* ldlang.c (lang_size_sections): When no address is given for a
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "symtab.h"
24 #include "target.h"
25 #include "gdbcore.h"
26
27 #include "xcoffsolib.h"
28
29 #include <a.out.h>
30
31 extern struct obstack frame_cache_obstack;
32
33 extern int errno;
34
35 /* Nonzero if we just simulated a single step break. */
36 int one_stepped;
37
38 /* Breakpoint shadows for the single step instructions will be kept here. */
39
40 static struct sstep_breaks {
41 /* Address, or 0 if this is not in use. */
42 CORE_ADDR address;
43 /* Shadow contents. */
44 char data[4];
45 } stepBreaks[2];
46
47 /* Static function prototypes */
48
49 static CORE_ADDR
50 find_toc_address PARAMS ((CORE_ADDR pc));
51
52 static CORE_ADDR
53 branch_dest PARAMS ((int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety));
54
55 static void
56 frame_get_cache_fsr PARAMS ((struct frame_info *fi,
57 struct aix_framedata *fdatap));
58
59 /*
60 * Calculate the destination of a branch/jump. Return -1 if not a branch.
61 */
62 static CORE_ADDR
63 branch_dest (opcode, instr, pc, safety)
64 int opcode;
65 int instr;
66 CORE_ADDR pc;
67 CORE_ADDR safety;
68 {
69 register long offset;
70 CORE_ADDR dest;
71 int immediate;
72 int absolute;
73 int ext_op;
74
75 absolute = (int) ((instr >> 1) & 1);
76
77 switch (opcode) {
78 case 18 :
79 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
80
81 case 16 :
82 if (opcode != 18) /* br conditional */
83 immediate = ((instr & ~3) << 16) >> 16;
84 if (absolute)
85 dest = immediate;
86 else
87 dest = pc + immediate;
88 break;
89
90 case 19 :
91 ext_op = (instr>>1) & 0x3ff;
92
93 if (ext_op == 16) /* br conditional register */
94 dest = read_register (LR_REGNUM) & ~3;
95
96 else if (ext_op == 528) /* br cond to count reg */
97 {
98 dest = read_register (CTR_REGNUM) & ~3;
99
100 /* If we are about to execute a system call, dest is something
101 like 0x22fc or 0x3b00. Upon completion the system call
102 will return to the address in the link register. */
103 if (dest < TEXT_SEGMENT_BASE)
104 dest = read_register (LR_REGNUM) & ~3;
105 }
106 else return -1;
107 break;
108
109 default: return -1;
110 }
111 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
112 }
113
114
115
116 /* AIX does not support PT_STEP. Simulate it. */
117
118 void
119 single_step (signal)
120 int signal;
121 {
122 #define INSNLEN(OPCODE) 4
123
124 static char breakp[] = BREAKPOINT;
125 int ii, insn;
126 CORE_ADDR loc;
127 CORE_ADDR breaks[2];
128 int opcode;
129
130 if (!one_stepped) {
131 loc = read_pc ();
132
133 read_memory (loc, (char *) &insn, 4);
134
135 breaks[0] = loc + INSNLEN(insn);
136 opcode = insn >> 26;
137 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
138
139 /* Don't put two breakpoints on the same address. */
140 if (breaks[1] == breaks[0])
141 breaks[1] = -1;
142
143 stepBreaks[1].address = 0;
144
145 for (ii=0; ii < 2; ++ii) {
146
147 /* ignore invalid breakpoint. */
148 if ( breaks[ii] == -1)
149 continue;
150
151 read_memory (breaks[ii], stepBreaks[ii].data, 4);
152
153 write_memory (breaks[ii], breakp, 4);
154 stepBreaks[ii].address = breaks[ii];
155 }
156
157 one_stepped = 1;
158 } else {
159
160 /* remove step breakpoints. */
161 for (ii=0; ii < 2; ++ii)
162 if (stepBreaks[ii].address != 0)
163 write_memory
164 (stepBreaks[ii].address, stepBreaks[ii].data, 4);
165
166 one_stepped = 0;
167 }
168 errno = 0; /* FIXME, don't ignore errors! */
169 /* What errors? {read,write}_memory call error(). */
170 }
171
172
173 /* return pc value after skipping a function prologue. */
174
175 skip_prologue (pc)
176 CORE_ADDR pc;
177 {
178 char buf[4];
179 unsigned int tmp;
180 unsigned long op;
181
182 if (target_read_memory (pc, buf, 4))
183 return pc; /* Can't access it -- assume no prologue. */
184 op = extract_unsigned_integer (buf, 4);
185
186 /* Assume that subsequent fetches can fail with low probability. */
187
188 if (op == 0x7c0802a6) { /* mflr r0 */
189 pc += 4;
190 op = read_memory_integer (pc, 4);
191 }
192
193 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
194 pc += 4;
195 op = read_memory_integer (pc, 4);
196 }
197
198 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
199 pc += 4;
200 op = read_memory_integer (pc, 4);
201
202 /* At this point, make sure this is not a trampoline function
203 (a function that simply calls another functions, and nothing else).
204 If the next is not a nop, this branch was part of the function
205 prologue. */
206
207 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
208 op == 0x0)
209 return pc - 4; /* don't skip over this branch */
210 }
211
212 if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
213 pc += 4; /* store floating register double */
214 op = read_memory_integer (pc, 4);
215 }
216
217 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
218 pc += 4;
219 op = read_memory_integer (pc, 4);
220 }
221
222 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
223 (tmp == 0x9421) || /* stu r1, NUM(r1) */
224 (tmp == 0x93e1)) /* st r31,NUM(r1) */
225 {
226 pc += 4;
227 op = read_memory_integer (pc, 4);
228 }
229
230 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
231 pc += 4; /* l r30, ... */
232 op = read_memory_integer (pc, 4);
233 }
234
235 /* store parameters into stack */
236 while(
237 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
238 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
239 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
240 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
241 {
242 pc += 4; /* store fpr double */
243 op = read_memory_integer (pc, 4);
244 }
245
246 if (op == 0x603f0000) { /* oril r31, r1, 0x0 */
247 pc += 4; /* this happens if r31 is used as */
248 op = read_memory_integer (pc, 4); /* frame ptr. (gcc does that) */
249
250 tmp = 0;
251 while ((op >> 16) == (0x907f + tmp)) { /* st r3, NUM(r31) */
252 pc += 4; /* st r4, NUM(r31), ... */
253 op = read_memory_integer (pc, 4);
254 tmp += 0x20;
255 }
256 }
257 #if 0
258 /* I have problems with skipping over __main() that I need to address
259 * sometime. Previously, I used to use misc_function_vector which
260 * didn't work as well as I wanted to be. -MGO */
261
262 /* If the first thing after skipping a prolog is a branch to a function,
263 this might be a call to an initializer in main(), introduced by gcc2.
264 We'd like to skip over it as well. Fortunately, xlc does some extra
265 work before calling a function right after a prologue, thus we can
266 single out such gcc2 behaviour. */
267
268
269 if ((op & 0xfc000001) == 0x48000001) { /* bl foo, an initializer function? */
270 op = read_memory_integer (pc+4, 4);
271
272 if (op == 0x4def7b82) { /* cror 0xf, 0xf, 0xf (nop) */
273
274 /* check and see if we are in main. If so, skip over this initializer
275 function as well. */
276
277 tmp = find_pc_misc_function (pc);
278 if (tmp >= 0 && STREQ (misc_function_vector [tmp].name, "main"))
279 return pc + 8;
280 }
281 }
282 #endif /* 0 */
283
284 return pc;
285 }
286
287
288 /*************************************************************************
289 Support for creating pushind a dummy frame into the stack, and popping
290 frames, etc.
291 *************************************************************************/
292
293 /* The total size of dummy frame is 436, which is;
294
295 32 gpr's - 128 bytes
296 32 fpr's - 256 "
297 7 the rest - 28 "
298 and 24 extra bytes for the callee's link area. The last 24 bytes
299 for the link area might not be necessary, since it will be taken
300 care of by push_arguments(). */
301
302 #define DUMMY_FRAME_SIZE 436
303
304 #define DUMMY_FRAME_ADDR_SIZE 10
305
306 /* Make sure you initialize these in somewhere, in case gdb gives up what it
307 was debugging and starts debugging something else. FIXMEibm */
308
309 static int dummy_frame_count = 0;
310 static int dummy_frame_size = 0;
311 static CORE_ADDR *dummy_frame_addr = 0;
312
313 extern int stop_stack_dummy;
314
315 /* push a dummy frame into stack, save all register. Currently we are saving
316 only gpr's and fpr's, which is not good enough! FIXMEmgo */
317
318 void
319 push_dummy_frame ()
320 {
321 /* stack pointer. */
322 CORE_ADDR sp;
323
324 /* link register. */
325 CORE_ADDR pc;
326 /* Same thing, target byte order. */
327 char pc_targ[4];
328
329 int ii;
330
331 target_fetch_registers (-1);
332
333 if (dummy_frame_count >= dummy_frame_size) {
334 dummy_frame_size += DUMMY_FRAME_ADDR_SIZE;
335 if (dummy_frame_addr)
336 dummy_frame_addr = (CORE_ADDR*) xrealloc
337 (dummy_frame_addr, sizeof(CORE_ADDR) * (dummy_frame_size));
338 else
339 dummy_frame_addr = (CORE_ADDR*)
340 xmalloc (sizeof(CORE_ADDR) * (dummy_frame_size));
341 }
342
343 sp = read_register(SP_REGNUM);
344 pc = read_register(PC_REGNUM);
345 memcpy (pc_targ, (char *) &pc, 4);
346
347 dummy_frame_addr [dummy_frame_count++] = sp;
348
349 /* Be careful! If the stack pointer is not decremented first, then kernel
350 thinks he is free to use the space underneath it. And kernel actually
351 uses that area for IPC purposes when executing ptrace(2) calls. So
352 before writing register values into the new frame, decrement and update
353 %sp first in order to secure your frame. */
354
355 write_register (SP_REGNUM, sp-DUMMY_FRAME_SIZE);
356
357 /* gdb relies on the state of current_frame. We'd better update it,
358 otherwise things like do_registers_info() wouldn't work properly! */
359
360 flush_cached_frames ();
361 set_current_frame (create_new_frame (sp-DUMMY_FRAME_SIZE, pc));
362
363 /* save program counter in link register's space. */
364 write_memory (sp+8, pc_targ, 4);
365
366 /* save all floating point and general purpose registers here. */
367
368 /* fpr's, f0..f31 */
369 for (ii = 0; ii < 32; ++ii)
370 write_memory (sp-8-(ii*8), &registers[REGISTER_BYTE (31-ii+FP0_REGNUM)], 8);
371
372 /* gpr's r0..r31 */
373 for (ii=1; ii <=32; ++ii)
374 write_memory (sp-256-(ii*4), &registers[REGISTER_BYTE (32-ii)], 4);
375
376 /* so far, 32*2 + 32 words = 384 bytes have been written.
377 7 extra registers in our register set: pc, ps, cnd, lr, cnt, xer, mq */
378
379 for (ii=1; ii <= (LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii) {
380 write_memory (sp-384-(ii*4),
381 &registers[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
382 }
383
384 /* Save sp or so called back chain right here. */
385 write_memory (sp-DUMMY_FRAME_SIZE, &sp, 4);
386 sp -= DUMMY_FRAME_SIZE;
387
388 /* And finally, this is the back chain. */
389 write_memory (sp+8, pc_targ, 4);
390 }
391
392
393 /* Pop a dummy frame.
394
395 In rs6000 when we push a dummy frame, we save all of the registers. This
396 is usually done before user calls a function explicitly.
397
398 After a dummy frame is pushed, some instructions are copied into stack,
399 and stack pointer is decremented even more. Since we don't have a frame
400 pointer to get back to the parent frame of the dummy, we start having
401 trouble poping it. Therefore, we keep a dummy frame stack, keeping
402 addresses of dummy frames as such. When poping happens and when we
403 detect that was a dummy frame, we pop it back to its parent by using
404 dummy frame stack (`dummy_frame_addr' array).
405
406 FIXME: This whole concept is broken. You should be able to detect
407 a dummy stack frame *on the user's stack itself*. When you do,
408 then you know the format of that stack frame -- including its
409 saved SP register! There should *not* be a separate stack in the
410 GDB process that keeps track of these dummy frames! -- gnu@cygnus.com Aug92
411 */
412
413 pop_dummy_frame ()
414 {
415 CORE_ADDR sp, pc;
416 int ii;
417 sp = dummy_frame_addr [--dummy_frame_count];
418
419 /* restore all fpr's. */
420 for (ii = 1; ii <= 32; ++ii)
421 read_memory (sp-(ii*8), &registers[REGISTER_BYTE (32-ii+FP0_REGNUM)], 8);
422
423 /* restore all gpr's */
424 for (ii=1; ii <= 32; ++ii) {
425 read_memory (sp-256-(ii*4), &registers[REGISTER_BYTE (32-ii)], 4);
426 }
427
428 /* restore the rest of the registers. */
429 for (ii=1; ii <=(LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii)
430 read_memory (sp-384-(ii*4),
431 &registers[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4);
432
433 read_memory (sp-(DUMMY_FRAME_SIZE-8),
434 &registers [REGISTER_BYTE(PC_REGNUM)], 4);
435
436 /* when a dummy frame was being pushed, we had to decrement %sp first, in
437 order to secure astack space. Thus, saved %sp (or %r1) value, is not the
438 one we should restore. Change it with the one we need. */
439
440 *(int*)&registers [REGISTER_BYTE(FP_REGNUM)] = sp;
441
442 /* Now we can restore all registers. */
443
444 target_store_registers (-1);
445 pc = read_pc ();
446 flush_cached_frames ();
447 set_current_frame (create_new_frame (sp, pc));
448 }
449
450
451 /* pop the innermost frame, go back to the caller. */
452
453 void
454 pop_frame ()
455 {
456 CORE_ADDR pc, lr, sp, prev_sp; /* %pc, %lr, %sp */
457 struct aix_framedata fdata;
458 FRAME fr = get_current_frame ();
459 int addr, ii;
460
461 pc = read_pc ();
462 sp = FRAME_FP (fr);
463
464 if (stop_stack_dummy && dummy_frame_count) {
465 pop_dummy_frame ();
466 return;
467 }
468
469 /* figure out previous %pc value. If the function is frameless, it is
470 still in the link register, otherwise walk the frames and retrieve the
471 saved %pc value in the previous frame. */
472
473 addr = get_pc_function_start (fr->pc) + FUNCTION_START_OFFSET;
474 function_frame_info (addr, &fdata);
475
476 prev_sp = read_memory_integer (sp, 4);
477 if (fdata.frameless)
478 lr = read_register (LR_REGNUM);
479 else
480 lr = read_memory_integer (prev_sp+8, 4);
481
482 /* reset %pc value. */
483 write_register (PC_REGNUM, lr);
484
485 /* reset register values if any was saved earlier. */
486 addr = prev_sp - fdata.offset;
487
488 if (fdata.saved_gpr != -1)
489 for (ii=fdata.saved_gpr; ii <= 31; ++ii) {
490 read_memory (addr, &registers [REGISTER_BYTE (ii)], 4);
491 addr += 4;
492 }
493
494 if (fdata.saved_fpr != -1)
495 for (ii=fdata.saved_fpr; ii <= 31; ++ii) {
496 read_memory (addr, &registers [REGISTER_BYTE (ii+FP0_REGNUM)], 8);
497 addr += 8;
498 }
499
500 write_register (SP_REGNUM, prev_sp);
501 target_store_registers (-1);
502 flush_cached_frames ();
503 set_current_frame (create_new_frame (prev_sp, lr));
504 }
505
506 /* fixup the call sequence of a dummy function, with the real function address.
507 its argumets will be passed by gdb. */
508
509 void
510 fix_call_dummy(dummyname, pc, fun, nargs, type)
511 char *dummyname;
512 CORE_ADDR pc;
513 CORE_ADDR fun;
514 int nargs; /* not used */
515 int type; /* not used */
516 {
517 #define TOC_ADDR_OFFSET 20
518 #define TARGET_ADDR_OFFSET 28
519
520 int ii;
521 CORE_ADDR target_addr;
522 CORE_ADDR tocvalue;
523
524 target_addr = fun;
525 tocvalue = find_toc_address (target_addr);
526
527 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET);
528 ii = (ii & 0xffff0000) | (tocvalue >> 16);
529 *(int*)((char*)dummyname + TOC_ADDR_OFFSET) = ii;
530
531 ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4);
532 ii = (ii & 0xffff0000) | (tocvalue & 0x0000ffff);
533 *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4) = ii;
534
535 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET);
536 ii = (ii & 0xffff0000) | (target_addr >> 16);
537 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET) = ii;
538
539 ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4);
540 ii = (ii & 0xffff0000) | (target_addr & 0x0000ffff);
541 *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4) = ii;
542 }
543
544
545 /* return information about a function frame.
546 in struct aix_frameinfo fdata:
547 - frameless is TRUE, if function does not have a frame.
548 - nosavedpc is TRUE, if function does not save %pc value in its frame.
549 - offset is the number of bytes used in the frame to save registers.
550 - saved_gpr is the number of the first saved gpr.
551 - saved_fpr is the number of the first saved fpr.
552 - alloca_reg is the number of the register used for alloca() handling.
553 Otherwise -1.
554 */
555 void
556 function_frame_info (pc, fdata)
557 CORE_ADDR pc;
558 struct aix_framedata *fdata;
559 {
560 unsigned int tmp;
561 register unsigned int op;
562
563 fdata->offset = 0;
564 fdata->saved_gpr = fdata->saved_fpr = fdata->alloca_reg = -1;
565 fdata->frameless = 1;
566
567 op = read_memory_integer (pc, 4);
568 if (op == 0x7c0802a6) { /* mflr r0 */
569 pc += 4;
570 op = read_memory_integer (pc, 4);
571 fdata->nosavedpc = 0;
572 fdata->frameless = 0;
573 }
574 else /* else, pc is not saved */
575 fdata->nosavedpc = 1;
576
577 if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */
578 pc += 4;
579 op = read_memory_integer (pc, 4);
580 fdata->frameless = 0;
581 }
582
583 if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */
584 pc += 4;
585 op = read_memory_integer (pc, 4);
586 /* At this point, make sure this is not a trampoline function
587 (a function that simply calls another functions, and nothing else).
588 If the next is not a nop, this branch was part of the function
589 prologue. */
590
591 if (op == 0x4def7b82 || /* crorc 15, 15, 15 */
592 op == 0x0)
593 return; /* prologue is over */
594 fdata->frameless = 0;
595 }
596
597 if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */
598 pc += 4; /* store floating register double */
599 op = read_memory_integer (pc, 4);
600 fdata->frameless = 0;
601 }
602
603 if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */
604 int tmp2;
605 fdata->saved_gpr = (op >> 21) & 0x1f;
606 tmp2 = op & 0xffff;
607 if (tmp2 > 0x7fff)
608 tmp2 = (~0 &~ 0xffff) | tmp2;
609
610 if (tmp2 < 0) {
611 tmp2 = tmp2 * -1;
612 fdata->saved_fpr = (tmp2 - ((32 - fdata->saved_gpr) * 4)) / 8;
613 if ( fdata->saved_fpr > 0)
614 fdata->saved_fpr = 32 - fdata->saved_fpr;
615 else
616 fdata->saved_fpr = -1;
617 }
618 fdata->offset = tmp2;
619 pc += 4;
620 op = read_memory_integer (pc, 4);
621 fdata->frameless = 0;
622 }
623
624 while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */
625 (tmp == 0x9421) || /* stu r1, NUM(r1) */
626 (tmp == 0x93e1)) /* st r31, NUM(r1) */
627 {
628 int tmp2;
629
630 /* gcc takes a short cut and uses this instruction to save r31 only. */
631
632 if (tmp == 0x93e1) {
633 if (fdata->offset)
634 /* fatal ("Unrecognized prolog."); */
635 printf_unfiltered ("Unrecognized prolog!\n");
636
637 fdata->saved_gpr = 31;
638 tmp2 = op & 0xffff;
639 if (tmp2 > 0x7fff) {
640 tmp2 = - ((~0 &~ 0xffff) | tmp2);
641 fdata->saved_fpr = (tmp2 - ((32 - 31) * 4)) / 8;
642 if ( fdata->saved_fpr > 0)
643 fdata->saved_fpr = 32 - fdata->saved_fpr;
644 else
645 fdata->saved_fpr = -1;
646 }
647 fdata->offset = tmp2;
648 }
649 pc += 4;
650 op = read_memory_integer (pc, 4);
651 fdata->frameless = 0;
652 }
653
654 while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */
655 pc += 4; /* l r30, ... */
656 op = read_memory_integer (pc, 4);
657 fdata->frameless = 0;
658 }
659
660 /* store parameters into stack */
661 while(
662 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
663 (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */
664 (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */
665 (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */
666 {
667 pc += 4; /* store fpr double */
668 op = read_memory_integer (pc, 4);
669 fdata->frameless = 0;
670 }
671
672 if (op == 0x603f0000) { /* oril r31, r1, 0x0 */
673 fdata->alloca_reg = 31;
674 fdata->frameless = 0;
675 }
676 }
677
678
679 /* Pass the arguments in either registers, or in the stack. In RS6000, the first
680 eight words of the argument list (that might be less than eight parameters if
681 some parameters occupy more than one word) are passed in r3..r11 registers.
682 float and double parameters are passed in fpr's, in addition to that. Rest of
683 the parameters if any are passed in user stack. There might be cases in which
684 half of the parameter is copied into registers, the other half is pushed into
685 stack.
686
687 If the function is returning a structure, then the return address is passed
688 in r3, then the first 7 words of the parametes can be passed in registers,
689 starting from r4. */
690
691 CORE_ADDR
692 push_arguments (nargs, args, sp, struct_return, struct_addr)
693 int nargs;
694 value_ptr *args;
695 CORE_ADDR sp;
696 int struct_return;
697 CORE_ADDR struct_addr;
698 {
699 int ii, len;
700 int argno; /* current argument number */
701 int argbytes; /* current argument byte */
702 char tmp_buffer [50];
703 value_ptr arg;
704 int f_argno = 0; /* current floating point argno */
705
706 CORE_ADDR saved_sp, pc;
707
708 if ( dummy_frame_count <= 0)
709 printf_unfiltered ("FATAL ERROR -push_arguments()! frame not found!!\n");
710
711 /* The first eight words of ther arguments are passed in registers. Copy
712 them appropriately.
713
714 If the function is returning a `struct', then the first word (which
715 will be passed in r3) is used for struct return address. In that
716 case we should advance one word and start from r4 register to copy
717 parameters. */
718
719 ii = struct_return ? 1 : 0;
720
721 for (argno=0, argbytes=0; argno < nargs && ii<8; ++ii) {
722
723 arg = value_arg_coerce (args[argno]);
724 len = TYPE_LENGTH (VALUE_TYPE (arg));
725
726 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT) {
727
728 /* floating point arguments are passed in fpr's, as well as gpr's.
729 There are 13 fpr's reserved for passing parameters. At this point
730 there is no way we would run out of them. */
731
732 if (len > 8)
733 printf_unfiltered (
734 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
735
736 memcpy (&registers[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], VALUE_CONTENTS (arg),
737 len);
738 ++f_argno;
739 }
740
741 if (len > 4) {
742
743 /* Argument takes more than one register. */
744 while (argbytes < len) {
745
746 *(int*)&registers[REGISTER_BYTE(ii+3)] = 0;
747 memcpy (&registers[REGISTER_BYTE(ii+3)],
748 ((char*)VALUE_CONTENTS (arg))+argbytes,
749 (len - argbytes) > 4 ? 4 : len - argbytes);
750 ++ii, argbytes += 4;
751
752 if (ii >= 8)
753 goto ran_out_of_registers_for_arguments;
754 }
755 argbytes = 0;
756 --ii;
757 }
758 else { /* Argument can fit in one register. No problem. */
759 *(int*)&registers[REGISTER_BYTE(ii+3)] = 0;
760 memcpy (&registers[REGISTER_BYTE(ii+3)], VALUE_CONTENTS (arg), len);
761 }
762 ++argno;
763 }
764
765 ran_out_of_registers_for_arguments:
766
767 /* location for 8 parameters are always reserved. */
768 sp -= 4 * 8;
769
770 /* another six words for back chain, TOC register, link register, etc. */
771 sp -= 24;
772
773 /* if there are more arguments, allocate space for them in
774 the stack, then push them starting from the ninth one. */
775
776 if ((argno < nargs) || argbytes) {
777 int space = 0, jj;
778 value_ptr val;
779
780 if (argbytes) {
781 space += ((len - argbytes + 3) & -4);
782 jj = argno + 1;
783 }
784 else
785 jj = argno;
786
787 for (; jj < nargs; ++jj) {
788 val = value_arg_coerce (args[jj]);
789 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
790 }
791
792 /* add location required for the rest of the parameters */
793 space = (space + 7) & -8;
794 sp -= space;
795
796 /* This is another instance we need to be concerned about securing our
797 stack space. If we write anything underneath %sp (r1), we might conflict
798 with the kernel who thinks he is free to use this area. So, update %sp
799 first before doing anything else. */
800
801 write_register (SP_REGNUM, sp);
802
803 /* if the last argument copied into the registers didn't fit there
804 completely, push the rest of it into stack. */
805
806 if (argbytes) {
807 write_memory (
808 sp+24+(ii*4), ((char*)VALUE_CONTENTS (arg))+argbytes, len - argbytes);
809 ++argno;
810 ii += ((len - argbytes + 3) & -4) / 4;
811 }
812
813 /* push the rest of the arguments into stack. */
814 for (; argno < nargs; ++argno) {
815
816 arg = value_arg_coerce (args[argno]);
817 len = TYPE_LENGTH (VALUE_TYPE (arg));
818
819
820 /* float types should be passed in fpr's, as well as in the stack. */
821 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT && f_argno < 13) {
822
823 if (len > 8)
824 printf_unfiltered (
825 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
826
827 memcpy (&registers[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], VALUE_CONTENTS (arg),
828 len);
829 ++f_argno;
830 }
831
832 write_memory (sp+24+(ii*4), (char *) VALUE_CONTENTS (arg), len);
833 ii += ((len + 3) & -4) / 4;
834 }
835 }
836 else
837 /* Secure stack areas first, before doing anything else. */
838 write_register (SP_REGNUM, sp);
839
840 saved_sp = dummy_frame_addr [dummy_frame_count - 1];
841 read_memory (saved_sp, tmp_buffer, 24);
842 write_memory (sp, tmp_buffer, 24);
843
844 write_memory (sp, &saved_sp, 4); /* set back chain properly */
845
846 target_store_registers (-1);
847 return sp;
848 }
849
850 /* a given return value in `regbuf' with a type `valtype', extract and copy its
851 value into `valbuf' */
852
853 void
854 extract_return_value (valtype, regbuf, valbuf)
855 struct type *valtype;
856 char regbuf[REGISTER_BYTES];
857 char *valbuf;
858 {
859
860 if (TYPE_CODE (valtype) == TYPE_CODE_FLT) {
861
862 double dd; float ff;
863 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
864 We need to truncate the return value into float size (4 byte) if
865 necessary. */
866
867 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
868 memcpy (valbuf, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
869 TYPE_LENGTH (valtype));
870 else { /* float */
871 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
872 ff = (float)dd;
873 memcpy (valbuf, &ff, sizeof(float));
874 }
875 }
876 else
877 /* return value is copied starting from r3. */
878 memcpy (valbuf, &regbuf[REGISTER_BYTE (3)], TYPE_LENGTH (valtype));
879 }
880
881
882 /* keep structure return address in this variable.
883 FIXME: This is a horrid kludge which should not be allowed to continue
884 living. This only allows a single nested call to a structure-returning
885 function. Come on, guys! -- gnu@cygnus.com, Aug 92 */
886
887 CORE_ADDR rs6000_struct_return_address;
888
889
890 /* Indirect function calls use a piece of trampoline code to do context
891 switching, i.e. to set the new TOC table. Skip such code if we are on
892 its first instruction (as when we have single-stepped to here).
893 Result is desired PC to step until, or NULL if we are not in
894 trampoline code. */
895
896 CORE_ADDR
897 skip_trampoline_code (pc)
898 CORE_ADDR pc;
899 {
900 register unsigned int ii, op;
901
902 static unsigned trampoline_code[] = {
903 0x800b0000, /* l r0,0x0(r11) */
904 0x90410014, /* st r2,0x14(r1) */
905 0x7c0903a6, /* mtctr r0 */
906 0x804b0004, /* l r2,0x4(r11) */
907 0x816b0008, /* l r11,0x8(r11) */
908 0x4e800420, /* bctr */
909 0x4e800020, /* br */
910 0
911 };
912
913 for (ii=0; trampoline_code[ii]; ++ii) {
914 op = read_memory_integer (pc + (ii*4), 4);
915 if (op != trampoline_code [ii])
916 return 0;
917 }
918 ii = read_register (11); /* r11 holds destination addr */
919 pc = read_memory_integer (ii, 4); /* (r11) value */
920 return pc;
921 }
922
923
924 /* Determines whether the function FI has a frame on the stack or not.
925 Called from the FRAMELESS_FUNCTION_INVOCATION macro in tm.h with a
926 second argument of 0, and from the FRAME_SAVED_PC macro with a
927 second argument of 1. */
928
929 int
930 frameless_function_invocation (fi, pcsaved)
931 struct frame_info *fi;
932 int pcsaved;
933 {
934 CORE_ADDR func_start;
935 struct aix_framedata fdata;
936
937 if (fi->next != NULL)
938 /* Don't even think about framelessness except on the innermost frame. */
939 /* FIXME: Can also be frameless if fi->next->signal_handler_caller (if
940 a signal happens while executing in a frameless function). */
941 return 0;
942
943 func_start = get_pc_function_start (fi->pc) + FUNCTION_START_OFFSET;
944
945 /* If we failed to find the start of the function, it is a mistake
946 to inspect the instructions. */
947
948 if (!func_start)
949 return 0;
950
951 function_frame_info (func_start, &fdata);
952 return pcsaved ? fdata.nosavedpc : fdata.frameless;
953 }
954
955
956 /* If saved registers of frame FI are not known yet, read and cache them.
957 &FDATAP contains aix_framedata; TDATAP can be NULL,
958 in which case the framedata are read. */
959
960 static void
961 frame_get_cache_fsr (fi, fdatap)
962 struct frame_info *fi;
963 struct aix_framedata *fdatap;
964 {
965 int ii;
966 CORE_ADDR frame_addr;
967 struct aix_framedata work_fdata;
968
969 if (fi->cache_fsr)
970 return;
971
972 if (fdatap == NULL) {
973 fdatap = &work_fdata;
974 function_frame_info (get_pc_function_start (fi->pc), fdatap);
975 }
976
977 fi->cache_fsr = (struct frame_saved_regs *)
978 obstack_alloc (&frame_cache_obstack, sizeof (struct frame_saved_regs));
979 memset (fi->cache_fsr, '\0', sizeof (struct frame_saved_regs));
980
981 if (fi->prev && fi->prev->frame)
982 frame_addr = fi->prev->frame;
983 else
984 frame_addr = read_memory_integer (fi->frame, 4);
985
986 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
987 All fpr's from saved_fpr to fp31 are saved right underneath caller
988 stack pointer, starting from fp31 first. */
989
990 if (fdatap->saved_fpr >= 0) {
991 for (ii=31; ii >= fdatap->saved_fpr; --ii)
992 fi->cache_fsr->regs [FP0_REGNUM + ii] = frame_addr - ((32 - ii) * 8);
993 frame_addr -= (32 - fdatap->saved_fpr) * 8;
994 }
995
996 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
997 All gpr's from saved_gpr to gpr31 are saved right under saved fprs,
998 starting from r31 first. */
999
1000 if (fdatap->saved_gpr >= 0)
1001 for (ii=31; ii >= fdatap->saved_gpr; --ii)
1002 fi->cache_fsr->regs [ii] = frame_addr - ((32 - ii) * 4);
1003 }
1004
1005 /* Return the address of a frame. This is the inital %sp value when the frame
1006 was first allocated. For functions calling alloca(), it might be saved in
1007 an alloca register. */
1008
1009 CORE_ADDR
1010 frame_initial_stack_address (fi)
1011 struct frame_info *fi;
1012 {
1013 CORE_ADDR tmpaddr;
1014 struct aix_framedata fdata;
1015 struct frame_info *callee_fi;
1016
1017 /* if the initial stack pointer (frame address) of this frame is known,
1018 just return it. */
1019
1020 if (fi->initial_sp)
1021 return fi->initial_sp;
1022
1023 /* find out if this function is using an alloca register.. */
1024
1025 function_frame_info (get_pc_function_start (fi->pc), &fdata);
1026
1027 /* if saved registers of this frame are not known yet, read and cache them. */
1028
1029 if (!fi->cache_fsr)
1030 frame_get_cache_fsr (fi, &fdata);
1031
1032 /* If no alloca register used, then fi->frame is the value of the %sp for
1033 this frame, and it is good enough. */
1034
1035 if (fdata.alloca_reg < 0) {
1036 fi->initial_sp = fi->frame;
1037 return fi->initial_sp;
1038 }
1039
1040 /* This function has an alloca register. If this is the top-most frame
1041 (with the lowest address), the value in alloca register is good. */
1042
1043 if (!fi->next)
1044 return fi->initial_sp = read_register (fdata.alloca_reg);
1045
1046 /* Otherwise, this is a caller frame. Callee has usually already saved
1047 registers, but there are exceptions (such as when the callee
1048 has no parameters). Find the address in which caller's alloca
1049 register is saved. */
1050
1051 for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next) {
1052
1053 if (!callee_fi->cache_fsr)
1054 frame_get_cache_fsr (callee_fi, NULL);
1055
1056 /* this is the address in which alloca register is saved. */
1057
1058 tmpaddr = callee_fi->cache_fsr->regs [fdata.alloca_reg];
1059 if (tmpaddr) {
1060 fi->initial_sp = read_memory_integer (tmpaddr, 4);
1061 return fi->initial_sp;
1062 }
1063
1064 /* Go look into deeper levels of the frame chain to see if any one of
1065 the callees has saved alloca register. */
1066 }
1067
1068 /* If alloca register was not saved, by the callee (or any of its callees)
1069 then the value in the register is still good. */
1070
1071 return fi->initial_sp = read_register (fdata.alloca_reg);
1072 }
1073
1074 FRAME_ADDR
1075 rs6000_frame_chain (thisframe)
1076 struct frame_info *thisframe;
1077 {
1078 FRAME_ADDR fp;
1079 if (inside_entry_file ((thisframe)->pc))
1080 return 0;
1081 if (thisframe->signal_handler_caller)
1082 {
1083 /* This was determined by experimentation on AIX 3.2. Perhaps
1084 it corresponds to some offset in /usr/include/sys/user.h or
1085 something like that. Using some system include file would
1086 have the advantage of probably being more robust in the face
1087 of OS upgrades, but the disadvantage of being wrong for
1088 cross-debugging. */
1089
1090 #define SIG_FRAME_FP_OFFSET 284
1091 fp = read_memory_integer (thisframe->frame + SIG_FRAME_FP_OFFSET, 4);
1092 }
1093 else
1094 fp = read_memory_integer ((thisframe)->frame, 4);
1095
1096 return fp;
1097 }
1098 \f
1099 /* Keep an array of load segment information and their TOC table addresses.
1100 This info will be useful when calling a shared library function by hand. */
1101
1102 struct loadinfo {
1103 CORE_ADDR textorg, dataorg;
1104 unsigned long toc_offset;
1105 };
1106
1107 #define LOADINFOLEN 10
1108
1109 static struct loadinfo *loadinfo = NULL;
1110 static int loadinfolen = 0;
1111 static int loadinfotocindex = 0;
1112 static int loadinfotextindex = 0;
1113
1114
1115 void
1116 xcoff_init_loadinfo ()
1117 {
1118 loadinfotocindex = 0;
1119 loadinfotextindex = 0;
1120
1121 if (loadinfolen == 0) {
1122 loadinfo = (struct loadinfo *)
1123 xmalloc (sizeof (struct loadinfo) * LOADINFOLEN);
1124 loadinfolen = LOADINFOLEN;
1125 }
1126 }
1127
1128
1129 /* FIXME -- this is never called! */
1130 void
1131 free_loadinfo ()
1132 {
1133 if (loadinfo)
1134 free (loadinfo);
1135 loadinfo = NULL;
1136 loadinfolen = 0;
1137 loadinfotocindex = 0;
1138 loadinfotextindex = 0;
1139 }
1140
1141 /* this is called from xcoffread.c */
1142
1143 void
1144 xcoff_add_toc_to_loadinfo (unsigned long tocoff)
1145 {
1146 while (loadinfotocindex >= loadinfolen) {
1147 loadinfolen += LOADINFOLEN;
1148 loadinfo = (struct loadinfo *)
1149 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1150 }
1151 loadinfo [loadinfotocindex++].toc_offset = tocoff;
1152 }
1153
1154 void
1155 add_text_to_loadinfo (textaddr, dataaddr)
1156 CORE_ADDR textaddr;
1157 CORE_ADDR dataaddr;
1158 {
1159 while (loadinfotextindex >= loadinfolen) {
1160 loadinfolen += LOADINFOLEN;
1161 loadinfo = (struct loadinfo *)
1162 xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen);
1163 }
1164 loadinfo [loadinfotextindex].textorg = textaddr;
1165 loadinfo [loadinfotextindex].dataorg = dataaddr;
1166 ++loadinfotextindex;
1167 }
1168
1169
1170 /* FIXME: This assumes that the "textorg" and "dataorg" elements
1171 of a member of this array are correlated with the "toc_offset"
1172 element of the same member. But they are sequentially assigned in wildly
1173 different places, and probably there is no correlation. FIXME! */
1174
1175 static CORE_ADDR
1176 find_toc_address (pc)
1177 CORE_ADDR pc;
1178 {
1179 int ii, toc_entry, tocbase = 0;
1180
1181 for (ii=0; ii < loadinfotextindex; ++ii)
1182 if (pc > loadinfo[ii].textorg && loadinfo[ii].textorg > tocbase) {
1183 toc_entry = ii;
1184 tocbase = loadinfo[ii].textorg;
1185 }
1186
1187 return loadinfo[toc_entry].dataorg + loadinfo[toc_entry].toc_offset;
1188 }
This page took 0.086163 seconds and 4 git commands to generate.