75811d105c03ddbf175058f1645093649185a92b
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "infrun.h"
24 #include "symtab.h"
25 #include "target.h"
26 #include "gdbcore.h"
27 #include "gdbcmd.h"
28 #include "objfiles.h"
29 #include "arch-utils.h"
30 #include "regcache.h"
31 #include "regset.h"
32 #include "doublest.h"
33 #include "value.h"
34 #include "parser-defs.h"
35 #include "osabi.h"
36 #include "infcall.h"
37 #include "sim-regno.h"
38 #include "gdb/sim-ppc.h"
39 #include "reggroups.h"
40 #include "dwarf2-frame.h"
41 #include "target-descriptions.h"
42 #include "user-regs.h"
43 #include "record-full.h"
44 #include "auxv.h"
45
46 #include "libbfd.h" /* for bfd_default_set_arch_mach */
47 #include "coff/internal.h" /* for libcoff.h */
48 #include "libcoff.h" /* for xcoff_data */
49 #include "coff/xcoff.h"
50 #include "libxcoff.h"
51
52 #include "elf-bfd.h"
53 #include "elf/ppc.h"
54 #include "elf/ppc64.h"
55
56 #include "solib-svr4.h"
57 #include "ppc-tdep.h"
58 #include "ppc-ravenscar-thread.h"
59
60 #include "dis-asm.h"
61
62 #include "trad-frame.h"
63 #include "frame-unwind.h"
64 #include "frame-base.h"
65
66 #include "features/rs6000/powerpc-32.c"
67 #include "features/rs6000/powerpc-altivec32.c"
68 #include "features/rs6000/powerpc-vsx32.c"
69 #include "features/rs6000/powerpc-403.c"
70 #include "features/rs6000/powerpc-403gc.c"
71 #include "features/rs6000/powerpc-405.c"
72 #include "features/rs6000/powerpc-505.c"
73 #include "features/rs6000/powerpc-601.c"
74 #include "features/rs6000/powerpc-602.c"
75 #include "features/rs6000/powerpc-603.c"
76 #include "features/rs6000/powerpc-604.c"
77 #include "features/rs6000/powerpc-64.c"
78 #include "features/rs6000/powerpc-altivec64.c"
79 #include "features/rs6000/powerpc-vsx64.c"
80 #include "features/rs6000/powerpc-7400.c"
81 #include "features/rs6000/powerpc-750.c"
82 #include "features/rs6000/powerpc-860.c"
83 #include "features/rs6000/powerpc-e500.c"
84 #include "features/rs6000/rs6000.c"
85
86 /* Determine if regnum is an SPE pseudo-register. */
87 #define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
88 && (regnum) >= (tdep)->ppc_ev0_regnum \
89 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
90
91 /* Determine if regnum is a decimal float pseudo-register. */
92 #define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
93 && (regnum) >= (tdep)->ppc_dl0_regnum \
94 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
95
96 /* Determine if regnum is a POWER7 VSX register. */
97 #define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
98 && (regnum) >= (tdep)->ppc_vsr0_regnum \
99 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
100
101 /* Determine if regnum is a POWER7 Extended FP register. */
102 #define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
103 && (regnum) >= (tdep)->ppc_efpr0_regnum \
104 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
105
106 /* The list of available "set powerpc ..." and "show powerpc ..."
107 commands. */
108 static struct cmd_list_element *setpowerpccmdlist = NULL;
109 static struct cmd_list_element *showpowerpccmdlist = NULL;
110
111 static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
112
113 /* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
114 static const char *const powerpc_vector_strings[] =
115 {
116 "auto",
117 "generic",
118 "altivec",
119 "spe",
120 NULL
121 };
122
123 /* A variable that can be configured by the user. */
124 static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
125 static const char *powerpc_vector_abi_string = "auto";
126
127 /* To be used by skip_prologue. */
128
129 struct rs6000_framedata
130 {
131 int offset; /* total size of frame --- the distance
132 by which we decrement sp to allocate
133 the frame */
134 int saved_gpr; /* smallest # of saved gpr */
135 unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
136 int saved_fpr; /* smallest # of saved fpr */
137 int saved_vr; /* smallest # of saved vr */
138 int saved_ev; /* smallest # of saved ev */
139 int alloca_reg; /* alloca register number (frame ptr) */
140 char frameless; /* true if frameless functions. */
141 char nosavedpc; /* true if pc not saved. */
142 char used_bl; /* true if link register clobbered */
143 int gpr_offset; /* offset of saved gprs from prev sp */
144 int fpr_offset; /* offset of saved fprs from prev sp */
145 int vr_offset; /* offset of saved vrs from prev sp */
146 int ev_offset; /* offset of saved evs from prev sp */
147 int lr_offset; /* offset of saved lr */
148 int lr_register; /* register of saved lr, if trustworthy */
149 int cr_offset; /* offset of saved cr */
150 int vrsave_offset; /* offset of saved vrsave register */
151 };
152
153
154 /* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
155 int
156 vsx_register_p (struct gdbarch *gdbarch, int regno)
157 {
158 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
159 if (tdep->ppc_vsr0_regnum < 0)
160 return 0;
161 else
162 return (regno >= tdep->ppc_vsr0_upper_regnum && regno
163 <= tdep->ppc_vsr0_upper_regnum + 31);
164 }
165
166 /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
167 int
168 altivec_register_p (struct gdbarch *gdbarch, int regno)
169 {
170 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
171 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
172 return 0;
173 else
174 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
175 }
176
177
178 /* Return true if REGNO is an SPE register, false otherwise. */
179 int
180 spe_register_p (struct gdbarch *gdbarch, int regno)
181 {
182 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
183
184 /* Is it a reference to EV0 -- EV31, and do we have those? */
185 if (IS_SPE_PSEUDOREG (tdep, regno))
186 return 1;
187
188 /* Is it a reference to one of the raw upper GPR halves? */
189 if (tdep->ppc_ev0_upper_regnum >= 0
190 && tdep->ppc_ev0_upper_regnum <= regno
191 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
192 return 1;
193
194 /* Is it a reference to the 64-bit accumulator, and do we have that? */
195 if (tdep->ppc_acc_regnum >= 0
196 && tdep->ppc_acc_regnum == regno)
197 return 1;
198
199 /* Is it a reference to the SPE floating-point status and control register,
200 and do we have that? */
201 if (tdep->ppc_spefscr_regnum >= 0
202 && tdep->ppc_spefscr_regnum == regno)
203 return 1;
204
205 return 0;
206 }
207
208
209 /* Return non-zero if the architecture described by GDBARCH has
210 floating-point registers (f0 --- f31 and fpscr). */
211 int
212 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
213 {
214 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
215
216 return (tdep->ppc_fp0_regnum >= 0
217 && tdep->ppc_fpscr_regnum >= 0);
218 }
219
220 /* Return non-zero if the architecture described by GDBARCH has
221 VSX registers (vsr0 --- vsr63). */
222 static int
223 ppc_vsx_support_p (struct gdbarch *gdbarch)
224 {
225 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
226
227 return tdep->ppc_vsr0_regnum >= 0;
228 }
229
230 /* Return non-zero if the architecture described by GDBARCH has
231 Altivec registers (vr0 --- vr31, vrsave and vscr). */
232 int
233 ppc_altivec_support_p (struct gdbarch *gdbarch)
234 {
235 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236
237 return (tdep->ppc_vr0_regnum >= 0
238 && tdep->ppc_vrsave_regnum >= 0);
239 }
240
241 /* Check that TABLE[GDB_REGNO] is not already initialized, and then
242 set it to SIM_REGNO.
243
244 This is a helper function for init_sim_regno_table, constructing
245 the table mapping GDB register numbers to sim register numbers; we
246 initialize every element in that table to -1 before we start
247 filling it in. */
248 static void
249 set_sim_regno (int *table, int gdb_regno, int sim_regno)
250 {
251 /* Make sure we don't try to assign any given GDB register a sim
252 register number more than once. */
253 gdb_assert (table[gdb_regno] == -1);
254 table[gdb_regno] = sim_regno;
255 }
256
257
258 /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
259 numbers to simulator register numbers, based on the values placed
260 in the ARCH->tdep->ppc_foo_regnum members. */
261 static void
262 init_sim_regno_table (struct gdbarch *arch)
263 {
264 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
265 int total_regs = gdbarch_num_regs (arch);
266 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
267 int i;
268 static const char *const segment_regs[] = {
269 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
270 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
271 };
272
273 /* Presume that all registers not explicitly mentioned below are
274 unavailable from the sim. */
275 for (i = 0; i < total_regs; i++)
276 sim_regno[i] = -1;
277
278 /* General-purpose registers. */
279 for (i = 0; i < ppc_num_gprs; i++)
280 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
281
282 /* Floating-point registers. */
283 if (tdep->ppc_fp0_regnum >= 0)
284 for (i = 0; i < ppc_num_fprs; i++)
285 set_sim_regno (sim_regno,
286 tdep->ppc_fp0_regnum + i,
287 sim_ppc_f0_regnum + i);
288 if (tdep->ppc_fpscr_regnum >= 0)
289 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
290
291 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
292 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
293 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
294
295 /* Segment registers. */
296 for (i = 0; i < ppc_num_srs; i++)
297 {
298 int gdb_regno;
299
300 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
301 if (gdb_regno >= 0)
302 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
303 }
304
305 /* Altivec registers. */
306 if (tdep->ppc_vr0_regnum >= 0)
307 {
308 for (i = 0; i < ppc_num_vrs; i++)
309 set_sim_regno (sim_regno,
310 tdep->ppc_vr0_regnum + i,
311 sim_ppc_vr0_regnum + i);
312
313 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
314 we can treat this more like the other cases. */
315 set_sim_regno (sim_regno,
316 tdep->ppc_vr0_regnum + ppc_num_vrs,
317 sim_ppc_vscr_regnum);
318 }
319 /* vsave is a special-purpose register, so the code below handles it. */
320
321 /* SPE APU (E500) registers. */
322 if (tdep->ppc_ev0_upper_regnum >= 0)
323 for (i = 0; i < ppc_num_gprs; i++)
324 set_sim_regno (sim_regno,
325 tdep->ppc_ev0_upper_regnum + i,
326 sim_ppc_rh0_regnum + i);
327 if (tdep->ppc_acc_regnum >= 0)
328 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
329 /* spefscr is a special-purpose register, so the code below handles it. */
330
331 #ifdef WITH_SIM
332 /* Now handle all special-purpose registers. Verify that they
333 haven't mistakenly been assigned numbers by any of the above
334 code. */
335 for (i = 0; i < sim_ppc_num_sprs; i++)
336 {
337 const char *spr_name = sim_spr_register_name (i);
338 int gdb_regno = -1;
339
340 if (spr_name != NULL)
341 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
342
343 if (gdb_regno != -1)
344 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
345 }
346 #endif
347
348 /* Drop the initialized array into place. */
349 tdep->sim_regno = sim_regno;
350 }
351
352
353 /* Given a GDB register number REG, return the corresponding SIM
354 register number. */
355 static int
356 rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
357 {
358 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
359 int sim_regno;
360
361 if (tdep->sim_regno == NULL)
362 init_sim_regno_table (gdbarch);
363
364 gdb_assert (0 <= reg
365 && reg <= gdbarch_num_regs (gdbarch)
366 + gdbarch_num_pseudo_regs (gdbarch));
367 sim_regno = tdep->sim_regno[reg];
368
369 if (sim_regno >= 0)
370 return sim_regno;
371 else
372 return LEGACY_SIM_REGNO_IGNORE;
373 }
374
375 \f
376
377 /* Register set support functions. */
378
379 /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
380 Write the register to REGCACHE. */
381
382 void
383 ppc_supply_reg (struct regcache *regcache, int regnum,
384 const gdb_byte *regs, size_t offset, int regsize)
385 {
386 if (regnum != -1 && offset != -1)
387 {
388 if (regsize > 4)
389 {
390 struct gdbarch *gdbarch = get_regcache_arch (regcache);
391 int gdb_regsize = register_size (gdbarch, regnum);
392 if (gdb_regsize < regsize
393 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
394 offset += regsize - gdb_regsize;
395 }
396 regcache_raw_supply (regcache, regnum, regs + offset);
397 }
398 }
399
400 /* Read register REGNUM from REGCACHE and store to REGS + OFFSET
401 in a field REGSIZE wide. Zero pad as necessary. */
402
403 void
404 ppc_collect_reg (const struct regcache *regcache, int regnum,
405 gdb_byte *regs, size_t offset, int regsize)
406 {
407 if (regnum != -1 && offset != -1)
408 {
409 if (regsize > 4)
410 {
411 struct gdbarch *gdbarch = get_regcache_arch (regcache);
412 int gdb_regsize = register_size (gdbarch, regnum);
413 if (gdb_regsize < regsize)
414 {
415 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
416 {
417 memset (regs + offset, 0, regsize - gdb_regsize);
418 offset += regsize - gdb_regsize;
419 }
420 else
421 memset (regs + offset + regsize - gdb_regsize, 0,
422 regsize - gdb_regsize);
423 }
424 }
425 regcache_raw_collect (regcache, regnum, regs + offset);
426 }
427 }
428
429 static int
430 ppc_greg_offset (struct gdbarch *gdbarch,
431 struct gdbarch_tdep *tdep,
432 const struct ppc_reg_offsets *offsets,
433 int regnum,
434 int *regsize)
435 {
436 *regsize = offsets->gpr_size;
437 if (regnum >= tdep->ppc_gp0_regnum
438 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
439 return (offsets->r0_offset
440 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
441
442 if (regnum == gdbarch_pc_regnum (gdbarch))
443 return offsets->pc_offset;
444
445 if (regnum == tdep->ppc_ps_regnum)
446 return offsets->ps_offset;
447
448 if (regnum == tdep->ppc_lr_regnum)
449 return offsets->lr_offset;
450
451 if (regnum == tdep->ppc_ctr_regnum)
452 return offsets->ctr_offset;
453
454 *regsize = offsets->xr_size;
455 if (regnum == tdep->ppc_cr_regnum)
456 return offsets->cr_offset;
457
458 if (regnum == tdep->ppc_xer_regnum)
459 return offsets->xer_offset;
460
461 if (regnum == tdep->ppc_mq_regnum)
462 return offsets->mq_offset;
463
464 return -1;
465 }
466
467 static int
468 ppc_fpreg_offset (struct gdbarch_tdep *tdep,
469 const struct ppc_reg_offsets *offsets,
470 int regnum)
471 {
472 if (regnum >= tdep->ppc_fp0_regnum
473 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
474 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
475
476 if (regnum == tdep->ppc_fpscr_regnum)
477 return offsets->fpscr_offset;
478
479 return -1;
480 }
481
482 static int
483 ppc_vrreg_offset (struct gdbarch_tdep *tdep,
484 const struct ppc_reg_offsets *offsets,
485 int regnum)
486 {
487 if (regnum >= tdep->ppc_vr0_regnum
488 && regnum < tdep->ppc_vr0_regnum + ppc_num_vrs)
489 return offsets->vr0_offset + (regnum - tdep->ppc_vr0_regnum) * 16;
490
491 if (regnum == tdep->ppc_vrsave_regnum - 1)
492 return offsets->vscr_offset;
493
494 if (regnum == tdep->ppc_vrsave_regnum)
495 return offsets->vrsave_offset;
496
497 return -1;
498 }
499
500 /* Supply register REGNUM in the general-purpose register set REGSET
501 from the buffer specified by GREGS and LEN to register cache
502 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
503
504 void
505 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
506 int regnum, const void *gregs, size_t len)
507 {
508 struct gdbarch *gdbarch = get_regcache_arch (regcache);
509 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
510 const struct ppc_reg_offsets *offsets = regset->regmap;
511 size_t offset;
512 int regsize;
513
514 if (regnum == -1)
515 {
516 int i;
517 int gpr_size = offsets->gpr_size;
518
519 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
520 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
521 i++, offset += gpr_size)
522 ppc_supply_reg (regcache, i, gregs, offset, gpr_size);
523
524 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
525 gregs, offsets->pc_offset, gpr_size);
526 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
527 gregs, offsets->ps_offset, gpr_size);
528 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
529 gregs, offsets->lr_offset, gpr_size);
530 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
531 gregs, offsets->ctr_offset, gpr_size);
532 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
533 gregs, offsets->cr_offset, offsets->xr_size);
534 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
535 gregs, offsets->xer_offset, offsets->xr_size);
536 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
537 gregs, offsets->mq_offset, offsets->xr_size);
538 return;
539 }
540
541 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
542 ppc_supply_reg (regcache, regnum, gregs, offset, regsize);
543 }
544
545 /* Supply register REGNUM in the floating-point register set REGSET
546 from the buffer specified by FPREGS and LEN to register cache
547 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
548
549 void
550 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
551 int regnum, const void *fpregs, size_t len)
552 {
553 struct gdbarch *gdbarch = get_regcache_arch (regcache);
554 struct gdbarch_tdep *tdep;
555 const struct ppc_reg_offsets *offsets;
556 size_t offset;
557
558 if (!ppc_floating_point_unit_p (gdbarch))
559 return;
560
561 tdep = gdbarch_tdep (gdbarch);
562 offsets = regset->regmap;
563 if (regnum == -1)
564 {
565 int i;
566
567 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
568 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
569 i++, offset += 8)
570 ppc_supply_reg (regcache, i, fpregs, offset, 8);
571
572 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
573 fpregs, offsets->fpscr_offset, offsets->fpscr_size);
574 return;
575 }
576
577 offset = ppc_fpreg_offset (tdep, offsets, regnum);
578 ppc_supply_reg (regcache, regnum, fpregs, offset,
579 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
580 }
581
582 /* Supply register REGNUM in the VSX register set REGSET
583 from the buffer specified by VSXREGS and LEN to register cache
584 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
585
586 void
587 ppc_supply_vsxregset (const struct regset *regset, struct regcache *regcache,
588 int regnum, const void *vsxregs, size_t len)
589 {
590 struct gdbarch *gdbarch = get_regcache_arch (regcache);
591 struct gdbarch_tdep *tdep;
592
593 if (!ppc_vsx_support_p (gdbarch))
594 return;
595
596 tdep = gdbarch_tdep (gdbarch);
597
598 if (regnum == -1)
599 {
600 int i;
601
602 for (i = tdep->ppc_vsr0_upper_regnum;
603 i < tdep->ppc_vsr0_upper_regnum + 32;
604 i++)
605 ppc_supply_reg (regcache, i, vsxregs, 0, 8);
606
607 return;
608 }
609 else
610 ppc_supply_reg (regcache, regnum, vsxregs, 0, 8);
611 }
612
613 /* Supply register REGNUM in the Altivec register set REGSET
614 from the buffer specified by VRREGS and LEN to register cache
615 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
616
617 void
618 ppc_supply_vrregset (const struct regset *regset, struct regcache *regcache,
619 int regnum, const void *vrregs, size_t len)
620 {
621 struct gdbarch *gdbarch = get_regcache_arch (regcache);
622 struct gdbarch_tdep *tdep;
623 const struct ppc_reg_offsets *offsets;
624 size_t offset;
625
626 if (!ppc_altivec_support_p (gdbarch))
627 return;
628
629 tdep = gdbarch_tdep (gdbarch);
630 offsets = regset->regmap;
631 if (regnum == -1)
632 {
633 int i;
634
635 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
636 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
637 i++, offset += 16)
638 ppc_supply_reg (regcache, i, vrregs, offset, 16);
639
640 ppc_supply_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
641 vrregs, offsets->vscr_offset, 4);
642
643 ppc_supply_reg (regcache, tdep->ppc_vrsave_regnum,
644 vrregs, offsets->vrsave_offset, 4);
645 return;
646 }
647
648 offset = ppc_vrreg_offset (tdep, offsets, regnum);
649 if (regnum != tdep->ppc_vrsave_regnum
650 && regnum != tdep->ppc_vrsave_regnum - 1)
651 ppc_supply_reg (regcache, regnum, vrregs, offset, 16);
652 else
653 ppc_supply_reg (regcache, regnum,
654 vrregs, offset, 4);
655 }
656
657 /* Collect register REGNUM in the general-purpose register set
658 REGSET from register cache REGCACHE into the buffer specified by
659 GREGS and LEN. If REGNUM is -1, do this for all registers in
660 REGSET. */
661
662 void
663 ppc_collect_gregset (const struct regset *regset,
664 const struct regcache *regcache,
665 int regnum, void *gregs, size_t len)
666 {
667 struct gdbarch *gdbarch = get_regcache_arch (regcache);
668 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
669 const struct ppc_reg_offsets *offsets = regset->regmap;
670 size_t offset;
671 int regsize;
672
673 if (regnum == -1)
674 {
675 int i;
676 int gpr_size = offsets->gpr_size;
677
678 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
679 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
680 i++, offset += gpr_size)
681 ppc_collect_reg (regcache, i, gregs, offset, gpr_size);
682
683 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
684 gregs, offsets->pc_offset, gpr_size);
685 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
686 gregs, offsets->ps_offset, gpr_size);
687 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
688 gregs, offsets->lr_offset, gpr_size);
689 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
690 gregs, offsets->ctr_offset, gpr_size);
691 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
692 gregs, offsets->cr_offset, offsets->xr_size);
693 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
694 gregs, offsets->xer_offset, offsets->xr_size);
695 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
696 gregs, offsets->mq_offset, offsets->xr_size);
697 return;
698 }
699
700 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
701 ppc_collect_reg (regcache, regnum, gregs, offset, regsize);
702 }
703
704 /* Collect register REGNUM in the floating-point register set
705 REGSET from register cache REGCACHE into the buffer specified by
706 FPREGS and LEN. If REGNUM is -1, do this for all registers in
707 REGSET. */
708
709 void
710 ppc_collect_fpregset (const struct regset *regset,
711 const struct regcache *regcache,
712 int regnum, void *fpregs, size_t len)
713 {
714 struct gdbarch *gdbarch = get_regcache_arch (regcache);
715 struct gdbarch_tdep *tdep;
716 const struct ppc_reg_offsets *offsets;
717 size_t offset;
718
719 if (!ppc_floating_point_unit_p (gdbarch))
720 return;
721
722 tdep = gdbarch_tdep (gdbarch);
723 offsets = regset->regmap;
724 if (regnum == -1)
725 {
726 int i;
727
728 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
729 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
730 i++, offset += 8)
731 ppc_collect_reg (regcache, i, fpregs, offset, 8);
732
733 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
734 fpregs, offsets->fpscr_offset, offsets->fpscr_size);
735 return;
736 }
737
738 offset = ppc_fpreg_offset (tdep, offsets, regnum);
739 ppc_collect_reg (regcache, regnum, fpregs, offset,
740 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
741 }
742
743 /* Collect register REGNUM in the VSX register set
744 REGSET from register cache REGCACHE into the buffer specified by
745 VSXREGS and LEN. If REGNUM is -1, do this for all registers in
746 REGSET. */
747
748 void
749 ppc_collect_vsxregset (const struct regset *regset,
750 const struct regcache *regcache,
751 int regnum, void *vsxregs, size_t len)
752 {
753 struct gdbarch *gdbarch = get_regcache_arch (regcache);
754 struct gdbarch_tdep *tdep;
755
756 if (!ppc_vsx_support_p (gdbarch))
757 return;
758
759 tdep = gdbarch_tdep (gdbarch);
760
761 if (regnum == -1)
762 {
763 int i;
764
765 for (i = tdep->ppc_vsr0_upper_regnum;
766 i < tdep->ppc_vsr0_upper_regnum + 32;
767 i++)
768 ppc_collect_reg (regcache, i, vsxregs, 0, 8);
769
770 return;
771 }
772 else
773 ppc_collect_reg (regcache, regnum, vsxregs, 0, 8);
774 }
775
776
777 /* Collect register REGNUM in the Altivec register set
778 REGSET from register cache REGCACHE into the buffer specified by
779 VRREGS and LEN. If REGNUM is -1, do this for all registers in
780 REGSET. */
781
782 void
783 ppc_collect_vrregset (const struct regset *regset,
784 const struct regcache *regcache,
785 int regnum, void *vrregs, size_t len)
786 {
787 struct gdbarch *gdbarch = get_regcache_arch (regcache);
788 struct gdbarch_tdep *tdep;
789 const struct ppc_reg_offsets *offsets;
790 size_t offset;
791
792 if (!ppc_altivec_support_p (gdbarch))
793 return;
794
795 tdep = gdbarch_tdep (gdbarch);
796 offsets = regset->regmap;
797 if (regnum == -1)
798 {
799 int i;
800
801 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
802 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
803 i++, offset += 16)
804 ppc_collect_reg (regcache, i, vrregs, offset, 16);
805
806 ppc_collect_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
807 vrregs, offsets->vscr_offset, 4);
808
809 ppc_collect_reg (regcache, tdep->ppc_vrsave_regnum,
810 vrregs, offsets->vrsave_offset, 4);
811 return;
812 }
813
814 offset = ppc_vrreg_offset (tdep, offsets, regnum);
815 if (regnum != tdep->ppc_vrsave_regnum
816 && regnum != tdep->ppc_vrsave_regnum - 1)
817 ppc_collect_reg (regcache, regnum, vrregs, offset, 16);
818 else
819 ppc_collect_reg (regcache, regnum,
820 vrregs, offset, 4);
821 }
822 \f
823
824 static int
825 insn_changes_sp_or_jumps (unsigned long insn)
826 {
827 int opcode = (insn >> 26) & 0x03f;
828 int sd = (insn >> 21) & 0x01f;
829 int a = (insn >> 16) & 0x01f;
830 int subcode = (insn >> 1) & 0x3ff;
831
832 /* Changes the stack pointer. */
833
834 /* NOTE: There are many ways to change the value of a given register.
835 The ways below are those used when the register is R1, the SP,
836 in a funtion's epilogue. */
837
838 if (opcode == 31 && subcode == 444 && a == 1)
839 return 1; /* mr R1,Rn */
840 if (opcode == 14 && sd == 1)
841 return 1; /* addi R1,Rn,simm */
842 if (opcode == 58 && sd == 1)
843 return 1; /* ld R1,ds(Rn) */
844
845 /* Transfers control. */
846
847 if (opcode == 18)
848 return 1; /* b */
849 if (opcode == 16)
850 return 1; /* bc */
851 if (opcode == 19 && subcode == 16)
852 return 1; /* bclr */
853 if (opcode == 19 && subcode == 528)
854 return 1; /* bcctr */
855
856 return 0;
857 }
858
859 /* Return true if we are in the function's epilogue, i.e. after the
860 instruction that destroyed the function's stack frame.
861
862 1) scan forward from the point of execution:
863 a) If you find an instruction that modifies the stack pointer
864 or transfers control (except a return), execution is not in
865 an epilogue, return.
866 b) Stop scanning if you find a return instruction or reach the
867 end of the function or reach the hard limit for the size of
868 an epilogue.
869 2) scan backward from the point of execution:
870 a) If you find an instruction that modifies the stack pointer,
871 execution *is* in an epilogue, return.
872 b) Stop scanning if you reach an instruction that transfers
873 control or the beginning of the function or reach the hard
874 limit for the size of an epilogue. */
875
876 static int
877 rs6000_in_function_epilogue_frame_p (struct frame_info *curfrm,
878 struct gdbarch *gdbarch, CORE_ADDR pc)
879 {
880 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
881 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
882 bfd_byte insn_buf[PPC_INSN_SIZE];
883 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
884 unsigned long insn;
885
886 /* Find the search limits based on function boundaries and hard limit. */
887
888 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
889 return 0;
890
891 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
892 if (epilogue_start < func_start) epilogue_start = func_start;
893
894 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
895 if (epilogue_end > func_end) epilogue_end = func_end;
896
897 /* Scan forward until next 'blr'. */
898
899 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
900 {
901 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
902 return 0;
903 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
904 if (insn == 0x4e800020)
905 break;
906 /* Assume a bctr is a tail call unless it points strictly within
907 this function. */
908 if (insn == 0x4e800420)
909 {
910 CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
911 tdep->ppc_ctr_regnum);
912 if (ctr > func_start && ctr < func_end)
913 return 0;
914 else
915 break;
916 }
917 if (insn_changes_sp_or_jumps (insn))
918 return 0;
919 }
920
921 /* Scan backward until adjustment to stack pointer (R1). */
922
923 for (scan_pc = pc - PPC_INSN_SIZE;
924 scan_pc >= epilogue_start;
925 scan_pc -= PPC_INSN_SIZE)
926 {
927 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
928 return 0;
929 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
930 if (insn_changes_sp_or_jumps (insn))
931 return 1;
932 }
933
934 return 0;
935 }
936
937 /* Implementation of gdbarch_in_function_epilogue_p. */
938
939 static int
940 rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
941 {
942 return rs6000_in_function_epilogue_frame_p (get_current_frame (),
943 gdbarch, pc);
944 }
945
946 /* Get the ith function argument for the current function. */
947 static CORE_ADDR
948 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
949 struct type *type)
950 {
951 return get_frame_register_unsigned (frame, 3 + argi);
952 }
953
954 /* Sequence of bytes for breakpoint instruction. */
955
956 static const unsigned char *
957 rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
958 int *bp_size)
959 {
960 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
961 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
962 *bp_size = 4;
963 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
964 return big_breakpoint;
965 else
966 return little_breakpoint;
967 }
968
969 /* Instruction masks for displaced stepping. */
970 #define BRANCH_MASK 0xfc000000
971 #define BP_MASK 0xFC0007FE
972 #define B_INSN 0x48000000
973 #define BC_INSN 0x40000000
974 #define BXL_INSN 0x4c000000
975 #define BP_INSN 0x7C000008
976
977 /* Fix up the state of registers and memory after having single-stepped
978 a displaced instruction. */
979 static void
980 ppc_displaced_step_fixup (struct gdbarch *gdbarch,
981 struct displaced_step_closure *closure,
982 CORE_ADDR from, CORE_ADDR to,
983 struct regcache *regs)
984 {
985 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
986 /* Since we use simple_displaced_step_copy_insn, our closure is a
987 copy of the instruction. */
988 ULONGEST insn = extract_unsigned_integer ((gdb_byte *) closure,
989 PPC_INSN_SIZE, byte_order);
990 ULONGEST opcode = 0;
991 /* Offset for non PC-relative instructions. */
992 LONGEST offset = PPC_INSN_SIZE;
993
994 opcode = insn & BRANCH_MASK;
995
996 if (debug_displaced)
997 fprintf_unfiltered (gdb_stdlog,
998 "displaced: (ppc) fixup (%s, %s)\n",
999 paddress (gdbarch, from), paddress (gdbarch, to));
1000
1001
1002 /* Handle PC-relative branch instructions. */
1003 if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
1004 {
1005 ULONGEST current_pc;
1006
1007 /* Read the current PC value after the instruction has been executed
1008 in a displaced location. Calculate the offset to be applied to the
1009 original PC value before the displaced stepping. */
1010 regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1011 &current_pc);
1012 offset = current_pc - to;
1013
1014 if (opcode != BXL_INSN)
1015 {
1016 /* Check for AA bit indicating whether this is an absolute
1017 addressing or PC-relative (1: absolute, 0: relative). */
1018 if (!(insn & 0x2))
1019 {
1020 /* PC-relative addressing is being used in the branch. */
1021 if (debug_displaced)
1022 fprintf_unfiltered
1023 (gdb_stdlog,
1024 "displaced: (ppc) branch instruction: %s\n"
1025 "displaced: (ppc) adjusted PC from %s to %s\n",
1026 paddress (gdbarch, insn), paddress (gdbarch, current_pc),
1027 paddress (gdbarch, from + offset));
1028
1029 regcache_cooked_write_unsigned (regs,
1030 gdbarch_pc_regnum (gdbarch),
1031 from + offset);
1032 }
1033 }
1034 else
1035 {
1036 /* If we're here, it means we have a branch to LR or CTR. If the
1037 branch was taken, the offset is probably greater than 4 (the next
1038 instruction), so it's safe to assume that an offset of 4 means we
1039 did not take the branch. */
1040 if (offset == PPC_INSN_SIZE)
1041 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1042 from + PPC_INSN_SIZE);
1043 }
1044
1045 /* Check for LK bit indicating whether we should set the link
1046 register to point to the next instruction
1047 (1: Set, 0: Don't set). */
1048 if (insn & 0x1)
1049 {
1050 /* Link register needs to be set to the next instruction's PC. */
1051 regcache_cooked_write_unsigned (regs,
1052 gdbarch_tdep (gdbarch)->ppc_lr_regnum,
1053 from + PPC_INSN_SIZE);
1054 if (debug_displaced)
1055 fprintf_unfiltered (gdb_stdlog,
1056 "displaced: (ppc) adjusted LR to %s\n",
1057 paddress (gdbarch, from + PPC_INSN_SIZE));
1058
1059 }
1060 }
1061 /* Check for breakpoints in the inferior. If we've found one, place the PC
1062 right at the breakpoint instruction. */
1063 else if ((insn & BP_MASK) == BP_INSN)
1064 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
1065 else
1066 /* Handle any other instructions that do not fit in the categories above. */
1067 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1068 from + offset);
1069 }
1070
1071 /* Always use hardware single-stepping to execute the
1072 displaced instruction. */
1073 static int
1074 ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
1075 struct displaced_step_closure *closure)
1076 {
1077 return 1;
1078 }
1079
1080 /* Instruction masks used during single-stepping of atomic sequences. */
1081 #define LWARX_MASK 0xfc0007fe
1082 #define LWARX_INSTRUCTION 0x7c000028
1083 #define LDARX_INSTRUCTION 0x7c0000A8
1084 #define STWCX_MASK 0xfc0007ff
1085 #define STWCX_INSTRUCTION 0x7c00012d
1086 #define STDCX_INSTRUCTION 0x7c0001ad
1087
1088 /* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
1089 instruction and ending with a STWCX/STDCX instruction. If such a sequence
1090 is found, attempt to step through it. A breakpoint is placed at the end of
1091 the sequence. */
1092
1093 int
1094 ppc_deal_with_atomic_sequence (struct frame_info *frame)
1095 {
1096 struct gdbarch *gdbarch = get_frame_arch (frame);
1097 struct address_space *aspace = get_frame_address_space (frame);
1098 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1099 CORE_ADDR pc = get_frame_pc (frame);
1100 CORE_ADDR breaks[2] = {-1, -1};
1101 CORE_ADDR loc = pc;
1102 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
1103 int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1104 int insn_count;
1105 int index;
1106 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
1107 const int atomic_sequence_length = 16; /* Instruction sequence length. */
1108 int opcode; /* Branch instruction's OPcode. */
1109 int bc_insn_count = 0; /* Conditional branch instruction count. */
1110
1111 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
1112 if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
1113 && (insn & LWARX_MASK) != LDARX_INSTRUCTION)
1114 return 0;
1115
1116 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1117 instructions. */
1118 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1119 {
1120 loc += PPC_INSN_SIZE;
1121 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1122
1123 /* Assume that there is at most one conditional branch in the atomic
1124 sequence. If a conditional branch is found, put a breakpoint in
1125 its destination address. */
1126 if ((insn & BRANCH_MASK) == BC_INSN)
1127 {
1128 int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
1129 int absolute = insn & 2;
1130
1131 if (bc_insn_count >= 1)
1132 return 0; /* More than one conditional branch found, fallback
1133 to the standard single-step code. */
1134
1135 if (absolute)
1136 breaks[1] = immediate;
1137 else
1138 breaks[1] = loc + immediate;
1139
1140 bc_insn_count++;
1141 last_breakpoint++;
1142 }
1143
1144 if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
1145 || (insn & STWCX_MASK) == STDCX_INSTRUCTION)
1146 break;
1147 }
1148
1149 /* Assume that the atomic sequence ends with a stwcx/stdcx instruction. */
1150 if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
1151 && (insn & STWCX_MASK) != STDCX_INSTRUCTION)
1152 return 0;
1153
1154 closing_insn = loc;
1155 loc += PPC_INSN_SIZE;
1156 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
1157
1158 /* Insert a breakpoint right after the end of the atomic sequence. */
1159 breaks[0] = loc;
1160
1161 /* Check for duplicated breakpoints. Check also for a breakpoint
1162 placed (branch instruction's destination) anywhere in sequence. */
1163 if (last_breakpoint
1164 && (breaks[1] == breaks[0]
1165 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
1166 last_breakpoint = 0;
1167
1168 /* Effectively inserts the breakpoints. */
1169 for (index = 0; index <= last_breakpoint; index++)
1170 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
1171
1172 return 1;
1173 }
1174
1175
1176 #define SIGNED_SHORT(x) \
1177 ((sizeof (short) == 2) \
1178 ? ((int)(short)(x)) \
1179 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1180
1181 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1182
1183 /* Limit the number of skipped non-prologue instructions, as the examining
1184 of the prologue is expensive. */
1185 static int max_skip_non_prologue_insns = 10;
1186
1187 /* Return nonzero if the given instruction OP can be part of the prologue
1188 of a function and saves a parameter on the stack. FRAMEP should be
1189 set if one of the previous instructions in the function has set the
1190 Frame Pointer. */
1191
1192 static int
1193 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1194 {
1195 /* Move parameters from argument registers to temporary register. */
1196 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1197 {
1198 /* Rx must be scratch register r0. */
1199 const int rx_regno = (op >> 16) & 31;
1200 /* Ry: Only r3 - r10 are used for parameter passing. */
1201 const int ry_regno = GET_SRC_REG (op);
1202
1203 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1204 {
1205 *r0_contains_arg = 1;
1206 return 1;
1207 }
1208 else
1209 return 0;
1210 }
1211
1212 /* Save a General Purpose Register on stack. */
1213
1214 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1215 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1216 {
1217 /* Rx: Only r3 - r10 are used for parameter passing. */
1218 const int rx_regno = GET_SRC_REG (op);
1219
1220 return (rx_regno >= 3 && rx_regno <= 10);
1221 }
1222
1223 /* Save a General Purpose Register on stack via the Frame Pointer. */
1224
1225 if (framep &&
1226 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1227 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1228 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1229 {
1230 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1231 However, the compiler sometimes uses r0 to hold an argument. */
1232 const int rx_regno = GET_SRC_REG (op);
1233
1234 return ((rx_regno >= 3 && rx_regno <= 10)
1235 || (rx_regno == 0 && *r0_contains_arg));
1236 }
1237
1238 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1239 {
1240 /* Only f2 - f8 are used for parameter passing. */
1241 const int src_regno = GET_SRC_REG (op);
1242
1243 return (src_regno >= 2 && src_regno <= 8);
1244 }
1245
1246 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1247 {
1248 /* Only f2 - f8 are used for parameter passing. */
1249 const int src_regno = GET_SRC_REG (op);
1250
1251 return (src_regno >= 2 && src_regno <= 8);
1252 }
1253
1254 /* Not an insn that saves a parameter on stack. */
1255 return 0;
1256 }
1257
1258 /* Assuming that INSN is a "bl" instruction located at PC, return
1259 nonzero if the destination of the branch is a "blrl" instruction.
1260
1261 This sequence is sometimes found in certain function prologues.
1262 It allows the function to load the LR register with a value that
1263 they can use to access PIC data using PC-relative offsets. */
1264
1265 static int
1266 bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
1267 {
1268 CORE_ADDR dest;
1269 int immediate;
1270 int absolute;
1271 int dest_insn;
1272
1273 absolute = (int) ((insn >> 1) & 1);
1274 immediate = ((insn & ~3) << 6) >> 6;
1275 if (absolute)
1276 dest = immediate;
1277 else
1278 dest = pc + immediate;
1279
1280 dest_insn = read_memory_integer (dest, 4, byte_order);
1281 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1282 return 1;
1283
1284 return 0;
1285 }
1286
1287 /* Masks for decoding a branch-and-link (bl) instruction.
1288
1289 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1290 The former is anded with the opcode in question; if the result of
1291 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1292 question is a ``bl'' instruction.
1293
1294 BL_DISPLACMENT_MASK is anded with the opcode in order to extract
1295 the branch displacement. */
1296
1297 #define BL_MASK 0xfc000001
1298 #define BL_INSTRUCTION 0x48000001
1299 #define BL_DISPLACEMENT_MASK 0x03fffffc
1300
1301 static unsigned long
1302 rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
1303 {
1304 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1305 gdb_byte buf[4];
1306 unsigned long op;
1307
1308 /* Fetch the instruction and convert it to an integer. */
1309 if (target_read_memory (pc, buf, 4))
1310 return 0;
1311 op = extract_unsigned_integer (buf, 4, byte_order);
1312
1313 return op;
1314 }
1315
1316 /* GCC generates several well-known sequences of instructions at the begining
1317 of each function prologue when compiling with -fstack-check. If one of
1318 such sequences starts at START_PC, then return the address of the
1319 instruction immediately past this sequence. Otherwise, return START_PC. */
1320
1321 static CORE_ADDR
1322 rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
1323 {
1324 CORE_ADDR pc = start_pc;
1325 unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
1326
1327 /* First possible sequence: A small number of probes.
1328 stw 0, -<some immediate>(1)
1329 [repeat this instruction any (small) number of times]. */
1330
1331 if ((op & 0xffff0000) == 0x90010000)
1332 {
1333 while ((op & 0xffff0000) == 0x90010000)
1334 {
1335 pc = pc + 4;
1336 op = rs6000_fetch_instruction (gdbarch, pc);
1337 }
1338 return pc;
1339 }
1340
1341 /* Second sequence: A probing loop.
1342 addi 12,1,-<some immediate>
1343 lis 0,-<some immediate>
1344 [possibly ori 0,0,<some immediate>]
1345 add 0,12,0
1346 cmpw 0,12,0
1347 beq 0,<disp>
1348 addi 12,12,-<some immediate>
1349 stw 0,0(12)
1350 b <disp>
1351 [possibly one last probe: stw 0,<some immediate>(12)]. */
1352
1353 while (1)
1354 {
1355 /* addi 12,1,-<some immediate> */
1356 if ((op & 0xffff0000) != 0x39810000)
1357 break;
1358
1359 /* lis 0,-<some immediate> */
1360 pc = pc + 4;
1361 op = rs6000_fetch_instruction (gdbarch, pc);
1362 if ((op & 0xffff0000) != 0x3c000000)
1363 break;
1364
1365 pc = pc + 4;
1366 op = rs6000_fetch_instruction (gdbarch, pc);
1367 /* [possibly ori 0,0,<some immediate>] */
1368 if ((op & 0xffff0000) == 0x60000000)
1369 {
1370 pc = pc + 4;
1371 op = rs6000_fetch_instruction (gdbarch, pc);
1372 }
1373 /* add 0,12,0 */
1374 if (op != 0x7c0c0214)
1375 break;
1376
1377 /* cmpw 0,12,0 */
1378 pc = pc + 4;
1379 op = rs6000_fetch_instruction (gdbarch, pc);
1380 if (op != 0x7c0c0000)
1381 break;
1382
1383 /* beq 0,<disp> */
1384 pc = pc + 4;
1385 op = rs6000_fetch_instruction (gdbarch, pc);
1386 if ((op & 0xff9f0001) != 0x41820000)
1387 break;
1388
1389 /* addi 12,12,-<some immediate> */
1390 pc = pc + 4;
1391 op = rs6000_fetch_instruction (gdbarch, pc);
1392 if ((op & 0xffff0000) != 0x398c0000)
1393 break;
1394
1395 /* stw 0,0(12) */
1396 pc = pc + 4;
1397 op = rs6000_fetch_instruction (gdbarch, pc);
1398 if (op != 0x900c0000)
1399 break;
1400
1401 /* b <disp> */
1402 pc = pc + 4;
1403 op = rs6000_fetch_instruction (gdbarch, pc);
1404 if ((op & 0xfc000001) != 0x48000000)
1405 break;
1406
1407 /* [possibly one last probe: stw 0,<some immediate>(12)]. */
1408 pc = pc + 4;
1409 op = rs6000_fetch_instruction (gdbarch, pc);
1410 if ((op & 0xffff0000) == 0x900c0000)
1411 {
1412 pc = pc + 4;
1413 op = rs6000_fetch_instruction (gdbarch, pc);
1414 }
1415
1416 /* We found a valid stack-check sequence, return the new PC. */
1417 return pc;
1418 }
1419
1420 /* Third sequence: No probe; instead, a comparizon between the stack size
1421 limit (saved in a run-time global variable) and the current stack
1422 pointer:
1423
1424 addi 0,1,-<some immediate>
1425 lis 12,__gnat_stack_limit@ha
1426 lwz 12,__gnat_stack_limit@l(12)
1427 twllt 0,12
1428
1429 or, with a small variant in the case of a bigger stack frame:
1430 addis 0,1,<some immediate>
1431 addic 0,0,-<some immediate>
1432 lis 12,__gnat_stack_limit@ha
1433 lwz 12,__gnat_stack_limit@l(12)
1434 twllt 0,12
1435 */
1436 while (1)
1437 {
1438 /* addi 0,1,-<some immediate> */
1439 if ((op & 0xffff0000) != 0x38010000)
1440 {
1441 /* small stack frame variant not recognized; try the
1442 big stack frame variant: */
1443
1444 /* addis 0,1,<some immediate> */
1445 if ((op & 0xffff0000) != 0x3c010000)
1446 break;
1447
1448 /* addic 0,0,-<some immediate> */
1449 pc = pc + 4;
1450 op = rs6000_fetch_instruction (gdbarch, pc);
1451 if ((op & 0xffff0000) != 0x30000000)
1452 break;
1453 }
1454
1455 /* lis 12,<some immediate> */
1456 pc = pc + 4;
1457 op = rs6000_fetch_instruction (gdbarch, pc);
1458 if ((op & 0xffff0000) != 0x3d800000)
1459 break;
1460
1461 /* lwz 12,<some immediate>(12) */
1462 pc = pc + 4;
1463 op = rs6000_fetch_instruction (gdbarch, pc);
1464 if ((op & 0xffff0000) != 0x818c0000)
1465 break;
1466
1467 /* twllt 0,12 */
1468 pc = pc + 4;
1469 op = rs6000_fetch_instruction (gdbarch, pc);
1470 if ((op & 0xfffffffe) != 0x7c406008)
1471 break;
1472
1473 /* We found a valid stack-check sequence, return the new PC. */
1474 return pc;
1475 }
1476
1477 /* No stack check code in our prologue, return the start_pc. */
1478 return start_pc;
1479 }
1480
1481 /* return pc value after skipping a function prologue and also return
1482 information about a function frame.
1483
1484 in struct rs6000_framedata fdata:
1485 - frameless is TRUE, if function does not have a frame.
1486 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1487 - offset is the initial size of this stack frame --- the amount by
1488 which we decrement the sp to allocate the frame.
1489 - saved_gpr is the number of the first saved gpr.
1490 - saved_fpr is the number of the first saved fpr.
1491 - saved_vr is the number of the first saved vr.
1492 - saved_ev is the number of the first saved ev.
1493 - alloca_reg is the number of the register used for alloca() handling.
1494 Otherwise -1.
1495 - gpr_offset is the offset of the first saved gpr from the previous frame.
1496 - fpr_offset is the offset of the first saved fpr from the previous frame.
1497 - vr_offset is the offset of the first saved vr from the previous frame.
1498 - ev_offset is the offset of the first saved ev from the previous frame.
1499 - lr_offset is the offset of the saved lr
1500 - cr_offset is the offset of the saved cr
1501 - vrsave_offset is the offset of the saved vrsave register. */
1502
1503 static CORE_ADDR
1504 skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1505 struct rs6000_framedata *fdata)
1506 {
1507 CORE_ADDR orig_pc = pc;
1508 CORE_ADDR last_prologue_pc = pc;
1509 CORE_ADDR li_found_pc = 0;
1510 gdb_byte buf[4];
1511 unsigned long op;
1512 long offset = 0;
1513 long vr_saved_offset = 0;
1514 int lr_reg = -1;
1515 int cr_reg = -1;
1516 int vr_reg = -1;
1517 int ev_reg = -1;
1518 long ev_offset = 0;
1519 int vrsave_reg = -1;
1520 int reg;
1521 int framep = 0;
1522 int minimal_toc_loaded = 0;
1523 int prev_insn_was_prologue_insn = 1;
1524 int num_skip_non_prologue_insns = 0;
1525 int r0_contains_arg = 0;
1526 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1527 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1528 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1529
1530 memset (fdata, 0, sizeof (struct rs6000_framedata));
1531 fdata->saved_gpr = -1;
1532 fdata->saved_fpr = -1;
1533 fdata->saved_vr = -1;
1534 fdata->saved_ev = -1;
1535 fdata->alloca_reg = -1;
1536 fdata->frameless = 1;
1537 fdata->nosavedpc = 1;
1538 fdata->lr_register = -1;
1539
1540 pc = rs6000_skip_stack_check (gdbarch, pc);
1541 if (pc >= lim_pc)
1542 pc = lim_pc;
1543
1544 for (;; pc += 4)
1545 {
1546 /* Sometimes it isn't clear if an instruction is a prologue
1547 instruction or not. When we encounter one of these ambiguous
1548 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1549 Otherwise, we'll assume that it really is a prologue instruction. */
1550 if (prev_insn_was_prologue_insn)
1551 last_prologue_pc = pc;
1552
1553 /* Stop scanning if we've hit the limit. */
1554 if (pc >= lim_pc)
1555 break;
1556
1557 prev_insn_was_prologue_insn = 1;
1558
1559 /* Fetch the instruction and convert it to an integer. */
1560 if (target_read_memory (pc, buf, 4))
1561 break;
1562 op = extract_unsigned_integer (buf, 4, byte_order);
1563
1564 if ((op & 0xfc1fffff) == 0x7c0802a6)
1565 { /* mflr Rx */
1566 /* Since shared library / PIC code, which needs to get its
1567 address at runtime, can appear to save more than one link
1568 register vis:
1569
1570 *INDENT-OFF*
1571 stwu r1,-304(r1)
1572 mflr r3
1573 bl 0xff570d0 (blrl)
1574 stw r30,296(r1)
1575 mflr r30
1576 stw r31,300(r1)
1577 stw r3,308(r1);
1578 ...
1579 *INDENT-ON*
1580
1581 remember just the first one, but skip over additional
1582 ones. */
1583 if (lr_reg == -1)
1584 lr_reg = (op & 0x03e00000) >> 21;
1585 if (lr_reg == 0)
1586 r0_contains_arg = 0;
1587 continue;
1588 }
1589 else if ((op & 0xfc1fffff) == 0x7c000026)
1590 { /* mfcr Rx */
1591 cr_reg = (op & 0x03e00000);
1592 if (cr_reg == 0)
1593 r0_contains_arg = 0;
1594 continue;
1595
1596 }
1597 else if ((op & 0xfc1f0000) == 0xd8010000)
1598 { /* stfd Rx,NUM(r1) */
1599 reg = GET_SRC_REG (op);
1600 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1601 {
1602 fdata->saved_fpr = reg;
1603 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1604 }
1605 continue;
1606
1607 }
1608 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
1609 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1610 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1611 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
1612 {
1613
1614 reg = GET_SRC_REG (op);
1615 if ((op & 0xfc1f0000) == 0xbc010000)
1616 fdata->gpr_mask |= ~((1U << reg) - 1);
1617 else
1618 fdata->gpr_mask |= 1U << reg;
1619 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1620 {
1621 fdata->saved_gpr = reg;
1622 if ((op & 0xfc1f0003) == 0xf8010000)
1623 op &= ~3UL;
1624 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1625 }
1626 continue;
1627
1628 }
1629 else if ((op & 0xffff0000) == 0x3c4c0000
1630 || (op & 0xffff0000) == 0x3c400000
1631 || (op & 0xffff0000) == 0x38420000)
1632 {
1633 /* . 0: addis 2,12,.TOC.-0b@ha
1634 . addi 2,2,.TOC.-0b@l
1635 or
1636 . lis 2,.TOC.@ha
1637 . addi 2,2,.TOC.@l
1638 used by ELFv2 global entry points to set up r2. */
1639 continue;
1640 }
1641 else if (op == 0x60000000)
1642 {
1643 /* nop */
1644 /* Allow nops in the prologue, but do not consider them to
1645 be part of the prologue unless followed by other prologue
1646 instructions. */
1647 prev_insn_was_prologue_insn = 0;
1648 continue;
1649
1650 }
1651 else if ((op & 0xffff0000) == 0x3c000000)
1652 { /* addis 0,0,NUM, used for >= 32k frames */
1653 fdata->offset = (op & 0x0000ffff) << 16;
1654 fdata->frameless = 0;
1655 r0_contains_arg = 0;
1656 continue;
1657
1658 }
1659 else if ((op & 0xffff0000) == 0x60000000)
1660 { /* ori 0,0,NUM, 2nd half of >= 32k frames */
1661 fdata->offset |= (op & 0x0000ffff);
1662 fdata->frameless = 0;
1663 r0_contains_arg = 0;
1664 continue;
1665
1666 }
1667 else if (lr_reg >= 0 &&
1668 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1669 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1670 /* stw Rx, NUM(r1) */
1671 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1672 /* stwu Rx, NUM(r1) */
1673 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1674 { /* where Rx == lr */
1675 fdata->lr_offset = offset;
1676 fdata->nosavedpc = 0;
1677 /* Invalidate lr_reg, but don't set it to -1.
1678 That would mean that it had never been set. */
1679 lr_reg = -2;
1680 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1681 (op & 0xfc000000) == 0x90000000) /* stw */
1682 {
1683 /* Does not update r1, so add displacement to lr_offset. */
1684 fdata->lr_offset += SIGNED_SHORT (op);
1685 }
1686 continue;
1687
1688 }
1689 else if (cr_reg >= 0 &&
1690 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1691 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1692 /* stw Rx, NUM(r1) */
1693 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1694 /* stwu Rx, NUM(r1) */
1695 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1696 { /* where Rx == cr */
1697 fdata->cr_offset = offset;
1698 /* Invalidate cr_reg, but don't set it to -1.
1699 That would mean that it had never been set. */
1700 cr_reg = -2;
1701 if ((op & 0xfc000003) == 0xf8000000 ||
1702 (op & 0xfc000000) == 0x90000000)
1703 {
1704 /* Does not update r1, so add displacement to cr_offset. */
1705 fdata->cr_offset += SIGNED_SHORT (op);
1706 }
1707 continue;
1708
1709 }
1710 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1711 {
1712 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1713 prediction bits. If the LR has already been saved, we can
1714 skip it. */
1715 continue;
1716 }
1717 else if (op == 0x48000005)
1718 { /* bl .+4 used in
1719 -mrelocatable */
1720 fdata->used_bl = 1;
1721 continue;
1722
1723 }
1724 else if (op == 0x48000004)
1725 { /* b .+4 (xlc) */
1726 break;
1727
1728 }
1729 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1730 in V.4 -mminimal-toc */
1731 (op & 0xffff0000) == 0x3bde0000)
1732 { /* addi 30,30,foo@l */
1733 continue;
1734
1735 }
1736 else if ((op & 0xfc000001) == 0x48000001)
1737 { /* bl foo,
1738 to save fprs??? */
1739
1740 fdata->frameless = 0;
1741
1742 /* If the return address has already been saved, we can skip
1743 calls to blrl (for PIC). */
1744 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
1745 {
1746 fdata->used_bl = 1;
1747 continue;
1748 }
1749
1750 /* Don't skip over the subroutine call if it is not within
1751 the first three instructions of the prologue and either
1752 we have no line table information or the line info tells
1753 us that the subroutine call is not part of the line
1754 associated with the prologue. */
1755 if ((pc - orig_pc) > 8)
1756 {
1757 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1758 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1759
1760 if ((prologue_sal.line == 0)
1761 || (prologue_sal.line != this_sal.line))
1762 break;
1763 }
1764
1765 op = read_memory_integer (pc + 4, 4, byte_order);
1766
1767 /* At this point, make sure this is not a trampoline
1768 function (a function that simply calls another functions,
1769 and nothing else). If the next is not a nop, this branch
1770 was part of the function prologue. */
1771
1772 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1773 break; /* Don't skip over
1774 this branch. */
1775
1776 fdata->used_bl = 1;
1777 continue;
1778 }
1779 /* update stack pointer */
1780 else if ((op & 0xfc1f0000) == 0x94010000)
1781 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
1782 fdata->frameless = 0;
1783 fdata->offset = SIGNED_SHORT (op);
1784 offset = fdata->offset;
1785 continue;
1786 }
1787 else if ((op & 0xfc1f016a) == 0x7c01016e)
1788 { /* stwux rX,r1,rY */
1789 /* No way to figure out what r1 is going to be. */
1790 fdata->frameless = 0;
1791 offset = fdata->offset;
1792 continue;
1793 }
1794 else if ((op & 0xfc1f0003) == 0xf8010001)
1795 { /* stdu rX,NUM(r1) */
1796 fdata->frameless = 0;
1797 fdata->offset = SIGNED_SHORT (op & ~3UL);
1798 offset = fdata->offset;
1799 continue;
1800 }
1801 else if ((op & 0xfc1f016a) == 0x7c01016a)
1802 { /* stdux rX,r1,rY */
1803 /* No way to figure out what r1 is going to be. */
1804 fdata->frameless = 0;
1805 offset = fdata->offset;
1806 continue;
1807 }
1808 else if ((op & 0xffff0000) == 0x38210000)
1809 { /* addi r1,r1,SIMM */
1810 fdata->frameless = 0;
1811 fdata->offset += SIGNED_SHORT (op);
1812 offset = fdata->offset;
1813 continue;
1814 }
1815 /* Load up minimal toc pointer. Do not treat an epilogue restore
1816 of r31 as a minimal TOC load. */
1817 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1818 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
1819 && !framep
1820 && !minimal_toc_loaded)
1821 {
1822 minimal_toc_loaded = 1;
1823 continue;
1824
1825 /* move parameters from argument registers to local variable
1826 registers */
1827 }
1828 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1829 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1830 (((op >> 21) & 31) <= 10) &&
1831 ((long) ((op >> 16) & 31)
1832 >= fdata->saved_gpr)) /* Rx: local var reg */
1833 {
1834 continue;
1835
1836 /* store parameters in stack */
1837 }
1838 /* Move parameters from argument registers to temporary register. */
1839 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
1840 {
1841 continue;
1842
1843 /* Set up frame pointer */
1844 }
1845 else if (op == 0x603d0000) /* oril r29, r1, 0x0 */
1846 {
1847 fdata->frameless = 0;
1848 framep = 1;
1849 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
1850 continue;
1851
1852 /* Another way to set up the frame pointer. */
1853 }
1854 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1855 || op == 0x7c3f0b78)
1856 { /* mr r31, r1 */
1857 fdata->frameless = 0;
1858 framep = 1;
1859 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
1860 continue;
1861
1862 /* Another way to set up the frame pointer. */
1863 }
1864 else if ((op & 0xfc1fffff) == 0x38010000)
1865 { /* addi rX, r1, 0x0 */
1866 fdata->frameless = 0;
1867 framep = 1;
1868 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1869 + ((op & ~0x38010000) >> 21));
1870 continue;
1871 }
1872 /* AltiVec related instructions. */
1873 /* Store the vrsave register (spr 256) in another register for
1874 later manipulation, or load a register into the vrsave
1875 register. 2 instructions are used: mfvrsave and
1876 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1877 and mtspr SPR256, Rn. */
1878 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1879 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1880 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1881 {
1882 vrsave_reg = GET_SRC_REG (op);
1883 continue;
1884 }
1885 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1886 {
1887 continue;
1888 }
1889 /* Store the register where vrsave was saved to onto the stack:
1890 rS is the register where vrsave was stored in a previous
1891 instruction. */
1892 /* 100100 sssss 00001 dddddddd dddddddd */
1893 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1894 {
1895 if (vrsave_reg == GET_SRC_REG (op))
1896 {
1897 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1898 vrsave_reg = -1;
1899 }
1900 continue;
1901 }
1902 /* Compute the new value of vrsave, by modifying the register
1903 where vrsave was saved to. */
1904 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1905 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1906 {
1907 continue;
1908 }
1909 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1910 in a pair of insns to save the vector registers on the
1911 stack. */
1912 /* 001110 00000 00000 iiii iiii iiii iiii */
1913 /* 001110 01110 00000 iiii iiii iiii iiii */
1914 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1915 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
1916 {
1917 if ((op & 0xffff0000) == 0x38000000)
1918 r0_contains_arg = 0;
1919 li_found_pc = pc;
1920 vr_saved_offset = SIGNED_SHORT (op);
1921
1922 /* This insn by itself is not part of the prologue, unless
1923 if part of the pair of insns mentioned above. So do not
1924 record this insn as part of the prologue yet. */
1925 prev_insn_was_prologue_insn = 0;
1926 }
1927 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1928 /* 011111 sssss 11111 00000 00111001110 */
1929 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1930 {
1931 if (pc == (li_found_pc + 4))
1932 {
1933 vr_reg = GET_SRC_REG (op);
1934 /* If this is the first vector reg to be saved, or if
1935 it has a lower number than others previously seen,
1936 reupdate the frame info. */
1937 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1938 {
1939 fdata->saved_vr = vr_reg;
1940 fdata->vr_offset = vr_saved_offset + offset;
1941 }
1942 vr_saved_offset = -1;
1943 vr_reg = -1;
1944 li_found_pc = 0;
1945 }
1946 }
1947 /* End AltiVec related instructions. */
1948
1949 /* Start BookE related instructions. */
1950 /* Store gen register S at (r31+uimm).
1951 Any register less than r13 is volatile, so we don't care. */
1952 /* 000100 sssss 11111 iiiii 01100100001 */
1953 else if (arch_info->mach == bfd_mach_ppc_e500
1954 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1955 {
1956 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1957 {
1958 unsigned int imm;
1959 ev_reg = GET_SRC_REG (op);
1960 imm = (op >> 11) & 0x1f;
1961 ev_offset = imm * 8;
1962 /* If this is the first vector reg to be saved, or if
1963 it has a lower number than others previously seen,
1964 reupdate the frame info. */
1965 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1966 {
1967 fdata->saved_ev = ev_reg;
1968 fdata->ev_offset = ev_offset + offset;
1969 }
1970 }
1971 continue;
1972 }
1973 /* Store gen register rS at (r1+rB). */
1974 /* 000100 sssss 00001 bbbbb 01100100000 */
1975 else if (arch_info->mach == bfd_mach_ppc_e500
1976 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1977 {
1978 if (pc == (li_found_pc + 4))
1979 {
1980 ev_reg = GET_SRC_REG (op);
1981 /* If this is the first vector reg to be saved, or if
1982 it has a lower number than others previously seen,
1983 reupdate the frame info. */
1984 /* We know the contents of rB from the previous instruction. */
1985 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1986 {
1987 fdata->saved_ev = ev_reg;
1988 fdata->ev_offset = vr_saved_offset + offset;
1989 }
1990 vr_saved_offset = -1;
1991 ev_reg = -1;
1992 li_found_pc = 0;
1993 }
1994 continue;
1995 }
1996 /* Store gen register r31 at (rA+uimm). */
1997 /* 000100 11111 aaaaa iiiii 01100100001 */
1998 else if (arch_info->mach == bfd_mach_ppc_e500
1999 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
2000 {
2001 /* Wwe know that the source register is 31 already, but
2002 it can't hurt to compute it. */
2003 ev_reg = GET_SRC_REG (op);
2004 ev_offset = ((op >> 11) & 0x1f) * 8;
2005 /* If this is the first vector reg to be saved, or if
2006 it has a lower number than others previously seen,
2007 reupdate the frame info. */
2008 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2009 {
2010 fdata->saved_ev = ev_reg;
2011 fdata->ev_offset = ev_offset + offset;
2012 }
2013
2014 continue;
2015 }
2016 /* Store gen register S at (r31+r0).
2017 Store param on stack when offset from SP bigger than 4 bytes. */
2018 /* 000100 sssss 11111 00000 01100100000 */
2019 else if (arch_info->mach == bfd_mach_ppc_e500
2020 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
2021 {
2022 if (pc == (li_found_pc + 4))
2023 {
2024 if ((op & 0x03e00000) >= 0x01a00000)
2025 {
2026 ev_reg = GET_SRC_REG (op);
2027 /* If this is the first vector reg to be saved, or if
2028 it has a lower number than others previously seen,
2029 reupdate the frame info. */
2030 /* We know the contents of r0 from the previous
2031 instruction. */
2032 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2033 {
2034 fdata->saved_ev = ev_reg;
2035 fdata->ev_offset = vr_saved_offset + offset;
2036 }
2037 ev_reg = -1;
2038 }
2039 vr_saved_offset = -1;
2040 li_found_pc = 0;
2041 continue;
2042 }
2043 }
2044 /* End BookE related instructions. */
2045
2046 else
2047 {
2048 unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
2049
2050 /* Not a recognized prologue instruction.
2051 Handle optimizer code motions into the prologue by continuing
2052 the search if we have no valid frame yet or if the return
2053 address is not yet saved in the frame. Also skip instructions
2054 if some of the GPRs expected to be saved are not yet saved. */
2055 if (fdata->frameless == 0 && fdata->nosavedpc == 0
2056 && (fdata->gpr_mask & all_mask) == all_mask)
2057 break;
2058
2059 if (op == 0x4e800020 /* blr */
2060 || op == 0x4e800420) /* bctr */
2061 /* Do not scan past epilogue in frameless functions or
2062 trampolines. */
2063 break;
2064 if ((op & 0xf4000000) == 0x40000000) /* bxx */
2065 /* Never skip branches. */
2066 break;
2067
2068 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
2069 /* Do not scan too many insns, scanning insns is expensive with
2070 remote targets. */
2071 break;
2072
2073 /* Continue scanning. */
2074 prev_insn_was_prologue_insn = 0;
2075 continue;
2076 }
2077 }
2078
2079 #if 0
2080 /* I have problems with skipping over __main() that I need to address
2081 * sometime. Previously, I used to use misc_function_vector which
2082 * didn't work as well as I wanted to be. -MGO */
2083
2084 /* If the first thing after skipping a prolog is a branch to a function,
2085 this might be a call to an initializer in main(), introduced by gcc2.
2086 We'd like to skip over it as well. Fortunately, xlc does some extra
2087 work before calling a function right after a prologue, thus we can
2088 single out such gcc2 behaviour. */
2089
2090
2091 if ((op & 0xfc000001) == 0x48000001)
2092 { /* bl foo, an initializer function? */
2093 op = read_memory_integer (pc + 4, 4, byte_order);
2094
2095 if (op == 0x4def7b82)
2096 { /* cror 0xf, 0xf, 0xf (nop) */
2097
2098 /* Check and see if we are in main. If so, skip over this
2099 initializer function as well. */
2100
2101 tmp = find_pc_misc_function (pc);
2102 if (tmp >= 0
2103 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
2104 return pc + 8;
2105 }
2106 }
2107 #endif /* 0 */
2108
2109 if (pc == lim_pc && lr_reg >= 0)
2110 fdata->lr_register = lr_reg;
2111
2112 fdata->offset = -fdata->offset;
2113 return last_prologue_pc;
2114 }
2115
2116 static CORE_ADDR
2117 rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2118 {
2119 struct rs6000_framedata frame;
2120 CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
2121
2122 /* See if we can determine the end of the prologue via the symbol table.
2123 If so, then return either PC, or the PC after the prologue, whichever
2124 is greater. */
2125 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
2126 {
2127 CORE_ADDR post_prologue_pc
2128 = skip_prologue_using_sal (gdbarch, func_addr);
2129 if (post_prologue_pc != 0)
2130 return max (pc, post_prologue_pc);
2131 }
2132
2133 /* Can't determine prologue from the symbol table, need to examine
2134 instructions. */
2135
2136 /* Find an upper limit on the function prologue using the debug
2137 information. If the debug information could not be used to provide
2138 that bound, then use an arbitrary large number as the upper bound. */
2139 limit_pc = skip_prologue_using_sal (gdbarch, pc);
2140 if (limit_pc == 0)
2141 limit_pc = pc + 100; /* Magic. */
2142
2143 /* Do not allow limit_pc to be past the function end, if we know
2144 where that end is... */
2145 if (func_end_addr && limit_pc > func_end_addr)
2146 limit_pc = func_end_addr;
2147
2148 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2149 return pc;
2150 }
2151
2152 /* When compiling for EABI, some versions of GCC emit a call to __eabi
2153 in the prologue of main().
2154
2155 The function below examines the code pointed at by PC and checks to
2156 see if it corresponds to a call to __eabi. If so, it returns the
2157 address of the instruction following that call. Otherwise, it simply
2158 returns PC. */
2159
2160 static CORE_ADDR
2161 rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2162 {
2163 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2164 gdb_byte buf[4];
2165 unsigned long op;
2166
2167 if (target_read_memory (pc, buf, 4))
2168 return pc;
2169 op = extract_unsigned_integer (buf, 4, byte_order);
2170
2171 if ((op & BL_MASK) == BL_INSTRUCTION)
2172 {
2173 CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2174 CORE_ADDR call_dest = pc + 4 + displ;
2175 struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
2176
2177 /* We check for ___eabi (three leading underscores) in addition
2178 to __eabi in case the GCC option "-fleading-underscore" was
2179 used to compile the program. */
2180 if (s.minsym != NULL
2181 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
2182 && (strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__eabi") == 0
2183 || strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "___eabi") == 0))
2184 pc += 4;
2185 }
2186 return pc;
2187 }
2188
2189 /* All the ABI's require 16 byte alignment. */
2190 static CORE_ADDR
2191 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2192 {
2193 return (addr & -16);
2194 }
2195
2196 /* Return whether handle_inferior_event() should proceed through code
2197 starting at PC in function NAME when stepping.
2198
2199 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2200 handle memory references that are too distant to fit in instructions
2201 generated by the compiler. For example, if 'foo' in the following
2202 instruction:
2203
2204 lwz r9,foo(r2)
2205
2206 is greater than 32767, the linker might replace the lwz with a branch to
2207 somewhere in @FIX1 that does the load in 2 instructions and then branches
2208 back to where execution should continue.
2209
2210 GDB should silently step over @FIX code, just like AIX dbx does.
2211 Unfortunately, the linker uses the "b" instruction for the
2212 branches, meaning that the link register doesn't get set.
2213 Therefore, GDB's usual step_over_function () mechanism won't work.
2214
2215 Instead, use the gdbarch_skip_trampoline_code and
2216 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2217 @FIX code. */
2218
2219 static int
2220 rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2221 CORE_ADDR pc, const char *name)
2222 {
2223 return name && !strncmp (name, "@FIX", 4);
2224 }
2225
2226 /* Skip code that the user doesn't want to see when stepping:
2227
2228 1. Indirect function calls use a piece of trampoline code to do context
2229 switching, i.e. to set the new TOC table. Skip such code if we are on
2230 its first instruction (as when we have single-stepped to here).
2231
2232 2. Skip shared library trampoline code (which is different from
2233 indirect function call trampolines).
2234
2235 3. Skip bigtoc fixup code.
2236
2237 Result is desired PC to step until, or NULL if we are not in
2238 code that should be skipped. */
2239
2240 static CORE_ADDR
2241 rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2242 {
2243 struct gdbarch *gdbarch = get_frame_arch (frame);
2244 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2245 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2246 unsigned int ii, op;
2247 int rel;
2248 CORE_ADDR solib_target_pc;
2249 struct bound_minimal_symbol msymbol;
2250
2251 static unsigned trampoline_code[] =
2252 {
2253 0x800b0000, /* l r0,0x0(r11) */
2254 0x90410014, /* st r2,0x14(r1) */
2255 0x7c0903a6, /* mtctr r0 */
2256 0x804b0004, /* l r2,0x4(r11) */
2257 0x816b0008, /* l r11,0x8(r11) */
2258 0x4e800420, /* bctr */
2259 0x4e800020, /* br */
2260 0
2261 };
2262
2263 /* Check for bigtoc fixup code. */
2264 msymbol = lookup_minimal_symbol_by_pc (pc);
2265 if (msymbol.minsym
2266 && rs6000_in_solib_return_trampoline (gdbarch, pc,
2267 MSYMBOL_LINKAGE_NAME (msymbol.minsym)))
2268 {
2269 /* Double-check that the third instruction from PC is relative "b". */
2270 op = read_memory_integer (pc + 8, 4, byte_order);
2271 if ((op & 0xfc000003) == 0x48000000)
2272 {
2273 /* Extract bits 6-29 as a signed 24-bit relative word address and
2274 add it to the containing PC. */
2275 rel = ((int)(op << 6) >> 6);
2276 return pc + 8 + rel;
2277 }
2278 }
2279
2280 /* If pc is in a shared library trampoline, return its target. */
2281 solib_target_pc = find_solib_trampoline_target (frame, pc);
2282 if (solib_target_pc)
2283 return solib_target_pc;
2284
2285 for (ii = 0; trampoline_code[ii]; ++ii)
2286 {
2287 op = read_memory_integer (pc + (ii * 4), 4, byte_order);
2288 if (op != trampoline_code[ii])
2289 return 0;
2290 }
2291 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination
2292 addr. */
2293 pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
2294 return pc;
2295 }
2296
2297 /* ISA-specific vector types. */
2298
2299 static struct type *
2300 rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2301 {
2302 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2303
2304 if (!tdep->ppc_builtin_type_vec64)
2305 {
2306 const struct builtin_type *bt = builtin_type (gdbarch);
2307
2308 /* The type we're building is this: */
2309 #if 0
2310 union __gdb_builtin_type_vec64
2311 {
2312 int64_t uint64;
2313 float v2_float[2];
2314 int32_t v2_int32[2];
2315 int16_t v4_int16[4];
2316 int8_t v8_int8[8];
2317 };
2318 #endif
2319
2320 struct type *t;
2321
2322 t = arch_composite_type (gdbarch,
2323 "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2324 append_composite_type_field (t, "uint64", bt->builtin_int64);
2325 append_composite_type_field (t, "v2_float",
2326 init_vector_type (bt->builtin_float, 2));
2327 append_composite_type_field (t, "v2_int32",
2328 init_vector_type (bt->builtin_int32, 2));
2329 append_composite_type_field (t, "v4_int16",
2330 init_vector_type (bt->builtin_int16, 4));
2331 append_composite_type_field (t, "v8_int8",
2332 init_vector_type (bt->builtin_int8, 8));
2333
2334 TYPE_VECTOR (t) = 1;
2335 TYPE_NAME (t) = "ppc_builtin_type_vec64";
2336 tdep->ppc_builtin_type_vec64 = t;
2337 }
2338
2339 return tdep->ppc_builtin_type_vec64;
2340 }
2341
2342 /* Vector 128 type. */
2343
2344 static struct type *
2345 rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2346 {
2347 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2348
2349 if (!tdep->ppc_builtin_type_vec128)
2350 {
2351 const struct builtin_type *bt = builtin_type (gdbarch);
2352
2353 /* The type we're building is this
2354
2355 type = union __ppc_builtin_type_vec128 {
2356 uint128_t uint128;
2357 double v2_double[2];
2358 float v4_float[4];
2359 int32_t v4_int32[4];
2360 int16_t v8_int16[8];
2361 int8_t v16_int8[16];
2362 }
2363 */
2364
2365 struct type *t;
2366
2367 t = arch_composite_type (gdbarch,
2368 "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
2369 append_composite_type_field (t, "uint128", bt->builtin_uint128);
2370 append_composite_type_field (t, "v2_double",
2371 init_vector_type (bt->builtin_double, 2));
2372 append_composite_type_field (t, "v4_float",
2373 init_vector_type (bt->builtin_float, 4));
2374 append_composite_type_field (t, "v4_int32",
2375 init_vector_type (bt->builtin_int32, 4));
2376 append_composite_type_field (t, "v8_int16",
2377 init_vector_type (bt->builtin_int16, 8));
2378 append_composite_type_field (t, "v16_int8",
2379 init_vector_type (bt->builtin_int8, 16));
2380
2381 TYPE_VECTOR (t) = 1;
2382 TYPE_NAME (t) = "ppc_builtin_type_vec128";
2383 tdep->ppc_builtin_type_vec128 = t;
2384 }
2385
2386 return tdep->ppc_builtin_type_vec128;
2387 }
2388
2389 /* Return the name of register number REGNO, or the empty string if it
2390 is an anonymous register. */
2391
2392 static const char *
2393 rs6000_register_name (struct gdbarch *gdbarch, int regno)
2394 {
2395 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2396
2397 /* The upper half "registers" have names in the XML description,
2398 but we present only the low GPRs and the full 64-bit registers
2399 to the user. */
2400 if (tdep->ppc_ev0_upper_regnum >= 0
2401 && tdep->ppc_ev0_upper_regnum <= regno
2402 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2403 return "";
2404
2405 /* Hide the upper halves of the vs0~vs31 registers. */
2406 if (tdep->ppc_vsr0_regnum >= 0
2407 && tdep->ppc_vsr0_upper_regnum <= regno
2408 && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2409 return "";
2410
2411 /* Check if the SPE pseudo registers are available. */
2412 if (IS_SPE_PSEUDOREG (tdep, regno))
2413 {
2414 static const char *const spe_regnames[] = {
2415 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2416 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2417 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2418 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2419 };
2420 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2421 }
2422
2423 /* Check if the decimal128 pseudo-registers are available. */
2424 if (IS_DFP_PSEUDOREG (tdep, regno))
2425 {
2426 static const char *const dfp128_regnames[] = {
2427 "dl0", "dl1", "dl2", "dl3",
2428 "dl4", "dl5", "dl6", "dl7",
2429 "dl8", "dl9", "dl10", "dl11",
2430 "dl12", "dl13", "dl14", "dl15"
2431 };
2432 return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2433 }
2434
2435 /* Check if this is a VSX pseudo-register. */
2436 if (IS_VSX_PSEUDOREG (tdep, regno))
2437 {
2438 static const char *const vsx_regnames[] = {
2439 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2440 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2441 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2442 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2443 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2444 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2445 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2446 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2447 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2448 };
2449 return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2450 }
2451
2452 /* Check if the this is a Extended FP pseudo-register. */
2453 if (IS_EFP_PSEUDOREG (tdep, regno))
2454 {
2455 static const char *const efpr_regnames[] = {
2456 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2457 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2458 "f46", "f47", "f48", "f49", "f50", "f51",
2459 "f52", "f53", "f54", "f55", "f56", "f57",
2460 "f58", "f59", "f60", "f61", "f62", "f63"
2461 };
2462 return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2463 }
2464
2465 return tdesc_register_name (gdbarch, regno);
2466 }
2467
2468 /* Return the GDB type object for the "standard" data type of data in
2469 register N. */
2470
2471 static struct type *
2472 rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2473 {
2474 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2475
2476 /* These are the only pseudo-registers we support. */
2477 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2478 || IS_DFP_PSEUDOREG (tdep, regnum)
2479 || IS_VSX_PSEUDOREG (tdep, regnum)
2480 || IS_EFP_PSEUDOREG (tdep, regnum));
2481
2482 /* These are the e500 pseudo-registers. */
2483 if (IS_SPE_PSEUDOREG (tdep, regnum))
2484 return rs6000_builtin_type_vec64 (gdbarch);
2485 else if (IS_DFP_PSEUDOREG (tdep, regnum))
2486 /* PPC decimal128 pseudo-registers. */
2487 return builtin_type (gdbarch)->builtin_declong;
2488 else if (IS_VSX_PSEUDOREG (tdep, regnum))
2489 /* POWER7 VSX pseudo-registers. */
2490 return rs6000_builtin_type_vec128 (gdbarch);
2491 else
2492 /* POWER7 Extended FP pseudo-registers. */
2493 return builtin_type (gdbarch)->builtin_double;
2494 }
2495
2496 /* Is REGNUM a member of REGGROUP? */
2497 static int
2498 rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2499 struct reggroup *group)
2500 {
2501 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2502
2503 /* These are the only pseudo-registers we support. */
2504 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
2505 || IS_DFP_PSEUDOREG (tdep, regnum)
2506 || IS_VSX_PSEUDOREG (tdep, regnum)
2507 || IS_EFP_PSEUDOREG (tdep, regnum));
2508
2509 /* These are the e500 pseudo-registers or the POWER7 VSX registers. */
2510 if (IS_SPE_PSEUDOREG (tdep, regnum) || IS_VSX_PSEUDOREG (tdep, regnum))
2511 return group == all_reggroup || group == vector_reggroup;
2512 else
2513 /* PPC decimal128 or Extended FP pseudo-registers. */
2514 return group == all_reggroup || group == float_reggroup;
2515 }
2516
2517 /* The register format for RS/6000 floating point registers is always
2518 double, we need a conversion if the memory format is float. */
2519
2520 static int
2521 rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2522 struct type *type)
2523 {
2524 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2525
2526 return (tdep->ppc_fp0_regnum >= 0
2527 && regnum >= tdep->ppc_fp0_regnum
2528 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2529 && TYPE_CODE (type) == TYPE_CODE_FLT
2530 && TYPE_LENGTH (type)
2531 != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
2532 }
2533
2534 static int
2535 rs6000_register_to_value (struct frame_info *frame,
2536 int regnum,
2537 struct type *type,
2538 gdb_byte *to,
2539 int *optimizedp, int *unavailablep)
2540 {
2541 struct gdbarch *gdbarch = get_frame_arch (frame);
2542 gdb_byte from[MAX_REGISTER_SIZE];
2543
2544 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2545
2546 if (!get_frame_register_bytes (frame, regnum, 0,
2547 register_size (gdbarch, regnum),
2548 from, optimizedp, unavailablep))
2549 return 0;
2550
2551 convert_typed_floating (from, builtin_type (gdbarch)->builtin_double,
2552 to, type);
2553 *optimizedp = *unavailablep = 0;
2554 return 1;
2555 }
2556
2557 static void
2558 rs6000_value_to_register (struct frame_info *frame,
2559 int regnum,
2560 struct type *type,
2561 const gdb_byte *from)
2562 {
2563 struct gdbarch *gdbarch = get_frame_arch (frame);
2564 gdb_byte to[MAX_REGISTER_SIZE];
2565
2566 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2567
2568 convert_typed_floating (from, type,
2569 to, builtin_type (gdbarch)->builtin_double);
2570 put_frame_register (frame, regnum, to);
2571 }
2572
2573 /* The type of a function that moves the value of REG between CACHE
2574 or BUF --- in either direction. */
2575 typedef enum register_status (*move_ev_register_func) (struct regcache *,
2576 int, void *);
2577
2578 /* Move SPE vector register values between a 64-bit buffer and the two
2579 32-bit raw register halves in a regcache. This function handles
2580 both splitting a 64-bit value into two 32-bit halves, and joining
2581 two halves into a whole 64-bit value, depending on the function
2582 passed as the MOVE argument.
2583
2584 EV_REG must be the number of an SPE evN vector register --- a
2585 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2586 64-bit buffer.
2587
2588 Call MOVE once for each 32-bit half of that register, passing
2589 REGCACHE, the number of the raw register corresponding to that
2590 half, and the address of the appropriate half of BUFFER.
2591
2592 For example, passing 'regcache_raw_read' as the MOVE function will
2593 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2594 'regcache_raw_supply' will supply the contents of BUFFER to the
2595 appropriate pair of raw registers in REGCACHE.
2596
2597 You may need to cast away some 'const' qualifiers when passing
2598 MOVE, since this function can't tell at compile-time which of
2599 REGCACHE or BUFFER is acting as the source of the data. If C had
2600 co-variant type qualifiers, ... */
2601
2602 static enum register_status
2603 e500_move_ev_register (move_ev_register_func move,
2604 struct regcache *regcache, int ev_reg, void *buffer)
2605 {
2606 struct gdbarch *arch = get_regcache_arch (regcache);
2607 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2608 int reg_index;
2609 gdb_byte *byte_buffer = buffer;
2610 enum register_status status;
2611
2612 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2613
2614 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2615
2616 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2617 {
2618 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2619 byte_buffer);
2620 if (status == REG_VALID)
2621 status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
2622 byte_buffer + 4);
2623 }
2624 else
2625 {
2626 status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2627 if (status == REG_VALID)
2628 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2629 byte_buffer + 4);
2630 }
2631
2632 return status;
2633 }
2634
2635 static enum register_status
2636 do_regcache_raw_read (struct regcache *regcache, int regnum, void *buffer)
2637 {
2638 return regcache_raw_read (regcache, regnum, buffer);
2639 }
2640
2641 static enum register_status
2642 do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
2643 {
2644 regcache_raw_write (regcache, regnum, buffer);
2645
2646 return REG_VALID;
2647 }
2648
2649 static enum register_status
2650 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2651 int reg_nr, gdb_byte *buffer)
2652 {
2653 return e500_move_ev_register (do_regcache_raw_read, regcache, reg_nr, buffer);
2654 }
2655
2656 static void
2657 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2658 int reg_nr, const gdb_byte *buffer)
2659 {
2660 e500_move_ev_register (do_regcache_raw_write, regcache,
2661 reg_nr, (void *) buffer);
2662 }
2663
2664 /* Read method for DFP pseudo-registers. */
2665 static enum register_status
2666 dfp_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2667 int reg_nr, gdb_byte *buffer)
2668 {
2669 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2670 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2671 enum register_status status;
2672
2673 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2674 {
2675 /* Read two FP registers to form a whole dl register. */
2676 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2677 2 * reg_index, buffer);
2678 if (status == REG_VALID)
2679 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2680 2 * reg_index + 1, buffer + 8);
2681 }
2682 else
2683 {
2684 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2685 2 * reg_index + 1, buffer);
2686 if (status == REG_VALID)
2687 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2688 2 * reg_index, buffer + 8);
2689 }
2690
2691 return status;
2692 }
2693
2694 /* Write method for DFP pseudo-registers. */
2695 static void
2696 dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2697 int reg_nr, const gdb_byte *buffer)
2698 {
2699 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2700 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2701
2702 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2703 {
2704 /* Write each half of the dl register into a separate
2705 FP register. */
2706 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2707 2 * reg_index, buffer);
2708 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2709 2 * reg_index + 1, buffer + 8);
2710 }
2711 else
2712 {
2713 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2714 2 * reg_index + 1, buffer);
2715 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2716 2 * reg_index, buffer + 8);
2717 }
2718 }
2719
2720 /* Read method for POWER7 VSX pseudo-registers. */
2721 static enum register_status
2722 vsx_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2723 int reg_nr, gdb_byte *buffer)
2724 {
2725 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2726 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2727 enum register_status status;
2728
2729 /* Read the portion that overlaps the VMX registers. */
2730 if (reg_index > 31)
2731 status = regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
2732 reg_index - 32, buffer);
2733 else
2734 /* Read the portion that overlaps the FPR registers. */
2735 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2736 {
2737 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2738 reg_index, buffer);
2739 if (status == REG_VALID)
2740 status = regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2741 reg_index, buffer + 8);
2742 }
2743 else
2744 {
2745 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2746 reg_index, buffer + 8);
2747 if (status == REG_VALID)
2748 status = regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2749 reg_index, buffer);
2750 }
2751
2752 return status;
2753 }
2754
2755 /* Write method for POWER7 VSX pseudo-registers. */
2756 static void
2757 vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2758 int reg_nr, const gdb_byte *buffer)
2759 {
2760 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2761 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2762
2763 /* Write the portion that overlaps the VMX registers. */
2764 if (reg_index > 31)
2765 regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
2766 reg_index - 32, buffer);
2767 else
2768 /* Write the portion that overlaps the FPR registers. */
2769 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2770 {
2771 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2772 reg_index, buffer);
2773 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2774 reg_index, buffer + 8);
2775 }
2776 else
2777 {
2778 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2779 reg_index, buffer + 8);
2780 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2781 reg_index, buffer);
2782 }
2783 }
2784
2785 /* Read method for POWER7 Extended FP pseudo-registers. */
2786 static enum register_status
2787 efpr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2788 int reg_nr, gdb_byte *buffer)
2789 {
2790 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2791 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2792 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2793
2794 /* Read the portion that overlaps the VMX register. */
2795 return regcache_raw_read_part (regcache, tdep->ppc_vr0_regnum + reg_index,
2796 offset, register_size (gdbarch, reg_nr),
2797 buffer);
2798 }
2799
2800 /* Write method for POWER7 Extended FP pseudo-registers. */
2801 static void
2802 efpr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2803 int reg_nr, const gdb_byte *buffer)
2804 {
2805 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2806 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2807 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
2808
2809 /* Write the portion that overlaps the VMX register. */
2810 regcache_raw_write_part (regcache, tdep->ppc_vr0_regnum + reg_index,
2811 offset, register_size (gdbarch, reg_nr),
2812 buffer);
2813 }
2814
2815 static enum register_status
2816 rs6000_pseudo_register_read (struct gdbarch *gdbarch,
2817 struct regcache *regcache,
2818 int reg_nr, gdb_byte *buffer)
2819 {
2820 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2821 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2822
2823 gdb_assert (regcache_arch == gdbarch);
2824
2825 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2826 return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2827 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2828 return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2829 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2830 return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2831 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2832 return efpr_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2833 else
2834 internal_error (__FILE__, __LINE__,
2835 _("rs6000_pseudo_register_read: "
2836 "called on unexpected register '%s' (%d)"),
2837 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2838 }
2839
2840 static void
2841 rs6000_pseudo_register_write (struct gdbarch *gdbarch,
2842 struct regcache *regcache,
2843 int reg_nr, const gdb_byte *buffer)
2844 {
2845 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
2846 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2847
2848 gdb_assert (regcache_arch == gdbarch);
2849
2850 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
2851 e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2852 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2853 dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2854 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2855 vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2856 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2857 efpr_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2858 else
2859 internal_error (__FILE__, __LINE__,
2860 _("rs6000_pseudo_register_write: "
2861 "called on unexpected register '%s' (%d)"),
2862 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
2863 }
2864
2865 /* Convert a DBX STABS register number to a GDB register number. */
2866 static int
2867 rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
2868 {
2869 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2870
2871 if (0 <= num && num <= 31)
2872 return tdep->ppc_gp0_regnum + num;
2873 else if (32 <= num && num <= 63)
2874 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2875 specifies registers the architecture doesn't have? Our
2876 callers don't check the value we return. */
2877 return tdep->ppc_fp0_regnum + (num - 32);
2878 else if (77 <= num && num <= 108)
2879 return tdep->ppc_vr0_regnum + (num - 77);
2880 else if (1200 <= num && num < 1200 + 32)
2881 return tdep->ppc_ev0_upper_regnum + (num - 1200);
2882 else
2883 switch (num)
2884 {
2885 case 64:
2886 return tdep->ppc_mq_regnum;
2887 case 65:
2888 return tdep->ppc_lr_regnum;
2889 case 66:
2890 return tdep->ppc_ctr_regnum;
2891 case 76:
2892 return tdep->ppc_xer_regnum;
2893 case 109:
2894 return tdep->ppc_vrsave_regnum;
2895 case 110:
2896 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2897 case 111:
2898 return tdep->ppc_acc_regnum;
2899 case 112:
2900 return tdep->ppc_spefscr_regnum;
2901 default:
2902 return num;
2903 }
2904 }
2905
2906
2907 /* Convert a Dwarf 2 register number to a GDB register number. */
2908 static int
2909 rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
2910 {
2911 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2912
2913 if (0 <= num && num <= 31)
2914 return tdep->ppc_gp0_regnum + num;
2915 else if (32 <= num && num <= 63)
2916 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2917 specifies registers the architecture doesn't have? Our
2918 callers don't check the value we return. */
2919 return tdep->ppc_fp0_regnum + (num - 32);
2920 else if (1124 <= num && num < 1124 + 32)
2921 return tdep->ppc_vr0_regnum + (num - 1124);
2922 else if (1200 <= num && num < 1200 + 32)
2923 return tdep->ppc_ev0_upper_regnum + (num - 1200);
2924 else
2925 switch (num)
2926 {
2927 case 64:
2928 return tdep->ppc_cr_regnum;
2929 case 67:
2930 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2931 case 99:
2932 return tdep->ppc_acc_regnum;
2933 case 100:
2934 return tdep->ppc_mq_regnum;
2935 case 101:
2936 return tdep->ppc_xer_regnum;
2937 case 108:
2938 return tdep->ppc_lr_regnum;
2939 case 109:
2940 return tdep->ppc_ctr_regnum;
2941 case 356:
2942 return tdep->ppc_vrsave_regnum;
2943 case 612:
2944 return tdep->ppc_spefscr_regnum;
2945 default:
2946 return num;
2947 }
2948 }
2949
2950 /* Translate a .eh_frame register to DWARF register, or adjust a
2951 .debug_frame register. */
2952
2953 static int
2954 rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
2955 {
2956 /* GCC releases before 3.4 use GCC internal register numbering in
2957 .debug_frame (and .debug_info, et cetera). The numbering is
2958 different from the standard SysV numbering for everything except
2959 for GPRs and FPRs. We can not detect this problem in most cases
2960 - to get accurate debug info for variables living in lr, ctr, v0,
2961 et cetera, use a newer version of GCC. But we must detect
2962 one important case - lr is in column 65 in .debug_frame output,
2963 instead of 108.
2964
2965 GCC 3.4, and the "hammer" branch, have a related problem. They
2966 record lr register saves in .debug_frame as 108, but still record
2967 the return column as 65. We fix that up too.
2968
2969 We can do this because 65 is assigned to fpsr, and GCC never
2970 generates debug info referring to it. To add support for
2971 handwritten debug info that restores fpsr, we would need to add a
2972 producer version check to this. */
2973 if (!eh_frame_p)
2974 {
2975 if (num == 65)
2976 return 108;
2977 else
2978 return num;
2979 }
2980
2981 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
2982 internal register numbering; translate that to the standard DWARF2
2983 register numbering. */
2984 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
2985 return num;
2986 else if (68 <= num && num <= 75) /* cr0-cr8 */
2987 return num - 68 + 86;
2988 else if (77 <= num && num <= 108) /* vr0-vr31 */
2989 return num - 77 + 1124;
2990 else
2991 switch (num)
2992 {
2993 case 64: /* mq */
2994 return 100;
2995 case 65: /* lr */
2996 return 108;
2997 case 66: /* ctr */
2998 return 109;
2999 case 76: /* xer */
3000 return 101;
3001 case 109: /* vrsave */
3002 return 356;
3003 case 110: /* vscr */
3004 return 67;
3005 case 111: /* spe_acc */
3006 return 99;
3007 case 112: /* spefscr */
3008 return 612;
3009 default:
3010 return num;
3011 }
3012 }
3013 \f
3014
3015 /* Handling the various POWER/PowerPC variants. */
3016
3017 /* Information about a particular processor variant. */
3018
3019 struct variant
3020 {
3021 /* Name of this variant. */
3022 char *name;
3023
3024 /* English description of the variant. */
3025 char *description;
3026
3027 /* bfd_arch_info.arch corresponding to variant. */
3028 enum bfd_architecture arch;
3029
3030 /* bfd_arch_info.mach corresponding to variant. */
3031 unsigned long mach;
3032
3033 /* Target description for this variant. */
3034 struct target_desc **tdesc;
3035 };
3036
3037 static struct variant variants[] =
3038 {
3039 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
3040 bfd_mach_ppc, &tdesc_powerpc_altivec32},
3041 {"power", "POWER user-level", bfd_arch_rs6000,
3042 bfd_mach_rs6k, &tdesc_rs6000},
3043 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
3044 bfd_mach_ppc_403, &tdesc_powerpc_403},
3045 {"405", "IBM PowerPC 405", bfd_arch_powerpc,
3046 bfd_mach_ppc_405, &tdesc_powerpc_405},
3047 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
3048 bfd_mach_ppc_601, &tdesc_powerpc_601},
3049 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
3050 bfd_mach_ppc_602, &tdesc_powerpc_602},
3051 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
3052 bfd_mach_ppc_603, &tdesc_powerpc_603},
3053 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
3054 604, &tdesc_powerpc_604},
3055 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
3056 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
3057 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
3058 bfd_mach_ppc_505, &tdesc_powerpc_505},
3059 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
3060 bfd_mach_ppc_860, &tdesc_powerpc_860},
3061 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
3062 bfd_mach_ppc_750, &tdesc_powerpc_750},
3063 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
3064 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
3065 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
3066 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
3067
3068 /* 64-bit */
3069 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
3070 bfd_mach_ppc64, &tdesc_powerpc_altivec64},
3071 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
3072 bfd_mach_ppc_620, &tdesc_powerpc_64},
3073 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
3074 bfd_mach_ppc_630, &tdesc_powerpc_64},
3075 {"a35", "PowerPC A35", bfd_arch_powerpc,
3076 bfd_mach_ppc_a35, &tdesc_powerpc_64},
3077 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
3078 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
3079 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
3080 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
3081
3082 /* FIXME: I haven't checked the register sets of the following. */
3083 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
3084 bfd_mach_rs6k_rs1, &tdesc_rs6000},
3085 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
3086 bfd_mach_rs6k_rsc, &tdesc_rs6000},
3087 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
3088 bfd_mach_rs6k_rs2, &tdesc_rs6000},
3089
3090 {0, 0, 0, 0, 0}
3091 };
3092
3093 /* Return the variant corresponding to architecture ARCH and machine number
3094 MACH. If no such variant exists, return null. */
3095
3096 static const struct variant *
3097 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
3098 {
3099 const struct variant *v;
3100
3101 for (v = variants; v->name; v++)
3102 if (arch == v->arch && mach == v->mach)
3103 return v;
3104
3105 return NULL;
3106 }
3107
3108 static int
3109 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
3110 {
3111 if (info->endian == BFD_ENDIAN_BIG)
3112 return print_insn_big_powerpc (memaddr, info);
3113 else
3114 return print_insn_little_powerpc (memaddr, info);
3115 }
3116 \f
3117 static CORE_ADDR
3118 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3119 {
3120 return frame_unwind_register_unsigned (next_frame,
3121 gdbarch_pc_regnum (gdbarch));
3122 }
3123
3124 static struct frame_id
3125 rs6000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
3126 {
3127 return frame_id_build (get_frame_register_unsigned
3128 (this_frame, gdbarch_sp_regnum (gdbarch)),
3129 get_frame_pc (this_frame));
3130 }
3131
3132 struct rs6000_frame_cache
3133 {
3134 CORE_ADDR base;
3135 CORE_ADDR initial_sp;
3136 struct trad_frame_saved_reg *saved_regs;
3137 };
3138
3139 static struct rs6000_frame_cache *
3140 rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
3141 {
3142 struct rs6000_frame_cache *cache;
3143 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3144 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3145 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3146 struct rs6000_framedata fdata;
3147 int wordsize = tdep->wordsize;
3148 CORE_ADDR func, pc;
3149
3150 if ((*this_cache) != NULL)
3151 return (*this_cache);
3152 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3153 (*this_cache) = cache;
3154 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3155
3156 func = get_frame_func (this_frame);
3157 pc = get_frame_pc (this_frame);
3158 skip_prologue (gdbarch, func, pc, &fdata);
3159
3160 /* Figure out the parent's stack pointer. */
3161
3162 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3163 address of the current frame. Things might be easier if the
3164 ->frame pointed to the outer-most address of the frame. In
3165 the mean time, the address of the prev frame is used as the
3166 base address of this frame. */
3167 cache->base = get_frame_register_unsigned
3168 (this_frame, gdbarch_sp_regnum (gdbarch));
3169
3170 /* If the function appears to be frameless, check a couple of likely
3171 indicators that we have simply failed to find the frame setup.
3172 Two common cases of this are missing symbols (i.e.
3173 get_frame_func returns the wrong address or 0), and assembly
3174 stubs which have a fast exit path but set up a frame on the slow
3175 path.
3176
3177 If the LR appears to return to this function, then presume that
3178 we have an ABI compliant frame that we failed to find. */
3179 if (fdata.frameless && fdata.lr_offset == 0)
3180 {
3181 CORE_ADDR saved_lr;
3182 int make_frame = 0;
3183
3184 saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3185 if (func == 0 && saved_lr == pc)
3186 make_frame = 1;
3187 else if (func != 0)
3188 {
3189 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3190 if (func == saved_func)
3191 make_frame = 1;
3192 }
3193
3194 if (make_frame)
3195 {
3196 fdata.frameless = 0;
3197 fdata.lr_offset = tdep->lr_frame_offset;
3198 }
3199 }
3200
3201 if (!fdata.frameless)
3202 {
3203 /* Frameless really means stackless. */
3204 LONGEST backchain;
3205
3206 if (safe_read_memory_integer (cache->base, wordsize,
3207 byte_order, &backchain))
3208 cache->base = (CORE_ADDR) backchain;
3209 }
3210
3211 trad_frame_set_value (cache->saved_regs,
3212 gdbarch_sp_regnum (gdbarch), cache->base);
3213
3214 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3215 All fpr's from saved_fpr to fp31 are saved. */
3216
3217 if (fdata.saved_fpr >= 0)
3218 {
3219 int i;
3220 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
3221
3222 /* If skip_prologue says floating-point registers were saved,
3223 but the current architecture has no floating-point registers,
3224 then that's strange. But we have no indices to even record
3225 the addresses under, so we just ignore it. */
3226 if (ppc_floating_point_unit_p (gdbarch))
3227 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3228 {
3229 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3230 fpr_addr += 8;
3231 }
3232 }
3233
3234 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3235 All gpr's from saved_gpr to gpr31 are saved (except during the
3236 prologue). */
3237
3238 if (fdata.saved_gpr >= 0)
3239 {
3240 int i;
3241 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
3242 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
3243 {
3244 if (fdata.gpr_mask & (1U << i))
3245 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3246 gpr_addr += wordsize;
3247 }
3248 }
3249
3250 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3251 All vr's from saved_vr to vr31 are saved. */
3252 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3253 {
3254 if (fdata.saved_vr >= 0)
3255 {
3256 int i;
3257 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3258 for (i = fdata.saved_vr; i < 32; i++)
3259 {
3260 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3261 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3262 }
3263 }
3264 }
3265
3266 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3267 All vr's from saved_ev to ev31 are saved. ????? */
3268 if (tdep->ppc_ev0_regnum != -1)
3269 {
3270 if (fdata.saved_ev >= 0)
3271 {
3272 int i;
3273 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
3274 CORE_ADDR off = (byte_order == BFD_ENDIAN_BIG ? 4 : 0);
3275
3276 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
3277 {
3278 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3279 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + off;
3280 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3281 }
3282 }
3283 }
3284
3285 /* If != 0, fdata.cr_offset is the offset from the frame that
3286 holds the CR. */
3287 if (fdata.cr_offset != 0)
3288 cache->saved_regs[tdep->ppc_cr_regnum].addr
3289 = cache->base + fdata.cr_offset;
3290
3291 /* If != 0, fdata.lr_offset is the offset from the frame that
3292 holds the LR. */
3293 if (fdata.lr_offset != 0)
3294 cache->saved_regs[tdep->ppc_lr_regnum].addr
3295 = cache->base + fdata.lr_offset;
3296 else if (fdata.lr_register != -1)
3297 cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
3298 /* The PC is found in the link register. */
3299 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3300 cache->saved_regs[tdep->ppc_lr_regnum];
3301
3302 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3303 holds the VRSAVE. */
3304 if (fdata.vrsave_offset != 0)
3305 cache->saved_regs[tdep->ppc_vrsave_regnum].addr
3306 = cache->base + fdata.vrsave_offset;
3307
3308 if (fdata.alloca_reg < 0)
3309 /* If no alloca register used, then fi->frame is the value of the
3310 %sp for this frame, and it is good enough. */
3311 cache->initial_sp
3312 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3313 else
3314 cache->initial_sp
3315 = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
3316
3317 return cache;
3318 }
3319
3320 static void
3321 rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
3322 struct frame_id *this_id)
3323 {
3324 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3325 this_cache);
3326 /* This marks the outermost frame. */
3327 if (info->base == 0)
3328 return;
3329
3330 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3331 }
3332
3333 static struct value *
3334 rs6000_frame_prev_register (struct frame_info *this_frame,
3335 void **this_cache, int regnum)
3336 {
3337 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3338 this_cache);
3339 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3340 }
3341
3342 static const struct frame_unwind rs6000_frame_unwind =
3343 {
3344 NORMAL_FRAME,
3345 default_frame_unwind_stop_reason,
3346 rs6000_frame_this_id,
3347 rs6000_frame_prev_register,
3348 NULL,
3349 default_frame_sniffer
3350 };
3351
3352 static struct rs6000_frame_cache *
3353 rs6000_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
3354 {
3355 volatile struct gdb_exception ex;
3356 struct rs6000_frame_cache *cache;
3357 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3358 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3359 CORE_ADDR sp;
3360
3361 if (*this_cache)
3362 return *this_cache;
3363
3364 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3365 (*this_cache) = cache;
3366 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3367
3368 TRY_CATCH (ex, RETURN_MASK_ERROR)
3369 {
3370 /* At this point the stack looks as if we just entered the
3371 function, and the return address is stored in LR. */
3372 CORE_ADDR sp, lr;
3373
3374 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3375 lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3376
3377 cache->base = sp;
3378 cache->initial_sp = sp;
3379
3380 trad_frame_set_value (cache->saved_regs,
3381 gdbarch_pc_regnum (gdbarch), lr);
3382 }
3383 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
3384 throw_exception (ex);
3385
3386 return cache;
3387 }
3388
3389 static void
3390 rs6000_epilogue_frame_this_id (struct frame_info *this_frame,
3391 void **this_cache, struct frame_id *this_id)
3392 {
3393 CORE_ADDR pc;
3394 struct rs6000_frame_cache *info =
3395 rs6000_epilogue_frame_cache (this_frame, this_cache);
3396
3397 pc = get_frame_func (this_frame);
3398 if (info->base == 0)
3399 (*this_id) = frame_id_build_unavailable_stack (pc);
3400 else
3401 (*this_id) = frame_id_build (info->base, pc);
3402 }
3403
3404 static struct value *
3405 rs6000_epilogue_frame_prev_register (struct frame_info *this_frame,
3406 void **this_cache, int regnum)
3407 {
3408 struct rs6000_frame_cache *info =
3409 rs6000_epilogue_frame_cache (this_frame, this_cache);
3410 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3411 }
3412
3413 static int
3414 rs6000_epilogue_frame_sniffer (const struct frame_unwind *self,
3415 struct frame_info *this_frame,
3416 void **this_prologue_cache)
3417 {
3418 if (frame_relative_level (this_frame) == 0)
3419 return rs6000_in_function_epilogue_frame_p (this_frame,
3420 get_frame_arch (this_frame),
3421 get_frame_pc (this_frame));
3422 else
3423 return 0;
3424 }
3425
3426 static const struct frame_unwind rs6000_epilogue_frame_unwind =
3427 {
3428 NORMAL_FRAME,
3429 default_frame_unwind_stop_reason,
3430 rs6000_epilogue_frame_this_id, rs6000_epilogue_frame_prev_register,
3431 NULL,
3432 rs6000_epilogue_frame_sniffer
3433 };
3434 \f
3435
3436 static CORE_ADDR
3437 rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
3438 {
3439 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
3440 this_cache);
3441 return info->initial_sp;
3442 }
3443
3444 static const struct frame_base rs6000_frame_base = {
3445 &rs6000_frame_unwind,
3446 rs6000_frame_base_address,
3447 rs6000_frame_base_address,
3448 rs6000_frame_base_address
3449 };
3450
3451 static const struct frame_base *
3452 rs6000_frame_base_sniffer (struct frame_info *this_frame)
3453 {
3454 return &rs6000_frame_base;
3455 }
3456
3457 /* DWARF-2 frame support. Used to handle the detection of
3458 clobbered registers during function calls. */
3459
3460 static void
3461 ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3462 struct dwarf2_frame_state_reg *reg,
3463 struct frame_info *this_frame)
3464 {
3465 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3466
3467 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3468 non-volatile registers. We will use the same code for both. */
3469
3470 /* Call-saved GP registers. */
3471 if ((regnum >= tdep->ppc_gp0_regnum + 14
3472 && regnum <= tdep->ppc_gp0_regnum + 31)
3473 || (regnum == tdep->ppc_gp0_regnum + 1))
3474 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3475
3476 /* Call-clobbered GP registers. */
3477 if ((regnum >= tdep->ppc_gp0_regnum + 3
3478 && regnum <= tdep->ppc_gp0_regnum + 12)
3479 || (regnum == tdep->ppc_gp0_regnum))
3480 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3481
3482 /* Deal with FP registers, if supported. */
3483 if (tdep->ppc_fp0_regnum >= 0)
3484 {
3485 /* Call-saved FP registers. */
3486 if ((regnum >= tdep->ppc_fp0_regnum + 14
3487 && regnum <= tdep->ppc_fp0_regnum + 31))
3488 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3489
3490 /* Call-clobbered FP registers. */
3491 if ((regnum >= tdep->ppc_fp0_regnum
3492 && regnum <= tdep->ppc_fp0_regnum + 13))
3493 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3494 }
3495
3496 /* Deal with ALTIVEC registers, if supported. */
3497 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3498 {
3499 /* Call-saved Altivec registers. */
3500 if ((regnum >= tdep->ppc_vr0_regnum + 20
3501 && regnum <= tdep->ppc_vr0_regnum + 31)
3502 || regnum == tdep->ppc_vrsave_regnum)
3503 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3504
3505 /* Call-clobbered Altivec registers. */
3506 if ((regnum >= tdep->ppc_vr0_regnum
3507 && regnum <= tdep->ppc_vr0_regnum + 19))
3508 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3509 }
3510
3511 /* Handle PC register and Stack Pointer correctly. */
3512 if (regnum == gdbarch_pc_regnum (gdbarch))
3513 reg->how = DWARF2_FRAME_REG_RA;
3514 else if (regnum == gdbarch_sp_regnum (gdbarch))
3515 reg->how = DWARF2_FRAME_REG_CFA;
3516 }
3517
3518
3519 /* Return true if a .gnu_attributes section exists in BFD and it
3520 indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
3521 section exists in BFD and it indicates that SPE extensions are in
3522 use. Check the .gnu.attributes section first, as the binary might be
3523 compiled for SPE, but not actually using SPE instructions. */
3524
3525 static int
3526 bfd_uses_spe_extensions (bfd *abfd)
3527 {
3528 asection *sect;
3529 gdb_byte *contents = NULL;
3530 bfd_size_type size;
3531 gdb_byte *ptr;
3532 int success = 0;
3533 int vector_abi;
3534
3535 if (!abfd)
3536 return 0;
3537
3538 #ifdef HAVE_ELF
3539 /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
3540 could be using the SPE vector abi without actually using any spe
3541 bits whatsoever. But it's close enough for now. */
3542 vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
3543 Tag_GNU_Power_ABI_Vector);
3544 if (vector_abi == 3)
3545 return 1;
3546 #endif
3547
3548 sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
3549 if (!sect)
3550 return 0;
3551
3552 size = bfd_get_section_size (sect);
3553 contents = xmalloc (size);
3554 if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
3555 {
3556 xfree (contents);
3557 return 0;
3558 }
3559
3560 /* Parse the .PPC.EMB.apuinfo section. The layout is as follows:
3561
3562 struct {
3563 uint32 name_len;
3564 uint32 data_len;
3565 uint32 type;
3566 char name[name_len rounded up to 4-byte alignment];
3567 char data[data_len];
3568 };
3569
3570 Technically, there's only supposed to be one such structure in a
3571 given apuinfo section, but the linker is not always vigilant about
3572 merging apuinfo sections from input files. Just go ahead and parse
3573 them all, exiting early when we discover the binary uses SPE
3574 insns.
3575
3576 It's not specified in what endianness the information in this
3577 section is stored. Assume that it's the endianness of the BFD. */
3578 ptr = contents;
3579 while (1)
3580 {
3581 unsigned int name_len;
3582 unsigned int data_len;
3583 unsigned int type;
3584
3585 /* If we can't read the first three fields, we're done. */
3586 if (size < 12)
3587 break;
3588
3589 name_len = bfd_get_32 (abfd, ptr);
3590 name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */
3591 data_len = bfd_get_32 (abfd, ptr + 4);
3592 type = bfd_get_32 (abfd, ptr + 8);
3593 ptr += 12;
3594
3595 /* The name must be "APUinfo\0". */
3596 if (name_len != 8
3597 && strcmp ((const char *) ptr, "APUinfo") != 0)
3598 break;
3599 ptr += name_len;
3600
3601 /* The type must be 2. */
3602 if (type != 2)
3603 break;
3604
3605 /* The data is stored as a series of uint32. The upper half of
3606 each uint32 indicates the particular APU used and the lower
3607 half indicates the revision of that APU. We just care about
3608 the upper half. */
3609
3610 /* Not 4-byte quantities. */
3611 if (data_len & 3U)
3612 break;
3613
3614 while (data_len)
3615 {
3616 unsigned int apuinfo = bfd_get_32 (abfd, ptr);
3617 unsigned int apu = apuinfo >> 16;
3618 ptr += 4;
3619 data_len -= 4;
3620
3621 /* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept
3622 either. */
3623 if (apu == 0x100 || apu == 0x101)
3624 {
3625 success = 1;
3626 data_len = 0;
3627 }
3628 }
3629
3630 if (success)
3631 break;
3632 }
3633
3634 xfree (contents);
3635 return success;
3636 }
3637
3638 /* These are macros for parsing instruction fields (I.1.6.28) */
3639
3640 #define PPC_FIELD(value, from, len) \
3641 (((value) >> (32 - (from) - (len))) & ((1 << (len)) - 1))
3642 #define PPC_SEXT(v, bs) \
3643 ((((CORE_ADDR) (v) & (((CORE_ADDR) 1 << (bs)) - 1)) \
3644 ^ ((CORE_ADDR) 1 << ((bs) - 1))) \
3645 - ((CORE_ADDR) 1 << ((bs) - 1)))
3646 #define PPC_OP6(insn) PPC_FIELD (insn, 0, 6)
3647 #define PPC_EXTOP(insn) PPC_FIELD (insn, 21, 10)
3648 #define PPC_RT(insn) PPC_FIELD (insn, 6, 5)
3649 #define PPC_RS(insn) PPC_FIELD (insn, 6, 5)
3650 #define PPC_RA(insn) PPC_FIELD (insn, 11, 5)
3651 #define PPC_RB(insn) PPC_FIELD (insn, 16, 5)
3652 #define PPC_NB(insn) PPC_FIELD (insn, 16, 5)
3653 #define PPC_VRT(insn) PPC_FIELD (insn, 6, 5)
3654 #define PPC_FRT(insn) PPC_FIELD (insn, 6, 5)
3655 #define PPC_SPR(insn) (PPC_FIELD (insn, 11, 5) \
3656 | (PPC_FIELD (insn, 16, 5) << 5))
3657 #define PPC_BO(insn) PPC_FIELD (insn, 6, 5)
3658 #define PPC_T(insn) PPC_FIELD (insn, 6, 5)
3659 #define PPC_D(insn) PPC_SEXT (PPC_FIELD (insn, 16, 16), 16)
3660 #define PPC_DS(insn) PPC_SEXT (PPC_FIELD (insn, 16, 14), 14)
3661 #define PPC_BIT(insn,n) ((insn & (1 << (31 - (n)))) ? 1 : 0)
3662 #define PPC_OE(insn) PPC_BIT (insn, 21)
3663 #define PPC_RC(insn) PPC_BIT (insn, 31)
3664 #define PPC_Rc(insn) PPC_BIT (insn, 21)
3665 #define PPC_LK(insn) PPC_BIT (insn, 31)
3666 #define PPC_TX(insn) PPC_BIT (insn, 31)
3667 #define PPC_LEV(insn) PPC_FIELD (insn, 20, 7)
3668
3669 #define PPC_XT(insn) ((PPC_TX (insn) << 5) | PPC_T (insn))
3670 #define PPC_XER_NB(xer) (xer & 0x7f)
3671
3672 /* Record Vector-Scalar Registers. */
3673
3674 static int
3675 ppc_record_vsr (struct regcache *regcache, struct gdbarch_tdep *tdep, int vsr)
3676 {
3677 if (vsr < 0 || vsr >= 64)
3678 return -1;
3679
3680 if (vsr >= 32)
3681 {
3682 if (tdep->ppc_vr0_regnum >= 0)
3683 record_full_arch_list_add_reg (regcache, tdep->ppc_vr0_regnum + vsr - 32);
3684 }
3685 else
3686 {
3687 if (tdep->ppc_fp0_regnum >= 0)
3688 record_full_arch_list_add_reg (regcache, tdep->ppc_fp0_regnum + vsr);
3689 if (tdep->ppc_vsr0_upper_regnum >= 0)
3690 record_full_arch_list_add_reg (regcache,
3691 tdep->ppc_vsr0_upper_regnum + vsr);
3692 }
3693
3694 return 0;
3695 }
3696
3697 /* Parse instructions of primary opcode-4. */
3698
3699 static int
3700 ppc_process_record_op4 (struct gdbarch *gdbarch, struct regcache *regcache,
3701 CORE_ADDR addr, uint32_t insn)
3702 {
3703 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3704 int ext = PPC_FIELD (insn, 21, 11);
3705
3706 switch (ext & 0x3f)
3707 {
3708 case 32: /* Vector Multiply-High-Add Signed Halfword Saturate */
3709 case 33: /* Vector Multiply-High-Round-Add Signed Halfword Saturate */
3710 case 39: /* Vector Multiply-Sum Unsigned Halfword Saturate */
3711 case 41: /* Vector Multiply-Sum Signed Halfword Saturate */
3712 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
3713 /* FALL-THROUGH */
3714 case 42: /* Vector Select */
3715 case 43: /* Vector Permute */
3716 case 44: /* Vector Shift Left Double by Octet Immediate */
3717 case 45: /* Vector Permute and Exclusive-OR */
3718 case 60: /* Vector Add Extended Unsigned Quadword Modulo */
3719 case 61: /* Vector Add Extended & write Carry Unsigned Quadword */
3720 case 62: /* Vector Subtract Extended Unsigned Quadword Modulo */
3721 case 63: /* Vector Subtract Extended & write Carry Unsigned Quadword */
3722 case 34: /* Vector Multiply-Low-Add Unsigned Halfword Modulo */
3723 case 36: /* Vector Multiply-Sum Unsigned Byte Modulo */
3724 case 37: /* Vector Multiply-Sum Mixed Byte Modulo */
3725 case 38: /* Vector Multiply-Sum Unsigned Halfword Modulo */
3726 case 40: /* Vector Multiply-Sum Signed Halfword Modulo */
3727 case 46: /* Vector Multiply-Add Single-Precision */
3728 case 47: /* Vector Negative Multiply-Subtract Single-Precision */
3729 record_full_arch_list_add_reg (regcache,
3730 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3731 return 0;
3732 }
3733
3734 switch ((ext & 0x1ff))
3735 {
3736 /* 5.16 Decimal Integer Arithmetic Instructions */
3737 case 1: /* Decimal Add Modulo */
3738 case 65: /* Decimal Subtract Modulo */
3739
3740 /* Bit-21 should be set. */
3741 if (!PPC_BIT (insn, 21))
3742 break;
3743
3744 record_full_arch_list_add_reg (regcache,
3745 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3746 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
3747 return 0;
3748 }
3749
3750 /* Bit-21 is used for RC */
3751 switch (ext & 0x3ff)
3752 {
3753 case 6: /* Vector Compare Equal To Unsigned Byte */
3754 case 70: /* Vector Compare Equal To Unsigned Halfword */
3755 case 134: /* Vector Compare Equal To Unsigned Word */
3756 case 199: /* Vector Compare Equal To Unsigned Doubleword */
3757 case 774: /* Vector Compare Greater Than Signed Byte */
3758 case 838: /* Vector Compare Greater Than Signed Halfword */
3759 case 902: /* Vector Compare Greater Than Signed Word */
3760 case 967: /* Vector Compare Greater Than Signed Doubleword */
3761 case 518: /* Vector Compare Greater Than Unsigned Byte */
3762 case 646: /* Vector Compare Greater Than Unsigned Word */
3763 case 582: /* Vector Compare Greater Than Unsigned Halfword */
3764 case 711: /* Vector Compare Greater Than Unsigned Doubleword */
3765 case 966: /* Vector Compare Bounds Single-Precision */
3766 case 198: /* Vector Compare Equal To Single-Precision */
3767 case 454: /* Vector Compare Greater Than or Equal To Single-Precision */
3768 case 710: /* Vector Compare Greater Than Single-Precision */
3769 if (PPC_Rc (insn))
3770 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
3771 record_full_arch_list_add_reg (regcache,
3772 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3773 return 0;
3774 }
3775
3776 switch (ext)
3777 {
3778 case 142: /* Vector Pack Unsigned Halfword Unsigned Saturate */
3779 case 206: /* Vector Pack Unsigned Word Unsigned Saturate */
3780 case 270: /* Vector Pack Signed Halfword Unsigned Saturate */
3781 case 334: /* Vector Pack Signed Word Unsigned Saturate */
3782 case 398: /* Vector Pack Signed Halfword Signed Saturate */
3783 case 462: /* Vector Pack Signed Word Signed Saturate */
3784 case 1230: /* Vector Pack Unsigned Doubleword Unsigned Saturate */
3785 case 1358: /* Vector Pack Signed Doubleword Unsigned Saturate */
3786 case 1486: /* Vector Pack Signed Doubleword Signed Saturate */
3787 case 512: /* Vector Add Unsigned Byte Saturate */
3788 case 576: /* Vector Add Unsigned Halfword Saturate */
3789 case 640: /* Vector Add Unsigned Word Saturate */
3790 case 768: /* Vector Add Signed Byte Saturate */
3791 case 832: /* Vector Add Signed Halfword Saturate */
3792 case 896: /* Vector Add Signed Word Saturate */
3793 case 1536: /* Vector Subtract Unsigned Byte Saturate */
3794 case 1600: /* Vector Subtract Unsigned Halfword Saturate */
3795 case 1664: /* Vector Subtract Unsigned Word Saturate */
3796 case 1792: /* Vector Subtract Signed Byte Saturate */
3797 case 1856: /* Vector Subtract Signed Halfword Saturate */
3798 case 1920: /* Vector Subtract Signed Word Saturate */
3799
3800 case 1544: /* Vector Sum across Quarter Unsigned Byte Saturate */
3801 case 1800: /* Vector Sum across Quarter Signed Byte Saturate */
3802 case 1608: /* Vector Sum across Quarter Signed Halfword Saturate */
3803 case 1672: /* Vector Sum across Half Signed Word Saturate */
3804 case 1928: /* Vector Sum across Signed Word Saturate */
3805 case 970: /* Vector Convert To Signed Fixed-Point Word Saturate */
3806 case 906: /* Vector Convert To Unsigned Fixed-Point Word Saturate */
3807 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
3808 /* FALL-THROUGH */
3809 case 12: /* Vector Merge High Byte */
3810 case 14: /* Vector Pack Unsigned Halfword Unsigned Modulo */
3811 case 76: /* Vector Merge High Halfword */
3812 case 78: /* Vector Pack Unsigned Word Unsigned Modulo */
3813 case 140: /* Vector Merge High Word */
3814 case 268: /* Vector Merge Low Byte */
3815 case 332: /* Vector Merge Low Halfword */
3816 case 396: /* Vector Merge Low Word */
3817 case 526: /* Vector Unpack High Signed Byte */
3818 case 590: /* Vector Unpack High Signed Halfword */
3819 case 654: /* Vector Unpack Low Signed Byte */
3820 case 718: /* Vector Unpack Low Signed Halfword */
3821 case 782: /* Vector Pack Pixel */
3822 case 846: /* Vector Unpack High Pixel */
3823 case 974: /* Vector Unpack Low Pixel */
3824 case 1102: /* Vector Pack Unsigned Doubleword Unsigned Modulo */
3825 case 1614: /* Vector Unpack High Signed Word */
3826 case 1676: /* Vector Merge Odd Word */
3827 case 1742: /* Vector Unpack Low Signed Word */
3828 case 1932: /* Vector Merge Even Word */
3829 case 524: /* Vector Splat Byte */
3830 case 588: /* Vector Splat Halfword */
3831 case 652: /* Vector Splat Word */
3832 case 780: /* Vector Splat Immediate Signed Byte */
3833 case 844: /* Vector Splat Immediate Signed Halfword */
3834 case 908: /* Vector Splat Immediate Signed Word */
3835 case 452: /* Vector Shift Left */
3836 case 708: /* Vector Shift Right */
3837 case 1036: /* Vector Shift Left by Octet */
3838 case 1100: /* Vector Shift Right by Octet */
3839 case 0: /* Vector Add Unsigned Byte Modulo */
3840 case 64: /* Vector Add Unsigned Halfword Modulo */
3841 case 128: /* Vector Add Unsigned Word Modulo */
3842 case 192: /* Vector Add Unsigned Doubleword Modulo */
3843 case 256: /* Vector Add Unsigned Quadword Modulo */
3844 case 320: /* Vector Add & write Carry Unsigned Quadword */
3845 case 384: /* Vector Add and Write Carry-Out Unsigned Word */
3846 case 8: /* Vector Multiply Odd Unsigned Byte */
3847 case 72: /* Vector Multiply Odd Unsigned Halfword */
3848 case 136: /* Vector Multiply Odd Unsigned Word */
3849 case 264: /* Vector Multiply Odd Signed Byte */
3850 case 328: /* Vector Multiply Odd Signed Halfword */
3851 case 392: /* Vector Multiply Odd Signed Word */
3852 case 520: /* Vector Multiply Even Unsigned Byte */
3853 case 584: /* Vector Multiply Even Unsigned Halfword */
3854 case 648: /* Vector Multiply Even Unsigned Word */
3855 case 776: /* Vector Multiply Even Signed Byte */
3856 case 840: /* Vector Multiply Even Signed Halfword */
3857 case 904: /* Vector Multiply Even Signed Word */
3858 case 137: /* Vector Multiply Unsigned Word Modulo */
3859 case 1024: /* Vector Subtract Unsigned Byte Modulo */
3860 case 1088: /* Vector Subtract Unsigned Halfword Modulo */
3861 case 1152: /* Vector Subtract Unsigned Word Modulo */
3862 case 1216: /* Vector Subtract Unsigned Doubleword Modulo */
3863 case 1280: /* Vector Subtract Unsigned Quadword Modulo */
3864 case 1344: /* Vector Subtract & write Carry Unsigned Quadword */
3865 case 1408: /* Vector Subtract and Write Carry-Out Unsigned Word */
3866 case 1282: /* Vector Average Signed Byte */
3867 case 1346: /* Vector Average Signed Halfword */
3868 case 1410: /* Vector Average Signed Word */
3869 case 1026: /* Vector Average Unsigned Byte */
3870 case 1090: /* Vector Average Unsigned Halfword */
3871 case 1154: /* Vector Average Unsigned Word */
3872 case 258: /* Vector Maximum Signed Byte */
3873 case 322: /* Vector Maximum Signed Halfword */
3874 case 386: /* Vector Maximum Signed Word */
3875 case 450: /* Vector Maximum Signed Doubleword */
3876 case 2: /* Vector Maximum Unsigned Byte */
3877 case 66: /* Vector Maximum Unsigned Halfword */
3878 case 130: /* Vector Maximum Unsigned Word */
3879 case 194: /* Vector Maximum Unsigned Doubleword */
3880 case 770: /* Vector Minimum Signed Byte */
3881 case 834: /* Vector Minimum Signed Halfword */
3882 case 898: /* Vector Minimum Signed Word */
3883 case 962: /* Vector Minimum Signed Doubleword */
3884 case 514: /* Vector Minimum Unsigned Byte */
3885 case 578: /* Vector Minimum Unsigned Halfword */
3886 case 642: /* Vector Minimum Unsigned Word */
3887 case 706: /* Vector Minimum Unsigned Doubleword */
3888 case 1028: /* Vector Logical AND */
3889 case 1668: /* Vector Logical Equivalent */
3890 case 1092: /* Vector Logical AND with Complement */
3891 case 1412: /* Vector Logical NAND */
3892 case 1348: /* Vector Logical OR with Complement */
3893 case 1156: /* Vector Logical OR */
3894 case 1284: /* Vector Logical NOR */
3895 case 1220: /* Vector Logical XOR */
3896 case 4: /* Vector Rotate Left Byte */
3897 case 132: /* Vector Rotate Left Word VX-form */
3898 case 68: /* Vector Rotate Left Halfword */
3899 case 196: /* Vector Rotate Left Doubleword */
3900 case 260: /* Vector Shift Left Byte */
3901 case 388: /* Vector Shift Left Word */
3902 case 324: /* Vector Shift Left Halfword */
3903 case 1476: /* Vector Shift Left Doubleword */
3904 case 516: /* Vector Shift Right Byte */
3905 case 644: /* Vector Shift Right Word */
3906 case 580: /* Vector Shift Right Halfword */
3907 case 1732: /* Vector Shift Right Doubleword */
3908 case 772: /* Vector Shift Right Algebraic Byte */
3909 case 900: /* Vector Shift Right Algebraic Word */
3910 case 836: /* Vector Shift Right Algebraic Halfword */
3911 case 964: /* Vector Shift Right Algebraic Doubleword */
3912 case 10: /* Vector Add Single-Precision */
3913 case 74: /* Vector Subtract Single-Precision */
3914 case 1034: /* Vector Maximum Single-Precision */
3915 case 1098: /* Vector Minimum Single-Precision */
3916 case 842: /* Vector Convert From Signed Fixed-Point Word */
3917 case 778: /* Vector Convert From Unsigned Fixed-Point Word */
3918 case 714: /* Vector Round to Single-Precision Integer toward -Infinity */
3919 case 522: /* Vector Round to Single-Precision Integer Nearest */
3920 case 650: /* Vector Round to Single-Precision Integer toward +Infinity */
3921 case 586: /* Vector Round to Single-Precision Integer toward Zero */
3922 case 394: /* Vector 2 Raised to the Exponent Estimate Floating-Point */
3923 case 458: /* Vector Log Base 2 Estimate Floating-Point */
3924 case 266: /* Vector Reciprocal Estimate Single-Precision */
3925 case 330: /* Vector Reciprocal Square Root Estimate Single-Precision */
3926 case 1288: /* Vector AES Cipher */
3927 case 1289: /* Vector AES Cipher Last */
3928 case 1352: /* Vector AES Inverse Cipher */
3929 case 1353: /* Vector AES Inverse Cipher Last */
3930 case 1480: /* Vector AES SubBytes */
3931 case 1730: /* Vector SHA-512 Sigma Doubleword */
3932 case 1666: /* Vector SHA-256 Sigma Word */
3933 case 1032: /* Vector Polynomial Multiply-Sum Byte */
3934 case 1160: /* Vector Polynomial Multiply-Sum Word */
3935 case 1096: /* Vector Polynomial Multiply-Sum Halfword */
3936 case 1224: /* Vector Polynomial Multiply-Sum Doubleword */
3937 case 1292: /* Vector Gather Bits by Bytes by Doubleword */
3938 case 1794: /* Vector Count Leading Zeros Byte */
3939 case 1858: /* Vector Count Leading Zeros Halfword */
3940 case 1922: /* Vector Count Leading Zeros Word */
3941 case 1986: /* Vector Count Leading Zeros Doubleword */
3942 case 1795: /* Vector Population Count Byte */
3943 case 1859: /* Vector Population Count Halfword */
3944 case 1923: /* Vector Population Count Word */
3945 case 1987: /* Vector Population Count Doubleword */
3946 case 1356: /* Vector Bit Permute Quadword */
3947 record_full_arch_list_add_reg (regcache,
3948 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3949 return 0;
3950
3951 case 1604: /* Move To Vector Status and Control Register */
3952 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
3953 return 0;
3954 case 1540: /* Move From Vector Status and Control Register */
3955 record_full_arch_list_add_reg (regcache,
3956 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3957 return 0;
3958 }
3959
3960 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record "
3961 "%08x at %08lx, 4-%d.\n", insn, addr, ext);
3962 return -1;
3963 }
3964
3965 /* Parse instructions of primary opcode-19. */
3966
3967 static int
3968 ppc_process_record_op19 (struct gdbarch *gdbarch, struct regcache *regcache,
3969 CORE_ADDR addr, uint32_t insn)
3970 {
3971 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3972 int ext = PPC_EXTOP (insn);
3973
3974 switch (ext)
3975 {
3976 case 0: /* Move Condition Register Field */
3977 case 33: /* Condition Register NOR */
3978 case 129: /* Condition Register AND with Complement */
3979 case 193: /* Condition Register XOR */
3980 case 225: /* Condition Register NAND */
3981 case 257: /* Condition Register AND */
3982 case 289: /* Condition Register Equivalent */
3983 case 417: /* Condition Register OR with Complement */
3984 case 449: /* Condition Register OR */
3985 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
3986 return 0;
3987
3988 case 16: /* Branch Conditional */
3989 case 560: /* Branch Conditional to Branch Target Address Register */
3990 if ((PPC_BO (insn) & 0x4) == 0)
3991 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
3992 /* FALL-THROUGH */
3993 case 528: /* Branch Conditional to Count Register */
3994 if (PPC_LK (insn))
3995 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
3996 return 0;
3997
3998 case 150: /* Instruction Synchronize */
3999 /* Do nothing. */
4000 return 0;
4001 }
4002
4003 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record "
4004 "%08x at %08lx, 19-%d.\n", insn, addr, ext);
4005 return -1;
4006 }
4007
4008 /* Parse instructions of primary opcode-31. */
4009
4010 static int
4011 ppc_process_record_op31 (struct gdbarch *gdbarch, struct regcache *regcache,
4012 CORE_ADDR addr, uint32_t insn)
4013 {
4014 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4015 int ext = PPC_EXTOP (insn);
4016 int tmp, nr, nb, i;
4017 CORE_ADDR at_dcsz, ea = 0;
4018 ULONGEST rb, ra, xer;
4019 int size = 0;
4020
4021 /* These instructions have OE bit. */
4022 switch (ext & 0x1ff)
4023 {
4024 /* These write RT and XER. Update CR if RC is set. */
4025 case 8: /* Subtract from carrying */
4026 case 10: /* Add carrying */
4027 case 136: /* Subtract from extended */
4028 case 138: /* Add extended */
4029 case 200: /* Subtract from zero extended */
4030 case 202: /* Add to zero extended */
4031 case 232: /* Subtract from minus one extended */
4032 case 234: /* Add to minus one extended */
4033 /* CA is always altered, but SO/OV are only altered when OE=1.
4034 In any case, XER is always altered. */
4035 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4036 if (PPC_RC (insn))
4037 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4038 record_full_arch_list_add_reg (regcache,
4039 tdep->ppc_gp0_regnum + PPC_RT (insn));
4040 return 0;
4041
4042 /* These write RT. Update CR if RC is set and update XER if OE is set. */
4043 case 40: /* Subtract from */
4044 case 104: /* Negate */
4045 case 233: /* Multiply low doubleword */
4046 case 235: /* Multiply low word */
4047 case 266: /* Add */
4048 case 393: /* Divide Doubleword Extended Unsigned */
4049 case 395: /* Divide Word Extended Unsigned */
4050 case 425: /* Divide Doubleword Extended */
4051 case 427: /* Divide Word Extended */
4052 case 457: /* Divide Doubleword Unsigned */
4053 case 459: /* Divide Word Unsigned */
4054 case 489: /* Divide Doubleword */
4055 case 491: /* Divide Word */
4056 if (PPC_OE (insn))
4057 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4058 /* FALL-THROUGH */
4059 case 9: /* Multiply High Doubleword Unsigned */
4060 case 11: /* Multiply High Word Unsigned */
4061 case 73: /* Multiply High Doubleword */
4062 case 75: /* Multiply High Word */
4063 if (PPC_RC (insn))
4064 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4065 record_full_arch_list_add_reg (regcache,
4066 tdep->ppc_gp0_regnum + PPC_RT (insn));
4067 return 0;
4068 }
4069
4070 if ((ext & 0x1f) == 15)
4071 {
4072 /* Integer Select. bit[16:20] is used for BC. */
4073 record_full_arch_list_add_reg (regcache,
4074 tdep->ppc_gp0_regnum + PPC_RT (insn));
4075 return 0;
4076 }
4077
4078 switch (ext)
4079 {
4080 case 78: /* Determine Leftmost Zero Byte */
4081 if (PPC_RC (insn))
4082 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4083 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4084 record_full_arch_list_add_reg (regcache,
4085 tdep->ppc_gp0_regnum + PPC_RT (insn));
4086 return 0;
4087
4088 /* These only write RT. */
4089 case 19: /* Move from condition register */
4090 /* Move From One Condition Register Field */
4091 case 74: /* Add and Generate Sixes */
4092 case 74 | 0x200: /* Add and Generate Sixes (bit-21 dont-care) */
4093 case 302: /* Move From Branch History Rolling Buffer */
4094 case 339: /* Move From Special Purpose Register */
4095 case 371: /* Move From Time Base [Phased-Out] */
4096 record_full_arch_list_add_reg (regcache,
4097 tdep->ppc_gp0_regnum + PPC_RT (insn));
4098 return 0;
4099
4100 /* These only write to RA. */
4101 case 51: /* Move From VSR Doubleword */
4102 case 115: /* Move From VSR Word and Zero */
4103 case 122: /* Population count bytes */
4104 case 378: /* Population count words */
4105 case 506: /* Population count doublewords */
4106 case 154: /* Parity Word */
4107 case 186: /* Parity Doubleword */
4108 case 252: /* Bit Permute Doubleword */
4109 case 282: /* Convert Declets To Binary Coded Decimal */
4110 case 314: /* Convert Binary Coded Decimal To Declets */
4111 case 508: /* Compare bytes */
4112 record_full_arch_list_add_reg (regcache,
4113 tdep->ppc_gp0_regnum + PPC_RA (insn));
4114 return 0;
4115
4116 /* These write CR and optional RA. */
4117 case 792: /* Shift Right Algebraic Word */
4118 case 794: /* Shift Right Algebraic Doubleword */
4119 case 824: /* Shift Right Algebraic Word Immediate */
4120 case 826: /* Shift Right Algebraic Doubleword Immediate (413) */
4121 case 826 | 1: /* Shift Right Algebraic Doubleword Immediate (413) */
4122 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4123 record_full_arch_list_add_reg (regcache,
4124 tdep->ppc_gp0_regnum + PPC_RA (insn));
4125 /* FALL-THROUGH */
4126 case 0: /* Compare */
4127 case 32: /* Compare logical */
4128 case 144: /* Move To Condition Register Fields */
4129 /* Move To One Condition Register Field */
4130 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4131 return 0;
4132
4133 /* These write to RT. Update RA if 'update indexed.' */
4134 case 53: /* Load Doubleword with Update Indexed */
4135 case 119: /* Load Byte and Zero with Update Indexed */
4136 case 311: /* Load Halfword and Zero with Update Indexed */
4137 case 55: /* Load Word and Zero with Update Indexed */
4138 case 375: /* Load Halfword Algebraic with Update Indexed */
4139 case 373: /* Load Word Algebraic with Update Indexed */
4140 record_full_arch_list_add_reg (regcache,
4141 tdep->ppc_gp0_regnum + PPC_RA (insn));
4142 /* FALL-THROUGH */
4143 case 21: /* Load Doubleword Indexed */
4144 case 52: /* Load Byte And Reserve Indexed */
4145 case 116: /* Load Halfword And Reserve Indexed */
4146 case 20: /* Load Word And Reserve Indexed */
4147 case 84: /* Load Doubleword And Reserve Indexed */
4148 case 87: /* Load Byte and Zero Indexed */
4149 case 279: /* Load Halfword and Zero Indexed */
4150 case 23: /* Load Word and Zero Indexed */
4151 case 343: /* Load Halfword Algebraic Indexed */
4152 case 341: /* Load Word Algebraic Indexed */
4153 case 790: /* Load Halfword Byte-Reverse Indexed */
4154 case 534: /* Load Word Byte-Reverse Indexed */
4155 case 532: /* Load Doubleword Byte-Reverse Indexed */
4156 record_full_arch_list_add_reg (regcache,
4157 tdep->ppc_gp0_regnum + PPC_RT (insn));
4158 return 0;
4159
4160 case 597: /* Load String Word Immediate */
4161 case 533: /* Load String Word Indexed */
4162 if (ext == 597)
4163 {
4164 nr = PPC_NB (insn);
4165 if (nr == 0)
4166 nr = 32;
4167 }
4168 else
4169 {
4170 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4171 nr = PPC_XER_NB (xer);
4172 }
4173
4174 nr = (nr + 3) >> 2;
4175
4176 /* If n=0, the contents of register RT are undefined. */
4177 if (nr == 0)
4178 nr = 1;
4179
4180 for (i = 0; i < nr; i++)
4181 record_full_arch_list_add_reg (regcache,
4182 tdep->ppc_gp0_regnum
4183 + ((PPC_RT (insn) + i) & 0x1f));
4184 return 0;
4185
4186 case 276: /* Load Quadword And Reserve Indexed */
4187 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
4188 record_full_arch_list_add_reg (regcache, tmp);
4189 record_full_arch_list_add_reg (regcache, tmp + 1);
4190 return 0;
4191
4192 /* These write VRT. */
4193 case 6: /* Load Vector for Shift Left Indexed */
4194 case 38: /* Load Vector for Shift Right Indexed */
4195 case 7: /* Load Vector Element Byte Indexed */
4196 case 39: /* Load Vector Element Halfword Indexed */
4197 case 71: /* Load Vector Element Word Indexed */
4198 case 103: /* Load Vector Indexed */
4199 case 359: /* Load Vector Indexed LRU */
4200 record_full_arch_list_add_reg (regcache,
4201 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4202 return 0;
4203
4204 /* These write FRT. Update RA if 'update indexed.' */
4205 case 567: /* Load Floating-Point Single with Update Indexed */
4206 case 631: /* Load Floating-Point Double with Update Indexed */
4207 record_full_arch_list_add_reg (regcache,
4208 tdep->ppc_gp0_regnum + PPC_RA (insn));
4209 /* FALL-THROUGH */
4210 case 535: /* Load Floating-Point Single Indexed */
4211 case 599: /* Load Floating-Point Double Indexed */
4212 case 855: /* Load Floating-Point as Integer Word Algebraic Indexed */
4213 case 887: /* Load Floating-Point as Integer Word and Zero Indexed */
4214 record_full_arch_list_add_reg (regcache,
4215 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4216 return 0;
4217
4218 case 791: /* Load Floating-Point Double Pair Indexed */
4219 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
4220 record_full_arch_list_add_reg (regcache, tmp);
4221 record_full_arch_list_add_reg (regcache, tmp + 1);
4222 return 0;
4223
4224 case 179: /* Move To VSR Doubleword */
4225 case 211: /* Move To VSR Word Algebraic */
4226 case 243: /* Move To VSR Word and Zero */
4227 case 588: /* Load VSX Scalar Doubleword Indexed */
4228 case 524: /* Load VSX Scalar Single-Precision Indexed */
4229 case 76: /* Load VSX Scalar as Integer Word Algebraic Indexed */
4230 case 12: /* Load VSX Scalar as Integer Word and Zero Indexed */
4231 case 844: /* Load VSX Vector Doubleword*2 Indexed */
4232 case 332: /* Load VSX Vector Doubleword & Splat Indexed */
4233 case 780: /* Load VSX Vector Word*4 Indexed */
4234 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4235 return 0;
4236
4237 /* These write RA. Update CR if RC is set. */
4238 case 24: /* Shift Left Word */
4239 case 26: /* Count Leading Zeros Word */
4240 case 27: /* Shift Left Doubleword */
4241 case 28: /* AND */
4242 case 58: /* Count Leading Zeros Doubleword */
4243 case 60: /* AND with Complement */
4244 case 124: /* NOR */
4245 case 284: /* Equivalent */
4246 case 316: /* XOR */
4247 case 476: /* NAND */
4248 case 412: /* OR with Complement */
4249 case 444: /* OR */
4250 case 536: /* Shift Right Word */
4251 case 539: /* Shift Right Doubleword */
4252 case 922: /* Extend Sign Halfword */
4253 case 954: /* Extend Sign Byte */
4254 case 986: /* Extend Sign Word */
4255 if (PPC_RC (insn))
4256 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4257 record_full_arch_list_add_reg (regcache,
4258 tdep->ppc_gp0_regnum + PPC_RA (insn));
4259 return 0;
4260
4261 /* Store memory. */
4262 case 181: /* Store Doubleword with Update Indexed */
4263 case 183: /* Store Word with Update Indexed */
4264 case 247: /* Store Byte with Update Indexed */
4265 case 439: /* Store Half Word with Update Indexed */
4266 case 695: /* Store Floating-Point Single with Update Indexed */
4267 case 759: /* Store Floating-Point Double with Update Indexed */
4268 record_full_arch_list_add_reg (regcache,
4269 tdep->ppc_gp0_regnum + PPC_RA (insn));
4270 /* FALL-THROUGH */
4271 case 135: /* Store Vector Element Byte Indexed */
4272 case 167: /* Store Vector Element Halfword Indexed */
4273 case 199: /* Store Vector Element Word Indexed */
4274 case 231: /* Store Vector Indexed */
4275 case 487: /* Store Vector Indexed LRU */
4276 case 716: /* Store VSX Scalar Doubleword Indexed */
4277 case 140: /* Store VSX Scalar as Integer Word Indexed */
4278 case 652: /* Store VSX Scalar Single-Precision Indexed */
4279 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4280 case 908: /* Store VSX Vector Word*4 Indexed */
4281 case 149: /* Store Doubleword Indexed */
4282 case 151: /* Store Word Indexed */
4283 case 215: /* Store Byte Indexed */
4284 case 407: /* Store Half Word Indexed */
4285 case 694: /* Store Byte Conditional Indexed */
4286 case 726: /* Store Halfword Conditional Indexed */
4287 case 150: /* Store Word Conditional Indexed */
4288 case 214: /* Store Doubleword Conditional Indexed */
4289 case 182: /* Store Quadword Conditional Indexed */
4290 case 662: /* Store Word Byte-Reverse Indexed */
4291 case 918: /* Store Halfword Byte-Reverse Indexed */
4292 case 660: /* Store Doubleword Byte-Reverse Indexed */
4293 case 663: /* Store Floating-Point Single Indexed */
4294 case 727: /* Store Floating-Point Double Indexed */
4295 case 919: /* Store Floating-Point Double Pair Indexed */
4296 case 983: /* Store Floating-Point as Integer Word Indexed */
4297 if (ext == 694 || ext == 726 || ext == 150 || ext == 214 || ext == 182)
4298 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4299
4300 ra = 0;
4301 if (PPC_RA (insn) != 0)
4302 regcache_raw_read_unsigned (regcache,
4303 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4304 regcache_raw_read_unsigned (regcache,
4305 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4306 ea = ra + rb;
4307
4308 switch (ext)
4309 {
4310 case 183: /* Store Word with Update Indexed */
4311 case 199: /* Store Vector Element Word Indexed */
4312 case 140: /* Store VSX Scalar as Integer Word Indexed */
4313 case 652: /* Store VSX Scalar Single-Precision Indexed */
4314 case 151: /* Store Word Indexed */
4315 case 150: /* Store Word Conditional Indexed */
4316 case 662: /* Store Word Byte-Reverse Indexed */
4317 case 663: /* Store Floating-Point Single Indexed */
4318 case 695: /* Store Floating-Point Single with Update Indexed */
4319 case 983: /* Store Floating-Point as Integer Word Indexed */
4320 size = 4;
4321 break;
4322 case 247: /* Store Byte with Update Indexed */
4323 case 135: /* Store Vector Element Byte Indexed */
4324 case 215: /* Store Byte Indexed */
4325 case 694: /* Store Byte Conditional Indexed */
4326 size = 1;
4327 break;
4328 case 439: /* Store Halfword with Update Indexed */
4329 case 167: /* Store Vector Element Halfword Indexed */
4330 case 407: /* Store Halfword Indexed */
4331 case 726: /* Store Halfword Conditional Indexed */
4332 case 918: /* Store Halfword Byte-Reverse Indexed */
4333 size = 2;
4334 break;
4335 case 181: /* Store Doubleword with Update Indexed */
4336 case 716: /* Store VSX Scalar Doubleword Indexed */
4337 case 149: /* Store Doubleword Indexed */
4338 case 214: /* Store Doubleword Conditional Indexed */
4339 case 660: /* Store Doubleword Byte-Reverse Indexed */
4340 case 727: /* Store Floating-Point Double Indexed */
4341 case 759: /* Store Floating-Point Double with Update Indexed */
4342 size = 8;
4343 break;
4344 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4345 case 908: /* Store VSX Vector Word*4 Indexed */
4346 case 182: /* Store Quadword Conditional Indexed */
4347 case 231: /* Store Vector Indexed */
4348 case 487: /* Store Vector Indexed LRU */
4349 case 919: /* Store Floating-Point Double Pair Indexed */
4350 size = 16;
4351 break;
4352 default:
4353 gdb_assert (0);
4354 }
4355
4356 /* Align address for Store Vector instructions. */
4357 switch (ext)
4358 {
4359 case 167: /* Store Vector Element Halfword Indexed */
4360 addr = addr & ~0x1ULL;
4361 break;
4362
4363 case 199: /* Store Vector Element Word Indexed */
4364 addr = addr & ~0x3ULL;
4365 break;
4366
4367 case 231: /* Store Vector Indexed */
4368 case 487: /* Store Vector Indexed LRU */
4369 addr = addr & ~0xfULL;
4370 break;
4371 }
4372
4373 record_full_arch_list_add_mem (addr, size);
4374 return 0;
4375
4376 case 725: /* Store String Word Immediate */
4377 ra = 0;
4378 if (PPC_RA (insn) != 0)
4379 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &ra);
4380 ea += ra;
4381
4382 nb = PPC_NB (insn);
4383 if (nb == 0)
4384 nb = 32;
4385
4386 record_full_arch_list_add_mem (ea, nb);
4387
4388 return 0;
4389
4390 case 661: /* Store String Word Indexed */
4391 ra = 0;
4392 if (PPC_RA (insn) != 0)
4393 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &ra);
4394 ea += ra;
4395
4396 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4397 nb = PPC_XER_NB (xer);
4398
4399 if (nb != 0)
4400 {
4401 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &rb);
4402 ea += rb;
4403 record_full_arch_list_add_mem (ea, nb);
4404 }
4405
4406 return 0;
4407
4408 case 467: /* Move To Special Purpose Register */
4409 switch (PPC_SPR (insn))
4410 {
4411 case 1: /* XER */
4412 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4413 return 0;
4414 case 8: /* LR */
4415 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4416 return 0;
4417 case 9: /* CTR */
4418 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4419 return 0;
4420 case 256: /* VRSAVE */
4421 record_full_arch_list_add_reg (regcache, tdep->ppc_vrsave_regnum);
4422 return 0;
4423 }
4424
4425 goto UNKNOWN_OP;
4426
4427 case 147: /* Move To Split Little Endian */
4428 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
4429 return 0;
4430
4431 case 512: /* Move to Condition Register from XER */
4432 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4433 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4434 return 0;
4435
4436 case 4: /* Trap Word */
4437 case 68: /* Trap Doubleword */
4438 case 430: /* Clear BHRB */
4439 case 598: /* Synchronize */
4440 case 62: /* Wait for Interrupt */
4441 case 22: /* Instruction Cache Block Touch */
4442 case 854: /* Enforce In-order Execution of I/O */
4443 case 246: /* Data Cache Block Touch for Store */
4444 case 54: /* Data Cache Block Store */
4445 case 86: /* Data Cache Block Flush */
4446 case 278: /* Data Cache Block Touch */
4447 case 758: /* Data Cache Block Allocate */
4448 case 982: /* Instruction Cache Block Invalidate */
4449 return 0;
4450
4451 case 654: /* Transaction Begin */
4452 case 686: /* Transaction End */
4453 case 718: /* Transaction Check */
4454 case 750: /* Transaction Suspend or Resume */
4455 case 782: /* Transaction Abort Word Conditional */
4456 case 814: /* Transaction Abort Doubleword Conditional */
4457 case 846: /* Transaction Abort Word Conditional Immediate */
4458 case 878: /* Transaction Abort Doubleword Conditional Immediate */
4459 case 910: /* Transaction Abort */
4460 fprintf_unfiltered (gdb_stdlog, "Cannot record Transaction instructions. "
4461 "%08x at %08lx, 31-%d.\n", insn, addr, ext);
4462 return -1;
4463
4464 case 1014: /* Data Cache Block set to Zero */
4465 if (target_auxv_search (&current_target, AT_DCACHEBSIZE, &at_dcsz) <= 0
4466 || at_dcsz == 0)
4467 at_dcsz = 128; /* Assume 128-byte cache line size (POWER8) */
4468
4469 if (PPC_RA (insn) != 0)
4470 regcache_raw_read_unsigned (regcache,
4471 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4472 regcache_raw_read_unsigned (regcache,
4473 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4474 ea = (ra + rb) & ~((ULONGEST) (at_dcsz - 1));
4475 record_full_arch_list_add_mem (ea, at_dcsz);
4476 return 0;
4477 }
4478
4479 UNKNOWN_OP:
4480 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record "
4481 "%08x at %08lx, 31-%d.\n", insn, addr, ext);
4482 return -1;
4483 }
4484
4485 /* Parse instructions of primary opcode-59. */
4486
4487 static int
4488 ppc_process_record_op59 (struct gdbarch *gdbarch, struct regcache *regcache,
4489 CORE_ADDR addr, uint32_t insn)
4490 {
4491 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4492 int ext = PPC_EXTOP (insn);
4493
4494 switch (ext & 0x1f)
4495 {
4496 case 18: /* Floating Divide */
4497 case 20: /* Floating Subtract */
4498 case 21: /* Floating Add */
4499 case 22: /* Floating Square Root */
4500 case 24: /* Floating Reciprocal Estimate */
4501 case 25: /* Floating Multiply */
4502 case 26: /* Floating Reciprocal Square Root Estimate */
4503 case 28: /* Floating Multiply-Subtract */
4504 case 29: /* Floating Multiply-Add */
4505 case 30: /* Floating Negative Multiply-Subtract */
4506 case 31: /* Floating Negative Multiply-Add */
4507 record_full_arch_list_add_reg (regcache,
4508 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4509 if (PPC_RC (insn))
4510 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4511 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4512
4513 return 0;
4514 }
4515
4516 switch (ext)
4517 {
4518 case 2: /* DFP Add */
4519 case 3: /* DFP Quantize */
4520 case 34: /* DFP Multiply */
4521 case 35: /* DFP Reround */
4522 case 67: /* DFP Quantize Immediate */
4523 case 99: /* DFP Round To FP Integer With Inexact */
4524 case 227: /* DFP Round To FP Integer Without Inexact */
4525 case 258: /* DFP Convert To DFP Long! */
4526 case 290: /* DFP Convert To Fixed */
4527 case 514: /* DFP Subtract */
4528 case 546: /* DFP Divide */
4529 case 770: /* DFP Round To DFP Short! */
4530 case 802: /* DFP Convert From Fixed */
4531 case 834: /* DFP Encode BCD To DPD */
4532 if (PPC_RC (insn))
4533 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4534 record_full_arch_list_add_reg (regcache,
4535 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4536 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4537 return 0;
4538
4539 case 130: /* DFP Compare Ordered */
4540 case 162: /* DFP Test Exponent */
4541 case 194: /* DFP Test Data Class */
4542 case 226: /* DFP Test Data Group */
4543 case 642: /* DFP Compare Unordered */
4544 case 674: /* DFP Test Significance */
4545 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4546 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4547 return 0;
4548
4549 case 66: /* DFP Shift Significand Left Immediate */
4550 case 98: /* DFP Shift Significand Right Immediate */
4551 case 322: /* DFP Decode DPD To BCD */
4552 case 354: /* DFP Extract Biased Exponent */
4553 case 866: /* DFP Insert Biased Exponent */
4554 record_full_arch_list_add_reg (regcache,
4555 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4556 if (PPC_RC (insn))
4557 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4558 return 0;
4559
4560 case 846: /* Floating Convert From Integer Doubleword Single */
4561 case 974: /* Floating Convert From Integer Doubleword Unsigned
4562 Single */
4563 record_full_arch_list_add_reg (regcache,
4564 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4565 if (PPC_RC (insn))
4566 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4567 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4568
4569 return 0;
4570 }
4571
4572 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record "
4573 "%08x at %08lx, 59-%d.\n", insn, addr, ext);
4574 return -1;
4575 }
4576
4577 /* Parse instructions of primary opcode-60. */
4578
4579 static int
4580 ppc_process_record_op60 (struct gdbarch *gdbarch, struct regcache *regcache,
4581 CORE_ADDR addr, uint32_t insn)
4582 {
4583 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4584 int ext = PPC_EXTOP (insn);
4585 int tmp;
4586
4587 switch (ext >> 2)
4588 {
4589 case 0: /* VSX Scalar Add Single-Precision */
4590 case 32: /* VSX Scalar Add Double-Precision */
4591 case 24: /* VSX Scalar Divide Single-Precision */
4592 case 56: /* VSX Scalar Divide Double-Precision */
4593 case 176: /* VSX Scalar Copy Sign Double-Precision */
4594 case 33: /* VSX Scalar Multiply-Add Double-Precision */
4595 case 41: /* ditto */
4596 case 1: /* VSX Scalar Multiply-Add Single-Precision */
4597 case 9: /* ditto */
4598 case 160: /* VSX Scalar Maximum Double-Precision */
4599 case 168: /* VSX Scalar Minimum Double-Precision */
4600 case 49: /* VSX Scalar Multiply-Subtract Double-Precision */
4601 case 57: /* ditto */
4602 case 17: /* VSX Scalar Multiply-Subtract Single-Precision */
4603 case 25: /* ditto */
4604 case 48: /* VSX Scalar Multiply Double-Precision */
4605 case 16: /* VSX Scalar Multiply Single-Precision */
4606 case 161: /* VSX Scalar Negative Multiply-Add Double-Precision */
4607 case 169: /* ditto */
4608 case 129: /* VSX Scalar Negative Multiply-Add Single-Precision */
4609 case 137: /* ditto */
4610 case 177: /* VSX Scalar Negative Multiply-Subtract Double-Precision */
4611 case 185: /* ditto */
4612 case 145: /* VSX Scalar Negative Multiply-Subtract Single-Precision */
4613 case 153: /* ditto */
4614 case 40: /* VSX Scalar Subtract Double-Precision */
4615 case 8: /* VSX Scalar Subtract Single-Precision */
4616 case 96: /* VSX Vector Add Double-Precision */
4617 case 64: /* VSX Vector Add Single-Precision */
4618 case 120: /* VSX Vector Divide Double-Precision */
4619 case 88: /* VSX Vector Divide Single-Precision */
4620 case 97: /* VSX Vector Multiply-Add Double-Precision */
4621 case 105: /* ditto */
4622 case 65: /* VSX Vector Multiply-Add Single-Precision */
4623 case 73: /* ditto */
4624 case 224: /* VSX Vector Maximum Double-Precision */
4625 case 192: /* VSX Vector Maximum Single-Precision */
4626 case 232: /* VSX Vector Minimum Double-Precision */
4627 case 200: /* VSX Vector Minimum Single-Precision */
4628 case 113: /* VSX Vector Multiply-Subtract Double-Precision */
4629 case 121: /* ditto */
4630 case 81: /* VSX Vector Multiply-Subtract Single-Precision */
4631 case 89: /* ditto */
4632 case 112: /* VSX Vector Multiply Double-Precision */
4633 case 80: /* VSX Vector Multiply Single-Precision */
4634 case 225: /* VSX Vector Negative Multiply-Add Double-Precision */
4635 case 233: /* ditto */
4636 case 193: /* VSX Vector Negative Multiply-Add Single-Precision */
4637 case 201: /* ditto */
4638 case 241: /* VSX Vector Negative Multiply-Subtract Double-Precision */
4639 case 249: /* ditto */
4640 case 209: /* VSX Vector Negative Multiply-Subtract Single-Precision */
4641 case 217: /* ditto */
4642 case 104: /* VSX Vector Subtract Double-Precision */
4643 case 72: /* VSX Vector Subtract Single-Precision */
4644 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4645 case 240: /* VSX Vector Copy Sign Double-Precision */
4646 case 208: /* VSX Vector Copy Sign Single-Precision */
4647 case 130: /* VSX Logical AND */
4648 case 138: /* VSX Logical AND with Complement */
4649 case 186: /* VSX Logical Equivalence */
4650 case 178: /* VSX Logical NAND */
4651 case 170: /* VSX Logical OR with Complement */
4652 case 162: /* VSX Logical NOR */
4653 case 146: /* VSX Logical OR */
4654 case 154: /* VSX Logical XOR */
4655 case 18: /* VSX Merge High Word */
4656 case 50: /* VSX Merge Low Word */
4657 case 10: /* VSX Permute Doubleword Immediate (DM=0) */
4658 case 10 | 0x20: /* VSX Permute Doubleword Immediate (DM=1) */
4659 case 10 | 0x40: /* VSX Permute Doubleword Immediate (DM=2) */
4660 case 10 | 0x60: /* VSX Permute Doubleword Immediate (DM=3) */
4661 case 2: /* VSX Shift Left Double by Word Immediate (SHW=0) */
4662 case 2 | 0x20: /* VSX Shift Left Double by Word Immediate (SHW=1) */
4663 case 2 | 0x40: /* VSX Shift Left Double by Word Immediate (SHW=2) */
4664 case 2 | 0x60: /* VSX Shift Left Double by Word Immediate (SHW=3) */
4665 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4666 return 0;
4667
4668 case 61: /* VSX Scalar Test for software Divide Double-Precision */
4669 case 125: /* VSX Vector Test for software Divide Double-Precision */
4670 case 93: /* VSX Vector Test for software Divide Single-Precision */
4671 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4672 return 0;
4673
4674 case 35: /* VSX Scalar Compare Unordered Double-Precision */
4675 case 43: /* VSX Scalar Compare Ordered Double-Precision */
4676 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4677 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4678 return 0;
4679 }
4680
4681 switch ((ext >> 2) & 0x7f) /* Mask out Rc-bit. */
4682 {
4683 case 99: /* VSX Vector Compare Equal To Double-Precision */
4684 case 67: /* VSX Vector Compare Equal To Single-Precision */
4685 case 115: /* VSX Vector Compare Greater Than or
4686 Equal To Double-Precision */
4687 case 83: /* VSX Vector Compare Greater Than or
4688 Equal To Single-Precision */
4689 case 107: /* VSX Vector Compare Greater Than Double-Precision */
4690 case 75: /* VSX Vector Compare Greater Than Single-Precision */
4691 if (PPC_Rc (insn))
4692 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4693 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4694 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4695 return 0;
4696 }
4697
4698 switch (ext >> 1)
4699 {
4700 case 265: /* VSX Scalar round Double-Precision to
4701 Single-Precision and Convert to
4702 Single-Precision format */
4703 case 344: /* VSX Scalar truncate Double-Precision to
4704 Integer and Convert to Signed Integer
4705 Doubleword format with Saturate */
4706 case 88: /* VSX Scalar truncate Double-Precision to
4707 Integer and Convert to Signed Integer Word
4708 Format with Saturate */
4709 case 328: /* VSX Scalar truncate Double-Precision integer
4710 and Convert to Unsigned Integer Doubleword
4711 Format with Saturate */
4712 case 72: /* VSX Scalar truncate Double-Precision to
4713 Integer and Convert to Unsigned Integer Word
4714 Format with Saturate */
4715 case 329: /* VSX Scalar Convert Single-Precision to
4716 Double-Precision format */
4717 case 376: /* VSX Scalar Convert Signed Integer
4718 Doubleword to floating-point format and
4719 Round to Double-Precision format */
4720 case 312: /* VSX Scalar Convert Signed Integer
4721 Doubleword to floating-point format and
4722 round to Single-Precision */
4723 case 360: /* VSX Scalar Convert Unsigned Integer
4724 Doubleword to floating-point format and
4725 Round to Double-Precision format */
4726 case 296: /* VSX Scalar Convert Unsigned Integer
4727 Doubleword to floating-point format and
4728 Round to Single-Precision */
4729 case 73: /* VSX Scalar Round to Double-Precision Integer
4730 Using Round to Nearest Away */
4731 case 107: /* VSX Scalar Round to Double-Precision Integer
4732 Exact using Current rounding mode */
4733 case 121: /* VSX Scalar Round to Double-Precision Integer
4734 Using Round toward -Infinity */
4735 case 105: /* VSX Scalar Round to Double-Precision Integer
4736 Using Round toward +Infinity */
4737 case 89: /* VSX Scalar Round to Double-Precision Integer
4738 Using Round toward Zero */
4739 case 90: /* VSX Scalar Reciprocal Estimate Double-Precision */
4740 case 26: /* VSX Scalar Reciprocal Estimate Single-Precision */
4741 case 281: /* VSX Scalar Round to Single-Precision */
4742 case 74: /* VSX Scalar Reciprocal Square Root Estimate
4743 Double-Precision */
4744 case 10: /* VSX Scalar Reciprocal Square Root Estimate
4745 Single-Precision */
4746 case 75: /* VSX Scalar Square Root Double-Precision */
4747 case 11: /* VSX Scalar Square Root Single-Precision */
4748 case 393: /* VSX Vector round Double-Precision to
4749 Single-Precision and Convert to
4750 Single-Precision format */
4751 case 472: /* VSX Vector truncate Double-Precision to
4752 Integer and Convert to Signed Integer
4753 Doubleword format with Saturate */
4754 case 216: /* VSX Vector truncate Double-Precision to
4755 Integer and Convert to Signed Integer Word
4756 Format with Saturate */
4757 case 456: /* VSX Vector truncate Double-Precision to
4758 Integer and Convert to Unsigned Integer
4759 Doubleword format with Saturate */
4760 case 200: /* VSX Vector truncate Double-Precision to
4761 Integer and Convert to Unsigned Integer Word
4762 Format with Saturate */
4763 case 457: /* VSX Vector Convert Single-Precision to
4764 Double-Precision format */
4765 case 408: /* VSX Vector truncate Single-Precision to
4766 Integer and Convert to Signed Integer
4767 Doubleword format with Saturate */
4768 case 152: /* VSX Vector truncate Single-Precision to
4769 Integer and Convert to Signed Integer Word
4770 Format with Saturate */
4771 case 392: /* VSX Vector truncate Single-Precision to
4772 Integer and Convert to Unsigned Integer
4773 Doubleword format with Saturate */
4774 case 136: /* VSX Vector truncate Single-Precision to
4775 Integer and Convert to Unsigned Integer Word
4776 Format with Saturate */
4777 case 504: /* VSX Vector Convert and round Signed Integer
4778 Doubleword to Double-Precision format */
4779 case 440: /* VSX Vector Convert and round Signed Integer
4780 Doubleword to Single-Precision format */
4781 case 248: /* VSX Vector Convert Signed Integer Word to
4782 Double-Precision format */
4783 case 184: /* VSX Vector Convert and round Signed Integer
4784 Word to Single-Precision format */
4785 case 488: /* VSX Vector Convert and round Unsigned
4786 Integer Doubleword to Double-Precision format */
4787 case 424: /* VSX Vector Convert and round Unsigned
4788 Integer Doubleword to Single-Precision format */
4789 case 232: /* VSX Vector Convert and round Unsigned
4790 Integer Word to Double-Precision format */
4791 case 168: /* VSX Vector Convert and round Unsigned
4792 Integer Word to Single-Precision format */
4793 case 201: /* VSX Vector Round to Double-Precision
4794 Integer using round to Nearest Away */
4795 case 235: /* VSX Vector Round to Double-Precision
4796 Integer Exact using Current rounding mode */
4797 case 249: /* VSX Vector Round to Double-Precision
4798 Integer using round toward -Infinity */
4799 case 233: /* VSX Vector Round to Double-Precision
4800 Integer using round toward +Infinity */
4801 case 217: /* VSX Vector Round to Double-Precision
4802 Integer using round toward Zero */
4803 case 218: /* VSX Vector Reciprocal Estimate Double-Precision */
4804 case 154: /* VSX Vector Reciprocal Estimate Single-Precision */
4805 case 137: /* VSX Vector Round to Single-Precision Integer
4806 Using Round to Nearest Away */
4807 case 171: /* VSX Vector Round to Single-Precision Integer
4808 Exact Using Current rounding mode */
4809 case 185: /* VSX Vector Round to Single-Precision Integer
4810 Using Round toward -Infinity */
4811 case 169: /* VSX Vector Round to Single-Precision Integer
4812 Using Round toward +Infinity */
4813 case 153: /* VSX Vector Round to Single-Precision Integer
4814 Using round toward Zero */
4815 case 202: /* VSX Vector Reciprocal Square Root Estimate
4816 Double-Precision */
4817 case 138: /* VSX Vector Reciprocal Square Root Estimate
4818 Single-Precision */
4819 case 203: /* VSX Vector Square Root Double-Precision */
4820 case 139: /* VSX Vector Square Root Single-Precision */
4821 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4822 case 345: /* VSX Scalar Absolute Value Double-Precision */
4823 case 267: /* VSX Scalar Convert Scalar Single-Precision to
4824 Vector Single-Precision format Non-signalling */
4825 case 331: /* VSX Scalar Convert Single-Precision to
4826 Double-Precision format Non-signalling */
4827 case 361: /* VSX Scalar Negative Absolute Value Double-Precision */
4828 case 377: /* VSX Scalar Negate Double-Precision */
4829 case 473: /* VSX Vector Absolute Value Double-Precision */
4830 case 409: /* VSX Vector Absolute Value Single-Precision */
4831 case 489: /* VSX Vector Negative Absolute Value Double-Precision */
4832 case 425: /* VSX Vector Negative Absolute Value Single-Precision */
4833 case 505: /* VSX Vector Negate Double-Precision */
4834 case 441: /* VSX Vector Negate Single-Precision */
4835 case 164: /* VSX Splat Word */
4836 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4837 return 0;
4838
4839 case 106: /* VSX Scalar Test for software Square Root
4840 Double-Precision */
4841 case 234: /* VSX Vector Test for software Square Root
4842 Double-Precision */
4843 case 170: /* VSX Vector Test for software Square Root
4844 Single-Precision */
4845 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4846 return 0;
4847 }
4848
4849 if (((ext >> 3) & 0x3) == 3) /* VSX Select */
4850 {
4851 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4852 return 0;
4853 }
4854
4855 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record "
4856 "%08x at %08lx, 60-%d.\n", insn, addr, ext);
4857 return -1;
4858 }
4859
4860 /* Parse instructions of primary opcode-63. */
4861
4862 static int
4863 ppc_process_record_op63 (struct gdbarch *gdbarch, struct regcache *regcache,
4864 CORE_ADDR addr, uint32_t insn)
4865 {
4866 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4867 int ext = PPC_EXTOP (insn);
4868 int tmp;
4869
4870 switch (ext & 0x1f)
4871 {
4872 case 18: /* Floating Divide */
4873 case 20: /* Floating Subtract */
4874 case 21: /* Floating Add */
4875 case 22: /* Floating Square Root */
4876 case 24: /* Floating Reciprocal Estimate */
4877 case 25: /* Floating Multiply */
4878 case 26: /* Floating Reciprocal Square Root Estimate */
4879 case 28: /* Floating Multiply-Subtract */
4880 case 29: /* Floating Multiply-Add */
4881 case 30: /* Floating Negative Multiply-Subtract */
4882 case 31: /* Floating Negative Multiply-Add */
4883 record_full_arch_list_add_reg (regcache,
4884 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4885 if (PPC_RC (insn))
4886 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4887 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4888 return 0;
4889
4890 case 23: /* Floating Select */
4891 record_full_arch_list_add_reg (regcache,
4892 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4893 if (PPC_RC (insn))
4894 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4895 }
4896
4897 switch (ext)
4898 {
4899 case 2: /* DFP Add Quad */
4900 case 3: /* DFP Quantize Quad */
4901 case 34: /* DFP Multiply Quad */
4902 case 35: /* DFP Reround Quad */
4903 case 67: /* DFP Quantize Immediate Quad */
4904 case 99: /* DFP Round To FP Integer With Inexact Quad */
4905 case 227: /* DFP Round To FP Integer Without Inexact Quad */
4906 case 258: /* DFP Convert To DFP Extended Quad */
4907 case 514: /* DFP Subtract Quad */
4908 case 546: /* DFP Divide Quad */
4909 case 770: /* DFP Round To DFP Long Quad */
4910 case 802: /* DFP Convert From Fixed Quad */
4911 case 834: /* DFP Encode BCD To DPD Quad */
4912 if (PPC_RC (insn))
4913 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4914 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
4915 record_full_arch_list_add_reg (regcache, tmp);
4916 record_full_arch_list_add_reg (regcache, tmp + 1);
4917 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4918 return 0;
4919
4920 case 130: /* DFP Compare Ordered Quad */
4921 case 162: /* DFP Test Exponent Quad */
4922 case 194: /* DFP Test Data Class Quad */
4923 case 226: /* DFP Test Data Group Quad */
4924 case 642: /* DFP Compare Unordered Quad */
4925 case 674: /* DFP Test Significance Quad */
4926 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4927 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4928 return 0;
4929
4930 case 66: /* DFP Shift Significand Left Immediate Quad */
4931 case 98: /* DFP Shift Significand Right Immediate Quad */
4932 case 322: /* DFP Decode DPD To BCD Quad */
4933 case 866: /* DFP Insert Biased Exponent Quad */
4934 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
4935 record_full_arch_list_add_reg (regcache, tmp);
4936 record_full_arch_list_add_reg (regcache, tmp + 1);
4937 if (PPC_RC (insn))
4938 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4939 return 0;
4940
4941 case 290: /* DFP Convert To Fixed Quad */
4942 record_full_arch_list_add_reg (regcache,
4943 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4944 if (PPC_RC (insn))
4945 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4946 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4947 break;
4948
4949 case 354: /* DFP Extract Biased Exponent Quad */
4950 record_full_arch_list_add_reg (regcache,
4951 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4952 if (PPC_RC (insn))
4953 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4954 return 0;
4955
4956 case 12: /* Floating Round to Single-Precision */
4957 case 14: /* Floating Convert To Integer Word */
4958 case 15: /* Floating Convert To Integer Word
4959 with round toward Zero */
4960 case 142: /* Floating Convert To Integer Word Unsigned */
4961 case 143: /* Floating Convert To Integer Word Unsigned
4962 with round toward Zero */
4963 case 392: /* Floating Round to Integer Nearest */
4964 case 424: /* Floating Round to Integer Toward Zero */
4965 case 456: /* Floating Round to Integer Plus */
4966 case 488: /* Floating Round to Integer Minus */
4967 case 814: /* Floating Convert To Integer Doubleword */
4968 case 815: /* Floating Convert To Integer Doubleword
4969 with round toward Zero */
4970 case 846: /* Floating Convert From Integer Doubleword */
4971 case 942: /* Floating Convert To Integer Doubleword Unsigned */
4972 case 943: /* Floating Convert To Integer Doubleword Unsigned
4973 with round toward Zero */
4974 case 974: /* Floating Convert From Integer Doubleword Unsigned */
4975 record_full_arch_list_add_reg (regcache,
4976 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4977 if (PPC_RC (insn))
4978 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4979 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4980 return 0;
4981
4982 case 583: /* Move From FPSCR */
4983 case 8: /* Floating Copy Sign */
4984 case 40: /* Floating Negate */
4985 case 72: /* Floating Move Register */
4986 case 136: /* Floating Negative Absolute Value */
4987 case 264: /* Floating Absolute Value */
4988 record_full_arch_list_add_reg (regcache,
4989 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4990 if (PPC_RC (insn))
4991 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4992 return 0;
4993
4994 case 838: /* Floating Merge Odd Word */
4995 case 966: /* Floating Merge Even Word */
4996 record_full_arch_list_add_reg (regcache,
4997 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4998 return 0;
4999
5000 case 38: /* Move To FPSCR Bit 1 */
5001 case 70: /* Move To FPSCR Bit 0 */
5002 case 134: /* Move To FPSCR Field Immediate */
5003 case 711: /* Move To FPSCR Fields */
5004 if (PPC_RC (insn))
5005 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5006 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5007 break;
5008
5009 case 0: /* Floating Compare Unordered */
5010 case 32: /* Floating Compare Ordered */
5011 case 64: /* Move to Condition Register from FPSCR */
5012 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5013 /* FALL-THROUGH */
5014 case 128: /* Floating Test for software Divide */
5015 case 160: /* Floating Test for software Square Root */
5016 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5017 return 0;
5018
5019 }
5020
5021 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record "
5022 "%08x at %08lx, 59-%d.\n", insn, addr, ext);
5023 return -1;
5024 }
5025
5026 /* Parse the current instruction and record the values of the registers and
5027 memory that will be changed in current instruction to "record_arch_list".
5028 Return -1 if something wrong. */
5029
5030 int
5031 ppc_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5032 CORE_ADDR addr)
5033 {
5034 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5035 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5036 uint32_t insn;
5037 int op6, tmp, i;
5038
5039 insn = read_memory_unsigned_integer (addr, 4, byte_order);
5040 op6 = PPC_OP6 (insn);
5041
5042 switch (op6)
5043 {
5044 case 2: /* Trap Doubleword Immediate */
5045 case 3: /* Trap Word Immediate */
5046 /* Do nothing. */
5047 break;
5048
5049 case 4:
5050 if (ppc_process_record_op4 (gdbarch, regcache, addr, insn) != 0)
5051 return -1;
5052 break;
5053
5054 case 17: /* System call */
5055 if (PPC_LEV (insn) != 0)
5056 goto UNKNOWN_OP;
5057
5058 if (tdep->ppc_syscall_record != NULL)
5059 {
5060 if (tdep->ppc_syscall_record (regcache) != 0)
5061 return -1;
5062 }
5063 else
5064 {
5065 printf_unfiltered (_("no syscall record support\n"));
5066 return -1;
5067 }
5068 break;
5069
5070 case 7: /* Multiply Low Immediate */
5071 record_full_arch_list_add_reg (regcache,
5072 tdep->ppc_gp0_regnum + PPC_RT (insn));
5073 break;
5074
5075 case 8: /* Subtract From Immediate Carrying */
5076 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5077 record_full_arch_list_add_reg (regcache,
5078 tdep->ppc_gp0_regnum + PPC_RT (insn));
5079 break;
5080
5081 case 10: /* Compare Logical Immediate */
5082 case 11: /* Compare Immediate */
5083 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5084 break;
5085
5086 case 13: /* Add Immediate Carrying and Record */
5087 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5088 /* FALL-THROUGH */
5089 case 12: /* Add Immediate Carrying */
5090 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5091 /* FALL-THROUGH */
5092 case 14: /* Add Immediate */
5093 case 15: /* Add Immediate Shifted */
5094 record_full_arch_list_add_reg (regcache,
5095 tdep->ppc_gp0_regnum + PPC_RT (insn));
5096 break;
5097
5098 case 16: /* Branch Conditional */
5099 if ((PPC_BO (insn) & 0x4) == 0)
5100 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
5101 /* FALL-THROUGH */
5102 case 18: /* Branch */
5103 if (PPC_LK (insn))
5104 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
5105 break;
5106
5107 case 19:
5108 if (ppc_process_record_op19 (gdbarch, regcache, addr, insn) != 0)
5109 return -1;
5110 break;
5111
5112 case 20: /* Rotate Left Word Immediate then Mask Insert */
5113 case 21: /* Rotate Left Word Immediate then AND with Mask */
5114 case 23: /* Rotate Left Word then AND with Mask */
5115 case 30: /* Rotate Left Doubleword Immediate then Clear Left */
5116 /* Rotate Left Doubleword Immediate then Clear Right */
5117 /* Rotate Left Doubleword Immediate then Clear */
5118 /* Rotate Left Doubleword then Clear Left */
5119 /* Rotate Left Doubleword then Clear Right */
5120 /* Rotate Left Doubleword Immediate then Mask Insert */
5121 if (PPC_RC (insn))
5122 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5123 record_full_arch_list_add_reg (regcache,
5124 tdep->ppc_gp0_regnum + PPC_RA (insn));
5125 break;
5126
5127 case 28: /* AND Immediate */
5128 case 29: /* AND Immediate Shifted */
5129 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5130 /* FALL-THROUGH */
5131 case 24: /* OR Immediate */
5132 case 25: /* OR Immediate Shifted */
5133 case 26: /* XOR Immediate */
5134 case 27: /* XOR Immediate Shifted */
5135 record_full_arch_list_add_reg (regcache,
5136 tdep->ppc_gp0_regnum + PPC_RA (insn));
5137 break;
5138
5139 case 31:
5140 if (ppc_process_record_op31 (gdbarch, regcache, addr, insn) != 0)
5141 return -1;
5142 break;
5143
5144 case 33: /* Load Word and Zero with Update */
5145 case 35: /* Load Byte and Zero with Update */
5146 case 41: /* Load Halfword and Zero with Update */
5147 case 43: /* Load Halfword Algebraic with Update */
5148 record_full_arch_list_add_reg (regcache,
5149 tdep->ppc_gp0_regnum + PPC_RA (insn));
5150 /* FALL-THROUGH */
5151 case 32: /* Load Word and Zero */
5152 case 34: /* Load Byte and Zero */
5153 case 40: /* Load Halfword and Zero */
5154 case 42: /* Load Halfword Algebraic */
5155 record_full_arch_list_add_reg (regcache,
5156 tdep->ppc_gp0_regnum + PPC_RT (insn));
5157 break;
5158
5159 case 46: /* Load Multiple Word */
5160 for (i = PPC_RT (insn); i < 32; i++)
5161 record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i);
5162 break;
5163
5164 case 56: /* Load Quadword */
5165 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
5166 record_full_arch_list_add_reg (regcache, tmp);
5167 record_full_arch_list_add_reg (regcache, tmp + 1);
5168 break;
5169
5170 case 49: /* Load Floating-Point Single with Update */
5171 case 51: /* Load Floating-Point Double with Update */
5172 record_full_arch_list_add_reg (regcache,
5173 tdep->ppc_gp0_regnum + PPC_RA (insn));
5174 /* FALL-THROUGH */
5175 case 48: /* Load Floating-Point Single */
5176 case 50: /* Load Floating-Point Double */
5177 record_full_arch_list_add_reg (regcache,
5178 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5179 break;
5180
5181 case 47: /* Store Multiple Word */
5182 {
5183 ULONGEST addr = 0;
5184
5185 if (PPC_RA (insn) != 0)
5186 regcache_raw_read_unsigned (regcache,
5187 tdep->ppc_gp0_regnum + PPC_RA (insn),
5188 &addr);
5189
5190 addr += PPC_D (insn);
5191 record_full_arch_list_add_mem (addr, 4 * (32 - PPC_RS (insn)));
5192 }
5193 break;
5194
5195 case 37: /* Store Word with Update */
5196 case 39: /* Store Byte with Update */
5197 case 45: /* Store Halfword with Update */
5198 case 53: /* Store Floating-Point Single with Update */
5199 case 55: /* Store Floating-Point Double with Update */
5200 record_full_arch_list_add_reg (regcache,
5201 tdep->ppc_gp0_regnum + PPC_RA (insn));
5202 /* FALL-THROUGH */
5203 case 36: /* Store Word */
5204 case 38: /* Store Byte */
5205 case 44: /* Store Halfword */
5206 case 52: /* Store Floating-Point Single */
5207 case 54: /* Store Floating-Point Double */
5208 {
5209 ULONGEST addr = 0;
5210 int size = -1;
5211
5212 if (PPC_RA (insn) != 0)
5213 regcache_raw_read_unsigned (regcache,
5214 tdep->ppc_gp0_regnum + PPC_RA (insn),
5215 &addr);
5216 addr += PPC_D (insn);
5217
5218 if (op6 == 36 || op6 == 37 || op6 == 52 || op6 == 53)
5219 size = 4;
5220 else if (op6 == 54 || op6 == 55)
5221 size = 8;
5222 else if (op6 == 44 || op6 == 45)
5223 size = 2;
5224 else if (op6 == 38 || op6 == 39)
5225 size = 1;
5226 else
5227 gdb_assert (0);
5228
5229 record_full_arch_list_add_mem (addr, size);
5230 }
5231 break;
5232
5233 case 57: /* Load Floating-Point Double Pair */
5234 if (PPC_FIELD (insn, 30, 2) != 0)
5235 goto UNKNOWN_OP;
5236 tmp = tdep->ppc_fp0_regnum + (PPC_RT (insn) & ~1);
5237 record_full_arch_list_add_reg (regcache, tmp);
5238 record_full_arch_list_add_reg (regcache, tmp + 1);
5239 break;
5240
5241 case 58: /* Load Doubleword */
5242 /* Load Doubleword with Update */
5243 /* Load Word Algebraic */
5244 if (PPC_FIELD (insn, 30, 2) > 2)
5245 goto UNKNOWN_OP;
5246
5247 record_full_arch_list_add_reg (regcache,
5248 tdep->ppc_gp0_regnum + PPC_RT (insn));
5249 if (PPC_BIT (insn, 31))
5250 record_full_arch_list_add_reg (regcache,
5251 tdep->ppc_gp0_regnum + PPC_RA (insn));
5252 break;
5253
5254 case 59:
5255 if (ppc_process_record_op59 (gdbarch, regcache, addr, insn) != 0)
5256 return -1;
5257 break;
5258
5259 case 60:
5260 if (ppc_process_record_op60 (gdbarch, regcache, addr, insn) != 0)
5261 return -1;
5262 break;
5263
5264 case 61: /* Store Floating-Point Double Pair */
5265 case 62: /* Store Doubleword */
5266 /* Store Doubleword with Update */
5267 /* Store Quadword with Update */
5268 {
5269 ULONGEST addr = 0;
5270 int size;
5271 int sub2 = PPC_FIELD (insn, 30, 2);
5272
5273 if ((op6 == 61 && sub2 != 0) || (op6 == 62 && sub2 > 2))
5274 goto UNKNOWN_OP;
5275
5276 if (PPC_RA (insn) != 0)
5277 regcache_raw_read_unsigned (regcache,
5278 tdep->ppc_gp0_regnum + PPC_RA (insn),
5279 &addr);
5280
5281 size = ((op6 == 61) || sub2 == 2) ? 16 : 8;
5282
5283 addr += PPC_DS (insn) << 2;
5284 record_full_arch_list_add_mem (addr, size);
5285
5286 if (op6 == 62 && sub2 == 1)
5287 record_full_arch_list_add_reg (regcache,
5288 tdep->ppc_gp0_regnum +
5289 PPC_RA (insn));
5290
5291 break;
5292 }
5293
5294 case 63:
5295 if (ppc_process_record_op63 (gdbarch, regcache, addr, insn) != 0)
5296 return -1;
5297 break;
5298
5299 default:
5300 UNKNOWN_OP:
5301 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record "
5302 "%08x at %08lx, %d.\n", insn, addr, op6);
5303 return -1;
5304 }
5305
5306 if (record_full_arch_list_add_reg (regcache, PPC_PC_REGNUM))
5307 return -1;
5308 if (record_full_arch_list_add_end ())
5309 return -1;
5310 return 0;
5311 }
5312
5313 /* Initialize the current architecture based on INFO. If possible, re-use an
5314 architecture from ARCHES, which is a list of architectures already created
5315 during this debugging session.
5316
5317 Called e.g. at program startup, when reading a core file, and when reading
5318 a binary file. */
5319
5320 static struct gdbarch *
5321 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5322 {
5323 struct gdbarch *gdbarch;
5324 struct gdbarch_tdep *tdep;
5325 int wordsize, from_xcoff_exec, from_elf_exec;
5326 enum bfd_architecture arch;
5327 unsigned long mach;
5328 bfd abfd;
5329 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
5330 int soft_float;
5331 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
5332 enum powerpc_elf_abi elf_abi = POWERPC_ELF_AUTO;
5333 int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0,
5334 have_vsx = 0;
5335 int tdesc_wordsize = -1;
5336 const struct target_desc *tdesc = info.target_desc;
5337 struct tdesc_arch_data *tdesc_data = NULL;
5338 int num_pseudoregs = 0;
5339 int cur_reg;
5340
5341 /* INFO may refer to a binary that is not of the PowerPC architecture,
5342 e.g. when debugging a stand-alone SPE executable on a Cell/B.E. system.
5343 In this case, we must not attempt to infer properties of the (PowerPC
5344 side) of the target system from properties of that executable. Trust
5345 the target description instead. */
5346 if (info.abfd
5347 && bfd_get_arch (info.abfd) != bfd_arch_powerpc
5348 && bfd_get_arch (info.abfd) != bfd_arch_rs6000)
5349 info.abfd = NULL;
5350
5351 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
5352 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
5353
5354 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
5355 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
5356
5357 /* Check word size. If INFO is from a binary file, infer it from
5358 that, else choose a likely default. */
5359 if (from_xcoff_exec)
5360 {
5361 if (bfd_xcoff_is_xcoff64 (info.abfd))
5362 wordsize = 8;
5363 else
5364 wordsize = 4;
5365 }
5366 else if (from_elf_exec)
5367 {
5368 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5369 wordsize = 8;
5370 else
5371 wordsize = 4;
5372 }
5373 else if (tdesc_has_registers (tdesc))
5374 wordsize = -1;
5375 else
5376 {
5377 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
5378 wordsize = info.bfd_arch_info->bits_per_word /
5379 info.bfd_arch_info->bits_per_byte;
5380 else
5381 wordsize = 4;
5382 }
5383
5384 /* Get the architecture and machine from the BFD. */
5385 arch = info.bfd_arch_info->arch;
5386 mach = info.bfd_arch_info->mach;
5387
5388 /* For e500 executables, the apuinfo section is of help here. Such
5389 section contains the identifier and revision number of each
5390 Application-specific Processing Unit that is present on the
5391 chip. The content of the section is determined by the assembler
5392 which looks at each instruction and determines which unit (and
5393 which version of it) can execute it. Grovel through the section
5394 looking for relevant e500 APUs. */
5395
5396 if (bfd_uses_spe_extensions (info.abfd))
5397 {
5398 arch = info.bfd_arch_info->arch;
5399 mach = bfd_mach_ppc_e500;
5400 bfd_default_set_arch_mach (&abfd, arch, mach);
5401 info.bfd_arch_info = bfd_get_arch_info (&abfd);
5402 }
5403
5404 /* Find a default target description which describes our register
5405 layout, if we do not already have one. */
5406 if (! tdesc_has_registers (tdesc))
5407 {
5408 const struct variant *v;
5409
5410 /* Choose variant. */
5411 v = find_variant_by_arch (arch, mach);
5412 if (!v)
5413 return NULL;
5414
5415 tdesc = *v->tdesc;
5416 }
5417
5418 gdb_assert (tdesc_has_registers (tdesc));
5419
5420 /* Check any target description for validity. */
5421 if (tdesc_has_registers (tdesc))
5422 {
5423 static const char *const gprs[] = {
5424 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
5425 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
5426 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
5427 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
5428 };
5429 const struct tdesc_feature *feature;
5430 int i, valid_p;
5431 static const char *const msr_names[] = { "msr", "ps" };
5432 static const char *const cr_names[] = { "cr", "cnd" };
5433 static const char *const ctr_names[] = { "ctr", "cnt" };
5434
5435 feature = tdesc_find_feature (tdesc,
5436 "org.gnu.gdb.power.core");
5437 if (feature == NULL)
5438 return NULL;
5439
5440 tdesc_data = tdesc_data_alloc ();
5441
5442 valid_p = 1;
5443 for (i = 0; i < ppc_num_gprs; i++)
5444 valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
5445 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
5446 "pc");
5447 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
5448 "lr");
5449 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
5450 "xer");
5451
5452 /* Allow alternate names for these registers, to accomodate GDB's
5453 historic naming. */
5454 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
5455 PPC_MSR_REGNUM, msr_names);
5456 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
5457 PPC_CR_REGNUM, cr_names);
5458 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
5459 PPC_CTR_REGNUM, ctr_names);
5460
5461 if (!valid_p)
5462 {
5463 tdesc_data_cleanup (tdesc_data);
5464 return NULL;
5465 }
5466
5467 have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
5468 "mq");
5469
5470 tdesc_wordsize = tdesc_register_size (feature, "pc") / 8;
5471 if (wordsize == -1)
5472 wordsize = tdesc_wordsize;
5473
5474 feature = tdesc_find_feature (tdesc,
5475 "org.gnu.gdb.power.fpu");
5476 if (feature != NULL)
5477 {
5478 static const char *const fprs[] = {
5479 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
5480 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
5481 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
5482 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
5483 };
5484 valid_p = 1;
5485 for (i = 0; i < ppc_num_fprs; i++)
5486 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5487 PPC_F0_REGNUM + i, fprs[i]);
5488 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5489 PPC_FPSCR_REGNUM, "fpscr");
5490
5491 if (!valid_p)
5492 {
5493 tdesc_data_cleanup (tdesc_data);
5494 return NULL;
5495 }
5496 have_fpu = 1;
5497 }
5498 else
5499 have_fpu = 0;
5500
5501 /* The DFP pseudo-registers will be available when there are floating
5502 point registers. */
5503 have_dfp = have_fpu;
5504
5505 feature = tdesc_find_feature (tdesc,
5506 "org.gnu.gdb.power.altivec");
5507 if (feature != NULL)
5508 {
5509 static const char *const vector_regs[] = {
5510 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
5511 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
5512 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
5513 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
5514 };
5515
5516 valid_p = 1;
5517 for (i = 0; i < ppc_num_gprs; i++)
5518 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5519 PPC_VR0_REGNUM + i,
5520 vector_regs[i]);
5521 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5522 PPC_VSCR_REGNUM, "vscr");
5523 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5524 PPC_VRSAVE_REGNUM, "vrsave");
5525
5526 if (have_spe || !valid_p)
5527 {
5528 tdesc_data_cleanup (tdesc_data);
5529 return NULL;
5530 }
5531 have_altivec = 1;
5532 }
5533 else
5534 have_altivec = 0;
5535
5536 /* Check for POWER7 VSX registers support. */
5537 feature = tdesc_find_feature (tdesc,
5538 "org.gnu.gdb.power.vsx");
5539
5540 if (feature != NULL)
5541 {
5542 static const char *const vsx_regs[] = {
5543 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
5544 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
5545 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
5546 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
5547 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
5548 "vs30h", "vs31h"
5549 };
5550
5551 valid_p = 1;
5552
5553 for (i = 0; i < ppc_num_vshrs; i++)
5554 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5555 PPC_VSR0_UPPER_REGNUM + i,
5556 vsx_regs[i]);
5557 if (!valid_p)
5558 {
5559 tdesc_data_cleanup (tdesc_data);
5560 return NULL;
5561 }
5562
5563 have_vsx = 1;
5564 }
5565 else
5566 have_vsx = 0;
5567
5568 /* On machines supporting the SPE APU, the general-purpose registers
5569 are 64 bits long. There are SIMD vector instructions to treat them
5570 as pairs of floats, but the rest of the instruction set treats them
5571 as 32-bit registers, and only operates on their lower halves.
5572
5573 In the GDB regcache, we treat their high and low halves as separate
5574 registers. The low halves we present as the general-purpose
5575 registers, and then we have pseudo-registers that stitch together
5576 the upper and lower halves and present them as pseudo-registers.
5577
5578 Thus, the target description is expected to supply the upper
5579 halves separately. */
5580
5581 feature = tdesc_find_feature (tdesc,
5582 "org.gnu.gdb.power.spe");
5583 if (feature != NULL)
5584 {
5585 static const char *const upper_spe[] = {
5586 "ev0h", "ev1h", "ev2h", "ev3h",
5587 "ev4h", "ev5h", "ev6h", "ev7h",
5588 "ev8h", "ev9h", "ev10h", "ev11h",
5589 "ev12h", "ev13h", "ev14h", "ev15h",
5590 "ev16h", "ev17h", "ev18h", "ev19h",
5591 "ev20h", "ev21h", "ev22h", "ev23h",
5592 "ev24h", "ev25h", "ev26h", "ev27h",
5593 "ev28h", "ev29h", "ev30h", "ev31h"
5594 };
5595
5596 valid_p = 1;
5597 for (i = 0; i < ppc_num_gprs; i++)
5598 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5599 PPC_SPE_UPPER_GP0_REGNUM + i,
5600 upper_spe[i]);
5601 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5602 PPC_SPE_ACC_REGNUM, "acc");
5603 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5604 PPC_SPE_FSCR_REGNUM, "spefscr");
5605
5606 if (have_mq || have_fpu || !valid_p)
5607 {
5608 tdesc_data_cleanup (tdesc_data);
5609 return NULL;
5610 }
5611 have_spe = 1;
5612 }
5613 else
5614 have_spe = 0;
5615 }
5616
5617 /* If we have a 64-bit binary on a 32-bit target, complain. Also
5618 complain for a 32-bit binary on a 64-bit target; we do not yet
5619 support that. For instance, the 32-bit ABI routines expect
5620 32-bit GPRs.
5621
5622 As long as there isn't an explicit target description, we'll
5623 choose one based on the BFD architecture and get a word size
5624 matching the binary (probably powerpc:common or
5625 powerpc:common64). So there is only trouble if a 64-bit target
5626 supplies a 64-bit description while debugging a 32-bit
5627 binary. */
5628 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
5629 {
5630 tdesc_data_cleanup (tdesc_data);
5631 return NULL;
5632 }
5633
5634 #ifdef HAVE_ELF
5635 if (from_elf_exec)
5636 {
5637 switch (elf_elfheader (info.abfd)->e_flags & EF_PPC64_ABI)
5638 {
5639 case 1:
5640 elf_abi = POWERPC_ELF_V1;
5641 break;
5642 case 2:
5643 elf_abi = POWERPC_ELF_V2;
5644 break;
5645 default:
5646 break;
5647 }
5648 }
5649
5650 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
5651 {
5652 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
5653 Tag_GNU_Power_ABI_FP))
5654 {
5655 case 1:
5656 soft_float_flag = AUTO_BOOLEAN_FALSE;
5657 break;
5658 case 2:
5659 soft_float_flag = AUTO_BOOLEAN_TRUE;
5660 break;
5661 default:
5662 break;
5663 }
5664 }
5665
5666 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
5667 {
5668 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
5669 Tag_GNU_Power_ABI_Vector))
5670 {
5671 case 1:
5672 vector_abi = POWERPC_VEC_GENERIC;
5673 break;
5674 case 2:
5675 vector_abi = POWERPC_VEC_ALTIVEC;
5676 break;
5677 case 3:
5678 vector_abi = POWERPC_VEC_SPE;
5679 break;
5680 default:
5681 break;
5682 }
5683 }
5684 #endif
5685
5686 /* At this point, the only supported ELF-based 64-bit little-endian
5687 operating system is GNU/Linux, and this uses the ELFv2 ABI by
5688 default. All other supported ELF-based operating systems use the
5689 ELFv1 ABI by default. Therefore, if the ABI marker is missing,
5690 e.g. because we run a legacy binary, or have attached to a process
5691 and have not found any associated binary file, set the default
5692 according to this heuristic. */
5693 if (elf_abi == POWERPC_ELF_AUTO)
5694 {
5695 if (wordsize == 8 && info.byte_order == BFD_ENDIAN_LITTLE)
5696 elf_abi = POWERPC_ELF_V2;
5697 else
5698 elf_abi = POWERPC_ELF_V1;
5699 }
5700
5701 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
5702 soft_float = 1;
5703 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
5704 soft_float = 0;
5705 else
5706 soft_float = !have_fpu;
5707
5708 /* If we have a hard float binary or setting but no floating point
5709 registers, downgrade to soft float anyway. We're still somewhat
5710 useful in this scenario. */
5711 if (!soft_float && !have_fpu)
5712 soft_float = 1;
5713
5714 /* Similarly for vector registers. */
5715 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
5716 vector_abi = POWERPC_VEC_GENERIC;
5717
5718 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
5719 vector_abi = POWERPC_VEC_GENERIC;
5720
5721 if (vector_abi == POWERPC_VEC_AUTO)
5722 {
5723 if (have_altivec)
5724 vector_abi = POWERPC_VEC_ALTIVEC;
5725 else if (have_spe)
5726 vector_abi = POWERPC_VEC_SPE;
5727 else
5728 vector_abi = POWERPC_VEC_GENERIC;
5729 }
5730
5731 /* Do not limit the vector ABI based on available hardware, since we
5732 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
5733
5734 /* Find a candidate among extant architectures. */
5735 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5736 arches != NULL;
5737 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5738 {
5739 /* Word size in the various PowerPC bfd_arch_info structs isn't
5740 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
5741 separate word size check. */
5742 tdep = gdbarch_tdep (arches->gdbarch);
5743 if (tdep && tdep->elf_abi != elf_abi)
5744 continue;
5745 if (tdep && tdep->soft_float != soft_float)
5746 continue;
5747 if (tdep && tdep->vector_abi != vector_abi)
5748 continue;
5749 if (tdep && tdep->wordsize == wordsize)
5750 {
5751 if (tdesc_data != NULL)
5752 tdesc_data_cleanup (tdesc_data);
5753 return arches->gdbarch;
5754 }
5755 }
5756
5757 /* None found, create a new architecture from INFO, whose bfd_arch_info
5758 validity depends on the source:
5759 - executable useless
5760 - rs6000_host_arch() good
5761 - core file good
5762 - "set arch" trust blindly
5763 - GDB startup useless but harmless */
5764
5765 tdep = XCNEW (struct gdbarch_tdep);
5766 tdep->wordsize = wordsize;
5767 tdep->elf_abi = elf_abi;
5768 tdep->soft_float = soft_float;
5769 tdep->vector_abi = vector_abi;
5770
5771 gdbarch = gdbarch_alloc (&info, tdep);
5772
5773 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
5774 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
5775 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
5776 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
5777 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
5778 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
5779 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
5780 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
5781
5782 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
5783 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
5784 tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
5785 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
5786 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
5787 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
5788 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
5789 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
5790
5791 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
5792 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
5793 set_gdbarch_deprecated_fp_regnum (gdbarch, PPC_R0_REGNUM + 1);
5794 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
5795 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
5796
5797 /* The XML specification for PowerPC sensibly calls the MSR "msr".
5798 GDB traditionally called it "ps", though, so let GDB add an
5799 alias. */
5800 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
5801
5802 if (wordsize == 8)
5803 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
5804 else
5805 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
5806
5807 /* Set lr_frame_offset. */
5808 if (wordsize == 8)
5809 tdep->lr_frame_offset = 16;
5810 else
5811 tdep->lr_frame_offset = 4;
5812
5813 if (have_spe || have_dfp || have_vsx)
5814 {
5815 set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
5816 set_gdbarch_pseudo_register_write (gdbarch,
5817 rs6000_pseudo_register_write);
5818 }
5819
5820 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5821
5822 /* Select instruction printer. */
5823 if (arch == bfd_arch_rs6000)
5824 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
5825 else
5826 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
5827
5828 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
5829
5830 if (have_spe)
5831 num_pseudoregs += 32;
5832 if (have_dfp)
5833 num_pseudoregs += 16;
5834 if (have_vsx)
5835 /* Include both VSX and Extended FP registers. */
5836 num_pseudoregs += 96;
5837
5838 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
5839
5840 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
5841 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
5842 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
5843 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
5844 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
5845 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
5846 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
5847 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
5848 set_gdbarch_char_signed (gdbarch, 0);
5849
5850 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
5851 if (wordsize == 8)
5852 /* PPC64 SYSV. */
5853 set_gdbarch_frame_red_zone_size (gdbarch, 288);
5854
5855 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
5856 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
5857 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
5858
5859 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
5860 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
5861
5862 if (wordsize == 4)
5863 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
5864 else if (wordsize == 8)
5865 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
5866
5867 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
5868 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
5869 set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
5870
5871 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5872 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
5873
5874 /* The value of symbols of type N_SO and N_FUN maybe null when
5875 it shouldn't be. */
5876 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
5877
5878 /* Handles single stepping of atomic sequences. */
5879 set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
5880
5881 /* Not sure on this. FIXMEmgo */
5882 set_gdbarch_frame_args_skip (gdbarch, 8);
5883
5884 /* Helpers for function argument information. */
5885 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
5886
5887 /* Trampoline. */
5888 set_gdbarch_in_solib_return_trampoline
5889 (gdbarch, rs6000_in_solib_return_trampoline);
5890 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
5891
5892 /* Hook in the DWARF CFI frame unwinder. */
5893 dwarf2_append_unwinders (gdbarch);
5894 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
5895
5896 /* Frame handling. */
5897 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
5898
5899 /* Setup displaced stepping. */
5900 set_gdbarch_displaced_step_copy_insn (gdbarch,
5901 simple_displaced_step_copy_insn);
5902 set_gdbarch_displaced_step_hw_singlestep (gdbarch,
5903 ppc_displaced_step_hw_singlestep);
5904 set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
5905 set_gdbarch_displaced_step_free_closure (gdbarch,
5906 simple_displaced_step_free_closure);
5907 set_gdbarch_displaced_step_location (gdbarch,
5908 displaced_step_at_entry_point);
5909
5910 set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
5911
5912 /* Hook in ABI-specific overrides, if they have been registered. */
5913 info.target_desc = tdesc;
5914 info.tdep_info = (void *) tdesc_data;
5915 gdbarch_init_osabi (info, gdbarch);
5916
5917 switch (info.osabi)
5918 {
5919 case GDB_OSABI_LINUX:
5920 case GDB_OSABI_NETBSD_AOUT:
5921 case GDB_OSABI_NETBSD_ELF:
5922 case GDB_OSABI_UNKNOWN:
5923 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
5924 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
5925 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
5926 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
5927 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
5928 break;
5929 default:
5930 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
5931
5932 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
5933 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
5934 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
5935 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
5936 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
5937 }
5938
5939 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
5940 set_tdesc_pseudo_register_reggroup_p (gdbarch,
5941 rs6000_pseudo_register_reggroup_p);
5942 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
5943
5944 /* Override the normal target description method to make the SPE upper
5945 halves anonymous. */
5946 set_gdbarch_register_name (gdbarch, rs6000_register_name);
5947
5948 /* Choose register numbers for all supported pseudo-registers. */
5949 tdep->ppc_ev0_regnum = -1;
5950 tdep->ppc_dl0_regnum = -1;
5951 tdep->ppc_vsr0_regnum = -1;
5952 tdep->ppc_efpr0_regnum = -1;
5953
5954 cur_reg = gdbarch_num_regs (gdbarch);
5955
5956 if (have_spe)
5957 {
5958 tdep->ppc_ev0_regnum = cur_reg;
5959 cur_reg += 32;
5960 }
5961 if (have_dfp)
5962 {
5963 tdep->ppc_dl0_regnum = cur_reg;
5964 cur_reg += 16;
5965 }
5966 if (have_vsx)
5967 {
5968 tdep->ppc_vsr0_regnum = cur_reg;
5969 cur_reg += 64;
5970 tdep->ppc_efpr0_regnum = cur_reg;
5971 cur_reg += 32;
5972 }
5973
5974 gdb_assert (gdbarch_num_regs (gdbarch)
5975 + gdbarch_num_pseudo_regs (gdbarch) == cur_reg);
5976
5977 /* Register the ravenscar_arch_ops. */
5978 if (mach == bfd_mach_ppc_e500)
5979 register_e500_ravenscar_ops (gdbarch);
5980 else
5981 register_ppc_ravenscar_ops (gdbarch);
5982
5983 return gdbarch;
5984 }
5985
5986 static void
5987 rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
5988 {
5989 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5990
5991 if (tdep == NULL)
5992 return;
5993
5994 /* FIXME: Dump gdbarch_tdep. */
5995 }
5996
5997 /* PowerPC-specific commands. */
5998
5999 static void
6000 set_powerpc_command (char *args, int from_tty)
6001 {
6002 printf_unfiltered (_("\
6003 \"set powerpc\" must be followed by an appropriate subcommand.\n"));
6004 help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
6005 }
6006
6007 static void
6008 show_powerpc_command (char *args, int from_tty)
6009 {
6010 cmd_show_list (showpowerpccmdlist, from_tty, "");
6011 }
6012
6013 static void
6014 powerpc_set_soft_float (char *args, int from_tty,
6015 struct cmd_list_element *c)
6016 {
6017 struct gdbarch_info info;
6018
6019 /* Update the architecture. */
6020 gdbarch_info_init (&info);
6021 if (!gdbarch_update_p (info))
6022 internal_error (__FILE__, __LINE__, _("could not update architecture"));
6023 }
6024
6025 static void
6026 powerpc_set_vector_abi (char *args, int from_tty,
6027 struct cmd_list_element *c)
6028 {
6029 struct gdbarch_info info;
6030 enum powerpc_vector_abi vector_abi;
6031
6032 for (vector_abi = POWERPC_VEC_AUTO;
6033 vector_abi != POWERPC_VEC_LAST;
6034 vector_abi++)
6035 if (strcmp (powerpc_vector_abi_string,
6036 powerpc_vector_strings[vector_abi]) == 0)
6037 {
6038 powerpc_vector_abi_global = vector_abi;
6039 break;
6040 }
6041
6042 if (vector_abi == POWERPC_VEC_LAST)
6043 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
6044 powerpc_vector_abi_string);
6045
6046 /* Update the architecture. */
6047 gdbarch_info_init (&info);
6048 if (!gdbarch_update_p (info))
6049 internal_error (__FILE__, __LINE__, _("could not update architecture"));
6050 }
6051
6052 /* Show the current setting of the exact watchpoints flag. */
6053
6054 static void
6055 show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
6056 struct cmd_list_element *c,
6057 const char *value)
6058 {
6059 fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value);
6060 }
6061
6062 /* Read a PPC instruction from memory. */
6063
6064 static unsigned int
6065 read_insn (struct frame_info *frame, CORE_ADDR pc)
6066 {
6067 struct gdbarch *gdbarch = get_frame_arch (frame);
6068 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6069
6070 return read_memory_unsigned_integer (pc, 4, byte_order);
6071 }
6072
6073 /* Return non-zero if the instructions at PC match the series
6074 described in PATTERN, or zero otherwise. PATTERN is an array of
6075 'struct ppc_insn_pattern' objects, terminated by an entry whose
6076 mask is zero.
6077
6078 When the match is successful, fill INSN[i] with what PATTERN[i]
6079 matched. If PATTERN[i] is optional, and the instruction wasn't
6080 present, set INSN[i] to 0 (which is not a valid PPC instruction).
6081 INSN should have as many elements as PATTERN. Note that, if
6082 PATTERN contains optional instructions which aren't present in
6083 memory, then INSN will have holes, so INSN[i] isn't necessarily the
6084 i'th instruction in memory. */
6085
6086 int
6087 ppc_insns_match_pattern (struct frame_info *frame, CORE_ADDR pc,
6088 struct ppc_insn_pattern *pattern,
6089 unsigned int *insns)
6090 {
6091 int i;
6092 unsigned int insn;
6093
6094 for (i = 0, insn = 0; pattern[i].mask; i++)
6095 {
6096 if (insn == 0)
6097 insn = read_insn (frame, pc);
6098 insns[i] = 0;
6099 if ((insn & pattern[i].mask) == pattern[i].data)
6100 {
6101 insns[i] = insn;
6102 pc += 4;
6103 insn = 0;
6104 }
6105 else if (!pattern[i].optional)
6106 return 0;
6107 }
6108
6109 return 1;
6110 }
6111
6112 /* Return the 'd' field of the d-form instruction INSN, properly
6113 sign-extended. */
6114
6115 CORE_ADDR
6116 ppc_insn_d_field (unsigned int insn)
6117 {
6118 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
6119 }
6120
6121 /* Return the 'ds' field of the ds-form instruction INSN, with the two
6122 zero bits concatenated at the right, and properly
6123 sign-extended. */
6124
6125 CORE_ADDR
6126 ppc_insn_ds_field (unsigned int insn)
6127 {
6128 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
6129 }
6130
6131 /* Initialization code. */
6132
6133 /* -Wmissing-prototypes */
6134 extern initialize_file_ftype _initialize_rs6000_tdep;
6135
6136 void
6137 _initialize_rs6000_tdep (void)
6138 {
6139 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
6140 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
6141
6142 /* Initialize the standard target descriptions. */
6143 initialize_tdesc_powerpc_32 ();
6144 initialize_tdesc_powerpc_altivec32 ();
6145 initialize_tdesc_powerpc_vsx32 ();
6146 initialize_tdesc_powerpc_403 ();
6147 initialize_tdesc_powerpc_403gc ();
6148 initialize_tdesc_powerpc_405 ();
6149 initialize_tdesc_powerpc_505 ();
6150 initialize_tdesc_powerpc_601 ();
6151 initialize_tdesc_powerpc_602 ();
6152 initialize_tdesc_powerpc_603 ();
6153 initialize_tdesc_powerpc_604 ();
6154 initialize_tdesc_powerpc_64 ();
6155 initialize_tdesc_powerpc_altivec64 ();
6156 initialize_tdesc_powerpc_vsx64 ();
6157 initialize_tdesc_powerpc_7400 ();
6158 initialize_tdesc_powerpc_750 ();
6159 initialize_tdesc_powerpc_860 ();
6160 initialize_tdesc_powerpc_e500 ();
6161 initialize_tdesc_rs6000 ();
6162
6163 /* Add root prefix command for all "set powerpc"/"show powerpc"
6164 commands. */
6165 add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
6166 _("Various PowerPC-specific commands."),
6167 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
6168
6169 add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
6170 _("Various PowerPC-specific commands."),
6171 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
6172
6173 /* Add a command to allow the user to force the ABI. */
6174 add_setshow_auto_boolean_cmd ("soft-float", class_support,
6175 &powerpc_soft_float_global,
6176 _("Set whether to use a soft-float ABI."),
6177 _("Show whether to use a soft-float ABI."),
6178 NULL,
6179 powerpc_set_soft_float, NULL,
6180 &setpowerpccmdlist, &showpowerpccmdlist);
6181
6182 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
6183 &powerpc_vector_abi_string,
6184 _("Set the vector ABI."),
6185 _("Show the vector ABI."),
6186 NULL, powerpc_set_vector_abi, NULL,
6187 &setpowerpccmdlist, &showpowerpccmdlist);
6188
6189 add_setshow_boolean_cmd ("exact-watchpoints", class_support,
6190 &target_exact_watchpoints,
6191 _("\
6192 Set whether to use just one debug register for watchpoints on scalars."),
6193 _("\
6194 Show whether to use just one debug register for watchpoints on scalars."),
6195 _("\
6196 If true, GDB will use only one debug register when watching a variable of\n\
6197 scalar type, thus assuming that the variable is accessed through the address\n\
6198 of its first byte."),
6199 NULL, show_powerpc_exact_watchpoints,
6200 &setpowerpccmdlist, &showpowerpccmdlist);
6201 }
This page took 0.157143 seconds and 4 git commands to generate.