroutine call is not part of the line
1745 associated with the prologue. */
1746 if ((pc - orig_pc) > 8)
1747 {
1748 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1749 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1750
1751 if ((prologue_sal.line == 0)
1752 || (prologue_sal.line != this_sal.line))
1753 break;
1754 }
1755
1756 op = read_memory_integer (pc + 4, 4, byte_order);
1757
1758 /* At this point, make sure this is not a trampoline
1759 function (a function that simply calls another functions,
1760 and nothing else). If the next is not a nop, this branch
1761 was part of the function prologue. */
1762
1763 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1764 break; /* Don't skip over
1765 this branch. */
1766
1767 fdata->used_bl = 1;
1768 continue;
1769 }
1770 /* update stack pointer */
1771 else if ((op & 0xfc1f0000) == 0x94010000)
1772 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1773 fdata->frameless = 0;
1774 fdata->offset = SIGNED_SHORT (op);
1775 offset = fdata->offset;
1776 continue;
1777 }
1778 else if ((op & 0xfc1f016a) == 0x7c01016e)
1779 { /* stwux rX,r1,rY */
1780 /* No way to figure out what r1 is going to be. */
1781 fdata->frameless = 0;
1782 offset = fdata->offset;
1783 continue;
1784 }
1785 else if ((op & 0xfc1f0003) == 0xf8010001)
1786 { /* stdu rX,NUM(r1) */
1787 fdata->frameless = 0;
1788 fdata->offset = SIGNED_SHORT (op & ~3UL);
1789 offset = fdata->offset;
1790 continue;
1791 }
1792 else if ((op & 0xfc1f016a) == 0x7c01016a)
1793 { /* stdux rX,r1,rY */
1794 /* No way to figure out what r1 is going to be. */
1795 fdata->frameless = 0;
1796 offset = fdata->offset;
1797 continue;
1798 }
1799 else if ((op & 0xffff0000) == 0x38210000)
1800 { /* addi r1,r1,SIMM */
1801 fdata->frameless = 0;
1802 fdata->offset += SIGNED_SHORT (op);
1803 offset = fdata->offset;
1804 continue;
1805 }
1806 /* Load up minimal toc pointer. Do not treat an epilogue restore
1807 of r31 as a minimal TOC load. */
1808 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1809 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1810 && !framep
1811 && !minimal_toc_loaded)
1812 {
1813 minimal_toc_loaded = 1;
1814 continue;
1815
1816 /* move parameters from argument registers to local variable
1817 registers */
1818 }
1819 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1820 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1821 (((op >> 21) & 31) <= 10) &&
1822 ((long) ((op >> 16) & 31)
1823 >= fdata->saved_gpr)) /* Rx: local var reg */
1824 {
1825 continue;
1826
1827 /* store parameters in stack */
1828 }
1829 /* Move parameters from argument registers to temporary register. */
1830 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1831 {
1832 continue;
1833
1834 /* Set up frame pointer */
1835 }
1836 else if (op == 0x603d0000) /* oril r29, r1, 0x0 */
1837 {
1838 fdata->frameless = 0;
1839 framep = 1;
1840 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
1841 continue;
1842
1843 /* Another way to set up the frame pointer. */
1844 }
1845 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1846 || op == 0x7c3f0b78)
1847 { /* mr r31, r1 */
1848 fdata->frameless = 0;
1849 framep = 1;
1850 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1851 continue;
1852
1853 /* Another way to set up the frame pointer. */
1854 }
1855 else if ((op & 0xfc1fffff) == 0x38010000)
1856 { /* addi rX, r1, 0x0 */
1857 fdata->frameless = 0;
1858 framep = 1;
1859 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1860 + ((op & ~0x38010000) >> 21));
1861 continue;
1862 }
1863 /* AltiVec related instructions. */
1864 /* Store the vrsave register (spr 256) in another register for
1865 later manipulation, or load a register into the vrsave
1866 register. 2 instructions are used: mfvrsave and
1867 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1868 and mtspr SPR256, Rn. */
1869 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1870 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1871 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1872 {
1873 vrsave_reg = GET_SRC_REG (op);
1874 continue;
1875 }
1876 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1877 {
1878 continue;
1879 }
1880 /* Store the register where vrsave was saved to onto the stack:
1881 rS is the register where vrsave was stored in a previous
1882 instruction. */
1883 /* 100100 sssss 00001 dddddddd dddddddd */
1884 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1885 {
1886 if (vrsave_reg == GET_SRC_REG (op))
1887 {
1888 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1889 vrsave_reg = -1;
1890 }
1891 continue;
1892 }
1893 /* Compute the new value of vrsave, by modifying the register
1894 where vrsave was saved to. */
1895 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1896 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1897 {
1898 continue;
1899 }
1900 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1901 in a pair of insns to save the vector registers on the
1902 stack. */
1903 /* 001110 00000 00000 iiii iiii iiii iiii */
1904 /* 001110 01110 00000 iiii iiii iiii iiii */
1905 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1906 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1907 {
1908 if ((op & 0xffff0000) == 0x38000000)
1909 r0_contains_arg = 0;
1910 li_found_pc = pc;
1911 vr_saved_offset = SIGNED_SHORT (op);
1912
1913 /* This insn by itself is not part of the prologue, unless
1914 if part of the pair of insns mentioned above. So do not
1915 record this insn as part of the prologue yet. */
1916 prev_insn_was_prologue_insn = 0;
1917 }
1918 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1919 /* 011111 sssss 11111 00000 00111001110 */
1920 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1921 {
1922 if (pc == (li_found_pc + 4))
1923 {
1924 vr_reg = GET_SRC_REG (op);
1925 /* If this is the first vector reg to be saved, or if
1926 it has a lower number than others previously seen,
1927 reupdate the frame info. */
1928 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1929 {
1930 fdata->saved_vr = vr_reg;
1931 fdata->vr_offset = vr_saved_offset + offset;
1932 }
1933 vr_saved_offset = -1;
1934 vr_reg = -1;
1935 li_found_pc = 0;
1936 }
1937 }
1938 /* End AltiVec related instructions. */
1939
1940 /* Start BookE related instructions. */
1941 /* Store gen register S at (r31+uimm).
1942 Any register less than r13 is volatile, so we don't care. */
1943 /* 000100 sssss 11111 iiiii 01100100001 */
1944 else if (arch_info->mach == bfd_mach_ppc_e500
1945 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1946 {
1947 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1948 {
1949 unsigned int imm;
1950 ev_reg = GET_SRC_REG (op);
1951 imm = (op >> 11) & 0x1f;
1952 ev_offset = imm * 8;
1953 /* If this is the first vector reg to be saved, or if
1954 it has a lower number than others previously seen,
1955 reupdate the frame info. */
1956 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1957 {
1958 fdata->saved_ev = ev_reg;
1959 fdata->ev_offset = ev_offset + offset;
1960 }
1961 }
1962 continue;
1963 }
1964 /* Store gen register rS at (r1+rB). */
1965 /* 000100 sssss 00001 bbbbb 01100100000 */
1966 else if (arch_info->mach == bfd_mach_ppc_e500
1967 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1968 {
1969 if (pc == (li_found_pc + 4))
1970 {
1971 ev_reg = GET_SRC_REG (op);
1972 /* If this is the first vector reg to be saved, or if
1973 it has a lower number than others previously seen,
1974 reupdate the frame info. */
1975 /* We know the contents of rB from the previous instruction. */
1976 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1977 {
1978 fdata->saved_ev = ev_reg;
1979 fdata->ev_offset = vr_saved_offset + offset;
1980 }
1981 vr_saved_offset = -1;
1982 ev_reg = -1;
1983 li_found_pc = 0;
1984 }
1985 continue;
1986 }
1987 /* Store gen register r31 at (rA+uimm). */
1988 /* 000100 11111 aaaaa iiiii 01100100001 */
1989 else if (arch_info->mach == bfd_mach_ppc_e500
1990 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1991 {
1992 /* Wwe know that the source register is 31 already, but
1993 it can't hurt to compute it. */
1994 ev_reg = GET_SRC_REG (op);
1995 ev_offset = ((op >> 11) & 0x1f) * 8;
1996 /* If this is the first vector reg to be saved, or if
1997 it has a lower number than others previously seen,
1998 reupdate the frame info. */
1999 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2000 {
2001 fdata->saved_ev = ev_reg;
2002 fdata->ev_offset = ev_offset + offset;
2003 }
2004
2005 continue;
2006 }
2007 /* Store gen register S at (r31+r0).
2008 Store param on stack when offset from SP bigger than 4 bytes. */
2009 /* 000100 sssss 11111 00000 01100100000 */
2010 else if (arch_info->mach == bfd_mach_ppc_e500
2011 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
2012 {
2013 if (pc == (li_found_pc + 4))
2014 {
2015 if ((op & 0x03e00000) >= 0x01a00000)
2016 {
2017 ev_reg = GET_SRC_REG (op);
2018 /* If this is the first vector reg to be saved, or if
2019 it has a lower number than others previously seen,
2020 reupdate the frame info. */
2021 /* We know the contents of r0 from the previous
2022 instruction. */
2023 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2024 {
2025 fdata->saved_ev = ev_reg;
2026 fdata->ev_offset = vr_saved_offset + offset;
2027 }
2028 ev_reg = -1;
2029 }
2030 vr_saved_offset = -1;
2031 li_found_pc = 0;
2032 continue;
2033 }
2034 }
2035 /* End BookE related instructions. */
2036
2037 else
2038 {
2039 unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
2040
2041 /* Not a recognized prologue instruction.
2042 Handle optimizer code motions into the prologue by continuing
2043 the search if we have no valid frame yet or if the return
2044 address is not yet saved in the frame. Also skip instructions
2045 if some of the GPRs expected to be saved are not yet saved. */
2046 if (fdata->frameless == 0 && fdata->nosavedpc == 0
2047 && (fdata->gpr_mask & all_mask) == all_mask)
2048 break;
2049
2050 if (op == 0x4e800020 /* blr */
2051 || op == 0x4e800420) /* bctr */
2052 /* Do not scan past epilogue in frameless functions or
2053 trampolines. */
2054 break;
2055 if ((op & 0xf4000000) == 0x40000000) /* bxx */
2056 /* Never skip branches. */
2057 break;
2058
2059 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
2060 /* Do not scan too many insns, scanning insns is expensive with
2061 remote targets. */
2062 break;
2063
2064 /* Continue scanning. */
2065 prev_insn_was_prologue_insn = 0;
2066 continue;
2067 }
2068 }
2069
2070 #if 0
2071 /* I have problems with skipping over __main() that I need to address
2072 * sometime. Previously, I used to use misc_function_vector which
2073 * didn't work as well as I wanted to be. -MGO */
2074
2075 /* If the first thing after skipping a prolog is a branch to a function,
2076 this might be a call to an initializer in main(), introduced by gcc2.
2077 We'd like to skip over it as well. Fortunately, xlc does some extra
2078 work before calling a function right after a prologue, thus we can
2079 single out such gcc2 behaviour. */
2080
2081
2082 if ((op & 0xfc000001) == 0x48000001)
2083 { /* bl foo, an initializer function? */
2084 op = read_memory_integer (pc + 4, 4, byte_order);
2085
2086 if (op == 0x4def7b82)
2087 { /* cror 0xf, 0xf, 0xf (nop) */
2088
2089 /* Check and see if we are in main. If so, skip over this
2090 initializer function as well. */
2091
2092 tmp = find_pc_misc_function (pc);
2093 if (tmp >= 0
2094 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
2095 return pc + 8;
2096 }
2097 }
2098 #endif /* 0 */
2099
2100 if (pc == lim_pc && lr_reg >= 0)
2101 fdata->lr_register = lr_reg;
2102
2103 fdata->offset = -fdata->offset;
2104 return last_prologue_pc;
2105 }
2106
2107 static CORE_ADDR
2108 rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2109 {
2110 struct rs6000_framedata frame;
2111 CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
2112
2113 /* See if we can determine the end of the prologue via the symbol table.
2114 If so, then return either PC, or the PC after the prologue, whichever
2115 is greater. */
2116 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
2117 {
2118 CORE_ADDR post_prologue_pc
2119 = skip_prologue_using_sal (gdbarch, func_addr);
2120 if (post_prologue_pc != 0)
2121 return max (pc, post_prologue_pc);
2122 }
2123
2124 /* Can't determine prologue from the symbol table, need to examine
2125 instructions. */
2126
2127 /* Find an upper limit on the function prologue using the debug
2128 information. If the debug information could not be used to provide
2129 that bound, then use an arbitrary large number as the upper bound. */
2130 limit_pc = skip_prologue_using_sal (gdbarch, pc);
2131 if (limit_pc == 0)
2132 limit_pc = pc + 100; /* Magic. */
2133
2134 /* Do not allow limit_pc to be past the function end, if we know
2135 where that end is... */
2136 if (func_end_addr && limit_pc > func_end_addr)
2137 limit_pc = func_end_addr;
2138
2139 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2140 return pc;
2141 }
2142
2143 /* When compiling for EABI, some versions of GCC emit a call to __eabi
2144 in the prologue of main().
2145
2146 The function below examines the code pointed at by PC and checks to
2147 see if it corresponds to a call to __eabi. If so, it returns the
2148 address of the instruction following that call. Otherwise, it simply
2149 returns PC. */
2150
2151 static CORE_ADDR
2152 rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2153 {
2154 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2155 gdb_byte buf[4];
2156 unsigned long op;
2157
2158 if (target_read_memory (pc, buf, 4))
2159 return pc;
2160 op = extract_unsigned_integer (buf, 4, byte_order);
2161
2162 if ((op & BL_MASK) == BL_INSTRUCTION)
2163 {
2164 CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2165 CORE_ADDR call_dest = pc + 4 + displ;
2166 struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
2167
2168 /* We check for ___eabi (three leading underscores) in addition
2169 to __eabi in case the GCC option "-fleading-underscore" was
2170 used to compile the program. */
2171 if (s.minsym != NULL
2172 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
2173 && (strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__eabi") == 0
2174 || strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "___eabi") == 0))
2175 pc += 4;
2176 }
2177 return pc;
2178 }
2179
2180 /* All the ABI's require 16 byte alignment. */
2181 static CORE_ADDR
2182 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2183 {
2184 return (addr & -16);
2185 }
2186
2187 /* Return whether handle_inferior_event() should proceed through code
2188 starting at PC in function NAME when stepping.
2189
2190 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2191 handle memory references that are too distant to fit in instructions
2192 generated by the compiler. For example, if 'foo' in the following
2193 instruction:
2194
2195 lwz r9,foo(r2)
2196
2197 is greater than 32767, the linker might replace the lwz with a branch to
2198 somewhere in @FIX1 that does the load in 2 instructions and then branches
2199 back to where execution should continue.
2200
2201 GDB should silently step over @FIX code, just like AIX dbx does.
2202 Unfortunately, the linker uses the "b" instruction for the
2203 branches, meaning that the link register doesn't get set.
2204 Therefore, GDB's usual step_over_function () mechanism won't work.
2205
2206 Instead, use the gdbarch_skip_trampoline_code and
2207 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2208 @FIX code. */
2209
2210 static int
2211 rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2212 CORE_ADDR pc, const char *name)
2213 {
2214 return name && !strncmp (name, "@FIX", 4);
2215 }
2216
2217 /* Skip code that the user doesn't want to see when stepping:
2218
2219 1. Indirect function calls use a piece of trampoline code to do context
2220 switching, i.e. to set the new TOC table. Skip such code if we are on
2221 its first instruction (as when we have single-stepped to here).
2222
2223 2. Skip shared library trampoline code (which is different from
2224 indirect function call trampolines).
2225
2226 3. Skip bigtoc fixup code.
2227
2228 Result is desired PC to step until, or NULL if we are not in
2229 code that should be skipped. */
2230
2231 static CORE_ADDR
2232 rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2233 {
2234 struct gdbarch *gdbarch = get_frame_arch (frame);
2235 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2236 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2237 unsigned int ii, op;
2238 int rel;
2239 CORE_ADDR solib_target_pc;
2240 struct bound_minimal_symbol msymbol;
2241
2242 static unsigned trampoline_code[] =
2243 {
2244 0x800b0000, /* l r0,0x0(r11) */
2245 0x90410014, /* st r2,0x14(r1) */
2246 0x7c0903a6, /* mtctr r0 */
2247 0x804b0004, /* l r2,0x4(r11) */
2248 0x816b0008, /* l r11,0x8(r11) */
2249 0x4e800420, /* bctr */
2250 0x4e800020, /* br */
2251 0
2252 };
2253
2254 /* Check for bigtoc fixup code. */
2255 msymbol = lookup_minimal_symbol_by_pc (pc);
2256 if (msymbol.minsym
2257 && rs6000_in_solib_return_trampoline (gdbarch, pc,
2258 MSYMBOL_LINKAGE_NAME (msymbol.minsym)))
2259 {
2260 /* Double-check that the third instruction from PC is relative "b". */
2261 op = read_memory_integer (pc + 8, 4, byte_order);
2262 if ((op & 0xfc000003) == 0x48000000)
2263 {
2264 /* Extract bits 6-29 as a signed 24-bit relative word address and
2265 add it to the containing PC. */
2266 rel = ((int)(op << 6) >> 6);
2267 return pc + 8 + rel;
2268 }
2269 }
2270
2271 /* If pc is in a shared library trampoline, return its target. */
2272 solib_target_pc = find_solib_trampoline_target (frame, pc);
2273 if (solib_target_pc)
2274 return solib_target_pc;
2275
2276 for (ii = 0; trampoline_code[ii]; ++ii)
2277 {
2278 op = read_memory_integer (pc + (ii * 4), 4, byte_order);
2279 if (op != trampoline_code[ii])
2280 return 0;
2281 }
2282 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination
2283 addr. */
2284 pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
2285 return pc;
2286 }
2287
2288 /* ISA-specific vector types. */
2289
2290 static struct type *
2291 rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2292 {
2293 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2294
2295 if (!tdep->ppc_builtin_type_vec64)
2296 {
2297 const struct builtin_type *bt = builtin_type (gdbarch);
2298
2299 /* The type we're building is this: */
2300 #if 0
2301 union __gdb_builtin_type_vec64
2302 {
2303 int64_t uint64;
2304 float v2_float[2];
2305 int32_t v2_int32[2];
2306 int16_t v4_int16[4];
2307 int8_t v8_int8[8];
2308 };
2309 #endif
2310
2311 struct type *t;
2312
2313 t = arch_composite_type (gdbarch,
2314 "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2315 append_composite_type_field (t, "uint64", bt->builtin_int64);
2316 append_composite_type_field (t, "v2_float",
2317 init_vector_type (bt->builtin_float, 2));
2318 append_composite_type_field (t, "v2_int32",
2319 init_vector_type (bt->builtin_int32, 2));
2320 append_composite_type_field (t, "v4_int16",
2321 init_vector_type (bt->builtin_int16, 4));
2322 append_composite_type_field (t, "v8_int8",
2323 init_vector_type (bt->builtin_int8, 8));
2324
2325 TYPE_VECTOR (t) = 1;
2326 TYPE_NAME (t) = "ppc_builtin_type_vec64";
2327 tdep->ppc_builtin_type_vec64 = t;
2328 }
2329
2330 return tdep->ppc_builtin_type_vec64;
2331 }
2332
2333 /* Vector 128 type. */
2334
2335 static struct type *
2336 rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2337 {
2338 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2339
2340 if (!tdep->ppc_builtin_type_vec128)
2341 {
2342 const struct builtin_type *bt = builtin_type (gdbarch);
2343
2344 /* The type we're building is this
2345
2346 type = union __ppc_builtin_type_vec128 {
2347 uint128_t uint128;
2348 double v2_double[2];
2349 float v4_float[4];
2350 int32_t v4_int32[4];
2351 int16_t v8_int16[8];
2352 int8_t v16_int8[16];
2353 }
2354 */
2355
2356 struct type *t;
2357
2358 t = arch_composite_type (gdbarch,
2359 "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
2360 append_composite_type_field (t, "uint128", bt->builtin_uint128);
2361 append_composite_type_field (t, "v2_double",
2362 init_vector_type (bt->builtin_double, 2));
2363 append_composite_type_field (t, "v4_float",
2364 init_vector_type (bt->builtin_float, 4));
2365 append_composite_type_field (t, "v4_int32",
2366 init_vector_type (bt->builtin_int32, 4));
2367 append_composite_type_field (t, "v8_int16",
2368 init_vector_type (bt->builtin_int16, 8));
2369 append_composite_type_field (t, "v16_int8",
2370 init_vector_type (bt->builtin_int8, 16));
2371
2372 TYPE_VECTOR (t) = 1;
2373 TYPE_NAME (t) = "ppc_builtin_type_vec128";
2374 tdep->ppc_builtin_type_vec128 = t;
2375 }
2376
2377 return tdep->ppc_builtin_type_vec128;
2378 }
2379
2380 /* Return the name of register number REGNO, or the empty string if it
2381 is an anonymous register. */
2382
2383 static const char *
2384 rs6000_register_name (struct gdbarch *gdbarch, int regno)
2385 {
2386 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2387
2388 /* The upper half "registers" have names in the XML description,
2389 but we present only the low GPRs and the full 64-bit registers
2390 to the user. */
2391 if (tdep->ppc_ev0_upper_regnum >= 0
2392 && tdep->ppc_ev0_upper_regnum <= regno
2393 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2394 return "";
2395
2396 /* Hide the upper halves of the vs0~vs31 registers. */
2397 if (tdep->ppc_vsr0_regnum >= 0
2398 && tdep->ppc_vsr0_upper_regnum <= regno
2399 && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2400 return "";
2401
2402 /* Check if the SPE pseudo registers are available. */
2403 if (IS_SPE_PSEUDOREG (tdep, regno))
2404 {
2405 static const char *const spe_regnames[] = {
2406 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2407 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2408 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2409 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2410 };
2411 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2412 }
2413
2414 /* Check if the decimal128 pseudo-registers are available. */
2415 if (IS_DFP_PSEUDOREG (tdep, regno))
2416 {
2417 static const char *const dfp128_regnames[] = {
2418 "dl0", "dl1", "dl2", "dl3",
2419 "dl4", "dl5", "dl6", "dl7",
2420 "dl8", "dl9", "dl10", "dl11",
2421 "dl12", "dl13", "dl14", "dl15"
2422 };
2423 return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2424 }
2425
2426 /* Check if this is a VSX pseudo-register. */
2427 if (IS_VSX_PSEUDOREG (tdep, regno))
2428 {
2429 static const char *const vsx_regnames[] = {
2430 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2431 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2432 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2433 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2434 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2435 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2436 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2437 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2438 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2439 };
2440 return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2441 }
2442
2443 /* Check if the this is a Extended FP pseudo-register. */
2444 if (IS_EFP_PSEUDOREG (tdep, regno))
2445 {
2446 static const char *const efpr_regnames[] = {
2447 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2448 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2449 "f46", "f47", "f48", "f49", "f50", "f51",
2450 "f52", "f53", "f54", "f55", "f56", "f57",
2451 "f58", "f59", "f60", "f61", "f62", "f63"
2452 };
2453 return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2454 }
2455
2456 return tdesc_register_name (gdbarch, regno);
2457 }
2458
2459 /* Return the GDB type object for the "standard" data type of data in
2460 register N. */
2461
2462 static struct type *
2463 rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2464 {
2465 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2466
2467 /* These are the only pseudo-registers we support. */
2468 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2469 || IS_DFP_PSEUDOREG (tdep, regnum)
2470 || IS_VSX_PSEUDOREG (tdep, regnum)
2471 || IS_EFP_PSEUDOREG (tdep, regnum));
2472
2473 /* These are the e500 pseudo-registers. */
2474 if (IS_SPE_PSEUDOREG (tdep, regnum))
2475 return rs6000_builtin_type_vec64 (gdbarch);
2476 else if (IS_DFP_PSEUDOREG (tdep, regnum))
2477 /* PPC decimal128 pseudo-registers. */
2478 return builtin_type (gdbarch)->builtin_declong;
2479 else if (IS_VSX_PSEUDOREG (tdep, regnum))
2480 /* POWER7 VSX pseudo-registers. */
2481 return rs6000_builtin_type_vec128 (gdbarch);
2482 else
2483 /* POWER7 Extended FP pseudo-registers. */
2484 return builtin_type (gdbarch)->builtin_double;
2485 }
2486
2487 /* Is REGNUM a member of REGGROUP? */
2488 static int
2489 rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2490 struct reggroup *group)
2491 {
2492 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2493
2494 /* These are the only pseudo-registers we support. */
2495 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2496 || IS_DFP_PSEUDOREG (tdep, regnum)
2497 || IS_VSX_PSEUDOREG (tdep, regnum)
2498 || IS_EFP_PSEUDOREG (tdep, regnum));
2499
2500 /* These are the e500 pseudo-registers or the POWER7 VSX registers. */
2501 if (IS_SPE_PSEUDOREG (tdep, regnum) || IS_VSX_PSEUDOREG (tdep, regnum))
2502 return group == all_reggroup || group == vector_reggroup;
2503 else
2504 /* PPC decimal128 or Extended FP pseudo-registers. */
2505 return group == all_reggroup || group == float_reggroup;
2506 }
2507
2508 /* The register format for RS/6000 floating point registers is always
2509 double, we need a conversion if the memory format is float. */
2510
2511 static int
2512 rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2513 struct type *type)
2514 {
2515 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2516
2517 return (tdep->ppc_fp0_regnum >= 0
2518 && regnum >= tdep->ppc_fp0_regnum
2519 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2520 && TYPE_CODE (type) == TYPE_CODE_FLT
2521 && TYPE_LENGTH (type)
2522 != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
2523 }
2524
2525 static int
2526 rs6000_register_to_value (struct frame_info *frame,
2527 int regnum,
2528 struct type *type,
2529 gdb_byte *to,
2530 int *optimizedp, int *unavailablep)
2531 {
2532 struct gdbarch *gdbarch = get_frame_arch (frame);
2533 gdb_byte from[MAX_REGISTER_SIZE];
2534
2535 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2536
2537 if (!get_frame_register_bytes (frame, regnum, 0,
2538 register_size (gdbarch, regnum),
2539 from, optimizedp, unavailablep))
2540 return 0;
2541
2542 convert_typed_floating (from, builtin_type (gdbarch)->builtin_double,
2543 to, type);
2544 *optimizedp = *unavailablep = 0;
2545 return 1;
2546 }
2547
2548 static void
2549 rs6000_value_to_register (struct frame_info *frame,
2550 int regnum,
2551 struct type *type,
2552 const gdb_byte *from)
2553 {
2554 struct gdbarch *gdbarch = get_frame_arch (frame);
2555 gdb_byte to[MAX_REGISTER_SIZE];
2556
2557 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2558
2559 convert_typed_floating (from, type,
2560 to, builtin_type (gdbarch)->builtin_double);
2561 put_frame_register (frame, regnum, to);
2562 }
2563
2564 /* The type of a function that moves the value of REG between CACHE
2565 or BUF --- in either direction. */
2566 typedef enum register_status (*move_ev_register_func) (struct regcache *,
2567 int, void *);
2568
2569 /* Move SPE vector register values between a 64-bit buffer and the two
2570 32-bit raw register halves in a regcache. This function handles
2571 both splitting a 64-bit value into two 32-bit halves, and joining
2572 two halves into a whole 64-bit value, depending on the function
2573 passed as the MOVE argument.
2574
2575 EV_REG must be the number of an SPE evN vector register --- a
2576 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2577 64-bit buffer.
2578
2579 Call MOVE once for each 32-bit half of that register, passing
2580 REGCACHE, the number of the raw register corresponding to that
2581 half, and the address of the appropriate half of BUFFER.
2582
2583 For example, passing 'regcache_raw_read' as the MOVE function will
2584 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2585 'regcache_raw_supply' will supply the contents of BUFFER to the
2586 appropriate pair of raw registers in REGCACHE.
2587
2588 You may need to cast away some 'const' qualifiers when passing
2589 MOVE, since this function can't tell at compile-time which of
2590 REGCACHE or BUFFER is acting as the source of the data. If C had
2591 co-variant type qualifiers, ... */
2592
2593 static enum register_status
2594 e500_move_ev_register (move_ev_register_func move,
2595 struct regcache *regcache, int ev_reg, void *buffer)
2596 {
2597 struct gdbarch *arch = get_regcache_arch (regcache);
2598 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2599 int reg_index;
2600 gdb_byte *byte_buffer = buffer;
2601 enum register_status status;
2602
2603 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2604
2605 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2606
2607 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2608 {
2609 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2610 byte_buffer);
2611 if (status == REG_VALID)
2612 status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
2613 byte_buffer + 4);
2614 }
2615 else
2616 {
2617 status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2618 if (status == REG_VALID)
2619 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2620 byte_buffer + 4);
2621 }
2622
2623 return status;
2624 }
2625
2626 static enum register_status
2627 do_regcache_raw_read (struct regcache *regcache, int regnum, void *buffer)
2628 {
2629 return regcache_raw_read (regcache, regnum, buffer);
2630 }
2631
2632 static enum register_status
2633 do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
2634 {
2635 regcache_raw_write (regcache, regnum, buffer);
2636
2637 return REG_VALID;
2638 }
2639
2640 static enum register_status
2641 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2642 int reg_nr, gdb_byte *buffer)
2643 {
2644 return e500_move_ev_register (do_regcache_raw_read, regcache, reg_nr, buffer);
2645 }
2646
2647 static void
2648 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2649 int reg_nr, const gdb_byte *buffer)
2650 {
2651 e500_move_ev_register (do_regcache_raw_write, regcache,
2652 reg_nr, (void *) buffer);
2653 }
2654
2655 /* Read method for DFP pseudo-registers. */
2656 static enum register_status
2657 dfp_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2658 int reg_nr, gdb_byte *buffer)
2659 {
2660 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2661 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2662 enum register_status status;
2663
2664 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2665 {
2666 /* Read two FP registers to form a whole dl register. */
2667 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2668 2 * reg_index, buffer);
2669 if (status == REG_VALID)
2670 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2671 2 * reg_index + 1, buffer + 8);
2672 }
2673 else
2674 {
2675 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2676 2 * reg_index + 1, buffer);
2677 if (status == REG_VALID)
2678 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2679 2 * reg_index, buffer + 8);
2680 }
2681
2682 return status;
2683 }
2684
2685 /* Write method for DFP pseudo-registers. */
2686 static void
2687 dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2688 int reg_nr, const gdb_byte *buffer)
2689 {
2690 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2691 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2692
2693 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2694 {
2695 /* Write each half of the dl register into a separate
2696 FP register. */
2697 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2698 2 * reg_index, buffer);
2699 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2700 2 * reg_index + 1, buffer + 8);
2701 }
2702 else
2703 {
2704 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2705 2 * reg_index + 1, buffer);
2706 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2707 2 * reg_index, buffer + 8);
2708 }
2709 }
2710
2711 /* Read method for POWER7 VSX pseudo-registers. */
2712 static enum register_status
2713 vsx_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2714 int reg_nr, gdb_byte *buffer)
2715 {
2716 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2717 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2718 enum register_status status;
2719
2720 /* Read the portion that overlaps the VMX registers. */
2721 if (reg_index > 31)
2722 status = regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
2723 reg_index - 32, buffer);
2724 else
2725 /* Read the portion that overlaps the FPR registers. */
2726 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2727 {
2728 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2729 reg_index, buffer);
2730 if (status == REG_VALID)
2731 status = regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2732 reg_index, buffer + 8);
2733 }
2734 else
2735 {
2736 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2737 reg_index, buffer + 8);
2738 if (status == REG_VALID)
2739 status = regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2740 reg_index, buffer);
2741 }
2742
2743 return status;
2744 }
2745
2746 /* Write method for POWER7 VSX pseudo-registers. */
2747 static void
2748 vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2749 int reg_nr, const gdb_byte *buffer)
2750 {
2751 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2752 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2753
2754 /* Write the portion that overlaps the VMX registers. */
2755 if (reg_index > 31)
2756 regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
2757 reg_index - 32, buffer);
2758 else
2759 /* Write the portion that overlaps the FPR registers. */
2760 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2761 {
2762 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2763 reg_index, buffer);
2764 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2765 reg_index, buffer + 8);
2766 }
2767 else
2768 {
2769 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2770 reg_index, buffer + 8);
2771 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2772 reg_index, buffer);
2773 }
2774 }
2775
2776 /* Read method for POWER7 Extended FP pseudo-registers. */
2777 static enum register_status
2778 efpr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2779 int reg_nr, gdb_byte *buffer)
2780 {
2781 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2782 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2783 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2784
2785 /* Read the portion that overlaps the VMX register. */
2786 return regcache_raw_read_part (regcache, tdep->ppc_vr0_regnum + reg_index,
2787 offset, register_size (gdbarch, reg_nr),
2788 buffer);
2789 }
2790
2791 /* Write method for POWER7 Extended FP pseudo-registers. */
2792 static void
2793 efpr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2794 int reg_nr, const gdb_byte *buffer)
2795 {
2796 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2797 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2798 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2799
2800 /* Write the portion that overlaps the VMX register. */
2801 regcache_raw_write_part (regcache, tdep->ppc_vr0_regnum + reg_index,
2802 offset, register_size (gdbarch, reg_nr),
2803 buffer);
2804 }
2805
2806 static enum register_status
2807 rs6000_pseudo_register_read (struct gdbarch *gdbarch,
2808 struct regcache *regcache,
2809 int reg_nr, gdb_byte *buffer)
2810 {
2811 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2812 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2813
2814 gdb_assert (regcache_arch == gdbarch);
2815
2816 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2817 return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2818 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2819 return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2820 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2821 return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2822 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2823 return efpr_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2824 else
2825 internal_error (__FILE__, __LINE__,
2826 _("rs6000_pseudo_register_read: "
2827 "called on unexpected register '%s' (%d)"),
2828 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2829 }
2830
2831 static void
2832 rs6000_pseudo_register_write (struct gdbarch *gdbarch,
2833 struct regcache *regcache,
2834 int reg_nr, const gdb_byte *buffer)
2835 {
2836 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2837 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2838
2839 gdb_assert (regcache_arch == gdbarch);
2840
2841 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2842 e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2843 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2844 dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2845 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2846 vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2847 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2848 efpr_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2849 else
2850 internal_error (__FILE__, __LINE__,
2851 _("rs6000_pseudo_register_write: "
2852 "called on unexpected register '%s' (%d)"),
2853 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2854 }
2855
2856 /* Convert a DBX STABS register number to a GDB register number. */
2857 static int
2858 rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
2859 {
2860 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2861
2862 if (0 <= num && num <= 31)
2863 return tdep->ppc_gp0_regnum + num;
2864 else if (32 <= num && num <= 63)
2865 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2866 specifies registers the architecture doesn't have? Our
2867 callers don't check the value we return. */
2868 return tdep->ppc_fp0_regnum + (num - 32);
2869 else if (77 <= num && num <= 108)
2870 return tdep->ppc_vr0_regnum + (num - 77);
2871 else if (1200 <= num && num < 1200 + 32)
2872 return tdep->ppc_ev0_upper_regnum + (num - 1200);
2873 else
2874 switch (num)
2875 {
2876 case 64:
2877 return tdep->ppc_mq_regnum;
2878 case 65:
2879 return tdep->ppc_lr_regnum;
2880 case 66:
2881 return tdep->ppc_ctr_regnum;
2882 case 76:
2883 return tdep->ppc_xer_regnum;
2884 case 109:
2885 return tdep->ppc_vrsave_regnum;
2886 case 110:
2887 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2888 case 111:
2889 return tdep->ppc_acc_regnum;
2890 case 112:
2891 return tdep->ppc_spefscr_regnum;
2892 default:
2893 return num;
2894 }
2895 }
2896
2897
2898 /* Convert a Dwarf 2 register number to a GDB register number. */
2899 static int
2900 rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
2901 {
2902 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2903
2904 if (0 <= num && num <= 31)
2905 return tdep->ppc_gp0_regnum + num;
2906 else if (32 <= num && num <= 63)
2907 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2908 specifies registers the architecture doesn't have? Our
2909 callers don't check the value we return. */
2910 return tdep->ppc_fp0_regnum + (num - 32);
2911 else if (1124 <= num && num < 1124 + 32)
2912 return tdep->ppc_vr0_regnum + (num - 1124);
2913 else if (1200 <= num && num < 1200 + 32)
2914 return tdep->ppc_ev0_upper_regnum + (num - 1200);
2915 else
2916 switch (num)
2917 {
2918 case 64:
2919 return tdep->ppc_cr_regnum;
2920 case 67:
2921 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2922 case 99:
2923 return tdep->ppc_acc_regnum;
2924 case 100:
2925 return tdep->ppc_mq_regnum;
2926 case 101:
2927 return tdep->ppc_xer_regnum;
2928 case 108:
2929 return tdep->ppc_lr_regnum;
2930 case 109:
2931 return tdep->ppc_ctr_regnum;
2932 case 356:
2933 return tdep->ppc_vrsave_regnum;
2934 case 612:
2935 return tdep->ppc_spefscr_regnum;
2936 default:
2937 return num;
2938 }
2939 }
2940
2941 /* Translate a .eh_frame register to DWARF register, or adjust a
2942 .debug_frame register. */
2943
2944 static int
2945 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
2946 {
2947 /* GCC releases before 3.4 use GCC internal register numbering in
2948 .debug_frame (and .debug_info, et cetera). The numbering is
2949 different from the standard SysV numbering for everything except
2950 for GPRs and FPRs. We can not detect this problem in most cases
2951 - to get accurate debug info for variables living in lr, ctr, v0,
2952 et cetera, use a newer version of GCC. But we must detect
2953 one important case - lr is in column 65 in .debug_frame output,
2954 instead of 108.
2955
2956 GCC 3.4, and the "hammer" branch, have a related problem. They
2957 record lr register saves in .debug_frame as 108, but still record
2958 the return column as 65. We fix that up too.
2959
2960 We can do this because 65 is assigned to fpsr, and GCC never
2961 generates debug info referring to it. To add support for
2962 handwritten debug info that restores fpsr, we would need to add a
2963 producer version check to this. */
2964 if (!eh_frame_p)
2965 {
2966 if (num == 65)
2967 return 108;
2968 else
2969 return num;
2970 }
2971
2972 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
2973 internal register numbering; translate that to the standard DWARF2
2974 register numbering. */
2975 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
2976 return num;
2977 else if (68 <= num && num <= 75) /* cr0-cr8 */
2978 return num - 68 + 86;
2979 else if (77 <= num && num <= 108) /* vr0-vr31 */
2980 return num - 77 + 1124;
2981 else
2982 switch (num)
2983 {
2984 case 64: /* mq */
2985 return 100;
2986 case 65: /* lr */
2987 return 108;
2988 case 66: /* ctr */
2989 return 109;
2990 case 76: /* xer */
2991 return 101;
2992 case 109: /* vrsave */
2993 return 356;
2994 case 110: /* vscr */
2995 return 67;
2996 case 111: /* spe_acc */
2997 return 99;
2998 case 112: /* spefscr */
2999 return 612;
3000 default:
3001 return num;
3002 }
3003 }
3004 \f
3005
3006 /* Handling the various POWER/PowerPC variants. */
3007
3008 /* Information about a particular processor variant. */
3009
3010 struct variant
3011 {
3012 /* Name of this variant. */
3013 char *name;
3014
3015 /* English description of the variant. */
3016 char *description;
3017
3018 /* bfd_arch_info.arch corresponding to variant. */
3019 enum bfd_architecture arch;
3020
3021 /* bfd_arch_info.mach corresponding to variant. */
3022 unsigned long mach;
3023
3024 /* Target description for this variant. */
3025 struct target_desc **tdesc;
3026 };
3027
3028 static struct variant variants[] =
3029 {
3030 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
3031 bfd_mach_ppc, &tdesc_powerpc_altivec32},
3032 {"power", "POWER user-level", bfd_arch_rs6000,
3033 bfd_mach_rs6k, &tdesc_rs6000},
3034 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
3035 bfd_mach_ppc_403, &tdesc_powerpc_403},
3036 {"405", "IBM PowerPC 405", bfd_arch_powerpc,
3037 bfd_mach_ppc_405, &tdesc_powerpc_405},
3038 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
3039 bfd_mach_ppc_601, &tdesc_powerpc_601},
3040 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
3041 bfd_mach_ppc_602, &tdesc_powerpc_602},
3042 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
3043 bfd_mach_ppc_603, &tdesc_powerpc_603},
3044 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
3045 604, &tdesc_powerpc_604},
3046 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
3047 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
3048 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
3049 bfd_mach_ppc_505, &tdesc_powerpc_505},
3050 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
3051 bfd_mach_ppc_860, &tdesc_powerpc_860},
3052 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
3053 bfd_mach_ppc_750, &tdesc_powerpc_750},
3054 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
3055 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
3056 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
3057 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
3058
3059 /* 64-bit */
3060 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
3061 bfd_mach_ppc64, &tdesc_powerpc_altivec64},
3062 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
3063 bfd_mach_ppc_620, &tdesc_powerpc_64},
3064 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
3065 bfd_mach_ppc_630, &tdesc_powerpc_64},
3066 {"a35", "PowerPC A35", bfd_arch_powerpc,
3067 bfd_mach_ppc_a35, &tdesc_powerpc_64},
3068 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
3069 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
3070 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
3071 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
3072
3073 /* FIXME: I haven't checked the register sets of the following. */
3074 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
3075 bfd_mach_rs6k_rs1, &tdesc_rs6000},
3076 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
3077 bfd_mach_rs6k_rsc, &tdesc_rs6000},
3078 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
3079 bfd_mach_rs6k_rs2, &tdesc_rs6000},
3080
3081 {0, 0, 0, 0, 0}
3082 };
3083
3084 /* Return the variant corresponding to architecture ARCH and machine number
3085 MACH. If no such variant exists, return null. */
3086
3087 static const struct variant *
3088 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
3089 {
3090 const struct variant *v;
3091
3092 for (v = variants; v->name; v++)
3093 if (arch == v->arch && mach == v->mach)
3094 return v;
3095
3096 return NULL;
3097 }
3098
3099 static int
3100 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
3101 {
3102 if (info->endian == BFD_ENDIAN_BIG)
3103 return print_insn_big_powerpc (memaddr, info);
3104 else
3105 return print_insn_little_powerpc (memaddr, info);
3106 }
3107 \f
3108 static CORE_ADDR
3109 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3110 {
3111 return frame_unwind_register_unsigned (next_frame,
3112 gdbarch_pc_regnum (gdbarch));
3113 }
3114
3115 static struct frame_id
3116 rs6000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
3117 {
3118 return frame_id_build (get_frame_register_unsigned
3119 (this_frame, gdbarch_sp_regnum (gdbarch)),
3120 get_frame_pc (this_frame));
3121 }
3122
3123 struct rs6000_frame_cache
3124 {
3125 CORE_ADDR base;
3126 CORE_ADDR initial_sp;
3127 struct trad_frame_saved_reg *saved_regs;
3128 };
3129
3130 static struct rs6000_frame_cache *
3131 rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
3132 {
3133 struct rs6000_frame_cache *cache;
3134 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3135 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3136 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3137 struct rs6000_framedata fdata;
3138 int wordsize = tdep->wordsize;
3139 CORE_ADDR func, pc;
3140
3141 if ((*this_cache) != NULL)
3142 return (*this_cache);
3143 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3144 (*this_cache) = cache;
3145 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3146
3147 func = get_frame_func (this_frame);
3148 pc = get_frame_pc (this_frame);
3149 skip_prologue (gdbarch, func, pc, &fdata);
3150
3151 /* Figure out the parent's stack pointer. */
3152
3153 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3154 address of the current frame. Things might be easier if the
3155 ->frame pointed to the outer-most address of the frame. In
3156 the mean time, the address of the prev frame is used as the
3157 base address of this frame. */
3158 cache->base = get_frame_register_unsigned
3159 (this_frame, gdbarch_sp_regnum (gdbarch));
3160
3161 /* If the function appears to be frameless, check a couple of likely
3162 indicators that we have simply failed to find the frame setup.
3163 Two common cases of this are missing symbols (i.e.
3164 get_frame_func returns the wrong address or 0), and assembly
3165 stubs which have a fast exit path but set up a frame on the slow
3166 path.
3167
3168 If the LR appears to return to this function, then presume that
3169 we have an ABI compliant frame that we failed to find. */
3170 if (fdata.frameless && fdata.lr_offset == 0)
3171 {
3172 CORE_ADDR saved_lr;
3173 int make_frame = 0;
3174
3175 saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3176 if (func == 0 && saved_lr == pc)
3177 make_frame = 1;
3178 else if (func != 0)
3179 {
3180 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3181 if (func == saved_func)
3182 make_frame = 1;
3183 }
3184
3185 if (make_frame)
3186 {
3187 fdata.frameless = 0;
3188 fdata.lr_offset = tdep->lr_frame_offset;
3189 }
3190 }
3191
3192 if (!fdata.frameless)
3193 /* Frameless really means stackless. */
3194 cache->base
3195 = read_memory_unsigned_integer (cache->base, wordsize, byte_order);
3196
3197 trad_frame_set_value (cache->saved_regs,
3198 gdbarch_sp_regnum (gdbarch), cache->base);
3199
3200 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3201 All fpr's from saved_fpr to fp31 are saved. */
3202
3203 if (fdata.saved_fpr >= 0)
3204 {
3205 int i;
3206 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3207
3208 /* If skip_prologue says floating-point registers were saved,
3209 but the current architecture has no floating-point registers,
3210 then that's strange. But we have no indices to even record
3211 the addresses under, so we just ignore it. */
3212 if (ppc_floating_point_unit_p (gdbarch))
3213 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3214 {
3215 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3216 fpr_addr += 8;
3217 }
3218 }
3219
3220 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3221 All gpr's from saved_gpr to gpr31 are saved (except during the
3222 prologue). */
3223
3224 if (fdata.saved_gpr >= 0)
3225 {
3226 int i;
3227 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3228 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3229 {
3230 if (fdata.gpr_mask & (1U << i))
3231 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3232 gpr_addr += wordsize;
3233 }
3234 }
3235
3236 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3237 All vr's from saved_vr to vr31 are saved. */
3238 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3239 {
3240 if (fdata.saved_vr >= 0)
3241 {
3242 int i;
3243 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3244 for (i = fdata.saved_vr; i < 32; i++)
3245 {
3246 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3247 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3248 }
3249 }
3250 }
3251
3252 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3253 All vr's from saved_ev to ev31 are saved. ????? */
3254 if (tdep->ppc_ev0_regnum != -1)
3255 {
3256 if (fdata.saved_ev >= 0)
3257 {
3258 int i;
3259 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3260 CORE_ADDR off = (byte_order == BFD_ENDIAN_BIG ? 4 : 0);
3261
3262 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3263 {
3264 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3265 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + off;
3266 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3267 }
3268 }
3269 }
3270
3271 /* If != 0, fdata.cr_offset is the offset from the frame that
3272 holds the CR. */
3273 if (fdata.cr_offset != 0)
3274 cache->saved_regs[tdep->ppc_cr_regnum].addr
3275 = cache->base + fdata.cr_offset;
3276
3277 /* If != 0, fdata.lr_offset is the offset from the frame that
3278 holds the LR. */
3279 if (fdata.lr_offset != 0)
3280 cache->saved_regs[tdep->ppc_lr_regnum].addr
3281 = cache->base + fdata.lr_offset;
3282 else if (fdata.lr_register != -1)
3283 cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
3284 /* The PC is found in the link register. */
3285 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3286 cache->saved_regs[tdep->ppc_lr_regnum];
3287
3288 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3289 holds the VRSAVE. */
3290 if (fdata.vrsave_offset != 0)
3291 cache->saved_regs[tdep->ppc_vrsave_regnum].addr
3292 = cache->base + fdata.vrsave_offset;
3293
3294 if (fdata.alloca_reg < 0)
3295 /* If no alloca register used, then fi->frame is the value of the
3296 %sp for this frame, and it is good enough. */
3297 cache->initial_sp
3298 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3299 else
3300 cache->initial_sp
3301 = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
3302
3303 return cache;
3304 }
3305
3306 static void
3307 rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
3308 struct frame_id *this_id)
3309 {
3310 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3311 this_cache);
3312 /* This marks the outermost frame. */
3313 if (info->base == 0)
3314 return;
3315
3316 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3317 }
3318
3319 static struct value *
3320 rs6000_frame_prev_register (struct frame_info *this_frame,
3321 void **this_cache, int regnum)
3322 {
3323 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3324 this_cache);
3325 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3326 }
3327
3328 static const struct frame_unwind rs6000_frame_unwind =
3329 {
3330 NORMAL_FRAME,
3331 default_frame_unwind_stop_reason,
3332 rs6000_frame_this_id,
3333 rs6000_frame_prev_register,
3334 NULL,
3335 default_frame_sniffer
3336 };
3337 \f
3338
3339 static CORE_ADDR
3340 rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
3341 {
3342 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3343 this_cache);
3344 return info->initial_sp;
3345 }
3346
3347 static const struct frame_base rs6000_frame_base = {
3348 &rs6000_frame_unwind,
3349 rs6000_frame_base_address,
3350 rs6000_frame_base_address,
3351 rs6000_frame_base_address
3352 };
3353
3354 static const struct frame_base *
3355 rs6000_frame_base_sniffer (struct frame_info *this_frame)
3356 {
3357 return &rs6000_frame_base;
3358 }
3359
3360 /* DWARF-2 frame support. Used to handle the detection of
3361 clobbered registers during function calls. */
3362
3363 static void
3364 ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3365 struct dwarf2_frame_state_reg *reg,
3366 struct frame_info *this_frame)
3367 {
3368 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3369
3370 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3371 non-volatile registers. We will use the same code for both. */
3372
3373 /* Call-saved GP registers. */
3374 if ((regnum >= tdep->ppc_gp0_regnum + 14
3375 && regnum <= tdep->ppc_gp0_regnum + 31)
3376 || (regnum == tdep->ppc_gp0_regnum + 1))
3377 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3378
3379 /* Call-clobbered GP registers. */
3380 if ((regnum >= tdep->ppc_gp0_regnum + 3
3381 && regnum <= tdep->ppc_gp0_regnum + 12)
3382 || (regnum == tdep->ppc_gp0_regnum))
3383 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3384
3385 /* Deal with FP registers, if supported. */
3386 if (tdep->ppc_fp0_regnum >= 0)
3387 {
3388 /* Call-saved FP registers. */
3389 if ((regnum >= tdep->ppc_fp0_regnum + 14
3390 && regnum <= tdep->ppc_fp0_regnum + 31))
3391 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3392
3393 /* Call-clobbered FP registers. */
3394 if ((regnum >= tdep->ppc_fp0_regnum
3395 && regnum <= tdep->ppc_fp0_regnum + 13))
3396 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3397 }
3398
3399 /* Deal with ALTIVEC registers, if supported. */
3400 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3401 {
3402 /* Call-saved Altivec registers. */
3403 if ((regnum >= tdep->ppc_vr0_regnum + 20
3404 && regnum <= tdep->ppc_vr0_regnum + 31)
3405 || regnum == tdep->ppc_vrsave_regnum)
3406 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3407
3408 /* Call-clobbered Altivec registers. */
3409 if ((regnum >= tdep->ppc_vr0_regnum
3410 && regnum <= tdep->ppc_vr0_regnum + 19))
3411 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3412 }
3413
3414 /* Handle PC register and Stack Pointer correctly. */
3415 if (regnum == gdbarch_pc_regnum (gdbarch))
3416 reg->how = DWARF2_FRAME_REG_RA;
3417 else if (regnum == gdbarch_sp_regnum (gdbarch))
3418 reg->how = DWARF2_FRAME_REG_CFA;
3419 }
3420
3421
3422 /* Return true if a .gnu_attributes section exists in BFD and it
3423 indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
3424 section exists in BFD and it indicates that SPE extensions are in
3425 use. Check the .gnu.attributes section first, as the binary might be
3426 compiled for SPE, but not actually using SPE instructions. */
3427
3428 static int
3429 bfd_uses_spe_extensions (bfd *abfd)
3430 {
3431 asection *sect;
3432 gdb_byte *contents = NULL;
3433 bfd_size_type size;
3434 gdb_byte *ptr;
3435 int success = 0;
3436 int vector_abi;
3437
3438 if (!abfd)
3439 return 0;
3440
3441 #ifdef HAVE_ELF
3442 /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
3443 could be using the SPE vector abi without actually using any spe
3444 bits whatsoever. But it's close enough for now. */
3445 vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
3446 Tag_GNU_Power_ABI_Vector);
3447 if (vector_abi == 3)
3448 return 1;
3449 #endif
3450
3451 sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
3452 if (!sect)
3453 return 0;
3454
3455 size = bfd_get_section_size (sect);
3456 contents = xmalloc (size);
3457 if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
3458 {
3459 xfree (contents);
3460 return 0;
3461 }
3462
3463 /* Parse the .PPC.EMB.apuinfo section. The layout is as follows:
3464
3465 struct {
3466 uint32 name_len;
3467 uint32 data_len;
3468 uint32 type;
3469 char name[name_len rounded up to 4-byte alignment];
3470 char data[data_len];
3471 };
3472
3473 Technically, there's only supposed to be one such structure in a
3474 given apuinfo section, but the linker is not always vigilant about
3475 merging apuinfo sections from input files. Just go ahead and parse
3476 them all, exiting early when we discover the binary uses SPE
3477 insns.
3478
3479 It's not specified in what endianness the information in this
3480 section is stored. Assume that it's the endianness of the BFD. */
3481 ptr = contents;
3482 while (1)
3483 {
3484 unsigned int name_len;
3485 unsigned int data_len;
3486 unsigned int type;
3487
3488 /* If we can't read the first three fields, we're done. */
3489 if (size < 12)
3490 break;
3491
3492 name_len = bfd_get_32 (abfd, ptr);
3493 name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */
3494 data_len = bfd_get_32 (abfd, ptr + 4);
3495 type = bfd_get_32 (abfd, ptr + 8);
3496 ptr += 12;
3497
3498 /* The name must be "APUinfo\0". */
3499 if (name_len != 8
3500 && strcmp ((const char *) ptr, "APUinfo") != 0)
3501 break;
3502 ptr += name_len;
3503
3504 /* The type must be 2. */
3505 if (type != 2)
3506 break;
3507
3508 /* The data is stored as a series of uint32. The upper half of
3509 each uint32 indicates the particular APU used and the lower
3510 half indicates the revision of that APU. We just care about
3511 the upper half. */
3512
3513 /* Not 4-byte quantities. */
3514 if (data_len & 3U)
3515 break;
3516
3517 while (data_len)
3518 {
3519 unsigned int apuinfo = bfd_get_32 (abfd, ptr);
3520 unsigned int apu = apuinfo >> 16;
3521 ptr += 4;
3522 data_len -= 4;
3523
3524 /* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept
3525 either. */
3526 if (apu == 0x100 || apu == 0x101)
3527 {
3528 success = 1;
3529 data_len = 0;
3530 }
3531 }
3532
3533 if (success)
3534 break;
3535 }
3536
3537 xfree (contents);
3538 return success;
3539 }
3540
3541 /* Initialize the current architecture based on INFO. If possible, re-use an
3542 architecture from ARCHES, which is a list of architectures already created
3543 during this debugging session.
3544
3545 Called e.g. at program startup, when reading a core file, and when reading
3546 a binary file. */
3547
3548 static struct gdbarch *
3549 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3550 {
3551 struct gdbarch *gdbarch;
3552 struct gdbarch_tdep *tdep;
3553 int wordsize, from_xcoff_exec, from_elf_exec;
3554 enum bfd_architecture arch;
3555 unsigned long mach;
3556 bfd abfd;
3557 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
3558 int soft_float;
3559 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
3560 enum powerpc_elf_abi elf_abi = POWERPC_ELF_AUTO;
3561 int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0,
3562 have_vsx = 0;
3563 int tdesc_wordsize = -1;
3564 const struct target_desc *tdesc = info.target_desc;
3565 struct tdesc_arch_data *tdesc_data = NULL;
3566 int num_pseudoregs = 0;
3567 int cur_reg;
3568
3569 /* INFO may refer to a binary that is not of the PowerPC architecture,
3570 e.g. when debugging a stand-alone SPE executable on a Cell/B.E. system.
3571 In this case, we must not attempt to infer properties of the (PowerPC
3572 side) of the target system from properties of that executable. Trust
3573 the target description instead. */
3574 if (info.abfd
3575 && bfd_get_arch (info.abfd) != bfd_arch_powerpc
3576 && bfd_get_arch (info.abfd) != bfd_arch_rs6000)
3577 info.abfd = NULL;
3578
3579 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
3580 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3581
3582 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3583 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3584
3585 /* Check word size. If INFO is from a binary file, infer it from
3586 that, else choose a likely default. */
3587 if (from_xcoff_exec)
3588 {
3589 if (bfd_xcoff_is_xcoff64 (info.abfd))
3590 wordsize = 8;
3591 else
3592 wordsize = 4;
3593 }
3594 else if (from_elf_exec)
3595 {
3596 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3597 wordsize = 8;
3598 else
3599 wordsize = 4;
3600 }
3601 else if (tdesc_has_registers (tdesc))
3602 wordsize = -1;
3603 else
3604 {
3605 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3606 wordsize = info.bfd_arch_info->bits_per_word /
3607 info.bfd_arch_info->bits_per_byte;
3608 else
3609 wordsize = 4;
3610 }
3611
3612 /* Get the architecture and machine from the BFD. */
3613 arch = info.bfd_arch_info->arch;
3614 mach = info.bfd_arch_info->mach;
3615
3616 /* For e500 executables, the apuinfo section is of help here. Such
3617 section contains the identifier and revision number of each
3618 Application-specific Processing Unit that is present on the
3619 chip. The content of the section is determined by the assembler
3620 which looks at each instruction and determines which unit (and
3621 which version of it) can execute it. Grovel through the section
3622 looking for relevant e500 APUs. */
3623
3624 if (bfd_uses_spe_extensions (info.abfd))
3625 {
3626 arch = info.bfd_arch_info->arch;
3627 mach = bfd_mach_ppc_e500;
3628 bfd_default_set_arch_mach (&abfd, arch, mach);
3629 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3630 }
3631
3632 /* Find a default target description which describes our register
3633 layout, if we do not already have one. */
3634 if (! tdesc_has_registers (tdesc))
3635 {
3636 const struct variant *v;
3637
3638 /* Choose variant. */
3639 v = find_variant_by_arch (arch, mach);
3640 if (!v)
3641 return NULL;
3642
3643 tdesc = *v->tdesc;
3644 }
3645
3646 gdb_assert (tdesc_has_registers (tdesc));
3647
3648 /* Check any target description for validity. */
3649 if (tdesc_has_registers (tdesc))
3650 {
3651 static const char *const gprs[] = {
3652 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
3653 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
3654 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
3655 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
3656 };
3657 const struct tdesc_feature *feature;
3658 int i, valid_p;
3659 static const char *const msr_names[] = { "msr", "ps" };
3660 static const char *const cr_names[] = { "cr", "cnd" };
3661 static const char *const ctr_names[] = { "ctr", "cnt" };
3662
3663 feature = tdesc_find_feature (tdesc,
3664 "org.gnu.gdb.power.core");
3665 if (feature == NULL)
3666 return NULL;
3667
3668 tdesc_data = tdesc_data_alloc ();
3669
3670 valid_p = 1;
3671 for (i = 0; i < ppc_num_gprs; i++)
3672 valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
3673 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
3674 "pc");
3675 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
3676 "lr");
3677 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
3678 "xer");
3679
3680 /* Allow alternate names for these registers, to accomodate GDB's
3681 historic naming. */
3682 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3683 PPC_MSR_REGNUM, msr_names);
3684 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3685 PPC_CR_REGNUM, cr_names);
3686 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3687 PPC_CTR_REGNUM, ctr_names);
3688
3689 if (!valid_p)
3690 {
3691 tdesc_data_cleanup (tdesc_data);
3692 return NULL;
3693 }
3694
3695 have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
3696 "mq");
3697
3698 tdesc_wordsize = tdesc_register_size (feature, "pc") / 8;
3699 if (wordsize == -1)
3700 wordsize = tdesc_wordsize;
3701
3702 feature = tdesc_find_feature (tdesc,
3703 "org.gnu.gdb.power.fpu");
3704 if (feature != NULL)
3705 {
3706 static const char *const fprs[] = {
3707 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
3708 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
3709 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
3710 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
3711 };
3712 valid_p = 1;
3713 for (i = 0; i < ppc_num_fprs; i++)
3714 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3715 PPC_F0_REGNUM + i, fprs[i]);
3716 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3717 PPC_FPSCR_REGNUM, "fpscr");
3718
3719 if (!valid_p)
3720 {
3721 tdesc_data_cleanup (tdesc_data);
3722 return NULL;
3723 }
3724 have_fpu = 1;
3725 }
3726 else
3727 have_fpu = 0;
3728
3729 /* The DFP pseudo-registers will be available when there are floating
3730 point registers. */
3731 have_dfp = have_fpu;
3732
3733 feature = tdesc_find_feature (tdesc,
3734 "org.gnu.gdb.power.altivec");
3735 if (feature != NULL)
3736 {
3737 static const char *const vector_regs[] = {
3738 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
3739 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
3740 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
3741 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
3742 };
3743
3744 valid_p = 1;
3745 for (i = 0; i < ppc_num_gprs; i++)
3746 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3747 PPC_VR0_REGNUM + i,
3748 vector_regs[i]);
3749 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3750 PPC_VSCR_REGNUM, "vscr");
3751 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3752 PPC_VRSAVE_REGNUM, "vrsave");
3753
3754 if (have_spe || !valid_p)
3755 {
3756 tdesc_data_cleanup (tdesc_data);
3757 return NULL;
3758 }
3759 have_altivec = 1;
3760 }
3761 else
3762 have_altivec = 0;
3763
3764 /* Check for POWER7 VSX registers support. */
3765 feature = tdesc_find_feature (tdesc,
3766 "org.gnu.gdb.power.vsx");
3767
3768 if (feature != NULL)
3769 {
3770 static const char *const vsx_regs[] = {
3771 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
3772 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
3773 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
3774 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
3775 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
3776 "vs30h", "vs31h"
3777 };
3778
3779 valid_p = 1;
3780
3781 for (i = 0; i < ppc_num_vshrs; i++)
3782 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3783 PPC_VSR0_UPPER_REGNUM + i,
3784 vsx_regs[i]);
3785 if (!valid_p)
3786 {
3787 tdesc_data_cleanup (tdesc_data);
3788 return NULL;
3789 }
3790
3791 have_vsx = 1;
3792 }
3793 else
3794 have_vsx = 0;
3795
3796 /* On machines supporting the SPE APU, the general-purpose registers
3797 are 64 bits long. There are SIMD vector instructions to treat them
3798 as pairs of floats, but the rest of the instruction set treats them
3799 as 32-bit registers, and only operates on their lower halves.
3800
3801 In the GDB regcache, we treat their high and low halves as separate
3802 registers. The low halves we present as the general-purpose
3803 registers, and then we have pseudo-registers that stitch together
3804 the upper and lower halves and present them as pseudo-registers.
3805
3806 Thus, the target description is expected to supply the upper
3807 halves separately. */
3808
3809 feature = tdesc_find_feature (tdesc,
3810 "org.gnu.gdb.power.spe");
3811 if (feature != NULL)
3812 {
3813 static const char *const upper_spe[] = {
3814 "ev0h", "ev1h", "ev2h", "ev3h",
3815 "ev4h", "ev5h", "ev6h", "ev7h",
3816 "ev8h", "ev9h", "ev10h", "ev11h",
3817 "ev12h", "ev13h", "ev14h", "ev15h",
3818 "ev16h", "ev17h", "ev18h", "ev19h",
3819 "ev20h", "ev21h", "ev22h", "ev23h",
3820 "ev24h", "ev25h", "ev26h", "ev27h",
3821 "ev28h", "ev29h", "ev30h", "ev31h"
3822 };
3823
3824 valid_p = 1;
3825 for (i = 0; i < ppc_num_gprs; i++)
3826 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3827 PPC_SPE_UPPER_GP0_REGNUM + i,
3828 upper_spe[i]);
3829 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3830 PPC_SPE_ACC_REGNUM, "acc");
3831 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3832 PPC_SPE_FSCR_REGNUM, "spefscr");
3833
3834 if (have_mq || have_fpu || !valid_p)
3835 {
3836 tdesc_data_cleanup (tdesc_data);
3837 return NULL;
3838 }
3839 have_spe = 1;
3840 }
3841 else
3842 have_spe = 0;
3843 }
3844
3845 /* If we have a 64-bit binary on a 32-bit target, complain. Also
3846 complain for a 32-bit binary on a 64-bit target; we do not yet
3847 support that. For instance, the 32-bit ABI routines expect
3848 32-bit GPRs.
3849
3850 As long as there isn't an explicit target description, we'll
3851 choose one based on the BFD architecture and get a word size
3852 matching the binary (probably powerpc:common or
3853 powerpc:common64). So there is only trouble if a 64-bit target
3854 supplies a 64-bit description while debugging a 32-bit
3855 binary. */
3856 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
3857 {
3858 tdesc_data_cleanup (tdesc_data);
3859 return NULL;
3860 }
3861
3862 #ifdef HAVE_ELF
3863 if (from_elf_exec)
3864 {
3865 switch (elf_elfheader (info.abfd)->e_flags & EF_PPC64_ABI)
3866 {
3867 case 1:
3868 elf_abi = POWERPC_ELF_V1;
3869 break;
3870 case 2:
3871 elf_abi = POWERPC_ELF_V2;
3872 break;
3873 default:
3874 break;
3875 }
3876 }
3877
3878 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
3879 {
3880 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
3881 Tag_GNU_Power_ABI_FP))
3882 {
3883 case 1:
3884 soft_float_flag = AUTO_BOOLEAN_FALSE;
3885 break;
3886 case 2:
3887 soft_float_flag = AUTO_BOOLEAN_TRUE;
3888 break;
3889 default:
3890 break;
3891 }
3892 }
3893
3894 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
3895 {
3896 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
3897 Tag_GNU_Power_ABI_Vector))
3898 {
3899 case 1:
3900 vector_abi = POWERPC_VEC_GENERIC;
3901 break;
3902 case 2:
3903 vector_abi = POWERPC_VEC_ALTIVEC;
3904 break;
3905 case 3:
3906 vector_abi = POWERPC_VEC_SPE;
3907 break;
3908 default:
3909 break;
3910 }
3911 }
3912 #endif
3913
3914 /* At this point, the only supported ELF-based 64-bit little-endian
3915 operating system is GNU/Linux, and this uses the ELFv2 ABI by
3916 default. All other supported ELF-based operating systems use the
3917 ELFv1 ABI by default. Therefore, if the ABI marker is missing,
3918 e.g. because we run a legacy binary, or have attached to a process
3919 and have not found any associated binary file, set the default
3920 according to this heuristic. */
3921 if (elf_abi == POWERPC_ELF_AUTO)
3922 {
3923 if (wordsize == 8 && info.byte_order == BFD_ENDIAN_LITTLE)
3924 elf_abi = POWERPC_ELF_V2;
3925 else
3926 elf_abi = POWERPC_ELF_V1;
3927 }
3928
3929 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
3930 soft_float = 1;
3931 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
3932 soft_float = 0;
3933 else
3934 soft_float = !have_fpu;
3935
3936 /* If we have a hard float binary or setting but no floating point
3937 registers, downgrade to soft float anyway. We're still somewhat
3938 useful in this scenario. */
3939 if (!soft_float && !have_fpu)
3940 soft_float = 1;
3941
3942 /* Similarly for vector registers. */
3943 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
3944 vector_abi = POWERPC_VEC_GENERIC;
3945
3946 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
3947 vector_abi = POWERPC_VEC_GENERIC;
3948
3949 if (vector_abi == POWERPC_VEC_AUTO)
3950 {
3951 if (have_altivec)
3952 vector_abi = POWERPC_VEC_ALTIVEC;
3953 else if (have_spe)
3954 vector_abi = POWERPC_VEC_SPE;
3955 else
3956 vector_abi = POWERPC_VEC_GENERIC;
3957 }
3958
3959 /* Do not limit the vector ABI based on available hardware, since we
3960 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
3961
3962 /* Find a candidate among extant architectures. */
3963 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3964 arches != NULL;
3965 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3966 {
3967 /* Word size in the various PowerPC bfd_arch_info structs isn't
3968 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
3969 separate word size check. */
3970 tdep = gdbarch_tdep (arches->gdbarch);
3971 if (tdep && tdep->elf_abi != elf_abi)
3972 continue;
3973 if (tdep && tdep->soft_float != soft_float)
3974 continue;
3975 if (tdep && tdep->vector_abi != vector_abi)
3976 continue;
3977 if (tdep && tdep->wordsize == wordsize)
3978 {
3979 if (tdesc_data != NULL)
3980 tdesc_data_cleanup (tdesc_data);
3981 return arches->gdbarch;
3982 }
3983 }
3984
3985 /* None found, create a new architecture from INFO, whose bfd_arch_info
3986 validity depends on the source:
3987 - executable useless
3988 - rs6000_host_arch() good
3989 - core file good
3990 - "set arch" trust blindly
3991 - GDB startup useless but harmless */
3992
3993 tdep = XCNEW (struct gdbarch_tdep);
3994 tdep->wordsize = wordsize;
3995 tdep->elf_abi = elf_abi;
3996 tdep->soft_float = soft_float;
3997 tdep->vector_abi = vector_abi;
3998
3999 gdbarch = gdbarch_alloc (&info, tdep);
4000
4001 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
4002 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
4003 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
4004 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
4005 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
4006 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
4007 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
4008 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
4009
4010 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
4011 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
4012 tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
4013 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
4014 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
4015 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
4016 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
4017 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
4018
4019 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
4020 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
4021 set_gdbarch_deprecated_fp_regnum (gdbarch, PPC_R0_REGNUM + 1);
4022 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
4023 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
4024
4025 /* The XML specification for PowerPC sensibly calls the MSR "msr".
4026 GDB traditionally called it "ps", though, so let GDB add an
4027 alias. */
4028 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
4029
4030 if (wordsize == 8)
4031 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
4032 else
4033 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
4034
4035 /* Set lr_frame_offset. */
4036 if (wordsize == 8)
4037 tdep->lr_frame_offset = 16;
4038 else
4039 tdep->lr_frame_offset = 4;
4040
4041 if (have_spe || have_dfp || have_vsx)
4042 {
4043 set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
4044 set_gdbarch_pseudo_register_write (gdbarch,
4045 rs6000_pseudo_register_write);
4046 }
4047
4048 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4049
4050 /* Select instruction printer. */
4051 if (arch == bfd_arch_rs6000)
4052 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
4053 else
4054 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
4055
4056 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
4057
4058 if (have_spe)
4059 num_pseudoregs += 32;
4060 if (have_dfp)
4061 num_pseudoregs += 16;
4062 if (have_vsx)
4063 /* Include both VSX and Extended FP registers. */
4064 num_pseudoregs += 96;
4065
4066 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
4067
4068 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
4069 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
4070 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
4071 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
4072 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4073 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
4074 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4075 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
4076 set_gdbarch_char_signed (gdbarch, 0);
4077
4078 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
4079 if (wordsize == 8)
4080 /* PPC64 SYSV. */
4081 set_gdbarch_frame_red_zone_size (gdbarch, 288);
4082
4083 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
4084 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
4085 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
4086
4087 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
4088 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
4089
4090 if (wordsize == 4)
4091 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
4092 else if (wordsize == 8)
4093 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
4094
4095 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
4096 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
4097 set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
4098
4099 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4100 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
4101
4102 /* The value of symbols of type N_SO and N_FUN maybe null when
4103 it shouldn't be. */
4104 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
4105
4106 /* Handles single stepping of atomic sequences. */
4107 set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
4108
4109 /* Not sure on this. FIXMEmgo */
4110 set_gdbarch_frame_args_skip (gdbarch, 8);
4111
4112 /* Helpers for function argument information. */
4113 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
4114
4115 /* Trampoline. */
4116 set_gdbarch_in_solib_return_trampoline
4117 (gdbarch, rs6000_in_solib_return_trampoline);
4118 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
4119
4120 /* Hook in the DWARF CFI frame unwinder. */
4121 dwarf2_append_unwinders (gdbarch);
4122 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
4123
4124 /* Frame handling. */
4125 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
4126
4127 /* Setup displaced stepping. */
4128 set_gdbarch_displaced_step_copy_insn (gdbarch,
4129 simple_displaced_step_copy_insn);
4130 set_gdbarch_displaced_step_hw_singlestep (gdbarch,
4131 ppc_displaced_step_hw_singlestep);
4132 set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
4133 set_gdbarch_displaced_step_free_closure (gdbarch,
4134 simple_displaced_step_free_closure);
4135 set_gdbarch_displaced_step_location (gdbarch,
4136 displaced_step_at_entry_point);
4137
4138 set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
4139
4140 /* Hook in ABI-specific overrides, if they have been registered. */
4141 info.target_desc = tdesc;
4142 info.tdep_info = (void *) tdesc_data;
4143 gdbarch_init_osabi (info, gdbarch);
4144
4145 switch (info.osabi)
4146 {
4147 case GDB_OSABI_LINUX:
4148 case GDB_OSABI_NETBSD_AOUT:
4149 case GDB_OSABI_NETBSD_ELF:
4150 case GDB_OSABI_UNKNOWN:
4151 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
4152 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
4153 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
4154 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
4155 break;
4156 default:
4157 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
4158
4159 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
4160 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
4161 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
4162 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
4163 }
4164
4165 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
4166 set_tdesc_pseudo_register_reggroup_p (gdbarch,
4167 rs6000_pseudo_register_reggroup_p);
4168 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
4169
4170 /* Override the normal target description method to make the SPE upper
4171 halves anonymous. */
4172 set_gdbarch_register_name (gdbarch, rs6000_register_name);
4173
4174 /* Choose register numbers for all supported pseudo-registers. */
4175 tdep->ppc_ev0_regnum = -1;
4176 tdep->ppc_dl0_regnum = -1;
4177 tdep->ppc_vsr0_regnum = -1;
4178 tdep->ppc_efpr0_regnum = -1;
4179
4180 cur_reg = gdbarch_num_regs (gdbarch);
4181
4182 if (have_spe)
4183 {
4184 tdep->ppc_ev0_regnum = cur_reg;
4185 cur_reg += 32;
4186 }
4187 if (have_dfp)
4188 {
4189 tdep->ppc_dl0_regnum = cur_reg;
4190 cur_reg += 16;
4191 }
4192 if (have_vsx)
4193 {
4194 tdep->ppc_vsr0_regnum = cur_reg;
4195 cur_reg += 64;
4196 tdep->ppc_efpr0_regnum = cur_reg;
4197 cur_reg += 32;
4198 }
4199
4200 gdb_assert (gdbarch_num_regs (gdbarch)
4201 + gdbarch_num_pseudo_regs (gdbarch) == cur_reg);
4202
4203 /* Register the ravenscar_arch_ops. */
4204 if (mach == bfd_mach_ppc_e500)
4205 register_e500_ravenscar_ops (gdbarch);
4206 else
4207 register_ppc_ravenscar_ops (gdbarch);
4208
4209 return gdbarch;
4210 }
4211
4212 static void
4213 rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
4214 {
4215 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4216
4217 if (tdep == NULL)
4218 return;
4219
4220 /* FIXME: Dump gdbarch_tdep. */
4221 }
4222
4223 /* PowerPC-specific commands. */
4224
4225 static void
4226 set_powerpc_command (char *args, int from_tty)
4227 {
4228 printf_unfiltered (_("\
4229 \"set powerpc\" must be followed by an appropriate subcommand.\n"));
4230 help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
4231 }
4232
4233 static void
4234 show_powerpc_command (char *args, int from_tty)
4235 {
4236 cmd_show_list (showpowerpccmdlist, from_tty, "");
4237 }
4238
4239 static void
4240 powerpc_set_soft_float (char *args, int from_tty,
4241 struct cmd_list_element *c)
4242 {
4243 struct gdbarch_info info;
4244
4245 /* Update the architecture. */
4246 gdbarch_info_init (&info);
4247 if (!gdbarch_update_p (info))
4248 internal_error (__FILE__, __LINE__, _("could not update architecture"));
4249 }
4250
4251 static void
4252 powerpc_set_vector_abi (char *args, int from_tty,
4253 struct cmd_list_element *c)
4254 {
4255 struct gdbarch_info info;
4256 enum powerpc_vector_abi vector_abi;
4257
4258 for (vector_abi = POWERPC_VEC_AUTO;
4259 vector_abi != POWERPC_VEC_LAST;
4260 vector_abi++)
4261 if (strcmp (powerpc_vector_abi_string,
4262 powerpc_vector_strings[vector_abi]) == 0)
4263 {
4264 powerpc_vector_abi_global = vector_abi;
4265 break;
4266 }
4267
4268 if (vector_abi == POWERPC_VEC_LAST)
4269 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
4270 powerpc_vector_abi_string);
4271
4272 /* Update the architecture. */
4273 gdbarch_info_init (&info);
4274 if (!gdbarch_update_p (info))
4275 internal_error (__FILE__, __LINE__, _("could not update architecture"));
4276 }
4277
4278 /* Show the current setting of the exact watchpoints flag. */
4279
4280 static void
4281 show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
4282 struct cmd_list_element *c,
4283 const char *value)
4284 {
4285 fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value);
4286 }
4287
4288 /* Read a PPC instruction from memory. */
4289
4290 static unsigned int
4291 read_insn (struct frame_info *frame, CORE_ADDR pc)
4292 {
4293 struct gdbarch *gdbarch = get_frame_arch (frame);
4294 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4295
4296 return read_memory_unsigned_integer (pc, 4, byte_order);
4297 }
4298
4299 /* Return non-zero if the instructions at PC match the series
4300 described in PATTERN, or zero otherwise. PATTERN is an array of
4301 'struct ppc_insn_pattern' objects, terminated by an entry whose
4302 mask is zero.
4303
4304 When the match is successful, fill INSN[i] with what PATTERN[i]
4305 matched. If PATTERN[i] is optional, and the instruction wasn't
4306 present, set INSN[i] to 0 (which is not a valid PPC instruction).
4307 INSN should have as many elements as PATTERN. Note that, if
4308 PATTERN contains optional instructions which aren't present in
4309 memory, then INSN will have holes, so INSN[i] isn't necessarily the
4310 i'th instruction in memory. */
4311
4312 int
4313 ppc_insns_match_pattern (struct frame_info *frame, CORE_ADDR pc,
4314 struct ppc_insn_pattern *pattern,
4315 unsigned int *insns)
4316 {
4317 int i;
4318 unsigned int insn;
4319
4320 for (i = 0, insn = 0; pattern[i].mask; i++)
4321 {
4322 if (insn == 0)
4323 insn = read_insn (frame, pc);
4324 insns[i] = 0;
4325 if ((insn & pattern[i].mask) == pattern[i].data)
4326 {
4327 insns[i] = insn;
4328 pc += 4;
4329 insn = 0;
4330 }
4331 else if (!pattern[i].optional)
4332 return 0;
4333 }
4334
4335 return 1;
4336 }
4337
4338 /* Return the 'd' field of the d-form instruction INSN, properly
4339 sign-extended. */
4340
4341 CORE_ADDR
4342 ppc_insn_d_field (unsigned int insn)
4343 {
4344 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
4345 }
4346
4347 /* Return the 'ds' field of the ds-form instruction INSN, with the two
4348 zero bits concatenated at the right, and properly
4349 sign-extended. */
4350
4351 CORE_ADDR
4352 ppc_insn_ds_field (unsigned int insn)
4353 {
4354 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
4355 }
4356
4357 /* Initialization code. */
4358
4359 /* -Wmissing-prototypes */
4360 extern initialize_file_ftype _initialize_rs6000_tdep;
4361
4362 void
4363 _initialize_rs6000_tdep (void)
4364 {
4365 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
4366 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
4367
4368 /* Initialize the standard target descriptions. */
4369 initialize_tdesc_powerpc_32 ();
4370 initialize_tdesc_powerpc_altivec32 ();
4371 initialize_tdesc_powerpc_vsx32 ();
4372 initialize_tdesc_powerpc_403 ();
4373 initialize_tdesc_powerpc_403gc ();
4374 initialize_tdesc_powerpc_405 ();
4375 initialize_tdesc_powerpc_505 ();
4376 initialize_tdesc_powerpc_601 ();
4377 initialize_tdesc_powerpc_602 ();
4378 initialize_tdesc_powerpc_603 ();
4379 initialize_tdesc_powerpc_604 ();
4380 initialize_tdesc_powerpc_64 ();
4381 initialize_tdesc_powerpc_altivec64 ();
4382 initialize_tdesc_powerpc_vsx64 ();
4383 initialize_tdesc_powerpc_7400 ();
4384 initialize_tdesc_powerpc_750 ();
4385 initialize_tdesc_powerpc_860 ();
4386 initialize_tdesc_powerpc_e500 ();
4387 initialize_tdesc_rs6000 ();
4388
4389 /* Add root prefix command for all "set powerpc"/"show powerpc"
4390 commands. */
4391 add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
4392 _("Various PowerPC-specific commands."),
4393 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
4394
4395 add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
4396 _("Various PowerPC-specific commands."),
4397 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
4398
4399 /* Add a command to allow the user to force the ABI. */
4400 add_setshow_auto_boolean_cmd ("soft-float", class_support,
4401 &powerpc_soft_float_global,
4402 _("Set whether to use a soft-float ABI."),
4403 _("Show whether to use a soft-float ABI."),
4404 NULL,
4405 powerpc_set_soft_float, NULL,
4406 &setpowerpccmdlist, &showpowerpccmdlist);
4407
4408 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
4409 &powerpc_vector_abi_string,
4410 _("Set the vector ABI."),
4411 _("Show the vector ABI."),
4412 NULL, powerpc_set_vector_abi, NULL,
4413 &setpowerpccmdlist, &showpowerpccmdlist);
4414
4415 add_setshow_boolean_cmd ("exact-watchpoints", class_support,
4416 &target_exact_watchpoints,
4417 _("\
4418 Set whether to use just one debug register for watchpoints on scalars."),
4419 _("\
4420 Show whether to use just one debug register for watchpoints on scalars."),
4421 _("\
4422 If true, GDB will use only one debug register when watching a variable of\n\
4423 scalar type, thus assuming that the variable is accessed through the address\n\
4424 of its first byte."),
4425 NULL, show_powerpc_exact_watchpoints,
4426 &setpowerpccmdlist, &showpowerpccmdlist);
4427 }
This page took 0.122705 seconds and 3 git commands to generate.