From Jimi X <jimix@watson.ibm.com>:
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "target.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "doublest.h"
35 #include "value.h"
36 #include "parser-defs.h"
37
38 #include "libbfd.h" /* for bfd_default_set_arch_mach */
39 #include "coff/internal.h" /* for libcoff.h */
40 #include "libcoff.h" /* for xcoff_data */
41
42 #include "elf-bfd.h"
43
44 #include "solib-svr4.h"
45 #include "ppc-tdep.h"
46
47 /* If the kernel has to deliver a signal, it pushes a sigcontext
48 structure on the stack and then calls the signal handler, passing
49 the address of the sigcontext in an argument register. Usually
50 the signal handler doesn't save this register, so we have to
51 access the sigcontext structure via an offset from the signal handler
52 frame.
53 The following constants were determined by experimentation on AIX 3.2. */
54 #define SIG_FRAME_PC_OFFSET 96
55 #define SIG_FRAME_LR_OFFSET 108
56 #define SIG_FRAME_FP_OFFSET 284
57
58 /* To be used by skip_prologue. */
59
60 struct rs6000_framedata
61 {
62 int offset; /* total size of frame --- the distance
63 by which we decrement sp to allocate
64 the frame */
65 int saved_gpr; /* smallest # of saved gpr */
66 int saved_fpr; /* smallest # of saved fpr */
67 int saved_vr; /* smallest # of saved vr */
68 int alloca_reg; /* alloca register number (frame ptr) */
69 char frameless; /* true if frameless functions. */
70 char nosavedpc; /* true if pc not saved. */
71 int gpr_offset; /* offset of saved gprs from prev sp */
72 int fpr_offset; /* offset of saved fprs from prev sp */
73 int vr_offset; /* offset of saved vrs from prev sp */
74 int lr_offset; /* offset of saved lr */
75 int cr_offset; /* offset of saved cr */
76 int vrsave_offset; /* offset of saved vrsave register */
77 };
78
79 /* Description of a single register. */
80
81 struct reg
82 {
83 char *name; /* name of register */
84 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
85 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
86 unsigned char fpr; /* whether register is floating-point */
87 };
88
89 /* Return the current architecture's gdbarch_tdep structure. */
90
91 #define TDEP gdbarch_tdep (current_gdbarch)
92
93 /* Breakpoint shadows for the single step instructions will be kept here. */
94
95 static struct sstep_breaks
96 {
97 /* Address, or 0 if this is not in use. */
98 CORE_ADDR address;
99 /* Shadow contents. */
100 char data[4];
101 }
102 stepBreaks[2];
103
104 /* Hook for determining the TOC address when calling functions in the
105 inferior under AIX. The initialization code in rs6000-nat.c sets
106 this hook to point to find_toc_address. */
107
108 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
109
110 /* Hook to set the current architecture when starting a child process.
111 rs6000-nat.c sets this. */
112
113 void (*rs6000_set_host_arch_hook) (int) = NULL;
114
115 /* Static function prototypes */
116
117 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
118 CORE_ADDR safety);
119 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
120 struct rs6000_framedata *);
121 static void frame_get_saved_regs (struct frame_info * fi,
122 struct rs6000_framedata * fdatap);
123 static CORE_ADDR frame_initial_stack_address (struct frame_info *);
124
125 /* Read a LEN-byte address from debugged memory address MEMADDR. */
126
127 static CORE_ADDR
128 read_memory_addr (CORE_ADDR memaddr, int len)
129 {
130 return read_memory_unsigned_integer (memaddr, len);
131 }
132
133 static CORE_ADDR
134 rs6000_skip_prologue (CORE_ADDR pc)
135 {
136 struct rs6000_framedata frame;
137 pc = skip_prologue (pc, 0, &frame);
138 return pc;
139 }
140
141
142 /* Fill in fi->saved_regs */
143
144 struct frame_extra_info
145 {
146 /* Functions calling alloca() change the value of the stack
147 pointer. We need to use initial stack pointer (which is saved in
148 r31 by gcc) in such cases. If a compiler emits traceback table,
149 then we should use the alloca register specified in traceback
150 table. FIXME. */
151 CORE_ADDR initial_sp; /* initial stack pointer. */
152 };
153
154 void
155 rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
156 {
157 fi->extra_info = (struct frame_extra_info *)
158 frame_obstack_alloc (sizeof (struct frame_extra_info));
159 fi->extra_info->initial_sp = 0;
160 if (fi->next != (CORE_ADDR) 0
161 && fi->pc < TEXT_SEGMENT_BASE)
162 /* We're in get_prev_frame */
163 /* and this is a special signal frame. */
164 /* (fi->pc will be some low address in the kernel, */
165 /* to which the signal handler returns). */
166 fi->signal_handler_caller = 1;
167 }
168
169 /* Put here the code to store, into a struct frame_saved_regs,
170 the addresses of the saved registers of frame described by FRAME_INFO.
171 This includes special registers such as pc and fp saved in special
172 ways in the stack frame. sp is even more special:
173 the address we return for it IS the sp for the next frame. */
174
175 /* In this implementation for RS/6000, we do *not* save sp. I am
176 not sure if it will be needed. The following function takes care of gpr's
177 and fpr's only. */
178
179 void
180 rs6000_frame_init_saved_regs (struct frame_info *fi)
181 {
182 frame_get_saved_regs (fi, NULL);
183 }
184
185 static CORE_ADDR
186 rs6000_frame_args_address (struct frame_info *fi)
187 {
188 if (fi->extra_info->initial_sp != 0)
189 return fi->extra_info->initial_sp;
190 else
191 return frame_initial_stack_address (fi);
192 }
193
194 /* Immediately after a function call, return the saved pc.
195 Can't go through the frames for this because on some machines
196 the new frame is not set up until the new function executes
197 some instructions. */
198
199 static CORE_ADDR
200 rs6000_saved_pc_after_call (struct frame_info *fi)
201 {
202 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
203 }
204
205 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
206
207 static CORE_ADDR
208 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
209 {
210 CORE_ADDR dest;
211 int immediate;
212 int absolute;
213 int ext_op;
214
215 absolute = (int) ((instr >> 1) & 1);
216
217 switch (opcode)
218 {
219 case 18:
220 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
221 if (absolute)
222 dest = immediate;
223 else
224 dest = pc + immediate;
225 break;
226
227 case 16:
228 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
229 if (absolute)
230 dest = immediate;
231 else
232 dest = pc + immediate;
233 break;
234
235 case 19:
236 ext_op = (instr >> 1) & 0x3ff;
237
238 if (ext_op == 16) /* br conditional register */
239 {
240 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
241
242 /* If we are about to return from a signal handler, dest is
243 something like 0x3c90. The current frame is a signal handler
244 caller frame, upon completion of the sigreturn system call
245 execution will return to the saved PC in the frame. */
246 if (dest < TEXT_SEGMENT_BASE)
247 {
248 struct frame_info *fi;
249
250 fi = get_current_frame ();
251 if (fi != NULL)
252 dest = read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET,
253 TDEP->wordsize);
254 }
255 }
256
257 else if (ext_op == 528) /* br cond to count reg */
258 {
259 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
260
261 /* If we are about to execute a system call, dest is something
262 like 0x22fc or 0x3b00. Upon completion the system call
263 will return to the address in the link register. */
264 if (dest < TEXT_SEGMENT_BASE)
265 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
266 }
267 else
268 return -1;
269 break;
270
271 default:
272 return -1;
273 }
274 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
275 }
276
277
278 /* Sequence of bytes for breakpoint instruction. */
279
280 #define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
281 #define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
282
283 static unsigned char *
284 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
285 {
286 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
287 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
288 *bp_size = 4;
289 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
290 return big_breakpoint;
291 else
292 return little_breakpoint;
293 }
294
295
296 /* AIX does not support PT_STEP. Simulate it. */
297
298 void
299 rs6000_software_single_step (enum target_signal signal,
300 int insert_breakpoints_p)
301 {
302 CORE_ADDR dummy;
303 int breakp_sz;
304 char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
305 int ii, insn;
306 CORE_ADDR loc;
307 CORE_ADDR breaks[2];
308 int opcode;
309
310 if (insert_breakpoints_p)
311 {
312
313 loc = read_pc ();
314
315 insn = read_memory_integer (loc, 4);
316
317 breaks[0] = loc + breakp_sz;
318 opcode = insn >> 26;
319 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
320
321 /* Don't put two breakpoints on the same address. */
322 if (breaks[1] == breaks[0])
323 breaks[1] = -1;
324
325 stepBreaks[1].address = 0;
326
327 for (ii = 0; ii < 2; ++ii)
328 {
329
330 /* ignore invalid breakpoint. */
331 if (breaks[ii] == -1)
332 continue;
333 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
334 stepBreaks[ii].address = breaks[ii];
335 }
336
337 }
338 else
339 {
340
341 /* remove step breakpoints. */
342 for (ii = 0; ii < 2; ++ii)
343 if (stepBreaks[ii].address != 0)
344 target_remove_breakpoint (stepBreaks[ii].address,
345 stepBreaks[ii].data);
346 }
347 errno = 0; /* FIXME, don't ignore errors! */
348 /* What errors? {read,write}_memory call error(). */
349 }
350
351
352 /* return pc value after skipping a function prologue and also return
353 information about a function frame.
354
355 in struct rs6000_framedata fdata:
356 - frameless is TRUE, if function does not have a frame.
357 - nosavedpc is TRUE, if function does not save %pc value in its frame.
358 - offset is the initial size of this stack frame --- the amount by
359 which we decrement the sp to allocate the frame.
360 - saved_gpr is the number of the first saved gpr.
361 - saved_fpr is the number of the first saved fpr.
362 - saved_vr is the number of the first saved vr.
363 - alloca_reg is the number of the register used for alloca() handling.
364 Otherwise -1.
365 - gpr_offset is the offset of the first saved gpr from the previous frame.
366 - fpr_offset is the offset of the first saved fpr from the previous frame.
367 - vr_offset is the offset of the first saved vr from the previous frame.
368 - lr_offset is the offset of the saved lr
369 - cr_offset is the offset of the saved cr
370 - vrsave_offset is the offset of the saved vrsave register
371 */
372
373 #define SIGNED_SHORT(x) \
374 ((sizeof (short) == 2) \
375 ? ((int)(short)(x)) \
376 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
377
378 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
379
380 /* Limit the number of skipped non-prologue instructions, as the examining
381 of the prologue is expensive. */
382 static int max_skip_non_prologue_insns = 10;
383
384 /* Given PC representing the starting address of a function, and
385 LIM_PC which is the (sloppy) limit to which to scan when looking
386 for a prologue, attempt to further refine this limit by using
387 the line data in the symbol table. If successful, a better guess
388 on where the prologue ends is returned, otherwise the previous
389 value of lim_pc is returned. */
390 static CORE_ADDR
391 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
392 {
393 struct symtab_and_line prologue_sal;
394
395 prologue_sal = find_pc_line (pc, 0);
396 if (prologue_sal.line != 0)
397 {
398 int i;
399 CORE_ADDR addr = prologue_sal.end;
400
401 /* Handle the case in which compiler's optimizer/scheduler
402 has moved instructions into the prologue. We scan ahead
403 in the function looking for address ranges whose corresponding
404 line number is less than or equal to the first one that we
405 found for the function. (It can be less than when the
406 scheduler puts a body instruction before the first prologue
407 instruction.) */
408 for (i = 2 * max_skip_non_prologue_insns;
409 i > 0 && (lim_pc == 0 || addr < lim_pc);
410 i--)
411 {
412 struct symtab_and_line sal;
413
414 sal = find_pc_line (addr, 0);
415 if (sal.line == 0)
416 break;
417 if (sal.line <= prologue_sal.line
418 && sal.symtab == prologue_sal.symtab)
419 {
420 prologue_sal = sal;
421 }
422 addr = sal.end;
423 }
424
425 if (lim_pc == 0 || prologue_sal.end < lim_pc)
426 lim_pc = prologue_sal.end;
427 }
428 return lim_pc;
429 }
430
431
432 static CORE_ADDR
433 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
434 {
435 CORE_ADDR orig_pc = pc;
436 CORE_ADDR last_prologue_pc = pc;
437 CORE_ADDR li_found_pc = 0;
438 char buf[4];
439 unsigned long op;
440 long offset = 0;
441 long vr_saved_offset = 0;
442 int lr_reg = -1;
443 int cr_reg = -1;
444 int vr_reg = -1;
445 int vrsave_reg = -1;
446 int reg;
447 int framep = 0;
448 int minimal_toc_loaded = 0;
449 int prev_insn_was_prologue_insn = 1;
450 int num_skip_non_prologue_insns = 0;
451
452 /* Attempt to find the end of the prologue when no limit is specified.
453 Note that refine_prologue_limit() has been written so that it may
454 be used to "refine" the limits of non-zero PC values too, but this
455 is only safe if we 1) trust the line information provided by the
456 compiler and 2) iterate enough to actually find the end of the
457 prologue.
458
459 It may become a good idea at some point (for both performance and
460 accuracy) to unconditionally call refine_prologue_limit(). But,
461 until we can make a clear determination that this is beneficial,
462 we'll play it safe and only use it to obtain a limit when none
463 has been specified. */
464 if (lim_pc == 0)
465 lim_pc = refine_prologue_limit (pc, lim_pc);
466
467 memset (fdata, 0, sizeof (struct rs6000_framedata));
468 fdata->saved_gpr = -1;
469 fdata->saved_fpr = -1;
470 fdata->saved_vr = -1;
471 fdata->alloca_reg = -1;
472 fdata->frameless = 1;
473 fdata->nosavedpc = 1;
474
475 for (;; pc += 4)
476 {
477 /* Sometimes it isn't clear if an instruction is a prologue
478 instruction or not. When we encounter one of these ambiguous
479 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
480 Otherwise, we'll assume that it really is a prologue instruction. */
481 if (prev_insn_was_prologue_insn)
482 last_prologue_pc = pc;
483
484 /* Stop scanning if we've hit the limit. */
485 if (lim_pc != 0 && pc >= lim_pc)
486 break;
487
488 prev_insn_was_prologue_insn = 1;
489
490 /* Fetch the instruction and convert it to an integer. */
491 if (target_read_memory (pc, buf, 4))
492 break;
493 op = extract_signed_integer (buf, 4);
494
495 if ((op & 0xfc1fffff) == 0x7c0802a6)
496 { /* mflr Rx */
497 lr_reg = (op & 0x03e00000) | 0x90010000;
498 continue;
499
500 }
501 else if ((op & 0xfc1fffff) == 0x7c000026)
502 { /* mfcr Rx */
503 cr_reg = (op & 0x03e00000) | 0x90010000;
504 continue;
505
506 }
507 else if ((op & 0xfc1f0000) == 0xd8010000)
508 { /* stfd Rx,NUM(r1) */
509 reg = GET_SRC_REG (op);
510 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
511 {
512 fdata->saved_fpr = reg;
513 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
514 }
515 continue;
516
517 }
518 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
519 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
520 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
521 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
522 {
523
524 reg = GET_SRC_REG (op);
525 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
526 {
527 fdata->saved_gpr = reg;
528 if ((op & 0xfc1f0003) == 0xf8010000)
529 op = (op >> 1) << 1;
530 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
531 }
532 continue;
533
534 }
535 else if ((op & 0xffff0000) == 0x60000000)
536 {
537 /* nop */
538 /* Allow nops in the prologue, but do not consider them to
539 be part of the prologue unless followed by other prologue
540 instructions. */
541 prev_insn_was_prologue_insn = 0;
542 continue;
543
544 }
545 else if ((op & 0xffff0000) == 0x3c000000)
546 { /* addis 0,0,NUM, used
547 for >= 32k frames */
548 fdata->offset = (op & 0x0000ffff) << 16;
549 fdata->frameless = 0;
550 continue;
551
552 }
553 else if ((op & 0xffff0000) == 0x60000000)
554 { /* ori 0,0,NUM, 2nd ha
555 lf of >= 32k frames */
556 fdata->offset |= (op & 0x0000ffff);
557 fdata->frameless = 0;
558 continue;
559
560 }
561 else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
562 { /* st Rx,NUM(r1)
563 where Rx == lr */
564 fdata->lr_offset = SIGNED_SHORT (op) + offset;
565 fdata->nosavedpc = 0;
566 lr_reg = 0;
567 continue;
568
569 }
570 else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
571 { /* st Rx,NUM(r1)
572 where Rx == cr */
573 fdata->cr_offset = SIGNED_SHORT (op) + offset;
574 cr_reg = 0;
575 continue;
576
577 }
578 else if (op == 0x48000005)
579 { /* bl .+4 used in
580 -mrelocatable */
581 continue;
582
583 }
584 else if (op == 0x48000004)
585 { /* b .+4 (xlc) */
586 break;
587
588 }
589 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
590 in V.4 -mminimal-toc */
591 (op & 0xffff0000) == 0x3bde0000)
592 { /* addi 30,30,foo@l */
593 continue;
594
595 }
596 else if ((op & 0xfc000001) == 0x48000001)
597 { /* bl foo,
598 to save fprs??? */
599
600 fdata->frameless = 0;
601 /* Don't skip over the subroutine call if it is not within
602 the first three instructions of the prologue. */
603 if ((pc - orig_pc) > 8)
604 break;
605
606 op = read_memory_integer (pc + 4, 4);
607
608 /* At this point, make sure this is not a trampoline
609 function (a function that simply calls another functions,
610 and nothing else). If the next is not a nop, this branch
611 was part of the function prologue. */
612
613 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
614 break; /* don't skip over
615 this branch */
616 continue;
617
618 /* update stack pointer */
619 }
620 else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */
621 (op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */
622 {
623 fdata->frameless = 0;
624 if ((op & 0xffff0003) == 0xf8210001)
625 op = (op >> 1) << 1;
626 fdata->offset = SIGNED_SHORT (op);
627 offset = fdata->offset;
628 continue;
629
630 }
631 else if (op == 0x7c21016e)
632 { /* stwux 1,1,0 */
633 fdata->frameless = 0;
634 offset = fdata->offset;
635 continue;
636
637 /* Load up minimal toc pointer */
638 }
639 else if ((op >> 22) == 0x20f
640 && !minimal_toc_loaded)
641 { /* l r31,... or l r30,... */
642 minimal_toc_loaded = 1;
643 continue;
644
645 /* move parameters from argument registers to local variable
646 registers */
647 }
648 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
649 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
650 (((op >> 21) & 31) <= 10) &&
651 (((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
652 {
653 continue;
654
655 /* store parameters in stack */
656 }
657 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
658 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
659 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
660 {
661 continue;
662
663 /* store parameters in stack via frame pointer */
664 }
665 else if (framep &&
666 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
667 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
668 (op & 0xfc1f0000) == 0xfc1f0000))
669 { /* frsp, fp?,NUM(r1) */
670 continue;
671
672 /* Set up frame pointer */
673 }
674 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
675 || op == 0x7c3f0b78)
676 { /* mr r31, r1 */
677 fdata->frameless = 0;
678 framep = 1;
679 fdata->alloca_reg = 31;
680 continue;
681
682 /* Another way to set up the frame pointer. */
683 }
684 else if ((op & 0xfc1fffff) == 0x38010000)
685 { /* addi rX, r1, 0x0 */
686 fdata->frameless = 0;
687 framep = 1;
688 fdata->alloca_reg = (op & ~0x38010000) >> 21;
689 continue;
690 }
691 /* AltiVec related instructions. */
692 /* Store the vrsave register (spr 256) in another register for
693 later manipulation, or load a register into the vrsave
694 register. 2 instructions are used: mfvrsave and
695 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
696 and mtspr SPR256, Rn. */
697 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
698 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
699 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
700 {
701 vrsave_reg = GET_SRC_REG (op);
702 continue;
703 }
704 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
705 {
706 continue;
707 }
708 /* Store the register where vrsave was saved to onto the stack:
709 rS is the register where vrsave was stored in a previous
710 instruction. */
711 /* 100100 sssss 00001 dddddddd dddddddd */
712 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
713 {
714 if (vrsave_reg == GET_SRC_REG (op))
715 {
716 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
717 vrsave_reg = -1;
718 }
719 continue;
720 }
721 /* Compute the new value of vrsave, by modifying the register
722 where vrsave was saved to. */
723 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
724 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
725 {
726 continue;
727 }
728 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
729 in a pair of insns to save the vector registers on the
730 stack. */
731 /* 001110 00000 00000 iiii iiii iiii iiii */
732 else if ((op & 0xffff0000) == 0x38000000) /* li r0, SIMM */
733 {
734 li_found_pc = pc;
735 vr_saved_offset = SIGNED_SHORT (op);
736 }
737 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
738 /* 011111 sssss 11111 00000 00111001110 */
739 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
740 {
741 if (pc == (li_found_pc + 4))
742 {
743 vr_reg = GET_SRC_REG (op);
744 /* If this is the first vector reg to be saved, or if
745 it has a lower number than others previously seen,
746 reupdate the frame info. */
747 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
748 {
749 fdata->saved_vr = vr_reg;
750 fdata->vr_offset = vr_saved_offset + offset;
751 }
752 vr_saved_offset = -1;
753 vr_reg = -1;
754 li_found_pc = 0;
755 }
756 }
757 /* End AltiVec related instructions. */
758 else
759 {
760 /* Not a recognized prologue instruction.
761 Handle optimizer code motions into the prologue by continuing
762 the search if we have no valid frame yet or if the return
763 address is not yet saved in the frame. */
764 if (fdata->frameless == 0
765 && (lr_reg == -1 || fdata->nosavedpc == 0))
766 break;
767
768 if (op == 0x4e800020 /* blr */
769 || op == 0x4e800420) /* bctr */
770 /* Do not scan past epilogue in frameless functions or
771 trampolines. */
772 break;
773 if ((op & 0xf4000000) == 0x40000000) /* bxx */
774 /* Never skip branches. */
775 break;
776
777 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
778 /* Do not scan too many insns, scanning insns is expensive with
779 remote targets. */
780 break;
781
782 /* Continue scanning. */
783 prev_insn_was_prologue_insn = 0;
784 continue;
785 }
786 }
787
788 #if 0
789 /* I have problems with skipping over __main() that I need to address
790 * sometime. Previously, I used to use misc_function_vector which
791 * didn't work as well as I wanted to be. -MGO */
792
793 /* If the first thing after skipping a prolog is a branch to a function,
794 this might be a call to an initializer in main(), introduced by gcc2.
795 We'd like to skip over it as well. Fortunately, xlc does some extra
796 work before calling a function right after a prologue, thus we can
797 single out such gcc2 behaviour. */
798
799
800 if ((op & 0xfc000001) == 0x48000001)
801 { /* bl foo, an initializer function? */
802 op = read_memory_integer (pc + 4, 4);
803
804 if (op == 0x4def7b82)
805 { /* cror 0xf, 0xf, 0xf (nop) */
806
807 /* check and see if we are in main. If so, skip over this initializer
808 function as well. */
809
810 tmp = find_pc_misc_function (pc);
811 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
812 return pc + 8;
813 }
814 }
815 #endif /* 0 */
816
817 fdata->offset = -fdata->offset;
818 return last_prologue_pc;
819 }
820
821
822 /*************************************************************************
823 Support for creating pushing a dummy frame into the stack, and popping
824 frames, etc.
825 *************************************************************************/
826
827
828 /* Pop the innermost frame, go back to the caller. */
829
830 static void
831 rs6000_pop_frame (void)
832 {
833 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
834 struct rs6000_framedata fdata;
835 struct frame_info *frame = get_current_frame ();
836 int ii, wordsize;
837
838 pc = read_pc ();
839 sp = FRAME_FP (frame);
840
841 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
842 {
843 generic_pop_dummy_frame ();
844 flush_cached_frames ();
845 return;
846 }
847
848 /* Make sure that all registers are valid. */
849 read_register_bytes (0, NULL, REGISTER_BYTES);
850
851 /* figure out previous %pc value. If the function is frameless, it is
852 still in the link register, otherwise walk the frames and retrieve the
853 saved %pc value in the previous frame. */
854
855 addr = get_pc_function_start (frame->pc);
856 (void) skip_prologue (addr, frame->pc, &fdata);
857
858 wordsize = TDEP->wordsize;
859 if (fdata.frameless)
860 prev_sp = sp;
861 else
862 prev_sp = read_memory_addr (sp, wordsize);
863 if (fdata.lr_offset == 0)
864 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
865 else
866 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
867
868 /* reset %pc value. */
869 write_register (PC_REGNUM, lr);
870
871 /* reset register values if any was saved earlier. */
872
873 if (fdata.saved_gpr != -1)
874 {
875 addr = prev_sp + fdata.gpr_offset;
876 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
877 {
878 read_memory (addr, &registers[REGISTER_BYTE (ii)], wordsize);
879 addr += wordsize;
880 }
881 }
882
883 if (fdata.saved_fpr != -1)
884 {
885 addr = prev_sp + fdata.fpr_offset;
886 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
887 {
888 read_memory (addr, &registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
889 addr += 8;
890 }
891 }
892
893 write_register (SP_REGNUM, prev_sp);
894 target_store_registers (-1);
895 flush_cached_frames ();
896 }
897
898 /* Fixup the call sequence of a dummy function, with the real function
899 address. Its arguments will be passed by gdb. */
900
901 static void
902 rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
903 int nargs, struct value **args, struct type *type,
904 int gcc_p)
905 {
906 int ii;
907 CORE_ADDR target_addr;
908
909 if (rs6000_find_toc_address_hook != NULL)
910 {
911 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
912 write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
913 tocvalue);
914 }
915 }
916
917 /* Pass the arguments in either registers, or in the stack. In RS/6000,
918 the first eight words of the argument list (that might be less than
919 eight parameters if some parameters occupy more than one word) are
920 passed in r3..r10 registers. float and double parameters are
921 passed in fpr's, in addition to that. Rest of the parameters if any
922 are passed in user stack. There might be cases in which half of the
923 parameter is copied into registers, the other half is pushed into
924 stack.
925
926 Stack must be aligned on 64-bit boundaries when synthesizing
927 function calls.
928
929 If the function is returning a structure, then the return address is passed
930 in r3, then the first 7 words of the parameters can be passed in registers,
931 starting from r4. */
932
933 static CORE_ADDR
934 rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
935 int struct_return, CORE_ADDR struct_addr)
936 {
937 int ii;
938 int len = 0;
939 int argno; /* current argument number */
940 int argbytes; /* current argument byte */
941 char tmp_buffer[50];
942 int f_argno = 0; /* current floating point argno */
943 int wordsize = TDEP->wordsize;
944
945 struct value *arg = 0;
946 struct type *type;
947
948 CORE_ADDR saved_sp;
949
950 /* The first eight words of ther arguments are passed in registers. Copy
951 them appropriately.
952
953 If the function is returning a `struct', then the first word (which
954 will be passed in r3) is used for struct return address. In that
955 case we should advance one word and start from r4 register to copy
956 parameters. */
957
958 ii = struct_return ? 1 : 0;
959
960 /*
961 effectively indirect call... gcc does...
962
963 return_val example( float, int);
964
965 eabi:
966 float in fp0, int in r3
967 offset of stack on overflow 8/16
968 for varargs, must go by type.
969 power open:
970 float in r3&r4, int in r5
971 offset of stack on overflow different
972 both:
973 return in r3 or f0. If no float, must study how gcc emulates floats;
974 pay attention to arg promotion.
975 User may have to cast\args to handle promotion correctly
976 since gdb won't know if prototype supplied or not.
977 */
978
979 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
980 {
981 int reg_size = REGISTER_RAW_SIZE (ii + 3);
982
983 arg = args[argno];
984 type = check_typedef (VALUE_TYPE (arg));
985 len = TYPE_LENGTH (type);
986
987 if (TYPE_CODE (type) == TYPE_CODE_FLT)
988 {
989
990 /* floating point arguments are passed in fpr's, as well as gpr's.
991 There are 13 fpr's reserved for passing parameters. At this point
992 there is no way we would run out of them. */
993
994 if (len > 8)
995 printf_unfiltered (
996 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
997
998 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
999 VALUE_CONTENTS (arg),
1000 len);
1001 ++f_argno;
1002 }
1003
1004 if (len > reg_size)
1005 {
1006
1007 /* Argument takes more than one register. */
1008 while (argbytes < len)
1009 {
1010 memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1011 memcpy (&registers[REGISTER_BYTE (ii + 3)],
1012 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1013 (len - argbytes) > reg_size
1014 ? reg_size : len - argbytes);
1015 ++ii, argbytes += reg_size;
1016
1017 if (ii >= 8)
1018 goto ran_out_of_registers_for_arguments;
1019 }
1020 argbytes = 0;
1021 --ii;
1022 }
1023 else
1024 { /* Argument can fit in one register. No problem. */
1025 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1026 memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1027 memcpy ((char *)&registers[REGISTER_BYTE (ii + 3)] + adj,
1028 VALUE_CONTENTS (arg), len);
1029 }
1030 ++argno;
1031 }
1032
1033 ran_out_of_registers_for_arguments:
1034
1035 saved_sp = read_sp ();
1036
1037 /* location for 8 parameters are always reserved. */
1038 sp -= wordsize * 8;
1039
1040 /* another six words for back chain, TOC register, link register, etc. */
1041 sp -= wordsize * 6;
1042
1043 /* stack pointer must be quadword aligned */
1044 sp &= -16;
1045
1046 /* if there are more arguments, allocate space for them in
1047 the stack, then push them starting from the ninth one. */
1048
1049 if ((argno < nargs) || argbytes)
1050 {
1051 int space = 0, jj;
1052
1053 if (argbytes)
1054 {
1055 space += ((len - argbytes + 3) & -4);
1056 jj = argno + 1;
1057 }
1058 else
1059 jj = argno;
1060
1061 for (; jj < nargs; ++jj)
1062 {
1063 struct value *val = args[jj];
1064 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1065 }
1066
1067 /* add location required for the rest of the parameters */
1068 space = (space + 15) & -16;
1069 sp -= space;
1070
1071 /* This is another instance we need to be concerned about securing our
1072 stack space. If we write anything underneath %sp (r1), we might conflict
1073 with the kernel who thinks he is free to use this area. So, update %sp
1074 first before doing anything else. */
1075
1076 write_register (SP_REGNUM, sp);
1077
1078 /* if the last argument copied into the registers didn't fit there
1079 completely, push the rest of it into stack. */
1080
1081 if (argbytes)
1082 {
1083 write_memory (sp + 24 + (ii * 4),
1084 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1085 len - argbytes);
1086 ++argno;
1087 ii += ((len - argbytes + 3) & -4) / 4;
1088 }
1089
1090 /* push the rest of the arguments into stack. */
1091 for (; argno < nargs; ++argno)
1092 {
1093
1094 arg = args[argno];
1095 type = check_typedef (VALUE_TYPE (arg));
1096 len = TYPE_LENGTH (type);
1097
1098
1099 /* float types should be passed in fpr's, as well as in the stack. */
1100 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1101 {
1102
1103 if (len > 8)
1104 printf_unfiltered (
1105 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1106
1107 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1108 VALUE_CONTENTS (arg),
1109 len);
1110 ++f_argno;
1111 }
1112
1113 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1114 ii += ((len + 3) & -4) / 4;
1115 }
1116 }
1117 else
1118 /* Secure stack areas first, before doing anything else. */
1119 write_register (SP_REGNUM, sp);
1120
1121 /* set back chain properly */
1122 store_address (tmp_buffer, 4, saved_sp);
1123 write_memory (sp, tmp_buffer, 4);
1124
1125 target_store_registers (-1);
1126 return sp;
1127 }
1128
1129 /* Function: ppc_push_return_address (pc, sp)
1130 Set up the return address for the inferior function call. */
1131
1132 static CORE_ADDR
1133 ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1134 {
1135 write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
1136 CALL_DUMMY_ADDRESS ());
1137 return sp;
1138 }
1139
1140 /* Extract a function return value of type TYPE from raw register array
1141 REGBUF, and copy that return value into VALBUF in virtual format. */
1142
1143 static void
1144 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1145 {
1146 int offset = 0;
1147
1148 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1149 {
1150
1151 double dd;
1152 float ff;
1153 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1154 We need to truncate the return value into float size (4 byte) if
1155 necessary. */
1156
1157 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1158 memcpy (valbuf,
1159 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1160 TYPE_LENGTH (valtype));
1161 else
1162 { /* float */
1163 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1164 ff = (float) dd;
1165 memcpy (valbuf, &ff, sizeof (float));
1166 }
1167 }
1168 else
1169 {
1170 /* return value is copied starting from r3. */
1171 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1172 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1173 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1174
1175 memcpy (valbuf,
1176 regbuf + REGISTER_BYTE (3) + offset,
1177 TYPE_LENGTH (valtype));
1178 }
1179 }
1180
1181 /* Keep structure return address in this variable.
1182 FIXME: This is a horrid kludge which should not be allowed to continue
1183 living. This only allows a single nested call to a structure-returning
1184 function. Come on, guys! -- gnu@cygnus.com, Aug 92 */
1185
1186 static CORE_ADDR rs6000_struct_return_address;
1187
1188 /* Return whether handle_inferior_event() should proceed through code
1189 starting at PC in function NAME when stepping.
1190
1191 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1192 handle memory references that are too distant to fit in instructions
1193 generated by the compiler. For example, if 'foo' in the following
1194 instruction:
1195
1196 lwz r9,foo(r2)
1197
1198 is greater than 32767, the linker might replace the lwz with a branch to
1199 somewhere in @FIX1 that does the load in 2 instructions and then branches
1200 back to where execution should continue.
1201
1202 GDB should silently step over @FIX code, just like AIX dbx does.
1203 Unfortunately, the linker uses the "b" instruction for the branches,
1204 meaning that the link register doesn't get set. Therefore, GDB's usual
1205 step_over_function() mechanism won't work.
1206
1207 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1208 in handle_inferior_event() to skip past @FIX code. */
1209
1210 int
1211 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1212 {
1213 return name && !strncmp (name, "@FIX", 4);
1214 }
1215
1216 /* Skip code that the user doesn't want to see when stepping:
1217
1218 1. Indirect function calls use a piece of trampoline code to do context
1219 switching, i.e. to set the new TOC table. Skip such code if we are on
1220 its first instruction (as when we have single-stepped to here).
1221
1222 2. Skip shared library trampoline code (which is different from
1223 indirect function call trampolines).
1224
1225 3. Skip bigtoc fixup code.
1226
1227 Result is desired PC to step until, or NULL if we are not in
1228 code that should be skipped. */
1229
1230 CORE_ADDR
1231 rs6000_skip_trampoline_code (CORE_ADDR pc)
1232 {
1233 register unsigned int ii, op;
1234 int rel;
1235 CORE_ADDR solib_target_pc;
1236 struct minimal_symbol *msymbol;
1237
1238 static unsigned trampoline_code[] =
1239 {
1240 0x800b0000, /* l r0,0x0(r11) */
1241 0x90410014, /* st r2,0x14(r1) */
1242 0x7c0903a6, /* mtctr r0 */
1243 0x804b0004, /* l r2,0x4(r11) */
1244 0x816b0008, /* l r11,0x8(r11) */
1245 0x4e800420, /* bctr */
1246 0x4e800020, /* br */
1247 0
1248 };
1249
1250 /* Check for bigtoc fixup code. */
1251 msymbol = lookup_minimal_symbol_by_pc (pc);
1252 if (msymbol && rs6000_in_solib_return_trampoline (pc, SYMBOL_NAME (msymbol)))
1253 {
1254 /* Double-check that the third instruction from PC is relative "b". */
1255 op = read_memory_integer (pc + 8, 4);
1256 if ((op & 0xfc000003) == 0x48000000)
1257 {
1258 /* Extract bits 6-29 as a signed 24-bit relative word address and
1259 add it to the containing PC. */
1260 rel = ((int)(op << 6) >> 6);
1261 return pc + 8 + rel;
1262 }
1263 }
1264
1265 /* If pc is in a shared library trampoline, return its target. */
1266 solib_target_pc = find_solib_trampoline_target (pc);
1267 if (solib_target_pc)
1268 return solib_target_pc;
1269
1270 for (ii = 0; trampoline_code[ii]; ++ii)
1271 {
1272 op = read_memory_integer (pc + (ii * 4), 4);
1273 if (op != trampoline_code[ii])
1274 return 0;
1275 }
1276 ii = read_register (11); /* r11 holds destination addr */
1277 pc = read_memory_addr (ii, TDEP->wordsize); /* (r11) value */
1278 return pc;
1279 }
1280
1281 /* Determines whether the function FI has a frame on the stack or not. */
1282
1283 int
1284 rs6000_frameless_function_invocation (struct frame_info *fi)
1285 {
1286 CORE_ADDR func_start;
1287 struct rs6000_framedata fdata;
1288
1289 /* Don't even think about framelessness except on the innermost frame
1290 or if the function was interrupted by a signal. */
1291 if (fi->next != NULL && !fi->next->signal_handler_caller)
1292 return 0;
1293
1294 func_start = get_pc_function_start (fi->pc);
1295
1296 /* If we failed to find the start of the function, it is a mistake
1297 to inspect the instructions. */
1298
1299 if (!func_start)
1300 {
1301 /* A frame with a zero PC is usually created by dereferencing a NULL
1302 function pointer, normally causing an immediate core dump of the
1303 inferior. Mark function as frameless, as the inferior has no chance
1304 of setting up a stack frame. */
1305 if (fi->pc == 0)
1306 return 1;
1307 else
1308 return 0;
1309 }
1310
1311 (void) skip_prologue (func_start, fi->pc, &fdata);
1312 return fdata.frameless;
1313 }
1314
1315 /* Return the PC saved in a frame */
1316
1317 CORE_ADDR
1318 rs6000_frame_saved_pc (struct frame_info *fi)
1319 {
1320 CORE_ADDR func_start;
1321 struct rs6000_framedata fdata;
1322 int wordsize = TDEP->wordsize;
1323
1324 if (fi->signal_handler_caller)
1325 return read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET, wordsize);
1326
1327 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
1328 return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
1329
1330 func_start = get_pc_function_start (fi->pc);
1331
1332 /* If we failed to find the start of the function, it is a mistake
1333 to inspect the instructions. */
1334 if (!func_start)
1335 return 0;
1336
1337 (void) skip_prologue (func_start, fi->pc, &fdata);
1338
1339 if (fdata.lr_offset == 0 && fi->next != NULL)
1340 {
1341 if (fi->next->signal_handler_caller)
1342 return read_memory_addr (fi->next->frame + SIG_FRAME_LR_OFFSET,
1343 wordsize);
1344 else
1345 return read_memory_addr (FRAME_CHAIN (fi) + DEFAULT_LR_SAVE,
1346 wordsize);
1347 }
1348
1349 if (fdata.lr_offset == 0)
1350 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1351
1352 return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize);
1353 }
1354
1355 /* If saved registers of frame FI are not known yet, read and cache them.
1356 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1357 in which case the framedata are read. */
1358
1359 static void
1360 frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
1361 {
1362 CORE_ADDR frame_addr;
1363 struct rs6000_framedata work_fdata;
1364 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1365 int wordsize = tdep->wordsize;
1366
1367 if (fi->saved_regs)
1368 return;
1369
1370 if (fdatap == NULL)
1371 {
1372 fdatap = &work_fdata;
1373 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, fdatap);
1374 }
1375
1376 frame_saved_regs_zalloc (fi);
1377
1378 /* If there were any saved registers, figure out parent's stack
1379 pointer. */
1380 /* The following is true only if the frame doesn't have a call to
1381 alloca(), FIXME. */
1382
1383 if (fdatap->saved_fpr == 0
1384 && fdatap->saved_gpr == 0
1385 && fdatap->saved_vr == 0
1386 && fdatap->lr_offset == 0
1387 && fdatap->cr_offset == 0
1388 && fdatap->vr_offset == 0)
1389 frame_addr = 0;
1390 else if (fi->prev && fi->prev->frame)
1391 frame_addr = fi->prev->frame;
1392 else
1393 frame_addr = read_memory_addr (fi->frame, wordsize);
1394
1395 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1396 All fpr's from saved_fpr to fp31 are saved. */
1397
1398 if (fdatap->saved_fpr >= 0)
1399 {
1400 int i;
1401 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
1402 for (i = fdatap->saved_fpr; i < 32; i++)
1403 {
1404 fi->saved_regs[FP0_REGNUM + i] = fpr_addr;
1405 fpr_addr += 8;
1406 }
1407 }
1408
1409 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1410 All gpr's from saved_gpr to gpr31 are saved. */
1411
1412 if (fdatap->saved_gpr >= 0)
1413 {
1414 int i;
1415 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
1416 for (i = fdatap->saved_gpr; i < 32; i++)
1417 {
1418 fi->saved_regs[i] = gpr_addr;
1419 gpr_addr += wordsize;
1420 }
1421 }
1422
1423 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1424 All vr's from saved_vr to vr31 are saved. */
1425 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1426 {
1427 if (fdatap->saved_vr >= 0)
1428 {
1429 int i;
1430 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1431 for (i = fdatap->saved_vr; i < 32; i++)
1432 {
1433 fi->saved_regs[tdep->ppc_vr0_regnum + i] = vr_addr;
1434 vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1435 }
1436 }
1437 }
1438
1439 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1440 the CR. */
1441 if (fdatap->cr_offset != 0)
1442 fi->saved_regs[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
1443
1444 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1445 the LR. */
1446 if (fdatap->lr_offset != 0)
1447 fi->saved_regs[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
1448
1449 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1450 the VRSAVE. */
1451 if (fdatap->vrsave_offset != 0)
1452 fi->saved_regs[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
1453 }
1454
1455 /* Return the address of a frame. This is the inital %sp value when the frame
1456 was first allocated. For functions calling alloca(), it might be saved in
1457 an alloca register. */
1458
1459 static CORE_ADDR
1460 frame_initial_stack_address (struct frame_info *fi)
1461 {
1462 CORE_ADDR tmpaddr;
1463 struct rs6000_framedata fdata;
1464 struct frame_info *callee_fi;
1465
1466 /* if the initial stack pointer (frame address) of this frame is known,
1467 just return it. */
1468
1469 if (fi->extra_info->initial_sp)
1470 return fi->extra_info->initial_sp;
1471
1472 /* find out if this function is using an alloca register.. */
1473
1474 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, &fdata);
1475
1476 /* if saved registers of this frame are not known yet, read and cache them. */
1477
1478 if (!fi->saved_regs)
1479 frame_get_saved_regs (fi, &fdata);
1480
1481 /* If no alloca register used, then fi->frame is the value of the %sp for
1482 this frame, and it is good enough. */
1483
1484 if (fdata.alloca_reg < 0)
1485 {
1486 fi->extra_info->initial_sp = fi->frame;
1487 return fi->extra_info->initial_sp;
1488 }
1489
1490 /* This function has an alloca register. If this is the top-most frame
1491 (with the lowest address), the value in alloca register is good. */
1492
1493 if (!fi->next)
1494 return fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
1495
1496 /* Otherwise, this is a caller frame. Callee has usually already saved
1497 registers, but there are exceptions (such as when the callee
1498 has no parameters). Find the address in which caller's alloca
1499 register is saved. */
1500
1501 for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next)
1502 {
1503
1504 if (!callee_fi->saved_regs)
1505 frame_get_saved_regs (callee_fi, NULL);
1506
1507 /* this is the address in which alloca register is saved. */
1508
1509 tmpaddr = callee_fi->saved_regs[fdata.alloca_reg];
1510 if (tmpaddr)
1511 {
1512 fi->extra_info->initial_sp =
1513 read_memory_addr (tmpaddr, TDEP->wordsize);
1514 return fi->extra_info->initial_sp;
1515 }
1516
1517 /* Go look into deeper levels of the frame chain to see if any one of
1518 the callees has saved alloca register. */
1519 }
1520
1521 /* If alloca register was not saved, by the callee (or any of its callees)
1522 then the value in the register is still good. */
1523
1524 fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
1525 return fi->extra_info->initial_sp;
1526 }
1527
1528 /* Describe the pointer in each stack frame to the previous stack frame
1529 (its caller). */
1530
1531 /* FRAME_CHAIN takes a frame's nominal address
1532 and produces the frame's chain-pointer. */
1533
1534 /* In the case of the RS/6000, the frame's nominal address
1535 is the address of a 4-byte word containing the calling frame's address. */
1536
1537 CORE_ADDR
1538 rs6000_frame_chain (struct frame_info *thisframe)
1539 {
1540 CORE_ADDR fp, fpp, lr;
1541 int wordsize = TDEP->wordsize;
1542
1543 if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
1544 return thisframe->frame; /* dummy frame same as caller's frame */
1545
1546 if (inside_entry_file (thisframe->pc) ||
1547 thisframe->pc == entry_point_address ())
1548 return 0;
1549
1550 if (thisframe->signal_handler_caller)
1551 fp = read_memory_addr (thisframe->frame + SIG_FRAME_FP_OFFSET,
1552 wordsize);
1553 else if (thisframe->next != NULL
1554 && thisframe->next->signal_handler_caller
1555 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
1556 /* A frameless function interrupted by a signal did not change the
1557 frame pointer. */
1558 fp = FRAME_FP (thisframe);
1559 else
1560 fp = read_memory_addr ((thisframe)->frame, wordsize);
1561
1562 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
1563 if (lr == entry_point_address ())
1564 if (fp != 0 && (fpp = read_memory_addr (fp, wordsize)) != 0)
1565 if (PC_IN_CALL_DUMMY (lr, fpp, fpp))
1566 return fpp;
1567
1568 return fp;
1569 }
1570
1571 /* Return the size of register REG when words are WORDSIZE bytes long. If REG
1572 isn't available with that word size, return 0. */
1573
1574 static int
1575 regsize (const struct reg *reg, int wordsize)
1576 {
1577 return wordsize == 8 ? reg->sz64 : reg->sz32;
1578 }
1579
1580 /* Return the name of register number N, or null if no such register exists
1581 in the current architecture. */
1582
1583 static char *
1584 rs6000_register_name (int n)
1585 {
1586 struct gdbarch_tdep *tdep = TDEP;
1587 const struct reg *reg = tdep->regs + n;
1588
1589 if (!regsize (reg, tdep->wordsize))
1590 return NULL;
1591 return reg->name;
1592 }
1593
1594 /* Index within `registers' of the first byte of the space for
1595 register N. */
1596
1597 static int
1598 rs6000_register_byte (int n)
1599 {
1600 return TDEP->regoff[n];
1601 }
1602
1603 /* Return the number of bytes of storage in the actual machine representation
1604 for register N if that register is available, else return 0. */
1605
1606 static int
1607 rs6000_register_raw_size (int n)
1608 {
1609 struct gdbarch_tdep *tdep = TDEP;
1610 const struct reg *reg = tdep->regs + n;
1611 return regsize (reg, tdep->wordsize);
1612 }
1613
1614 /* Return the GDB type object for the "standard" data type
1615 of data in register N. */
1616
1617 static struct type *
1618 rs6000_register_virtual_type (int n)
1619 {
1620 struct gdbarch_tdep *tdep = TDEP;
1621 const struct reg *reg = tdep->regs + n;
1622
1623 if (reg->fpr)
1624 return builtin_type_double;
1625 else
1626 {
1627 int size = regsize (reg, tdep->wordsize);
1628 switch (size)
1629 {
1630 case 8:
1631 return builtin_type_int64;
1632 break;
1633 case 16:
1634 return builtin_type_vec128;
1635 break;
1636 default:
1637 return builtin_type_int32;
1638 break;
1639 }
1640 }
1641 }
1642
1643 /* For the PowerPC, it appears that the debug info marks float parameters as
1644 floats regardless of whether the function is prototyped, but the actual
1645 values are always passed in as doubles. Tell gdb to always assume that
1646 floats are passed as doubles and then converted in the callee. */
1647
1648 static int
1649 rs6000_coerce_float_to_double (struct type *formal, struct type *actual)
1650 {
1651 return 1;
1652 }
1653
1654 /* Return whether register N requires conversion when moving from raw format
1655 to virtual format.
1656
1657 The register format for RS/6000 floating point registers is always
1658 double, we need a conversion if the memory format is float. */
1659
1660 static int
1661 rs6000_register_convertible (int n)
1662 {
1663 const struct reg *reg = TDEP->regs + n;
1664 return reg->fpr;
1665 }
1666
1667 /* Convert data from raw format for register N in buffer FROM
1668 to virtual format with type TYPE in buffer TO. */
1669
1670 static void
1671 rs6000_register_convert_to_virtual (int n, struct type *type,
1672 char *from, char *to)
1673 {
1674 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1675 {
1676 double val = extract_floating (from, REGISTER_RAW_SIZE (n));
1677 store_floating (to, TYPE_LENGTH (type), val);
1678 }
1679 else
1680 memcpy (to, from, REGISTER_RAW_SIZE (n));
1681 }
1682
1683 /* Convert data from virtual format with type TYPE in buffer FROM
1684 to raw format for register N in buffer TO. */
1685
1686 static void
1687 rs6000_register_convert_to_raw (struct type *type, int n,
1688 char *from, char *to)
1689 {
1690 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1691 {
1692 double val = extract_floating (from, TYPE_LENGTH (type));
1693 store_floating (to, REGISTER_RAW_SIZE (n), val);
1694 }
1695 else
1696 memcpy (to, from, REGISTER_RAW_SIZE (n));
1697 }
1698
1699 int
1700 altivec_register_p (int regno)
1701 {
1702 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1703 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
1704 return 0;
1705 else
1706 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
1707 }
1708
1709 static void
1710 rs6000_do_altivec_registers (int regnum)
1711 {
1712 int i;
1713 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1714 char *virtual_buffer = (char*) alloca (MAX_REGISTER_VIRTUAL_SIZE);
1715 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1716
1717 for (i = tdep->ppc_vr0_regnum; i <= tdep->ppc_vrsave_regnum; i++)
1718 {
1719 /* If we want just one reg, check that this is the one we want. */
1720 if (regnum != -1 && i != regnum)
1721 continue;
1722
1723 /* If the register name is empty, it is undefined for this
1724 processor, so don't display anything. */
1725 if (REGISTER_NAME (i) == NULL || *(REGISTER_NAME (i)) == '\0')
1726 continue;
1727
1728 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
1729 print_spaces_filtered (15 - strlen (REGISTER_NAME (i)), gdb_stdout);
1730
1731 /* Get the data in raw format. */
1732 if (read_relative_register_raw_bytes (i, raw_buffer))
1733 {
1734 printf_filtered ("*value not available*\n");
1735 continue;
1736 }
1737
1738 /* Convert raw data to virtual format if necessary. */
1739 if (REGISTER_CONVERTIBLE (i))
1740 REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i),
1741 raw_buffer, virtual_buffer);
1742 else
1743 memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (i));
1744
1745 /* Print as integer in hex only. */
1746 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1747 gdb_stdout, 'x', 1, 0, Val_pretty_default);
1748 printf_filtered ("\n");
1749 }
1750 }
1751
1752 static void
1753 rs6000_altivec_registers_info (char *addr_exp, int from_tty)
1754 {
1755 int regnum, numregs;
1756 register char *end;
1757
1758 if (!target_has_registers)
1759 error ("The program has no registers now.");
1760 if (selected_frame == NULL)
1761 error ("No selected frame.");
1762
1763 if (!addr_exp)
1764 {
1765 rs6000_do_altivec_registers (-1);
1766 return;
1767 }
1768
1769 numregs = NUM_REGS + NUM_PSEUDO_REGS;
1770 do
1771 {
1772 if (addr_exp[0] == '$')
1773 addr_exp++;
1774 end = addr_exp;
1775 while (*end != '\0' && *end != ' ' && *end != '\t')
1776 ++end;
1777
1778 regnum = target_map_name_to_register (addr_exp, end - addr_exp);
1779 if (regnum < 0)
1780 {
1781 regnum = numregs;
1782 if (*addr_exp >= '0' && *addr_exp <= '9')
1783 regnum = atoi (addr_exp); /* Take a number */
1784 if (regnum >= numregs) /* Bad name, or bad number */
1785 error ("%.*s: invalid register", end - addr_exp, addr_exp);
1786 }
1787
1788 rs6000_do_altivec_registers (regnum);
1789
1790 addr_exp = end;
1791 while (*addr_exp == ' ' || *addr_exp == '\t')
1792 ++addr_exp;
1793 }
1794 while (*addr_exp != '\0');
1795 }
1796
1797 static void
1798 rs6000_do_registers_info (int regnum, int fpregs)
1799 {
1800 register int i;
1801 int numregs = NUM_REGS + NUM_PSEUDO_REGS;
1802 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1803 char *virtual_buffer = (char*) alloca (MAX_REGISTER_VIRTUAL_SIZE);
1804
1805 for (i = 0; i < numregs; i++)
1806 {
1807 /* Decide between printing all regs, nonfloat regs, or specific reg. */
1808 if (regnum == -1)
1809 {
1810 if ((TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT && !fpregs)
1811 || (altivec_register_p (i) && !fpregs))
1812 continue;
1813 }
1814 else
1815 {
1816 if (i != regnum)
1817 continue;
1818 }
1819
1820 /* If the register name is empty, it is undefined for this
1821 processor, so don't display anything. */
1822 if (REGISTER_NAME (i) == NULL || *(REGISTER_NAME (i)) == '\0')
1823 continue;
1824
1825 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
1826 print_spaces_filtered (15 - strlen (REGISTER_NAME (i)), gdb_stdout);
1827
1828 /* Get the data in raw format. */
1829 if (read_relative_register_raw_bytes (i, raw_buffer))
1830 {
1831 printf_filtered ("*value not available*\n");
1832 continue;
1833 }
1834
1835 /* Convert raw data to virtual format if necessary. */
1836 if (REGISTER_CONVERTIBLE (i))
1837 REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i),
1838 raw_buffer, virtual_buffer);
1839 else
1840 memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (i));
1841
1842 /* If virtual format is floating, print it that way, and in raw hex. */
1843 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT)
1844 {
1845 register int j;
1846
1847 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1848 gdb_stdout, 0, 1, 0, Val_pretty_default);
1849
1850 printf_filtered ("\t(raw 0x");
1851 for (j = 0; j < REGISTER_RAW_SIZE (i); j++)
1852 {
1853 register int idx = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? j
1854 : REGISTER_RAW_SIZE (i) - 1 - j;
1855 printf_filtered ("%02x", (unsigned char) raw_buffer[idx]);
1856 }
1857 printf_filtered (")");
1858 }
1859 else
1860 {
1861 /* Print as integer in hex and in decimal. */
1862 if (!altivec_register_p (i))
1863 {
1864 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1865 gdb_stdout, 'x', 1, 0, Val_pretty_default);
1866 printf_filtered ("\t");
1867 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1868 gdb_stdout, 0, 1, 0, Val_pretty_default);
1869 }
1870 else
1871 /* Print as integer in hex only. */
1872 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1873 gdb_stdout, 'x', 1, 0, Val_pretty_default);
1874 }
1875 printf_filtered ("\n");
1876 }
1877 }
1878
1879 /* Convert a dbx stab register number (from `r' declaration) to a gdb
1880 REGNUM. */
1881 static int
1882 rs6000_stab_reg_to_regnum (int num)
1883 {
1884 int regnum;
1885 switch (num)
1886 {
1887 case 64:
1888 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1889 break;
1890 case 65:
1891 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1892 break;
1893 case 66:
1894 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1895 break;
1896 case 76:
1897 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1898 break;
1899 default:
1900 regnum = num;
1901 break;
1902 }
1903 return regnum;
1904 }
1905
1906 /* Store the address of the place in which to copy the structure the
1907 subroutine will return. This is called from call_function.
1908
1909 In RS/6000, struct return addresses are passed as an extra parameter in r3.
1910 In function return, callee is not responsible of returning this address
1911 back. Since gdb needs to find it, we will store in a designated variable
1912 `rs6000_struct_return_address'. */
1913
1914 static void
1915 rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1916 {
1917 write_register (3, addr);
1918 rs6000_struct_return_address = addr;
1919 }
1920
1921 /* Write into appropriate registers a function return value
1922 of type TYPE, given in virtual format. */
1923
1924 static void
1925 rs6000_store_return_value (struct type *type, char *valbuf)
1926 {
1927 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1928
1929 /* Floating point values are returned starting from FPR1 and up.
1930 Say a double_double_double type could be returned in
1931 FPR1/FPR2/FPR3 triple. */
1932
1933 write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
1934 TYPE_LENGTH (type));
1935 else
1936 /* Everything else is returned in GPR3 and up. */
1937 write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
1938 valbuf, TYPE_LENGTH (type));
1939 }
1940
1941 /* Extract from an array REGBUF containing the (raw) register state
1942 the address in which a function should return its structure value,
1943 as a CORE_ADDR (or an expression that can be used as one). */
1944
1945 static CORE_ADDR
1946 rs6000_extract_struct_value_address (char *regbuf)
1947 {
1948 return rs6000_struct_return_address;
1949 }
1950
1951 /* Return whether PC is in a dummy function call.
1952
1953 FIXME: This just checks for the end of the stack, which is broken
1954 for things like stepping through gcc nested function stubs. */
1955
1956 static int
1957 rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
1958 {
1959 return sp < pc && pc < fp;
1960 }
1961
1962 /* Hook called when a new child process is started. */
1963
1964 void
1965 rs6000_create_inferior (int pid)
1966 {
1967 if (rs6000_set_host_arch_hook)
1968 rs6000_set_host_arch_hook (pid);
1969 }
1970 \f
1971 /* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
1972
1973 Usually a function pointer's representation is simply the address
1974 of the function. On the RS/6000 however, a function pointer is
1975 represented by a pointer to a TOC entry. This TOC entry contains
1976 three words, the first word is the address of the function, the
1977 second word is the TOC pointer (r2), and the third word is the
1978 static chain value. Throughout GDB it is currently assumed that a
1979 function pointer contains the address of the function, which is not
1980 easy to fix. In addition, the conversion of a function address to
1981 a function pointer would require allocation of a TOC entry in the
1982 inferior's memory space, with all its drawbacks. To be able to
1983 call C++ virtual methods in the inferior (which are called via
1984 function pointers), find_function_addr uses this function to get the
1985 function address from a function pointer. */
1986
1987 /* Return real function address if ADDR (a function pointer) is in the data
1988 space and is therefore a special function pointer. */
1989
1990 CORE_ADDR
1991 rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
1992 {
1993 struct obj_section *s;
1994
1995 s = find_pc_section (addr);
1996 if (s && s->the_bfd_section->flags & SEC_CODE)
1997 return addr;
1998
1999 /* ADDR is in the data space, so it's a special function pointer. */
2000 return read_memory_addr (addr, TDEP->wordsize);
2001 }
2002 \f
2003
2004 /* Handling the various POWER/PowerPC variants. */
2005
2006
2007 /* The arrays here called registers_MUMBLE hold information about available
2008 registers.
2009
2010 For each family of PPC variants, I've tried to isolate out the
2011 common registers and put them up front, so that as long as you get
2012 the general family right, GDB will correctly identify the registers
2013 common to that family. The common register sets are:
2014
2015 For the 60x family: hid0 hid1 iabr dabr pir
2016
2017 For the 505 and 860 family: eie eid nri
2018
2019 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2020 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2021 pbu1 pbl2 pbu2
2022
2023 Most of these register groups aren't anything formal. I arrived at
2024 them by looking at the registers that occurred in more than one
2025 processor. */
2026
2027 /* Convenience macros for populating register arrays. */
2028
2029 /* Within another macro, convert S to a string. */
2030
2031 #define STR(s) #s
2032
2033 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2034 and 64 bits on 64-bit systems. */
2035 #define R(name) { STR(name), 4, 8, 0 }
2036
2037 /* Return a struct reg defining register NAME that's 32 bits on all
2038 systems. */
2039 #define R4(name) { STR(name), 4, 4, 0 }
2040
2041 /* Return a struct reg defining register NAME that's 64 bits on all
2042 systems. */
2043 #define R8(name) { STR(name), 8, 8, 0 }
2044
2045 /* Return a struct reg defining register NAME that's 128 bits on all
2046 systems. */
2047 #define R16(name) { STR(name), 16, 16, 0 }
2048
2049 /* Return a struct reg defining floating-point register NAME. */
2050 #define F(name) { STR(name), 8, 8, 1 }
2051
2052 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2053 systems and that doesn't exist on 64-bit systems. */
2054 #define R32(name) { STR(name), 4, 0, 0 }
2055
2056 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2057 systems and that doesn't exist on 32-bit systems. */
2058 #define R64(name) { STR(name), 0, 8, 0 }
2059
2060 /* Return a struct reg placeholder for a register that doesn't exist. */
2061 #define R0 { 0, 0, 0, 0 }
2062
2063 /* UISA registers common across all architectures, including POWER. */
2064
2065 #define COMMON_UISA_REGS \
2066 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2067 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2068 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2069 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2070 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2071 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2072 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2073 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2074 /* 64 */ R(pc), R(ps)
2075
2076 /* UISA-level SPRs for PowerPC. */
2077 #define PPC_UISA_SPRS \
2078 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
2079
2080 /* Segment registers, for PowerPC. */
2081 #define PPC_SEGMENT_REGS \
2082 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2083 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2084 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2085 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2086
2087 /* OEA SPRs for PowerPC. */
2088 #define PPC_OEA_SPRS \
2089 /* 87 */ R4(pvr), \
2090 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2091 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2092 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2093 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2094 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2095 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2096 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2097 /* 116 */ R4(dec), R(dabr), R4(ear)
2098
2099 /* AltiVec registers */
2100 #define PPC_ALTIVEC_REGS \
2101 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2102 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2103 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2104 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2105 /*151*/R4(vscr), R4(vrsave)
2106
2107 /* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2108 user-level SPR's. */
2109 static const struct reg registers_power[] =
2110 {
2111 COMMON_UISA_REGS,
2112 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2113 /* 71 */ R4(fpscr)
2114 };
2115
2116 /* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2117 view of the PowerPC. */
2118 static const struct reg registers_powerpc[] =
2119 {
2120 COMMON_UISA_REGS,
2121 PPC_UISA_SPRS,
2122 PPC_ALTIVEC_REGS
2123 };
2124
2125 /* IBM PowerPC 403. */
2126 static const struct reg registers_403[] =
2127 {
2128 COMMON_UISA_REGS,
2129 PPC_UISA_SPRS,
2130 PPC_SEGMENT_REGS,
2131 PPC_OEA_SPRS,
2132 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2133 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2134 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2135 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2136 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2137 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
2138 };
2139
2140 /* IBM PowerPC 403GC. */
2141 static const struct reg registers_403GC[] =
2142 {
2143 COMMON_UISA_REGS,
2144 PPC_UISA_SPRS,
2145 PPC_SEGMENT_REGS,
2146 PPC_OEA_SPRS,
2147 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2148 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2149 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2150 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2151 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2152 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2153 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2154 /* 147 */ R(tbhu), R(tblu)
2155 };
2156
2157 /* Motorola PowerPC 505. */
2158 static const struct reg registers_505[] =
2159 {
2160 COMMON_UISA_REGS,
2161 PPC_UISA_SPRS,
2162 PPC_SEGMENT_REGS,
2163 PPC_OEA_SPRS,
2164 /* 119 */ R(eie), R(eid), R(nri)
2165 };
2166
2167 /* Motorola PowerPC 860 or 850. */
2168 static const struct reg registers_860[] =
2169 {
2170 COMMON_UISA_REGS,
2171 PPC_UISA_SPRS,
2172 PPC_SEGMENT_REGS,
2173 PPC_OEA_SPRS,
2174 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2175 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2176 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2177 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2178 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2179 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2180 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2181 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2182 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2183 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2184 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2185 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
2186 };
2187
2188 /* Motorola PowerPC 601. Note that the 601 has different register numbers
2189 for reading and writing RTCU and RTCL. However, how one reads and writes a
2190 register is the stub's problem. */
2191 static const struct reg registers_601[] =
2192 {
2193 COMMON_UISA_REGS,
2194 PPC_UISA_SPRS,
2195 PPC_SEGMENT_REGS,
2196 PPC_OEA_SPRS,
2197 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2198 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
2199 };
2200
2201 /* Motorola PowerPC 602. */
2202 static const struct reg registers_602[] =
2203 {
2204 COMMON_UISA_REGS,
2205 PPC_UISA_SPRS,
2206 PPC_SEGMENT_REGS,
2207 PPC_OEA_SPRS,
2208 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2209 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2210 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
2211 };
2212
2213 /* Motorola/IBM PowerPC 603 or 603e. */
2214 static const struct reg registers_603[] =
2215 {
2216 COMMON_UISA_REGS,
2217 PPC_UISA_SPRS,
2218 PPC_SEGMENT_REGS,
2219 PPC_OEA_SPRS,
2220 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2221 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2222 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
2223 };
2224
2225 /* Motorola PowerPC 604 or 604e. */
2226 static const struct reg registers_604[] =
2227 {
2228 COMMON_UISA_REGS,
2229 PPC_UISA_SPRS,
2230 PPC_SEGMENT_REGS,
2231 PPC_OEA_SPRS,
2232 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2233 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2234 /* 127 */ R(sia), R(sda)
2235 };
2236
2237 /* Motorola/IBM PowerPC 750 or 740. */
2238 static const struct reg registers_750[] =
2239 {
2240 COMMON_UISA_REGS,
2241 PPC_UISA_SPRS,
2242 PPC_SEGMENT_REGS,
2243 PPC_OEA_SPRS,
2244 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2245 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2246 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2247 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2248 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2249 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
2250 };
2251
2252
2253 /* Motorola PowerPC 7400. */
2254 static const struct reg registers_7400[] =
2255 {
2256 /* gpr0-gpr31, fpr0-fpr31 */
2257 COMMON_UISA_REGS,
2258 /* ctr, xre, lr, cr */
2259 PPC_UISA_SPRS,
2260 /* sr0-sr15 */
2261 PPC_SEGMENT_REGS,
2262 PPC_OEA_SPRS,
2263 /* vr0-vr31, vrsave, vscr */
2264 PPC_ALTIVEC_REGS
2265 /* FIXME? Add more registers? */
2266 };
2267
2268 /* Information about a particular processor variant. */
2269
2270 struct variant
2271 {
2272 /* Name of this variant. */
2273 char *name;
2274
2275 /* English description of the variant. */
2276 char *description;
2277
2278 /* bfd_arch_info.arch corresponding to variant. */
2279 enum bfd_architecture arch;
2280
2281 /* bfd_arch_info.mach corresponding to variant. */
2282 unsigned long mach;
2283
2284 /* Table of register names; registers[R] is the name of the register
2285 number R. */
2286 int nregs;
2287 const struct reg *regs;
2288 };
2289
2290 #define num_registers(list) (sizeof (list) / sizeof((list)[0]))
2291
2292
2293 /* Information in this table comes from the following web sites:
2294 IBM: http://www.chips.ibm.com:80/products/embedded/
2295 Motorola: http://www.mot.com/SPS/PowerPC/
2296
2297 I'm sure I've got some of the variant descriptions not quite right.
2298 Please report any inaccuracies you find to GDB's maintainer.
2299
2300 If you add entries to this table, please be sure to allow the new
2301 value as an argument to the --with-cpu flag, in configure.in. */
2302
2303 static const struct variant variants[] =
2304 {
2305 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2306 bfd_mach_ppc, num_registers (registers_powerpc), registers_powerpc},
2307 {"power", "POWER user-level", bfd_arch_rs6000,
2308 bfd_mach_rs6k, num_registers (registers_power), registers_power},
2309 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2310 bfd_mach_ppc_403, num_registers (registers_403), registers_403},
2311 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2312 bfd_mach_ppc_601, num_registers (registers_601), registers_601},
2313 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2314 bfd_mach_ppc_602, num_registers (registers_602), registers_602},
2315 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2316 bfd_mach_ppc_603, num_registers (registers_603), registers_603},
2317 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2318 604, num_registers (registers_604), registers_604},
2319 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2320 bfd_mach_ppc_403gc, num_registers (registers_403GC), registers_403GC},
2321 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2322 bfd_mach_ppc_505, num_registers (registers_505), registers_505},
2323 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2324 bfd_mach_ppc_860, num_registers (registers_860), registers_860},
2325 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2326 bfd_mach_ppc_750, num_registers (registers_750), registers_750},
2327 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2328 bfd_mach_ppc_7400, num_registers (registers_7400), registers_7400},
2329
2330 /* 64-bit */
2331 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2332 bfd_mach_ppc64, num_registers (registers_powerpc), registers_powerpc},
2333 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2334 bfd_mach_ppc_620, num_registers (registers_powerpc), registers_powerpc},
2335 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2336 bfd_mach_ppc_630, num_registers (registers_powerpc), registers_powerpc},
2337 {"a35", "PowerPC A35", bfd_arch_powerpc,
2338 bfd_mach_ppc_a35, num_registers (registers_powerpc), registers_powerpc},
2339 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2340 bfd_mach_ppc_rs64ii, num_registers (registers_powerpc), registers_powerpc},
2341 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2342 bfd_mach_ppc_rs64iii, num_registers (registers_powerpc), registers_powerpc},
2343
2344 /* FIXME: I haven't checked the register sets of the following. */
2345 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2346 bfd_mach_rs6k_rs1, num_registers (registers_power), registers_power},
2347 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2348 bfd_mach_rs6k_rsc, num_registers (registers_power), registers_power},
2349 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2350 bfd_mach_rs6k_rs2, num_registers (registers_power), registers_power},
2351
2352 {0, 0, 0, 0}
2353 };
2354
2355 #undef num_registers
2356
2357 /* Return the variant corresponding to architecture ARCH and machine number
2358 MACH. If no such variant exists, return null. */
2359
2360 static const struct variant *
2361 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2362 {
2363 const struct variant *v;
2364
2365 for (v = variants; v->name; v++)
2366 if (arch == v->arch && mach == v->mach)
2367 return v;
2368
2369 return NULL;
2370 }
2371
2372
2373
2374 \f
2375 static void
2376 process_note_abi_tag_sections (bfd *abfd, asection *sect, void *obj)
2377 {
2378 int *os_ident_ptr = obj;
2379 const char *name;
2380 unsigned int sectsize;
2381
2382 name = bfd_get_section_name (abfd, sect);
2383 sectsize = bfd_section_size (abfd, sect);
2384 if (strcmp (name, ".note.ABI-tag") == 0 && sectsize > 0)
2385 {
2386 unsigned int name_length, data_length, note_type;
2387 char *note = alloca (sectsize);
2388
2389 bfd_get_section_contents (abfd, sect, note,
2390 (file_ptr) 0, (bfd_size_type) sectsize);
2391
2392 name_length = bfd_h_get_32 (abfd, note);
2393 data_length = bfd_h_get_32 (abfd, note + 4);
2394 note_type = bfd_h_get_32 (abfd, note + 8);
2395
2396 if (name_length == 4 && data_length == 16 && note_type == 1
2397 && strcmp (note + 12, "GNU") == 0)
2398 {
2399 int os_number = bfd_h_get_32 (abfd, note + 16);
2400
2401 /* The case numbers are from abi-tags in glibc */
2402 switch (os_number)
2403 {
2404 case 0 :
2405 *os_ident_ptr = ELFOSABI_LINUX;
2406 break;
2407 case 1 :
2408 *os_ident_ptr = ELFOSABI_HURD;
2409 break;
2410 case 2 :
2411 *os_ident_ptr = ELFOSABI_SOLARIS;
2412 break;
2413 default :
2414 internal_error (__FILE__, __LINE__,
2415 "process_note_abi_sections: unknown OS number %d",
2416 os_number);
2417 break;
2418 }
2419 }
2420 }
2421 }
2422
2423 /* Return one of the ELFOSABI_ constants for BFDs representing ELF
2424 executables. If it's not an ELF executable or if the OS/ABI couldn't
2425 be determined, simply return -1. */
2426
2427 static int
2428 get_elfosabi (bfd *abfd)
2429 {
2430 int elfosabi = -1;
2431
2432 if (abfd != NULL && bfd_get_flavour (abfd) == bfd_target_elf_flavour)
2433 {
2434 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2435
2436 /* When elfosabi is 0 (ELFOSABI_NONE), this is supposed to indicate
2437 that we're on a SYSV system. However, GNU/Linux uses a note section
2438 to record OS/ABI info, but leaves e_ident[EI_OSABI] zero. So we
2439 have to check the note sections too. */
2440 if (elfosabi == 0)
2441 {
2442 bfd_map_over_sections (abfd,
2443 process_note_abi_tag_sections,
2444 &elfosabi);
2445 }
2446 }
2447
2448 return elfosabi;
2449 }
2450
2451 \f
2452
2453 /* Initialize the current architecture based on INFO. If possible, re-use an
2454 architecture from ARCHES, which is a list of architectures already created
2455 during this debugging session.
2456
2457 Called e.g. at program startup, when reading a core file, and when reading
2458 a binary file. */
2459
2460 static struct gdbarch *
2461 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2462 {
2463 struct gdbarch *gdbarch;
2464 struct gdbarch_tdep *tdep;
2465 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2466 struct reg *regs;
2467 const struct variant *v;
2468 enum bfd_architecture arch;
2469 unsigned long mach;
2470 bfd abfd;
2471 int osabi, sysv_abi;
2472 gdbarch_print_insn_ftype *print_insn;
2473
2474 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2475 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2476
2477 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2478 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2479
2480 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2481
2482 osabi = get_elfosabi (info.abfd);
2483
2484 /* Check word size. If INFO is from a binary file, infer it from
2485 that, else choose a likely default. */
2486 if (from_xcoff_exec)
2487 {
2488 if (xcoff_data (info.abfd)->xcoff64)
2489 wordsize = 8;
2490 else
2491 wordsize = 4;
2492 }
2493 else if (from_elf_exec)
2494 {
2495 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2496 wordsize = 8;
2497 else
2498 wordsize = 4;
2499 }
2500 else
2501 {
2502 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2503 wordsize = info.bfd_arch_info->bits_per_word /
2504 info.bfd_arch_info->bits_per_byte;
2505 else
2506 wordsize = 4;
2507 }
2508
2509 /* Find a candidate among extant architectures. */
2510 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2511 arches != NULL;
2512 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2513 {
2514 /* Word size in the various PowerPC bfd_arch_info structs isn't
2515 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2516 separate word size check. */
2517 tdep = gdbarch_tdep (arches->gdbarch);
2518 if (tdep && tdep->wordsize == wordsize && tdep->osabi == osabi)
2519 return arches->gdbarch;
2520 }
2521
2522 /* None found, create a new architecture from INFO, whose bfd_arch_info
2523 validity depends on the source:
2524 - executable useless
2525 - rs6000_host_arch() good
2526 - core file good
2527 - "set arch" trust blindly
2528 - GDB startup useless but harmless */
2529
2530 if (!from_xcoff_exec)
2531 {
2532 arch = info.bfd_arch_info->arch;
2533 mach = info.bfd_arch_info->mach;
2534 }
2535 else
2536 {
2537 arch = bfd_arch_powerpc;
2538 mach = 0;
2539 bfd_default_set_arch_mach (&abfd, arch, mach);
2540 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2541 }
2542 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2543 tdep->wordsize = wordsize;
2544 tdep->osabi = osabi;
2545 gdbarch = gdbarch_alloc (&info, tdep);
2546 power = arch == bfd_arch_rs6000;
2547
2548 /* Choose variant. */
2549 v = find_variant_by_arch (arch, mach);
2550 if (!v)
2551 return NULL;
2552
2553 tdep->regs = v->regs;
2554
2555 tdep->ppc_gp0_regnum = 0;
2556 tdep->ppc_gplast_regnum = 31;
2557 tdep->ppc_toc_regnum = 2;
2558 tdep->ppc_ps_regnum = 65;
2559 tdep->ppc_cr_regnum = 66;
2560 tdep->ppc_lr_regnum = 67;
2561 tdep->ppc_ctr_regnum = 68;
2562 tdep->ppc_xer_regnum = 69;
2563 if (v->mach == bfd_mach_ppc_601)
2564 tdep->ppc_mq_regnum = 124;
2565 else if (power)
2566 tdep->ppc_mq_regnum = 70;
2567 else
2568 tdep->ppc_mq_regnum = -1;
2569 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2570
2571 if (v->arch == bfd_arch_powerpc)
2572 switch (v->mach)
2573 {
2574 case bfd_mach_ppc:
2575 tdep->ppc_vr0_regnum = 71;
2576 tdep->ppc_vrsave_regnum = 104;
2577 break;
2578 case bfd_mach_ppc_7400:
2579 tdep->ppc_vr0_regnum = 119;
2580 tdep->ppc_vrsave_regnum = 153;
2581 break;
2582 default:
2583 tdep->ppc_vr0_regnum = -1;
2584 tdep->ppc_vrsave_regnum = -1;
2585 break;
2586 }
2587
2588 /* Calculate byte offsets in raw register array. */
2589 tdep->regoff = xmalloc (v->nregs * sizeof (int));
2590 for (i = off = 0; i < v->nregs; i++)
2591 {
2592 tdep->regoff[i] = off;
2593 off += regsize (v->regs + i, wordsize);
2594 }
2595
2596 /* Select instruction printer. */
2597 if (arch == power)
2598 print_insn = print_insn_rs6000;
2599 else if (info.byte_order == BFD_ENDIAN_BIG)
2600 print_insn = print_insn_big_powerpc;
2601 else
2602 print_insn = print_insn_little_powerpc;
2603 set_gdbarch_print_insn (gdbarch, print_insn);
2604
2605 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
2606 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2607 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
2608 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
2609 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
2610
2611 set_gdbarch_num_regs (gdbarch, v->nregs);
2612 set_gdbarch_sp_regnum (gdbarch, 1);
2613 set_gdbarch_fp_regnum (gdbarch, 1);
2614 set_gdbarch_pc_regnum (gdbarch, 64);
2615 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2616 set_gdbarch_register_size (gdbarch, wordsize);
2617 set_gdbarch_register_bytes (gdbarch, off);
2618 set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
2619 set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
2620 set_gdbarch_max_register_raw_size (gdbarch, 16);
2621 set_gdbarch_register_virtual_size (gdbarch, generic_register_virtual_size);
2622 set_gdbarch_max_register_virtual_size (gdbarch, 16);
2623 set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2624 set_gdbarch_do_registers_info (gdbarch, rs6000_do_registers_info);
2625
2626 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2627 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2628 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2629 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2630 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2631 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2632 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2633 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2634 set_gdbarch_char_signed (gdbarch, 0);
2635
2636 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
2637 set_gdbarch_call_dummy_length (gdbarch, 0);
2638 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
2639 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2640 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2641 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2642 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
2643 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
2644 set_gdbarch_call_dummy_p (gdbarch, 1);
2645 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2646 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
2647 set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
2648 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
2649 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
2650 set_gdbarch_push_return_address (gdbarch, ppc_push_return_address);
2651 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2652 set_gdbarch_coerce_float_to_double (gdbarch, rs6000_coerce_float_to_double);
2653
2654 set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
2655 set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2656 set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2657 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2658
2659 set_gdbarch_extract_return_value (gdbarch, rs6000_extract_return_value);
2660
2661 if (sysv_abi)
2662 set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
2663 else
2664 set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments);
2665
2666 set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return);
2667 set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
2668 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2669 set_gdbarch_pop_frame (gdbarch, rs6000_pop_frame);
2670
2671 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2672 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2673 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2674 set_gdbarch_function_start_offset (gdbarch, 0);
2675 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2676
2677 /* Not sure on this. FIXMEmgo */
2678 set_gdbarch_frame_args_skip (gdbarch, 8);
2679
2680 /* Until November 2001, gcc was not complying to the SYSV ABI for
2681 returning structures less than or equal to 8 bytes in size. It was
2682 returning everything in memory. When this was corrected, it wasn't
2683 fixed for native platforms. */
2684 if (sysv_abi)
2685 {
2686 if (osabi == ELFOSABI_LINUX
2687 || osabi == ELFOSABI_NETBSD
2688 || osabi == ELFOSABI_FREEBSD)
2689 set_gdbarch_use_struct_convention (gdbarch,
2690 generic_use_struct_convention);
2691 else
2692 set_gdbarch_use_struct_convention (gdbarch,
2693 ppc_sysv_abi_use_struct_convention);
2694 }
2695 else
2696 {
2697 set_gdbarch_use_struct_convention (gdbarch,
2698 generic_use_struct_convention);
2699 }
2700
2701 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
2702 if (osabi == ELFOSABI_LINUX)
2703 {
2704 set_gdbarch_frameless_function_invocation (gdbarch,
2705 ppc_linux_frameless_function_invocation);
2706 set_gdbarch_frame_chain (gdbarch, ppc_linux_frame_chain);
2707 set_gdbarch_frame_saved_pc (gdbarch, ppc_linux_frame_saved_pc);
2708
2709 set_gdbarch_frame_init_saved_regs (gdbarch,
2710 ppc_linux_frame_init_saved_regs);
2711 set_gdbarch_init_extra_frame_info (gdbarch,
2712 ppc_linux_init_extra_frame_info);
2713
2714 set_gdbarch_memory_remove_breakpoint (gdbarch,
2715 ppc_linux_memory_remove_breakpoint);
2716 set_solib_svr4_fetch_link_map_offsets
2717 (gdbarch, ppc_linux_svr4_fetch_link_map_offsets);
2718 }
2719 else
2720 {
2721 set_gdbarch_frameless_function_invocation (gdbarch,
2722 rs6000_frameless_function_invocation);
2723 set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain);
2724 set_gdbarch_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2725
2726 set_gdbarch_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2727 set_gdbarch_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
2728
2729 /* Handle RS/6000 function pointers. */
2730 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2731 rs6000_convert_from_func_ptr_addr);
2732 }
2733 set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
2734 set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
2735 set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2736
2737 /* We can't tell how many args there are
2738 now that the C compiler delays popping them. */
2739 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2740
2741 return gdbarch;
2742 }
2743
2744 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2745
2746 static void
2747 rs6000_info_powerpc_command (char *args, int from_tty)
2748 {
2749 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2750 }
2751
2752 /* Initialization code. */
2753
2754 void
2755 _initialize_rs6000_tdep (void)
2756 {
2757 register_gdbarch_init (bfd_arch_rs6000, rs6000_gdbarch_init);
2758 register_gdbarch_init (bfd_arch_powerpc, rs6000_gdbarch_init);
2759
2760 /* Add root prefix command for "info powerpc" commands */
2761 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2762 "Various POWERPC info specific commands.",
2763 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
2764
2765 add_cmd ("altivec", class_info, rs6000_altivec_registers_info,
2766 "Display the contents of the AltiVec registers.",
2767 &info_powerpc_cmdlist);
2768
2769 }
This page took 0.144579 seconds and 4 git commands to generate.